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In light of logic’s historical roots in dialogue and argumentation, games and logic are
a natural fit. Argumentation is a game-like activity that involves taking turns, saying
the right things at the right time, and, in competitive settings, has clear pay-offs in
terms of winning and losing. Pursuing this connection, specialized logic games have
already been used in the middle ages as a tool for logic training (Hamblin, 1970).
The modern area augmented this picture with formal dialogue games as foundation
for logic, relating winning strategies in argumentation to cogent proofs (Kamlah and
Lorenzen, 1984). Today, connections between logic and game theory span across a
great number of different strands, involving the interface with game theory, but also
linguistics, computer science, and further fields.

Themes from the extensive and growing area surrounding logic and games occur in
various entries of this Encyclopedia, in particular on uses of games in logic, epis-
temic foundations of game theory, formal approaches to social procedures, logics for
analyzing powers of agents, and game semantics for programming and process lan-
guages. These entries differ in their emphasis, which may be on logic, game theory,
or foundations of computer science. The present entry is concerned with logics for
analyzing games, broadly speaking. It makes reference to other perspectives in this
Encyclopedia where relevant.
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1 Overview

The present entry provides a comprehensive survey of logics for analyzing games,
arranged under a number of unifying themes and perspectives. Also, occasional
connections are made with other strands at the interface of logic and games covered
elsewhere in this Encyclopedia. This overview section is a brief tour d’horizon for
topics that will return in more detail later on.

1.1 Logic of games

Specific games stand for significant recurrent patterns of social interaction. In a
perpective called ‘logic of games’, notions and results from logic are used to analyze
the structure of various games. In fact, much classic reasoning about games involves
notions that are familiar from logic.

Example Game solution reasoning.

Consider the following game tree for two players A,E, with turns marked, and with
pay-offs written with the value for A first. Alternatively, these values can be inter-
preted as encoding players’ qualitative (or ordinal) preferences between outcomes.

1, 0

0, 3 2, 2

E

A

Here is how players might reason. At her turn, E faces a standard decision problem,
with two available actions and the outcome of action left better for her than that
of right. So she will choose left. Knowing this, A expects that his choosing right
will give him outcome 0, while going left gives him outcome 1, so he chooses left.
As a result, both players are worse off than they would have been , had they played
right/right. The reasoning in this scenario, in short, leads to an outcome that is
not Pareto-optimal.

The example raises the question just why players should act this way, and whether,
say, a more cooperative behavior could also be justified. An answer obviously de-
pends on the players’ information and style of reasoning. Here it becomes of interest
to probe the structure of the example. Looking more closely, many notions are in-
volved in the above scenario: actions and their results, players knowledge about the
structure of the game, their preferences about its results, but also how they believe
the game will proceed. There are even counterfactual conditionals in the background,
such as A’s explaining his choice afterwards by saying that “if I had played right,
then E would have played left”. These notions, moreover, are entangled in subtle
ways. For instance, A does not choose left because it dominates right in the stan-
dard sense of always being better for him, but rather because left dominates right
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according to his beliefs. How these beliefs are formed, in turn, depends on many
other features of the game, including the nature of the players.

In short, even a very simple game like the one discussed brings together large parts of
the agenda of philosophical logic in one very concrete setting. This entry will zoom
in on the aspects mentioned here, with Section 3 dedicated to players’ preferences
and beliefs, while Section 4 addresses reasoning styles and the dynamics of attitudes
as the game proceeds.

The analysis is structured by a few broad distinctions. Intuitively, games involve
several phases that involve logic in different ways: deliberation prior to the game,
as many game-theoretic solution concepts are in fact deliberation procedures that
create initial expectations about how a game will go on. Observation and belief
revision during game play, including reactions to deviations from prior expectations.
And finally, post-game analysis, say, to settle what can be learnt from a defeat, or to
engage in spin about one’s performance. Moreover all this can be considered in two
modes, assuming either a first-person participant or a third-person observer view of
games and play.

1.2 Logic and game theory

In many of the above topics, logics meets game theory. One such interface area
is epistemic game theory where game play and solution concepts are analyzed and
justified in light of various assumptions about playersamd their epistemic states, such
as common knowledge or common belief in rationality. Epistemic game theory may
be viewed as a joint offspring of logic and game theory, a form of progeny which
constitutes a reliable sign of success of an interdisciplinary contact.

There are also other viable logical perspectives. In particular, one can look at game
theory the way mathematical logicians look at any branch of mathematics. Following
the style of the famous Erlangen Program, one can discuss the structures studied in
that field and look for structural invariance relations and matching logical languages.
Game theory is rich in structure, as it has several different natural notions of invari-
ance. The tree format of extensive games offers a detailed view of what happens
step by step as players make their moves, whereas the matrix format of strategic
form games offers a high-level view that centers on outcomes. Yet other formats, to
be discussed below, focus on players’ control over the various outcomes. All these
different levels of game structure come with their own logical systems, as will be
detailed in Section 2. Moreover, these different logics do not just provide isolated
snapshots: they can be related in a systematic manner.

In this way, the usual logical techniques can be brought to bear. For instance, formal
languages can express basic properties of games, while model-checking techniques can
determine efficiently whether these hold in given concrete games (cf. Clarke et al.,
1999).

Example Winning strategies.

Consider the following game tree, with move relations for both players, and propo-
sitional letters wini marking winning positions for player i.
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winA winE winE winA

EE

A

Left
Right

rightle
ft

rightle
ft

Clearly, player E has a winning strategy against player A, i.e. a recipe that guar-
antees her to win, no matter what A does. This is expressed by a modal formula
capturing exactly the right dynamics:

[moveA]〈moveE〉winE

Here [moveA] is the universal modality “for all moves by player A”, and 〈moveE〉 is
the existential modality “for some move by player E”. This two-step modality- or
quantifier-based response pattern is typical for strategic powers of players in arbitrary
games, as it captures the essence of sequential interaction. Crucially, logical laws can
acquire game-theoretic import. For instance, the law of Excluded Middle applied to
the above formula yields:

[moveA]〈moveE〉winE ∨ ¬[moveA]〈moveE〉winE

or in a logically equivalent formulation:

[moveA]〈moveE〉winE ∨ 〈moveA〉[moveE ]¬winE

In two-step games like the above, where exactly one player wins (i.e. winA ↔ ¬winE),
the latter formula expresses that either player E or player A has a winning strategy.
More generally, this disjunctive assertion is a special case of Zermelo’s theorem,
stating that every finite full information game is determined.

Having established the connection to logical languages, further model-theoretic themes
can be applied fruitfully to games. Language based reasoning allows, for instance, to
examine the preservation of properties between different games, based on the exact
syntactic shape of their definition. Besides, logical syntax also supports logical proof
theory. Hence, the latter’s rich pool of proof calculi may help to analyze basic results
in game theory. This entry illustrates major recurring patterns of reasoning about
interaction that come to light in this way.

Game theory also has a further natural level of representation, suppressing details
of local moves and choices. The most familiar format for this are games in strategic
form. In the simplest case of only two players, these correspond to a two-dimensional
matrix, with rows standing for some player’s strategies, and columns for the other’s.
Individual cells of such matrix hence correspond to the different possible strategy
profiles of the game. Typically, all cells are labelled with information about the out-
comes resulting from playing the corresponding strategies against one another. This
labelling specifies players’ attitudes to outcome in terms of pay-offs, more abstract
utilities, or simply markers for players’ preferences orders among outcomes.
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Strategic form games, too, can model significant social scenarios. Here is an illustra-
tion from the philosophical literature on the evolution of social behavior.

Example The following game in matrix form is the Stag Hunt of Skyrms (2004),
going back to ideas of David Hume. It serves as a metaphor for the social contract.

E

A
H S

H 1, 1 1, 0
S 0, 1 2, 2

Each agent must decide between pursuing their own little project, hunting a hare, or
joining in a larger collective endeavor, hunting stag. The former gives a moderate but
guaranteed income, no matter what others do. The collective endeavor, on the other
hand, can only succeed if all contribute, in which case everybody receives a high
profit. If, however, some do not join, all contributions are lost and no contributor
receives anything. In the corresponding strategic form game, all players have to
decide on what to do in parallel, without knowing the actions of the others.

The Stag Hunt game has two pure strategy Nash equilibria: every contributes, and
nobody contributes. Which of these stable outcomes ensues will crucially depend on
the players’ reasoning, their expectations about each other, and perhaps even further
information stemming, for instance, from pre-game communication.

Clearly, analyzing strategic games involves agentive information, reasoning and ex-
pectations. All these aspects have tight connections to logic. Viewing outcomes as
possible worlds, three relevant relations emerge between these. Within the matrix
above, relating all cells in the same row fixes a unique choice already made by the
row player A, while leaving E’s move completely open. In short, each horizontal row
lists all possible choices of the column player E which A has to take into account.
The corresponding modality may hence be said to describe A’s knowledge about the
outcomes of the game given his choice. Still assuming the row player’s perspective,
relating cells vertically rather than horizontally corresponds to A’s freedom of choice
among his available strategies. Of course, one could also assume player E’s perspec-
tive instead, viewing the horizontal direction as E’s freedom of movement, while the
vertical directions captures her epistemic uncertainty.

Thus, a bimodal logic arises for matrix games with laws such as

KEKAϕ ↔ KAKEϕ,

capturing the grid structure of matrix games. For more than two players, this logic
gains some additional options and subtleties to be discussed in Section 2.6.

The crucial third relation is that of player’s preferences among outcomes. These,
again, have matching modalities, now taken from preference logic (Hansson, 2002).
With the help of some auxiliary devices, the three modalities can define the central
game-theoretic notion of a Nash equilibrium (Harrenstein, 2004; van der Hoek and
Pauly, 2007).
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Logics for matrix games differ from those for extensive games, as grids behave quite
differently from trees in terms of complexity. Yet, both fall under the same general
methodology. Towards a common understanding, one might view the logic of matrix
games as capturing the basic laws of parallel, rather than sequential action.

1.3 Computation and agency

Philosophical logic and mathematical logic are not the only illuminating perspectives
on games. A third relevant viewpoint is that of computational logic. In modern com-
putation, the paradigm is no longer single Turing machines but interacting systems
of multiple processors. These processors may cooperate, but they might also com-
pete for resources. In general, hence, it is useful to study multiple agents engaging
in computation, be it within human, artificial or mixed societies. Though doing
so, games become a natural model for computation, too. In fact, games are rich
multi-agent systems where agents process information, communicate, and engage
in actions, all driven by their respective preferences and goals. In the converse di-
rection, computer science themes such as complexity and algorithmics have entered
game theory, resulting in the area of computational game theory (Nisan et al., 2007).
For a richer survey of computational logics of agency and games, see van der Hoek
and Pauly (2007) and Shoham and Leyton-Brown (2008). The present entry con-
tains occasional links to computation. These are especially prominent for reasoning
about temporally extended games and their strategies (Sections 4.2, 4.4) and in the
context of gamification (Section 6), where games are explored as a novel semantics
for classical logical systems.

1.4 Games in logic

Finally, recall the start of this section, but with reverse perspective: instead of asking
what logic can do for games, ask what games can do for logic. Argumentation
and dialogue are basic notions for logic. Both can be studied using techniques and
results from game theory (Lorenzen and Lorenz, 1978; Hamblin, 1970). In this
perspective, logical validity of consequence rests on there being a winning strategy
for a Proponent claiming the conclusion against an Opponent granting the premises
in a game where moves are regulated by the logicial constants. Many games have
found uses in modern logic since the 1950s, with Ehrenfeucht-Fräıssé games for model
comparison being a paradigmatic example. Besides these, also semantic verification
or model construction can be cast as natural logic games.

This raises an intricate issue within in the philosophy of logic, concerning the nature
of logic and in particular that of logical constants. A ‘weak thesis’ would hold
that games constitute a natural technique for analyzing logical notions, as well as
a didactic tool for teaching logic that appeals directly to vivid intuitions. Parts of
the literature, however, also defend a ‘strong thesis’, suggesting that the primary
semantics of certain logical systems may be procedural and game-theoretic, rather
than denotational in a standard sense. This perspective, sometimes called ‘logic as
games’, occurs in some attractive semantics for first-order languages (Hintikka and
Sandu, 1997), as well as in game semantics for programming languages.
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The theme of logic as games will appear only briefly in the present entry, which is
mainly directed toward logics of games. Section 6 will discuss which questions arise
from joining both perspectives on the interface of logic and games.

As it happens, the logic-as-games perspective is of broader relevance. Logic games
were originally designed for particular tasks inside logic. Yet, taken to reality, they
can help analyze or streamline actual lines of argumentation. As such they may be
compared to designed parlor games that challenge reasoning skills. A game like Clue
involves an intriguing mix of logical deduction, new information from drawing cards
or public observation of moves, but also private communication acts by players (van
Ditmarsch, 2000). Other parlor games, such as Nine Men Morris (Gasser, 1996) are
graph games (Grädel et al., 2002) with added chance moves that serve to diminish
the risk of finding a repeatable simple strategy on the fixed board. The logical study
of playable designed games for bounded agents, and the design of new such games,
is a natural sequel to this entry (cf. van Benthem and Liu, 2018).

1.5 Probability

Game theory may be understood as generalized interactive decision theory. A major
vehicle for the latter, just as for standard decision theory, is probability theory.
Within games, probability can assume many roles. It may, for instance, express
players’ degrees of belief quantitatively, but it can also enrich the space of actions
with mixed strategies, thereby laying the ground for general equilibrium results.
Probability can even play a role in the very definition of certain important games,
especially in evolutionary game theory (Osborne and Rubinstein, 1994). In this
entry, probability is only mentioned in passing. Section 5, however, maps some
combinations of logic and probability that are suggested by the study of games.

1.6 Zooming in

Games have a natural interface with logic in all its varieties, including mathematical,
philosophical, and computational logic. In one direction of contact, logic can provide
new abstract notions underneath game theory. Conversely, game-theoretic notions
can also serve to enrich logical analysis. The present entry mainly concentrates on
the first of these directions, the use of logic for analyzing games. It does so mostly
from a semantic perspective, the dominant paradigm so far in the area. Though
proof-theoretic approaches will be mentioned occasionally. The sections to follow
elaborate on this theme along several dimensions. Specific persepctives include logics
for game structures (Section 2), logical analysis of the nature of players (Section 3)
and of the process of game play (Section 4). Additional spotlights are put on the
relationship between logic and probability in the context of games (Section 5) and the
endeavor of Gamification (Section 6). Each section forms a free-standing exposition,
which results in some unavoidable, and perhaps useful, overlap. Throughout the
exposition, some familiarity is assumed with the basic concepts of logic and game
theory. In particular, notions of game theory left unexplained here can be found in
the corresponding entry and in Leyton-Brown and Shoham (2008).
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2 Game structure and game logics

This first zoom in section focuses on game structures in a narrow sense. Game forms
leave aside agents and notions typical for these, such as preferences or information.
Players, as well as the temporal progression of play will be added in later sections.
Even so, there is a good deal of structure in game forms to be studied by logical
techniques.

2.1 Levels of representation

The starting point of any logical analysis is to fix its perspective on games. This
section will review several major candidates for doing so, starting with the two most
prominent perspectives. The first of these makes the temporal structure of a game
explicit, representing it as a tree in the standard mathematical sense.

Example A two-player extensive form game.

O1 O2 O3 O4

EE

A

a b

dc dc

A game in extensive form is a tree where each non-terminal node or state specifies
which player is to move next, while edges correspond to the players’ possible moves.
The leaves of the tree, finally, denote the possible outcomes O of game play. There
are many possible variations on these stipulations for states and moves, but they do
not affect the essentials of a logical analysis.

The second major perspective on games emphasizes the players’ available strategies.
Suppressing all information about temporal structure, a game in strategic form yields
the matrix pictures known from game theory. In its classic interpretation, a game
in strategic form represents a set of players that each select a complete strategy
for the entire game without knowledge of the other players’ choices. Each strategy
profile, i.e. combination of one strategy per player, then induces an outcome Oi.
The motivation for this structure might seem complex on first sight. Yet, it can
also be viewed as something quite simple: a one-step game with parallel rather than
sequential moves, which is the simplest case of simultaneous action.

Example A two-player strategic form game.

E

A
a b

c O1 O2

d O3 O4
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Extensive and strategic forms differ in their focus. The former emphasize the se-
quential temporal structure of a game, while the latter highlights strategy choice
prior to play. One can freely switch between both when appropriate to the purpose
at hand. Besides these two, there are other natural dimensions, highlighting players’
powers for influencing outcomes (cf. Section 2.5) or players’ information about the
game (cf. Section 3.6).

Remark While all examples so far concerned two-player games, no such restriction
is needed. Both extensive games and strategic form games work for any number of
players, although occasional subtleties may occur. A few will be mentioned below.
Moreover, with more players, the possible coalitions enter the picture, a topic that
will not be treated in this entry. Finally, selected aspects of agency may sometimes
enter through the back door. Many scenarios in real life contain external chance
events outside of any player’s control, such as a roll of a die, weather conditions,
or technical malfunctions. Such factors can usually be incorporated into a logical
analysis by admitting Nature as additional player.

2.2 Invariance relations between games

With different ways of representing a game at hand, there is a natural follow up
question concerning equivalence. Given two game structures, when are they repre-
sentations of the same underlying game? The answer is that it very much depends
on what aspects one is interested in.

Example The same game, or not?

q r

Ep

A

p q p r

AA

E

Consider the two game forms above. If one cares about exact sequences of moves or
the choices players have along the way, these games are different. The game to the
left has A move first, while E begins in the game on the right. In the game on the
left, A may face a choice between p and q. This cannot happen on the right.

Caring about exact moves as done here constitutes a fine-grained perspective on
games. There are others. When focusing on players’ powers for bringing about
certain outcomes, for instance, the analysis changes. In the game on the left, A has
a strategy (playing left) that ensures the game to end up in an outcome satisfying
p, and one (playing right) that restricts possible outcomes to those satisfying q ∨ r.
With this second strategy, the further choice which of q, r gets realized is left up
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to player E. Also the second player, E, has two strategies in the game on the left,
one (playing left) ensuring the outcome to satisfy p ∨ q, the other (‘playing right)
guaranteeing that the outcome satisfies p ∨ r.

Performing the same calculations for the game on the right, virtually the same player
powers emerge. More precisely, A’s uniform strategies left-left and right-right yield
p and q ∨ r respectively, exactly the same powers as in the left game. The two
remaining strategies left-right and right-left yield p ∨ q and p ∨ r, both of which are
mere weakenings of A’s power to achieve p. Thus, at the level of players’ powers, the
above two game forms should be considered the same.

As this example illustrates, there are several legitimate ways of comparing games.
When taking a fine-grained focus on the internal structure of a game, a natural
candidate is the notion of a bisimulation (cf. Blackburn et al., 2001). A bisimulation
Z ⊆ G1×G2 relates states of two game forms G1 and G2 subject to four conditions:
States m and n may only be related when i) the same player is to move in m and n,
ii) m and n do not differ in any of their basic local properties, while iiia) whenever
there is an available move of type a in G1 leading to a state m′, there is a matching
available move of type a in G2 leading to a state n′ with m′Zn′, and vice versa iiib)
whenever there is a move in G2 that leads to a state n′, there there is a move of the
same type in G1 leading to a state m′ with m′Zn′.

Example A bisimulation between games.

O1 O2 O3 O4 O3 O4

E

E
E

A

a b c

de
gf f g

O1 O2 O3 O4

E
E

A

a b

de
gf

Z

Z

This particular notion of bisimulation is not the only invariance that makes sense for
games. A more coarse-grained perspective, for instance, might not distinguish moves
by their particular action types, but merely by which player is to perform them. A
corresponding bisimulation can be defined by omitting references to particular action
types in conditions iiia) and iiib) above.

Further notions of bisimulation take an even coarser perspective on the games’ move
structure, for instance by allowing to contract zones where the same player moves
several times in a row. Finally, dropping all information about players and their
choices, games can be compared by the sequences of moves they admit. This purely
observational notion, known as trace equivalence in computation, may, howevver, be
less relevant in the context of games. An alternative approach to coarsening focusses
on the players’ powers to control outcomes, cf. Section 2.5.

While most notions of invariance discussed so far related to extensive form games,
a similar style of analysis applies to games in strategic form. Pacuit et al. (2011)
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define modal bisimulations that connect outcome states of different matrices, and
apply bisimulation’s back-and-forth conditions to the relevant relations of players’
choice, freedom, and preference.

This may be a good point to stress once more that the present section is concerned
with game forms only, omitting any player related aspect such as preferences between
outcomes. When these are added, identifying appropriate notions of invariance be-
comes more challenging, as will be discussed in Section 3 below.

2.3 Languages matching invariance relations

The choice of invariance relations mirrors which structure is deemed relevant within
a given perspective on games. A central tool for bringing out such relevant aspects
is the existence of a logical language matching some invariance relation. In general,
the more fine-grained the invariance perspective, the more distinctions a matching
language should be able to make.

For a start, if one is interested in the properties a player can bring about through
moves, a good choice of language is based on modalities 〈movei〉ϕ, expressing that
at least one of i’s available moves leads to a next stage satisfying ϕ. The following
illustrates how this language works in a given extensive form game.

Example Modal game language.

winE winA winA winE

r

RA RA

RERE RERE

The modal formula [moveA]〈moveE〉winE , true at root r, expresses that E has a
strategy that ensures her a win in two steps: whatever A does, E can react in such a
way that she ends up in a node where she wins. In a more fine-grained perspective,
the modal language could add expressions [a], [b] . . . for specific move types a, b, . . ..
In this language, the coarse-grained modality 〈movei〉ϕ is definable by the disjunction∨
a is a move for i〈a〉ϕ, making the new language a refinement of the old.

In this way, general results of modal logic apply to games. For instance, take pointed
models such as game trees with an indicator for the current moment. Whenever two
such pointed models G,m and G′,m′ are bisimilar in the first sense defined above,
the equivalence G,m � ϕ iff G′,m′ � ϕ holds for all formulas ϕ in a sufficiently
rich modal language with modalities [a] for each move label. Thus, one can switch
between syntactic, language based perspectives and semantic invariance relations,
depending on what is convenient for a given perspective on games. Entirely similar
points hold for bisimulations and modal languages for power perspectives, or for
strategic form games.

12



Finally, modal languages do not have exclusive rights. If still more fine-grained
perspectives are needed, more expressive first-order or higher-order languages become
serious contenders for describing games.

2.4 Modal logic of extensive games

A language for games facilitates both, defining properties of games and reasoning
about them. An example are winning strategies for players in a two-step extensive
game as just discussed. More generally, for any finite extensive game, there are
formulas ϕj for each agent j that are true iff j has a winning strategy:

ϕj := [movei]〈movej〉[movei] . . .winj

where the number of operators in the formula corresponds to the depth of the tree.
Thus, logical laws governing reasoning with such formulas acquire game-theoretic
content. For instance, the negation of the statement that one player, A, has a
winning strategy is provably equivalent to saying that the other player, E, has a
winning strategy, at least in those cases where A wins if and only if E does not:

¬ϕA =¬〈moveA〉[moveE ]〈moveE〉 . . .winA
↔ [moveA]〈moveE〉[moveE ] . . .¬winA
↔ [moveA]〈moveE〉[moveE ] . . .winE = ϕE

Hence, the logical law of excluded middle in its modal guise corresponds to Zermelo’s
theorem, stating determinacy for finite games.

Yet, there are limitations to such characterizations of game-theoretic properties in
terms of logical laws. Formulas stating whether some player has a winning strategy
change from model to model, as the number of modal operators depends on the size
of the game tree. In fact, there is no uniform formula in the basic modal language
expressing that player i can win in an arbitrary finite extensive form game. Such
a formula can only be found in the modal µ-calculus (Venema, 2008), where the
statement that i has winning strategy can be expressed with the fixed-point formula

µp. (wini ∨ (turni ∧ 〈i〉p) ∨
∧
j 6=i

(turnj ∧ [j]p)

The more general point here is that the recursive nature of game-theoretic equilib-
ria and solution concepts reflects naturally in logics with fixed-point operators for
induction and recursion.

In this setting, known results about modal logic acquire a new significance. In the
realm of finite models, for instance, having the same modal formulas true at two
states is equivalent to there being a bisimulation connecting those two states (cf.
Blackburn et al., 2001). Hence, whenever two finite games satisfy the same modal
propositions in their respective roots they are equivalent in the sense of bisimulation.
For infinite models, such results are less direct. A full equivalence between bisimula-
tion and satisfying the same formulas, for instance, only holds for an extended modal
language with infinite conjunctions and disjunctions. Other relevant results include
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the existence of modal formulas that define given pointed models up to bisimula-
tion. Such formulas sometimes exist in the basic modal language, sometimes in the
µ-calculus, and always in the infinitary modal language. Applied to concrete games
G, these modal definitions can be viewed as complete descriptions of all properties
of G at the relevant level of invariance.

Finally, modal logic has many complete proof systems for capturing the valid con-
sequences on various classes of models (Blackburn et al., 2001). These calculi of
reasoning also apply to games, where they can capture aspects of specialized game-
theoretic argumentation. Proof-theoretic perspectives are not the focus of this entry,
but a number of strands will be mentioned where appropriate.

2.5 Modal neighborhood logic for powers

Besides extensive form games, standard modal logic is also suitable for the power
perspective on game structure. Sometimes, one ignores the internal mechanisms
of a game altogether, merely viewing it as a black box social mechanisms where
players control outcomes to a certain extent. In this perspective, a player can force
the outcome of the game to be in a some set X if she commands a strategy that
ensures the game to end up in an outcome of X, no matter what the other players
choose to do (van der Hoek and Pauly, 2007). Similarly, a player can force that some
proposition ϕ holds if she has the power to enforce that the game ends in a ϕ state.
The collection of all sets of outcomes an agent can force are often called her forcing
powers. In classical game theory, these forcing powers sometimes go by the name
of effectivity functions (Peleg, 1998), which are often also studied for coalitions of
players (see Pauly, 2011; Goranko et al., 2013, and the entry on coalitional powers).

Example Powers in extensive games.

p p p, q q

EE

A

moveA moveA

moveEmoveE moveEmoveE

Notably, forcing powers are not closed under conjunction. In the game above, agent
A can force p and q individually without being able to force p ∧ q. In modal logic
terms, forcing powers give rise to a neighborhood model (Pacuit, 2017), where the
neighborhood functions list the set of outcomes players can enforce from a given
state. Reasoning about forcing powers can then employ a logical language with
forcing modalities {i} for each player:

{i}ϕ agent i can force the outcome of the game to satisfy ϕ.
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These modalities can be interpreted over the extended game forms with neighborhood
functions described above. On the semantic side, a generalization of the neighbor-
hood models defined above support a generalized notion of power bisimulation, see
Pacuit et al. (2011).

The modal logic of powers allows to reason about games at a global level of de-
scription. The modal logic of neighborhood models validates the standard modal
monotonicity priniciple

{i}ϕ→ {i}(ϕ ∨ ψ),

as follows already from the truth definition of forcing modalities. However, as forcing
powers are not closed under intersection, the aggregation law fails:

({i}ϕ ∧ {i}ψ) 6→ {i}(ϕ ∧ ψ).

Instead, the logic contains new valid principles relating forcing modalities for different
players. For instance, if i can force the truth of ϕ, then no other player j can force
its falsity. Thus,

{i}ϕ→ ¬{j}¬ϕ

is a valid principle of ‘consistency of powers’ in the logic of forcing powers. The
converse of this principle for games with two players i, j

¬{j}¬ϕ→ {i}ϕ

expresses the notion of determinacy from the last section. This formula is not gen-
erally valid, but it is an axiom for the special class of determined games.

Finally, there also is an alternative, more algebraic perspective on powers, assuming
an earlier-mentioned perspective of logic games. The two games depicted in the core
example of Section 2.2 may be seen as evaluation games for propositional formulas

p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r).

Their equivalence qua powers, described earlier, then matches the standard propo-
sitional law of distribution. This algebraic perspective will return in Section 2.9.

More recent views of forcing and powers re-interpret the sets X of outcomes employed
in the above definitions as referring to both players: one player restricts the total
set of outcomes, while the other players can achieve all outcomes within that set.
This variation significantly impacts the corresponding notions of game equivalence,
as well as the modal languages used (Bezhanishvili et al., 2018b).

2.6 Modal logic for strategic games

In the strategic perspective on games, players select actions simultaneously, without
having learned about their opponents’ choices of actions. This requires an additional
level of analysis. Besides the various possible moves, an adequate representation must
also track players’ uncertainty about how their opponents might act.

In terms of matching logical languages, this suggest a multi-modal approach, with
[≈i] ranging over i’s possible choices, and [≡i] representing her uncertainty about the
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opponents, see Pacuit et al. (2011). Moreover, when considering games rather than
game forms, this picture needs to be enriched with a third feature, viz. preference
modalities [�i], see Section 3.

Games in strategic form can be viewed naturally as models for a modal language
of choice and uncertainty, where each state m consists of a strategy profiles, i.e.,
a sequence (m1,m2 . . .) listing each player’s choice of action. For convenience, the
preference modality has been included:

G,m � [≈i]ϕ Given the opponents’ actions, ϕ holds whatever i does.
G,m � [≡i]ϕ Given i’s choice, ϕ holds whatever the opponents do.
G,m � [�i]ϕ ϕ holds in all states at least as good as the current one.

This multi-modal language can express a variety of statements about strategic form
games, such as:

〈≈i〉〈≡i〉ϕ ϕ is a possible outcome of the game
[≈i][≡i]ϕ all outcomes of the game satisfy ϕ
[�i]〈�i〉ϕ optimal states for some player satisfy ϕ

In the case of two players, one agent’s choices corresponds to the other’s uncertainty
and vice versa. This shows in the validity of principles such as

[≡i]ϕ↔ [≈j ]ϕ

More generally, the logic of matrix games includes the S5 axioms for both [≈i] and
[≡i], but also the commutation law

[≈i][≡i]ϕ↔ [≡i][≈i]ϕ

expressing the grid-like structure of matrix games. This logic bears some resemblance
to STIT-type logics of actions (Herzig and Lorini, 2009). Technically, a grid structure
in models allows for encoding of undecidable computational problems (Blackburn
et al., 2001), rendering it an open problem whether expressive modal logics of game
matrices are decidable.

The step from two to more players, often routine in epistemic logics, can be delicate in
the logic of matrix games. Accessibility relations of type [≈i], interpreted as identity
of profiles except for the i-coordinate, yield a product logic akin to the three-variable
fragment of first-order logic which is known to be undecidable (Bezhanishvili, 2006).
However, with only relations of identity at the i-coordinate, i.e. [≡i], the logic
remains decidable (Venema, 1998; Van De Putte et al., 2017; Lomuscio et al., 2000).

2.7 Strategies as logical objects

There is further structure in extensive games than just single moves. In game trees,
a player’s strategy specifies what to do at each turn, whether this turn will ever be
reached or not. An increasing body of work examines such strategies and their un-
derlying formats. See Gosh et al. (2015) for an overview of various logical frameworks
for reasoning about strategies.
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In one concrete perspective, a strategy is akin to a program that instructs the agent
on how to navigate a game tree. Hence, a natural logic of strategies uses the language
of propositional dynamic logic of programs PDL, an approach that will return later.
As programs are in general non-deterministic, such logics let a strategy recommend
one or more actions the agent should take at each turn. In this perspective, strategies
resemble plans that might remain partial.

In a program format, strategies start with basic actions, representing individual
moves in a game tree. From there, complex programs π can be created using oper-
ations including sequential compositions π1 ;π2 (π1 is to be performed followed by
π2), or choice π1 ∪i π2 (agent i is to pick between actions π1 and π2 ). Moreover, a
test operation ?ϕ for checking whether ϕ holds, enables strategies to react to prop-
erties of states or opponents’ past actions. Finally, to describe continuous execution
of a strategy along a game tree, it makes sense to have an operation π∗ of program
iteration, stating that π be executed arbitrarily often.

The language of PDL then has modal operators [π] for every program π that can
be defined from the basic actions and the operations just described. A simple such
strategy advises player i to do a whenever it is her turn. The following formula states
that this strategy ensures that ϕ holds throughout:

[((?turni ; a) ∪ (?turnj ;movej))
∗]ϕ

Program definitions for strategies given here are closely related to the use of finite
automata for defining strategies in computer science and game theory (Osborne and
Rubinstein, 1994; Grädel et al., 2002; Ramanujam and Simon, 2008).

2.8 Simultaneous moves and imperfect information

In the extensive form games of Section 2.1, players move in sequence and can base
their decisions on full information of what has happened so far. The other extreme
were games in strategic form, where agents move in parallel or, in the interpretation
of strategy selection, have no means of picking up information during actual play.
There are ample scenarios in between these extremes. Public good games with op-
tional retribution against non-cooperators (Andrighetto et al., 2013), for instance,
combine moments where some or all players make simultaneous moves with infor-
mation collection along the way. Such parallel action can be mimicked in sequential
games by limiting the information available to players at various states of the game.
The resulting games of imperfect information will be discussed in Section 3, alongside
other sources of imperfect information.

Further well-known logical approaches to parallel action employ STIT logic (Horty
and Belnap, 1995; Broersen, 2009), and temporal logics such as ATL (Alur et al.,
2002) or its epistemic variant ATEL (van der Hoek and Wooldridge, 2003).

2.9 Game algebra and dynamic logic of computation

So far, games were treated as monolithic entities that agents reason about in their
entirety. This can be at odds with how real life agents conceptualize games. To
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facilitate reasoning, games are often broken up into smaller tasks that are easier to
handle separately. A chess player, for instance, may know how to solve different end
games. Rather than reasoning about every possible situation until its end, she will
evaluate different options in mid-play by considering which of these end games they
will, most likely, lead up to. In this perspective, complex games are constructed
out of simpler games that may profit from separate analysis. Games then form
an algebra with operations that construct complex games from simpler ones. This
style of thinking is reinforced when games are viewed as scenarios for interactive
computation, where again algebraic methods are used widely(Bergstra et al., 2001).

Here is an illustration of this approach. For simplicity, consider only two players, A
and E, the latter of which starts the game. One influential game algebra has the
following operations, cf. Parikh (1985).

G ∪G′ Agent E has the choice between playing G and G′, i.e.,
represented by a choice node with two outcomes G and G′

G ;G′ G is played first, followed by G′

(·)d The roles of the players A and E are interchanged
?ϕ Test game whether some property ϕ holds.

For instance, take a chess player in mid-game reasoning. For simplicity, restrict the
possible end games to GE1

and GE2
. The player can then conceptualize mid-play as

a game Gmid with end nodes labeled by propositions p1 or p2, describing which of
the two end games follows. The full remaining chess tree is then given by

Gcomplete = Gmid; ((?p1;GE1
) ∪ (?p2;GE2

)).

Equational axiomatizations for this game algebra can be found in Goranko (2003) and
Venema (2003). However, following the analogy of propositional dynamic logic for
an algebra of programs, there also is a dynamic game logic for this algebra of games,
(Parikh, 1985). It adds a modality {G}ϕ for each game G, with {G}ϕ expressing
that in game G, the first player E has a strategy to force the truth of ϕ. For the case
of non-determined games, the language will be extended further to include separate
modalities {G, i}ϕ, one for each player i. Dynamic game logic shows in a perspicuous
manner how strategic abilities for complex games supervene on abilities in simpler
games. This is done by means of reduction laws such as

{G;G′}ϕ↔ {G}{G′}ϕ, {G ∪G′}ϕ↔ {G}ϕ ∨ {G′}ϕ

For a complete list of reduction laws, as well as open problems in this dynamic
game logic see Pauly (2011); van Benthem (2014). For other styles of game algebra,
including also forms of parallel composition, cf. Abramsky (1997).

It should be said that imperfect information challenges this approach to game alge-
bra. For instance, one may have to decompose a larger game into smaller subgames
where agents need not know which of these subgames they are in. Game algebras
with imperfect information have been studied in the context of Boolean Games (Har-
renstein et al., 2001). A recent power-based game algebra with operations encoding
imperfect information, showing some analogies with IF logic (Mann et al., 2011) can
be found in Bezhanishvili et al. (2018b).
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2.10 Special topics

Coalitions and Networks Nothing has been said so far about social or structural
relations between players: they move individually and in interaction with all other
players. However, in many games, groups of players can team up to jointly pursue
goals, possibly in competition with other groups. Coalitions are a natural, but non-
trivial extension of the logical frameworks introduced here, as strategic abilities of
groups may exceed those of all members combined, see Peleg (1998) and the entry on
coalition powers in games. In other studies of social phenomena, the set of players is
equipped with an additional network structure. An agents’ outcome or behavior will
then depend upon what network neighbors do (Baltag et al., 2018; Christoff, 2016).
Lastly, games on networks are closely related to information flows in social networks,
as studied in depth by Liu et al. (2014) and Seligman and Thompson (2015) from a
logical perspective.

Tracking This section contains a wide variety of perspectives on games. These differ
in their invariance relations and their matching languages, offering different foci such
as outcomes, powers, or the detailed temporal evolution of games. Even further
perspectives will no doubt keep emerging. This diversity may seem overwhelming,
making the field rather scattered. But here, another role of logic shows, by not just
proliferating systems, but also as connecting them. Various logical translations exist
between the languages and levels involved. Often, reasoning about games in a logic
for some level can be mirrored precisely under translation into the logic of another
level. Moreover, these translations can often keep track of changes in games under
actions of information updates, a topic to be taken up in Section 3. Tracking of this
kind is defined and studied in general logical terms in van Benthem (2016) and Cinà
(2017).

Infinite games So far, games were tacitly assumed finite in length. This assump-
tion is innocuous for many real life scenarios, yet there are notable exceptions. A
prominent example are safety games, where one of the players, the guard, has to
ensure a system to never leave a certain state, while the opponent attempts to de-
viate. Many technical tools for finite games also work for infinite games. There is,
however, a number of conceptual and logical discontinuities. Since infinite games
have no last moments, for instance, outcomes must be attached to complete histories
of game play, rather than nodes of a tree. Reasoning about games then requires
temporal modalities for a given history, but also modalities ranging over all open
future histories. For analyzing powers, then, temporal versions of forcing modali-
ties are needed. With these modifications, a logical style of analysis still applies.
For instance, it is well-known that determinacy fails for infinite games (Jech, 2006).
However, what holds for all games is a law of ‘weak determinacy’ stating that, if i
has no strategy to force a set of histories satisfying ϕ, her opponent j can ensure that
i will never obtain such a ϕ-strategy in the future. The difference between standard
determinacy and weak determinacy is captured by the following two formulas, that
are entirely in line with this section’s style of analysis: {i}ϕ ∨ {j}¬ϕ (determinacy)
versus {i}ϕ ∨ {j}G¬{i}ϕ (weak determinacy), where G is the temporal modality of
‘always in the future on the current history’.
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3 The Nature of Players

Game forms may be seen as spaces where players can operate. A game, however, is
not fully determined by its game form alone. Rather, the players involved may import
additional features relevant for game play. Players can, for instance, be limited in
their powers of observation, either by aspects of the game structure or through
cognitive limitations. The most striking added feature, however, is that players have
preferences. Agents not only observe the world or act in it. While these describe
mere kinematics of a game, agents also evaluate the present and various possible
futures. Being driven by preferences, it is such evaluations that are the moving force
behind player’s choices. Preference, hence, take a prominent explanatory role for
true game dynamics.

This section places its focus on the preferential and epistemic dimensions of players.
Such factors are essential to notions of rationality where information, action, and
preference are often entangled. In game theory, a harmony between these is often
sought in notions of equilibrium for strategy profiles.

3.1 Preference and equilibria

Game trees and game matrices specify the moves available to players at different
moments in time. They also indicate all possible outcomes, either as cells in a matrix,
or as leaf nodes in an extensive game. However, to study what players should or will
do in a game, a further component is needed: players’ preferences. Such preferences
need not only reflect material pay-offs or other features of outcome states. Rather,
they may also relate to the process of play itself. Moreover, preferences may contain
irreducibly subjective elements. Even when assuming the same role in a game,
different players may disagree about the relative desirability of certain outcomes
(Fehr and Schmidt, 1999).

Within a static, outcome-oriented perspective on games, a major emphasis is on
equilibria: strategy combinations where all players do the best they can in light
of their preferences and the opponents’ strategies. A further, dynamic perspective
focuses on how such equilibria relate to individual players’ stepwise local reasoning
on how to act in light of their beliefs and desires. This perspective is taken up in
Section 4.

3.2 Preference logics for games

For reasoning about preferences, it must first be specified what it is that agents’
preferences apply to. The orthodox account lets preferences exclusively range over
possible outcomes (Osborne and Rubinstein, 1994). However, a growing trend in
the logical literature assumes agents to rather care about the truth value of general
propositions than can describe both the progression or outcome of a game. While
not equivalent, the two perspectives are compatible. Both will be discussed in this
section.

In the classical picture, player i’s preferences on a game tree are represented by a
preference relation ≺i ranging over the set of outcomes. Such a relation is usually
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assumed transitive and reflexive, but need not be total.

Example A game tree with preferences.

O1 O2 O3 O4
≺A ≺A ≺A
�E �E ≈E

EE

A

a b

cd ce

Just as with the earlier modal logics for game forms, a relatively simple logical
formalism can already express relevant aspects of agency in games. It offers a low-
complexity language for expressing basic features of action and information, without
going into details of the underlying quantitative mechanisms. More precisely, games
with preferences naturally support a logic with modal operators [�i] interpreted as
follows:

[�i]ϕ ϕ holds in all states at least as good as the current one to agent i.

Logics of this type can express various properties relevant to games. They can, for
instance, say that all states better than the current one are ϕ states, making moving
towards ϕ states a necessary condition for maximizing utility. They can also express,
that all best states are ϕ states, with the formula

〈�i〉[�i]ϕ

For more on modal preference logics, see Hansson (2002, 1990),Girard (2008) and
van der Torre (1997).

Modal preference logic has further extensions with natural connections to games. In a
refined perspective, for instance, preferences may derive from reasons, say, criteria or
goals various agents want to achieve. This gives rise to a duality between preference
relations among outcome states and priority orders over formulas, describing the
agents’ goals. Dynamic accounts, finally, track how preference can change under
various input events. For more on both of these issues, see Liu (2011).

However, modal preference logics, construed either way, are not yet rich enough to
express one of the essential notions of game theory. Further extensions are needed
to deal with best responses, expressing that the current move of a player is the best
she can do in light of her opponent’s actions.

Best response moves are the main ingredient for game equilibria. Formally, a Nash
equilibrium is a strategy profile, fixing a unique choice for each player, where nobody
can improve by unilaterally changing strategy when all others maintain theirs. There
are several ways of defining this property in extended modal preference languages.
One possibility is to simply introduce a new atom bi, stating that the current world
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is the best player i could have achieved in light of the opponents’ actions. In this
language, Nash equilibrium are characterized by∧

i∈Players

bi.

More explicit definitions exist, building on the strict preference modalities of van
Benthem et al. (2009). Yet, perhaps the simplest illuminating approach uses an
intersection modality from hybrid logic (Areces and ten Cate, 2007) combining the
agent’s preference relation with her uncertainty between the opponent’s action to
characterize best responses and Nash equilibria (cf. Section 2.6):∧

i∈Players

[≺i ∩ ≡i]⊥

Expressing Nash equilibrium has served as a benchmark for logics of strategic games
(van der Hoek and Pauly, 2007). Yet there are other desiderata, often connected to
analyzing standard game-theoretic solution concepts for games. These are usually
designed to find Nash equilibria or at least narrow down the strategy profiles to those
compatible with certain requirements of rationality. Well-known methods of this
kind are Backward Induction for extensive games and Iterated Removal of Strictly
Dominated Strategies for strategic form games (Osborne and Rubinstein, 1994).
These will be discussed now, as they raise intriguing further logical issues.

3.3 Backward Induction in extensive form games

Here is a high-level description of Backward Induction. In extensive game forms, the
aim is to introduce a new preference-based relation besti, denoting that some move
is the best a player can do at some given state. Thus, besti is a subset of player i’s
total move relation, to be defined in a suitable manner.

For final moves, standard decision theory suggests that a choice is best for the active
player if no other move leads to a better outcome. When extending the analysis
to earlier positions of the game, things depend crucially on players’ expectations
about their opponents’ future behavior. Several possible policies exist, depending
on the types of player involved. A widespread assumption in epistemic game theory
is common belief in rationality, i.e., that all players involved are rational, believe
their opponents to be rational, believe their opponents to believe that opponents are
rational, and so on. In line with this assumption, the following algorithm extends
the besti relation recursively to non-terminal nodes:

Whenever player i is to move at state s, possible choices are assessed by
comparing what would happen if, after that move, everybody followed
their best relation. A possible move at s is included in i’s best relation
if the best outcome of this move followed by repeated best moves by all
players is at least as good as every other move i could make at s, followed
by best moves by all players.
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Here is how this bottom-up procedure works in practice.

Example Backward Induction.

O1 O2 O3 O4
≺A ≺A ≺A
≈ E �E �E

EE

A

bestA

be
st
E

be
st
E

best
E

This procedure is a qualitative version of classic game theory’s Backward Induction,
which is based on utility values rather than preference relations (Leyton-Brown and
Shoham, 2008).

Backward Induction and the resulting best relation is a prime example for the com-
plex entanglement of preferences, information and action. A key modal axiom gov-
erning this relation was identified by Roy et al. (2006). Best∗ denotes here the
transitive closure of the union of all besti relations.

(turni ∧ 〈best〉[best∗](end→ p))→ [movei]〈best∗〉(end∧〈�i〉p)

Describing the limit of a dynamic process with a static property, this equivalence
exemplifies a family of characterization theorems that play a crucial role within the
logical analysis of games. Other dynamic perspectives can be analyzed in a similar
logical style (Liu, 2011).

3.4 Iterated removal of dominated strategies

Iterative reasoning strategies akin to Backward Induction also exist for games in
strategic form. Rather than defining a new unary move-predicate best, however,
these procedures work by eliminating suboptimal actions. An action a is labeled
suboptimal or dominated if there is some other available action, b, that guarantees a
better result than a, no matter what the opponents do. In this case a rational player
should drop a from her space of admissible acts, as she would never play it.

Just as Backward Induction, dominance reasoning has an iterative flavor. Assum-
ing common belief of rationality, players can expect their opponents to also drop
dominated actions from consideration. Doing so reduces the game and might render
further moves dominated, as is illustrated in the following example. Within the left-
to-right temporal progression, moves are greyed out as they get discarded. Players’
preferences are represented with numerical values with 1 the best and 4 the worst.

c d
a 1,1 4,3
b 2,2 3,4

c d
a 1,1 4,3
b 2,2 3,4

c d
a 1,1 4,3
b 2,2 3,4
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The fact that further strategies may become dominated suggests to repeat the proce-
dure, turning removal of dominated strategies into an iterated process. When games
are finite, this process is guaranteed to converge in finite time. Iterated removal of
dominated strategies on binary preference relations is a qualitative variant of the
version employed in classical game theory, where cardinal utility values are assumed
(Leyton-Brown and Shoham, 2008).

A closely related process is iterated removal of weakly dominated strategies, where
some move a is deleted if there exists a b that outperforms a on some of the oppo-
nents’ moves, while being at least as good on the remaining ones. Unlike its strict
counterpart, iterated removal of weakly dominated strategies suffers from a number
of technical and conceptual intricacies, such as order dependence of iterated deletion
(Samuelson, 1992; Pacuit and Roy, 2011).

3.5 Goals

Generalizing the concept of winning or losing, agents can be assigned goals they
pursue in a game. Restricting to a single goal per agent retains a binary perspective:
A goal is reached or not. Goals, however, allow for additional flexibility. Besides pure
competition as in win-lose games, these can also express pure coordination games,
with everybody pursuing the same goal, or mixed motive games with partial overlap
between different players’ goals.

The concept of goal functions is particularly prominent in the logical framework of
Boolean games (Harrenstein, 2004). There, each agent is given control over some
atomic propositions, permitting her to freely decide on their truth value. Goals are
then formulated as propositional formulas over the set of all players’ atoms. Crucially,
a player’s goal formula might hence involve atoms that are not under her control.
In iterated extensive Boolean games, goal formulas might also refer to properties of
histories of play defined in temporal logics (Gutierrez et al., 2015)

3.6 Knowledge, belief and limits of information

There are various types of information players can possess or lack about a game. First
and foremost, players can be uncertain about the types of opponents they are facing:
their preferences, their reasoning about the game and how they expect the game to
unfold. Second, agents’ uncertainty can extend to the game itself. Players, of course’
won’t know their opponents choices in a simultaneous move game. Besides, agents
might also have limited information about past moves and events. Such uncertainty
can arise from the game structure eschewing certain observations, but also from
failing to record past information properly. In yet more extreme cases, agents might
even be unsure about the moves available to their opponents.

Given the various limitations to their knowledge, players may entertain beliefs to
structure their uncertainty. Such beliefs may, naturallr, change over time, as players
communicate or observe the game unfold. The importance of beliefs in the logical
analysis of games has been emphasized in Stalnaker (1998), who was the first to
highlight the role of belief revision in analyzing reasoning about game solution.
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Uncertainty about moves

In one sense of uncertainty, even highly idealized agents might have but limited
information of what has happened so far. In certain cases, the game’s structure
may limit some players’ observational powers of their opponents’ moves. In other
instances, agents may suffer under cognitive limitations restricting their perspective
on the game. Or, sometimes, agents might simply fail to record some of the moves
made by themselves or others.

Within extensive games with imperfect information, all such cases are represented
by indistinguishability relations A between states m,m′, expressing that agent
A cannot distinguish between being at m and m′. Notably, this does not preclude
the player from learning later on in the game whether he has been at m or m′.

Example A game with imperfect information.

winA winE winE winA

m Am′A

E

hL hR

pRpL pRpL

A

While allowing agents to lack information of various kinds, the above analysis makes
one structural assumption about players: they always know which moves are avail-
able to them at a given node. In extensive games with imperfect information, this
translates to the requirement that whenever two states are indistinguishable to some
agent, they coincidide on the set of her possible actions.

The move from perfect to imperfect information has major implications for strategic
reasoning. In the game depicted above, player A cannot distinguish between being at
m and m′. When at the former, she may, for all she knows, be at m′ instead. Hence
A’s decision needs to account for both possibilities; she cannot base her choice on
any property that holds at only of those locations. In particular, A has no available
strategy that guarantees her ending up in a winA node. Since E cannot ensure a
win either, no player has a winning strategy. This is a central difference with finite
perfect information games, where it is guaranteed that one of the players has a
winning strategy, cf. Section 2.4.

The logic of imperfect information

Reasoning about imperfect information requires to extended languages for extensive
form games with epistemic modalities. For each player i, modality Kiϕ represents
i’s knowledge. The usual semantics of epistemic logic relates this to uncertainty, as
encoded by the players’s indistinguishability relation:

M,m � Kiϕ all states m′ with m im
′ satisfy M,m′ � ϕ
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This language is best illustrated with the above game tree. To this end, interpret
the tree as the classic children’s game where one player, A, has to guess in which
hand her opponent, E, hides some little token. Once E has hidden the token in, say,
her right hand (move hR), the guessing player has a winning move de re: she should
pick right (pR). However, as the token was placed in secret, she may not know that
picking right is a winning move: the player has no winning strategy de dicto. This
is expressed by:

M,m � [pR]winA ∧ ¬KA[pR]winA.

In a game theoretic setting, the de re vs. de dicto distinction has been studied by
Horty and Pacuit (2017) and van Benthem (2001).

In light of these considerations, the notion of strategy change, and the logics for
defining strategies involve epistemic elements. It seems reasonable to demand that
agents cannot base their choice of strategy on everything that has happened before,
but only on what they know, i.e., their current information (Pacuit et al., 2006). The
resulting uniform strategies (Maubert, 2014), can be defined by the knowledge pro-
grams of Fagin et al. (1997). Further restrictions are possible, for instance granting
agents limited memory that only reaches back a fixed number of moves (Gutierrez
et al., 2015).

The epistemic action language can express many further phenomena in imperfect
information games. The following game is an illustration.

winE

nE n′ E

winAwinE winA winA winE

m Am’A

E

a b

c d c d

A

E

Once player E arrives at node n, she cannot discern that actual situation from node
n′. However, E must have possessed information earlier on that distinguishes n from
n′: to arrive at n, she must have played a as her first choice, while n′ can only be
reached after playing b. Thus, E can only be uncertain between these two nodes if
she forgot about her own previous actions.

The epistemic action language can distinguish between such scenarios with memory
loss and those without. The property of Perfect Recall states that players retain full
memory of all moves they observed. This can be expressed by the following axiom
scheme (Halpern and Vardi, 1986; Bonanno, 2004)

Ki[a]ϕ→ [a]Kiϕ.
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Also the converse of this scheme admits a natural interpretation:

[a]Kiϕ→ Ki[a]ϕ

This No Miracles property expresses that players can only learn by observing moves,
not by any other methods extraneous to the game.

Of course, logic does not presuppose that all players have perfect memory, or that
they cannot pick up any information outside the progression of play. Epistemic action
language can equally well be employed to analyze more general scenarios where the
above axioms do not hold. Especially within dynamic-epistemic versions, epistemic
logics can produce modified versions that cover many more cases than those described
here (van Benthem, 2014). Moreover, further modalities from epistemic logic make
sense, in particular, those for common or distributed knowledge in groups of players
(Fagin et al., 2004a; Meyer and van der Hoek, 1995).

An epistemic component with operators Ki fits with many logical perspectives on
games. In particular, epistemic extensions are as compatible with coarse logics such
as the earlier-mentioned [movei]-setting with a single move-modality per player, as
with fine logics where each individual action type is represent by a distinct modality
[a]. In fact, in Section 2.6, epistemic operators were used for analyzing games in
strategic form, where modalities naturally relate to uncertainty about the other
players’ strategies.

Uncertainty about options and preferences

In more general settings, uncertainty does not stop at the opponents’ informational
states. In international relations or economic bargaining, also the players’ moti-
vations and preferences are not fully known to all parties involved. Within the
corresponding extended form games, players may be uncertain about their oppo-
nents’ preferences and strategic options, whether they can afford a certain move or
whether they actually possess the information they threatened to reveal. Obviously,
uncertainty about preferences or available options will impact reasoning about the
equilibria of a game. Strategic players might even try to exploit such uncertainties,
for instance by pretending to have options they do not possess.

In a first pass, this type of uncertainty can be expressed by introducing nature as
hypothetical player, with a first move that determines the preferences and available
options for all players. A simple example is the game depicted below. At the start,
A is uncertain whether E can reply to A’s move f by playing e. Likewise, she lacks
information on whether E prefers O3 over O4, or vice versa.
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O1 O2 O3≺EO4

EE

vA

Nature

f g

dc dc

O5 O1 O2 O3�EO4

EE

w A
A

f g

de c dc

From a logical point of view, this miraculous initial move by Nature is not needed.
Standard epistemic models can represent the above scenario, and many more complex
ones, by means of the indistinguishability relations introduced above. Technically,
this requires to move beyond standard imperfect information trees to so-called epis-
temic forests (Gerbrandy et al., 2009a), sets of trees linked by epistemic relations.
In particular, the above game tree transforms into

O1 O2 O3≺EO4

EE

vA
A

f g

dc dc

O5 O1 O2 O3�EO4

EE

w A

f g

de c dc

The epistemic action language fortrees works just as well on epistemic forests. How-
ever, in suitably expressive languages, the logic of forests is weaker than that of
trees, as the set of validities on the class of n-player trees is a strict superset of the
validities on n-player forests.

Imperfect information and beliefs

Further enrichments of the logical framework add semantic structure to the agents’
uncertainty. When unable to determine the exact situation, players may classify op-
tions with respect to plausibility. To this end, epistemic models have been equipped
with plausibility orderings ≥i for players i (Boutilier, 1994; Stalnaker, 1968; Baltag
and Smets, 2008).

In the preceding example, plausibility order might work as follows:
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O1 O2 O3≺EO4

EE

vA
≤A
≥E

a b

dc dc

ON O1 O2 O3�EO4

EE

w A

a b

de c dc

This richer structure is reflected by introducing new modalities for agents’ beliefs,
determined by the most plausible states:

M, w � Bi ϕ ϕ holds in all ≥i-maximal states in i’s epistemic range.

Conditional belief, important to players’ planning within a game, can be interpreted
in the same style:

M, w � Bψi ϕ ϕ holds in all ≥i-maximal ψ-states in i’s epistemic range.

These clauses are intended to work in finite as well as in infinite settings. However,
in the latter case minor modifications might be needed akin to those in conditional
logic. These have been proposed in various alternatives. Notably, this enriched
epistemic-doxastic logic allows for further, less standard interpretations beyond those
illustrated so far. Examples are ‘strong belief’, expressing that all relevant ϕ-states
are more plausible than all relevant ¬ϕ states, or ‘safe belief’ saying that ϕ holds
at all states that are at least as plausible as the current one. See van Benthem
and Smets (2015) for an overview of plausibility semantics and its connections to
conditional logic, belief revision theory, dynamic-epistemic logic, and a wide range
of philosophical and technical issues.

3.7 Higher order uncertainty and type spaces

In various scenarios, agents reason not only about the opponent’s preferences or
admissible moves, but also about their beliefs about the game and others’ behavior
therein. In fact, such higher-order reasoning can have a major impact on game
play. A prime example is the Backward Induction procedure of Section 3.3, where
the construction of a best move relation crucially relied on common knowledge of
rationality. More generally, agent’s best moves frequently depend upon what they
expect others to do. This phenomenon is especially prominent for simultaneous move
games, where it occurs in both coordinative scenarios (Skyrms, 2004; Lewis, 2008)
as well as competitive ones (Hotelling, 1990). More details can be found in the entry
on epistemic game theory.

Arbitrary first and higher order levels of knowledge and belief can be represented
with the above relational models, the standard tool in epistemic and doxastic logic.
For information in extensive form games, the epistemic-doxastic perspective on states
can be combined with move-relations in exactly the way described before. The result
are epistemic-doxastic trees or forests that can represent most types of knowledge or
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belief players might have about the game, including its exact shape, previous moves,
opponents’ preferences or opponents’ first- and higher-order beliefs on any of these
matters.

Outside of logic, higher-order information has also been modeled in classical game
theory. Quantitative frameworks represent information as probability distributions
over a given event space. In this setting, higher-order information corresponds to
probability distributions over probability distributions of the right kind. More specif-
ically, nth order information corresponds to a probability distribution over the space
of (n-1)th order beliefs. As shown by Harsanyi (1967), the limit of specifying higher
and higher levels of information can be represented as a type space, where each
agents’ type is a probability distribution over states of nature and the other players’
types. In an abstract sense to be discussed below, these types correspond to states
in standard models for modal logic.

In addition to standard modal models, logic also has a straightforward analogue to
probabilistic type spaces: logical type spaces. In a formal framework first introduced
by Fagin et al. (1999), an n-type is a sequence fn = 〈f0, f1 . . . , fn〉 where f0 specifies
the state of nature, i.e., a valuation recording which atomic propositions are true or
false. f1 lists for all players the states of nature they consider possible. fm for m ≥ 0
then specifies for all players which (m-1)-types, i.e., sequences 〈g0, . . . , gm−1〉 they
consider possible. In this way, an n-type fixes the player’s higher-order beliefs up to
level n. These types are, of course, subject to coherence conditions: the agents’ k-
types for different k must fit together. For instance, whenever some agent considers a
k-type fk possible, she must also consider any initial segment fk′ for k′ < k possible.
Conversely, any k′ type the agent considers must be the initial segment of some
k type the agent holds possible. Type spaces offer a semantics for the epistemic
language: Inductively, for a formula ϕ of modal depth m, Kiϕ is true at a type fn if
all gm ∈ fm+1(i) satisfy ϕ or if m > n.

Alternatively, the set of n-types allows for a natural interpretation as relational
models with accessibility relations defined by

〈f0, . . . fn〉Ri〈g0, . . . gn〉 For all m ≤ n holds gm−1 ∈ fm(i)

Interpreting the set of n-types as a relational model yields a second way of evaluating
the epistemic language on logical type spaces. For formulas of modal depth less than
n the two interpretations coincide. Hence, up to finite depths, type spaces and
their associated relational models are two perspectives on the same informational
situation.

To fix all of the agents’ beliefs, the analysis moves to types f = 〈f0, f1, . . .〉, contain-
ing some fn for every natural number n. In this extended framework the situation
becomes more complicated. The space of all such types is universal in the follow-
ing sense: every relational model can be mapped in a truth-preserving manner to
the space of all types by sending each state to a full description of the agents’ cor-
responding first- and higher-order informational attitudes. This map, however, is
usually not a modal bisimulation. In fact, the process of type construction could be
continued indefinitely, yielding a transfinite hierarchy of mutually non-bisimilar type
spaces (Heifetz and Samet, 1998). Such transfinite types can become relevant when
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the epistemic language is enriched with modalities for common group knowledge, in
which case a full description of all expressible attitudes involves infinite hierarchies
of higher-order information (Fagin et al., 1999). A recent logical study of type spaces
including their probabilistic structure can be found in Bjorndahl and Halpern (2017).

The tight connection between type spaces and relational models is compatible with
additional assumptions that might be imposed on the players’ mental states. Fagin
et al. (1999) characterizes when type spaces give rise to S5 models, while Galeazzi
and Lorini (2016) do the same for multi-agent KD45 belief.

While relational models and logical type spaces represent exactly the same informa-
tion, their main differences is in perspective. Relational models take a third person
bird’s eye view on possible worlds. Their starting point is a set of worlds rich enough
to contain all states considered possible by the relevant agents, together with ac-
cessibility relations modeling players’ information. From there, agents’ first-order
beliefs at the various worlds can be read off and, subsequently, also all higher levels
of information. Logical type spaces, by contrast, assume a first person perspective.
They take a full description of first and higher-order beliefs as primitive and treat
indistinguishability as a derived relation.

Finally, it should be noted that type spaces assume a static perspective on games.
No provisions are taken for representing moves or strategies explicitly, nor for in-
corporating updates of knowledge and belief that occur as a game in extensive form
unfolds, cf. the discussion in Section 4. Thus, there is some distance between type
spaces and the earlier epistemic-doxastic forest models for extensive games. As a first
step towards filling this gap, it has been shown how type spaces can accommodate
product updates from dynamic epistemic logic (Klein and Pacuit, 2014).

3.8 Reasoning, bounded agency and player types

Besides variations in preferences and beliefs, a third crucial aspect of players is their
styles of information processing, decision making, and reasoning. Real cognitive
agents are bounded in their information processing, as both their memory and rea-
soning capacities are limited. In particular, players may not be able to represent the
entire game they are in, nor reason until the end of the game. This phenomenon of
short sight has been studied in Grossi and Turrini (2012) and Turrini (2016). More-
over, in real-life iterated social interaction, payoffs are generated along the game,
and may not be clear beforehand, (Axelrod and Hamilton, 1981). In such contexts,
the best strategy in terms of short-term payoffs need not be optimal in the long run,
but bounded agents may miss this longer horizon, (Klein et al., 2018).

Logical literature on bounded agency is too broad to be surveyed here. For a few
research lines relevant to games, see Fagin and Halpern (1987); Heifetz et al. (2006) on
epistemic logics with awareness, Artemov (2008) on justification logics, van Benthem
and Pacuit (2011) on evidence logics, and Hansson (1998); Lorini (2018) on doxastic
logics with computationally tractable belief bases.

In the game theoretic literature, bounded agents have often been represented as finite
state machines (Gutierrez et al., 2015; Binmore and Samuelson, 1992). Limitations
on reasoning capacities or memory size then translate into bounds on the machine
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size. The resulting hierarchy allows for a fine grained analysis of information pro-
cessing, reasoning, and thus bounded players of different types. This perspective
fits well with the logical study of agency in computer science, (Grädel et al., 2002;
Wooldridge, 2009).

In an integrated perspective, preferences, beliefs and reasoning styles can all be
subsumed under the game-theoretic notion of a player type. For reasoning about the
future course of a game, players will hence often entertain beliefs about each others’
types. A simple example is Backward Induction, where players assume all opponents
fully rational throughout. In more complex settings, individual actors may attempt
to rationalize various moves observed and derive predictions about their opponents’
future behavior by taking a broader range of options into account. Such players may
start by assuming the counter-player to be a simple machine, and only move up to
more complex views when required by evidence. In particular, there is no reason to
assume uniformity of players or views. Within a given scenario, a diversity of player
types might be present (Liu and Wang, 2013; Paul and Ramanujam, 2011; Ghosh
and Verbrugge, 2017; Bergwerff et al., 2014). For some game-theoretic proposals
concerning most frequently occurring player types, see Camerer (2011).

3.9 Thin and thick models for players

This section has outlined a variety of ways for incorporating players and agency into
game forms. These come in a hierarchy of richness, ranging from annotated game
trees to epistemic forests, type spaces, or yet more abstract models of games.

At the thinner end, the focus is on structural aspects of the game, incorporating
players’ preferences, but not necessarily their beliefs. Such frameworks are typically
just rich enough to represent equilibria or backward induction paths, and to reason
about these in logics of action and preference. Thin models leave much information
about players’ knowledge, beliefs, or their modus operandi unspecified, and put less
emphasis on the actual dynamics of game play.

At the thicker end, models for games have lush worlds encoding players’ preferences,
information, beliefs, and perhaps even their complete types, including memory and
reasoning capacities. Typical models of this kind are found in Stalnaker (1998) and
Halpern (2001). When applied to extensive games rather than strategic-form games,
thick models can anticipate anything that can happen in one large temporal universe,
allowing to derive a full prediction about how play will proceed.

The distinction between thick and thin logical models seems folklore in applied logic.
In fact, it occurred already in the earlier-mentioned choice between local logics with
single step modalities versus temporal logics built over a complete universe of histo-
ries. Yet, there does not seem to be a unique best perspective. Rather, the choice
between thick and thin models often depends on the exact goals pursued. A cen-
tral consideration in this tradeoff is where the dynamics of stepwise play should
be located: Thick models pre-encoded such dynamics, whereas thin models allow
for an external dynamic logics for update (Baltag et al., 2009). The next section
will highlight a number of ways for complementing a thin perspective with dynamic
information on game play through representations of actions and updates.
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3.10 Special Topics

Deontic reasoning Preference is closely related to obligation and permission.
This shows in particular on the formal side, where preference logic in both static
and dynamic variants (Hansson, 1990; Grossi et al., 2014) has clear analogies with
deontic logic. Moreover, deontic and game-theoretic perspectives have given rise to
many fruitful connections. In one direction, deontic notions may be seen as high-
level descriptions of optimal actions given the information and obligations of agents
(Kooi and Tamminga, 2008; Anglberger et al., 2015). Conversely, game solution
procedures can enrich accounts of deontic notions (Parikh et al., 2011; Horty, 2016).
Lastly, in artificial intelligence, deontic perspectives arise in tracking the behavior of
a distributed system in relation to its goals, (Ågotnes and Wooldridge, 2010).

Mathematical foundations Incorporating players raises new questions about
game equivalence. When agency matters, adequate notions of equivalence cannot
stop at preserving properties of the underlying game form. Rather, player-dependent
equivalences will also require preservation of players’ beliefs, preferences or reasoning
types. Incorporating such additional parameters makes it harder for two games to
be equivalent, as new space for variation comes into play. On the other hand, agent
limitations might also create new simpler game equivalences that can be studied by
the tools of this entry.

4 Analyzing Play

The term ‘game theory’ suggests that everything of interest is captured in the for-
mat of a game with its moves and outcomes. The present entry reassembles this
perspective, considering additional structure. A first extension was offered in Sec-
tion 3, treating the nature of players as a topic in its own right. This sections puts
a spotlight on a second topic, game play in a wider sense.

Many themes in the literature on logic and games fall into three phases connected
to play. Certain activities can already be conducted before the actual game. Ex-
amples are assessing the opponent or forming a plan. Most relevant choices and
decisions, however, take place during the game - at least unless one thinks of players
as automata blindly following preset strategies. Lastly, also after a game significant
activities occur. These involve learning about opponent types, identifying crucial
mistakes made or rationalizing the moves taken. In what follows, examples will be
presented of each phase.

4.1 Game solution and pregame deliberation

When viewing games as static structures, rationality can be defined in terms of co-
herence between players’ beliefs, preferences and choices or intentions (Elster, 1988).
However, rationality also describes a quality of behavior, related to how players act or
what they take advantage of when deliberating about a game. The relation between
both perspectives can be made concrete when interpreting game solution procedures
as styles of pregame deliberation. To follow is a dynamic analysis of Backward In-
duction (cf. section 3.3) that differs conceptually from characterization theorems
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in terms of static properties such as common knowledge or common belief. In the
dynamic analysis, these group properties are not assumed as preconditions. Rather,
they are produced through the logic of deliberation.

4.1.1 Backward Induction via public announcement

The Backward Induction algorithm is usually presented in a quantitative setting,
with player-utility values attached to outcomes (Leyton-Brown and Shoham, 2008).
However, the same algorithm also works in a qualitative setting, with attitudes
expressed by a preference relation between outcomes.

Backward Induction Backward Induction computes optimal moves for players.
More specifically, at each choice node of an extensive form game, one or more of the
available moves is labeled as optimal. For each player this set of optimal moves often
forms a strategy in the usual game-theoretic sense, i.e. a function selecting a unique
action to take at each of her choice nodes. Yet, there are degenerate cases where
backward induction merely creates a relational strategy, restricting the available
moves, while still leaving some choices to the player.

The principle driving the Backward Induction algorithm is that no player should
ever select a move that is dominated by another move available at the same mo-
ment. Dominance here works in a recursive manner. Move a dominates move b if
the corresponding player prefers each final outcome reachable from a by following
Backward Induction moves to every outcome reachable from b by Backward Induc-
tion moves.

Public announcement of rationality In one perspective, Backward Induction can
be understood as a process of prior-to-play deliberation, executed by players whose
minds proceed in harmony. Deliberation steps are repeated public announcements
(!rat) of rationality-at-nodes:

rat no player arrived at the current node via a strictly dominated move

Dominance here is a relation between the outcomes available after a certain move has
been made. In one interpretation, some move a dominates another move b if every
outcome that remains obtainable after a is preferred to any outcome reachable after
a b move. However, there is a dynamic twist: crucially, the game tree considered,
and hence the outcomes available, changes during the deliberation procedure.

The semantics of announcement updates works by trimming models. !ϕ transforms
a model M into a sub-model M|ϕ consisting of all those points in M that satisfy ϕ,
while deleting all ¬ϕ nodes. Relations on M|ϕ are those inherited from M . Crucially,
deletion may change the truth value of formulas: after announcing !ϕ, some nodes
in M|ϕ may satisfy ¬ϕ. In particular, with M the set of points in a game tree, the
set of available histories may keep shrinking as successive announcements are made.
Hence, repeated announcements of !rat make sense. In finite games, this process
always reaches a limit, a smallest subgame where no move is dominated by another.

Example Solving games through iterated assertions of rationality.
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Consider the following game, already introduced in Section 1.1. Iterated announce-
ments of !rat removes nodes that can only be reached by dominated moves as long
as this can be done. The trace of this procedure is:

1, 0

0, 3 2, 2

E

A

1, 0

0, 3

E

A

1, 0

A

Here, the Backward Induction solution emerges step by step. Stage 1 of the procedure
rules out the leaf labeled with (2, 2) as the only point where rat fails. Stage 2 then
rules out E’s choice node as new node where rat fails. In the resulting game tree, rat
holds throughout.

More generally, let (!ϕ,M)# be the limit (i.e. the first fixed point) of M under
repeatedly announcing ϕ as long as it still true. In any game tree, the fixed-point
(!rat,M)# has rat true throughout. Its nodes contain the actual play computed by
the Backward Induction algorithm (van Benthem, 2014).

Limit behavior Rationality is ‘self-fulfilling’ in the limit: if players commit to
it in deliberation for long enough, they prune away all irrational moves and, a for-
tiori, all moves incompatible with common belief of rationality. The final outcome
is a model with rational play at every point, a form of common knowledge of ra-
tionality. However, iterated announcements can also yield a different type of limit
behavior: self-refutation. A prime example for this is the classic Muddy Children
puzzle (Gierasimczuk and Szymanik, 2011) where repeatedly communicating igno-
rance leads to knowledge in the end. Also within game theory, a number of situations
exist where (credible) announcements of future irrationality can leave some player
better off than the Backward Induction solution (Leyton-Brown and Shoham, 2008).

4.1.2 Backward Induction via belief revision

Iterated belief revision. A different perspective of pre-game deliberation is couched
in terms of belief instead of knowledge. The driving force here is rationality-in-belief:

rat∗ players never chose any move dominated by another in light of
their beliefs how play will proceed from then on.

In this setting, the game tree itself remains invariant during deliberation: no histories
are removed or ruled out. What may change is the relative plausibility of occurrence
players assign to end nodes or, in infinite games, histories.

In plausibility semantics (briefly introduced in Section 3.6), an agent believes propo-
sitions that hold true in all those epistemically accessible worlds that are maximal in
her plausibility order. The corresponding dynamics of deliberation does not proceed
by point deletion, but by soft updates modifying the agents’ plausibility ordering. For
Backward Induction, a ‘radical upgrade’ ⇑ ϕ suffices, that moves all ϕ-worlds above
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all ¬ϕ-worlds states while maintaining the ordering within these two sets (Baltag
and Smets, 2008).

Here is how this mechanism works in a game setting. Start with all end nodes
equiplausible for all players. Since upgrades proceed by public announcement, all
players will share the same beliefs throughout. In the procedure to follow, a move x
is dominated in belief by a move y of the same choice node if, in the acting agent’s
plausibility ordering, the most plausible end nodes reachable after y are all better
for her than each most plausible end node compatible with move x. Now perform
radical upgrades of type

⇑ rat∗ If y is dominated in belief by x, make all end nodes following x more
plausible than those after y.

Example Backward Induction, soft version.

Here are the stages for the new procedure in the preceding example, where the letters
x, y, z stand for end nodes or histories of the game:

1, 0

0, 3 2, 2

x ≈A,E y ≈A,E z

E

A

1, 0

0, 3 2, 2

x ≈A,E y >A,E z

E

A

1, 0

0, 3 2, 2

x >A,E y >A,E z

E

A

In the top node of the leftmost tree, going right is not dominated in beliefs for player
A by going left. So, rat∗ only affects E’s turn, and radical upgrade with ⇑ rat∗

makes (0, 3) more plausible than (2, 2) . After this change, going right has become
dominated in beliefs in the top node, and a new upgrade takes place, making A’s
going left most plausible.

Iterated upgrade with rat∗ always stabilizes to a fixed plausibility order, which is
the same for all players. Identifying each history of a game with its end node allows
for a belief analysis of Backward Induction (van Benthem and Gheerbrant, 2010).
On finite trees, the histories emerging when all players resort to their Backward
Induction strategies exactly correspond to the most plausible end nodes created by
iterated radical upgrade with rationality-in-belief. An alternative dynamic-epistemic
characterization of Backward Induction, using similar ideas in a different mix, can
be found in Baltag et al. (2009).

Stabilization cannot be taken for granted. For other assertions ϕ, iterated upgrades
⇑ ϕ can lead to oscillating or divergent plausibility orders. However, this divergence
is limited. While cycles can occur for conditional beliefs, every truthful iterated
sequence of radical upgrades eventually stabilizes all propositional beliefs (Baltag
and Smets, 2009).

Fixed-point logic In a more technical perspective, the Backward Induction strat-
egy can be defined as largest subrelation of the total move relation that has at least
one successor at each non-terminal node, while satisfying a confluence property be-
tween action and preference:
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CF (s) ∀x∀y((turni(x) ∧ xsy)→ ∀z(xmove z →
∃u∃v(end(u) ∧ end(v) ∧ ys∗v ∧ zs∗u ∧ u ≤i v)))

This fact is the basis for proving that Backward Induction is definable in First
Order Fix point logic LFP (FFO) (van Benthem and Gheerbrant, 2010). Results in
this line of research connect game solution and game-theoretic equilibria with fixed-
point logics of computation. In simple settings, such as that of Zermelo’s Theorem
mentioned earlier, modal fixed-point logics akin to µ-calculus suffice.

4.1.3 Iterated removal of strictly dominated strategies

Further game solution concepts can be analyzed with logics of iterated update. In
particular, iterated updates are not restricted to extensive form games, but can also
provide insights for games in strategic form. A paradigmatic algorithm is Iterated
Removal of Strictly Dominated Strategies (SD∞). In this setting, a strategy is
considered dominated if there exists another strategy that yields a strictly higher
payoff against any of the opponent’s actions.

Example Iterated removal of strictly dominated strategies (SD∞).

Consider the following matrix. As usual, pairs list A’s utility first, E’s second.

E

A
a b c

d 2, 3 2, 2 1, 1
e 0, 2 4, 1 1, 0
f 0, 1 1, 4 2, 0

First remove the right-hand column, i.e. E’s action c which is dominated by a and
b. With c being removed, A’s action f has become strictly dominated. After its
removal, E’s action b becomes strictly dominated, and after that, A’s action e. At
the end of the process, iterated removal leaves nothing but the state (d, a), the game’s
unique Nash equilibrium. In general, the resulting game matrix after all removals
is guaranteed to contain all Nash equilibria of the original game, but it may also
contain further strategy combinations.

In this setting, the formal dynamic apparatus involves assertions appropriate to the
matrix games of Section 2. In fact, various different types of rationality can be
defined in logics for matrix games. Here is an illustration for two-player games,
involving announcements of ‘Weak Rationality’:

WR Each player thinks that, compared with each of her available alternative
actions, her current move might be at least as good for her.

This statement is the negation, for each player, of her current action being strongly
dominated. Naturally, this property can be expressed formally with suitable epis-
temic action modalities. Yet, even as it stands, it is clear that Weak Rationality
can be announced to prune away strategy profiles, and that in a iterated manner.
The strategic game will change every time weak rationality is announced, initiating
a stepwise process that resembles the earlier iterative announcements of rational-
ity for Backward Induction. As observed there, limits of public announcements are
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always reached eventually, as models can only get smaller. For announcing Weak
Rationality, these limits match the outcome of SD∞ precisely (van Benthem, 2007).

A similar style of analysis can be extended to other notions of rationality. For
instance, taking Bi to stand for ‘the current action of player i is best for her against
all actions of the opponent’, the following formula may be dubbed strong rationality
(SR)

〈E〉BE ∧ 〈A〉BA
Briefly, the formula expresses that both players have a reasonable hope of doing
well. Strong Rationality in this sense is related to the rationalizability program for
game solution (Pearce, 1984; de Bruin, 2005), where actions are discarded if a better
response exists under all circumstances. Strong Rationality, too, drives a game
solution method.

Example Updates with iterated announcements of strong rationality (SR).

Consider a slight variation on the previous example. Below is the sequence of updates
for iterated announcements of strong rationality (SRω)

2, 3 2, 2 1, 1
0, 2 4, 1 1, 0
1, 1 3, 4 2, 0

2, 3 2, 2
0, 2 4, 1
1, 1 3, 4

2, 3 2, 2
0, 2 4, 1

2, 3
0, 2

2, 3

Each box may be viewed as an epistemic game model, as explained earlier. Again, ev-
ery step of announcement increases players’ knowledge, until a fixed-point is reached,
constituting an equilibrium where each player knows as much as they can.

Strong rationality is a more demanding condition than weak rationality. While SR
implies WR, there can be moves that satisfy weak but not strong rationality. This
shows in the following difference to the previous example. In the present matrix,
announcing Weak Rationality stops after the first step elimination of action c. The
reason is that, in the second matrix, the row player’s bottom move is not strictly
dominated by any other action, so this row remains after re-announcing WR. How-
ever, under no possible circumstance is the row player’s bottom action best for her.
This contradicts strong rationality and hence that row is eliminated by the next SR
announcement. More generally, the game matrix resulting from (SR)∞ is a sub-
matrix of that produced by (WR)∞. Notably, this is not entirely obvious, as the
two update sequences may produce different epistemic models satisfying different
formulas. A proof can be found in van Benthem (2014).

Just as with Backward Induction, there are connections between iterated announce-
ments and fixed-point logics. The set of strategy profiles that survive iterated an-
nouncements of strong rationality can be defined in modal µ-calculi (Kozen, 1983;
Venema, 2008). If announcements are generalized to arbitrary formulas, so-called
deflationary fixed-point logics are needed for studying limit behavior (Ebbinghaus
and Flum, 2005; Dawar et al., 2004).
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Further game solution concepts have been analyzed in a similar dynamic update
style. The iterated regret minimization of Halpern and Pass (2012), for instance,
has been captured in terms of iterated announcements (Bobbio and Cui, 2017).

It should be noted, that there are also more deductive takes on solution concepts,
where successive inferences assume the role of the semantic updates above. A sys-
tematic proof-theoretic perspective on game-theoretic reasoning toward solution can
be found in de Bruin (2005). Lastly, alternative analyses of Strong and Weak Ra-
tionality as well as other game solution concepts, in an abstract rewriting format of
computational logic can be found in Apt (2005).

Digression: comparing across representation levels Different iterative an-
nouncement procedures lead to different analyses of games. Moreover when com-
paring various procedures across different frameworks, surprises may occur. For an
illustration, take Backward Induction. Its dynamic analysis produced a new ‘best
move’ relation or plausibility order on an extensive form game. The resulting strat-
egy profiles may differ from a Nash equilibrium analysis of the associated strategic
form game:

Example Backward Induction and Nash equilibria.

Consider the following game. E has no preferences between any outcomes, but A
does, as marked by the utility values.

(1, 1) (1, 1) (2, 1)

E

A

L
ef

t

Right

rightle
ft

In the earlier BI analysis, neither move for A dominates the other in beliefs, so no
move is eliminated. Now consider the two possible strategy profiles of each player
and compute Nash equilibria:

(Left, right) is not a Nash equilibrium, since A would do better by playing Right,
but (Left, left) is.

This illustrates differences in logical perspective on strategic and extensive form
games. Primitive elements of the former, strategies, are complex objects in the
latter’s game tree that cannot be identified completely at the level of individual
nodes alone. A related point of connecting perspectives in classic game theory gave
rise to the concept of subgame perfect Nash equilibria (Selten, 1975).

Further scenarios Casting game solution in terms of deliberation renders it an
internal mental process: normally opponents do not sit down together to discuss
their game play in advance, but reason about the opponents’ possible actions and
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considerations. However, the deliberative techniques introduced above also apply
to real conversational scenarios. An example related to game theory is the topic
of disagreement, first introduced in an epistemic setting by Aumann’s 1976 semi-
nal agreeing to disagree result. Dégremont and Roy (2012) investigate this topic
with techniques of dynamic logic, building on classical results from Geanakoplos and
Polemarchakis (1982). In this framework, any dialogue where agents keep stating
whether or not they believe some formula ϕ leads to agreement in the limit model,
where updates no longer have any effect. Briefly said, agents cannot disagree forever,
at least when starting with different hard information, while sharing a well-founded
plausibility order.

4.2 Information flow, knowledge, and belief during play

Game play is a dynamic process, where players repeatedly obtain new information
about other players. Certain aspects of information collection are hard-wired into the
game’s structure, such as observing moves, or, in settings of imperfect observation,
changing from one information state to another. Other updates may be extraneous,
such as signals about the type of opponent one is dealing with. As of how, there is no
general logical theory encompassing all these phenomena. Yet, instructive samples
exist. The first topic to address concerns the players’ knowledge, the second their
belief.

4.2.1 Epistemic update and imperfect information

In one perspective, games annotated with imperfect information cells can be inter-
preted as recording a process of actual play. However, an imperfect information tree
does not suffice to fully specify the trace of a real game. This raises the question on
how to tease out what has really happened. One style of analysis involves techniques
from dynamic-epistemic logic. In this approach, players are assumed to have perfect
recall, they do not forget anything they once knew, while also satisfying No Miracles:
observation of actual game play is their only source of information, (cf. Section 3.6).

In a first approximation, every move triggers a public announcement, informing all
players what just happened. Many games, however, include partially observable
moves, where some players merely learn that an act has been performed, but not
necessarily which. In this case, information processing requires product updates from
dynamic-epistemic logic, allowing for an appropriate mixture of knowledge and un-
certainty.

Example Decorating a game tree by updates.

The left-hand side of the following diagram displays the game’s bare action struc-
ture, without any information on observability. However, when moving, players can
distinguish their own actions, but not all moves of their opponents. Their precise
observational powers are described by event models for the individual moves (cf. van
Ditmarsch et al., 2007).
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E E E

A

a b c

d e e f f

Game Structure Event Model

Moves for Player A

a b c
E

Moves for Player B

d e f
A

The observational structure on possible moves is encoded by relations between the
corresponding nodes, as described for games of imperfect information (Section 3.6).
Here are the successive updates that create the uncertainty links in the tree:

tree level 1

tree level 2

tree level 3

E

EA

The resulting annotated tree is the following imperfect information game:

E E E

A

a b c

d e e f f

E

EA

A similar analysis applies to infinite trees as well as to epistemic forests (cf. Section
3.6). More generally, any imperfect information structure can arise from informa-
tion updates, provided players satisfy perfect recall and no miracles, and moves in
the game have logically definable preconditions governing their availability. Precise
formulations and proofs can be found in Gerbrandy et al. (2009a). A generalization
to game play without assumption of synchronicity is provided in Dégremont et al.
(2011).

No miracles and perfect recall are typical assumptions for most types of agents in
game theory. However, certain scenarios require modifications, (cf. Osborne and
Rubinstein (1994) on the ‘drunken driver’ scenario). Moreover, if players are repre-
sented as finite automata, (cf. Section 3.8), perfect recall fails, and quite different
patterns of uncertainty become possible. Characterizations results for memory-free
and memory-bounded players can be found in Liu (2011).

In addition to observational restrictions built into the game setup, product updates
can also model extraneous communication or other information flow parallel to actual
play. Some such scenarios will be listed under Further Directions below.
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4.2.2 Belief revision and Forward Induction

Certain types of information may be judged inconclusive or not fully reliable. While
unsuitable for advancing knowledge, such information may prompt agents to alter
some of their beliefs. Such inconclusive evidence often concerns expectations con-
cerning opponents’ player types. Leaving aside the possibility of mere mistakes,
all moves can be assumed to result from intentional, strategic considerations. By
interpreting opponents’ past moves, agents may hence infer about their beliefs, pref-
erences, risk attitudes or reasoning types. Naturally, most such observations are not
fully conclusive. The corresponding updates hence cannot delete any alternatives.
Rather, they merely change the agent’s plausibility ordering ≤i among different op-
tions. Formally, this can be handled with the plausibility updates introduced for
Backward Induction. However, the interpretation differs. Here, these updates do
not represent steps in pregame deliberation, but result from actual moves during the
game. Besides the radical upgrade introduced above, a number of further updating
policies reflecting different attitudes to the information acquired are defined in Baltag
and Smets (2008). The epistemic-plausibility patterns that can arise from system-
atic plausibility update in games have been identified in Dégremont (2010), using
two counterparts of the earlier perfect recall and no miracles properties: ‘Plausibility
Revelation’ and ‘Plausibility Propagation’.

These results refer to but one aspect of belief in games. There are others. A further
type of belief describes agents prior attitudes to the game, generated by past expe-
rience or deliberation. Another refers to the agents’ beliefs about where they are
located in the game tree, based on previous observations during play. To keep these
notions separate, one might distinguish between more local ‘beliefs’ during play and
future-oriented ‘expectations’ about the game’s progression. Plausibility orders cre-
ated by Backward Induction, for instance, describe expectations about future game
play. These are not based on observations already made in the present game, and
significantly, fail to satisfy the properties of plausibility revelation and propagation.
Here is a particular strand of logical belief and its revision that is of independent
game-theoretic interest.

Forward Induction Suppose some player has deviated from her Backward Induc-
tion strategy as computed in pre-game deliberation. What are others to make of
this? Answers offered in the literature range from interpreting the deviation as an
error without any future implications (Aumann, 1995) to treating it as significant in
various ways (Bicchieri, 1997). In the latter vein, the deviation could be a signal for
cooperation (believable or not), a sign of limited resources, or it could reveal other
relevant information about the player’s type.

More explicitly, the situation has the following aspects. At any stage of a game,
players have several types of information, including their prior expectations of how
the game would proceed and the perhaps surprising observations made along the
way. If the game is to continue further, as in the state marked below, agents need
to integrate both into expectations about the future course of the game.
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Rationalizing There is no unique best way of integrating information of the various
kinds. Yet, a natural option is to maintain the assumption of opponents’ rationality,
taken in the earlier sense. Assuming preferences to be common knowledge, observed
moves hence provide new information about the opponent’s belief. More specifically,
these beliefs have two components: expectations about what other players will do,
and intentions about their own future actions. The driving principle will then be

Rationalizing By playing a move, a rational player communicates that this move
is not strictly dominated-in-beliefs for her.

Clearly, rationalizing can only be maintained as long as the player does not choose
a move that is strictly dominated under all circumstances. In that case, one must
ascend a ladder of further hypotheses about the opponent, including the possibility
of her making mistakes.

Reasoning policies of the above type are called Forward Induction. citetBSFor-
ward,BrandenburgerForward, analyze Forward Induction in extensive form games
based on its known tight connection with Iterated Removal of Weakly Dominated
Strategies in strategic form games. The following example involving explicit reason-
ing is from Perea (2012).

Example A Forward Induction scenario.

3, 0

0, 2
4,4 1,0
1,0 2,2

A

E

E

A

Left
Right

lef
t

right

In the matrix game, no move dominates any other. Hence E should consider all
outcomes possible. In this case, going left is safer for her than going right, and
hence A should play Left at the start. However, if E rationalizes, and observes A
going Right, she has extra information available at her choice node. Following the
rationality assumption, A expects to do better than 3, which is only possible if he
intends to play Up in the matrix game. Now this tells E to proceed to the matrix
and play the left column therein. E’s results in a better payoff than the 2 of her
original safe option.
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From a logical perspective, a study of Forward Induction requires epistemic-doxastic
models with ternary world-dependent plausibility relations, combined with the public
announcement updates or plausibility upgrade described above (Section 4.1.2; see.
also van Benthem, 2014). No definitive logical analysis of Forward Induction has
been published so far.

4.2.3 Post-game rationalization

Comparatively little attention has been paid in the literature to what players do af-
ter a game. Yet, these follow up-activities are often crucial, for instance to establish
general lessons learned that may be valuable for future game play. Such interpreta-
tions are especially prominent in small or isolated groups, where the same opponent
might be encountered again in the future.

Preference change after a game At a simple level, post-game activity can consist
in setting, or altering, the second input parameter of rational choice beside belief:
the players’ preferences. Several folklore results relate to this option. For instance,
when playing against a given strategy of another player with known preferences, any
strategy can be rationalized by choosing suitable preferences among outcomes. Liu
(2011) discusses several preference based rationalization algorithms using dynamic
logics of preference change.

Preference change can also occur during a game. Players may receive new information
about the game’s end states and their properties. They may also follow a command
or a suggestion from an authority, establishing a preference or reversing an earlier
one. Relatedly, players may change their external goals pursued in the game, or
they may adjust their preferences for more internal reasons, as in the phenomenon
of ‘sour grapes’ (Elster, 2016).

4.2.4 Play in a long-term temporal perspective

The main focus of this section is the local dynamics of what happens before, during
and after a single game. There is also a broader perspective of time, in which all these
activities are embedded in an extended temporal universe, large enough to include
all possible trajectories of the game, finite or just as well infinite. In evolutionary
game theory, in particular, infinite games typically arise from iterated play of finite
games, with Lewis’ signaling games (2008) as prominent example in philosophy.

Assuming an extended infinite temporal perspective raises additional questions about
players’ strategic foresight and adaptation (Christoff, 2016). Various long-term per-
spectives differ drastically in this respect, ranging from the minimal rationality as-
sumptions typical of evolutionary game theory to high reasoning complexities of
agents anticipating the long term effects of their choices.

Temporal logics While infinite game forms were briefly alluded to in Section 2.10,
infinite play focusses on agency over time. A host of temporal logics for this end
have been put forward, including interpreted systems (Fagin et al., 2004a), epistemic-
temporal logic (Parikh and Ramanujam, 2003), STIT (Belnap and Perloff, 1988;
Horty and Belnap, 1995), ATL (Alur et al., 2002; van der Hoek and Wooldridge,
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2003), and others. Many of these systems combine multiple modalities. Consequen-
tially, their complexity can be very high (undecidable, non-axiomatizable, or even
non-arithmetical), as Halpern and Vardi (1986) show in a pioneering study for the
case of combining time and knowledge. Surveying this area is beyond the scope of
this entry, cf. the entry on temporal logics. A unifying view of connections between
the various paradigms is presented in van Benthem and Pacuit (2006).

t0

t′′1 t′′′2

t′1 t′′2

t′2

t1 t2

Just as with finite games, players’ preferences must be specified for studying equilib-
ria in potentially infinite games. In lack of outcome nodes or final moments to attach
preferences to, these are naturally thought of in terms of players’ goals, expressed as
properties the game’s histories should satisfy. Such goals can be local propositional
facts true at some particular moment. But goals can also concern global properties
of histories such as avoiding or reaching the same position some specified number of
times, or more abstractly, achieving safety or fairness in some appropriate sense. All
such properties can be specified in temporal logics. For the case of Linear Tempo-
ral Logic (LTL), the ‘Boolean games’ of Gutierrez et al. (2015) have developed the
temporal goal based approach in depth. Notably, this framework validates a logical
version of the ‘folk theorem’ for iterated games, cf. Osborne and Rubinstein (1994):
Under natural conditions on goals, iterated games can have novel equilibria not su-
pervenient on the base game’s Nash equilibria. Further significant uses of temporal
logics connect game theory with belief revision theory (Battigalli and Bonanno, 1999;
Perea, 2012; Stalnaker, 1998).

Evolutionary game theory and dynamical systems A prominent application
of iterated games occurs in evolutionary game theory (Maynard Smith, 1982; Hof-
bauer and Sigmund, 1998; Gintis, 2000), a framework that has many applications in
biology, formal sociology, but also linguistics and philosophy (Lewis, 2008; Skyrms,
2010; Alexander, 2007; Clark, 2011).

Little work has been done so far on the logical analysis of evolutionary games along
the dimensions of this entry. In fact, there are striking conceptual differences between
evolutionary games and the style of analysis pursued here that might be dubbed
‘high rationality’-oriented. Rather than incorporating intentional, strategic actors,
evolutionary games work by temporal progression of a dynamical system which is
driven by individuals’ fitness values derived from game-like encounters with others.
Within such systems, behavior is not driven by belief updates or complex strategic
considerations. Rather, players typically display ‘low rationality, following certain
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hard-wired strategies. Much of the evolutionary system’s dynamics is then driven
by changes in the population’s composition of strategy types.

Even so, evolutionary game theory does invite connections to logic. The evolution-
ary success of simple strategies like Tit-for-Tat (Axelrod and Hamilton, 1981) raises
the question of just when complex logically based high-rationality strategies can be
replaced by equally efficient alternatives simple enough to be played by automata
or similar models of bounded agents, (Grädel et al., 2002). At a higher level of
abstraction, there also is an incipient line of research into the connection between
logic and dynamical systems, a standard tool for analyzing evolutionary games. This
strand includes a bimodal topological logic of time (Kremer and Mints, 2007), fixed-
point logics of oscillation (van Benthem, 2015), and a systematic linkage between
dynamic-epistemic update logics and dynamical systems over metric spaces (Klein
and Rendsvig, 2017). At a much concreter level, one important species of evolu-
tionary games are signaling games (Lewis, 2008; Cho and Kreps, 1987; Osborne and
Rubinstein, 1994; Skyrms, 2010; van Rooij, 2004), where agents send and receive
signals about the state of the world. Signaling games match up naturally with the
earlier dynamics logic of information flow during play.

4.3 Conclusion: theory of play

Topics discussed in this section are less standard in the literature than those of the
sections before. In an orthodox reading, various of the aspects addressed would not
be considered part of game theory proper. The extended agenda followed here has
been embraced by Pacuit et al. (2011) as a larger program for logic, going under the
heading ‘Theory of Play’. The underlying line of reasoning is that games do not fully
determine their outcomes, as they allow for various styles of play. Hence, it might
be the process of play itself, including players’ types and how they change over time,
that might the best focus for understanding interaction, rather than mere games
or game forms alone. Similar lines of argument can be found in the foundations of
computation where it has been proposed that the essential topic of study should be
behavior (Abramsky, 2008).

4.4 Further directions

Belief revision and learning theory Belief revision in repeated games bears
natural resemblance to limit learning of formal learning theory (Kelly, 1996). Baltag
et al. (2011) analyze learning in terms of initial epistemic-doxastic models over which
finite histories of signals trigger the learner to revise beliefs, represented as changes
in epistemic accessibility or plausibility order. It turns out that both iterated public
announcement and iterated radical upgrade as discussed above are universal learning
methods, though only the latter maintains this property in the presence of (finitely
many) errors in the input stream.

Goal dynamics and intentions While preferences and goals have so far been
assumed fixed and universally known, this is by no means necessary. van Otter-
loo (2005) presents a dynamic logic of strategic powers, where information about
players’ intentions and preferences can be announced during play. Roy (2008) uses
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announcements of intentions to obtain simplified solution procedures for strategic
games. More concrete scenarios of extraneous information flow are found in Parikh
et al. (2013), where agents manipulate the knowledge of others during play.

Game change In many real life scenarios, players do not know the full game tree
they are playing. Even if they did, it might change during play. Or, at least, players
may attempt to change the game. A concrete example is provided by the game tree
in Section 4.1.1. There, the inefficient Backward induction outcome (1, 0) could be
avoided by E promising not to go left. When made binding (for instance through
imposing a fine) this announcement eliminates histories and, consequentially, a new
backward Induction outcome of (2, 2) results. Hence, both players can be made better
off by restricting the freedom of one. Game theory has sophisticated analyses of
such scenarios, including an analysis of ‘cheap talk’ (Osborne and Rubinstein, 1994),
asking when such announcements are credible. On the logical side, this suggests an
analysis of signaling games (van Rooij, 2004). We are not aware of any logical work
done in this direction

Real games The discrepancy between specification of a game and the realities of
play is especially striking in real game play, either of the ‘natural kind’ in common
parlor games (van Ditmarsch and Kooi, 2015), or of the artificial kind found in
the laboratory experiments of experimental game theory (Camerer, 2011). Little
work has been done by logicians in this realm, though there is a broad tradition of
computational analysis of games, Schaeffer and van den Herik (2002); Kurzen (2001).
Any adequate logical analysis would clearly need to incorporate the considerations
on bounded agency discussed in Section 3.

Mathematical foundations Logic of play as discussed here raises issues of how
to interfaces local with global dynamics. This shows in particular with logical limit
behavior, where observations and assertions are made repeatedly. Limit models of
public announcement, as described earlier, can be ‘self-fulfilling’ or ’self-refuting’. In
the first case, the property asserted becomes common knowledge among all agents,
whereas in the second it eventually becomes false at the actual world. With soft
update on plausibility models, a third option arises, namely, infinite oscillation, or
even divergence (Baltag and Smets, 2009). To date, there is no general logical
theory of these phenomena, but see related work see van Benthem (2011) on the use
of fixed-point logics for limit models, Miller (2005) on the high complexity of public
announcement logic with finitely iterated announcements, and Klein and Rendsvig
(2017) on limit behavior of product updates.

The topic of limit behavior also raises the issue of how local dynamic logics of agency
relate to the global temporal logics discussed in Section 4.2.4. Towards clarifying
the connection, Gerbrandy et al. (2009a), show how dynamic-epistemic logics can be
seen as decidable fragments of more expressive temporal logics. Baltag et al. (2009)
discuss the related theme of how dynamic representations can decrease complexity
by shifting information from the temporal universe to dynamic events.
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5 Interfacing Logic and Probability in Games

Probabilities are central to game theory, where they serve two prominent roles. First,
they structure players’ uncertainty about various aspects of the game, including the
state of nature, the type of opponent faced, and past, present, and future moves of
other players. Second, ever since the origins of Game Theory (von Neumann and
Morgenstern, 1944), probabilistic randomization has served to expand the agents’
space of possible actions. While the interpretation of such mixed strategies has been
the subject of extensive debate (Sugden, 1991), it is uncontroversial that randomized
moves add significant depth to the analysis of games. In fact, the concept of mixed
strategies is vital for a number of seminal results in classic game theory including
the existence of Nash equilibria in finite games of imperfect information.

Probability and its logic is a major topic in both mathematics and philosophy, as
discussed in the entries on interpretations of probability, and logic and probability.
The current section merely outlines a few key connections between probability and
the logical analysis of games. The following presentation assumes that all state spaces
are finite, ignoring important technical and conceptual issues around the transition
from finite to infinite state spaces.

5.1 Probabilities and beliefs

Probabilistic methods are widely employed to represent beliefs of agents within and
outside of games, witness Bayesian epistemology. Typically, a probabilistic belief
model consists of two components: a space of possible states that the agent’s beliefs
range over, plus a quantitative probability function denoting how probable the agent
judges different propositions or states to be. In qualitative logical models, on the
other hand, agentive belief is represented in varying degree of detail. The coarsest
approach only distinguishes states the agent considers possible from those ruled out.
This is the perspective of standard epistemic-doxastic logics, such as multi-agent S5
and KD45 discussed in Section 3.6. More fine-grained perspectives are employed in
the plausibility models of Boutilier (1994) and Baltag and Smets (2008), where the
range of epistemic options is structured further by plausibility orderings encoding
which options agents take to be less or more likely. See also Sections 3.6 and 4.2.

Both probabilistic and plausibilistic perspectives can express that some alternative
is more likely than another. However, there are also conceptual differences between
the two frameworks. Probabilistic models can aggregate, allowing their logic to
express, for instance, whether many low-probability worlds combined can outweigh
even the highest-probability worlds. Such aggregated probabilities play a key role,
for instance, in calculations of expected utility. Yet no such thing can be expressed
in plausibility semantics. For another striking difference, plausibility models lead
to a notion of belief that is closed under conjunction. This conjunction closure
typically fails for probabilistic accounts of belief. See however Leitgeb (2017) for a
sophisticated bridge between both types of modeling. This work is one instance of
more general contacts between logic and probability that have revived recently.

48

https://plato.stanford.edu/entries/probability-interpret/
https://plato.stanford.edu/entries/logic-probability/
https://plato.stanford.edu/entries/epistemology-bayesian/


5.2 From logic to probability and back

On a received view, logical and probabilistic frameworks emphasize different aspects
of belief. Logic emphasizes coherence properties between the propositions believed,
such as closure under logical implications or conjunction. Probabilistic reasoning, on
the other hand, stresses graded information and attitudes towards uncertain events
such as lotteries. Even so, there is a variety of approaches attempting to unify both
types of reasoning by constructing bridges between the frameworks.

From qualitative to quantitative probability Early attempts in this direc-
tion go back to De Finetti (1974), striving for a purely qualitative axiomatization
of probability theory. A step further towards logical reasoning are various theories
of qualitative probability (Kyburg, 1994), often based on the assumption that clas-
sical quantitative notions of probability are too demanding for real-life agents. In
this line of research agents need only reason with partial, comparative probability
assessments, rather than having fully specified probabilities for all events. Logical
frameworks for qualitative probability include Segerberg (1971); Fagin et al. (1990)
and Delgrande and Renne (2015). While differing in detail, all logics in this line have
in common that they allow for expressions of the form ϕ � ψ, indicating that ψ is
judged at least as probable at ϕ. Recent frameworks add various additional refine-
ments to this language. Similarly, Heifetz and Mongin (2001) expand the axiomatic
analysis of probabilistic beliefs to higher order reasoning, working on probabilistic
type space akin to those introduced in section 3.7.

Yet, the concept of qualitative probability is sometimes considered flawed: a complete
set of probabilistic-logical principles guaranteeing that every complete description in
the logical language corresponds to a unique probability measure turns out to require
a complex calculus, involving an opaque infinite rule, (Kraft et al., 1959; Scott, 1964).
A new angle has been proposed in Harrison-Trainor et al. (2016) through axiomatiz-
ing a low-complexity qualitative probabilistic logic that emerges from relaxing the
above unique correspondence requirement to merely requiring compatibility with all
probability measures of a certain family.

However, none of the frameworks described here are specific for games. In fact, it
remains to be seen whether qualitative probabilistic logics, old or recent, can be used
for a qualitative analysis of game-theoretic solution concepts.

From quantitative to qualitative probability While the preceding line of re-
search aims at recovering quantitative probability from qualitative notions, a con-
verse project shows how ubiquitous qualitative patterns might arise naturally within
a quantitative probabilistic setting. Building on what is sometimes dubbed the Lock-
ean Thesis, threshold approaches connect probability to logic by stipulating that
some ϕ is to be believed simpliciter if the probability of ϕ is above some appro-
priate numerical threshold t. For most choices of threshold t, such translations do
not square well with standard logical desiderata, as beliefs will in general not be
closed under conjunction. However, in recent work Leitgeb (2017) and Lin and Kelly
(2012) have identified conditions under which one can do better, building on ideas of
Skyrms (1977), Leitgeb identifies strong, context-dependent ‘robustness conditions’
on thresholds that guarantee the defined belief operator to satisfy the KD45 axioms
after all. Lin and Kelly, on the other hand, work with non-uniform thresholds for
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transitioning between logical and probabilistic notions of belief, allowing to derive
coherence between different forms of belief dynamics on the two sides. For a recent
study of the mathematical foundations and limits of these approaches, as well as the
conditional logics they generate see Mierzewski (2018).

5.3 Updating and tracking probabilities

In the dynamic perspective of game play, every move constitutes a new piece of
information agents have to take into account. Besides, players may also change
their beliefs about the game upon deliberation, through communication or any other
signals they receive, be it more or less reliable ( cf. Section 4). All such dynamic
events raise the question of how new information is to be incorporated into the
agents’ beliefs and when probabilistic updates have corresponding logical revisions
or vice versa.

If the new information is of the hard type, accepted as irrevocably true by all agents,
the probabilistic counterpart of logical public announcements is Bayesian condition-
ing. Both notions track each other at a semantic level, meaning that their outputs
amount to the same thing. Computing beliefs after a public announcement means
recomputing in the submodel consisting of all states where the information received
was true. This exactly is the same mechanism as for recalculating probabilities in
Bayesian update. Moreover, for reasoning about updates, both approaches require
conditional notions: conditional belief and conditional probability respectively. The
quantitative notion of conditional belief relates to the logical notion of conditional
belief B(ϕ|ψ), with the slight caveat that the latter also allows for epistemic or dox-
astic operators inside either argument. More refined logical notions of conditional
belief arise in the earlier-mentioned plausibility semantics of Section 4.1.2, (Baltag
and Smets, 2008).

Given the co-existence of qualitative and quantitative perspectives, it makes sense to
ask whether one can track the other. In a static sense, tracking asks whether different
notions of belief can be translated into each other by omitting or transforming some of
the semantic details involved. A dynamic interpretation expands on this by asking
whether updating, either in the hard or soft varieties of Section 4, is compatible
with these translations in a commutative diagram: Information update in a new
perspective after translation should yield same result as first performing a matching
update in the old perspective and then translating (van Benthem, 2016). In games,
the topic of tracking may refer not just to information update, but also to solution
concepts or moves in game play described at the various levels considered in Section
2.

The existence of tracking maps depends on the exact type of update considered. By
now there is a wide variety of updating policies on plausibility models (van Benthem
and Smets, 2015), not all of which have obvious probabilistic counterparts. Likewise,
for well-known varieties of probabilistic update, such as Jeffrey update, where the
probability of selected propositions can be reset at will, plausibility counterparts
are not easy to find, though attempt Gerbrandy et al. (2009b) modifies dynamic-
epistemic logic to allow for Jeffrey update and other generalized probabilistic policies.
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5.4 Specializing to games

Virtually all aspects of game theory provide contacts between logical and probabilis-
tic perspectives. Clearly, this is true for the different representations of knowledge,
beliefs and their dynamics just discussed. Other contacts occur at the level of game
forms, cf. Section 2, where probabilities enrich the space of strategies, and, corre-
spondingly, where mixed moves require players to expand their preferences to mixed
outcomes, cf. Section 3. Finally, at the level of reasoning about game play, cf. Sec-
tion 4, probabilistic beliefs play a role in solution techniques such as dominance or
expected utility based reasoning.

Available actions and mixed strategies Probabilistic mixtures of pure strategies
are prominent in game theory, as they can secure outcomes and payoffs that no pure
strategy alone could guarantee.

Example Matching Pennies.

Consider the well-known game of matching pennies in matrix form:

Bob

Ann
x y

a -1,-1 -1,-1
b -1,-1 -1,-1

For Ann, a mixed strategy of playing a half of the time guarantees an expected
outcome of 0, no matter what Bob does. No pure strategy could have achieved this.

From a logical point of view, mixed strategies can be treated as new primitive actions
in the earlier logics of games ( cf. Section 2). Yet, this treatment immediately renders
the set of available actions infinite. A cautiously refined logical language, extending
logical approaches to qualitative probability, can allow for expressions such as an
agent playing action a with probability at least q, (Delgrande and Renne, 2015).

A more challenging general question is how to compare classic probabilistic ap-
proaches with their fixed-point results and ensuing equilibrium existence theorems,
with the logical fixed-point approaches mentioned at several places in this entry. The
latter operate with step-by-step ordinal iterations, as opposed to the gradual, ap-
proximative procedures that underlie the Brouwer or Kakutani fixed-point theorems
relevant for classical game theory. A related question is just how much logic is needed
to reproduce probabilistic existence theorems within a qualitative framework.

Adding players’ preferences Once preferences are added, mixed strategies trigger
additional intricacies. A strategy profile where some players pursue mixed strategies
does not produce a unique outcome, but a weighted combination of outcomes. Thus,
permitting mixed strategies requires lifting preference relations to probabilistic mix-
tures of outcomes or strategy profiles. Incorporating such mixtures may implicitly
depart from the standard, purely qualitative perspective on outcomes (Ramsey, 2016;
Savage, 1954).

Example Extended preference comparison.
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The following two games are equivalent in terms of qualitative (i.e. ordinal) prefer-
ences between outcomes for both players. However, they differ in preferences between
mixed outcomes, with 0.5(b, x) + 0.5(b, y) �A (a, x) holding in the game to the left,
but not in that to the right.

x y
a 1,0 2,1
b 0,1 4,0

x y
a 1,0 2,1
b -10,1 4,0

Going this way poses some logical challenges. For example, consider a preference
relation over probabilistic mixtures of outcomes, where mt(a, b) stands for obtaining
a with a probability of t, and b otherwise. This setting is in the scope of von Neumann
and Morgenstern’s 1944 well-known ‘continuity axiom’ that is characterized by an
implicit infinite disjunction:

a � b � c ⇒ ∃t ∈ (0, 1) : mt(a, c) � b � m1−t(a, c)

This seems well beyond the expressive power of standard probabilistic logics.

Solution concepts and game play Probabilization also impact the process of
game play and its reasoning dynamics, for instance by changing the earlier-mentioned
calculus of weak and strong dominance (Section 3.4). Consider the following game,
cf. de Bruin (2005):

B

A
x y

a 0,5 5,0
b 5,0 0,5
c 1,1 1,1

None of A’s strategies are dominated in terms of pure strategies. However, in terms
of expected outcomes, c is dominated by an equal mixture of a and b. Thus, solution
procedures analyzed earlier such as iterated removal of weakly or strongly dominated
strategies may provide different and incompatible outcomes, depending on whether
mixed strategies are considered or not. No satisfactory logical analysis of the earlier
kind seems to exist for this setting.

5.5 Further challenges for a logical approach

Further challenges to the interplay of logic and probabilistic reasoning abound. By
way of conclusion, here is a dimension that seems hard to capture in purely qualitative
logical terms. A characteristic feature of game- and decision-theoretic reasoning is
that beliefs and preferences are entangled in various ways (Liu, 2011). For instance,
the crucial notion of expected utility entangles probability, standing for beliefs, with
utilities, representing preferences. Players faced with probabilistic uncertainty about
the opponent’s present and future actions are often advised to maximize expected
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utility (von Neumann and Morgenstern, 1944; Savage, 1954). Hence, even if one has
found qualitative counterparts for probabilistic belief and cardinal utility separately,
entanglement poses the additional difficulty of merging these two qualitative analyses
in a way that matches what the quantitative side achieves easily by forming some
arithmetical combination of both components.

6 Gamification

The main topic of this entry is a logical approach to game theory, bringing classical
notions and methods from logic to bear upon games. This project is sometimes
called ‘logic of games’. There also is a converse direction of ‘logic as games’, where
game theoretic concepts are employed to elucidate basic notions of logic. This section
presents a brief discussion on this direction as a natural counterpoint to the main
lines of the entry. For an extensive survey see the entries on logic and games and
games, abstraction and completeness.

6.1 Logic games

Many notions in logic have been analyzed in game-theoretic terms

Evaluation games There are well-known two-player games for evaluating a first-
order formula ϕ within a given logical model. These games are played between
Verifier and Falsifier, who can both test atomic assertions, and specify the value of
variables from a given domain (Hintikka, 1973). The schedule of the game is deter-
mined from the syntactic structure of the formula ϕ. Disjunctions and existential
quantifiers require choices for the Verifier, conjunctions and universal quantifiers for
the Falsifier, and negations trigger a role switch between the two players. The result
is the following match between winning strategies and the ordinary semantic notion
of truth in the following sense:

Formula ϕ is true in model M under assignment s iff
the Verifier has a winning strategy in the associated game game(M, s, ϕ).

Correspondingly, Falsifier has a winning strategy if the formula ϕ is false in the model.
Evaluation games turn out to be an extremely flexible tool. By suitably modulating
rules and winning conventions, adequate evaluation games can be found for most
logical systems. Doing so, however, can be a highly non-trivial task, as witnessed
by the intricate infinite ‘parity games’ corresponding to fixed-point logics such as
the modal µ-calculus (Venema, 2008). For the present purpose, it should be noted
that this style of analysis ties the very logical operations, conjunctions, disjunctions,
modal operators, to natural moves in a game. Similarly, the notion of truth is linked
to the fundamental game-theoretic notion of a strategy in an extensive form game
(cf. Section 2): a complex, structured object which may here be understood as a
reason or an explanation for the truth or falsity of the formula.

The links between both perspectives are so close, that valid principles of logic come to
express game-theoretic facts. For instance, after a little analysis, the law of excluded
middle implies that always either Verifier or Falsifier has a winning strategy. In
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other words, logical evaluation games for classical logic are determined in the game-
theoretic sense. In fact, This property extends to most games for non-classical logics.

Further logic games Logic games exist for many other purposes. Ehrenfeucht-
Fräıssé games serve model comparison (Ehrenfeucht, 1961; Ebbinghaus and Flum,
2005), Lorenzen games perform proof analysis (Kamlah and Lorenzen, 1984) and
tableau games execute model construction (Hodges, 1985). In each case, strategies in
the game match important logical notions. In Lorenzen dialogue games, for instance,
winning strategies for the Proponent of a claim correspond to proofs of that claim
from premises granted by the Opponent, whereas winning strategies for the Opponent
are constructions of counter-models. Thus, proofs and models, two quite distinct
notions in logic, co-exist within a single game.

There exists an alternative, game-theoretic way of interpreting these connective re-
sults. Suppose the game under study is fixed, and associated with some sort of ‘game
board’ representing major features of the game’s general state (think of Chess, though
more abstract game boards may occur). Then the above equivalences suggest that
winning strategies, i.e. a typical game-theoretic notion defined in terms of the com-
plete extensive game tree, is equivalent to a simpler ‘invariant’ that can be defined
entirely in terms of some game board associated with the tree’s nodes. Identifying
useful such invariants is a well-known art in the analysis of concrete games. In terms
of a main theme of this entry, invariants can live at different levels of representation
associated with a given class of games.

Game semantics One can view logic games as mere didactic devices analyzing
logical notions that were already well-understood. Or, in other terms, as offering
a concrete way of teaching logic that draws on game-theoretic intuitions. However,
logic games have more to offer. First of all, new logics are suggested by pursuing
natural variations in winning conventions, moves, or scheduling within existing logic
games. Moreover, viewing logical operations as game constructors suggests a new,
refined view on logical constants. Conjunction, for instance, now splits naturally
into a sequential and a parallel version. Similar examples of parallelism also exist in
logics of computation. Moreover, associating quantifiers with object picking, as in
evaluation games, turns quantifiers into special types of atomic games that connect
to the following formula by an abstract operation of game composition. The general
logic of this abstract composition operation combined with propositional operations
of choice and switch has been shown decidable, providing a new decidable core logic
inside first-order logic whose existence had not been suspected (van Benthem, 2014).
Games, hence, can offer a fresh perspective on existing logical systems.

A major source of independent, game-theoretic perspectives on logic is the game
semantics of computational logics. In this setting, the status of logic games may
change. Rather than being a mere pedagogical or exploratory device, to some, these
games are considered the true meaning of logical constants.

6.2 Recent logic-related games

The distinction between game logics and logic games is not always sharp. Recent
literature has seen a number of games whose design is connected to logic, yet they
are not meant to analyze logical notions per se.
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Example Sabotage Games.

Sabotage games were proposed to analyze algorithmic tasks in adverse circumstances.
Consider the below network between some European cities:

Amsterdam

Brussels

Luxembourg Koblenz

Saarbruecken

train

plane

taxi

It is easy to travel either way between Amsterdam and the German town of Saar-
bruecken. Now, let a malevolent Demon start canceling connections in the network.
At every stage, let the Demon take out one link, while the Traveler can afterwards
follow one of the remaining links. This turns a one-agent planning problem into a
two-player sabotage game. Zermelo-style reasoning shows that, from Saarbruecken,
a German Traveler still has a winning strategy, while in Amsterdam, the Demon
has the winning strategy against the Dutch Traveler, by first cutting a link close to
Saarbruecken. The symmetry of the original search problem is broken.

The sabotage game has been applied to a variety of scenarios, including learning
(Gierasimczuk et al., 2009), and communication networks (Aucher et al., 2018). On
finite graphs, the game is clearly determined, with the computational complexity of
identifying who has a winning strategy being Pspace-complete (Löding and Rohde,
2003).

The existence of this winning strategy can be expressed by a first-order formula.
More specifically, winning conditions can be defined in a bimodal logic that combines
a standard modality for travel steps with a new modality for one-step arrow deletion,
interpreted in models M = (W,R, V ):

M, s � [−]ϕ For each edge (u, v) in R : (W,R−{(u.v)}, V ) � ϕ

This logic fits the sabotage game closely. On top, it is a natural fragment of the
first-order language of graphs. Surprisingly, this logic is undecidable (Löding and
Rohde, 2003), making it one of the simplest examples of an undecidable modal logic
over arbitrary models.

Further graph games in a similar spirit exist, including the poison game of Duchet
and Meyniel (1993), where the Demon poisons nodes, rather than deleting edges.
Extensive studies of modal logics for changing graphs, and µ-calculi for defining
generic solutions to graph games are given in Areces et al. (2011, 2015); Aucher
et al. (2018). A classification of graph games including the effects of complex goal
formulas and imperfect information is found in van Benthem and Liu (2018).
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One perspective on such logics for reasoning about model change is the semantic
games approach of Section 6.1. In standard evaluation games, the initial model does
not change. Modalities for model change, however, require a process of formula eval-
uation where the model of evaluation changes as, say, witnesses for quantifiers are not
replaced (unlike in standard semantics for first-order logic), or moves change facts
by causing damage to accessibility relations. In other contexts, similar modalities
are justified by physical measurements that change the phenomenon under investiga-
tion, (Hintikka, 2002; Renardel de Lavalette, 2001; Ågotnes and Wang, 2017). Such
generalized form of semantics are of independent logical interest.

Example Knowledge Games.

New logical games also arise naturally within the dynamics of information, knowledge
or belief as triggered by the process of game play (cf. Section 4). In particular,
information update suggests conversation games between participants with similar
or different goals. These games may be cooperative, with players aiming to pool their
information, thereby turning distributed knowledge into common knowledge (Meyer
and van der Hoek, 1995). But they can also be competitive, say, when players strive
to be the first to know whether some relevant proposition holds. Mixtures between
both modes also occur, for instance with some players aiming to communicate a fact
that outsiders should not learn about (van Ditmarsch, 2003).

A concrete example are the ‘announcement games’ of Ågotnes and van Ditmarsch
(2011). Players speak simultaneously and only once, while pursuing goal that are
specified as epistemic formulas. Speaking is modeled by public announcement, and
players preferences are binary. They prefer final models where their goal formula
holds over those where it is false.

These games are conducted under imperfect information, as players may not know
the true state of their epistemic model. Accordingly, the relevant strategies need
to be uniform. Players must say the same thing in all states they cannot distin-
guish. In general, then, many solution concepts produce mixed strategy outcomes.
In fact, it can be shown that there exists simple announcement games without any
unique equilibrium in pure strategies. However, there is a relevant role for logic to
play. Suppose that the goal statements are all ‘universal’, i.e. constructed from lit-
erals by applying only conjunction, disjunction, knowledge operators, and dynamic
modalities with universal announcements. Truth of such formulas is preserved when
transitioning from a model to a submodel. Consequently, epistemic uncertainty be-
comes less harmful and knowledge games with universal goals have equilibria in pure
strategies. Recently, knowledge games have been expanded further to include both
questions and answers as separate actions of issue change and information change
(Ågotnes et al., 2011).

Example Boolean games.

A third example of game design in between game logics and logic games are the
Boolean games of Harrenstein et al. (2001) and Gutierrez et al. (2015) that have
been mentioned several times already. Each player is handed control over a subset of
the propositional variables, and can pick truth values for these at will. Using goals
specified in temporal logics, these games can model a surprising number of relevant
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scenarios of agency. By now, a growing body of work addresses various aspects of
Boolean games including their computational characteristics (both single-shot and
iterated), their game-theoretic properties and equilibria (Gutierrez et al., 2015), and
their connections with games played on social networks (Seligman and Thompson,
2015). Further discussion can be found in the entry on coalitional powers.

6.3 Special topics

Back and forth between game logics and logic games The topic of this
section suggests cycles between the two perspectives on logic and games. Given a
logical system, one can design logical games for it, which can then again be studied
using some appropriate game logic. Conversely, given a game, one can introduce a
logic for describing it, and then introduce evaluation games for that logic, and so
on. Sometimes these cycles reach fixed-points, where, say, the evaluation game for a
formula describing some game is isomorphic to that game itself. But sometimes, the
cycling continues. For discussion, see Rebuschi (2006); van Benthem (2014).

Imperfect information Logic games naturally support imperfect information,
where players do not have complete access to what their opponents do. Epistemic
variations can have far-reaching consequences for the corresponding logics. A par-
ticularly prominent framework among this lines is the independence friendly logic of
Hintikka and Sandu (1989), see also Hintikka and Sandu (1997); Mann et al. (2011).

Argumentation games and graph games Another strand of game analysis with
a connection to logic is the study of argumentation networks (Dung, 1995; Caminada
and Gabbay, 2009), with uses in AI and philosophy (Grossi, 2013; Shi, 2018)

Computational logic The material in this section is closely connected to games
in computational logic, which serve to analyze expressive power of languages. For
relevant results and connections with automata theory, see. Grädel et al. (2002) and
van Benthem (2014).

Gaming and mechanism design Game design is a well-known aspect in the area
of gaming (Rouse and Ogden, 2000). Likewise, mechanism design is an established
topic in game theory (Nisan and Ronen, 1999; Osborne and Rubinstein, 1994). For
connections between between logic, game design and planning, see (Löwe et al., 2011;
Löwe, 2008).

7 Summary and Further Directions

This entry presents an overview of current work at the interface of logic and games.
The topics surveyed fall in a number of strands including current logical analysis
of games in the broadest sense, contacts between logic and classic game theory,
connections with probability and with computation, and, lastly, the game theoretic
content of logic itself. All this produced a perhaps bewildering variety of logical
systems. Yet, this entry emphasized the coherence of different approaches to logical
analysis, some ‘zooming in’ on particular aspects in detail, others ‘zooming out’,
thereby focussing on general patterns. What has hopefully become clear in this way
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is that the various topics span a highly interconnected field. For further details, see
the various game-related entries in this Encyclopedia and the literature cited.

In terms of further desiderata, the coarse grained perspective of logical modeling may
help discover new abstract, general patterns in social behavior beyond the details
of games and game theory. A concrete example might be a description of general
skills and insights that players acquire by playing a given type of games. A more
foundational example would be a formalization of the insight that all concrete social
interaction rest on underlying general notions of ‘dependence’ with their own high-
level logic, cf. the semantic dependence logics of Väänänen (2007); Baltag (2018). For
an alternative proof-theoretic approach in this style, relying on the general postulates
for competitive games of Johansen (1982), see Hu and Kaneko (2012).

The interface area of logic and games still is in statu nascendi. Correspondingly,
there are obvious gaps and desiderata on the logic side, which are reflected in the
material in this entry.

In particular, a fundamental theme are syntactic perspectives on game-theoretic
reasoning. Samples of a proof-theoretic style of analysis for play can be found in
de Bruin (2005). More concretely, Zvesper (2010) analyzes classical results in epis-
temic game theory, (cf. Tan and da Costa Werlang, 1988; Aumann, 1999), in terms
of abstract modalities for belief and optimality, showing how a few simple proof rules
from modal µ-calculus can capture the essence of famous results in epistemic game
theory. Proof-theoretic aspects of logic have been so far overshadowed by semantic
analyses, although this situation is changing slowly (Artemov, 2014; Kaneko, 2002;
Kaneko and Suzuki, 2003). Model-based reasoning provides abstract semantic per-
spectives on games that can aid conceptual clarification, and the discovery of general
laws. But it might turn out to be proof theory that governs the concrete reasoning
used in the semantics, and that may be able to guide the context of justification in
establishing general facts about games.

A further contact with logic that has been ignored in this entry is the rich interface
between games and descriptive set theory (Woodin, 2010; Kanamori, 2008).

It should be stressed once more that logic is not the only formal discipline that throws
light on games. Quantitative probability enters the study of games in many ways,
both in classical and in evolutionary game theory. The interface of logic and games
may well profit from the many old and new contacts between logic and probability
(Leitgeb, 2017; Lin and Kelly, 2012; Harrison-Trainor et al., 2016).

Another link that remained underrepresented in this entry are computational aspects.
The study of games, play and players has natural connections with computation and
agency in computer science and AI (Grädel et al., 2002; Abramsky, 2008; Halpern,
2003; Perea, 2012; Brandenburger, 2014). The proper perspective on what has been
presented here may well turn out to be a triangle of interfaces between logic, games,
and computation.

As for still broader connections, we have not done justice to all links between logic,
games and philosophy, of which more are found in Stalnaker (1996, 1998, 1999). The
same is true for links to linguistics and psychology (Clark, 2011). In this language-
oriented connection, one should also mention the work of Bjorndahl et al. (2017)
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on the natural language used in specifying games and reasoning about them, thus
making game analysis more description-dependent.

Finally, the main thrust of this entry is theoretical and foundational. However, there
also is a more practical aspect to logic and games. Logic plays a role in cognitive
psychology and experimental game theory, if only to identify testable hypotheses
related to Theory of Mind or strategic reasoning (Ghosh et al., 2014; Ghosh and
Verbrugge, 2017; Bicchieri, 1997; Fagin et al., 2004a). Lastly, some work at the
interface of logic and games suggests outreach to the world of actual parlor games
(van Ditmarsch and Kooi, 2015; van Benthem and Liu, 2018).

All in all, the claim of this entry is a modest one. Logic and games form a natural
combination, that may reveal interesting things when pursued explicitly. Even so,
too much logic may import too much of a formal apparatus, which may end up
strangling the games perspective: logical systems are infinite machineries that can
easily overwhelm a concrete game of interest. In short, the contact has to be managed
with care.
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