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Abstract. An algebra-valued model of set theory is called loyal to its algebra if the
model and its algebra have the same propositional logic; it is called faithful if all elements
of the algebra are truth values of a sentence of the language of set theory in the model.
We observe that non-trivial automorphisms of the algebra result in models that are not
faithful and apply this to construct three classes of illoyal models: the tail stretches, the
transposition twists, and the maximal twists. (Version 7; 2 October 2018)

§1. Background The construction of algebra-valued models of set theory starts
from an algebra A and a model V of set theory and forms an A-valued model of set
theory that reflects both the set theory of V and the logic of A. This construction
is the natural generalisation of Boolean-valued models, Heyting-valued models,
lattice-valued models, and orthomodular-valued models (Bell, 2005; Grayson, 1979;
Ozawa, 2009; Titani, 1999) and was developed by Löwe and Tarafder (2015).

Löwe and Tarafder (2015, § 6) used an algebra PS3 of paraconsistent logic to con-
struct a PS3-valued model of set theory that exhibits the paraconsistency inherited
from the algebra PS3. For more on the algebra PS3, cf. (Chakraborty and Tarafder,
2016); for more on the set theory in the PS3-valued model, cf. (Tarafder, 2015).

Recently, Passmann (2018) introduced the terms “loyalty” and “faithfulness”
while studying the precise relationship between the logic of the algebra A and the
logical phenomena witnessed in the A-valued model of set theory. A model is called
loyal to its algebra if the propositional logic in the model is the same as the logic
of the algebra from which it was constructed and faithful if every element of the
algebra is the truth value of a sentence in the model. The model constructed by
Löwe and Tarafder (2015) is both loyal and faithful to PS3. In this paper, we shall
give elementary constructions to produce illoyal models by stretching and twisting
Boolean algebras.

This research was partially supported by the Marie Sk lodowska-Curie fellowship
REGPROP (706219) funded by the European Commission at the Universität Hamburg.
The authors would like to thank Nick Bezhanishvili and Lorenzo Galeotti for various
discussions about Heyting algebras and their logics.
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After we give the basic definitions in §2., we remind the reader of the construc-
tion of algebra-valued models of set theory in §3.. In §4., we introduce our main
technique: a non-trivial automorphisms of an algebra A excludes values from being
truth values of sentences in the A-valued model of set theory (Corollary 7). Finally,
in §5., we apply this technique to produce three classes of models: tail stretches
(§ 5.2.), transposition twists (§ 5.3.), and maximal twists (§ 5.4.).

§2. Basic definitions

Algebras. Let Λ be a set of logical connectives; in this paper, we shall assume
that

{∧,∨,0,1} ⊆ Λ ⊆ {∧,∨,→,¬,0,1}.
An algebra A with underlying set A is called a Λ-algebra if it has one operation
for each of the logical connectives in Λ such that (A,∧,∨,0,1) is a distributive
lattice;1 we can define ≤ on A by x ≤ y if and only if x ∧ y = x. An element a ∈ A
is an atom if it is ≤-minimal in A\{0}; we write At(A) for the set of atoms in A. If
Λ = {∧,∨,→,0,1}, we call A an implication algebra and if Λ = {∧,∨,→ ¬,0,1},
we call A an implication-negation algebra.

We call a Λ-algebra A with underlying set A complete if for every X ⊆ A, the
≤-supremum and ≤-infimum exist; in this case, we write

∨
X and

∧
X for these

elements of A. A complete Λ-algebra A is called atomic if for every a ∈ A, there is
an X ⊆ At(A) such that a =

∨
X.

Boolean algebras, complementation, & Heyting algebras. An algebra B =
(B,∧,∨,¬,0,1) is called a Boolean algebra if for all b ∈ B, we have that b∧¬b = 0
and b ∨ ¬b = 1. As usual, we can define an implication by

x→ y := ¬x ∨ y; (#)

using this definition, we can consider Boolean algebras as implication algebras or
implication-negation algebras. An implication algebra (B,∧,∨,→,0,1) is called a
Boolean implication algebra if there is a Boolean algebra (B,∧,∨,¬,0,1) such that
→ is defined by (#) from ∨ and ¬ or, equivalently, if the negation defined by
¬∗x := x→ 0 satisfies ¬∗b ∧ b = 0 and ¬∗b ∨ b = 1.

On an atomic distributive lattice A = (A,∧,∨,0,1), we have a canonical defi-
nition for a negation operation, the complementation negation: since A is atomic,
every element a ∈ A is uniquely represented by a set X ⊆ At(A) such that a =

∨
X.

Then we define the complementation negation by

¬c(
∨
X) :=

∨
{t ∈ At(A) ; t /∈ X}.

In this situation, (A,∧,∨,¬c,0,1) is an atomic Boolean algebra. Moreover, if
(A,∧,∨,¬,0,1) is an atomic Boolean algebra and ¬c is the complementation nega-
tion of the atomic distributive lattice (A,∧,∨,0,1), then ¬ = ¬c. Of course, for

1 As usual, we use the same notation for the syntactic logical connectives and the
operations on A interpreting them. In the rare cases where proper marking of these
symbols improves readability, we attach a subscript A to the algebra operations in A,
e.g., ∧A, ∨A,

∧
A, or

∨
A.
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every set X, the power set algebra (℘(X),∩,∪,∅, X) forms an atomic distributive
lattice and, with the set complementation operator, a Boolean algebra.

If (H,∧,∨,0,1) is a complete distributive lattice, then an implication algebra
H = (H,∧,∨,→,0,1) is called a complete Heyting algebra if and only if for all
a, b ∈ H, we have that

a→ b =
∨
{x ∈ H ; a ∧ x ≤ b}.

In a Heyting algebra H, we can define a negation ¬H by ¬Hx := x→ 0. Note that
Boolean implication algebras are Heyting algebras.

A Heyting algebra is called linear if (H,≤) is a linear order; Horn (1969) showed
that the formula (p → q) ∨ (q → p) characterises the variety of Heyting algebras
generated by the linear Heyting algebras.

We shall later use the following linear three element Heyting algebra
3 := ({0, 1/2,1},∧,∨,→,0,1) with 0 ≤ 1/2 ≤ 1 and → defined by

→ 0 1/2 1
0 1 1 1

1/2 0 1 1
1 0 1/2 1 .

Languages. Fix a set S of non-logical symbols, a countable set P of propositional
variables, and a countable set V of first-order variables. We denote the propositional
logic with connectives Λ and propositional variable P by LΛ and the first-order logic
with connectives Λ, variables in V and constant, relation and function symbols in
S by LΛ,S . The subset of sentences of LΛ,S will be denoted by SentΛ,S . Note that
both LΛ and SentΛ,S have the structure of a Λ-algebra and that the Λ-algebra LΛ

is generated by closure under the connectives in Λ from the set P .
For arbitrary sets Λ of logical connectives and S of non-logical symbols, we define

NFFΛ to be the closure of P under the logical connectives other than ¬ and NFFΛ,S

to be the closure of the atomic formulae of LΛ,S under the logical connectives other
than ¬. These formulas are called the negation-free Λ-formulas. Clearly, if ¬ /∈ Λ,
then LΛ = NFFΛ and LΛ,S = NFFΛ,S .

Homomorphisms, assignments, & translations. For any two Λ-algebras A
and B, a map f : A→ B is called a Λ-homomorphism if it preserves all connectives
in Λ; it is called a Λ-isomorphism if it is a bijective Λ-homomorphism; isomorphisms
from A to A are called Λ-automorphisms.

If A and B are two complete Λ-algebras and f : A → B is a Λ-homomorphism,
we call it complete if it preserves the operations

∨
and

∧
, i.e., f(

∨
A(X)) =∨

B({f(x) ; x ∈ X}) and f(
∧

A(X)) =
∧

B({f(x) ; x ∈ X}) for X ⊆ A.
Since LΛ is generated from P , we can think of any Λ-homomorphism defined

on LΛ as a function on P , homomorphically extended to all of LΛ. If A is a Λ-
algebra with underlying set A, we say that Λ-homomorphisms ι : LΛ → A are
A-assignments; if S is a set of non-logical symbols, we say that Λ-homomorphisms
T : LΛ → SentΛ,S are S-translations.

The propositional logic of an algebra. A set D ⊆ A is called a designated set
if the following three conditions hold: (i) 1 ∈ D, (ii) 0 /∈ D, and (iii) if x ∈ D and
x ≤ y, then y ∈ D. A designated set D is called a filter if, in addition, (iv) for
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x, y ∈ D, we have x ∧ y ∈ D. For any designated set D, the propositional logic of
(A, D) is defined as

L(A, D) := {ϕ ∈ LΛ ; ι(ϕ) ∈ D for all A-assignments ι}.

Note that if B is a Boolean algebra and D is any filter, then L(B, D) = CPC, the
classical propositional calculus (Blackburn et al., 2001, Theorem 5.11).

Algebra-valued structures and their propositional logic. If A is a Λ-algebra
and S is a set of non-logical symbols, then any Λ-homomorphism J·K : SentΛ,S → A
will be called an A-valued S-structure. Note that if S′ ⊆ S and J·K is an A-valued
S-structure, then J·K�SentΛ,S′ is an A-valued S′-structure.

We define the propositional logic of (J·K, D) as

L(J·K, D) := {ϕ ∈ LΛ ; JT (ϕ)K ∈ D for all S-translations T}.

Note that if T is an S-translation and J·K is an A-valued S-structure, then ϕ 7→
JT (ϕ)K is an A-assignment, so

L(A, D) ⊆ L(J·K, D). (†)

Clearly, ran(J·K) ⊆ A is closed under all operations in Λ (since J·K is a homomor-
phism) and thus defines a sub-Λ-algebra AJ·K of A. The A-assignments that are of
the form ϕ 7→ JT (ϕ)K are exactly the AJ·K-assignments, so we obtain

L(J·K, D) = L(AJ·K, D).

Loyalty & faithfulness. An A-valued S-structure J·K is called loyal to (A, D) if
the converse of (†) holds, i.e., L(A, D) = L(J·K, D); it is called faithful to A if for
every a ∈ A, there is a ϕ ∈ SentΛ,S such that JϕK = a; equivalently, if AJ·K = A. The
two notions central for our paper were introduced by Passmann (2018) in a more
general setting for classes of so-called Heyting structures in the sense of Fourman
and Scott (1979) (cf. Passmann, 2018, Definitions 2.39 & 2.40). In this paper, we
shall not need the level of generality provided in (Passmann, 2018) and stick to the
above simplified definitions.

Lemma 1 Let Λ be any set of propositional connectives, S be any set of non-logical
symbols, A be a Λ-algebra, and J·K be an A-valued S-structure. Then, if J·K is faithful
to A, then it is loyal to (A, D) for any designated set D.

Proof. By (†), we only need to prove one inclusion; if ϕ /∈ L(A, D), then let
p1, . . . , pn be the propositional variables occurring in ϕ and let ι be an assignment
such that ι(ϕ) /∈ D. By faithfulness, find sentences σi ∈ SentΛ,S such that JσiK =
ι(pi) for 1 ≤ i ≤ n. Let T be any translation such that T (pi) = σi for 1 ≤ i ≤ n.
Then JT (ϕ)K = ι(ϕ) /∈ D, and hence T witnesses that ϕ /∈ L(J·K, D). (Cf. Passmann,
2018, Proposition 2.50, for a proof in the more general setting for classes of Heyting
structures.) �

Note that the notions of faithfulness and loyalty crucially depend on the choice
of S. As mentioned above, if S′ ⊆ S and J·K is an A-valued S-structure, then
J·K′ := J·K�SentΛ,S′ is an A-valued S′-structure. Since SentΛ,S′ ⊆ SentΛ,S , we have
that if J·K′ is faithful to A, then so is J·K.
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∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y] (Extensionality)

∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)) (Pairing)

∃x[∃y(∀z(z ∈ y → 0) ∧ y ∈ x) ∧ ∀w ∈ x∃u ∈ x(w ∈ u)] (Infinity)

∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ x)) (Union)

∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x)) (Power Set)

∀p0 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, p0, . . . , pn)) (Separationϕ)

∀p0 · · · ∀pn−1∀x[∀y ∈ x∃zϕ(y, z, p0, . . . , pn−1)

→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn−1)] (Collectionϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x ϕ(y, p0, . . . , pn)→ ϕ(x, p0, . . . , pn)]

→ ∀zϕ(z, p0, . . . , pn) (Set Inductionϕ)

Fig. 1. The axioms of ZF formulated in L{∧,∨,→,0,1},{∈}.

However, faithfulness ties J·K very closely to the algebra A: in particular, it cannot
hold if the algebra A is bigger than the set SentΛ,S , so for countable languages, no
A-valued S-structure can be faithful to an uncountable algebra A.

Thus, if A is an uncountable algebra, S an uncountable set of non-logical symbols,
J·K is an A-valued S-structure that is faithful to A, and S′ is a countable subset of
S, then J·K′ := J·K�LΛ,S′ cannot be faithful to A.

§3. Algebra-valued models of set theory In the following, we give an
overview of general construction of an algebra-valued model of set theory following
Löwe and Tarafder (2015). The original ideas go back to Boolean-valued models
independently discovered by Solovay and Vopěnka (1965) and were further gener-
alised to other classes of algebras (Grayson, 1979; Ozawa, 2007, 2009; Takeuti and
Titani, 1992; Titani, 1999; Titani and Kozawa, 2003). Details can be found in (Bell,
2005).

In the following, we shall use the phrase “V is a model of set theory” to mean
that V is a transitive set such that (V,∈) |= ZF. Of course, the existence of sets like
this cannot be proved in ZF and requires some (mild) additional metamathematical
assumptions. The choice of ZF as the set theory in our base model is not relevant
for the constructions of this paper and one can generalise the results to models of
weaker or alternative set theories; however, we shall not explore this route in this
paper.

Since we are sometimes working in languages without negation, we need to
formulate the axioms of ZF in a negation-free context given in Figure 1, following
Löwe and Tarafder (2015, § 3).2 If V is a model of set theory and A is any set, then

2 We should like to stress that the negation-free axioms given are classically equivalent
to what is usually called ZF, but not exactly the same axioms: e.g., we use Collection
and Set Induction in lieu of Replacement and Foundation. Many authors call this axiom
system IZF.
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we construct a universe of names by transfinite recursion:

Nameα(V,A) := {x ; x is a function and ran(x) ⊆ A
and there is ξ < α with dom(x) ⊆ Nameξ(V,A)} and

Name(V,A) := {x ; ∃α(x ∈ Nameα(V,A))}.

We let SV,A be the set of non-logical symbols consisting of the binary relation
symbol ∈ and a constant symbol for every name in Name(V,A) (as usual, we use
the name itself as the constant symbol). The language LΛ,SV,A is usually called the
forcing language.

If A is a Λ-algebra with underlying set A, we can now define a map J·KA assigning
to each ϕ ∈ LΛ,SV,A a truth value in A by recursion (the definition of Ju ∈ vKA

and Ju = vKA is recursion on the hierarchy of names; the rest is a recursion on the
complexity of ϕ):

J0KA = 0,

J1KA = 1,

Ju ∈ vKA =
∨

x∈dom(v)

(v(x) ∧ Jx = uKA),

Ju = vKA =
∧

x∈dom(u)

(u(x)→ Jx ∈ vKA) ∧
∧

y∈dom(v)

(v(y)→ Jy ∈ uKA),

Jϕ ∧ ψKA = JϕKA ∧ JψKA,

Jϕ ∨ ψKA = JϕKA ∨ JψKA,

Jϕ→ ψKA = JϕKA → JψKA,

J¬ϕKA = ¬JϕKA

J∀xϕ(x)KA =
∧

u∈Name(V,A)

Jϕ(u)KA, and

J∃xϕ(x)KA =
∨

u∈Name(V,A)

Jϕ(u)KA.

By construction, it is clear that J·KA is an A-valued SV,A-structure and hence,
by restricting it to SentΛ,{∈}, we can consider it as an A-valued {∈}-structure.
Usually, it is the restriction to SentΛ,{∈} that set theorists are interested in: as a
consequence, we shall use the notation J·KA to refer to the A-valued {∈}-structure
and the notation J·KName

A := J·KA to refer to its extension to SentΛ,SV,A .
The results for algebra-valued models of set theory were originally proved for

Boolean algebras, then extended to Heyting algebras:

Theorem 2 If V is a model of set theory, B = (B,∧,∨,→,¬,0,1) is a Boolean
algebra or Heyting algebra, and ϕ is any axiom of ZF, then JϕKB = 1.

Proof. Cf. (Bell, 2005, Theorem 1.33 & pp. 165–166). �

Lemma 3 Let H = (H,∧,∨,→,0,1) be a Heyting algebra and V be a model of set
theory. Then J·KName

H is faithful to H (and hence, loyal to (H, D) for every designated
set D on H by Lemma 1).



Constructing illoyal models of set theory 7

∧ 0 1/2 1
0 0 0 0
1/2 0 1/2 1/2
1 0 1/2 1

∨ 0 1/2 1
0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

→ 0 1/2 1
0 1 1 1
1/2 0 1 1
1 0 1 1

¬
0 1
1/2 1/2
1 0

Fig. 2. Connectives for PS3

Proof. Consider u := {(∅, a)} ∈ Name(V,H) and ϕ := ∃x(x ∈ u) ∈ SentΛ,SV,H . It
is easy to check that JϕKName

H = a. �

In order to formulate results for implication algebras, Löwe and Tarafder (2015,
p. 197) introduced NFF-ZF, the axiom system of all ZF-axioms where the two axiom
schemata are restricted to instances of negation-free formulas. They introduced a
three-element algebra PS3 (Löwe and Tarafder, 2015, Fig. 2 & § 6) and proved the
following result (for the sake of completeness, we give the definition of PS3 in Figure
2):

Theorem 4 If V is a model of set theory and ϕ is any axiom of NFF-ZF, then
JϕKPS3 = 1. Furthermore, J·KPS3 is faithful to PS3 and hence loyal to (A, D) for
every designated set D by Lemma 1.

Proof. Cf. (Löwe and Tarafder, 2015, Corollary 5.2) for the first claim. Löwe and
Tarafder (2015, Theorem 6.2) give a sentence ϕ ∈ SentΛ,{∈} such that JϕKPS3 = 1/2
which establishes faithfulness. �

§4. Automorphisms and algebra-valued models of set theory Given
a model of set theory V and any Λ-algebras A and B and a Λ-homomorphism
f : A→ B, we can define a map f̂ : Name(V,A)→ Name(V,B) by ∈-recursion via

dom(f̂(u)) := {f̂(v) ; v ∈ dom(u)} and

f̂(u)(f̂(v)) := f(u(v)).

Proposition 5 Suppose that V is a model of set theory, A and B are complete
Λ-algebras and f : A→ B is a complete Λ-isomorphism. Let ϕ ∈ LΛ,{∈} with n free
variables and u1, . . . , un ∈ Name(V,A). Then

f(Jϕ(u1, . . . , un)KA) = Jϕ(f̂(u1), . . . , f̂(un))KB.

Proof. For atomic formulas, this is easily proved by induction on the rank of the
names involved. For non-atomic formulas, the claim follows by induction on the
complexity of the formula (where the quantifier cases need the fact that f is a
bijection). �

Corollary 6 Suppose that V is a model of set theory, A and B are complete Λ-
algebras and f : A→ B is a complete Λ-isomorphism. Let ϕ ∈ SentΛ,{∈}. Then

f(JϕKA) = JϕKB.

Corollary 7 Suppose that V is a model of set theory, A is a complete Λ-algebra
with underlying set A, a ∈ A, and that f : A → A is a complete Λ-automorphism
with f(a) 6= a. Then there is no ϕ ∈ SentΛ,{∈} such that JϕKA = a.
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Proof. By Corollary 6, if JϕKA = a, then f(a) = a. �

Proposition 8 If A = (A,∧,∨,0,1) is an atomic distributive lattice and a ∈
A\{0,1}, then there is a {∧,∨,¬c,0,1}-automorphism f of A such that f(a) 6= a.

Proof. Note that the assumptions imply that A 6= {0,1} and hence At(A) 6= ∅.
By atomicity, every permutation π : At(A) → At(A) induces an automorphism of
A preserving ∧, ∨, ¬c, 0, and 1 by fπ(

∨
X) =

∨
{π(t) ; t ∈ X} for X ⊆ At(A). Let

a =
∨
Xa. Since a 6= 0, we have Xa 6= ∅; since a 6= 1, we have Xa 6= At(A). So,

pick t0 ∈ Xa and t1 ∈ At(A)\Xa and let π be the transposition that interchanges
t0 and t1. Then

t0 ≤
∨
Xa = a, but

t0 6≤
∨
{π(t) ; t ∈ Xa} = fπ(

∨
Xa) = fπ(a),

whence a 6= fπ(a). �

Corollary 9 If V is a model of set theory, B is an atomic Boolean (implication)
algebra with more than two elements, and D is any filter on B, then J·KB is loyal,
but not faithful to (B, D).

Proof. By Proposition 8, all elements except for 0 and 1 are moved by some
automorphism of an atomic Boolean (implication) algebra and hence by Corollary
7, for each sentence ϕ ∈ LΛ,{∈}, we have that JϕKB ∈ {0,1}. In particular, this
means that L(J·KB, D) = L({0,1}, {1}) = CPC = L(B, D). �

Clearly, atomicity is not a necessary condition for the conclusion of Corollary
9: the Boolean algebra of infinite and co-infinite subsets of N is atomless and
hence non-atomic, but every nontrivial element is moved by an automorphism,
so Corollary 7 applies. We do not know whether this result extends to Boolean
algebras without this property, e.g., rigid Boolean algebras (cf. van Douwen et al.,
1980, § 2):

Question 10 Are there (necessarily countable) Boolean algebras B such that J·KB
is faithful to B for some designated set D?

§5. Stretching and twisting the loyalty of Boolean algebras

5.1. What can be considered a negation? In this section, we start from
an atomic, complete Boolean algebra B and modify it, to get an algebra A that
gives rise to an illoyal J·KA. The first construction is the well-known construction
of tail extensions of Boolean algebras to obtain a Heyting algebra. The other two
constructions are negation twists: in these, we interpret B as a Boolean implication
algebra via the definition a → b := ¬a ∨ b, and then add a new, twisted negation
to it that changes its logic.

When twisting the negation, we need to pay attention to the fact that not every
unary function on an implication algebra is a sensible negation. In his survey of
varieties of negation, Dunn (1995) lists Hazen’s subminimal negation as the bottom
of his Kite of Negations: only the rule of contraposition, i.e., a ≤ b implies ¬b ≤ ¬a,
is required. In the following, we shall use this as a necessary requirement to be a
reasonable candidate for negation.
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5.2. Tail stretches Let B = (B,∧,∨,→,¬,0,1) be a Boolean algebra, and
1∗ /∈ B be an additional element that we add to the top of B to form the tail
stretch H as follows: H := B∪{1∗}, the complete lattice structure of H is the order
sum of B and the one element lattice {1∗}, and →∗ is defined as follows:3

a→∗ b :=

 a→ b if a, b ∈ B such that a 6≤ b,
1∗ if a, b ∈ B with a ≤ b or if b = 1∗,
b if a = 1∗.

Lemma 11 The tail stretch H = (H,∧,∨,→∗,0,1∗) is a Heyting algebra with
p ∨ ¬p /∈ L(H, {1∗}), so in particular, L(H, {1∗}) 6= CPC.

Proof. If b 6= 0 ∈ B, then by definition b→∗ 0 = ¬b where ¬ refers to the negation
in B. In particular, b ∨ ¬Hb = b ∨ ¬b = 1 6= 1∗. �

Lemma 12 If f : B → B is an automorphism of the Boolean algebra B, then
f∗ : H → H defined by

f∗(b) :=

{
f(b) if b ∈ B and
1∗ if b = 1∗.

is an automorphism of H.

Proof. Easy to check. �

Theorem 13 Let V be a model of set theory, B an atomic Boolean algebra with
more than two elements, and H be the tail stretch of B as defined above. Then the
H-valued model of set theory V H is not faithful to H. Furthermore, we have that

(p→ q) ∨ (q → p) ∈ L(J·KH, {1∗})\L(H, {1∗}).

Consequently, V H is illoyal to (H, {1∗}).

Proof. Since B is atomic with more than two elements, each of the non-trivial
elements of B is moved by an automorphism of B by Proposition 8. By Lemma 12,
these remain automorphisms of H. As a consequence, we can apply Corollary 6 to
get that ran(J·KH) ⊆ {0,1,1∗} which is isomorphic to the linear Heyting algebra 3
and thus the range is a linear Heyting algebra. As mentioned, Horn (1969) proved
that (p → q) ∨ (q → p) characterises the variety generated by the linear Heyting
algebras, so (p→ q)∨ (q → p) ∈ L(J·KH, {1∗}). However, since B has more than two
elements, we can pick imcomparable a, b ∈ B. Then a →∗ b and b →∗ a are both
elements of B, and thus (p→ q) ∨ (q → p) /∈ L(H, {1∗}). �

We remark that ran(J·KH) = {0,1,1∗}, as can be seen by checking that the J·KH-
value of the sentence formalising the statement “every subset of {∅} is either ∅ or
{∅}” is 1.

3 In H, we use the (Heyting algebra) definition ¬Hh := h→∗ 0 to define a negation; note
that if 0 6= b ∈ B, ¬Hb = ¬b, but ¬H0 = 1∗ 6= 1 = ¬0.
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5.3. Transposition twists Let B = (B,∧,∨,→,¬,0,1) be an atomic Boolean
algebra, a, b ∈ At(B) with a 6= b, and π be the transposition that transposes a and
b. Since B is an atomic Boolean algebra, ¬ = ¬c. Then fπ as defined in the proof of
Proposition 8 is a {∧,∨,→,¬,0,1}-automorphism of B. We now define a twisted
negation by

¬π(
∨
X) :=

∨
{π(t) ∈ At(B) ; t /∈ X}

and let the π-twist of B be Bπ := (B,∧,∨,→,¬π,0,1).4 We observe that the twisted
negation ¬π satisfies the rule of contraposition.

Lemma 14 If either ¬ca =
∨
{t ∈ At(B) ; t 6= a} or ¬cb =

∨
{t ∈ At(B) ; t 6= b} is

not in D, then ¬(p ∧ ¬p) /∈ L(Bπ, D). In particular, L(Bπ, D) 6= CPC.

Proof. Without loss of generality,
∨
{t ∈ At(B) ; t 6= b} = ¬cb = ¬πa /∈ D. Since

a ≤ ¬πa, we have that a = ¬πa ∧ a, and so ¬π(¬πa ∧ a) = ¬πa /∈ D. �

Lemma 15 There is an automorphism f of Bπ such that f(a) = b. In particular,
J·KBπ is not faithful to Bπ.

Proof. We know that fπ is an automorphism of B. Since π is a transposition, we
have that π2 = id and π = π−1; using this, we observe that fπ still preserves ¬π:

fπ(¬π(
∨
X)) = fπ(

∨
{π(t) ∈ At(B) ; t /∈ X})

=
∨
{π(π(t)) ∈ At(B) ; t /∈ X}

=
∨
{t ∈ At(B) ; t /∈ X}

= ¬π(
∨
{π(t) ∈ At(B) ; t /∈ X})

= ¬π(fπ(
∨
X))).

Thus, fπ is an automorphism of Bπ; clearly, fπ(a) = b. The second claim follows
from Corollary 7. �

Now let V be a model of set theory and J·KBπ the Bπ-valued {∈}-structure derived
from V and B.

Lemma 16 If x ∈ ran(J·KBπ ), then ¬πx = ¬cx.

Proof. Let x =
∨
X for some X ⊆ At(B). By Corollary 7 and Lemma 15, if

x ∈ ran(J·KBπ ), then fπ(x) = x. This means that either both a, b ∈ X or both
a, b /∈ X. In both cases, it is easily seen that ¬πx = ¬cx. �

Theorem 17 For any filter D, L(J·KBπ , D) = CPC. In particular, if either ¬ca or
¬cb is not in D, then J·KBπ is not loyal to (Bπ, D).

Proof. As mentioned in §2., if we let C := BJ·KBπ = (ran(J·KBπ ,∧,∨,→,¬π,0,1),
then L(J·KBπ , D) = L(C, D). But Lemma 16 implies that C = (ran(J·KBπ ,∧,∨,→
,¬c,0,1) which is a Boolean algebra (as a subalgebra of B). Thus, L(J·KBπ , D) =
L(C, D) = CPC. The second claim follows from Lemma 14. �

4 Note that we do not twist the implication → which remains the implication of the
original Boolean algebra B defined by x→ y := ¬cx ∨ y.
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1OO

��

1OO

��
L oo // R π // L-- R rr

B 0 0 Bπ

Fig. 3. The four-element Boolean algebra and its transposition twist. Negations are
indicated by arrows.

As the simplest possible special case, we can consider the Boolean algebra B
generated by two atoms L and R; then, there is one nontrivial transposition π(L) =
R and all nontrivial elements of B are moved by the automorphism fπ. As a
consequence of Corollary 7, all sentences will get either value 0 or value 1 under
J·KBπ , and hence L(J·KBπ , D) is classical (cf. Figure 3).

5.4. Maximal twists Again, let B = (B,∧,∨,→,¬,0,1) be an atomic Boolean
algebra with more than two elements and define the maximal negation by

¬mb :=

{
1 if b 6= 1 and
0 if b = 1

for every b ∈ B. We let the maximal twist of B be Bm := (B,∧,∨,→,¬m,0,1); once
more observe that the maximal negation ¬m satisfies the rule of contraposition.

Lemma 18 If there is some 0 6= b /∈ D, then (p ∧ ¬p) → q /∈ L(Bm, D). In
particular, L(Bm, D) 6= CPC.

Proof. Let c := ¬cb. Note that the assumption b 6= 0 implies c 6= 1. In particular,
¬mc = 1, and thus c ∧ ¬mc = c. Also

c→ b = ¬cb→ b

= ¬c¬cb ∨ b
= b ∨ b = b.

Thus, the assignment ι with p 7→ c and q 7→ b yields ι((p ∧ ¬p)→ q) = b /∈ D. �

Lemma 19 For any b /∈ {0,1}, there is an automorphism f of Bm such that
f(b) 6= b. In particular, J·KBm

is not faithful to Bm.

Proof. We claim that any automorphism f of B also preserves ¬m. Suppose f is an
automorphism of B. If b = 1, then clearly f(¬m1) = f(0) = 0 = ¬m1 = ¬mf(1).
Now let b 6= 1. Since f is bijective and f(1) = 1, we have that f(b) 6= 1. So
f(¬mb) = f(1) = 1 = ¬mf(b). The second claim follows from Corollary 7. �

Theorem 20 For any designated set D, L(J·KBm , D) = CPC. In particular, J·KBm

is not loyal to (Bm, D).

Proof. Lemma 19 gives us that every nontrivial element of B is moved by an
automorphism, so we can apply the argument from the proof of Corollary 9: since
for each ϕ ∈ LΛ,{∈}, we have that JϕKBm

∈ {0,1}, we get that

L(J·KBm , D) = L({0,1}, {1}) = CPC.

The second claim follows from Lemma 18. �
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As mentioned at the end of §2., our examples show that restricting the language
can change faithful models into illoyal ones: for our twisted algebras Bπ and Bm,
the general faithfulness result Lemma 3 holds for J·KName

Bπ and J·KName
Bm

. However,
Theorems 17 & 20 show that their restrictions J·KBπ and J·KBm

are neither faithful
nor loyal.
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