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Abstract

In this thesis we explore closure ordinals of the modal µ-calculus. The closure
ordinal of a µ-calculus formula ϕ(x) is the least ordinal α, if it exists, such that
the iteration of the meaning function ϕS

x starting from the emptyset converges
to its least fixed point in at most α many steps on every model S. Our goal is
to write an accessible introduction to this field by recalling some fundamental
recent results and contributing with a few of our own. We provide a syntactic
characterisation of the fragment of the µ-calculus corresponding to the seman-
tic property of normality in a finite set of variables (which coincides with the
property of having closure ordinal 0), we provide a syntactic characterisation
of the fragment of the µ-calculus corresponding to the property of continuity
on finitely branching models, we construct a formula ϕn with closure ordinal
ωn on bidirectional models for an arbitrary n ∈ ω, we construct a formula ϕα
with closure ordinal α on bidirectional models for an arbitrary α < ωω, and we
prove that the set of closure ordinals on bidirectional models is closed under
ordinal sum (as an adaptation to this setting of the original result by Gouveia
and Santocanale).
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Introduction

The central theme of this thesis is the study of closure ordinals of formulas of
the modal µ-calculus.

Introduced by Kozen in the form that is studied today [15], the modal µ-
calculus is an extension of modal logic with a least fixed point operator µ and
a greatest fixed point operator ν. The addition of these operators enriches
modal logic with inductive definitions, which results in a significant increase
in expressive power. Janin and Walukiewicz proved that a formula of monadic
second-order logic is invariant under bisimulation if and only if it is equivalent to
a formula of the µ-calculus [14], extending the celebrated theorem by Johan van
Benthem which characterises modal logic as the bisimulation invariant fragment
of first-order logic [18]. Moreover, the µ-calculus is an extension of several
temporal logics like PDL (propositional dynamic logic) and CTL (computation
tree logic).

Besides its inherent mathematical and logical interest, a certain balance be-
tween expressiveness and computational feasibility makes the modal µ-calculus
a central logic in certain areas of computer science, as it can be used as a
specification language. Indeed, this logic enjoys the finite model property [16]
and problems such as model checking (deciding whether a given formula is true
in a given finite model) and satisfiability (deciding whether a given formula is
true in some model) for formulas of this logic are decidable with relatively low
computational complexity [8].

Another engaging feature of the µ-calculus is that its semantics can be speci-
fied both by algebraic means and in an intuitive game-theoretic format based on
parity games. The latter is often essential when trying to decipher the meaning
of a formula of the modal µ-calculus: the alternation of fixed point operators
and the presence of bound variables can sometimes result in formulas that are
difficult to read. We also note that an axiomatization for the µ-calculus has
been formulated by Kozen [15] and proven to be complete, partially by Kozen
and fully by Walukiewicz [20].

The close connection with automata theory [13] is also important to mention:
the equivalence between formulas of the µ-calculus and modal automata allows
the application of automata theoretic methods for proving results about this
logic. One example of a fundamental result proved with an automata theoretic
approach is the already mentioned theorem by Janin and Walukiewicz [14].

A classic example of a µ-calculus formula is µx.p ∨ 〈d〉x (for the following
example in this paragraph we refer to [19]). This formula is equivalent to the
formula 〈d∗〉p from PDL, expressing the existence of a finite Rd-path leading to
a state that satisfies p. It is well known that, for every transition system (or
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Kripke model) S and state s:

S, s 
 〈d∗〉p↔ (p ∨ 〈d〉〈d∗〉p).

In a sense, the formula 〈d∗〉p is a fixed point of the expression

x↔ p ∨ 〈d〉x.

The modal µ-calculus allows to refer explicitly to the least fixed point and to
the greatest fixed point of this equation, by writing µx.p∨〈d〉x and νx.p∨〈d〉x,
respectively. Other examples of µ-calculus formulas are νx.p∧33x, expressing
the existence of a path where p is true at every even position, and νy.µx.(p ∧
3y) ∨3x, expressing the existence of a path where p is true infinitely often.

A recent line of research on the modal µ-calculus has focused on the closure
ordinals of its formulas. Given a formula ϕ in this language, a Kripke model
S = (S,R, V ) and a variable x that occurs positively in ϕ, we can define a
function ϕS

x : ℘(S)→ ℘(S), which intuitively expresses how in S the meaning of
ϕ depends on the valuation of x. The meaning of µx.ϕ in S can then be com-
puted by performing an iteration of the function ϕS

x starting from the emptyset,
resulting in an ordinal-indexed sequence (ϕαµ)α∈On of subsets of S defined by
letting

ϕ0
µ := ∅,

ϕβ+1
µ := ϕS

x(ϕβµ),
ϕλµ :=

⋃
β<λ

ϕS
x(ϕβµ),

where λ denotes an arbitrary limit ordinal.
The positivity assumption on x implies that the function ϕS

x is monotone
and that the sequence (ϕαµ)α∈On converges: there must be an ordinal α such
that ϕαµ = ϕα+1

µ . The element ϕαµ of the sequence coincides with the least fixed

point of ϕS
x – that is, the least subset L ⊆ S such that ϕS

x(L) = L – so that we
say that the function ϕS

x converges to its least fixed point in α many steps. The
closure ordinal of a formula ϕ(x) is the least ordinal α such that the function
ϕS
x converges to its least fixed point in at most α many steps across every model

S, if such an ordinal exists.
Our investigation of closure ordinals in the modal µ-calculus stems from a

number of recent results in this field.

1999 Martin Otto [17] proved that it is decidable whether a modal µ-calculus
formula can equivalently be expressed in (basic) modal logic. As a corol-
lary, whether a formula of modal logic has a finite closure ordinal is also
decidable.

2008 Gaëlle Fontaine [9] presented a syntactic characterization of the continuous
fragment of the modal µ-calculus. The property of continuity is often
studied in relation to that of constructivity (a formula is constructive if
its closure ordinal is at most ω), since every continuous formula is also
constructive. The connection between these two properties constitutes a
very intriguing research direction.

2010 Marek Czarnecki [6] showed how to construct a formula ϕα with closure
ordinal α for an arbitrary α < ω2.
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2013 Bahareh Afshari and Graham E. Leigh [1] proved that if a formula in the
alternation-free fragment of the modal µ-calculus has a closure ordinal,
this is strictly less than ω2.

2017 Maria João Gouveia and Luigi Santocanale [12] presented a syntactic char-
acterization of the ℵ1-continuous fragment of the modal µ-calculus, defined
a formula with closure ordinal ω1 and proved that closure ordinals of the
µ-calculus are closed under ordinal sum.

Our goal is to offer an accessible introduction to this interesting area of research
by recalling some fundamental recent results and contributing with a few of our
own. The thesis is structured as follows.

Chapter 1

We present the modal µ-calculus after recalling some basic facts about fixed
points of functions on complete lattices. While this presentation should be
accessible to readers that are not already familiar with the µ-calculus, we refer
to [19] for a more detailed introduction to the subject.

Chapter 2

We begin our exploration of closure ordinals of the modal µ-calculus. We start
by defining a fragment µMLNX of the modal µ-calculus that syntactically char-
acterises the property of normality in a finite set of variables, which coincides
with the property of having 0 as closure ordinal.

Contribution (Theorem 2.2.15) Every formula in µMLNX is normal in X. More-
over, there is an effective translation which, given a µML-formula ϕ, computes
an equivalent formula ϕd ∈ µDML such that

ϕ is normal in X iff ϕd ∈ µMLNX .

We then move to formulas with finite closure ordinals and to formulas that
need at most ω many iterations to converge to their least fixed point across all
models. We discuss the connection between the properties of continuity and
constructivity. The property of constructivity is particularly interesting: in
an arbitrary model an individual state is included in the iteration of the fixed
point of a constructive formula in at most finitely many steps. As a minor
contribution, we conclude the chapter by formulating the fragment µMLDx of the
µ-calculus that characterises the property of continuity on finitely branching
models, which coincides with the fragment of the µ-calculus that characterises
the finite depth property [10, 11].

Chapter 3

We show how to construct formulas with closure ordinals larger than ω. We
discuss the intuitions behind Czarnecki’s construction of a formula with closure
ordinal α for every α < ω2 [6] and the difficulties involved with finding a formula
with closure ordinal ω2. We show however that the latter and greater countable
closure ordinals can be obtained in the setting of bidirectional models.

Contribution (Theorem 3.3.9) For all 0 < n < ω there is a formula ϕn with
closure ordinal ωn on bidirectional models.
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Contribution (Theorem 3.4.10) For every ω ≤ α < ωω there is a formula ϕα
with closure ordinal α on bidirectional models.

As a minor contribution, we also provide an adaptation to the setting of
bidirectional models of the result by Gouveia and Santocanale that the set
of closure ordinals is closed under ordinal sum. We conclude the chapter by
discussing the first uncountable ordinal ω1 as a closure ordinal.

Part of what makes closure ordinals of formulas of the modal µ-calculus interest-
ing and fun is the challenge involved in controlling the number of iterations that
a formula needs in order to converge to its least fixed point – coming up with
disjuncts that allow the iteration to progress on the one hand, and disjuncts that
keep the iteration from blowing up on the other – and the visual aspect tied
with imagining the iteration of a formula traversing infinite ordinal numbers (in
Chapter 3 we provide numerous figures to guide the intuition). We hope that
our thesis will encourage some reader to pick up the many open questions of
this field.
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Chapter 1

The modal µ-calculus

1.1 Basic theory of fixed points

This short section is meant to recall some basic definitions and results about
lattices. We present some well-known characterisations of the least and the
greatest fixed points of a monotone function on a complete lattice that we will
need in order to define the algebraic semantics of the modal µ-calculus and the
notion of closure ordinal of a formula. A game-theoretic characterisation of these
fixed points when the complete lattice is a powerset algebra is also mentioned.
We start with a few definitions.

Definition 1.1.1 A partially ordered set P = (P,≤), or poset, is a set P together
with a binary relation ≤ on P satisfying, for all p, q, r ∈ P :

� p ≤ p;

� if p ≤ q and q ≤ p, then p = q;

� if p ≤ q and q ≤ r, then p ≤ r.

In other words, ≤ is reflexive, antisymmetric and transitive.
If X ⊆ P , an element p ∈ P is an upper bound of X if x ≤ p for every

x ∈ X, and a lower bound of X if p ≤ x for every x ∈ X. An element p is called
the least upper bound of X if it is an upper bound of X, and whenever p′ is an
upper bound of X, then p ≤ p′. The least upper bound of a set is also called
its supremum, or join. Dually, p is called the greatest lower bound of X if it is a
lower bound of X and p′ ≤ p for every other lower bound p′ of X. The greatest
lower bound is also called infimum or meet.

Definition 1.1.2 A lattice is a poset where every two elements p and q have
a least upper bound and a greatest lower bound, denoted respectively by p ∨ q
and p ∧ q.

A complete lattice is a poset where a least upper bound and a greatest lower
bound exist for every subset X of the poset: these are denoted respectively by∨
X and

∧
X. Note that p ∧ q =

∧{p, q} and p ∨ q =
∨{p, q}. In particular in

a complete lattice there exists a least element ⊥ :=
∨ ∅ and a greatest element

> :=
∧ ∅. Complete lattices will usually be denoted by C = (C,

∨
,
∧

).
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Example 1.1.3 For any set S, (℘(S),⊆) is a complete lattice with
∨
X :=

⋃
X

and
∧
X :=

⋂
X for all X ⊆ S, and where the least and the greatest elements

are, respectively, ∅ and S.

Definition 1.1.4 For two partial orders P = (P,≤) and P′ = (P ′,≤′), a func-
tion f : P → P ′ is monotone if p ≤ q implies f(p) ≤ f(q) for all p, q ∈ P .

Definition 1.1.5 Let P = (P,≤) be a partial order and f : P → P a function.
An element p ∈ P is called

� a prefixpoint of f if f(p) ≤ p,

� a postfixpoint of f if p ≤ f(p),

� a fixed point (or fixpoint) of f if f(p) = p.

The sets of prefixpoints, postfixpoints and fixed points of f are denoted by
PRE(f), POS(f) and FIX(f), respectively.

In case they exist, the least element of FIX(f) is called least fixed point of f
and denoted by LFP.f , while its greatest element is called greatest fixed point
of f and denoted by GFP.f .

It is important to note that, while the least and the greatest fixed points
of a function do not always exist, when the function is a monotone map on a
complete lattice the next theorem guarantees that they can be identified with,
respectively, the meet of the set of all prefixpoints and the join of the set of all
postfixpoints of f .

Theorem 1.1.6 (Knaster-Tarski) If f : C → C is a monotone function on a
complete lattice C = (C,

∨
,
∧

), then f has both a least fixed point and a greatest
fixed point, which are given by

LFP.f =
∧

PRE(f),
GFP.f =

∨
POS(f).

Alternatively, LFP.f and GFP.f can be approximated by two sequences that
start from the bottom and the top elements of a complete lattice.

Definition 1.1.7 Let f : C → C be a function on a complete lattice C =
(C,
∨
,
∧

). We define two sequences (fαµ )α∈On and (fαν )α∈On of elements of C
by ordinal induction:

f0
µ := ⊥, f0

ν := >,
fα+1
µ := f(fαµ ), fα+1

ν := f(fαν ),
fλµ :=

∨
α<λ

fαµ , fλν :=
∧
α<λ

fαµ ,

where λ denotes an arbitrary limit ordinal.

As the following two propositions state, when f is a monotone function on a
complete lattice there must be an ordinal α such that fαµ coincides with LFP.f
Since ordinal approximations of least fixed points will play an important role in
the rest of the thesis we provide a proof of this fact.

Proposition 1.1.8 If f : C → C is a monotone function on a complete lattice
C = (C,

∨
,
∧

), then fαµ ≤ fβµ whenever α < β.

8



Proof. First of all, note that fαµ ≤ fα+1
µ for every ordinal α. By induction

on α, if α = β + 1, by inductive hypothesis and monotonicity we immediately
obtain fβ+1

µ = f(fβµ ) ≤ f(fβ+1
µ ) = fβ+2

µ . If α is a limit, by definition fαµ =∨
β<α f

β
µ , so that fβµ ≤ fαµ for all β < α. Moreover, by inductive hypothesis

fβµ ≤ fβ+1
µ = f(fβµ ) for all β < α, so that by monotonicity of f we have

fβµ ≤ f(fβµ ) ≤ f(fαµ ) = fα+1
µ for every β < α, implying that fα+1

µ is an upper

bound of {fβµ | β < α}: as fαµ =
∨
β<α f

β
µ is the least upper bound of the same

set, we conclude fαµ ≤ fα+1
µ .

Now we prove the statement of the proposition by induction on β. If β = γ+1
then either α = γ and the statement follows, or α < γ and fαµ ≤ fγµ ≤ fγ+1

µ

by inductive hypothesis. If β is a limit then α < γ for some γ < β, and
fαµ ≤ fγµ ≤

∨
γ<β f

γ
µ = fβµ , with the first inequality given by the inductive

hypothesis.

Corollary 1.1.9 Let f : C → C be a monotone function on a complete lattice
C = (C,

∨
,
∧

). Then there is some α such that LFP.f = fαµ .

Proof. An easy ordinal induction, similar to those in the previous proof, shows
that fαµ ≤ LFP.f for every ordinal α. For the other direction, the fact that the
lattice C has a size |C| implies that there must be an ordinal α of size at most
|C| such that fαµ = fα+1

µ = f(fαµ ), giving LFP.f ≤ fαµ .

When fαµ = fα+1
µ for some ordinal α, we say that f converges to its least

fixed point in (at most) α steps, while if α is the least ordinal such that fαµ =
fα+1
µ , then we say that f converges to its least fixed point in exactly α steps.

Analogously, one can prove that fαν ≥ fβν whenever α < β and that there must
be some α such that GFP.f = fαν when f is a monotone function on a complete
lattice.

When the complete lattice under consideration is actually the powerset al-
gebra (℘(S),⊆), for some set S, a game-theoretic characterisation of the least
and the greatest fixed points of a monotone function f : ℘(S) → ℘(S) is also
possible. We refer to [19] for more precise definitions about board games: for
our purposes it is enough to know that the games we are going to define are
played by two players, denoted by ∃ (Éloise) and ∀ (Abélard), who, depending
on the position of the game, can make moves according to Table 1.1. A move
consists in choosing the next position, which can be either an element or a sub-
set of the set S, while matches are finite or infinite sequences of positions. The
games are played until either player cannot make a move, in which case we say
that the player got stuck, but it is also possible for a match of the game to
continue forever. The next definition fixes the notation and states the winning
conditions for the two games.

Definition 1.1.10 Let S be some set and f : ℘(S) → ℘(S) be a monotone
function. The following table specifies the positions and admissible moves for
the two players ∃ and ∀ of the unfolding games Uµ(f) and Uν(f).

Position Player Set of admissible moves
s ∈ S ∃ {A ∈ ℘(S) | s ∈ f(A)}

A ∈ ℘(S) ∀ A

Table 1.1: Unfolding game
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Finite matches are lost by the player who got stuck. The only difference
between these two games consists in the winning conditions for infinite matches:
infinite matches of Uν(f) are won by ∃, while those of Uµ(f) are won by ∀. A
strategy for a player Π ∈ {∃,∀} is a method that dictates which move Π should
play depending on the position of the game. A strategy is winning for Π from
a certain position if every match of the game started at the given position is
won by Π whenever Π adopts this strategy. A position is winning for Π if Π
has a winning strategy for the game initialised in that position. The set of
winning positions for a player Π ∈ {∃,∀} in Uη(f), with η ∈ {µ, ν} is denoted
by WinΠ(Uη(f)).

Theorem 1.1.11 Let S be some set and f : ℘(S) → ℘(S) be a monotone
operation. Then:

1. LFP.f = Win∃(Uµ(f)) ∩ S,

2. GFP.f = Win∃(Uν(f)) ∩ S.

A detailed proof can be found in [19].

1.2 The modal µ-calculus

The focus of this section is the modal µ-calculus. We define its language and
show how to interpret it on Kripke models both via an algebraic semantics and a
game-theoretic semantics. What differentiates the µ-calculus from modal logic
is the presence of fixed point operators µx and νx, which significantly enhance
its expressive power.

The algebraic semantics determines the meaning of a formula µx.ϕ or νx.ϕ in
a Kripke model S as the least fixed point or the greatest fixed point, respectively,
of the function ϕS

x : ℘(S) → ℘(S), which intuitively expresses the dependence
inside S of the meaning of ϕ on the valuation of the variable x. While this
definition is very clear, often it is not very easy to work with, for instance when
trying to determine the meaning of a concrete formula. An alternative is to look
at the ordinal approximations of the least and the greatest fixed points of ϕS

x,
a tool which we will often employ in the study of closure ordinals of µ-calculus
formulas.

The game-theoretic semantics, on the other hand, provides a very intuitive
tool when dealing with formulas of the form ηx.ϕ, where η is either µ or ν. In
the context of a game a position corresponding to the bound variable x will, in
some sense, move the game back to the formula ϕ: we say that the variable x is
unfolded. Depending on whether x is bound by a ν operator or a µ operator, the
truth or falsehood of ηx.ϕ in a model is linked to matches of the game where x is
unfolded infinitely often, similarly to how in the unfolding game of the previous
section infinite matches of Unf ν(f) are won by ∃, while those of Unf µ(f) are
won by ∀.

All of this will hopefully become clearer when more precise definitions are
stated: we now start with the language of the modal µ-calculus.

1.2.1 Language of the µ-calculus

Convention 1.2.1 Throughout the text we fix an infinite set PROP of proposi-
tional variables and a finite set D of atomic actions.
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Definition 1.2.2 The language µMLD of the polymodal µ-calculus is given by
the following grammar:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 3dϕ | µx.ϕ

where p, x ∈ PROP, d ∈ D and the formation of the formula µx.ϕ is subject to
the constraint that the variable x is positive in ϕ, that is, every occurrence of x
in ϕ is under the scope of an even number of negations.

A formula of the µ-calculus is in negation normal form if it belongs to the
language defined by the following grammar:

ϕ ::= ⊥ | > | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 3dϕ | 2dϕ | µx.ϕ | νx.ϕ

where p, x ∈ PROP, d ∈ D and the formation of the formulas µx.ϕ and νx.ϕ is
subject to the constraint that the variable x is positive in ϕ.

When the set D is a singleton we will denote the modal operators by 3 and
2, and speak of the language µML of the modal µ-calculus.

Working with the language of the µ-calculus in negation normal form is es-
pecially convenient for the game theoretic definition of its semantics, and we
will usually assume that a formula belongs to this language. In the smaller set-
ting the missing connectives can be defined by letting νx.ϕ := ¬µx.¬(ϕ[¬x/x])
and the standard abbreviations for >, ∧ and 2d; we also treat → as a defined
connective. The language ML of (basic) modal logic is defined in an analogous
way, without the rules for the fixed point operators. We continue with some
syntactic definitions.

Definition 1.2.3 The set Sfor(ϕ) of subformulas of ϕ is defined in the usual
familiar way, with the clause for a fixed point formula being Sfor(ηx.ϕ) :=
{ηx.ϕ} ∪ Sfor(ϕ), η ∈ {µ, ν}. The size |ϕ| of a formula ϕ is the size of Sfor(ϕ).
We write ψ � ϕ when ψ is a subformula of ϕ.

Definition 1.2.4 An occurrence of a variable x in a formula ϕ is bound if x is
under the scope of an operator µx or νx and free otherwise; FV (ϕ) and BV (ϕ)
denote the sets of free and bound variables of ϕ.

Definition 1.2.5 Let ϕ and ψ be µMLD-formulas, and z a variable that is free
in ϕ. We let ϕ[ψ/z] denote the formula obtained from ϕ by substituting the
formula ψ for z in ϕ, under the assumption that no free variable in ψ will become
bound in the process. If z is clear from context we will also write ϕ(ψ).

Definition 1.2.6 A formula ϕ ∈ µMLD is clean if no two distinct (occurrences
of) fixed point operators in ϕ bind the same variable, and no variable has both
free and bound occurrences in ϕ. If x is a bound variable of the clean formula
ϕ, let ϕx = ηxx.δx denote the unique subformula of ϕ where x is bound by
the operator ηxx, ηx ∈ {µ, ν}. If ηx = µ we say that x is a µ-variable, and a
ν-variable otherwise.

Observe that through a suitable renaming of bound variables we can find,
for every formula ϕ, an equivalent clean formula, so that we will often assume
a formula to be clean without loss of generality.

Definition 1.2.7 Let ϕ be a clean formula. The dependency order ≤ϕ on the
bound variables of ϕ is defined by letting x ≤ϕ y if δx � δy.
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1.2.2 Algebraic semantics

Formulas of the modal µ-calculus will be interpreted in Kripke models.

Definition 1.2.8 A Kripke model of type D is a triple S = (S, (Rd)d∈D, V ) where
S, the domain or underlying set, is a set of points or states, Rd ⊆ S × S is a
binary relation, called accessibility relation, for each d ∈ D, and V is a valuation
on S, that is, a function V : PROP → ℘(S). A pointed model is a model S
together with a designated point s ∈ S, and is denoted by (S, s). A model S is
image-finite, or finitely branching, if Rd[s] := {t ∈ S | (s, t) ∈ Rd} is finite for
every element s of S and d ∈ D.

Given a model S = (S, (Rd)d∈D, V ), a propositional variable x and a subset
X ⊆ S, we define V [x 7→ X] as the valuation given by

V [x 7→ X](p) :=

{
V (p) if p 6= x

X otherwise

and we denote the model (S, (Rd)d∈D, V [x 7→ X]) by S[x 7→ X].

Definition 1.2.9 Let S = (S, (Rd)d∈D, V ) be a Kripke model of type D. A
subset S′ ⊆ S is (upward) closed if s ∈ S′ and t ∈ Rd[s] imply t ∈ S′ for all
d ∈ D. A subset S′ ⊆ S is downward closed if s ∈ S′ and s ∈ Rd[t] imply t ∈ S′
for all d ∈ D.

Given a subset S′ ⊆ S, the submodel of S induced by S′ is the model S′ =
(S′, (R′d)d∈D, V

′), where R′d = Rd∩ (S′×S′) for all d ∈ D, and V ′(p) = V (p)∩S′
for all p ∈ PROP.

Tree models, as defined below, often play an important role when proving
results about the µ-calculus.

Definition 1.2.10 A pointed model (S, s) is a tree model with root s if S =⋃
d∈DR

∗
d[s] (with R∗d denoting the reflexive-transitive closure of Rd) and every

state t 6= s has a unique predecessor. A sibling of a node t in a tree model is a
node t′ 6= t with the same predecessor of t.

We now inductively define the meaning of a formula ϕ in a model S as the
set of states where this formula is true, or satisfied. At the same time we define
the function ϕS

x, which intuitively expresses how in S the meaning of the formula
ϕ varies depending on the meaning of the variable x.

Definition 1.2.11 Given a µMLD-formula ϕ and a model S = (S, (Rd)d∈D, V ), we
define the meaning [[ϕ]]S of ϕ in S, together with the function ϕS

x : ℘(S)→ ℘(S)
mapping a subset X ⊆ S to [[ϕ]]S[x 7→X], by the following simultaneous induction:

[[⊥]]S = ∅
[[>]]S = S
[[p]]S = V (p)
[[¬p]]S = S\V (p)
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = {s ∈ S | Rd[s] ∩ [[ϕ]]S 6= ∅}
[[2dϕ]]S = {s ∈ S | Rd[s] ⊆ [[ϕ]]S}
[[µx.ϕ]]S =

⋂
PRE(ϕS

x)
[[νx.ϕ]]S =

⋃
POS(ϕS

x)

12



For an element s ∈ S we write S, s 
 ϕ if s ∈ [[ϕ]]S.

Remark Let ϕ ∈ µMLD be a formula in which the variable x occurs only posi-
tively and S be a model. By induction on ϕ one can prove that ϕS

x : ℘(S)→ ℘(S)
is a monotone operation. Consequently, by the Knaster-Tarski theorem we ob-
tain that [[µx.ϕ]]S = LFP.ϕS

x and [[νx.ϕ]]S = GFP.ϕS
x.

Definition 1.2.12 Let ϕ and ψ be µMLD-formulas. We say that ψ is a local
consequence of ϕ (notation: ϕ |= ψ) if S, s 
 ϕ implies S, s 
 ψ for every
pointed model (S, s). We say that ϕ and ψ are equivalent (notation: ϕ ≡ ψ) if
ϕ |= ψ and ψ |= ϕ.

It is often difficult to decipher the meaning of a fixed point formula just
by looking at it, especially if alternation of fixed point operators is involved.
Fortunately, the modal µ-calculus also admits an equivalent and much more
intuitive game-theoretic semantics, which will be presented in the next section.
For simple formulas one could also look at the ordinal fixed point approximation
of Definition 1.1.7.

Example 1.2.13 Consider the formula ϕ(x) := 3x∨2⊥ and the model S with
domain ω, empty valuation for each proposition letter and R := {(n+1, n) | n ∈
ω} as accessibility relation. This is depicted in the following picture1.

By the previous remark and Corollary 1.1.9 we know that [[µx.ϕ]]S = LFP.ϕS
x =

(ϕS
x)αµ for some α. Let us look at the stages of the ordinal approximation more

closely. With (ϕS
x)0
µ = ∅ by definition, observe that

(ϕS
x)1
µ = ϕS

x(∅) = [[3x ∨2⊥]]S[x 7→∅] = [[2⊥]]S[x7→∅] = {0},
(ϕS
x)2
µ = ϕS

x((ϕS
x)1
µ) = ϕS

x({0}) = [[3x ∨2⊥]]S[x 7→{0}] = {0, 1},
and so on. In other words, each finite iteration of the least fixed point approxi-
mation adds one state to the meaning of µx.ϕ in S (a simple induction shows that
(ϕS
x)nµ = {m ∈ ω | m < n} for all n ∈ ω), so that LFP.ϕS

x =
⋃
n<ω

(ϕS
x)nµ = (ϕS

x)ωµ .

Example 1.2.14 Now consider the formula ϕ(x) := 2x and the model S where
the domain is now ω ∪ {ω}, the valuation is empty for each proposition letter
and R := {(n + 1, n) | n ∈ ω} ∪ {(ω, n) | n ∈ ω}, as depicted in the following
picture.

1Clicking on the pictures in the digital version of this thesis (with compatible software)
will start an animation showing the progress of the iteration of the formula. A pause in
the animation indicates that an infinite number of steps has passed. When a state becomes
coloured in the animation it means that it is included in the iteration, where each colour
corresponds to a different phase of the iteration, which depends on the disjunct that allows
the iteration to progress.
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We can observe that (ϕS
x)1
µ = ϕS

x(∅) = [[2x]]S[x 7→∅] = {0}, (ϕS
x)2
µ = ϕS

x({0}) =

{0, 1} and, in general, one can prove that (ϕS
x)nµ = {m ∈ ω | m < n} for every

n ∈ ω, which implies (ϕS
x)ωµ = ω. We can go further and compute (ϕS

x)ω+1
µ =

[[2x]]S[x 7→ω] = ω∪{ω}: 2x becomes true at point ω only after ω-many steps in the
computation of LFP.ϕS

x. Clearly (ϕS
x)ω+1
µ = (ϕS

x)ω+2
µ and LFP.ϕS

x = (ϕS
x)ω+1
µ .

Note that it is not always the case that the least fixed point of a formula
ϕ(x) in a model corresponds to its full underlying set. Consider for instance
the formula ϕ(x) := 3x ∨ 2⊥ of Example 1.2.13 and the model S where the
domain is again ω, the valuation is empty for every proposition letter, but now
the accessibility relation is R := {(0, 0), (2, 0), (2, 1)} ∪ {(n+ 1, n) | 2 ≤ n < ω}:
in this case we will have LFP.ϕS

x = ω\{0}.

1.2.3 Game-theoretic semantics

Satisfiability of a formula ϕ in a model S = (S, (Rd)d∈D, V ) can also be estab-
lished by the existence of winning strategies in a two-player board game, called
the evaluation game and denoted by E(ϕ,S). Positions in this game are pairs
(ψ, s) ∈ Sfor(ϕ)×S. From a position of this shape, one of the two players ∃ and
∀ can make a move according to Table 1.2. Intuitively they have the following
goals: ∃’s goal is to show that the formula ψ is true at s, while ∀’s goal is to
show that it is false. Matches are finite or infinite sequences of positions that
are consistent with the rules of the game, with finite matches being lost by the
player who got stuck, that is, who could not make a move.

Before stating the more precise definitions and the winning conditions for
infinite matches, we give more intuitions on how to interpret Table 1.2. Consider
E(ϕ,S). A position of the form (ψ1∨ψ2, s) belongs to ∃, who can move to either
position (ψ1, s) or (ψ2, s): since her goal is to show that ψ1∨ψ2 is true at s, she
should move to the disjunct that witnesses the truth of the formula. Similarly
and dually, from a position of the form (ψ1∧ψ2, s), ∀ can move to either (ψ1, s)
or (ψ2, s), with the intent to show which of the two conjuncts makes the whole
formula false at s. From position (3dψ, s) ∃ should move to a position (ψ, t),
with t a Rd-successor of s that satisfies ψ, in order to show that 3dψ is true
at s, while from position (2dψ, s) ∀’s strategy is to find a Rd-successor t of s
where ψ is false and move to (ψ, t) to show that 2dψ cannot be true at s: in
both cases, if Rd[t] = ∅ one of the players will get stuck and lose. If the game is
at a position of the form (p, s) with p ∈ FV (ϕ), depending on whether or not
s ∈ V (p) it will be ∀’s or ∃’s turn to move: in any case, the set of admissible
moves is empty, so that either player will be stuck, with for instance ∀ being
stuck and losing the game if s ∈ V (p), that is, if p is true at s. When the
current position of the match is (x, s), with x a bound variable of ϕ, the game
automatically moves to position (δx, s), δx being the unique subformula of ϕ
where x is bound by ηxx, and the match will then continue from there: in
this case we say that the variable x is unfolded. The game also performs an
automatic move from a position of the form (ηxx.δx, s) to position (δx, s). It
can happen that one or more bound variables are unfolded infinitely many times
during a play of the evaluation game, leading to an infinite match. The winner
of such a match will depend on whether the variable with the highest ranking
(with respect to the dependency order ≤ϕ from Definition 1.2.7) is a µ-variable
or a ν-variable: ∀ will be the winner in the first case, and ∃ in the latter (note

14



that this is analogous to the winning conditions of the unfolding game, which
is a key observation in the proof of the equivalence between the algebraic and
the game-theoretic semantics). We now move to the definitions and give a few
examples of matches.

Definition 1.2.15 Given a clean µMLD-formula ϕ and a model S we define the
evaluation game E(ϕ,S) as a board game with players ∃ and ∀ moving a token
around positions of the form (ψ, s) ∈ Sfor(ϕ) × S. The rules determining the
admissible moves for a certain player at a given position are given in Table 1.2.
E(ϕ, S)@(ϕ, s) denotes the instantiation of this game where the starting position
is fixed as (ϕ, s).

Position Player Set of admissible moves
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), with p ∈ FV (ϕ) and s /∈ V (p) ∃ ∅
(p, s), with p ∈ FV (ϕ) and s ∈ V (p) ∀ ∅
(¬p, s), with p ∈ FV (ϕ) and s /∈ V (p) ∀ ∅
(¬p, s), with p ∈ FV (ϕ) and s ∈ V (p) ∃ ∅
(ψ1 ∧ ψ2, s) ∀ {(ψ1, s), (ψ2, s)}
(ψ1 ∨ ψ2, s) ∃ {(ψ1, s), (ψ2, s)}
(3dψ, s) ∃ {(ψ, t) | t ∈ Rd[s]}
(2dψ, s) ∀ {(ψ, t) | t ∈ Rd[s]}
(ηxx.δx, s) − {(δx, s)}
(x, s), with p ∈ BV (ϕ) − {(δx, s)}

Table 1.2: Evaluation game

Definition 1.2.16 Let ϕ be a clean µMLD formula and S a model. A match of
the game E(ϕ,S) is a finite or infinite sequence of positions

Σ = (ϕi, si)i<κ, κ ≤ ω
which is consistent with the rules of the evaluation game, that is, Σ is a path
through the game graph given in Table 1.2. A full match is an infinite match,
or a finite match in which one of the player got stuck at the last position. Full
matches will be referred to simply as matches, while a match that is not full will
be called partial. Given an infinite match Σ, we let Unf∞(Σ) ⊆ BV (ϕ) denote
the set of bound variables of ϕ that are unfolded infinitely often during Σ.

We recall that a strategy for a player Π ∈ {∃,∀} in an initialised game is
a method that dictates which move Π should play depending on the position
of the game. A strategy is winning for Π if every match of the game started
at the given position is won by Π whenever Π adopts this strategy. A position
is winning for Π if Π has a winning strategy for the game initialized in that
position.

Remark Let ϕ be a clean µMLD-formula and S a model. For any infinite match Σ
of E(ϕ,S), the set Unf∞(Σ) is finite and directed with respect to the dependency
order of Definition 1.2.7 (that is, for any x, y ∈ Unf∞(Σ) there is z ∈ Unf∞(Σ)
such that x ≤ϕ z and y ≤ϕ z). From this it follows that Unf∞(Σ) has a
maximum.
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Definition 1.2.17 Let ϕ be a clean µMLD formula. The winning conditions of
the game E(ϕ,S) are as follows:

� finite matches are lost by the payer who got stuck,

� an infinite match Σ is won by ∃ if max(Unf∞(Σ)) is a ν-variable, and by
∀ otherwise.

The set of winning positions for ∃ in E(ϕ,S) is denoted by Win∃(E(ϕ,S)).

Example 1.2.18 As a trivial example, consider the formula ηx.x. Given a
pointed model (S, s), a match of E(ηx.x,S)@(ηx.x, s) consists of an infinite
sequence of automatic moves: (ηx.x, s)(x, s)(x, s) . . ., with the winner being ∃
if η = ν and ∀ otherwise. We observe then that µx.x is equivalent to ⊥, while
νx.x is equivalent to >.

Example 1.2.19 Consider the formula ϕ(x) := 3x∨2⊥, an arbitrary pointed
model (S, s) and the game E(µx.ϕ,S)@(µx.ϕ, s). First of all, note that from a
position of the form (2⊥, t) it would be ∀′s turn to move: if R[t] = ∅ he would
be stuck and lose, otherwise he would have to move to (⊥, u), for some u ∈ R[t],
where ∃ would be stuck by the rules of the game. In other words, (2⊥, t) is a
winning position for ∃ for any t ∈ S with R[t] = ∅. On the other hand, a position
of the form (3x, t) belongs to ∃, who has to move to (x, u) for some u ∈ R[t] if
it exists, otherwise she is stuck: in the first case the game then automatically
moves to (3x ∨ 2⊥, u). We observe then that from a position (3x ∨ 2⊥, t) ∃
should move to (3x, t) and then to (x, u) if R[t] 6= ∅, and to (2⊥, t) otherwise.
In the first case the game continues from (3x ∨ 2⊥, u) in a similar manner. If
∃ wants to win she should move to (2⊥, v) as soon as a blind state v occurs in
the game: if this never happens the µ-variable x will be unfolded infinitely often
and she will lose the game. Similar considerations show that ∃ has a winning
strategy in E(µx.ϕ,S)@(µx.ϕ, s) iff there is a finite path starting from s.

We now state the fundamental result regarding the equivalence of the two
semantics for the modal µ-calculus.

Theorem 1.2.20 (Adequacy) Let ϕ be a clean µMLD-formula. Then for all
pointed models (S, s):

s ∈ [[ϕ]]S if and only if (ϕ, s) ∈Win∃(E(ϕ,S)).

We refer the reader to [19] for a detailed proof of this result.

1.2.4 Bisimulation

We conclude this chapter with some notes on bisimulations and bisimulation
invariance.

Definition 1.2.21 Let S = (S, (Rd)d∈D, V ) and S′ = (S′, (R′d)d∈D, V
′) be two

models of the same type D. A bisimulation of type D between S and S′ is a
relation Z ⊆ S × S′, satisfying, for every (s, s′) ∈ Z:

� for all p ∈ PROP, s ∈ V (p) iff s′ ∈ V (p);

� for every d ∈ D, for every t ∈ Rd[s] there is a t′ ∈ R′d[s
′] such that

(t, t′) ∈ Z;
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� for every d ∈ D, for every t′ ∈ R′d[s
′] there is a t ∈ Rd[s] such that

(t, t′) ∈ Z.

If there is a bisimulation Z between two models S and S′ and (s, s′) ∈ Z, we say
that the states s and s′ are bisimilar and write S, s↔D S′, s′, or just S, s↔ S′, s′
when D is clear.

Like modal logic, the modal µ-calculus enjoys the property that the truth of
its formulas is invariant under bisimulation.

Theorem 1.2.22 (Bisimulation Invariance) Let S and S′ be two models of
the same type D such that S, s ↔ S′, s′ for some s ∈ S and s′ ∈ S′. Then, for
every ϕ ∈ µMLD:

S, s 
 ϕ iff S′, s′ 
 ϕ.

An immediate consequence of this result is that whenever a µMLD formula
is satisfiable in a pointed model (S, s), it is satisfiable at the root of a tree
model that can be obtain by unravelling the original model S from the state s.
The next definition generalises the unravelling construction that we assume the
reader to be familiar with.

Definition 1.2.23 Let κ be a countable cardinal with 1 ≤ κ ≤ ω, and (S, s) be
a pointed model of type D. A κ-path through S is a finite sequence of the form

s0d1k1s1 · · · sn−1dnknsn (n ≥ 0),

where si ∈ S, di ∈ D and 0 < ki < κ for each i, and such that si+1 ∈ Rdi+1
[si] for

each i < n. Pathsκ(S) denotes the set of all such paths, and Pathsκs (S) denotes
the set of those starting at s. Given a κ-path ρ, we let last(ρ) ∈ S denote its
last element.

The tree model Eκ(S, s) = (Pathsκs (S), (Rκd)d∈D, V
κ) is the κ-expansion of S

around s, where:

V κ(p) := {ρ ∈ Pathsκs (S) | last(ρ) ∈ V (p)};
Rκd := {(ρ, ρ·dkt) ∈ Pathsκs (S)× Pathsκs (S) | (last(ρ), t) ∈ Rd, k < κ}.

Proposition 1.2.24 For any cardinal κ with 1 ≤ κ ≤ ω the graph of the
function last is a bisimulation between (Eκ(S, s), s) and (S, s).
Remark Observe that the κ-expansion of a model is κ-expanded, which means
that, for every state s and distinct d, d′ ∈ D, Rd[s] ∩ Rd′ [s] = ∅, and every
t ∈ Rd[s] has at least κ − 1 many bisimilar siblings t′ ∈ Rd[s]. Note also that
the unravelling of a model can be identified with its 1-expansion.

From the previous proposition and bisimulation invariance the following the-
orem follows.

Theorem 1.2.25 (Tree Model Property) Let ϕ ∈ µMLD: if ϕ is satisfiable,
then it is satisfiable at the root of a tree model.

Actually, something even better is true: whenever ϕ is satisfiable, it is satis-
fiable at the root of a finitely branching tree model. Again, we refer the reader
to [19] for the proof of the next theorem.

Theorem 1.2.26 (Bounded Tree Model property) Let ϕ ∈ µMLD: if ϕ is
satisfiable, then it is satisfiable at the root of a finitely branching tree model, in
which every state has at most |ϕ|-many successors.
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Chapter 2

Closure ordinals up to ω

In this chapter we begin our exploration of closure ordinals of formulas of the
modal µ-calculus. Essentially, given a formula ϕ, we are interested in how many
iterations of ϕS

x, starting from ∅, are needed in order for this function to converge
to its least fixed point across all models. More precisely, we are looking for the
least α such that (ϕS

x)αµ = (ϕS
x)α+1
µ for every model S.

As we will see, not every formula has a closure ordinal. On the other hand,
there are interesting classes of formulas for which a closure ordinal always ex-
ists. For instance, consider formulas that are continuous in x. In relation to
the modal µ-calculus the property of continuity in a variable x has been studied
extensively [9, 10, 11] and it is a standard result that every continuous formula
converges to its least fixed point in at most ω iterations, a property that is
known as constructivity. We will talk more about the connection between con-
tinuity and constructivity in Section 2.4, where we also present the syntactic
characterisation of the property of continuity over finitely branching models.

Another interesting class of formulas is that of ℵ1-continuous formulas, in-
troduced in [12] together with its syntactic characterisation. ℵ1-continuous for-
mulas converge to their least fixed point in at most ω1 many steps, ω1 being the
first uncountable ordinal. Closure ordinals greater than ω will be discussed in
Chapter 3.

The properties of continuity and ℵ1-continuity for µ-calculus formulas have
been shown to be decidable in, respectively, [9, 10, 11] and [12]. However,
whether it is decidable if a µ-calculus formula always reaches its least fixed
point in at most ω or ω1 steps is an open question. Otto [17] showed that
the boundedness problem for a modal logic formula is decidable, that is, given
a formula ϕ of modal logic it is decidable whether there exists a n ∈ ω such
that (ϕS

x)nµ = (ϕS
x)n+1
µ for every model S. We will discuss bounded formulas in

Section 2.3.
After stating the definition of closure ordinal of a µ-calculus formula and

providing a few examples in the next section, in Section 2.2 we focus on a class
of formulas that all have 0 as their (very trivial) closure ordinal and we provide
a syntactic characterisation.
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2.1 Definition and examples

Convention 2.1.1 While the following definitions and results would also apply
to the polymodal language of the modal µ-calculus, for notational convenience
in the rest of this chapter we restrict to the monomodal setting.

Definition 2.1.2 The closure ordinal of a µ-calculus formula ϕ with respect
to the variable x is the least ordinal α such that (ϕS

x)αµ = (ϕS
x)α+1
µ for every

model S, if it exists. If α is the closure ordinal of ϕ with respect to x we write
clx(ϕ) = α; if α is the closure ordinal of some formula, we say that α is a
closure ordinal.

Convention 2.1.3 From now on we always assume that when a variable x
is free in a formula ϕ, then x is positive in ϕ. We will also usually leave the
reference to the variable x more implicit and say, for instance, that α is the
closure ordinal of ϕ(x). Moreover, since the focus of the thesis is on the ordinal
approximation of least fixed points, and since the free variable x in a formula
ϕ(x) will usually be clear from context, for notational convenience we will often
write ϕαS instead of (ϕS

x)αµ (sometimes ϕα if S is also clear).

When proving results about closure ordinals an equivalent characterisation,
given in Proposition 2.1.5, is often useful. To prove its equivalence we will need
the following fact, which is easily proven by transfinite induction and using
properties of disjoint unions.

Proposition 2.1.4 Let I be an index set, ϕ(x) be a formula and Si = (Si, Ri, Vi)
be a model for every i ∈ I. If S = (S,R, V ) is the disjoint union of all the models
Si’s, then, for every i ∈ I and ordinal α: ϕαSi = ϕαS ∩ Si.

Proposition 2.1.5 An ordinal α is the closure ordinal of ϕ(x) if and only if
the following two conditions are satisfied:

(1) for every model S the least fixed point of ϕS
x is always reached in at most

α steps, that is, LFP.ϕS
x = ϕαS = ϕα+1

S , and

(2) there exists a model S where the least fixed point of ϕS
x is reached in

exactly α steps, that is, LFP.ϕS
x = ϕαS 6= ϕβS for all β < α.

Proof. We begin with assuming items (1) and (2). From the first item it im-
mediately follows that ϕαS = ϕα+1

S for every model S. To prove that α is also
the least ordinal satisfying this equality, suppose that there is an ordinal γ such
that ϕγS = ϕγ+1

S for every model S. We want α ≤ γ. By item (2) let S be a

model where ϕβS ( ϕαS for every β < α: then ϕγS = ϕγ+1
S implies that it cannot

be the case that γ < α, and we conclude that α ≤ γ.
Now suppose that clx(ϕ) = α. We want to prove that items (1) and (2) hold.

We focus on the second item since the first one follows immediately. Assume
towards a contradiction that for every model S there exists an ordinal β < α
such that ϕβS = ϕβ+1

S : in particular for every S there exists a least ordinal β < α
satisfying this equality. Define the set

B := {β < α | for some S, β is the least ordinal such that ϕβS = ϕβ+1
S }
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and let β̄ := sup(B). Since α is an upper bound of B it follows that β̄ ≤ α, and

since ϕβ̄S = ϕβ̄+1
S for every model S, the assumption that α = clx(ϕ) implies

that α ≤ β̄ and finally β̄ = α. We proceed with a case distinction.
If α = γ + 1 is a successor ordinal, then γ is an upper bound of B and we

would have α = β̄ ≤ γ, which is absurd.
Otherwise, suppose α is a limit. If B is not a cofinal subset of α then there is

a γ < α which is an upper bound of B, implying α = β̄ ≤ γ, so assume instead
that B is a cofinal subset of α, that is, for all γ < α there exists a β ∈ B such
that γ ≤ β. Since α is a limit and strictly greater than every element of B, this
can be strengthened to

for all γ < α there exists a β ∈ B such that γ < β. (2.1)

For each γ < α denote by βγ an element of B that witnesses (2.1), and by

Sγ = (Sγ , Rγ , Vγ) a model where βγ is the least ordinal such that ϕ
βγ
Sγ = ϕ

βγ+1
Sγ .

Now take the model S as the disjoint union of all Sγ ’s: we claim that ϕγS ( ϕαS
for every γ < α. Indeed, let γ < α be arbitrary: by (2.1) let βγ ∈ B with

γ < βγ be the ordinal such that ϕδSγ ( ϕ
βγ
Sγ for every δ < βγ . In particular let

s ∈ ϕβγSγ such that s /∈ ϕγSγ : by Proposition 2.1.4 then s ∈ ϕβγS ∩ Sγ ⊆ ϕαS and

s /∈ ϕγS ∩ Sγ , finally giving s ∈ ϕαS but s /∈ ϕγS .
In conclusion, against our initial assumption, S is a model where there is no

β < α such that ϕβS = ϕβ+1
S , which is the desired contradiction.

From now on, when we say that α is the closure ordinal of ϕ(x) we will
interchangeably use both definitions, and we will often prove that clx(ϕ) = α
by showing that ϕS

x converges to its least fixed point in at most α steps on every
model S and by constructing a model S where convergence happens in exactly
α steps. We now consider some examples.

Example 2.1.6 In Example 1.2.13 we presented a model where the formula
ϕ := 3x ∨2⊥ converges to its least fixed point in exactly ω steps. To see that
ϕ converges in at most ω many steps on every model, and so that clx(ϕ) = ω,
let S be arbitrary. We want to show ϕω = ϕω+1. We only need to prove that
ϕω+1 ⊆ ϕω, so let s ∈ ϕω+1, which means that S[x 7→ ϕω], s 
 3x ∨ 2⊥. If
S[x 7→ ϕω], s 
 2⊥ then s ∈ ϕS

x(∅) = ϕ1 ⊆ ϕω, otherwise if S[x 7→ ϕω], s 
 3x
then there is a t ∈ R[s] such that t ∈ ϕω, implying t ∈ ϕn for some n ∈ ω and
S[x 7→ ϕn], s 
 3x. We can conclude that s ∈ ϕS

x(ϕn) = ϕn+1 ⊆ ϕω.

Example 2.1.7 We have mentioned that not every formula has a closure or-
dinal: a very simple example is the formula ϕ := 2x. Indeed, for every ordinal
α we can construct a model where 2x converges in exactly α + 1 steps. Ex-
plicitly, define Sα to be the model with domain α ∪ {α}, accessibility relation
R := {(β + 1, β) | β < α} ∪ {(λ, β) | β < λ ≤ α, λ a limit ordinal} and empty

valuation for every propositional variable: here it holds that ϕβSα = β for every

β ≤ α+ 1, so that ϕSα
x converges to its least-fixed point in exactly α+ 1 steps.

In Example 1.2.14 we showed this for α = ω.
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2.2 Normal formulas

In this section we focus on a class of formulas that immediately converge to their
least fixed points. These formulas satisfy ϕS

x(∅) = ∅ on every model S, so that
they have 0 as their closure ordinal. In other words, these are formulas that are
always false in a model whenever the valuation of the variable x is empty. This
property is known as normality in the variable x and is usually mentioned in
relation to other semantic properties, for instance when differentiating between
full and complete additivity [5, 11].

Definition 2.2.1 A function f : ℘(S)n → ℘(S) is called normal in the ith
coordinate if

f(S1, . . . , Si−1, ∅, Si+1, . . . , Sn) = ∅

for all S1, . . . , Sn ⊆ S and normal (in the product) if

f(∅, . . . , ∅) = ∅.

In order to state the definition of what it means for a formula to be normal in
a finite set of propositional variables we need to slightly generalise the definition
of the function ϕS

x.

Definition 2.2.2 Let ϕ ∈ µML be a formula and X = {x1, . . . , xn} ⊆ PROP

a finite set of propositional variables. For every Kripke model S = (S,R, V ),
define the function ϕS

X : ℘(S)→ ℘(S) by letting ϕS
X(S′) := [[ϕ]]S[x1 7→S′,...,xn 7→S′]

for all S′ ⊆ S. If X = {x} is a singleton we write ϕS
x instead of ϕS

{x}.

Convention 2.2.3 For a finite set X = {x1, . . . , xn} of propositional variables,
a model S and S′ ⊆ S, we write S[X 7→ S′] instead of S[x1 7→ S′, . . . , xn 7→ S′].

Definition 2.2.4 A formula ϕ ∈ µML is normal in X = {x1, . . . , xn} ⊆ PROP if,
for every model S, ϕS

X is normal (in the product). This is equivalent to requiring
that S[X 7→ ∅], s 6
 ϕ for every pointed model (S, s).

We are going to provide a syntactic characterisation of this property, in the
sense that we are going to prove, for every µML-formula ϕ, that ϕ is normal
in X if and only if it is equivalent to some formula in the following restricted
fragment of the language of the modal µ-calculus.

Definition 2.2.5 Given a finite subset X ⊆ PROP, we define the fragment µMLNX
by the following grammar:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ψ | 3ϕ | µx.ϕ′ | νx.ϕ

where p ∈ X, ψ ∈ µML is an arbitrary formula, and ϕ′ ∈ µMLNX∪{x}.

The first ingredient needed for our characterisation is that every formula in
this fragment is indeed normal in X.

Proposition 2.2.6 For every finite X ⊆ PROP: if χ ∈ µMLNX , then χ is normal
in X.
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Proof. The proof goes by induction on χ ∈ µMLNX : we only consider the cases
for the fixed point operators. First suppose χ = µx.ϕ, where ϕ ∈ µMLNX∪{x}:
we want to show that (µx.ϕ)SX(∅) = ∅. Observe that by inductive hypothesis

ϕS
X∪{x}(∅) = ∅, or equivalently ϕ

S[X 7→∅]
x (∅) = ∅, so LFP.ϕ

S[X 7→∅]
x = ∅.

Now let χ = νx.ϕ, where ϕ ∈ µMLNX . Assume G := GFP.ϕ
S[X 7→∅]
x 6= ∅

towards a contradiction and let s ∈ G. It follows that s ∈ G = ϕ
S[X 7→∅]
x (G) and

so that S[X 7→ ∅, x 7→ G], s 
 ϕ. But by inductive hypothesis ϕ
S[x 7→G]
X (∅) = ∅,

which gives the desired contradiction.

In order to also prove that every formula that is normal in X is equivalent
to some formula in the fragment µMLNX we are going to take advantage of the
fact that the modal µ-calculus admits a disjunctive normal form.

Convention 2.2.7 For the rest of the section it will be convenient to distinguish
an infinite proper subset VAR ⊆ PROP of fixed point variables: these will not be
allowed to appear in a conjunction of literals, but will be the only variables that
may be bound by a fixed point operator in a disjunctive formula. We are then
dealing with three different sets of variables at the moment: the set PROP of all
propositional variables, a subset VAR ⊆ PROP of fixed point variables and a finite
subset X ⊆ PROP for which we are characterising normality.

Definition 2.2.8 Let VAR ⊆ PROP. The set CL of literal conjunctions is defined
by the following grammar:

π ::= ⊥ | > | p | ¬p | π ∧ π
where p ∈ PROP\VAR.

The set µDML of disjunctive µ-calculus formulas is given by the following
grammar:

ϕ ::= ⊥ | > | x | ϕ ∨ ϕ | π • ∇Φ | µx.ϕ | νx.ϕ
where x ∈ VAR and π ∈ CL.

This language is interpreted on Kripke models, where the meaning of π •∇Φ
is defined as follows. Let S be an arbitrary model:

[[π • ∇Φ]]S = [[π]]S ∩ [[∇Φ]]S

[[∇Φ]]S = {s ∈ S | R[s] ⊆ ⋃{[[ϕ]]S | ϕ ∈ Φ}}∩
{s ∈ S | for all ϕ ∈ Φ, [[ϕ]]S ∩R[s] 6= ∅}

In other words, S, s 
 ∇Φ if every successor of t satisfies some formula in Φ,
and every formula in Φ is true at some successor of s. Note that the operator
• semantically behaves as a conjunction, and that that ∇Φ can be expressed
using the modal operators 3 and 2:

∇Φ ≡ 2
∨

Φ ∧∧3Φ.

where 3Φ := {3ϕ | ϕ ∈ Φ}. Conversely, it is also true that 3ϕ ≡ ∇{ϕ,>} and
2ϕ ≡ ∇∅ ∨∇{ϕ}.

For the game-theoretic characterisation of the meaning of a disjunctive µ-
calculus formula in a model S we need the definition of a ∇-marking. Given a set
of formulas Φ and a point s in a model, a ∇-marking is a map m : R[s]→ ℘(Φ)
such that
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� for all ϕ ∈ Φ there exists a t ∈ R[s] such that ϕ ∈ m(t),

� for all t ∈ R[s] there exists a ϕ ∈ Φ such that ϕ ∈ m(t).

Table 2.1 provides the set of admissible moves for a player from positions of the
form (π • ∇Φ, s), (∇Φ, s) and m : R[s]→ ℘(Φ).

Position Player Set of admissible moves
(π • ∇Φ, s) ∀ {(π, s), (∇Φ, s)}
(∇Φ, s) ∃ {m : R[s]→ ℘(Φ) | m is a ∇-marking}
m : R[s]→ ℘(Φ) ∀ {(ψ, t) | ψ ∈ m(t)}

Table 2.1: Additional rules for the evaluation game

Theorem 2.2.9 (Janin & Walukiewicz, [13]) There is an effective algorithm
that rewrites a modal fixed point formula ϕ ∈ µML into an equivalent disjunctive
formula ϕd ∈ µDML.

An interesting property of disjunctive formulas that we will soon need is that
in order to know whether a disjunctive formula νx.ϕ is satisfiable, it is enough
to know if ϕ(>) is satisfiable [13, 19]. We sketch a proof of this fact.

Proposition 2.2.10 If νx.ϕ is disjunctive, then νx.ϕ is satisfiable if and only
if ϕ(>) is satisfiable.

Proof. We prove the right to left direction. By Theorem 1.2.22 and Proposi-
tion 1.2.24 let (S, r) be an ω-expanded tree such that S, r 
 ϕ(>). In order to
show that νx.ϕ(x) is satisfiable we construct a pointed model (S′, r) and define
a winning strategy for ∃ in E(νx.ϕ(x),S)@(νx.ϕ(x), r). By assumption we know
that ∃ has a winning strategy f in E(ϕ(>),S)@(ϕ(>), r).

Claim. ∃ has a winning strategy f in E(ϕ(>),S)@(ϕ(>), r) such that, for all
f -guided partial matches σ = (ϕ(>), r) · · · (∇Φ, s) and for all t ∈ R[s], there
exists a unique ψ ∈ Φ such that σ · (ψ, t) is an f -guided continuation of σ.

Proof of Claim. To see that the claim holds note that, since S is ω-expanded,
at position (∇Φ, s) ∃ can pick a marking m : R[s] → ℘(Φ) such that for all
t ∈ R[s], |m(t)| = 1. C

We can then assume without loss of generality that ∃’s winning strategy f in
E(ϕ(>),S) from position (ϕ(>), r) satisfies the condition of the claim.

Our goal is to construct a model S′ that satisfies νx.ϕ(x). The idea is that
we consider all nodes t of S such that (>, t) – with > a substitution instance of
x in ϕ – is an f -reachable position, prune S from t and attach a copy of S to
t (identifying t with the root of S). From this latter node ∃ can use a strategy
that is analogous to the strategy f in order to satisfy ϕ(>), so that we can look
at positions t′ in this new model such that (>, t′) is f -reachable from (ϕ(>), t)
and repeat the above process. We do this infinitely many times and obtain a
model S′ that we claim satisfies νx.ϕ(x). The danger is that by pruning the
tree after the state t we might cut some states that are essential in some match
of E(ϕ(>)),S), in the sense that there might be some f -guided partial match
σ′ = (ϕ(>), r) · · · (ψ, t) that requires the successors of t in order to be completed
and won by ∃. The next claim assures that this cannot happen.
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Claim. Let σ = (ϕ(>), r) · · · (>, t) – with > a substitution instance of x in
ϕ – be an f -guided match of E(ϕ(>),S) from position (ϕ(>), r). If σ′ =
(ϕ(>), r) · · · (ψ, t) is an f -guided partial match of E(ϕ(>),S) from position
(ϕ(>), r) where ψ is not a propositional letter, then σ′ is a prefix of σ.

Proof of Claim. Suppose this is not the case, so that σ and σ′ are such that
there is a position (χ, s) with

σ = (ϕ(>), r) · · · (χ, s)(χ0, s
′) · · · (>, t),

σ′ = (ϕ(>), r) · · · (χ, s)(χ1, s
′′) · · · (ψ, t),

and χ0 6= χ1. We argue by a case distinction on the shape of χ that this cannot
hold. Obviously χ cannot be a literal, > or ⊥, as both matches would end at
position (χ, s). If χ = ϕ ∨ ϕ′, then (χ, s) is a position for ∃ and it must be the
case that χ0 = χ1 and s = s′ = s′′ against assumption. Now suppose χ = ∇Φ.
By our previous claim, for each u ∈ R[s] there is a unique ψ ∈ Φ such that
(ψ, u) is f -reachable: since S is a tree, there is a unique path from s to t, and so
there is a unique successor u of s such that (u, t) ∈ R∗, implying that it must be
the case that s′ = s′′ and χ0 = χ1. If χ is of the form ηy.χ′, then χ0 = χ1 = χ′

and s = s′ = s′′ and there is no branching in this case too; similarly if χ is a
variable y. C

This guarantees that the construction of S′ as described can be performed. It
is also easy to see why S′, r 
 νx.ϕ(x).

We state the following corollary for future reference.

Corollary 2.2.11 Let X ⊆ PROP be a finite set of propositional variables and
νx.ϕ be a disjunctive formula. If ϕ(>) is satisfiable in a model with an empty
valuation for every p ∈ X, then νx.ϕ is also satisfiable in a model S where
V (p) = ∅ for every p ∈ X.

For every finite X ⊆ PROP we now define a subset µDMLNX of µDML: it will turn
out that every disjunctive formula that is normal in X belongs to this subset.
Recall that in Convention 2.2.7 we have distinguished a subset VAR ⊆ PROP of
variables that may be bound by a fixed point operator, but that cannot occur
in a conjunction of literals in a disjunctive formula.

Definition 2.2.12 Let X ⊆ PROP be a finite set of propositional variables. We
define inductively the set CLNX ⊆ CL to be the smallest set such that

⊥ ∈ CLNX always,
p ∈ CLNX if p ∈ X,
π ∧ π′ ∈ CLNX if π ∈ CLNX , or π′ ∈ CLNX , or

π and π′ are inconsistent,

where p /∈ VAR and we say that π, π′ ∈ CL are inconsistent if for some q ∈ PROP:
q ∈ π and ¬q ∈ π′, or q ∈ π′ and ¬q ∈ π (recall that by the definition of CL in
Definition 2.2.8 such a q cannot be an element of VAR).

Define inductively the set µDMLNX ⊆ µDML to be the smallest set such that
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⊥ ∈ µDMLNX always,
x ∈ µDMLNX if x ∈ X and x ∈ VAR,
ϕ ∨ ϕ′ ∈ µDMLNX if ϕ ∈ µDMLNX and ϕ′ ∈ µDMLNX ,
µx.ϕ ∈ µDMLNX if ϕ ∈ µDMLNX∪{x},
νx.ϕ ∈ µDMLNX if ϕ ∈ µDMLNX ,
π • ∇Φ ∈ µDMLNX if π ∈ CLNX or there is some

ϕ ∈ Φ such that ϕ ∈ µDMLNX .

Lemma 2.2.13 For all ϕ ∈ µDML and all finite X ⊆ PROP:

ϕ is normal in X if and only if ϕ ∈ µDMLNX .

Proof. We focus on left to right direction, of which we prove the contrapositive:
for all ϕ ∈ µDML and all finite X ⊆ PROP, if ϕ /∈ µDMLNX , then ϕ is not normal
in X. We proceed by induction on ϕ ∈ µDML, considering only the less trivial
cases.

Suppose ϕ = π •∇Φ /∈ µDMLNX : by definition of µDMLNX it holds that π /∈ CLNX
and for all ψ ∈ Φ, ψ /∈ µDMLNX .

We first prove that, for all π ∈ CL, if π /∈ CLNX , then π is not normal in
X. The cases where π is a literal or ⊥ are easily dealt with. Now suppose
π = π′∧π′′ /∈ CLNX : then π′ /∈ CLNX , π′′ /∈ CLNX and π′ and π′′ are not inconsistent.
This implies that all p ∈ X and ⊥ are not conjuncts of π and that π is satisfiable:
being a conjunction of literals, π is satisfiable in a model ({s}, ∅, V ) consisting
of a single irreflexive point, where for every propositional variable q: V (q) = {s}
if q ∈ π and V (q) = ∅ otherwise. This proves that π is not normal in X.

Going back to π • ∇Φ, let Φ = {ϕ1, . . . , ϕn}. By assumption and induction
hypothesis, for all 1 ≤ i ≤ n, ϕi is not normal in X, hence there is a pointed
model (Si, si) such that Si[X 7→ ∅], si 
 ϕi. Without loss of generality we
assume that the underlying sets S1, . . . , Sn of these models are disjoint. Consider
the model

S = ({s} ∪ ⋃
1≤i≤n

Si, {(s, si) | 1 ≤ i ≤ n} ∪
⋃

1≤i≤n
Ri, V )

where s /∈ ⋃i Si and such that V (p) = ∅ for all p ∈ X and, for all q /∈ X:
V (q) = {s} ∪⋃i Vi(q) if q ∈ π and V (q) =

⋃
i Vi(q) otherwise. In other worlds,

S is the disjoint union of all the models (Si, si)’s with one more point s added
as a “root” under it. We claim that S, s 
 π • ∇Φ. It should be clear that
S, s 
 π. Note that S, si 
 ϕi iff Si[X 7→ ∅], si 
 ϕi. Let t ∈ R[s] be arbitrary:
R[s] = {s1, . . . , sn}, so t = si for some 1 ≤ i ≤ n and S, si 
 ϕi, hence S, t 
 ψ
for some ψ ∈ Φ. Now let ϕi ∈ Φ be arbitrary: in this case we have that si is
such that S, si 
 ϕi. It follows that S, s 
 π • ∇Φ and, since V (p) = ∅ for all
p ∈ X, we conclude that π • ∇Φ is not normal in X.

Now suppose ϕ is of the form µx.ψ /∈ µDMLNX , which means that ψ /∈
µDMLNX∪{x}. By induction hypothesis there exists a pointed model (S, s) such

that S[X ∪ {x} 7→ ∅], s 
 ψ, which implies that S[X 7→ ∅], s 
 ψ[⊥/x]. But
then in the evaluation game E(µx.ψ,S[X 7→ ∅])@(µx.ψ, s) ∃ can use (almost)
the same winning strategy f she has in E(ψ[⊥/x],S[X 7→ ∅])@(ψ[⊥/x], s): since
a position of the form (⊥, t) is never reached in the latter game if ∃ uses the
strategy f , a corresponding position (x, t) is not f -reachable in the first game,
hence f is a winning strategy in E(µx.ψ,S[X 7→ ∅])@(µx.ψ, s). We conclude
that µx.ψ is not normal in X, since S[X 7→ ∅], s 
 µx.ψ.
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Finally, suppose ϕ is of the form νx.ψ /∈ µDMLNX , meaning that ψ /∈ µDMLNX .
By induction hypothesis there is a pointed model (S, s) such that S[X 7→ ∅], s 

ψ. Then, since x is positive in ψ, by monotonicity of ψS

x it holds that S[X 7→
∅], s 
 ψ[>/x]. By Corollary 2.2.11 νx.ψ is satisfiable in a model with empty
valuation for every p ∈ X, so we conclude that νx.ψ is not normal in X.

The following proposition can be proved by induction on ϕ ∈ µDML, consid-
ering ∇Φ as an abbreviation for 2

∨
Φ ∧∧3Φ.

Proposition 2.2.14 For every ϕ ∈ µDML: if ϕ ∈ µDMLNX , then ϕ ∈ µMLNX .

Finally, we combine the previous results to obtain the desired characterisa-
tion of the normal fragment of the modal µ-calculus.

Theorem 2.2.15 Every formula in µMLNX is normal in X. Moreover, there is
an effective translation which, given a µML-formula ϕ, computes an equivalent
formula ϕd ∈ µDML such that

ϕ is normal in X iff ϕd ∈ µMLNX .

Proof. The first part of the statement follows from Proposition 2.2.6. Now let
ϕ ∈ µML be normal in X. By Theorem 2.2.9, ϕ ≡ ϕd for some ϕd ∈ µDML that
can be effectively obtained from ϕ. Since ϕ ≡ ϕd, ϕd is normal in X and so
by Lemma 2.2.13 ϕd ∈ µDMLNX . By Proposition 2.2.14 then ϕd ∈ µMLNX and the
statement of the proposition follows.

We conclude this section by mentioning that it is decidable whether a µ-
calculus formula is normal.

Proposition 2.2.16 The problem whether a given µML-formula ϕ is normal in
a finite set of variables X ⊆ PROP is decidable.

Proof. By a theorem of Emerson and Jutla it is decidable whether a given µML-
formula is satisfiable [8]. As a consequence of this fact, it is decidable whether
two formulas ϕ and ψ are equivalent. To obtain the statement of the proposition
we observe that a formula ϕ(x1, . . . , xn) is normal in X = {x1, . . . , xn} if and
only if ϕ(⊥, . . . ,⊥) ≡ ⊥.

2.3 Bounded formulas

We now start to take into consideration formulas with more interesting closure
ordinals. In this section we focus on formulas that need finitely many steps in
order to converge to their least fixed point across all models, so that they have
a finite closure ordinal.

Definition 2.3.1 A formula ϕ ∈ µML is bounded in x if for some n ∈ ω the least
fixed point of ϕS

x is always reached in n steps on every model S. More precisely,
ϕ is bounded in x if there is an n ∈ ω such that ϕnS = ϕn+1

S for every model S.

Remark Observe that if a formula ϕ(x) is such that for all models S there is
an n ∈ ω such that ϕnS = ϕn+1

S , then there is an n ∈ ω such that ϕnS = ϕn+1
S

for all S. To see why, by contraposition for each n ∈ ω let Sn be a model where
ϕnSn 6= ϕn+1

Sn : then the disjoint union S of all these models would be such that

ϕnS 6= ϕn+1
S for all n ∈ ω.
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Example 2.3.2 Fix n ∈ ω and let ϕ := 2x ∧ 2n⊥, where the formula 2nψ
is inductively defined by 20ψ := ψ and 2m+1ψ := 2(2mψ). We claim that
clx(ϕ) = n and hence that ϕ is bounded. To see this, first take an arbitrary
model S: one can show that, for every 0 ≤ m ≤ n, if S[x 7→ ϕn], s 
 2x∧2m⊥,
then s ∈ ϕmS ⊆ ϕnS , so that ϕn+1

S = ϕnS . A model where convergence happens
in exactly n steps has domain n = {0, . . . , n − 1} and accessibility relation
R := {(m+ 1,m) | m < n− 1}.

We continue with some syntactic considerations. Denote by µML∞ the ex-
tension of the modal µ-calculus where infinite disjunctions and conjunctions are
allowed.

Definition 2.3.3 Let ϕ(x) ∈ µML be a formula. By ordinal induction we define
the formula ϕ̂α ∈ µML∞ as follows:

ϕ̂0 := ⊥,
ϕ̂α+1 := ϕ[ϕ̂α/x],
ϕ̂λ :=

∨
α<λ

ϕ̂α,

where λ is an arbitrary limit ordinal.

Observe that ϕ̂n is a µML-formula for every n ∈ ω, but in general ϕ̂α is not,
since it involves infinite disjunctions. Before the next proposition, we note that
for a model S, an ordinal γ and a set {ϕα | α < γ} of formulas, the meaning of∨
α<γ ϕα in S is defined by letting [[

∨
α<γ ϕα]]S :=

⋃
α<γ [[ϕα]]S.

Proposition 2.3.4 Let ϕ(x) ∈ µML be a formula and α an ordinal. Then
ϕαS = ϕα+1

S on every model S if and only if µx.ϕ ≡ ϕ̂α.

Proof. This is an immediate consequence of ϕαS = [[ϕ̂α]]S for every ordinal α and
model S, which is provable by induction on α.

Corollary 2.3.5 A formula ϕ ∈ µML is bounded in x if and only if there is an
n ∈ ω such that µx.ϕ ≡ ϕ̂n.

Now, recall that ML denotes the language of (basic) modal logic: we say that
a formula ϕ is ML-definable if there is a ψ ∈ ML such that ϕ ≡ ψ. The statement
of the next proposition is found in [17].

Proposition 2.3.6 A formula ϕ ∈ ML is bounded in x iff µx.ϕ is ML-definable.

Finally, consider the next result by Otto [17].

Theorem 2.3.7 (Otto) The following problem is decidable: given a formula in
the modal µ-calculus, decide whether this formula can equivalently be expressed
in plain modal logic.

By Proposition 2.3.6 it immediately follows that whether a formula ϕ of
modal logic is bounded in some variable x is also decidable [17].
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2.4 Constructive and continuous formulas

We now move to formulas that need (at most) ω steps in the approximation of
their least fixed point in order to converge, so that their closure ordinal is at
most ω.

Definition 2.4.1 A formula ϕ is constructive in x if the least fixed point of ϕS
x

is always reached in ω steps on every model S. More precisely, ϕ is constructive
in x if ϕωS = ϕω+1

S for every model S.

Example 2.4.2 Clearly, if a formula is bounded in x it is also constructive in x.
A more interesting example of a formula that is constructive (but not bounded)
in x is the formula 3x ∨2⊥ from Example 2.1.6.

An important property that is often mentioned in relation to constructivity
is that of continuity. Essentially, a formula ϕ is continuous in a variable x if,
whenever ϕ is satisfied in a pointed model (S, s), a finite subset of V (p) is enough
in order for ϕ to be satisfied in the same model. For the next definition, we
write S[x�F ] as an abbreviation for S[x 7→ V (p) ∩ F ].

Definition 2.4.3 A formula ϕ ∈ µML is continuous in x if

S, s 
 ϕ iff S[x�F ], s 
 ϕ, for some finite subset F ⊆ S

for every pointed model (S, s).

Example 2.4.4 An example of a formula that is continuous in x is again
3x∨2⊥, or also simply 3x: whenever 3x is satisfied in a pointed model (S, s)
it is enough to restrict the valuation of x to a single successor of s in order for 3x
to be true at s in S. Another example is the formula µz.3z∨x, which expresses
the existence of a point where x is true at a finite distance from the current
state (this can be argued along the same lines of Example 1.2.19). Finally, an
example of a continuous formula that involves a conjunction is µz.(2⊥∨3z)∧x,
expressing the existence of a finite path of points that satisfy x.

Example 2.4.5 A non-example is the formula 2x. Consider a pointed model
(S, s) where S, s 
 2x and R[s] is infinite: clearly there is no finite subset F ⊆ S
such that S[x�F ], s 
 2x.

Remark Observe that we do not need to specify that the formula ϕ is monotone
in x (or that x occurs positively in ϕ) in Definition 2.4.3, because continuity in
x implies monotonicity in x.

We mention that by a result of Fontaine [9] there is a nice syntactic fragment
µMLCx of the modal µ-calculus characterising the property of continuity in x,
given in the next definition. Note how the presence of the 2 operator is heavily
restricted, and similarly the presence of the greatest fixed point operator: for
instance, a formula like νz.3z ∧ x, which expresses the existence of an infinite
path where x is always true, is clearly not continuous in x.

Definition 2.4.6 Given a finite set X ⊆ PROP, define the fragment µMLCX by
the following grammar:

ϕ ::= p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | µz.ϕ′
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where p ∈ X, ψ is a X-free formula and ϕ′ ∈ µMLCX∪{z}. In case X is a singleton,

say, X = {x} we will write µMLCx rather than µMLC{x}.

Moreover, there are effective translations mapping a formula ϕ ∈ µML to
a formula ϕC ∈ µMLCx in such a way that ϕ is continuous in x if and only if
ϕ ≡ ϕC : a direct translation is given in [10], translations involving automata
can be found in [9] and [11].

Theorem 2.4.7 (Fontaine & Venema) Every formula in µMLCx is continuous
in x. Moreover, there is an effective translation which, given a µML-formula ϕ,
computes a formula ϕC ∈ µMLCx such that

ϕ is continuous in x iff ϕ ≡ ϕC ,

and it is decidable whether a given formula ϕ is continuous in x.

The property of continuity in x derives its name from its connection with
the topological notion of Scott continuity. In our context it is enough to note
that a function f : C → C ′ between two complete lattices C and C′ is Scott
continuous if f(

∨
D) =

∨′
f [D] whenever D ⊆ C is directed, where a subset

D ⊆ C of a complete lattice is said to be directed if for every d1, d2 ∈ D there
is a d ∈ D such that d1 ≤ d and d2 ≤ d. The reader can find a full proof of the
next proposition in [9].

Proposition 2.4.8 A formula ϕ ∈ µML is continuous in x if and only if the
map ϕS

x : ℘(S)→ ℘(S) is Scott continuous.

Using this equivalent definition it is easy to prove that, if a formula ϕ is
continuous in x, then it is constructive in x, so that clx(ϕ) ≤ ω.

Proposition 2.4.9 If ϕ ∈ µML is continuous in x, then it is constructive in x.

Proof. Let S be an arbitrary model. We want to prove that ϕωS = ϕω+1
S . First

note that, as a consequence of Proposition 1.1.8, the set {ϕnS | n < ω} is directed.
Then

ϕω+1
S = ϕS

x(ϕωS ) = ϕS
x(
⋃
n<ω

ϕnS ) =
⋃
n<ω

ϕS
x(ϕnS ) =

⋃
n<ω

ϕn+1
S ⊆ ϕωS ,

where the equality ϕS
x(
⋃
n<ω ϕ

n
S ) =

⋃
n<ω ϕ

S
x(ϕnS ) is given by the assumption

that ϕS
x is Scott continuous.

The converse of the last proposition is notoriously not true.

Example 2.4.10 For every n ∈ ω, the formula 2x ∧ 2n⊥ (as was shown in
Example 2.3.2) is bounded in x, implying that it is constructive in x: however,
it is clearly not continuous in x. Another example is the formula νz.3z ∧ x,
which is actually normal in x.

Now, say that two formulas ϕ,ψ ∈ µML are µx-equivalent (notation: ϕ ≡µx
ψ) if µx.ϕ ≡ µx.ψ. Note that, while the formulas in the previous example are
not continuous in x, they are µx-equivalent to some formula that is continuous
in x: indeed 2x ∧ 2n⊥ ≡µx 2n⊥ and νz.3z ∧ x ≡µx ⊥. On the basis of this
observation, an interesting open question regarding the link between continuity
and constructivity has been formulated [11].

30



Question (Venema) Can we find, for any formula ϕ ∈ µML which is construc-
tive in x, a µx-equivalent formula ψ that is continuous in x?

While unfortunately we do not provide an answer to this question here, we
present another example of a formula that is constructive in x, but not contin-
uous in x. We believe that this example is interesting for the following reason:
it involves a formula that is constructive in x, but neither continuous in x nor
bounded in x (thus refuting the tempting idea that every constructive formula
is either continuous or bounded) but, at the same time, it is µx-equivalent to a
formula that is continuous in x, thus making a further argument in favour of a
positive answer to Venema’s question1.

Example 2.4.11 Consider the formula

ϕ := (2⊥ ∧ ¬p) ∨ (2x ∧2¬p ∧ p) ∨ (3x ∧2p ∧ p).

which clearly is not continuous in x. We now show that cl(ϕ(x)) = ω, which
implies that ϕ is constructive (but not bounded) in x.

We begin by proving that ϕωS = ϕω+1
S in any model S. Let S be arbitrary

and let s ∈ ϕω+1
S , that is, S[x 7→ ϕωS ], s 
 ϕ. We proceed by case distinction as

to which disjunct of ϕ is satisfied by s to prove s ∈ ϕωS . If s 
 2⊥ ∧ ¬p, then
s ∈ ϕS

x(∅) ⊆ ϕ1
S ⊆ ϕωS . Otherwise, if s 
 2x∧2¬p∧p, then R[s] ⊆ ϕωS ∩(S\V (p)),

hence every t ∈ R[s] is such that S[x 7→ ϕnS ], t 
 ϕ∧¬p for some n ∈ ω, implying
S[x 7→ ϕnS ], t 
 2⊥∧¬p: then R[s] ⊆ [[2⊥∧¬p]]S[x7→∅] ⊆ ϕ1

S and so s ∈ ϕ2
S ⊆ ϕωS .

Finally, if s 
 3x ∧ 2p ∧ p, then t ∈ ϕωS for some t ∈ R[s], implying t ∈ ϕnS
for some n ∈ ω and s ∈ ϕn+1

S ⊆ ϕωS . This finishes the case distinction, and we
conclude that s ∈ ϕωS .

For a model where ϕ converges to its least fixed point in exactly ω steps,
let S = (S,R, V ) be the model where S = ω, R = {(n + 1, n) | n ∈ ω} and
V (p) = ω\{0}. Here ϕnS = {m ∈ ω | m < n} holds, so that ϕnS ( ϕωS for every
n < ω.

Now consider the formula

ψ := 2⊥ ∨ (3x ∧2¬p ∧ p ∧22⊥) ∨ (3x ∧2p ∧ p),

which is continuous in x: we claim that ϕ ≡µx ψ. We need to show that
LFP.ϕS

x = LFP.ψS
x on every model S. Let S be arbitrary. Observe that, since

both formula are constructive in x, it is enough to show that ϕωS = ψωS .
We start by proving that, for all n ∈ ω, ϕn ⊆ ψn. For n = 0 this is obvious,

so inductively assume that ϕn ⊆ ψn: we want ϕn+1 ⊆ ψn+1. Let s ∈ ϕn+1,
meaning that S[x 7→ ϕn], s 
 ϕ: we proceed by case distinction as to which
disjunct of ϕ is satisfied by s to prove s ∈ ψn+1. The only interesting case is
when S[x 7→ ϕn], s 
 2x∧2¬p∧ p. If R[s] = ∅ then s 
 2⊥, so s ∈ ψ1 ⊆ ψn+1.
Otherwise, observe that R[s] ⊆ ϕn ∩ (S\V (p)), so for every t ∈ R[s] there is
an m < n such that S[x 7→ ϕm], t 
 ϕ ∧ ¬p. Then it must be the case that
t 
 2⊥ ∧ ¬p for every t ∈ R[s]: in particular R[t] = ∅ for every such t. Since

1After the final draft of this chapter was concluded, we found out that Czarnecki also
provided an example of a formula that is constructive in x, but neither bounded in x nor
continuous in x: the formula 33x ∨ (2x ∧ 22⊥) [7]. While it is not mentioned in his
presentation, this formula is µx-equivalent to 33x ∨ (2⊥ ∧ 22⊥) ∨ (3x ∧ 22⊥), which
is continuous in x, thus providing yet another argument in favour of a positive answer to
Venema’s question.
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R[s] 6= ∅, then s 
 3x ∧ 2¬p ∧ p ∧ 22⊥, so S[x 7→ ϕn], s 
 ψ. By induction
hypothesis and monotonicity: s ∈ ψS

x(ϕn) ⊆ ψS
x(ψn) = ψn+1.

Now we prove that for all n ∈ ω, ψn ⊆ ϕn. Similarly as above, we prove
that ψn+1 ⊆ ϕn+1 under the inductive hypothesis that ψn ⊆ ϕn. Let s ∈ ψn+1,
equivalently S[x 7→ ψn], s 
 ψ: we proceed by case distinction as to which
disjunct of ψ is satisfied by s to prove s ∈ ϕn+1. We consider two cases here,
as the third is immediate. First suppose s 
 2⊥: if s ∈ V (p), then S[x 7→
∅], s 
 2x ∧ 2¬p ∧ p, and so s ∈ ϕ1 ⊆ ϕn+1; otherwise, if s /∈ V (p), then
S[x 7→ ∅], s 
 2⊥ ∧ ¬p, so again s ∈ ϕ1 ⊆ ϕn+1. For the second case suppose
S[x 7→ ψn], s 
 3x ∧ 2¬p ∧ p ∧ 22⊥ and note that in particular this implies
that n > 0. Since s 
 2¬p ∧ 22⊥, then R[t] = ∅ and t /∈ V (p) for all t ∈ R[s],
meaning that S[x 7→ ∅], t 
 2⊥ ∧ ¬p for all such t. In other words R[s] ⊆ ϕ1,
which gives S[x 7→ ϕ1], s 
 2x ∧2¬p ∧ p, so s ∈ ϕ2 ⊆ ϕn+1.

We have obtained that ϕωS = ψωS for every S, and it follows that ϕ and ψ are
indeed µx-equivalent.

We conclude this chapter by making some observations about closure ordi-
nals and continuity in the setting of finitely branching models. Our first remark
is that in this setting more formulas have a closure ordinal, as the next example
shows.

Example 2.4.12 As was shown in Example 2.1.7, the formula ϕ := 2x does
not have a closure ordinal on the class of all models. This is not the case in
the setting of finitely branching models, as ω is the closure ordinal of 2x on
finitely branching models. Indeed, if S is an arbitrary finitely branching model
and s ∈ ϕω+1

S = [[2x]]S[x 7→ϕωS ], then R[t] ⊆ ϕωS , but R[t] being finite implies that
R[t] ⊆ ϕnS for some n. Convergence in exactly ω steps happens, for instance, in
the model from Example 1.2.13.

More can be said about the 2 operator on finitely branching models. For
instance, it is easy to show that whenever ϕ is continuous in x on finitely
branching models, then 2ϕ is also continuous in x on finitely branching models.
This immediately suggests the following definition and theorem.

Definition 2.4.13 Given a finite set X ⊆ PROP, define the fragment µMLDX by
the following grammar:

ϕ ::= p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µz.ϕ′

where p ∈ X, ψ is a X-free formula and ϕ′ ∈ µMLDX∪{z}. In case X is a singleton,

say, X = {x} we will write µMLDx rather than µMLD{x}.

Theorem 2.4.14 Every formula in µMLDx is continuous in x on finitely branch-
ing models. Moreover, there is an effective translation which, given a µML-
formula ϕ, computes a formula ϕD ∈ µMLDx such that

ϕ is continuous in x on finitely branching models iff ϕ ≡ ϕD,

and it is decidable whether a given formula ϕ is continuous in x on finitely
branching models.

The reason for the name µMLDX for this fragment of the µ-calculus is that it
coincides with the fragment corresponding to the finite depth property (or finite
path property) of [10, 11].
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Definition 2.4.15 A formula ϕ ∈ µML has the finite depth property for x ∈ PROP

if ϕ is monotone in x, and, for every tree model (S, s),

S, s 
 ϕ iff S[x�U ], s 
 ϕ, for some noetherian subtree U ⊆ S,

where we call U a noetherian subtree of S if it is downward closed and it contains
no infinite paths.

Indeed, the proof of Theorem 2.4.14 is easily obtained from the proof of
the corresponding theorem in [11] (in particular, via a straightforward variation
of Proposition 6.9 in [11], using the fact that the modal µ-calculus enjoys the
bounded tree model property). The next corollary immediately follows.

Corollary 2.4.16 A formula ϕ ∈ µML has the finite depth property for x if and
only if it is continuous in x on finitely branching models.
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Chapter 3

Closure ordinals above ω

In this chapter we show how to construct formulas that need a very large number
of steps in order to converge to their least fixed point.

In the first section we start by recalling Czarnecki’s definition of a formula
ϕα with closure ordinal α for every ω ≤ α < ω2 [6]. In this construction
an important role is played by the subformula 2x: while its presence is often
problematic when closure ordinals are involved, in this case its occurrence in
ϕα is essential to control the number of iterations. We conclude the section by
mentioning the result by Gouveia and Santocanale [12] that closure ordinals are
closed under ordinal sum, from which it also follows that every ordinal strictly
less than ω2 is a closure ordinal.

In Section 3.2 we discuss the ordinal ω2. It is a result by Afshari and Leigh
[1] that formulas in the alternation-free fragment of the modal µ-calculus cannot
have a closure ordinal equal or greater than ω2. While this suggests a way to find
formulas having at least ω2 as their closure ordinal, a very intuitive candidate
turns out to converge to its least fixed point in many more steps than desired.

In order to reach ω2 and greater countable closure ordinals we will move
to the setting of bidirectional models: for every n ∈ ω, a formula ϕn with
closure ordinal ωn on bidirectional models is constructed in Section 3.3, while
in Section 3.4 and Section 3.5 we adopt methodologies similar to Czarnecki’s
and Gouveia and Santocanale’s to show that in this class of models every ordinal
strictly less than ωω is the closure ordinal of some formula.

Finally, in Section 3.6 we discuss ω1 as a closure ordinal. In particular, we
mention Gouveia and Santocanale’s ℵ1-continuous fragment of the modal µ-
calculus [12] and we show that the candidate for a formula with closure ordinal
ω2 actually has ω1 as its closure ordinal. This fact will constitute the basis for
an interesting open question about closure ordinals of the modal µ-calculus.

3.1 Closure ordinals below ω2

We start by showing how to control the number of iterations that a formula
needs in order to converge to its least fixed point across all models, up to (not
including) ω2 many steps. Note that every ordinal strictly below ω2 is of the
form ω · n + m, where n,m ∈ ω: we discuss some ideas and intuitions on how
to achieve these closure ordinals before stating Czarnecki’s result [6].
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Suppose that we want to define a formula that converges in ω · 2 steps. We
will keep the discussion informal and try to simultaneously come up with a
formula ϕ and a model with domain ω · 2 where ϕ converges in exactly ω · 2
many steps: our goal is to make sense of the reason why the formula ϕ defined
in the end has indeed closure ordinal ω ·2. Intuitively we can think that we want
some formula ϕ whose least fixed point iteration builds up two copies of ω, step
by step, so that ϕα = {β | β < α} = α for every α < ω · 2. The formula ϕ will
consist of a finite number of disjuncts, with each disjunct witnessing a different
phase of the iteration. We can build the first copy of ω starting from the number
0, by making it a blind state in a model, and let 2⊥ be the first disjunct of ϕ,
so that 0 will immediately be added to the iteration. We can continue building
the first copy of ω by adding finite ordinals to the model: we let each positive
number n see its predecessor n− 1, and let 3x be the second disjunct of ϕ, so
that every finite ordinal is added to the iteration of ϕ one by one. So far we have
the formula 2⊥ ∨ 3x from Example 2.1.6, which we know has closure ordinal
ω, and the following model1 (as a reminder on how to compute the iterations of
a formula in a model we suggest to look back at Examples 1.2.13 and 1.2.14).

Suppose now that we are at step ω in the iteration of ϕ, so that every finite
ordinal has been added to the iteration, and we want to start building the second
copy of ω starting from the ordinal ω itself. Since we want the state ω to be
added to the iteration after every finite ordinal has already been added, the
formula 2⊥ ∨3x is not suitable: if we make the state ω a dead end it will be
added to the iteration at the first step through the disjunct 2⊥, and otherwise
it will be included via the disjunct 3x as soon as one of its successors is added
to the iteration at some finite step. At this point it is tempting to consider the
formula 2⊥ ∨2x instead, together with the following model.

Here again we have that each finite ordinal in the model is added to the iteration
in finitely many steps, building up the first copy of ω one after the other, and
only after ω many steps can the state ω be added to the iteration, since ω
needs to satisfy the disjunct 2x. Clearly however, the problem now is that the
formula 2⊥∨2x does not have a closure ordinal, as it involves the subformula
2x in an unrestricted way. The solution, as given by Czarnecki [6], is to assign
different colours to the two copies of ω. Let, for instance, r := p and b := ¬p

1We recall that clicking on the pictures in the digital version of this thesis (with compatible
software) will start an animation showing the progress of the iteration of the formula. A pause
in the animation indicates that an infinite number of steps has passed. When a state becomes
coloured in the animation it means that it is included in the iteration, where each colour
corresponds to a different phase of the iteration, which depends on the disjunct that allows
the iteration to progress.
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be two literals corresponding to the colours red and blue, respectively, and we
let the first copy of ω be red, while the second copy blue, meaning that all (and
only) the finite ordinals will make p true in the model we are building. Now,
after adding the number 0 to the iteration by using the disjunct 2⊥, we can
consider the formula (3x ∧ r ∧ 2r) as the second disjunct of ϕ, so that every
finite red ordinal is added one by one, like before. Since ω is not red, it will
not be added during this phase. In order for ω to be added to the iteration
after every finite ordinal we consider the third disjunct of ϕ to be (2x∧ b∧2r):
here the occurrence of 2x is safely restricted by b ∧ 2r. We then define the
last disjunct of ϕ to be (3x∧ b∧2b), so that the blue ordinals ω+ 1, ω+ 2, . . .
will become part of the iteration after the state ω. Note that this last formula
in particular is always false at state ω, which falsifies 2b, so that there is no
danger that this state will be added to the iteration through 3x. The situation
is depicted in the following figure.

We have thus arrived at the formula

ϕ := 2⊥ ∨ (3x ∧ r ∧2r) ∨ (2x ∧ b ∧2r) ∨ (3x ∧ b ∧2b).

The model we have constructed is, in a sense, a minimal model where ϕ con-
verges in exactly ω ·2 steps, but what guarantees that this formula will converge
in at most ω · 2 steps on every model? Intuitively, suppose that we were to add
one more state ω · 2 to the model in the previous picture, and we want it to
be included in the iteration of ϕ in strictly more than ω · 2 steps. One crucial
observation to see why this is not possible is that we cannot exploit the subfor-
mula 2x to force this new point to be added to the iteration after every current
point in the model has already been included, because in ϕ the occurrence of
2x is restricted by b∧2r: if, for instance, we make the state ω ·2 see everything
in the model pictured above, it will falsify b∧2r, so that it will not be included
in the iteration through 2x after ω · 2 iterations.

To fix the intuition, as a further example suppose that we now want to
construct a formula with closure ordinal ω ·3. In this case we can consider three
colours r := p1 ∧ p2 (red), b := ¬p1 ∧ p2 (blue) and g := ¬p1 ∧ ¬p2 (green) to
assign to three copies of ω and define

ϕ := 2⊥∨(3x∧r∧2r)∨(2x∧b∧2r)∨(3x∧b∧2b)∨(2x∧g∧2b)∨(3x∧g∧2g).

The three copies of ω are built by the iteration as follows: (i) the disjunct 2⊥
takes care of the first red state 0; (ii) the disjunct (3x ∧ r ∧ 2r) builds up the
first red copy of ω; (iii) the disjunct (2x∧ b∧2r) allows to move from the first
copy of ω to the first point ω of the second blue copy of ω; (iv) the disjunct
(3x ∧ b ∧ 2b) builds up, step by step, the second copy of ω; (v) similarly, the
disjuncts (2x∧ g ∧2b) and (3x∧ g ∧2g) allow to move from the second to the
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third green copy of ω, and to build it step by step, respectively. The model is
pictured below.

If we want to add a finite number of iterations after one or more copies of ω,
for instance to achieve the closure ordinal ω + 3, we can again consider colours
r := p and b := ¬p and the formula 2⊥ ∨ (3x ∧ r ∧ 2r) ∨ (2x ∧ b ∧ 2r) ∨
(2x ∧ b ∧ 2b ∧ 22r) ∨ (2x ∧ b ∧ 2b ∧ 22b ∧ 222r). The disjuncts of shape

(2x∧∧ij=0 2
jb∧2i+1r) express the finite distance between the state where they

are satisfied and the red copy of ω. As a model where this formula converges to
its least fixed point in exactly ω + 3 steps we can take the following.

Figure 3.1: Adding finitely many iterations

We now move to the general definition of a formula ϕα(x) with closure
ordinal α for every ω ≤ α < ω2, as it is stated in [6]. We will follow Czarnecki’s
terminology and talk of fuses instead of colours (this will also be convenient for
later sections, where we will use colours instead, or both fuses and colours).

Definition 3.1.1 For every n ∈ ω we define the fuse fn as the conjunction of
literals fn :=

∧
0<i≤n

¬pi ∧ pn+1.

For example, f0 = p1 and f2 = ¬p1 ∧ ¬p2 ∧ p3. Clearly, fi ∧ fj ≡ ⊥ for all
i 6= j.

Definition 3.1.2 Let 0 < n < ω and m ∈ ω. For an ordinal α = ω · n + m,
define the formula ϕα as follows:

ψω·n :=
n−1∨
i=0

(3x ∧ fi ∧2fi) ∨
n−2∨
i=0

(2x ∧ fi+1 ∧2fi),

ψω·n+m := ψω·n ∨
m−1∨
i=0

(2x ∧
i∧

j=0

2jfn ∧2i+1fn−1),

ϕω·n+m := ψω·n+m ∨2⊥.
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A detailed proof of the next theorem can be found in [6]

Theorem 3.1.3 (Czarnecki) For every ω ≤ α < ω2, the closure ordinal of
ϕα(x) is α.

To conclude this section we mention that Gouveia and Santocanale [12] have
found a way to construct a formula ψ with closure ordinal α+β whenever α and
β are closure ordinals. Since every ordinal below ω2 has the shape ω × n + m,
and 0, 1 and ω are closure ordinals, their result also implies that every ordinal
strictly below ω2 is the closure ordinal of some formula. In Section 3.5 we will
show that a similar construction can be carried out in the setting of bidirectional
models: together with the result of Section 3.3, it will follow that every ordinal
strictly below ωω is a closure ordinal on bidirectional models.

3.2 The case of ω2

In the previous section we presented Czarnecki’s definition of a formula ϕα(x)
with closure ordinal α for every α < ω2. We now discuss the possibility of
finding a formula with closure ordinal ω2 and our (failed) attempt at defining
it: to this end we start by making a few observations.

The first observation involves a very interesting result due to Afshari and
Leigh regarding the ordinal ω2 in connection to the modal µ-calculus [1]. In or-
der to state it we first need to define the modal µ-calculus alternation hierarchy.

Definition 3.2.1 A formula ϕ ∈ µML belongs to the classes Σ0 and Π0 if it is a
formula of modal logic. The class Σn+1 (Πn+1) is the closure of Σn ∪Πn under
the following rules:

� if ϕ,ψ ∈ Σn+1 (Πn+1), then ϕ ∧ ψ, ϕ ∨ ψ, 2ϕ, 3ϕ ∈ Σn+1 (Πn+1);

� if ϕ ∈ Σn+1 (Πn+1), then µx.ϕ ∈ Σn+1 (νx.ϕ ∈ Πn+1);

� if ϕ(x), ψ ∈ Σn+1 (Πn+1), then ϕ(ψ) ∈ Σn+1 (Πn+1), provided the free
variables of ψ do no become bound by fixed point operators in ϕ.

The alternation-free fragment of the µ-calculus is the closure of Σ1 ∪ Π1

under Boolean connectives, modal operators and substitutions that preserve
the alternation depth. In other words, a formula belongs to the alternation-free
fragment of the µ-calculus if there is no alternation, or nesting, of fixed point
operators µ and ν.

Theorem 3.2.2 (Afshari & Leigh) Let ϕ(x) be an alternation-free formula:
if clx(ϕ) exists then clx(ϕ) < ω2.

The original theorem in [1] actually requires ϕ to be guarded, that is, in
every subformula of ϕ of the form ηy.δ, every occurrence of the variable y in δ
must occur under the scope of a modal operator. We mention that every formula
ϕ of the modal µ-calculus is equivalent to a guarded one, and it can be checked
that the latter can be taken as alternation-free if so is the original formula, so
that the guardedness assumption is without loss of generality: a proof of this
fact can be found in [15, 19]. The original statement of this theorem is also
more general, since in [1] the closure ordinal of a formula is defined with respect
to a finite set of variables, rather than a single one.
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To better understand Theorem 3.2.2 we must note that a slightly different
notation is adopted in [1]: essentially, while in this thesis we say that ‘α is the
closure ordinal of ϕ(x)’, if we adopted the conventions of [1] we would say that
‘α is the closure ordinal of µx.ϕ’ instead. It follows that in our setting we can
interpret this result as stating that if µx.ϕ is an alternation-free formula of the
modal µ-calculus, then the closure ordinal of ϕ(x) is strictly less than ω2, if it
exists. The result by Afshari and Leigh proves very useful in our context, as it
suggests that if we are trying to construct formulas with closure ordinals at least
ω2 we should look for formulas that involve the greatest fixed point operator ν
in a non-trivial manner.

The second observation concerns the role of colours and of the 2 operator
in the subformula 2x of Czarnecki’s formulas: informally, these provide a way
to move the iteration from a copy of ω to the next finitely many times (as only
finitely many colours can be used in a formula). Since our goal at the moment
is to find a formula with closure ordinal ω2, we should try to generalise this
process and find a formula that allows moving from one copy of ω to the next
copy ω many times, building up through its iteration the ordinal ω2 (which can
be visualised as ω many copies of ω, one next to the other).

Finally, we assemble these facts with the goal of designing a formula that
makes it possible to move the fixed point iteration from a copy of ω to the next,
without the need of infinitely many colours. Consider the model in the following
picture, depicting one copy of ω where p is true at every positive finite ordinal
(as we will see, we only need p as a colour), and the formula ϕ := 2⊥∨(3x∧p).
Suppose that we are at step ω in the iteration of ϕ, so that every state in the
model is included in the current valuation of x.

We want to add a new state ω to this model and add a disjunct to the formula ϕ
that makes it possible for the state ω to be added to the iteration of ϕ only after
the step ω. In other words, we want a formula that becomes true at state ω
after ω many steps of the iteration. We note that at step ω in the computation
of the least fixed point of ϕ infinitely many states of the model have been added
to the iteration of ϕ, and that these states build an infinite R�-path (where R�
denotes the converse of the relation R), so that we could try to add a disjunct
that expresses the existence of an infinite path of points where x is always true.
The easiest way to achieve this is to move to the bimodal language of the modal
µ-calculus, so that we will consider two relations Ra and Rb, together with
modalities 3a and 3b. We can then consider the following model.

The formula expressing the existence of an infinite Rb-path of points where x
and p are always true starting from the Rb-next state – which crucially involves
the greatest fixed point operator – is νy.3b(p∧x∧y): observe that this formula
is satisfied by the state 0 after ω many steps of the iteration. We can now add
the state ω to the model in the following way.
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Consider then the formula

ϕ := 2a⊥ ∨ (3ax ∧ p) ∨ (¬p ∧3a(νy.3b(y ∧ x ∧ p)))

and note that the subformula (¬p∧3a(νy.3b(y∧x∧p))) is true at state ω after
ω many iterations of ϕ. We can now build the complete model corresponding to
the ordinal ω2 as in Figure 3.2. After the state ω has been added to the iteration

Figure 3.2: Model corresponding to the ordinal ω2

through the disjunct (¬p∧3a(νy.3b(y∧x∧p))), the states ω+ 1, ω+ 2, . . . will
be included, one by one, through the disjunct (3ax ∧ p). Once every state of
the form ω + n has been added to the iteration of ϕ, the state ω · 2 will make
(¬p∧3a(νy.3b(y∧x∧p))) true, and this process starts again. We thus observe
that every limit ordinal of the form ω · n is added to the iteration of ϕ in this
model at step ω · n+ 1: for all α < ω2 we have that ϕα = {β | β < α} and the

least fixed point of ϕ in this model is ϕω
2

.
Unfortunately, the model we have built has the very strong property that

Rb is (almost) the converse of Ra: in fact, as we will see in Section 3.6, it is
possible to define a model where ϕ converges to its least fixed point in exactly ω1

steps, where ω1 is the first uncountable ordinal. As a model where ϕ converges
in strictly more than ω2 steps consider the one depicted in Figure 3.3: observe
that here the infinite Rb-path t0t1t2 . . . witnesses the truth of (¬p∧3a(νy.3b(y∧
x∧ p))) at state ω2 only after ω2 many steps in the iteration of ϕ. On the other
hand, this result suggests that we might be able to obtain ω2 as a closure ordinal
in the setting of bidirectional models, that is, models with two accessibility
relations, one being the converse of the other. Indeed, in the next section we
find a formula ϕn with closure ordinal ωn on bidirectional models for all n ∈ ω.
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Figure 3.3: Counterexample to ϕ having closure ordinal ω2

3.3 Bidirectional models: the case of ωn

In this section we restrict our focus to the class of bidirectional models: these are
models with two relations R and R′ such that R′ = R� := {(s, t) | (t, s) ∈ R} is
the converse of R. Since one relation is completely determined by the other it is
sufficient to only specify one of them, so that we will denote a bidirectional model
by S = (S,R, V ). We will adopt the basic temporal language [3] (with fixed point
operators) as the language of formulas to be interpreted on bidirectional models:
this consists of a diamond modality F for the relation R and a diamond modality
P for the relation R�. The intended interpretation of a formula Fϕ is ‘ϕ is true
at some future state’, while that of Pϕ is ‘ϕ is true at some past state’. We can
define box operators as usual by letting Gϕ := ¬F¬ϕ and Hϕ := ¬P¬ϕ.

Figure 3.4: Bidirectional model corresponding to ω2

In this setting we can rewrite the formula 2a⊥∨(3ax∧p)∨(¬p∧3a(νy.3b(y∧
x∧p))) from the previous section as ϕ := G⊥∨(Fx∧p)∨(¬p∧F (νy.P (y∧x∧p))),
where we have identified Ra with R, and Rb with its converse. We can also
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redraw the model of Figure 3.2 of the previous section as in Figure 3.4, where
we have only represented the arrows for the relation R.

We observe that the steps of the iteration of ϕ in this model are exactly as
in the previous section: (i) first the state 0 is added to the iteration through
the formula G⊥; (ii) then every finite ordinal, one by one, through the formula
(Fx ∧ p); (iii) once every finite ordinal is added to the iteration, an infinite
R�-path is formed witnessing the truth of (¬p∧F (νy.P (y∧x∧p))) at the state
ω, which will then also be added to the iteration; (iv) the process continues
with the states ω + 1, ω + 2, . . ., which will be included in the iteration, one at
a time, through the disjunct (Fx ∧ p), and so on.

On the other hand, in this setting the model of Figure 3.3 is not a coun-
terexample anymore: as seen in Figure 3.5, the path t0t1t2 . . . is now such that
ti ∈ R[ti+1] for every i ≥ 0, so that, as soon as the state t0 is added to the
iteration of ϕ through the disjunct (Fx ∧ p) at step ω + 2, every other state in
the path will be added in a finite number of steps also through (Fx ∧ p), and
the state ω2 will be included at step ω · 2 + 1.

Figure 3.5: The counterexample of Figure 3.3 in this setting

We claim then that the formula

G⊥ ∨ (Fx ∧ p) ∨ (¬p ∧ F (νy.P (y ∧ x ∧ p)))

has closure ordinal ω2 on bidirectional models (we will soon give a proof for a
similar formula). Looking back at the model of Figure 3.4, we can observe that
after step ω2 in the iteration of ϕ an infinite R�-path of points where (x ∧ ¬p)
is always true has been formed: we can almost use this fact in order to define
a formula that allows the addition of new states to the model that can only be
included after ω2 many iterations. To actually do this, however, we are going
to need more colours: fix a set {qi | i ∈ ω} ⊆ PROP of propositional variables
that is disjoint from the set {pi | i ∈ ω} ⊆ PROP that we used to define fuses in
Definition 3.1.1.

Definition 3.3.1 For every 0 < n < ω we define the colour cn as the conjunc-
tion of literals cn :=

∧
0<i<n

¬qi ∧ qn.
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Note that this definition is slightly different from that of fuses, not only
for the variables involved: for example, c1 = q1 and c3 = ¬q1 ∧ ¬q2 ∧ q3,
while f1 = ¬p1 ∧ p2 and f3 = ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4. The reason is that the
definition of fuses is more consistent with the original in [6], and that of colours
is slightly more convenient for presentation, but in the end this is just a matter
of convention. Clearly ci ∧ cj ≡ ⊥ for every i 6= j in this case too.

Now that we have more colours, we can consider the formula ϕ := G⊥ ∨
(Fx ∧ c1) ∨ (c2 ∧ F (νy.P (y ∧ x ∧ c1))) ∨ (c3 ∧ F (νy.P (y ∧ x ∧ c2))): the last
disjunct allows the addition of a new point ω2 to the model of Figure 3.4 that
will be included in the least fixed point iteration of ϕ after ω2 steps, as the
following picture shows.

Figure 3.6: Adding the point ω2

In order to construct a formula ϕn with closure ordinal ωn for all n ∈ ω we
now define a formula π∞i that makes sure that models of ϕn are, in a sense,
well-behaved: we need that whenever a state s in a model makes ϕn true and
has colour ci, then from this state begins an infinite R�-path of points where
ci−1 is always true, and from every point in this path starts an infinite R�-path
of points where ci−2 is always true, and so on.

Definition 3.3.2 For every i ∈ ω we define a formula π∞i as follows:

π∞0 := >,
π∞i+1 := νyi+1.(P (yi+1 ∧ ci+1) ∧ π∞i ).

Example 3.3.3 Consider for instance

π∞3 = νy3.(P (y3 ∧ c3) ∧ νy2.(P (y2 ∧ c2) ∧ νy1.(P (y1 ∧ c1) ∧ >))).

This formula expresses the existence of an infinite R�-path t0t1t2 . . . such that
(i) c3 is true at every ti with i > 0; (ii) every ti makes νy2.(P (y2∧c2)∧νy1.P (y1∧
c1)) true, so from each ti there is an infinite R�-path u0u1u2 . . . where u0 = ti
and c2 is true at every uj with j > 0; (iii) every uj makes νy1.P (y1 ∧ c1) true,
so from each uj there exists a R�-path v0v1 . . ., with v0 = uj , such that c1 is
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true at vk for every k > 0. For example, the point 0 in the model of Figure 3.7
makes π∞3 true (as does every state of the form ω2 · n for n ∈ ω).

Proposition 3.3.4 For all m,n ∈ ω, if m ≥ n, then π∞m |= π∞n . Moreover,
if (S, s) is a pointed bidirectional model, S, s 
 π∞m and t0t1 . . . is an R�-path
witnessing the truth of π∞m at s, then tj 
 π∞m for all j ∈ ω.

We now have all the ingredients to define, for all n ∈ ω, a formula ϕn that
we will show has closure ordinal ωn on bidirectional model.

Definition 3.3.5 For all n ∈ ω let the formula ϕn be

ϕn := G⊥ ∨ (c1 ∧ Fx) ∨
n∨
i=2

(ci ∧ π∞i−1 ∧ F (νy.P (y ∧ x ∧ ci−1))).

Before proving that ϕn has closure ordinal ωn, we conclude the example
regarding ω3. To build a model where

ϕ3 := G⊥∨(c1∧Fx)∨(c2∧π∞1 ∧F (νy.P (y∧x∧c1)))∨(c3∧π∞2 ∧F (νy.P (y∧x∧c2)))

converges in exactly ω3 steps, after we have added the point ω2 to the model
corresponding to the ordinal ω2 like in Figure 3.6, we can start an infinite R�-
path from this new point where c3 is always true and, at each point in this path,
append a copy of ω2, as is shown in Figure 3.7.

Figure 3.7: Model corresponding to ω3

The iteration of ϕ3 in this model behaves as follows: (i) first the state 0 is
added through G⊥; (ii) then, every finite ordinal, one by one, through (Fx∧c1);
(iii) after that, the point ω is added to the iteration at step ω + 1 through the
disjunct (c2 ∧ π∞1 ∧ F (νy.P (y ∧ x ∧ c1))); (iv) after ω, every point of the form
ω + n will be included, one at a time, to the iteration through (Fx ∧ c1); (v)
at step ω · 2 + 1 the state ω · 2 will be added, and then every state of the form
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ω · 2 + n, and so on; (vi) when every state of shape ω · n has been added to
the iteration, the state ω2 will satisfy (c3 ∧ π∞2 ∧ F (νy.P (y ∧ x ∧ c2))) and will
be part of the iteration at step ω2 + 1; (vii) then it is the turn of states of the
form ω2 + n, followed by ω2 + ω, and so forth, building up the second copy of
ω2 appended to the state ω2; (viii) when the entire second copy of ω2 is part
of the iteration, the state ω2 · 2 will be added, and the process continues with
ω2 + 1, ω2 + 2, . . .. We thus see that the iteration of ϕ3 in this model builds up
ω copies of ω2 and for every α < ω3 it holds that ϕα3 = α, so that the least fixed

point of ϕ3 in this model is ϕω
3

3 .
As a last observation before the formal proof, note that in the last model,

after ω3 many steps in the iteration of ϕ3, an infinite R�-path of points where
(c3 ∧ x) is always true has been formed. The formula ϕ4 contains the disjunct
(c4 ∧ π∞3 ∧ F (νy.P (y ∧ x ∧ c3))) which allows the addition of a new state ω3

to the iteration of ϕ4 after ω3 many steps: if we build a model with an infinite
R�-chain of c4 states, where to each such state is attached a copy of ω3 (that
is, a copy of the model of Figure 3.7) we obtain a model where ϕ4 converges in
exactly ω4 many steps. Then, since this model has an infinite R�-chain where
(c4 ∧ x) is always true, we could consider the formula ϕ5 and similarly obtain a
model where it converges in exactly ω5 many steps, and so on.

We now finally prove that, for all n ∈ ω, the closure ordinal of ϕn on bidi-
rectional models is ωn. We start with the following lemma.

Lemma 3.3.6 Let S = (S,R, V ) be a bidirectional model, let n ∈ ω and ϕn be
the formula from Definition 3.3.5. Let, for 1 ≤ i ≤ n, t0t1t2 . . . be an infinite
R�-path such that

S, t0 
 π∞i−1 and, for all j > 0, S, tj 
 ci ∧ π∞i−1.

Then, for any ordinal α: if t0 ∈ ϕαn then tj ∈ ϕα+ωi−1·j+1
n for all j ∈ ω.

Proof. We prove the statement by induction on 1 ≤ i ≤ n.
As the base case take i = 1, so that by assumption we have an infinite R�-

path t0t1t2 . . . such that S, tj 
 c1 for all j > 0. Let t0 ∈ ϕαn. We want to
show that, for all j ∈ ω, tj ∈ ϕα+j+1

n : we prove this by induction on j ∈ ω.
If j = 0, then t0 ∈ ϕαn ⊆ ϕα+1

n . Next, inductively assume that tj ∈ ϕα+j+1
n :

then, since tj ∈ R[tj+1], it follows that S[x 7→ ϕα+j+1
n ], tj+1 
 (c1 ∧ Fx), so

tj+1 ∈ ϕα+(j+1)+1
n .

For the inductive step assume that the statement holds for i. We prove it
for i+ 1, where i < n. Suppose then that t0t1t2 . . . is an infinite R�-path such
that t0 
 π∞i and for all j > 0, tj 
 ci+1 ∧ π∞i . Let t0 ∈ ϕαn. We want to show
that

for every j ∈ ω, tj ∈ ϕα+ωi·j+1
n .

The proof of this last statement goes by induction on j ∈ ω. The base case with
j = 0 follows immediately, as by assumption t0 ∈ ϕαn.

Now suppose that tj ∈ ϕα+ωi·j+1
n : we show that tj+1 ∈ ϕ

α+ωi·(j+1)+1
n .

By assumption tj ∈ R[tj+1] and tj 
 π∞i , which in particular means that
there is an infinite R�-path u0u1 . . . (with u0 = tj) such that, for all k > 0,
uk 
 ci. But then this path satisfies the conditions of the inductive hypothesis:
by Proposition 3.3.4, since u0 
 π∞i , then u0 
 π∞i−1, and for every k > 0,
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uk 
 ci ∧ π∞i−1. Then, by inductive hypothesis, since u0 = tj ∈ ϕα+ωi·j+1
n it

follows that, for every k ∈ ω, uk ∈ ϕα+ωi·j+1+ωi−1·k+1
n . Since for all k ∈ ω it

holds that

ωi · j + 1 + ωi−1 · k + 1 < ωi · j + 1 + ωi (as ωi−1 · k + 1 < ωi for i > 0)

= ωi · j + ωi (1 + ωi = ωi for i > 0)

= ωi · (j + 1)

then also

α+ ωi · j + 1 + ωi−1 · k + 1 < α+ ωi · (j + 1).

It follows that uk ∈ ϕα+ωi·(j+1)
n for all k ∈ ω, so that

S[x 7→ ϕ
α+ωi·(j+1)
n ], tj+1 
 ci+1 ∧ π∞i ∧ F (νy.P (x ∧ y ∧ ci)).

We conclude that tj+1 ∈ ϕα+ωi·(j+1)+1
n as desired.

We now prove that ϕn converges to its least fixed point in at most ωn many
steps on every bidirectional model.

Lemma 3.3.7 Let S = (S,R, V ) be a bidirectional model and 0 < n < ω be a
finite ordinal. Then ϕω

n+1
n = ϕω

n

n .

Proof. Let s ∈ ϕω
n+1
n , that is, S[x 7→ ϕω

n

n ], s 
 ϕn. We proceed by case
distinction as to which disjunct of ϕn is satisfied by s to prove that s ∈ ϕωnn . If
s 
 G⊥ then s ∈ (ϕn)Sx(∅) ⊆ ϕω

n

n , while if s 
 c1 ∧ Fx, then there is a t ∈ R[s]
such that t ∈ ϕαn for some α < ωn, so that s ∈ ϕα+1

n ⊆ ϕωnn .
Now suppose s 
 ci ∧ π∞i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) for some 2 ≤ i ≤ n.

Then in particular there is a point t ∈ R[s] and a R�-path t0t1 . . . such that: (i)
t ∈ R[t0], (ii) for all j ∈ ω, tj ∈ ϕω

n

n and tj 
 ci−1. In particular, t0 ∈ ϕαn for
some α < ωn. Observe that ϕn ∧ ci−1 ∧F> |= π∞i−2: this implies that tj 
 π∞i−2

for all j ∈ ω, since tj ∈ ϕω
n

n , tj 
 ci−1 and R[tj ] 6= ∅. This means that we

can apply Lemma 3.3.6 and it follows that tj ∈ ϕα+ωi−2·j+1
n ⊆ ϕα+ωi−1

n for all

j ∈ ω. Hence S[x 7→ ϕα+ωi−1

], s 
 ϕn and s ∈ ϕα+ωi−1+1
n ⊆ ϕω

n

n (since i ≤ n
and α < ωn imply α+ ωi−1 + 1 < ωn).

Finally, we construct a model where ϕn converges to its least fixed point in
exactly ωn many steps.

Lemma 3.3.8 Let 0 < n < ω be a finite ordinal. Then there is a bidirectional
model S where LFP.(ϕn)Sx = ϕω

n

n 6= ϕβn for all β < ωn.

Proof. For the rest of the proof we adopt the following notation: since every
α < ωn is of the form ωn−1 · k1 + . . . + ω · kn−1 + kn, we also denote α as
(k1, . . . , kn). From now on, if we write α = (k1, . . . , kn) we mean that α =
ωn−1 · k1 + . . . + ω · kn−1 + kn. Also, if a tuple (k1, . . . , kn) is of the form
(k1, . . . , ki, 0, . . . , 0), we mean that kj = 0 for i+ 1 ≤ j ≤ n.

Fix n > 0 and let ϕ := ϕn as an abbreviation. We define S = (S,R, V ) to
be the bidirectional model where:

� S := ωn = {(k1, . . . , kn) | kj ∈ ω};
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� R :=
⋃

1≤i≤n
{((k1, . . . , ki + 1, 0, . . . , 0), (k1, . . . , ki, 0, . . . , 0)) | kj ∈ ω};

� for 1 ≤ i ≤ n, V (qi) := {(k1, . . . , kn−i+1 + 1, 0, . . . , 0) | kj ∈ ω}.
Note that R[(0, . . . , 0)] = ∅ and that (0, . . . , 0) falsifies qi for every 1 ≤ i ≤ n.

Before proving the key claim we make an observation about notation. Note
that an ordinal β < ωn can both be seen as an element β ∈ S = ωn of the
model and as a subset β = {γ | γ < β} ⊆ S = ωn. To avoid confusion until the
end of the proof we write β when we consider it as an element of the domain,
and Sβ when we consider it as a subset of the domain (Sβ = β holds in any
case).

Claim. For every α < ωn, ϕα = Sα.

Proof of Claim. The proof goes by induction on α. The case for α = 0 is
immediate. If α is a limit, then ϕα =

⋃
β<α ϕ

β =IH

⋃
β<α Sβ = Sα.

Now suppose that α = β+ 1. We want to show that ϕβ+1 = Sβ+1. We have
that ϕβ+1 = ϕS

x(ϕβ) =IH ϕS
x(Sβ): we show ϕS

x(Sβ) = Sβ+1.
For the ⊇ inclusion it suffices to show that S[x 7→ Sβ ], β 
 ϕ, since Sβ+1 =

Sβ ∪ {β} and Sβ = ϕβ ⊆ ϕβ+1 = ϕS
x(ϕβ). If β = 0 = (0, . . . , 0) we are

done. If β = (k1, . . . , kn + 1), then β ∈ V (q1) and (k1, . . . , kn) ∈ Sβ ∩ R[β], so
S[x 7→ Sβ ], β 
 c1 ∧ Fx and β ∈ ϕS

x(Sβ).
Otherwise let β = (k1, . . . , ki + 1, 0, . . . , 0) for some 1 ≤ i < n, so that

β ∈ V (qn−i+1). Note that

(k1, . . . , ki, k, 0, . . . , 0) ∈ Sβ for all k ∈ ω,
(k1, . . . , ki, 0, 0, . . . , 0) ∈ R[β] and

(k1, . . . , ki, k, 0, . . . , 0) ∈ R[(k1, . . . , ki, k + 1, 0, . . . , 0)] ∩ V (qn−i) for all k > 0.

By construction of the model β 
 π∞n−i also holds: then S[x 7→ Sβ ], β 
 cn−i+1∧
π∞n−i ∧ F (νy.P (x ∧ y ∧ cn−i)), so β ∈ ϕS

x(Sβ).
Now we move to the ⊆ inclusion. Let γ ∈ ϕS

x(Sβ). We want to show that
γ ∈ Sβ+1. Since S[x 7→ Sβ ], γ 
 ϕ holds, we proceed by case distinction as to
which disjunct of ϕ is satisfied by γ. If γ 
 G⊥ then γ = 0 ∈ Sβ+1. If γ 

c1∧Fx, then γ ∈ V (q1), so that γ = (k1, . . . , kn+1) and γ′ = (k1, . . . , kn) ∈ Sβ :
as γ′ ∈ Sβ , then γ = γ′ + 1 ∈ Sβ+1.

Now suppose γ 
 ci∧π∞i−1∧F (νy.P (y∧x∧ ci−1)) for some 2 ≤ i ≤ n. Then
γ ∈ V (qi), so γ = (k1, . . . , kn−i+1 + 1, 0, . . . , 0). For j ∈ ω let

δj := (k1, . . . , kn−i+1, j, 0, . . . , 0).

By construction δ0 ∈ R[γ] and δj ∈ R[δj+1] for all j ≥ 0. Since S[x 7→ Sβ ], γ 

ci ∧ π∞i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)) then δj ∈ Sβ for all j > 0. Hence

β > (k1, . . . , kn−i+1, j, 0, . . . , 0) for all j > 0,

implying β ≥ (k1, . . . , kn−i+1 + 1, 0, . . . , 0) = γ, so γ ∈ Sβ+1. C

Now that we have the claim, it follows that there is a γ ∈ ϕω
n\ϕβ for each

β < ωn.

Theorem 3.3.9 For all 0 < n < ω, the closure ordinal of ϕn(x) on bidirectional
models is ωn.
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3.4 Bidirectional models: ordinals below ωω

In this section we combine fuses and colours to construct a formula with closure
ordinal α for every ordinal α < ωω. Note that every such ordinal has the form

α = ωn · k1 + ωn−1 · k2 + . . .+ ω · kn + kn+1,

so that we want a formula ϕ whose iteration builds up k1 copies of ωn, then
k2 copies of ωn−1, and so on. We will use fuses to distinguish between each
of these copies, so that we will need k1 + . . . + kn + 1 fuses (we only need one
additional fuse for the last kn+1 iterations, see for instance the example tied to
Figure 3.1). The formula ϕα will then combine fuses with the formulas ϕn from
the previous section, so that it will involve, for instance, k1 subformulas that
are essentially ϕn, each however containing a different fuse.

It will be helpful to recall the definitions of fuses and colours.

Definition 3.4.1 Fix disjoint sets {pi | i ∈ ω} ⊆ PROP and {qi | i ∈ ω} ⊆
PROP of propositional variables. For every n ∈ ω we define the fuse fn as the
conjunction of literals

fn :=
∧

0<i≤n

¬pi ∧ pn+1.

For every 0 < n < ω we define the colour cn as the conjunction of literals

cn :=
∧

0<i<n

¬qi ∧ qn.

We also need the following definition and proposition, which are analogous
to Definition 3.3.2 and Proposition 3.3.4.

Definition 3.4.2 For every i, k ∈ ω we define a formula π∞i,k inductively on i
as follows:

π∞0,k := fk,

π∞i+1,k := νyi+1.(P (yi+1 ∧ ci+1 ∧ fk ∧Gfk) ∧ π∞i ).

Proposition 3.4.3 For all m,n, k ∈ ω, if m ≥ n, then π∞m,k |= π∞n,k. Moreover,
if (S, s) is a pointed bidirectional model, S, s 
 π∞m,k and t0t1 . . . is an R�-path
witnessing the truth of π∞m,k at s, then tj 
 π∞m,k for all j ∈ ω.

We finally state the definition of the formula ϕα.

Definition 3.4.4 For n, k ∈ ω define the formulas

ϕ(n,k) := (Fx ∧ c1 ∧ fk ∧Gfk)∨
n∨
i=2

(ci ∧ fk ∧Gfk ∧ π∞i−1,k ∧ F (νy.fk ∧ P (y ∧ x ∧Gfk ∧ ci−1))),

χk := (Gx ∧ fk+1 ∧Gfk).

Now let, for n > 0, α = ωn ·k1 +ωn−1 ·k2 + . . .+ω ·kn+kn+1. For all 0 ≤ m ≤ n
define k(−→m) :=

m∑
i=0

ki, where we let k0 := 0.
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The formula ϕα is defined by letting

ψ :=
kn+1−1∨
i=0

(Gx ∧
i∧

j=0

Gjfk(−→n ) ∧Gi+1fk(−→n )−1),

ϕα := G⊥ ∨
k(−→n )−2∨
k=0

χk ∨
n−1∨
m=0

(
k(
−−−→
m+1)−1∨
k=k(−→m)

ϕ(n−m,k)

)
∨ ψ.

To motivate this definition we first present a simple example and then pro-
vide some intuitions behind it.

Example 3.4.5 Let α = ω3 · 2 + ω2 + ω · 3 + 4: then n = 3, k1 = 2, k2 = 1,
k3 = 3 and k4 = 4. We start by computing the disjuncts of ϕα: these are G⊥
and

4∨
k=0

χk = (Gx ∧ f1 ∧Gf0) ∨ (Gx ∧ f2 ∧Gf1)∨
(Gx ∧ f3 ∧Gf2) ∨ (Gx ∧ f4 ∧Gf3) ∨ (Gx ∧ f5 ∧Gf4),

(m = 0) ⇒
1∨
k=0

ϕ(3,k) = ϕ(3,0) ∨ ϕ(3,1),

(m = 1) ⇒
2∨
k=2

ϕ(2,k) = ϕ(2,2),

(m = 2) ⇒
5∨
k=3

ϕ(1,k) = ϕ(1,3) ∨ ϕ(1,4) ∨ ϕ(1,5),

ψ =
3∨
i=0

(Gx ∧
i∧

j=0

Gjf6 ∧Gi+1f5).

We now describe a model where ϕα converges in exactly α steps: this will
consist of two copies of ω3, one copy of ω2, three copies of ω and four points. We
let all the points of the first copy of ω3 satisfy the fuse f0, those of the second
copy the fuse f1, the states of the copy of ω2 make the fuse f2 true, and so on,
while the last four points all satisfy the fuse f6. We consider the domains of all
these copies to be disjoint, so that for instance we index all points of the first
copy of ω3 with (3, 0), where 0 refers to the fuse, and similarly for the rest. We
call the last four points s1, s2, s3 and s4 for simplicity. We let the point 0(3,0),
be a dead end, the point 0(3,1) see every point in the first copy of ω3, the point
0(2,2) see every point in the second copy of ω3 and so forth; the state s1 sees
every point in the third copy of ω, and, for 1 ≤ i ≤ 3, the state si+1 sees si.
This is all depicted in Figure 3.8, where two arrows going from a state to two
vertices of a rectangle indicate that the said state has an arrow towards every
point inside that rectangle.

We thus see that the iteration of ϕα will start from the point 0(3,0) through
the disjunct 2⊥ and continue inside the first copy of ω3 through

ϕ(3,0) = (Fx ∧ c1 ∧ f0 ∧Gf0)∨
(c2 ∧ f0 ∧Gf0 ∧ π∞1,0 ∧ F (νy.f0 ∧ P (y ∧ x ∧Gf0 ∧ c1)))∨
(c3 ∧ f0 ∧Gf0 ∧ π∞2,0 ∧ F (νy.f0 ∧ P (y ∧ x ∧Gf0 ∧ c2))).

Once every point in the first copy of ω3 is part of the iteration of ϕα after ω3

many steps, the point 0(3,1) will satisfy χ0 = Gx ∧ f1 ∧ Gf0, so that it will be
added to the iteration. Note that for instance this point cannot be added before
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Figure 3.8: Model corresponding to ω3 · 2 + ω2 + ω · 3 + 4.
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through the disjunct (Fx∧ c1 ∧ f0 ∧Gf0) of ϕ(3,0), as it falsifies both c1 and f0,
and neither through the disjunct (Fx ∧ c1 ∧ f1 ∧Gf1) of ϕ(3,1), as it falsifies c1
and Gf1. After 0(3,1) is added, the process carries on inside the second copy of
ω3 though ϕ(3,1), and every point in this copy will be included in the iteration
in another ω3 many steps. After ω3 · 2 many steps, then, the point 0(2,2) will
satisfy χ1 = Gx∧ f2 ∧Gf1 and will be added to the iteration, followed by every
point in the copy of ω2 through the disjunct

ϕ(2,2) = (Fx ∧ c1 ∧ f2 ∧Gf2)∨
(c2 ∧ f2 ∧Gf2 ∧ π∞1,2 ∧ F (νy.f2 ∧ P (y ∧ x ∧Gf2 ∧ c1))).

Then, after ω3 · 2 + ω2 many steps, it is the turn of the state 0(1,3) to be added
to the iteration through χ2 = Gx ∧ f3 ∧ Gf2, and so every point in the first
copy of ω through ϕ(1,3) = (Fx ∧ c1 ∧ f3 ∧ Gf3). When the third copy of ω is
part of the iteration after ω3 · 2 + ω2 + ω · 3 many steps of the iteration, the
state s1 will make the first disjunct Gx∧ f6 ∧Gf5 of ψ true, then s2 will satisfy
Gx∧ f6 ∧Gf6 ∧GGf5 after s1 is included in the iteration, followed similarly by
s3 and s4. We conclude that in this model the formula ϕα converges to its least
fixed point in exactly ω3 · 2 + ω2 + ω · 3 + 4 many steps.

The intuition behind Definition 3.4.4 is the following. With α = ωn · k1 +
ωn−1 · k2 + . . .+ ω · kn + kn+1:

� for each 0 ≤ m ≤ n− 1, the formula ϕ(n−m,k) witnesses the phase of the
iteration that takes place inside the copy of the model ωn−m corresponding
to the fuse fk;

� for each 0 ≤ k < k(−→n ) − 2, the formula χk allows to move from a copy
of some ωn−m with fuse fk to a copy of some ωn−m

′
with fuse fk+1, with

m′ ≥ m;

� the formula ψ allows to compute the last kn+1 many iterations.

Note that the formula ϕ(n−m, k) has a very similar shape to the formula ϕn−m
from Definition 3.3.5, but involves the fuse fk in order to distinguish between
copies of ωn−m with different fuses.

Remark We observe that the definition of ϕα works also when some ki is equal
to 0 in ωn · k1 + . . . + ω · kn + kn+1. For instance, let α = ω4 · 2 + ω · 3: then
n = 4, k1 = 2, k4 = 3 and k2 = k3 = k5 = 0, so that

3∨
k=0

χk = (Gx ∧ f1 ∧Gf0) ∨ (Gx ∧ f2 ∧Gf1)∨
(Gx ∧ f3 ∧Gf2) ∨ (Gx ∧ f4 ∧Gf3),

(m = 0) ⇒
1∨
k=0

ϕ(4,k) = ϕ(4,0) ∨ ϕ(4,1),

(m = 1) ⇒
1∨
k=2

ϕ(3,k) =
∨ ∅ = ⊥,

(m = 2) ⇒
1∨
k=2

ϕ(2,k) =
∨ ∅ = ⊥,

(m = 3) ⇒
4∨
k=2

ϕ(1,k) = ϕ(1,2) ∨ ϕ(1,3) ∨ ϕ(1,4),
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ψ =
−1∨
i=0

(Gx ∧
i∧

j=0

Gjf5 ∧Gi+1f4) =
∨ ∅ = ⊥.

We see then that the whole formula ϕα will behave as expected, as it contains
the disjunct G⊥ to start the iteration, the disjuncts ϕ(4,0) and ϕ(4,1) to build
the two copies of ω4, the disjuncts ϕ(1,2), ϕ(1,3) and ϕ(1,4) to build the three
copies of ω and the disjuncts χ0, . . . , χ3 to move the iteration between these
copies, while clearly the disjunct ⊥ does not contribute to the iteration.

We now prove that α is the closure ordinal of ϕα on bidirectional models.
We start with the following lemma, whose proof is essentially the same as that
of Lemma 3.3.6.

Lemma 3.4.6 Let S = (S,R, V ) be a bidirectional model, let α = ωn · k1 +
. . .+ ω · kn + kn+1 and ϕα be the formula from Definition 3.4.4 for some n > 0.

For all 0 ≤ m ≤ n− 1, for all k(−→m) ≤ k ≤ k(
−−−→
m+ 1)− 1, for all 1 ≤ i ≤ n−m,

let t0t1t2 . . . be an infinite R�-path such that

S, t0 
 π∞i−1,k ∧ fk and, for all j > 0, S, tj 
 ci ∧ π∞i−1,k ∧ fk ∧Gfk.

Then, for any ordinal β: if t0 ∈ ϕβα then tj ∈ ϕβ+ωi−1·j+1
α for all j ∈ ω.

Proof. Fix 0 ≤ m ≤ n − 1 and k(−→m) ≤ k ≤ k(
−−−→
m+ 1) − 1. We prove the

statement by induction on 1 ≤ i ≤ n−m.
As the base case take i = 1, so that by assumption we have an infinite R�-

path t0t1t2 . . . such that S, t0 
 fk and S, tj 
 c1 ∧ fk ∧ Gfk for all j > 0. Let
t0 ∈ ϕβα. We want to show that, for all j ∈ ω, tj ∈ ϕβ+j+1

α : we prove this by
induction on j ∈ ω. If j = 0, then t0 ∈ ϕβα ⊆ ϕβ+1

α . Next, inductively assume
that tj ∈ ϕβ+j+1

α : then, since tj ∈ R[tj+1], it follows that S[x 7→ ϕβ+j+1
α ], tj+1 


(Fx ∧ c1 ∧ fk ∧Gfk), so tj+1 ∈ ϕβ+(j+1)+1
α .

For the inductive step assume that the statement holds for i. We prove it
for i + 1, where i < n −m. Suppose then that t0t1t2 . . . is an infinite R�-path
such that t0 
 π∞i,k∧fk and for all j > 0, tj 
 ci+1∧π∞i,k∧fk∧Gfk. Let t0 ∈ ϕβα.
We want to show that

for every j ∈ ω, tj ∈ ϕβ+ωi·j+1
α .

The proof of this last statement goes by induction on j ∈ ω. The base case with
j = 0 follows immediately, as by assumption t0 ∈ ϕβα.

Now suppose that tj ∈ ϕβ+ωi·j+1
α : we show that tj+1 ∈ ϕβ+ωi·(j+1)+1

α . By
assumption tj ∈ R[tj+1] and tj 
 π∞i,k, which in particular means that there
is an infinite R�-path u0u1 . . . (with u0 = tj) such that, for all l > 0, ul 

ci ∧ fk ∧ Gfk. But then this path satisfies the conditions of the inductive
hypothesis: by Proposition 3.4.3, since u0 
 π∞i,k∧fk, then u0 
 π∞i−1,k∧fk, and
for every l > 0, ul 
 ci∧π∞i−1,k ∧ fk ∧Gfk. Then, by inductive hypothesis, since

u0 = tj ∈ ϕβ+ωi·j+1
α it follows that, for every l ∈ ω, ul ∈ ϕβ+ωi·j+1+ωi−1·l+1

α .
Since for all l ∈ ω it holds that

ωi · j + 1 + ωi−1 · l + 1 < ωi · j + 1 + ωi (as ωi−1 · l + 1 < ωi for i > 0)

= ωi · j + ωi (1 + ωi = ωi for i > 0)

= ωi · (j + 1)
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then also

β + ωi · j + 1 + ωi−1 · l + 1 < β + ωi · (j + 1).

It follows that ul ∈ ϕβ+ωi·(j+1)
α for all l ∈ ω, so that

S[x 7→ ϕ
β+ωi·(j+1)
α ], tj+1 
 ci+1∧fk∧Gfk∧π∞i,k∧F (νy.fk∧P (y∧x∧Gfk∧ci)).

We conclude that tj+1 ∈ ϕβ+ωi·(j+1)+1
α as desired.

The next lemma involves fuses: with α = ωn · k1 + . . . + ω · kn + kn+1,
it is shown that if a state belongs to some iteration of ϕα and makes pk(−→m)+l

true for some 1 ≤ l ≤ km+1 and 0 ≤ m ≤ n − 1, then it has to belong to

ϕω
n·k1+...+ωn−m·l
α .

Lemma 3.4.7 For n ≥ 1 let α = ωn ·k1+. . .+ω·kn+kn+1. For all 0 ≤ m ≤ n−1
and all pointed bidirectional models (S, s), if ωn·k1+. . .+ωn−m·km+1 ≤ β < ωω,

if s ∈ ϕβα and s 
 pk(−→m)+l for some 1 ≤ l ≤ km+1, then s ∈ ϕωn·k1+...+ωn−m·l
α .

Proof. We prove the statement by induction on m, where 0 ≤ m ≤ n− 1.
As the base case take m = 0, so that by assumption we have that ωn · k1 ≤

β < ωω, s ∈ ϕβα and s 
 pl for some 1 ≤ l ≤ k1: we want to prove that s ∈ ϕωn·lα .
We now proceed by induction on β and only consider the case where β = γ+ 1,
since the limit case is immediate.

Let s ∈ (ϕα)Sx(ϕγα). We continue by case distinction as to which disjunct of
ϕα is satisfied by s to prove s ∈ ϕωn·lα . If s 
 G⊥ the result follows immediately,
and S[x 7→ ϕγα], s 6
 ψ since s 
 pl.

Next suppose S[x 7→ ϕγα], s 
 Gx ∧ fk+1 ∧ Gfk for some k < l − 1. Then
R[s] ⊆ ϕγα and R[s] ⊆ [[pk+1]]S. By inductive hypothesis on γ < β then R[s] ⊆
ϕ
ωn·(k+1)
α , so that s ∈ ϕω

n·(k+1)+1
α ⊆ ωn · l, since k + 1 < l.

Now suppose S[x 7→ ϕγα], s 
 ϕ(n,k) for some k < l. There are two cases to
consider. First, if S[x 7→ ϕγα], s 
 Fx ∧ c1 ∧ fk ∧ Gfk, then there is a t ∈ R[s]
such that t ∈ ϕγα and t 
 pk+1, so that by inductive hypothesis on γ < β it

follows that t ∈ ϕω
n·(k+1)
α . Since ωn · (k + 1) = ωn · k + ωn is a limit ordinal,

then there is a δ < ωn such that t ∈ ϕωn·k+δ
α . Because δ < ωn−1 · k′ for some

k′, then t ∈ ϕωn·k+ωn−1·k′
α and s ∈ ϕωn·k+ωn−1·k′+1

α ⊆ ϕωn·lα , since k < l.
Otherwise, let

S[x 7→ ϕγα], s 
 ci ∧ fk ∧Gfk ∧ π∞i−1,k ∧ F (νy.fk ∧ P (y ∧ x ∧Gfk ∧ ci−1))

for some 2 ≤ i ≤ n. Then there is a state t ∈ R[s] and a R�-path t0t1t2 . . . such
that t ∈ R[t0], t 
 fk and, for all j ∈ ω, tj ∈ ϕγα and tj 
 ci−1 ∧ fk ∧Gfk. Since

t0 
 fk, then t0 
 pk+1 and, by inductive hypothesis on γ < β, t0 ∈ ϕω
n·(k+1)
α , so

that t0 ∈ ϕω
n·k+ωn−1·k′
α for some k′. Moreover, since (ϕα∧ci−1∧F>∧fk∧Gfk) |=

π∞i−2,k, then tj 
 π∞i−2,k for all j ∈ ω. Hence we can apply Lemma 3.4.6 and

obtain that, for all j ∈ ω, tj ∈ ϕω
n·k+ωn−1·k′+ωi−2·j+1
α . We thus observe that,

for all j ∈ ω (recall that i ≤ n),

ωn · k + ωn−1 · k′ + ωi−2 · j + 1 < ωn · k + ωn−1 · k′ + ωi−1

≤ ωn · k + ωn−1 · k′ + ωn−1
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= ωn · k + ωn−1 · (k′ + 1),

so tj ∈ ϕω
n·k+ωn−1·(k′+1)
α for all j ∈ ω. Hence S[x 7→ ϕ

ωn·k+ωn−1·(k′+1)
α ], s 
 ϕα,

and it follows that
s ∈ ϕωn·k+ωn−1·(k′+1)+1

α ⊆ ϕωn·lα

in this case too, since k < l.

This concludes the base case of the induction on 0 ≤ m ≤ n − 1. To proceed,
inductively assume that the statement of the lemma holds for allm′ ≤ m < n−1:
we want to prove it for m+ 1. Assume that

ωn · k1 + . . .+ ωn−m · km+1 + ωn−(m+1) · km+2 ≤ β < ωω,

s ∈ ϕβα and s 
 p
k(
−−−→
m+1)+l

, for some 1 ≤ l ≤ m + 2. We want to prove that

s ∈ ϕω
n·k1+...+ωn−m·km+1+ωn−(m+1)·l
α . Again, we proceed by induction on β and

only consider the case where β = γ + 1, so that we let s ∈ (ϕα)Sx(ϕγα) and
continue by case distinction as to which disjunct of ϕα is satisfied by s. The
cases for G⊥ and ψ are again immediate, so that we focus on the other disjuncts
of ϕα.

Suppose S[x 7→ ϕγα], s 
 Gx ∧ fk+1 ∧ Gfk for some k < k(
−−−→
m+ 1) + l − 1.

We distinguish between two cases. If k = k(
−→
m′) + l′ for some 0 ≤ m′ ≤

m and l′ < km′+1, then s 
 Gp
k(
−→
m′)+l′+1

. Since R[s] ⊆ ϕγα, by inductive

hypothesis on m′ ≤ m it follows that R[s] ⊆ ϕ
ωn·k1+...+ωn−m

′
·(l′+1)

α , so that

s ∈ ϕω
n·k1+...+ωn−m

′
·(l′+1)+1

α ⊆ ϕωn·k1+...+ωn−(m+1)·l
α as desired.

Alternatively, k = k(
−−−→
m+ 1)+l′ for some l′ < l−1, so s 
 Gp

k(
−−−→
m+1)+l′+1

and

R[s] ⊆ ϕγα, so that R[s] ⊆ ϕω
n·k1+...+ωn−(m+1)·(l′+1)
α follows by inductive hypoth-

esis on γ < β. Then s ∈ ϕ
ωn·k1+...+ωn−(m+1)·(l′+1)+1
α ⊆ ϕω

n·k1+...+ωn−(m+1)·l
α ,

since l′ + 2 ≤ l.
Now suppose S[x 7→ ϕγα], s 
 ϕ(n−(m+1),k) for some k(

−−−→
m+ 1) ≤ k < k(

−−−→
m+ 1)+

l, so that k = k(
−−−→
m+ 1) + k′ for some k′ < l. There are two cases to consider.

First, if S[x 7→ ϕγα], s 
 Fx ∧ c1 ∧ fk ∧ Gfk, then there is a t ∈ R[s] such that

t ∈ ϕγα and t 
 p
k(
−−−→
m+1)+k′+1

, so that t ∈ ϕω
n·k1+...+ωn−(m+1)·(k′+1)
α by inductive

hypothesis on γ < β. Since ωn · k1 + . . .+ ωn−(m+1) · (k′ + 1) is a limit ordinal,

then t ∈ ϕωn·k1+...+ωn−(m+1)·k′+ωn−(m+2)·k′′
α for some k′′, and, since k′ < l, then

s ∈ ϕωn·k1+...+ωn−(m+1)·k′+ωn−(m+2)·k′′+1
α ⊆ ϕωn·k1+...+ωn−(m+1)·l

α .

Otherwise, let

S[x 7→ ϕγα], s 
 ci ∧ fk ∧Gfk ∧ π∞i−1,k ∧ F (νy.fk ∧ P (y ∧ x ∧Gfk ∧ ci−1))

for some 2 ≤ i ≤ n − (m + 1). Then there is a state t ∈ R[s] and a R�-
path t0t1t2 . . . such that t ∈ R[t0], t 
 fk and, for all j ∈ ω, tj ∈ ϕγα and
tj 
 ci−1 ∧ fk ∧Gfk. Since t0 
 fk, then t0 
 pk+1, that is, t0 
 pk(

−−−→
m+1)+k′+1

,

and by inductive hypothesis on γ < β we obtain t0 ∈ ϕω
n·k1+...+ωn−(m+1)·(k′+1)
α ,

so that t0 ∈ ϕω
n·k1+...+ωn−(m+1)·k′+ωn−(m+2)·k′′
α for some k′′. Moreover, since

(ϕα ∧ ci−1 ∧ F>∧ fk ∧Gfk) |= π∞i−2,k, then tj 
 π∞i−2,k for all j ∈ ω. Hence we
can apply Lemma 3.4.6 and obtain that, for all j ∈ ω,
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tj ∈ ϕω
n·k1+...+ωn−(m+1)·k′+ωn−(m+2)·k′′+ωi−2·j+1
α .

We thus observe that, for all j ∈ ω (recall that i ≤ n − (m + 1), so that
i− 1 ≤ n− (m+ 2)),

ωn · k1 + . . .+ ωn−(m+1) · k′ + ωn−(m+2) · k′′ + ωi−2 · j + 1 <
ωn · k1 + . . .+ ωn−(m+1) · k′ + ωn−(m+2) · k′′ + ωi−1 ≤
ωn · k1 + . . .+ ωn−(m+1) · k′ + ωn−(m+2) · k′′ + ωn−(m+2) =
ωn · k1 + . . .+ ωn−(m+1) · k′ + ωn−(m+2) · (k′′ + 1),

so that tj ∈ ϕω
n·k1+...+ωn−(m+1)·k′+ωn−(m+2)·(k′′+1)
α for all j ∈ ω.

It follows that S[x 7→ ϕ
ωn·k1+...+ωn−(m+1)·k′+ωn−(m+2)·(k′′+1)
α ], s 
 ϕα and we

conclude that also in this case

s ∈ ϕωn·k1+...+ωn−(m+1)·k′+ωn−(m+2)·(k′′+1)+1
α ⊆ ϕωn·k1+...+ωn−(m+1)·l

α

since k′ < l.

We now show that ϕα converges to its least fixed point in at most α steps
on every bidirectional model.

Lemma 3.4.8 Let S be a bidirectional model, ω ≤ α < ωω be an ordinal and
ϕα be the formula from Definition 3.4.4. Then ϕα+1

α = ϕαα.

Proof. Let α = ωn ·k1 + . . .+ω ·kn+kn+1 and s ∈ ϕα+1
α : we want to show that

s ∈ ϕαα. If s 
 pk for some 1 ≤ k ≤ k(−→n ) then s ∈ ϕαα follows by Lemma 3.4.7.
Hence suppose otherwise: s 
 ¬pk for all 1 ≤ k ≤ k(−→n ).

By assumption s ∈ (ϕα)Sx(ϕαα), so that we proceed by case distinction as to
which disjunct of ϕα is satisfied by s to prove that s ∈ ϕαα. It cannot be the
case that

S[x 7→ ϕαα], s 

k(−→n )−2∨
k=0

χk ∨
n−1∨
m=0

(
k(
−−−→
m+1)−1∨
k=k(−→m)

ϕ(n−m,k)

)
,

since otherwise s 
 pk for some 1 ≤ k ≤ k(−→n ), against assumption. We thus
consider the cases where s 
 G⊥ and S[x 7→ ϕαα] 
 ψ, where we recall that

ψ :=
kn+1−1∨
i=0

(Gx ∧
i∧

j=0

Gjfk(−→n ) ∧Gi+1fk(−→n )−1).

Since the first case is trivial we focus on the second one.
We mention that the formula ψ here is essentially the same as the second

disjunct of the formula ψω·n+m from Definition 3.1.2, and also the following
induction is an adaptation to our setting of the same induction in [6].

Let S[x 7→ ϕαα] 
 Gx ∧∧ij=0G
jfk(−→n ) ∧Gi+1fk(−→n )−1 for some 0 ≤ i < kn+1:

in particular, R[s] ⊆ ϕαα. By induction on i we prove that

if s 

i∧

j=0

Gjfk(−→n ) ∧Gi+1fk(−→n )−1, then s ∈ ϕωn·k1+...+ω·kn+i+1
α .
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For i = 0, assume s 
 fk(−→n ) ∧ Gfk(−→n )−1, so every t ∈ R[s] is such that
t 
 pk(−→n ), that is, t 
 p

k(
−−→
n−1)+kn

, and by Lemma 3.4.7 it holds that R[s] ⊆
ϕω

n·k1+...+ωn−(n−1)·kn
α = ϕω

n·k1+...+ω·kn
α , hence s ∈ ϕωn·k1+...+ω·kn+1

α as desired.
Now suppose that the statement of the induction holds for all i′ such that

0 ≤ i′ < i ≤ kn+1: we prove it for i. Let s 

∧i
j=0G

jfk(−→n )∧Gi+1fk(−→n )−1: then,

for all t ∈ R[s], t 

∧i−1
j=0G

jfk(−→n ) ∧ Gifk(−→n )−1, which by induction hypothesis

implies R[s] ⊆ ϕωn·k1+...+ω·kn+i
α . We conclude that s ∈ ϕωn·k1+...+ω·kn+i+1

α .

We finally construct a bidirectional model where ϕα converges to its least
fixed point in exactly α steps.

Lemma 3.4.9 For every ω ≤ α < ωω, there is a bidirectional model where the
formula ϕα from Definition 3.4.4 converges to its least fixed point in exactly α
steps.

Proof. Let α = ωn · k1 + . . . + ω · kn + kn+1 for n > 0. We define a model S
where we argue that ϕα converges in exactly α many steps to its least fixed
point. To simplify the definition we assume that ki 6= 0 for all 1 ≤ i ≤ kn+1:
when this is not the case a similar definition with very obvious variations is

possible. For each 0 ≤ m ≤ n− 1 and k(−→m) ≤ k ≤ k(
−−−→
m+ 1)− 1 we take a copy

of the bidirectional model corresponding to the ordinal ωn−m as defined in the
proof of Lemma 3.3.8, where we let fk be true everywhere by making all states
satisfy pk+1 and falsify every pi for i 6= k+ 1 (but leaving the valuation of other
propositional variables unchanged, so that every point has the same colour as
before): we call this model S(n−m,k). We let the domains of all these models be
disjoint, for instance by indexing all the elements of S(n−m,k) with (n −m, k).
Note that every model S(n−m,k) has a blind state 0(n−m,k). Define S to be the
disjoint union of all these models, enriched with the following relations:

� the point 0(n,0), which is the blind state in the copy of S(n,0) that makes
the fuse f0 true, is also a blind state in S;

� for m ≥ 0 and k(−→m) < k ≤ k(
−−−→
m+ 1) − 1, we let 0(n−m,k) have an arrow

towards every point of the copy of S(n−m,k−1) in the disjoint union;

� For m > 0 and k = k(−→m), we let 0(n−m,k) have an arrow towards every
point of the copy of S(n−m+1,k(−→m)−1) in the disjoint union.

We also let the model S have kn+1 new points that we call s1, . . . skn+1
and let

the state s1 have an arrow towards every point of the copy of S1,k(−→n )−1 in the
disjoint union and let si+1 see si for every 1 ≤ i < kn+1. We also let every point
si make fk(−→n ) true.

We now argue that in this model the least fixed point of ϕα is reached in
exactly α many iterations. Note that by construction every point of the form
0(n−m,k) has no colour, so that it can be added to the iteration only through
G⊥ or through χk−1. The iteration of ϕα starts through the disjunct G⊥ at
state 0(n,0) in the submodel S(n,0) which corresponds to the first copy of ωn

making the fuse f0 true, then proceeds to include every point of S(n,0) through
the disjunct ϕ(n,0) in ωn many steps. After that, the point 0(n,1) ∈ S(n,1) will
make true χ0 = (Gx∧f1∧Gf0) and will be included in the iteration, followed by
every point of S(n,1) through the disjunct ϕ(n,1), again in ωn many steps. Then
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0(n,2) is added and so on, until every point of S(n,k1−1) is part of the iteration,
in a process that so far has taken ωn · k1 many steps. Then, the point 0(n−1,k1)

in S(n−1,k1) will satisfy χk1−1 = Gx ∧ fk1 ∧ Gfk1−1 and the process continues
by adding every point of S(n−1,k1) in ωn−1 many steps, followed by S(n−1,k1+1),
S(n−1,k1+2), . . . , S(n−1,k1+k2−1), each taking ωn−1 many steps in order to be
fully added to the iteration, which so far has taken ωn · k1 + ωn−1 · k2 many
steps. The iteration then moves to S(n−2,k1+k2) and so on, until every point in
S(1,k(−→n )−1) is added to the iteration in ωn · k1 + . . . + ω · kn many steps. At
this point the state s1 will make true the disjunct (Gx ∧ fk(−→n ) ∧ Gfk(−→n )−1) of
ψ, and one by one the states s2, s3, . . . , skn+1 will make true the corresponding
disjuncts of ψ and the formula ϕα will converge to its least fixed point in exactly
α steps.

Theorem 3.4.10 For every ω ≤ α < ωω, the closure ordinal of ϕα on bidirec-
tional models is α.

3.5 Bidirectional models: sum of ordinals

We mentioned already that Gouveia and Santocanale proved that closure ordi-
nals are closed under ordinal sum [12] and that this result in particular entails
that every ordinal strictly less than ω2 is a closure ordinal. In this section we
show that the same can be achieved in the setting of bidirectional models, which
together with the theorem from Section 3.3 in particular implies that every or-
dinal strictly below ωω is a closure ordinal on bidirectional models. Since we
are going to follow closely Section 6 and Section 8 from [12], we will not provide
proofs, which are variations of the original ones; we will try however to offer
some intuitions.

Suppose that ϕ0 and ϕ1 are formulas with, respectively, α and β as their
closure ordinals on bidirectional models, and we want to define some formula
ψ that has closure ordinal α + β on bidirectional models. Essentially, we want
ψ to depend on ϕ0 and ϕ1, and be such that its iteration first focuses on ϕ0

and then moves to ϕ1. One way to look at this is letting S0 = (S0, R0, V0)
and S1 = (S1, R1, V1) be two bidirectional models where ϕ0 and ϕ1 converge in
exactly α and β steps, respectively, and try to define a model S and a formula ψ
where ψ converges in exactly α+ β steps. Thanks to the following proposition
[12] we can also assume, without loss of generality, that Si = [[µx.ϕi]]

Si .

Proposition 3.5.1 Let α be a closure ordinal of the modal µ-calculus on bidi-
rectional models. Then there is a formula ϕ(x) with closure ordinal α on bidi-
rectional models and a bidirectional model S = (S,R, V ) such that:

S = [[µx.ϕ]]S = ϕαS and ϕαS 6= ϕα
′

S for every α′ < α.

We now consider the disjoint union of the two models S0 and S1 and try to
come up with a formula ψ whose iteration first focuses on the formula ϕ0 and the
model S0 for α many steps, and then moves to the model S1, iterating ϕ1 for β
many steps. To make sure that this process does not accidentally involve ϕ1 and
S1 during the first part of the iteration (and viceversa), we can, in some sense,
strengthen the link between ϕ0 and S0, and between ϕ1 and S1. We consider a
fresh variable p occurring in neither ϕ0 or ϕ1, make p false everywhere in the
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S0 part and true everywhere in S1 part of the disjoint union and define, for
i ∈ {0, 1}, a formula tri(ϕi) that involves the variable p and whose meaning in
the disjoint union so defined is the same as the meaning of ϕi in the original
model Si: most importantly, each iteration of tri(ϕi) in the disjoint union will
be the same as the corresponding iteration of ϕi in Si. This is made precise in
the following definition and proposition.

Definition 3.5.2 Let p /∈ PROP be a fresh variable and define p0 := ¬p and
p1 := p. For i ∈ {0, 1} the formula tri(ϕ) is defined by induction as follows.

tri(y) := pi ∧ y tri(ψ0 ∧ ψ1) := tri(ψ0) ∧ tri(ψ1)
tri(¬y) := pi ∧ ¬y tri(ψ0 ∨ ψ1) := tri(ψ0) ∨ tri(ψ1)
tri(⊥) := ⊥ tri(Fψ) := pi ∧ F (pi ∧ tri(ψ))
tri(>) := pi tri(Gψ) := pi ∧G(pi → tri(ψ))
tri(µz.ψ) := µz.tri(ψ) tri(Pψ) := pi ∧ P (pi ∧ tri(ψ))
tri(νz.ψ) := νz.tri(ψ) tri(Hψ) := pi ∧H(pi → tri(ψ))

The proofs of the items in the following proposition are either particular
cases or variations of the proofs of Proposition 41 and Proposition 45 from [12].
Recall that a subset S′ ⊆ S of some model S is closed if whenever s ∈ S′ and
t ∈ R[s] then also t ∈ S′.
Proposition 3.5.3 Let ϕ(x) be a formula in the basic temporal language (with
fixed point operators) and S = (S,R, V ) be an arbitrary bidirectional model.
With S′ ⊆ S, let S′ = (S′, R′, V ′) be the submodel of S induced by S′. Then:

1. [[tr0(ϕ)]]S[p 7→S\S′] = [[ϕ]]S
′
;

2. [[tr1(ϕ)]]S[p 7→S′] = [[ϕ]]S
′
;

3. tr0(ϕ)αS[p 7→S\S′] = ϕαS′ ;

4. tr1(ϕ)αS[p 7→S′] = ϕαS′ ;

5. If S′ is closed, then (p ∧ ϕ)αS[p 7→S′] = ϕαS′ .

Returning to our formulas ϕ0 and ϕ1, models S0, S1 and their disjoint union
as discussed above (with valuation of p as described), now we have defined
formulas tr0(ϕ0) and tr1(ϕ1) such that the iteration of tri(ϕi) in the disjoint
union behaves exactly as the iteration of ϕi in Si. What is missing is a way to
first compute the α many steps of the iteration of tr0(ϕ0), and then move to
the β many steps of the iteration of tr1(ϕ1). This last ingredient is given by
the formula in the next definition, whose formulation is an adaptation to our
setting of Theorem 53 in [12].

Definition 3.5.4 Let ϕ0(x) and ϕ1(x) be two formulas, let p be a variable
occurring neither in ϕ0 nor in ϕ1 and define:

χ0 := ¬p→ (G¬p ∧ µz.tr0(ϕ0)(z)),
χ1 := p→ (G(¬p→ µz.tr0(ϕ0)(z)) ∧ µz.tr(ϕ1)(z)),
χ := χ0 ∧ χ1,
ψ(x) := (¬p ∧ tr0(ϕ0)(x)) ∨ (p ∧ tr1(ϕ1)(x) ∧G(¬p→ x)),
Ψ(x) := [U ]χ ∧ ψ(x).

where [U ]χ := νz.(χ ∧Gz ∧Hz).
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Theorem 3.5.5 Suppose ϕ0(x) and ϕ1(x) are such that their closure ordinals
on bidirectional models are, respectively, α and β. Let p be a variable occurring
neither in ϕ0 nor in ϕ1. Then the closure ordinal of Ψ(x) on bidirectional
models is α+ β.

Before explaining the meaning of the formula Ψ(x), define an acceptable
model to be a bidirectional model where [U ]χ is true at every state. As the next
lemma states, to prove that α+β is the closure ordinal of Ψ(x) on bidirectional
models, it is enough to prove that α + β is the closure ordinal of ψ(x) on
acceptable models: we refer to [12] for its proof.

Lemma 3.5.6 An ordinal γ is the closure ordinal of Ψ(x) on bidirectional
models if and only if (i) ψ(x) converges to its least fixed point in at most γ steps
on every acceptable bidirectional model, and (ii) there exists and acceptable
bidirectional model on which the formula ψ(x) converges to its least fixed point
in exactly γ steps.

We now explain the meaning of the formula Ψ(x). The first conjunct [U ]χ
involves the master modality [U ]: the formula [U ]χ := νz.(χ∧Gz∧Hz) is true at
a state s in a bidirectional model if χ is true at every state that is reachable (in
any finite amount of steps) from s, both through the accessibility relation R and
its converse. An acceptable model then is a model where χ is true everywhere,
so that its universe is divided in two sections: one section, where p is false,
is dedicated to computing the least fixed point of tr0(ϕ0), while the second
section, where p is true, is where the computation of the least fixed point of
tr1(ϕ1) takes place. The variable p can be considered a colour, so that for
instance we can say that the states that make p false are red, while the others
are blue, so that [U ]χ also expresses that from the red part there are no forward
transitions to blue states, but the other way around is possible. The formula
ψ(x) consists of two disjuncts that witness the two phases of the fixed point
computation: the first disjunct (¬p ∧ tr0(ϕ0)(x)) allows the addition of points
from the red part of the model to the iteration, while the second disjunct those
of the blue part. Note that the states of the blue part of the model can only
be added after every red point that is accessible to them through R is already
included in the iteration, as they must satisfy G(¬p→ x).

Consider again the models S0 and S1 from before and their disjoint union
where every point in S0 makes p false, while every point in S1 makes p true.
To obtain an acceptable model where ψ(x) converges in exactly α + β steps,
we join the two submodels of the disjoint union by adding an arrow from every
state of S1 to every state of S0: call this model S. The computation of the least
fixed point of ψ on S will then behave as follows. Since no point in S1 can make
G(¬p→ x) true at the beginning, the iteration will start by including points in
S0 through the disjunct (¬p ∧ tr0(ϕ0)(x)): as we argued before, this will take
exactly α steps and will cover the whole red part of S. Then, after every point
in S0 has been added, the states in S1 will satisfy G(¬p→ x), so that they can
be added through the disjunct (p ∧ tr1(ϕ1)(x) ∧G(¬p→ x)): this process will
take exactly β steps before converging.

We have thus argued that there exists an acceptable model where conver-
gence of ψ(x) happens in exactly α+ β steps: a precise proof of this statement
can be obtained as an adaptation of Proposition 56 in [12]. To conclude that
α+β is the closure ordinal of Ψ(x) it remains to show that ψ(x) converges to its
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least fixed point in at most α+β steps on every acceptable bidirectional model:
this can be proved by a variation of Proposition 55 in [12]. By Lemma 3.5.6 we
conclude that Theorem 3.5.5 holds.

3.6 Uncountable closure ordinals

In this last section we discuss ω1, the first uncountable ordinal, as a closure
ordinal. Similarly to how the closure ordinal ω is linked to the semantic property
of continuity, the ordinal ω1 has been studied in [12] in relation to the semantic
property of ℵ1-continuity. In the following, let κ be an infinite regular cardinal.

Definition 3.6.1 A formula ϕ ∈ µML is κ-continuous in x if

S, s 
 ϕ iff S[x�C], s 
 ϕ, for some subset C ⊆ S such that |C| < κ

for every pointed model (S, s).

In other words, a formula ϕ is ℵ1-continuous in x if whenever ϕ is true in a
pointed model (S, s), it is enough to restrict the valuation of x to a countable
subset of V (x) to satisfy ϕ at the same state s of the model. Equivalently, the
definition of κ-continuity can be stated in terms of distributivity over κ-directed
sets.

Definition 3.6.2 A subset D ⊆ ℘(S) is κ-directed if every C ⊆ D such that
|C| < κ has an upper bound in D. A function f : ℘(S)→ ℘(S) is κ-continuous
if f(

⋃
D) =

⋃
f [D] whenever D ⊆ ℘(S) is κ-directed.

Proposition 3.6.3 A formula ϕ ∈ µML is κ-continuous in x if and only if ϕS
x is

a κ-continuous function for every model S.

We observe that the notion of continuity we have already defined coincides
with ℵ0-continuity. Gouveia and Santocanale [12] have found a syntactic frag-
ment of the µ-calculus that characterises ℵ1-continuity.

Definition 3.6.4 Given a finite set X ⊆ PROP, define the fragment µMLℵ1X by
the following grammar:

ϕ ::= p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | µz.ϕ′ | νz.ϕ′

where p ∈ X, ψ is a X-free formula and ϕ′ ∈ µMLℵ1X∪{z}. In case X is a singleton,

say, X = {x} we will write µMLℵ1x rather than µMLℵ1{x}.

Theorem 3.6.5 (Gouveia & Santocanale) Every formula in µMLℵ1x is ℵ1-
continuous in x. Moreover, there is an effective translation which, given a µML-
formula ϕ, computes a formula ϕℵ1 ∈ µMLℵ1x such that

ϕ is ℵ1-continuous in x iff ϕ ≡ ϕℵ1 ,

and it is decidable whether a given formula ϕ is ℵ1-continuous in x.

In [12] Gouveia and Santocanale actually prove that if ϕ is κ-continuous in
x for some regular cardinal κ, then ϕ ≡ ϕℵ1 for some ϕℵ1 ∈ µMLℵ1x . This leads
to the following theorem.
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Theorem 3.6.6 (Gouveia & Santocanale) There are only two fragments of
the modal µ-calculus determined by continuity conditions: the fragment µMLCx
and the fragment µMLℵ1x .

We also mention that the fragment of Definition 3.6.4 conincides with the
fragment characterising the finite width property of [11, 10].

Definition 3.6.7 A formula ϕ ∈ µML has the finite width property for x ∈ PROP

if ϕ is monotone in x and, for every tree model (S, s),

S, s 
 ϕ iff S[x�U ], s 
 ϕ, for some finitely branching subtree U ⊆ S,

where a subset U ⊆ S is a finitely branching subtree if U is downward closed
and the set R[u] ∩ U is finite for every u ∈ U .

Theorem 3.6.8 (Fontaine & Venema) Every formula in µMLℵ1x has the finite
width property for x ∈ PROP. Moreover, there is an effective translation which,
given a µML-formula ϕ, computes a formula ϕℵ1 ∈ µMLℵ1x such that

ϕ has the finite width property for x iff ϕ ≡ ϕℵ1 ,

and it is decidable whether a given formula ϕ has the finite width property for
x ∈ PROP.

The following corollary immediately follows.

Corollary 3.6.9 A formula ϕ ∈ µML has the finite width property for x if and
only if it is ℵ1-continuous in x.

In relation to closure ordinals, it can be proved that every κ-continuous
formula converges to its least fixed point in at most κ steps [12]: this fact
immediately gives the following proposition.

Proposition 3.6.10 If a formula ϕ ∈ µML is ℵ1-continuous in x, then its closure
ordinal is at most ω1.

An example of a formula that has closure ordinal ω1 is provided in [12]: the
bimodal formula

(νy.3ax ∧3by) ∨2a⊥.
Recall that in Section 3.2, while trying to come up with a formula with closure
ordinal ω2, we ended up with the formula

ϕ := 2a⊥ ∨ (c1 ∧3ax) ∨ (c2 ∧3a(νy.3b(y ∧ x ∧ c1)))

that we claimed has closure ordinal ω1 (the formula of Section 3.2 actually
involved different propositional variables, but of course this is not important).
We will soon prove that this is indeed the case as motivation for a question
that will be formulated at the end of the chapter. Before providing the proof
we mention the result by Gouveia and Santocanale that the bimodal language
of the µ-calculus is not needed for ω1 to be a closure ordinal: the proof of the
following proposition can be found in [12].

Proposition 3.6.11 For each bimodal formula ϕ there is a monomodal formula
ϕ′ with the same free variables of ϕ such that, if ϕ ∈ µMLℵ1x , then ϕ′ ∈ µMLℵ1x ,
and with the following property: for each bimodal model S = (S,Ra, Rb, V )
there is a monomodal model S′ = (S′, R′, V ′) such that (i) S ⊆ S′, (ii) S, s 
 ϕ
if and only if S′, s 
 ϕ′ for each s ∈ S, and (iii) (ϕ′)αS′ = ϕαS for every ordinal α.
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We now prove that the formula ϕ has closure ordinal ω1. Since ϕ ∈ µMLℵ1x it
is enough to find a model where ϕ converges to its least fixed point in exactly
ω1 steps. To define this model we exploit the fact that for every countable limit
ordinal λ there exists an ω-chain (γλ,i)i∈ω that is cofinal in λ, which means
that for every β < λ there is an i ∈ ω such that β ≤ γλ,i. The model that we
will define will have, for every countable limit ordinal λ, a state sλ that makes
c2 true and with an Ra-transition to an infinite Rb-path (tλ,i)i∈ω where c1 is
always true. Every point tλ,i in this path will in turn have an Ra-transition to
a point sλ,i: since the chain (γλ,i)i∈ω is cofinal in λ, before the state sλ can be
included in the iteration of ϕ through the disjunct (c2 ∧3a(νy.3b(y ∧ x∧ c1))),
all states of the form sλ,i and tλ,i need to be added first. This is depicted in the
next picture.

q1

tλ,0

q1

tλ,1

q1

tλ,2

q1

tλ,3

sλ,0 sλ,1 sλ,2 sλ,3

q2

sλ
a b b b b

a a a a

Observe that a similar situation is shown in Figure 3.3 for the state ω2.

Proposition 3.6.12 There is a model where the formula

ϕ := 2a⊥ ∨ (c1 ∧3ax) ∨ (c2 ∧3a(νy.3b(y ∧ x ∧ c1)))

converges to its least fixed point in exactly ω1 many steps.

Proof. We construct a model where ϕ converges in exactly ω1 many steps. De-
fine

Λ := {λ < ω1 | λ is a limit ordinal}
and for an ordinal α define

Sα := {sβ | β < α}.

For every λ ∈ Λ fix a chain (γλ,i)i∈ω cofinal in λ and define the set Tλ :=
{tλ,i | i ∈ ω}; let

T :=
⋃
{Tλ | λ ∈ Λ}.

We may choose the sets Tλ such that Tλ ∩ Tλ′ = ∅ for every distinct λ, λ′ ∈ Λ
and Sω1 ∩ T = ∅, so that in the model defined below the paths (tλ,i)i∈ω and
(tλ′,i)i∈ω will not cross. For every λ ∈ Λ and i ∈ ω the set Sω1

contains an
element sγλ,i that we will denote by sλ,i to avoid notational clutter.

Let S = (S,Ra, Rb, V ) be the model where S := Sω1
∪ T , the accessibility

relations are defined by letting

Ra := {(sα+1, sα) | α < ω1} ∪ {(sλ, tλ,0) | λ ∈ Λ}
∪ {(tλ,i, sλ,i) | λ ∈ Λ and i ∈ ω},

Rb := {(tλ,i, tλ,i+1) | λ ∈ Λ and i ∈ ω},
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and the valuation by letting (recall that c1 = q1 and c2 = ¬q1 ∧ q2):

V (q1) := {sβ | β < ω1 is a successor ordinal} ∪ T,
V (q2) := {sλ | λ ∈ Λ}.

Finally, for two ordinals α and β define the relation α ≺ β as follows:

� if β is a limit ordinal, then α ≺ β if α < β;

� if β = γ + 1 is a successor ordinal, then α ≺ β if α < γ.

From now on let λ always indicate some (non fixed) countable limit ordinal.

Claim. For each ordinal α < ω1:

ϕα = Sα ∪ {tλ,i | γλ,i ≺ α}.

Proof of Claim. The proof goes by induction on α. The case for α = 0 is
immediate.

If α is a limit, then ϕα =
⋃
β<α ϕ

β =IH

⋃
β<α(Sβ ∪ {tλ,i | γλ,i ≺ β}), so

that we need to show⋃
β<α

(Sβ ∪ {tλ,i | γλ,i ≺ β}) = Sα ∪ {tλ,i | γλ,i ≺ α}.

Since Sα =
⋃
β<α Sβ is obvious, we only show⋃

β<α

{tλ,i | γλ,i ≺ β} = {tλ,i | γλ,i ≺ α}.

For the ⊆ inclusion, consider tλ,i with γλ,i ≺ β: note then that γλ,i < β < α.
For the converse inclusion consider tλ,i for γλ,i ≺ α. Since α is a limit then
by definition of ≺ it follows that γλ,i < α. The desired result follows because
γλ,i < γλ,i + 2 < α implies γλ,i ≺ γλ,i + 1 < α.

Now let α = β + 1: then ϕα = ϕS
x(ϕβ) =IH ϕS

x(Sβ ∪ {tλ,i | γλ,i ≺ β}). We
want to show

ϕS
x(Sβ ∪ {tλ,i | γλ,i ≺ β}) = Sβ+1 ∪ {tλ,i | γλ,i ≺ β + 1}.

For the ⊆ inclusion, suppose u ∈ ϕS
x(Sβ ∪ {tλ,i | γλ,i ≺ β}), that is, S[x 7→

Sβ ∪ {tλ,i | γλ,i ≺ β}], u 
 ϕ. We proceed by case distinction as to which
disjunct of ϕ is satisfied by u to prove that u ∈ Sβ+1 ∪ {tλ,i | γλ,i ≺ β + 1}.
First, if u 
 2a⊥, then u = s0 ∈ Sβ+1.

Second, suppose u 
 c1 ∧ 3ax. Then u ∈ V (q1), so u ∈ {sβ | β <
ω1 is a successor ordinal} ∪ T , and there is a v ∈ Ra[u] such that v ∈ Sβ ∪
{tλ,i | γλ,i ≺ β}. Since (u, v) ∈ Ra and u 6= sλ for any λ ∈ Λ, by definition of
Ra we have either (i) u = sγ+1 and v = sγ for some γ < β, or (ii) u = tλ,i and
v = sλ,i for some γλ,i ≺ β + 1. In the former case γ < β implies γ + 1 < β + 1
and sγ+1 ∈ Sβ+1; in the latter u = tλ,i ∈ {tλ,i | γλ,i ≺ β + 1}.

Finally, suppose that u satisfies the third disjunct of ϕ, i.e. u 
 c2 ∧
3a(νy.3b(y ∧ x ∧ c1)): then there is a state u0 ∈ Ra(u) and an infinite Rb-
path u0u1u2 . . . such that, for all j ∈ ω, uj ∈ Sβ ∪ {tλ,i | γλ,i ≺ β}. Since
u ∈ V (q2), then u = sλ for some countable limit ordinal λ, and by construction
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of our model then it must be that for all i ∈ ω, ui = tλ,i Since γλ,i ≺ β for
all i ∈ ω and (γλ,i)i∈ω is cofinal in λ, then λ ≤ β, so that λ < β + 1 and
u = sλ ∈ Sβ+1 ⊆ Sβ+1 ∪ {tλ,i | γλ,i ≺ β + 1}.

Now we move to the ⊇ inclusion. Suppose u ∈ Sβ+1 ∪ {tλ,i | γλ,i ≺ β + 1},
and we want to show that u ∈ ϕS

x(Sβ ∪ {tλ,i | γλ,i ≺ β}). First suppose
u = tλ,i for some γλ,i ≺ β + 1, that is, γλ,i < β. Then sλ,i ∈ Sβ ∩ Ra[u], so
S[x 7→ Sβ ∪ {tλ,i | γλ,i ≺ β}], u 
 c1 ∧3ax.

Otherwise, let u ∈ Sβ+1. Since Sβ+1 = Sβ ∪{sβ} and Sβ ⊆IH ϕβ ⊆ ϕβ+1 =
ϕS
x(ϕβ) =IH ϕS

x(Sβ ∪ {tλ,i | γλ,i ≺ β}), we only need to consider the case where
u = sβ . We want to show S[x 7→ Sβ ∪ {tλ,i | γλ,i ≺ β}], sβ 
 ϕ. This is obvious
if β = 0. If β = γ + 1 is a successor ordinal, then sγ ∈ Sβ ∩ Ra[sβ ] and the
result follows since S[x 7→ Sβ ∪ {tλ,i | γλ,i ≺ β}], sβ 
 c1 ∧ 3ax. If β is a
limit, then by construction sβ 
 q2 and there is an infinite Rb-path (tβ,i)i∈ω
such that tβ,0 ∈ Ra[sβ ] and tβ,i 
 q1 for all i ∈ ω. Moreover, γβ,i ≺ β for
all i ∈ ω implies that {tβ,i | i ∈ ω} ⊆ {tλ,i | γλ,i ≺ β}. We conclude that
S[x 7→ Sβ ∪ {tλ,i | γλ,i ≺ β}], sβ 
 c2 ∧3a(νy.3b(y ∧ x ∧ c1)). C

Now we want to show that for each β < ω1 there is a t ∈ ϕω1 such that
t /∈ ϕβ . Fix β < ω1: then sβ /∈ ϕβ , since sβ /∈ Sβ ∪ {tλ,i | γλ,i ≺ β}, but
sβ ∈ Sβ+1 ⊆ ϕβ+1 ⊆ ϕω1 .

We conclude the chapter by posing a question. Looking for a formula with
closure ordinal ω2 in Section 3.2, we ended up with a very natural candidate
that, as we have just proved, in fact has closure ordinal ω1. On the other
hand, the same formula interpreted in the setting of bidirectional models has
closure ordinal ω2 indeed, as we have shown in Section 3.3. We believe that the
following question points to an interesting direction in the research for closure
ordinals of the modal µ-calculus.

Question Is there an ℵ1-continuous formula ϕ(x) such that ω2 ≤ clx(ϕ) < ω1?

A negative answer to this question would constitute quite a surprising fact
about closure ordinals of µML-formulas.
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Conclusion

After presenting the modal µ-calculus in Chapter 1 we started our study of
closure ordinals of its formulas in Chapter 2, where we provided a syntactic
characterisation of formulas that have closure ordinal 0, we briefly discussed
bounded formulas and then focused on the property of continuity by investigat-
ing its connection with the property of constructivity, and by formulating the
syntactic fragment of the µ-calculus that characterises the property of continuity
on finitely branching models. In Chapter 3 we presented Czarnecki’s construc-
tion of a formula with closure ordinal α for every α < ω2 [6] and our failed
attempt to define a formula with closure ordinal ω2, which eventually led to the
definition of formula with closure ordinal α for every α < ωω on bidirectional
models; we then adopted methodologies similar to Gouveia and Santocanale’s
[12] to prove that closure ordinals are closed under ordinal sum on bidirectional
models, and finally considered the first uncountable closure ordinal ω1.

In the last chapter we concluded our discussion about closure ordinals with
an open question. In fact, there are many more: we close our thesis by pointing
to some further research directions.

1. One open problem is, of course, the existence of a formula with a countable
closure ordinal that is at least ω2, which we discussed in Section 3.2.

2. We have also already mentioned in Section 2.4 the question formulated
by Venema [9, 11] whether every formula that is constructive in x is µx-
equivalent to some formula that is continuous in x, and the evidence sup-
porting a positive answer.

3. As we have seen, Gouveia and Santocanale have proved that closure or-
dinals are closed under ordinal sum [12] and we have proved an analo-
gous statement for closure ordinals in the setting of bidirectional models.
A research direction proposed by Venema involves investigating whether
similar statements can be formulated with different operations between
ordinals: are closure ordinals closed under ordinal multiplication, expo-
nentiation, . . . ? Note that the question regarding closure under ordinal
multiplication is closely related to the existence of a formula with closure
ordinal ω2. Furthermore, we could also ask ourselves whether ϕ∨ψ, ϕ∧ψ,
ϕ[ψ/x], . . . have a closure ordinal whenever ϕ(x) and ψ(x) have a closure
ordinal.

4. Another research direction involves bidirectional models and whether it
is possible to define a formula with closure ordinal ωω or greater in this
setting, including ω1. One way to accomplish the latter in fact is by
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taking advantage of Proposition 3.6.11 and applying it to the formula
2a⊥ ∨ (c1 ∧3ax) ∨ (c2 ∧3a(νy.3b(y ∧ x ∧ c1))) to obtain a monomodal
formula ϕ with closure ordinal ω1: by replacing 2 with G and 3 with F we
get a formula ϕ′ in the temporal language (but where the modalities P and
H do not occur) that clearly has closure ordinal ω1 on bidirectional models.
Regarding the first part of the question, a formula with closure ordinal
ωω on bidirectional models might involve a disjunct that generalises the
infinite disjunction∨

2≤i<ω
(ci ∧ π∞i−1 ∧ F (νy.P (y ∧ x ∧ ci−1)))

allowing to move the iteration between ωn and ωn+1 for every n ≥ 1:
whether this is actually possible is left for future research.

5. Modal automata play an important role in the theory of the modal µ-
calculus, and several fundamental results about this logic are proved by
resorting to them. It is not very difficult to define what a closure ordinal of
a modal automaton is, so that one further research direction might consist
in understanding if modal automata can be a natural and useful tool for
proving results about closure ordinals.

6. A game-theoretic definition of closure ordinal of a µ-calculus formula (or
closure ordinal of a modal automaton) is also possible. Given a formula
ϕ(x) and a model S we can look at a variant of the evaluation game where
the positions are of the form (ψ, s, β), with ψ a subformula of ϕ, s ∈ S
and β an ordinal: now we let a position with shape (x, s, β) belong to ∃,
who has to move to (ϕ(x), s, γ) for some γ < β, if possible. In a sense,
there is a bound on how many times the variable x can be unfolded in the
game. One can prove that s ∈ ϕαS if and only if ∃ has a winning strategy
in this game from position (x, s, α), and consequently give an equivalent
definition of closure ordinal in game-theoretic terms. In the setting of
modal automata one could consider a similar variant of the acceptance
game. We leave for future research the question whether and how this
alternative definition can be taken advantage of.

7. Following Afshari and Leigh’s result that formulas of the alternation-free
fragment of the µ-calculus have closure ordinal strictly less than ω2 [1], it
would be interesting to further explore the connection between alternation
of fixed points and closure ordinals, also in the bidirectional setting.

8. Finally, another research question involves decidability results. We have
mentioned several such results in this thesis: Otto proved that it is de-
cidable whether a modal logic formula is bounded [17]; whether a µ-
calculus formula is normal (equivalently, has closure ordinal 0) is decidable;
Fontaine proved that it is decidable whether a formula of the µ-calculus
is continuous [9]; Gouveia and Santocanale showed that the property of
ℵ1-continuity is decidable [12]; by Theorem 2.4.14 the property of conti-
nuity on finitely branching models is decidable. The problems of deciding
whether a formula is constructive or whether it converges to its least fixed
point in at most ω1 many steps are still open, as is the problem of deciding
whether a given µ-calculus formula has a closure ordinal.

68



Bibliography

[1] B. Afshari and G. E. Leigh. On closure ordinals for the modal mu-calculus.
In Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 30–44. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013.
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