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Abstract

In recent years, discussions of supertasks involved a particular
class of physical models known as Malament-Hogarth spacetimes. One
might wonder – what is the role of physical models in the philosophi-
cal discussion of supertasks? Why Malament-Hogarth spacetimes in
particular? In this paper we trace the early history of relativistic su-
pertasks, as well as the subsequent discussions of Malament-Hogarth
spacetimes as physically-reasonable models of supertasks.
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In the first section, we will briefly introduce the concept of supertasks,
with special emphasis on Thomson’s lamp and Weyl’s computer. After this,
we will start to trace the conceptual origins of relativistic supertasks, namely
Pitowsky spacetimes and the now-famous Malament-Hogarth spacetimes.
Once we have introduced these, we will outline some interesting subse-
quents works. These can be divided into two categories – further analysis of
Malament-Hogarth spacetimes, and applications of relativistic supertasks
to the theory of computation. Finally, we will summarise the literature
introduced throughout the paper within a philosophical framework.

Supertasks

The idea of performing infinitely-many operations in a finite time has been
a topic of philosophical interest since at least the Pre-socratic philsopher
Zeno of Elea, who introduced a series of paradoxes, including the famous
Achilles paradox. The term supertask, however, was introduced much later
when practical adaptations of Zeno’s idea were considered by Thomson
in 1954 [1]. His example, known as Thomson’s Lamp can be paraphrased as
follows:

Suppose we have a lamp connected to a computer such that the lamp
is switched off at time t = 0. The system is configured in such a way that
the lamp toggles it’s state at an ever-increasing rate, i.e. at t = 1

2 it switches
on, at t = 3

4 it switches off, at t = 7
8 , back on, and so on. The figure below

depicts the state changes of the lamp.
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Figure 1: State changes of Thomson’s Lamp

Thomson’s Lamp is configured similarly to Zeno’s paradox of Achilles
and the Tortoise, and as such we can perform similar reasoning to obtain
a paradox – after one second, an infinite number of states changes have
occurred in a finite time, however it seems that we have no grounds to say
whether the lamp is on or off at t = 1.

Thomson’s Lamp sparked some interest at the time of it’s inception.
Popular rebuttals (e.g. Benacerraf [2]) argued that the problem is ill-formed,
since we have only specified the function of the lamp for every time t < 1,
and not for t = 1 itself. As such, despite our intuition that the lamp should
either be on or off, it is instead in a third state of being underdetermined. It
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should be noted that there exist configurations in which the lamp is guar-
anteed to be at a certain state by time t = 1. Earman and Norton provide
an example using a steel bouncing ball that leaves the lamp on after one
second [3]. Interestingly, there also exist well-formed supertasks that retain
the paradox in some form, e.g. [4].

In this paper we will also consider the special class of supertasks that
involve computational processes rather than a lamp. This type of supertask
has its conceptual origin with Weyl, who in his Philosophy of Mathematics and
Natural Science, wrote the following:

“if the segment of length 1 really consists of infinitely many sub-
segments of length 1

2 , 1
4 , 1

8 , ..., as of “chopped-off" wholes, then it
is incompatible with the character of the infinite as the “incom-
pletable" that Achilles should have been able to traverse them
all. If one admits this possibility, then there is no reason why
a machine should not be capable of completing an infinite se-
quence of distinct acts of decision within a finite amount of time;
say, by supplying the first result after 1

2 minute, the second after
another 1

4 minute, the third 1
8 minute later than the second, etc.

In this way it would be possible, provided the receptive power
of the brain would function similarly, to achieve a traversal of all
natural numbers and thereby a sure yes-or-no decision regarding
any existential question about natural numbers!" ([5], pg 42)

Weyl used this thought experiment in a broader discussion of the nature of
the continuum, and had no practical applications in mind. Nevertheless, his
idea generated a large amount of interest and laid the conceptual foundation
for the field of relativistic computation.

Conceptual Origins

We briefly mentioned Paul Benacerraf in the previous section. His 1962
paper “Supertasks and Modern Eleatics" is a significant contribution to the
philosophical discussion of supertasks. Despite criticising Thomson’s Lamp,
Benacerraf held that supertasks were logically possible, but not physically
possible, i.e. supertasks are not consistent with the laws of nature1. In the
introduction to his 1983 book “Philosophy of Mathematics", he (and Putnam)
write:

“... procedures that require us to perform infinitely many op-
erations in a finite time are conceivable, though not physically

1This notion of physical possibility is also referred to as Nomological possibility.
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possible (owing mainly to the existence of a limit to the velocity
with which physical operations can be performed)..." ([6], pg. 20)

This is an interesting argument: the speed of light provides a finite limit
to the rate at which the mechanism of any supertask can operate.

In fact, given a few assumptions, this limit can be calculated. Suppose
we have a Thomson’s lamp configuration, and for simplicity, the total length
of wire of the system is equal to 1 metre. We will be generous and assume
that the internal computation time of the toggling-program is instant.

From this, we can calculate2 the minimum speed at which the informa-
tion signal will need to be sent to the lamp in order to toggle before the next
iteration. For the first iteration, this speed is s1 = 1

0.5 = 2m/s. In general, for
the nth iteration, we will have sn = 2n. At the 29th iteration, the information
signal will need to travel along the wire at a speed of 229 ≈ 5× 108, which
is faster than the speed of light. As such, after 28 iterations the lamp will
not be able to perform its function.

It seems as though the argument is settled – supertasks, although logi-
cally possible, are not physically possible. However, as we will see, this is
not necessarily the case.

Pitowsky Spacetimes

In 1990, Itamar Pitowsky wrote “The Physical Church-Turing Thesis and Phys-
ical Complexity" [7]. In this paper, Pitowsky considers a type of supertask
machine which he calls a “Platonic computer". These are conceptually equiv-
alent to the type of computer mentioned by Weyl3. As the title would sug-
gest, Pitowsky’s paper focuses mainly on physical computation. However,
early in the paper he also makes an explicit rebuttal of Benacerraf/Putnam’s
argument. He writes:

“Conventional wisdom has it that Platonist computers are phys-
ically impossible, "owing mainly to the existence of a limit to the
velocity with which physical operations can be performed." Yet the
same theory which maintains that the upper limit on the speed of
information transmission is the velocity of light, also maintains
that time is relative to the observer" ([7], pg. 82).

The crucial insight of Pitowsky is that the supertask machine and the
observer need not be in the same place. He then argues that it possible to ex-
ploit relativistic concepts (i.e. that time is relative to the observer) in order to

2Using the equation s = d
t , which in our case is simply s = 1

t
3In fact, Pitowsky directly cites Weyl when introducing the Platonic computer
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avoid Benacerraf/Putnam’s argument. The idea is simple enough–provide
a spacetime in which the proper time of the machine is infinite, whereas the
proper time of the observer is finite. If this is done in such a way that the
speed of light is not exceeded when sending signals to the observer, then it
would serve as a counterexample.

This is exactly what Pitowsky (in correspondence with Malament) man-
aged to do. Let’s consider his example:

Suppose we have the 4-dimensional Minkowski spacetime in which
there is an observer (whose proper time we will denote by t) orbiting Earth
(whose proper time we will denote by τ) in a satellite whose velocity is given
by v(τ) = c

√
1− e−2τ. We would like to obtain an expression for t. This

is done by rearranging the expression for v(t), and using the formula for
time dilation,4 which yields the expression dt = e−τdτ. To obtain the time
relative to the satellite (i.e. the proper time of the observer of the supertask
machine), we integrate dt with respect to the interval on which the curve
is defined. In particular, if we take an open-ended curve λ : [0, ∞) → R4,
we obtain the integral

∫ ∞
0 e−τdτ = 1, and can thus conclude that it takes the

observer one second for an infinite amount of time to pass on Earth.

Examples such as the above have since been referred to as Pitowsky
spacetimes, which can be defined as follows.

Definition 1 A spacetime (M, g) is called a Pitowsky spacetime just in case
there are a pair of curves γ0, γ1 such that

∫
γ0

dτ = ∞ and
∫

γ1
dτ < ∞ and

γ0 ⊂ I−(γ1).

Note that in the above definition we denote by I−(p) the causal history of
the point p, that is, an element q is in I−(p) if there exists a future-directed
timelike curve from q to p, or equivalently, if p is reachable from q at strictly
subluminal speed.

So how can we model a supertask in a Pitowsky spacetime? Fortunately,
Pitowsky provided an example of this, which we will now paraphrase.

Suppose we have a mathematician B traversing the curve γ1 as in Def
1, and some immortal computer C traversing the curve γ0. The computer
is programmed to check Goldbach’s conjecture5 for every triple of natural
numbers (a, b, c). If Goldbach’s conjecture is false, a counterexample will be

4That is, λ = dt
dτ and λ =

√
1− v2

c2 , where we break convention and denote by λ the
Lorentz factor.

5Pitowsky originally used Fermat’s Last Theorem as his arbitrary unsolved mathematical
conjecture, but it turns out that we didn’t need a supertask machine to prove that result.
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found, and C can send a signal to B telling them that the conjecture is false.
If the conjecture is true, then no signal will ever be sent, and after 1 second
of B’s time, they will know the theorem is true. It should be noted at this
point that the velocity of B will be so great at time t = 1 that the satellite will
probably be disintegrated, killing B. However, this is a small price to pay.

Pitowsky thought that his model adequately avoids Benacerraf/Putnam’s
claim. He writes:

"... as far as computation time is concerned, the existence of Platonist
computers is compatible with general relativity (though it is probably
incompatible with the conditions in the actual universe)." [7, Pg.
84]

There are two interesting components to this quote. First, Pitowsky is
claiming that supertasks are in some sense physically possible, that is, there
exists a model of a supertask that is consistent with relativity theory. Second,
that they are probably not realisable in the actual world. These are distinct
claims, and clearly the second is stronger than physical possibility. We
will refer to this second component as physical reasonableness. This will be
important in the next section.

It should be noted that although Pitowsky spacetimes are appealing,
there are some fundamental flaws in the idea. The first is that the spacetimes
have to possess some physically-dubious properties (but more on this later).
The second flaw involves the epistemic limitations of our mathematician B.
Suppose for arguments sake that Goldbach’s conjecture is true. If this is the
case, B will never receive the signal telling them that there is a counterexam-
ple. However, at every point t < 1 on the curve γ1, there is no way for B to
distinguish between a lack of signal because Goldbach’s conjecture is true,
or a lack of signal because Goldbach’s conjecture has a counterexample and
the signal is yet to arrive. Put differently, the only time that B will ever know
the truth-value of Goldbach’s conjecture will be at t = 1, when any potential
signal will have definitely been received. However as previously noted, at
t = 1 the satellite carrying B will be ever-converging to the speed of light,
and will almost certainly be destroyed. But if B dies at t = 1, this means
that at no point do they know the outcome of the supertask procedure.

Malament-Hogarth Spacetimes

We saw in the previous section that Pitowsky spacetimes have a problem
that renders them unsuitable from a physical perspective, and thus cannot
serve as genuine models of computational supertasks. Nevertheless, the
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idea is still promising, and as such Pitowsky’s class of spacetimes catalysed
further development.

The next step in the development comes from David Malament6 and
Mark Hogarth [9], who independently introduced a class of spacetimes that
have since been referred to as Malament-Hogarth spacetimes. They are defined
as follows.

Definition 2 A spacetime (M, g) is a Malament-Hogarth spacetime (or, MH
spacetime) just in case there is a timelike half-curve γ0 and a point p ∈ M such
that

∫
γ0

dτ = ∞ and γ0 ⊂ I−(p).

The geometric intuition for MH spacetimes is perhaps best represented
in the case of the anti-De Sitter spacetime, which is pictured below.

p

γ0

I−(p)

q

q1

q2
q3

Figure 2: The Anti-De Sitter spacetime

The main difference between MH and Pitowsky spacetimes is the inclu-
sion of the point p, which we will call the MH point. By making reference
to this point, MH spacetimes avoid the issue outlined previously. Indeed,
if q ∈ I−(p), then by definition of I−(p) there is a future-directed timelike
curve γ1 from q to p such that

∫
γ1(q,p) dτ < ∞. Since the curve γ0 is entirely

contained within I−(p), that is, every point q on γ0 lies in the causal history
of p, it follows that at any point on q on γ0 we can create a future-directed
curve from q to p of finite length. This means that if there were ever a definite
counterexample to the supertask, a signal could be sent in finite time to p,
and thus our mathematician B would definitely know the outcome to the
task by then. It is also not necessary that B will die at p, since we are now
exploiting curvature of spacetime rather than speeding B up.

6This was done in private work and correspondence with John Earman. See [8, page 238]
as well as the acknowledgements at the end of Hogarth’s paper [9].
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An important question to be asked is whether or not MH spacetimes
actually exist. Fortunately, Hogarth [9] provides three concrete examples.
These are:

1. 2D Minkowski spacetime “rolled up", see [9, Fig. 2],

2. Anti-De Sitter spacetime, as pictured in Figure 2 above, and

3. Reissner-Nordstrom spacetime, which models a charged, spherically-
symmetric body of mass.

As well as this, another famous example of an MH spacetime is the Kerr-
Newman spacetime, which models the region surrounding a charged, ro-
tating mass (in the special case that the rotation is equal to zero, we obtain
the Reissner-Nordstrom spacetime). This will be a particularly important
example in the section on relativistic computation.

Further Analysis of Malament-Hogarth Spacetimes

We saw in the previous section that Malament-Hogarth spacetimes circum-
vent the problem of Pitowsky spacetimes through the inclusion of a point
p at which the observer will definitely be able to access the information
produced by the computer. However, it would be premature to conclude
that MH spacetimes are physically possible (or, for that matter, physically
reasonable), and as such a further analysis needs to be undertaken. In this
section we will start by introducing (part of) the discussion of the physical
reasonableness of MH spacetimes, before moving back to physical possibil-
ity.

Before outlining any arguments involving MH spacetimes, we should
first make explicit what it means for a spacetime to be physically reasonable.
This is somewhat difficult, since we do not yet know all of the relevant facts
of the universe, and we only have access to local data. Put differently, the
requirements outlined in the following sections are highly debated and far
from conclusive measures of physical reasonableness. In fact, providing
criteria of physically-reasonable spacetimes would amount to providing a
list of properties of the actual universe, which is of course very difficult to
do. That being said, there are at least some criteria from which to judge a
spacetime as reasonable. It should be clear that any physically reasonable
spacetime is at least a model of GR, i.e. a tuple (M, g), where M is a smooth
manifold of dimension at least 4, and g is a Lorentzian metric on M. As well
as this, the base level of compatibility with the universe is that M should be
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a solution to the Einstein field equations (EFE’s)7.

Although every physically-reasonable spacetime is a solution to the
Einstein field equations, it is not the case that every solution is physically-
reasonable. As such, extra conditions need to be imposed in order to separate
the physically reasonable spacetimes from the unreasonable ones. We will
consider two main categories of restrictions, namely:

1. restrictions on the causal structure, and

2. restrictions on energy/matter fields.

With this in mind, we will now survey some analyses of MH spacetimes.
We will try our best to avoid technical definitions, and rely on intuitive
formulations instead.

Causal Structure

Causality conditions are imposed on spacetimes in order to exclude models
in which closed timelike curves8 (CTC’s) or other oddities occur. The con-
ditions range in strength, and form a hierarchy known as the Causal ladder
or Causal Hierarchy9. We will now outline a minor analysis on the causal
structure of MH spacetimes.

Our first result comes from Hogarth himself in his original 1991 paper.
He shows that any MH spacetime cannot satisfy the strongest of all the
causality conditions, namely global hyperbolicity:

Lemma 1 Malament-Hogarth spacetimes are not globally-hyperbolic

The exact definition of global hyperbolicity is not too important for the
purposes of this paper, but it should be noted that it is equivalent to the
existence of a Cauchy surface10. The useful property of Cauchy surfaces
is that they are entirely deterministic – from the initial conditions on the
Cauchy surface one can determine the past and future of the whole space-
time uniquely.

7The EFE’s are a system of 10 coupled partial differential equations admitting no unique
solution.

8I.e. timelike curves that loop back on themselves. Anything traversing such a curve will
eventually arrive back at it’s past.

9See Minguzzi/Sanchez’s “The Causal Hierarchy of Spacetime" [10], Section 3 for more
information on this.

10A Cauchy surface S of an n-dimensional spacetime M is an (n− 1)-dimensional hyper-
surface of pairwise spacelike-separated points, which is intersected by every non-spacelike
curve exactly once.
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Lemma 1 shows that MH spacetimes are in some sense indeterministic.
The nature of determinism in spacetime is a highly-debated topic, although
it is generally deemed that a globally-hyperbolic spacetime is the most
desirable. The next question to ask is – if MH spacetimes are necessarily
indeterministic, how bad is the damage? We can begin to answer this
question by considering the following result, found in [11].

Lemma 2 If a spacetime contains a closed timelike curve γ then it is Malament-
Hogarth.

Interestingly, any point p on the CTC γ may act as our MH point – traversing
γ infinitely-many times will mean that there is an infinite-length half-curve
γ′ contained entirely in the causal history of p. So spacetimes containing
CTC’s are MH spacetimes with infinitely-many possible MH points.

Although interesting, MH spacetimes of this type are typically seen as
physically unreasonable. A famous discussion of CTC’s in spacetime comes
from Hawking [12], and culminates in his famous Chronology Protection Con-
jecture, which claims that there are no CTC’s in any physically-reasonable
spacetime. Tactfully avoiding a debate on the reasonableness of CTC’s,
we will ask a different question: are there any MH spacetimes that do not
contain CTC’s, and moreover are there any MH spacetimes sufficiently far
up the causal hierarchy to be considered physically reasonable?

To answer these questions, we need to first fix a suitable causality con-
dition. Following [9] and [13], the required condition is stable causality. A
spacetime (M, g) is said to be stably causal iff it contains no CTC’s, and no
metrics near11 g contain CTC’s. A useful characterisation of stable causal-
ity is the existence of a global time function – a smooth map f : M → R

such that f (q) < f (r) whenever q ∈ I−(r). Such spacetimes, despite being
indeterministic in some sense, are generally seen as causally well-behaved.

So are there any MH spacetimes that are stably causal? The answer
is yes: it was shown by Hogarth [9] that both the anti De-Sitter and the
Reissner-Nordstrom spacetimes are stably-causal.

To summarise, Malament-Hogarth spacetimes must display at least some
causal misbehaviour, however there exist MH spacetimes in which this
misbehaviour is reasonably small.

11Technically, this notion of proximity of metrics comes from defining a topology (usually
called the Ck-fine topology) on the vector bundle of symmetric (0, 2)-tensors over M. For
more information on this see Hawking/Ellis [14, Page 198].
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Energetic Structure

Any physically-reasonable model of the universe should at least contain some
matter. However, there are some pathological types of matter that contradict
our observations of reality. As such, energy conditions are imposed on the
spacetime in order to exclude such pathological behaviour.

It is now in our benefit to introduce a formal statement of the EFE’s:

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν (∗)

The meanings of most of these symbols are not too important for the
purpose of this paper, so we will omit an explanation and just remark that
these equations connect the geometry of the spacetime (i.e. the left hand
side) to local energy conditions (i.e. the right hand side).

There is one element of (∗) that is particularly crucial for stating energy
conditions. On the right-hand side of the equations is a (0, 2)-tensor Tµν,
which is commonly called the stress-energy tensor12. The important feature
of Tµν is that it contains all the information about energy and momentum
on a local scale, and can be seen as a generalisation of the stress tensor from
Newtonian mechanics. The components of the tensor are given by:

Tµν =

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33



where


T00 is energy density

T0i = Ti0 is momentum density

Tij form the usual stress tensor

Imposing energy conditions on spacetime amounts to applying restric-
tions to the stress-energy tensor. These are local rules that are typically
empirically-grounded, and are very useful when proving results of a large
depth and scope. The benefit of energy conditions is best stated by Curiel:

“...it is no exaggeration to say that the great renaissance in the
study of general relativity itself that started in the 1950s with
the work of Synge, Wheeler, Misner, Sachs, Bondi, Pirani, et al.,
and the blossoming of the investigation of the global structure of
relativistic spacetimes at the hands of Penrose, Hawking, Geroch,
et al., could not have happened without the formulation and use
of such energy conditions." ([15], pg. 45)

12Or sometimes the energy-momentum or stress-energy-momentum tensor
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So what sort of energy conditions can an MH spacetime satisfy? We will
focus on two conditions. The first is known as the strong energy condition
(SEC). We will not state the mathematical formulation of the condition, but
instead note that it’s physical interpretation is that under the SEC matter
must gravitate toward matter. One important feature is that the SEC requires
the cosmological constant Λ appearing in (∗) to vanish.

Our next physically reasonable energy condition is known as the domi-
nant energy condition (DEC). Informally speaking, we say that a spacetime
satisfies the DEC whenever the local energy-density is positive (i.e. T00 > 0)
and the vector describing the local energy flow is non-spacelike, that is,
the local energy flow cannot exceed the speed of light. The name comes
from the fact that the energy-density component of Tµν dominates the other
components, that is, T00 ≥ |Tij| for all i, j 6= 0.

So, are there are any Malament-Hogarth spacetimes that satisfy these
conditions? The anti De-Sitter spacetime can be shown to have a strictly
negative cosmological constant13. As such, the anti De-Sitter space cannot
satisfy the SEC. However, the anti De-Sitter spacetime can satisfy the DEC.
As for the Reissner-Nordstrom spacetime, it is generally deemed to satisfy
both the DEC and the SEC.

To summarise, there are MH spacetimes that satisfy at least some plausible-
sounding energy condition.

Supertasks as Physically Possible

In the previous sections we outlined some potential problems for MH space-
times from a purely relativistic perspective. However, we have yet to discuss
the obvious question of whether MH spacetimes are genuine models of su-
pertasks. There are a number of concerns to consider.

The first comes from Earman/Norton [13], who observe that the signals
sent from the computer to the observer with ever-increasing frequency. They
write:

“During her lifetime, [the sender] measures an infinite number of
vibrations of her source, each vibration taking the same amount
of her proper time. [The receiver] must agree that an infinite
number of vibrations take place. But within a finite amount of
his proper time, [the receiver] receives an infinite number of
light signals from [the sender], each announcing the completion
of a vibration. For this to happen, [the receiver] must receive the

13See [13], page 34 for more details.
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signals in ever decreasing intervals of his proper time. Thus, [the
receiver] will perceive the frequency of [the sender’s] source to
increase without bound" ([13], pg. 30)14

In the same paper, a technical formulation of this idea is provided. This
blueshifting of the signals has since been referred to as the blueshift problem,
and has the following consequence:

“The fact that an MH spacetime gives an indefinitely large
blueshift for the photon frequency implies that the spacetime
structure acts as an abitrarily powerful energy amplifier." ([13],
pg 34)

The problem with this is that realistically speaking, any information signal
sent to the receiver will possess non-zero thermal energy. As such this ther-
mal energy may amplify indefinitely, placing the receiver in the unenjoyable
position of having to accept a series of arbitrarily-hot signals being sent
their way. That being said, the authors do entertain the possibility of some
mechanism for reducing this ever-increasing thermal energy, such as a de-
vices for cooling-down the signal at its source, or progressively reducing the
energy while the signal is in transit, though no concrete solution is provided.

In Section 6 of the same paper, Earman/Norton voice another concern
about the suitability of MH spacetimes. Their criticism arises from the
trustworthiness of information at the point p. We saw in Lemma 1 that
any MH spacetime is not globally hyperbolic. In fact, the proof of this
lemma revolves around the fact that globally-hyperbolic spacetimes can
be equivalently characterised by the existence of a Cauchy surface, from
which the stronger result that every point in the spacetime has a Cauchy
surface passing through it follows15. It can be shown that the point p in a
MH spacetime cannot have a Cauchy surface. The problem with this, as
Earman/Norton highlight is that “events at p or at points arbitrarily close
to p are subject to nondeterministic influences". As such, the information
received at p cannot be trusted to have come from the computer.

These two concerns have been successfully avoided by Manchak in
his 2010 paper “On the Possibility of Supertasks in General Relativity" [11].
In order to avoid the Blueshift problem, Manchak observed a loophole
in Earman/Norton’s technical formulation of the problem. Armed with
this knowledge, Manchak provides a reasonable criterion which he calls

14This quote is actually a paraphrased version, taken from Manchak [11].
15This was proved by Geroch in [16]. See Theorem 11 for the proof, and Hawking/Ellis

[14], sections 6.5 and 6.6 for more of an overview
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the bounded blueshift condition. As well as this, Manchak provides another
criterion for avoiding signal unreliability, which he calls the signal reliability
condition. This culminates in the final theorem of his paper, which we will
paraphrase16 as follows:

Theorem 1 There exists a Malament-Hogarth spacetime (M, g) such that:

1. (M, g) is stably causal
2. (M, g) satisfies the strong and dominant energy conditions
3. (M, g) avoids the blueshift problem
4. (M, g) satisfies the signal reliability condition

The example Manchak provides is entirely artificial, and even he admits that
it is not intended as a physically reasonable spacetime. However, his point
is that, as it stands, all of the criticisms mentioned thus-far in this paper are
not strong enough to push through the conclusion that MH spacetimes are
unphysical.

We finish this section by briefly mentioning one last paper. In 2013
Romero wrote the paper “ The Collapse of Supertasks " [17]. He argues that
supertasks such as Thomson’s lamp form a divergence in the curvature of
spacetime, and as such will eventually form a black hole. However, as we
have already mentioned, certain MH spacetimes (e.g. the Kerr-Newman
metric) are models of black holes to begin with, so perhaps his criticism
could be avoided. As it stands, there is no widely accepted consensus on
the physical possibility or physical reasonableness of MH spacetimes.

Relativistic Computation

The discussion of supertasks and their potential physical models catalysed
the creation of a new field of study known as Relativistic Computation. In
this section we will briefly outline the origins of the subject, as well as its
contributions to the debate on the physicality of supertasks.

The discussion of computation within spacetime began with Pitowsky
[7], where a large portion of his paper is devoted to the discussion of infinite
Turing machines and the physical Church-Turing thesis. This was taken
further by Hogarth, who produced a series of papers17 in the 1990’s that
partially developed the theory of relativistic computation. These papers

16In fact, Manchak proves more than this, but given the scope of this paper we have
omitted some of his argument.

17See [9], [18] and [19].

14



(as well as a few papers produced by the then-masters student Wischik
under Hogarth’s supervision [20]) laid the formal foundations of Relativistic
computation.

An explosion of interest occurred18 in 2002 with the paper Non-Turing
Computations via Malament-Hogarth Spacetimes by Németi19 and Etesi. This
paper is highly influential in the field and marks a new chapter in the discus-
sion of supertasks in spacetime. An interesting note is that the authors argue
for MH spacetimes as physically reasonable from an original perspective.
They write:

“...we are going to focus our attention to the Kerr space-time be-
cause in light of the celebrated black hole uniqueness theorem...
this space-time is the only candidate for the late-time evolu-
tion of a collapsed rotating star. Hence existence of Kerr black
holes in the Universe is physically very reasonable even in our
neighbourhood. For instance, a candidate for such a black hole
is the supermassive compact object in the center of the Milky
Way; this question can be decided in the next few decades. In
this context it is remarkable that this space-time possesses the
Malament-Hogarth property." ([25], pg. 11)

This line of reasoning bypasses the contents of the previous sections.
The claim is that there is probably an MH spacetime in the actual world,
and that this warrants further study just in case. What is interesting is that
this is the first time in which it is argued that MH spacetimes exist within the
actual world. Of course if this were true, MH spacetimes would have to be
both physically reasonable and physically possible.

So how are supertasks phrased within charged, rotating black holes?
Etesi and Nemeti answer this question by introducing a now-famous exam-
ple, which we will now paraphrase.

Suppose our computer C orbits the black hole at some point outside
of the event horizon,20 whilst our daring mathematician B descends into
the black hole. The benefit of using a rotating black hole is that there are

18Since this paper the Budapest Group, presumably with Németi as the driving force, have
produced a series of papers, e.g. [21], [22], [23], and [24].

19In the same paper it is also claimed that Németi independently discussed the concept of
supertasks in spacetime as early as 1987. They cite: Iowa State University, Department of
Mathematics. Ph. D. course during the academic year 1987/88. Subject: “On logic, relativity,
and the limitations of human knowledge." Lecturer: I. Németi.

20The hypersurface at which the curvature is so great that anything beyond this region
will not be able to affect any outside observer.
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two event horizons, i.e. the inner horizon and the outer horizon. The figure
below, found in [25, Fig. 1], depicts the set-up.

Singularity

p

Trajectory of B
Outer horizon

Orbit of computer

MH point

Inner horizon

Figure 3: Etesi/Nemeti’s MH set-up in a Kerr-Newman spacetime

The computer may send signals to B at all times, and by the time that B
reaches the inner horizon of the black hole (i.e. at point p in Figure 3), B will
know the outcome of the computation.

In 2006, Nemeti and Dávid published a paper that further analyses this
class of MH spacetimes [26]. Interestingly, in Section 5.1 of their paper they
conclude that technically speaking, no supertask needs to be implemented.
Following terminology found in Barrow [27], they conclude that such a
set-up only implements a pseudo-supertask.

It should also be noted that although both Hogarth and the Budapest
group discuss the physical reasonableness of MH spacetimes, many authors
in the field of Relativistic Computation make no such discussions. Authors
in this category include Wiedermann/van Leeuwen [28], Pitowsky/Shagrir
[29], and Welch [30]. In these cases, these authors emphasise the computa-
tional aspects of models such as Etesi/Nemeti’s, but are interested in the
purely computational aspects of such models.

Discussion

In this paper we have seen that spacetimes were involved in the discussion of
the possibility of supertasks. We have seen that there are number of possible
positions to take on the matter, which stem from a variety of notions of
possibility. These notions are:

1. Logical possibility: supertasks are well-formulated and consistent in
the sense that there is at least some thought experiment satisfying the
definition of a supertask,
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2. Physical possibility: supertasks are consistent with the theory of physics,

3. Physical reasonablity: supertasks are reasonable from a physical per-
spective, i.e. there are models of supertasks that satisfy the criteria of
a reasonable model of (part of) the universe, and

4. Actuality: supertasks can be produced in the real world.

These notions can be used to create some plausible-sounding philosoph-
ical positions, which we list as follows.

Philosophical Position
A There are well-formed models of some form of supertask
B Convincing models of supertasks exist, however all such models

violate some physical laws
C Convincing models of supertasks exist, and some are even com-

patible with the basic assumptions of GR, but are probably incom-
patible with more detailed physical models

D There are models of supertasks within the spacetimes of GR that
are sufficiently compatible with any relevant physical laws

E There are regions of the actual universe which are suitable candi-
dates for supertasks to be implemented

The positions above can be roughly summarised by their commitment
to the various notions of possibility.

Logically Possible Phys. Possible Phys. Reasonable Actual
A No No No No
B Yes No No No
C Yes Probably not Undecided Undecided
D Yes Yes Undecided Undecided
E Yes Yes Yes Yes

These positions clearly vary in their philosophical scope. Positions A
and B can be see as purely metaphysical claims, perhaps even as exercises
in mathematical logic. Positions C and D begin to delve into more empirical
territory, since they mostly revolve around the notions of physical possi-
bility and reasonableness, which are grounded in empirical observation.
Positions E and E’ are the most empirical of all, and are perhaps the task of
a cosmologist to verify.

The history of supertasks in spacetime outlined in this paper can be
nicely outlined in accordance with these philosphical positions. We began
with Thomson, whose self-named lamp can be seen as an attempt to justify
position A. After this, we discussed Benacerraf/Putnam’s famous claim,
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which is an argument for position B. Pitowsky took the first steps away
from position B and into the realms of C and D. The subsequent discussions
outlined in this paper, i.e. that of Pitowksy, Malament, Hogarth, Earman,
Norton, Manchak and Romero, exist somewhere within the uncommitted
middle-ground between positions C and D. The Budapest Group may be
seen to hold something like position E, perhaps better stated as:

E’ There are regions of the actual universe in which pseudo-
supertasks can be performed

Under this framework of philosophical positions, we can see that the
Budapest group in some sense disrupted the prior discussions. Their claim
of position E’ was far more committed, and circumvented any theoretical
arguments by instead appealing to empirical data. Their contributions to
relativistic computation are in some sense motivated by position E’, however
a number of authors progressed the field of relativistic computation without
making any philosophical commitments whatsoever.

To summarise: The involvement of spacetimes in the discussion of
supertasks can be seen as an attempt to settle the dispute of the nature
of the possibility of supertasks. This discussion has a number of possibilities
which require a varying degree of philosophical commitment. Although
there is still no consensus on the matter, the discussion has lead to the advent
of interesting mathematics and as such, the field of Relativistic computation
emerged. Although this field is distancing itself from the original debate, its
interest to other academics warrants further study.
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