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Synopsis. We introduce r.e. prime powers as the least common multiple of the recursive
ultrapowers of � from Hirschfeld [16] and the r.e. ultrapowers of � from Hirschfeld &
Wheeler [18]. R.e. prime powers help us with establishing that r.e. ultrapowers admit
no non-identity self-embeddings, settling an issue raised by Hirschfeld & Wheeler. This
parallels an earlier theorem by McLaughlin [34] for recursive ultrapowers.
The road to solution takes us through a number of variants of recursive/online forest
colouring tasks. Along the way we also take a look at a Rudin–Keisler-like category of
prime filters in the lattice of r.e. sets and discover some r.e. prime powers that do admit
non-trivial self-embeddings.
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0. Introduction

Recursive ultrapowers of the natural numbers first saw the light of day at the hand of Hirschfeld [15]
and [16]. A recursive ultrapower (a.k.a. Nerode semiring)�[u] is formed by unary total recursive
functions reduced by agreement modulo u, a fixed non-principal ultrafilter in the algebra R of
recursive subsets of ω. Hirschfeld & Wheeler [18, Chapter 9] supplemented this with r.e. ultra-
powers. Where p is a maximal (hence prime) non-principal filter in the lattice E of r.e. sets, an
r.e. ultrapower (a.k.a. simple model) �[p] is the collection of unary partial recursive functions
with domain in p reduced by agreement modulo p. R.e. ultrapowers are exactly those existentially
closed models of the true ∀∃ arithmetic TA2 which are finitely generated w.r.t. partial recursive
functions.

Hirschfeld & Wheeler [18, 9.6(iii)] show that each r.e. ultrapower �[u] is rigid, that is, the
only automorphism of �[u] is the identity. McLaughlin [30, Theorem 3.7] observes that rigidity
also holds for recursive ultrapowers. On top of that, McLaughlin [34] establishes that, much like
most ultrapower-like consructions, recursive ultrapowers are totally rigid, which means that they
admit no non-identity self-embeddings.

The aim of this paper is twofold.
First, we present and study r.e. prime powers, a class of restricted powers of the natural

numbers that straddles the divide between the recursive ultrapowers on the one hand and the
r.e. ultrapowers on the other. Both of the latter classes are included among r.e. prime powers.
Our definition of r.e. prime powers merely replaces the maximal non-principal filter p in the
Hirschfeld–Wheeler definition of r.e. ultrapowers by an arbitrary non-principal prime filter inE —
we call these filters (r.e.) primes following Shavrukov [43]. This results in structures isomorphic
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2 V. Yu. Shavrukov

to cohesive powers of� from Dimitrov [7], who studies powers of arbitrary computable structures
without specific focus on powers of �. Our interest in r.e. prime powers is in part motivated by
the general principle, confirmed in various earlier settings, that power structures can offer a useful
second perspective on properties of the underlying ultra-, or, in our case, prime filters.

Second, we address the question of total rigidity for r.e. prime powers. Non-trivial
self-embeddability, especially self-embeddability as a proper initial segment, is a well-studied
(Kaye [22, Chapter 12]) and almost ubiquitous (see e.g. Dimitracopoulos & Paris [6]) property in
countable models of arithmetic theories with stronger collection footing than TA2. While initial
self-embeddabiity for r.e. prime powers is out of the question (Corollary 2.12), the finitely gener-
ated aspect of power structures imparts a slightly different flavour to embeddability properties of
r.e. prime powers— the role of Σ1 types of elements of the power becomes decisive (Lemma 2.15).
Each self-embedding ι is uniquely determined by the image of the power’s generator x. The ele-
ment ι(x) is represented by some partial recursive function f , which, if ι(x) , x, can be assumed
fixed-point-free. For such a function f to correspond to a self-embedding, it is necessary that the
graph of f evade (partial) recursive colourings with finitely many colours. Thus constructing a
recursive colouring of the graph of each candidate f will prove total rigidity. A popular approach
to recursive colourability consists in on-line colouring games where in each successive round the
Builder player adds new vertices and/or edges to the graph while the Painter player responds by
assigning colours to (some of the) recently added vertices.

We devise a recursive strategy for colouring a sufficiently large portion of the graph of any
sufficiently nice partial recursive function, which turns out to suffice for establishing the total
rigidity of each r.e. ultrapower (Corollary 6.2). On the other hand, a different set of rules leads
to Forester, a younger cousin of Builder, winning in a series of on-line forest colouring games,
and we use this to construct an r.e. prime power which does admit a non-identity self-embedding
(Theorem 3.1), revealing just how lucky the r.e. ultrapowers are in enjoying total rigidity.

0.A. Contents

Section 1 reviews recursive ultrapowers and McLaughlin’s theorem on their total rigidity.
We present an alternative argument for (a version of the graph colouring lemma involved in)
this theorem. Subsection 1.B points out the connection of McLaughlin’s theorem to a rigidity-like
property of the complements of r-maximal r.e. sets first observed by Lerman [27] — we show that
this property is a consequence of total rigidity.

In section 2 we present the definition and first properties of r.e. prime powers including a
restricted version of Łoś’ Lemma and criteria for embeddability and Σ1-elementary embeddability.

Section 3 witnesses the defeat of Painter in a forest colouring game where vertices only have
to be assigned a colour once they reach a fixed depth in the forest being constructed. We show how
this leads to the construction of a non-trivial self-embedding of an appropriate r.e. prime power.

The study of r.e. prime powers resumes in section 4 with the introduction of new tools such as
total recursive skies in models of TA2, a version of Rudin–Keisler ordering on primes where only
partial recursive reductions are allowed, and the corresponding category rkΣ. We also detail the
connection between said reductions among r.e. primes and Σ1 types of elements in models of TA2
and explain how hinged primes, introduced in Shavrukov [43], relate to recursive ultrapowers.

In section 5 we focus on general properties of non-trivial self-embeddings of r.e. prime
powers linking them to non-identity rkΣ-endomorphisms of primes and to inclusion-downward
morphisms in rkΣ. This helps us force an arbitrary partial recursive function inducing a non-trivial
self-embedding to conform to a stringent standard, which sets the scene for the final section.
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A technical lemma on large diagonal intersections of uniformly r.e. families opens section 6.
For a class of r.e. prime powers that includes r.e. ultrapowers, that lemma helps to tilt the battlefield
in Painter’s favour, and we describe a colouring strategy under the new auspicious conditions. This
entails total rigidity for r.e. ultra- and some other prime powers.

0.B. Notation, terminology, conventions

For a function f , its restriction to a set X is denoted f |X , and f [X] = { f (x) | x ∈ X }. The set of
fixed points of f is fix f . Superscripts to functional symbols denote iteration.

For X ⊆ ω, the complement ω − X is denoted X . Almost inclusion X ⊆∗ Y means that Y − X
is finite, and X =∗ Y stands for almost inclusion in both directions.

An r.e. splitting of an r.e. set X is a partition of X in two r.e. pieces. When we say that the
finite set α(x) is a (partial) recursive function of x, we mean that the code of α(x) is recursive in x.

We consider the natural numbers� as a 1st order structure in the language L = (0,1,+,×), so
that x ≤ y is an abbreviation for ∃z (x + z = y). We prefer a minimalist purely functional language
because it makes embeddability arguments shorter. Let L∗ denote the language L expanded by
a relation symbol ∗. The ∆≤0 formulas of L≤ are those in which each quantifier is bounded by an
L-term without occurrences of the quantified variable. The ∆0 formulas of L are translations into L
of the ∆≤0 formulas. The classes Σn and Πn of formulas have their usual definition. When you
start with the class of quantifier-free formulas instead of ∆0 ones, you get the classes ∃n and ∀n
in place of Σn and Πn respectively. ∀∗n formulas are the ∀n formulas of L∗, and similarly for ∃n.
For a class Γ of formulas, an embedding ι between structures is Γ-elementary if Γ formulas are
absolute for ι. A sentence is a formula without free variables.

The L-theory TA2 is axiomatized by the Π2 sentences true in �. Hirschfeld [16, Corol-
lary 1.7.1] shows that its L<-variant TA<

2 = ThΠ<
2
� also has a smaller axiom set consisting of

the true ∀<2 sentences. Since < is definable in TA<
2 by both an ∃1 and by a ∀1 formula, every

∀<2 sentence is equivalent in TA<
2 to a ∀2 sentence. Hence Th∀<2 � is a definitional extension

of Th∀2 � in the sense of Hodges [19, subsection 2.6.2]. Therefore Hirschfeld’s conclusion implies
TA2 = Th∀2 �.

A formula ϕ(®x) is ∆1 in TA2 if ϕ(®x) is equivalent in TA2 both to a Σ1 and to a Π1 formula —
Hirschfeld [16, 1.2] calls ∆1 in TA2 formulas recursive.

Under normal circumstances, the theories I∆0 and I∆0+exp (see Gaifman & Dimitracopou-
los [12] or Hájek & Pudlák [14, V.1(a)]) speak the language L≤. We shall nevertheless treat these
theories as L-theories with the understanding that they are axiomatized by the L-translations of
their usual L≤ axioms. Just like with TA2, of which both I∆0 and I∆0+exp are subtheories, the
traditional L≤-versions of the latter theories are definitional extensions of our L-versions. All
homomorphisms between models of I∆0 are embeddings.

We fix a quaternary L-formula t : {e}(x) = y to represent a variant of Kleene’s T-predicate,
“t is the computation protocol witnessing that the eth computing device outputs y on input x”.
Smullyan [44, Theorem IV.9] shows that one can select a ∆0 formula with the properties of the
T-predicate, so we will assume that t : {e}(x) = y is ∆0. As usual, {e}(x) = y is ∃t t : {e}(x) = y,
and {e}(x)↓ is ∃y {e}(x) = y.

1. McLaughlin’s Theorem

Recursive ultrapowers were introduced by Hirschfeld [15] and [16]. A certain subclass of those
had been previously studied by Lerman [27] — we take a closer look at it in subsection 1.B.
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1.1. Definition (Hirschfeld [16, section 2]). A recursive ultrafilter is a non-principal ultrafilter in
the Boolean algebra R of recursive subsets of ω.

Let u be a recursive ultrafilter. For functions f ,g : ω→ ω, let f ≡u g stand for agreement on
some set in u. Then≡u is a congruence on the semiring T of unary total recursive functionsω→ ω

with pointwise addition and multiplication. Define the recursive ultrapower �[u] corresponding
to u as T /≡u.

We denote by [ f ] the ≡u-equivalence class of f and let x = [id].

1.2. Fact (Hirschfeld [16, Corollary 2.4]). For any recursive ultrafilter u one has �[u] |= TA2.
In particular, �[u] |= I∆0+exp.

1.3. Convention. In (any model M of) TA2, we use the expressions f (x) = y and z ∈ X , where f
is a (partial) recursive function and X is an r.e. set, as abbreviations for the Σ1 formulas {e}(x) = y

and {d}(z)↓ respectively, where e is an index for f and d is an r.e. index for X . No matter which
index we choose for a given recursive function f , we end up with formulas which are equivalent
in TA2, for ∀x, y ({e}(x) = y ↔ {c}(x) = y) is a true Π2 sentence provided both e and c are
recursive indices for f . Similarly for r.e. sets. This allows us to treat (partial) recursive functions
and r.e sets as virtual elements of the 1st order language.

The same understanding remains in force even when f or X are compound expressions such as
g Ò h or g[Y ] ∪ Z . The next lemma will say that, in simpler situations, the distinction does not
really matter.

When we say that f is a (partial) recursive function, we always imply that, even though f may
operate in a non-standard model, f is standard, that is, it has a standard index. Similarly for r.e. sets.

1.4. Lemma. Let M |= TA2, let i ∈ ω be a standard number, X and Y r.e. sets, R a recursive one,
and f and g partial recursive functions. Then the following hold in M:

(a) ∀x ( f (g(x)) = ( f Ò g)(x));

(b) ∀x (x ∈ X ∧ x ∈ Y ↔ x ∈ X ∩ Y ), and similarly for ∪;

(c) ∀x (x ∈ R↔ x < R);

(d) ∀x (x = i ↔ x ∈ {i});

(e) ∀x ( f (x) ∈ X ↔ x ∈ f −1[X]).

Proof. This follows at once from Fact 1.2, as each of the clauses is Π2 and true.

The following fact completes an emergency kit of basic principles intended to last us through the
present section. Facts 1.2 and 1.5 will be (re-)established in section 2 in greater generality.

1.5. Fact (Hirschfeld [16]). Let u be a recursive ultrafilter. Then

(a) ([16, Lemma 2.5]) �[u] |= f (x) = [ f ] for each total recursive f ;

(b) ([16, Theorem 2.3]) For each recursive set R, �[u] |= x ∈ R iff R ∈ u.

Clause (a) tells us, among other things, that each element of �[u] is a total recursive value of x.

1.A. A proof of McLaughlin’s Theorem

In this subsection we present an alternative argument for
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1.6. McLaughlin’s Theorem ([34]). Let u be a recursive ultrafiler.

(a) The generator x is the only element a of �[u] satisfying �[u] |= x ∈ R → a ∈ R for
each recursive set R.

(b) �[u] is totally rigid.

Towards the proof of the theorem, we first fix some graph colouring terminology.

1.7. Definition. Let Γ be a graph whose vertex set is (a subset of) ω, and let k ∈ ω. The graph Γ
is highly recursive (Bean [1]) if it is locally finite and, given a vertex x ∈ ω, one can effectively
compute the finite set of all vertices Γ-adjacent to x.

A Γ-colouring of a set X with k colours is a colour assignment χ : X → k such that
χ(x) , χ(y) whenever x, y ∈ X and a Γ-edge between x and y is present. When Γ is the graph of
a function f , we speak of f -colourings.

We invoke a particular instance of a theorem by Schmerl [40] which bounds the recursive chromatic
number of a highly recursive graph in terms of its classical chromatic number:

1.8. Fact (Schmerl [40, Theorem 1, n = 2]). Suppose Γ is a highly recursive forest. Then there
exists a recursive Γ-colouring (of ω) with 3 colours.

Schmerl also shows that one cannot generally do better than three colours.
The classical forebears of the following Lemma concerned the existence of f -colourings

of the whole of the graph of an arbitrary fixed-point-free function f with finitely many colours.
Katětov [21] shows that 3 colours generally suffice (see also Blass [2, proof of Theorem I.5] or
Comfort & Negrepontis [5, Lemma 9.1]). Katětov’s theorem is a consequence of a more general
argument by DeBruijn & Erdős [3, Theorem 3, k = 1]. Later studies subjected both f and
the f -colouring to topological restrictions — see e.g. Krawczyk & Steprāns [25]. Applications
in the present paper follow McLaughlin [34] in considering recursive functions f and recursive
f -colourings.

1.9. Lemma. For each total recursive function f there is a recursive f -colouring of fix f with
5 colours.

Proof. We first partition fix f in two recursive pieces, D = { x ∈ ω | f (x) < x } and U = { x ∈
ω | f (x) > x } (compare with the proof of III.A.3 in Rudin [39]).

We use two colours for elements of D. Assume that χ has already been defined on D ∩
{0, . . . , x − 1}. For x ∈ D, define χ(x) , χ( f (x)) if f (x) ∈ D, or select χ(x) arbitrarily in the
opposite case.

Observe next that the restriction of the graph of f toU is a highly recursive forest, forU cannot
contain any f -cycles, and each vertex in U adjacent to x ∈ U is contained in the finite computable
set {0, . . . , x − 1} ∪ { f (x)}. Therefore by Fact 1.8 there is a recursive f -colouring of U with just
the three remaining colours.

McLaughlin [34] proves a stronger version of Lemma 1.9 that uses four rather than five colours.
His proof is longer and does not rely on Fact 1.8. It will be clear from the proof of Theorem 1.6 that
any finite number of colours would suffice for the intended application. McLaughlin [34] however
also claims that Lemma 1.9 holds true with just three colours at the cost of a more sophisticated
construction. Corollary 3.10 will confirm McLaughlin’s claim.
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A significant portion of the present paper will investigate variants — or failures thereof — of
Lemma 1.9 for partial recursive colourings of (parts of) the graph of a partial recursive function.

We recall one more external fact based on the provability in I∆0+exp of instances of the
Matiyasevich–Robinson–Davis–Putnam Theorem:

1.10. Fact (Gaifman & Dimitracopoulos [12]). (a) ([12, Theorem 4.1]) Any ∆0 formula is equiv-
alent in I∆0+exp to a ∃1 formula.

(b) ([12, Proposition 5.1]) Any embedding between models of I∆0+exp is ∆0-elementary.
Hence Σ1 formulas persist from sources to targets of such embeddings.

(c) ([12, Proposition 5.2, n = 0]) Any cofinal embedding between models of I∆0+exp is
Σ1-elementary.

The remaining part of the proof reproduces McLaughlin’s argument:

1.11. Proof of Theorem 1.6 concluded. (a) Assume f is total recursive and f (x) satisfies
�[u] |= x ∈ R→ f (x) ∈ R for each recursive set R.

Suppose�[u] |= χ(x) = i, where χ is an f -colouring of fix f with 5 colours as in Lemma 1.9
and i < 5. Then �[u] |= χ( f (x)) = i by Lemma 1.4, for χ−1[{i}] is a recursive set. On the other
hand, �[u] |= ∀x (χ(x) = i → χ( f (x)) , i), the r.h.s. being a true Π2 sentence by Lemma 1.9.
Therefore, in �[u], x is left uncoloured by χ, hence �[u] |= f (x) = x because the Π2 sentence
∀x (χ(x)↓ ∨ f (x) = x) is true.

(b) If ι is a self-embedding of �[u] with ι(x) = [ f ] for some total recursive f , then �[u] |=
x ∈ R → f (x) ∈ R for each recursive set R by Facts 1.5(a) and 1.10(b). By clause (a),
�[u] |= f (x) = x, thus ι(x) = x.

For an arbitary recursive g, Fact 1.10(b) ensures

�[u] |= ∀x, y
(
g(x) = y → g

(
ι(x)

)
= ι(y) = ι

(
g(x)

) )
because the formula g(x) = y is Σ1 and ι is a self-embedding. Hence, in particular, �[u] |=
g(x) = g(ι(x)) = ι(g(x)). Since each element of �[u] is of the form g(x) for an appropriate total
recursive g (Fact 1.5(a)), the only self-embedding of �[u] is the identity.

1.B. An application to r-maximal sets

Recall that an r.e. set A is r-maximal if A is infinite and r-cohesive, that is, no recursive set splits A
into two infinite pieces. The history of the following Proposition begins with Lerman [27, Proposi-
tion 2.1], with successive versions appearing in Kobzev [23, Предложение 2] and Omanadze [37,
Lemma 3.5].

1.12. Proposition (Lerman, Kobzev, and Omanadze). If A is an r-maximal r.e. set and f is a total
recursive function such that A ∩ f [A] is infinite, then A ⊆∗ fix f .

We shall see that Proposition 1.12 is a manifestation of a more general phenomenon:

1.13. Lemma. Suppose u is a recursive ultrafilter and f is a total recursive function.
Then either there exists a recursive R ∈ u such that R ∩ f [R] = �, or fix f ∈ u.
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Proof. If there is a recursive set S such that �[u] |= x ∈ S = f (x), then �[u] |= x ∈ f −1[S]
(Lemma 1.4). Let R = S ∩ f −1[S]. Then R ∈ u by Fact 1.5(b) and

R ∩ f [R] = S ∩ f −1[S] ∩ f
[
S ∩ f −1[S]

]
⊆ S ∩ f −1[S] ∩ f [S] ∩ S = �.

If �[u] |= x ∈ S → f (x) ∈ S for each recursive S, then �[u] |= f (x) = x by Theorem 1.6(a).
Hence f ≡u id, so u 3 fix f .

1.14. Lemma (Hirschfeld [16, 4.1]). Suppose A is an r-maximal r.e. set. Then

uA =
{
recursive R

�� R ⊇∗ A
}

is a recursive ultrafilter.

Proof. It is clear that uA is a filter. For each recursive set R, either R ⊇∗ A or R ⊇∗ A by the
r-cohesion of A. As A is infinite, uA cannot be principal.

The ultrafilter uA is essentially the same thing as the preference function for A from Lerman &
al. [28, Definition 1.1] (for an r-maximal set, the preference function is unique). Lerman [27]
investigates ultrapowers�[uA] with r-maximal A, defining the congruence ≡A on T as agreement
a.e. on A. By Lemma 1.14, Lerman’s ≡A coincides with ≡uA .

1.15. Proof of Proposition 1.12 concluded. If there existed a recursive R ∈ uA with R ∩
f [R] = �, then, as R ⊇∗ A, the intersection A ∩ f [A] would be finite, contrary to assumption.
By Lemma 1.13 it follows that fix f ∈ uA, hence fix f ⊇∗ A.

2. R.e. prime powers

2.1. Definition. An (r.e.) prime p is a non-principal proper prime filter in the lattice E of r.e.
subsets of ω (equivalently, p is a proper prime filter in E ∗ = E /=∗).

R.e. primes are to r.e. prime powers what ultrafilters are to ultrapowers.
Shavrukov [43] studies the collection of r.e. primes ordered by inclusion, which together with

an appropriate topology forms the dual space (E ∗)? of E ∗. The following is an easy consequence
of the Reduction Pinciple for r.e. sets.

2.2. Fact (Shavrukov [43, Corollary 1.4]). The inclusion ordering on r.e. primes is forest-like:
if q ⊆ p and r ⊆ p, then q ⊆ r or r ⊆ q.

In this section, p stands for an arbitrary prime.

2.3. Definition. Let Pp be the collection of all unary partial recursive functions f : ω→ ω with
dom f ∈ p. For f ,g ∈ Pp, write f ≡p g if f and g agree on a set in p. Clearly, ≡p, agreement
modulo p, is an equivalence relation on Pp. Furthermore, ≡p is a congruence for the pointwise +
and × on Pp (where for ( f ·g)(x) to be defined one requires the convergence of both f (x) and g(x)).
We can therefore define the quotient r.e. prime power �[p] = (Pp,+,×,0,1)/≡p.

We write [ f ]p (or just [ f ]when confusion is unlikely) for the ≡p-equivalence class of f ∈ Pp.
Let us also fix the notation x = xp = [id]p.
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Our definition of r.e. prime powers is (equivalent to) a specialization of reduced r.e. powers
from Hirschfeld [17, 1.4]. The definition of �[p] coincides with that of r.e. ultrapowers from
Hirschfeld & Wheeler [18, 9.4] when the prime p is required to be maximal (w.r.t. inclusion).
Lemma 2.6 will show that all recursive ultrapowers (Definition 1.1) are also contained among
r.e. prime powers. In this section we shall see that many properties of recursive and r.e. ultrapowers
generalise straightforwardly to r.e. prime powers.

2.4. Remark. An infinite set C ⊆ ω is cohesive if no r.e. set splits C into two infinite pieces. For a
cohesive set C, let PC be the collection of partial recursive functions f with dom f ⊇∗ C, and let
≡C stand for agreement a.e. on C among elements of PC . Dimitrov [7] defines cohesive powers
(of arbitrary computable structures rather than just of�) as Pp/≡C , with cohesive C and the usual
pointwise operations. Any cohesive set C determines an r.e. prime pC = { r.e. X | X ⊇∗ C }, and
it is easily seen that (PpC ,≡pC ) is identical to (PC,≡C). Conversely, given an r.e. prime p, let C be
an infinite Hausdorff intersection of the (r.e.) sets in p together with the complements of all r.e. sets
outside p (see e.g. VanMill [35, Lemma 1.1.2]). Then C is cohesive, and ≡C coincides with ≡p
on Pp = PC . Thus r.e. prime powers are exactly the cohesive powers of �. A cohesive set may
however have further individual features that are not reflected in the corresponding r.e. prime nor
in the power structure, whereas the r.e. prime is essentially visible in the corresponding r.e. prime
power (Lemma 2.10(a)). This suggests that r.e. primes bear closer ties to the powers than cohesive
sets do.

2.A. Basic properties of r.e. prime powers

2.5. Definition. Let u be a recursive ultrafilter, and let ū be the least filter inE with ū ⊇ u. To see
that ū is prime, let X and Y be r.e. sets such that X ∪ Y ∈ ū. Thus there is a recursive R ∈ u with
X ∪ Y ⊇ R. By the Reduction Principle there are recursive X ′ ⊆ X and Y ′ ⊆ Y that partition R.
Hence X ′ ∈ u or Y ′ ∈ u. Therefore X ∈ ū or Y ∈ ū, so ū is prime. Primes of the form ū are exactly
the primes which are minimal w.r.t. inclusion (Shavrukov [43, Lemma 1.9]).

In the opposite direction, for a prime p we denote by p◦ the recursive ultrafiler p ∩ R .
We clearly have u = ū◦ and p ⊇ p◦.

The following lemma justifies our using the same notation for recursive ultrapowers and r.e. prime
powers.

2.6. Lemma (Hirschfeld [17, 1.5]). For any recursive ultrafilter u, the recursive ultrapower �[u]
is canonically isomorphic to the r.e. prime power �[ū] via [ f ]u 7→ [ f ]ū.

The isomorphism is unique.

Proof. We show that ι : [ f ]u 7→ [ f ]ū is an isomorphism. It is clearly correct and injective, for
f ≡u g is equivalent to f ≡ū g for total recursive f and g. Since the operations in both �[u] and
�[ū] are pointwise, ι is a homomorphism.

To show that ι is onto, consider an arbitrary h ∈ Pū. There is a recursive R ∈ u such
that R ⊆ dom h. Define the total recursive function h̄(x) =

{ h(x)
0

if x ∈ R
if x < R

. Then h̄ ≡ū h, so
ι([h̄]u) = [h̄]ū = [h]ū. Thus ι : �[u] → �[ū] is an isomorphism.

The uniqueness of ι follows at once from McLaughlin’s Theorem 1.6.

The following restricted version of Łoś’ Lemma is due to Hirschfeld [16, 2.3] for recursive
ultrapowers, and toMcLaughlin [31, Lemma 5.13] for r.e. ultrapowers. (Unlike our exposition, both
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Hirschfeld and McLaughlin include < among the primitive symbols.) Dimitrov [7, Theorem 2.1.2]
establishes Łoś’ Lemma for ∃1 formulas in cohesive powers of arbitrary computable structures —
for us it is important to remember that Σ1 formulas of L should not be confused with ∃1 ones
before Matiyasevich’s theorem is available in the target structures, but see Remark 2.9. See also
Hirschfeld [17, 1.4(g)], although Hirschfeld’s version of Łoś’ Lemma is not universally true in the
more general setting of reduced r.e. powers.

2.7. Σ1-Łoś Lemma. For each Σ1 formula σ(x1, . . . , xn) and f1, . . . , fn ∈ Pp one has

�[p] |= σ
(
[ f1], . . . , [ fn]

)
⇔

{
x ∈

⋂
i
dom fi

��� � |= σ (
f1(x), . . . , fn(x)

) }
∈ p.

(Observe that the r.h.s. is not affected by adjunction of dummy variables to σ(®x).)

Proof. Say that a formula σ(®x) enjoys the Łoś property if σ(®x) satisfies the statement of the
present Lemma.

Since operations in �[p] are pointwise, induction on the structure of the term t(®y) yields:

Claim 1. �[p] |= t([ ®f ]) = [t( ®f )] holds for each L-term t(®y) and each ®f ∈ Pp. Hence atomic
formulas, i.e. those of the form t(®y) = s(®y), possess the Łoś property.

The following claim is straightforward, using that p is a filter:

Claim 2. Suppose ϕ(®y) and ψ(®y) are Σ1 and enjoy the Łoś property. Then so does ϕ(®y)∧ψ(®y).

The next claim is the only step in the proof that relies on the primality of p.

Claim 3. Suppose δ(®y) is ∆1 in TA2 and possesses the Łoś property. Then so does ¬δ(®y).

Proof. For ®f ∈ Pp, we have

�[p] |= ¬δ([ ®f ]) ⇔
{

x ∈
⋂

i
dom fi

��� � |= δ ( ®f (x)) } < p (by assumption)

⇔

{
x ∈

⋂
i
dom fi

��� � |= ¬δ ( ®f (x)) } ∈ p,

with the second equivalence holding because the two r.e. sets on the r.h.s. partition
⋂

i dom fi ∈ p,
and p is prime.

Claim 4. Suppose the formula ϕ(y, ®z) is Σ1 and has the Łoś property. Then so does the
formula ∃y ϕ(y, ®z).

Proof. With ®f ∈ Pp,

�[p] |= ∃y ϕ(y, [ ®f ]) ⇔ ∃g ∈ Pp �[p] |= ϕ([g], [ ®f ])

⇔ ∃g ∈ Pp
{

x ∈ dom g ∩
⋂

i
dom fi

��� � |= ϕ (
g(x), ®f (x)

) }
∈ p (by assumption)

⇔

{
x ∈

⋂
i
dom fi

��� � |= ∃y ϕ (
y, ®f (x)

) }
∈ p.

For the ⇐ direction of the last equivalence, note that y, when it exists, can be selected partial
recursively in x ∈

⋂
i dom fi because ϕ(y, ®z) is Σ1.

According to our conventions, x ≤ y is short for ∃z (x + z = y). A direct consequence of Claims 1
and 4 is
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Claim 5. The Łoś property holds for the formula x ≤ y.

Claim 6. Suppose ϕ(y, ®z) is Σ1 and has the Łoś property. Then so does the formula
∃y≤t(®z) ϕ(y, ®z), where t(®z) is any L-term.

Proof. Observe that ∃y≤t(®z) ϕ(y, ®z) rewrites as ∃y (y ≤ t(®z) ∧ ϕ(y, ®z)), and use Claims 1, 5,
2, and 4 (in that order).

To complete the proof, we use induction on the structure of σ(®x). Claim 1 takes care of atomic
formulas, Claims 2 and 3 account for Boolean connectives, and Claims 6 and 3 for (the L-
translations of) bounded quantifiers, so that ∆0 formulas are covered. Existential quantifiers are
strapped on with the help of Claim 4.

Corollary 2.8 and Lemma 2.10 are straightforward generalisations of the corresponding items in
Hirschfeld [16] for recursive ultrapowers and in Hirschfeld & Wheeler [18] and McLaughlin [31]
for r.e. ultrapowers.

2.8. Corollary. �[p] |= TA2. In particular, I∆0+exp holds in �[p].

Proof. Suppose � |= ∀®y σ(®y) where σ(®y) is Σ1. Take any ®f ∈ Pp. Then{
x ∈

⋂
i
dom fi

��� � |= σ (
®f (x)

) }
=

⋂
i
dom fi ∈ p.

By the Σ1-Łoś Lemma, this implies �[p] |= σ([ ®f ]). Since ®f ∈ Pp are arbitrary, we have
�[p] |= ∀®y σ(®y) as required.

2.9. Remark. Just like Corollary 2.8 does, Dimitrov [7, Theorem 2.1.4] infers from his ∃1-Łoś
Lemma ([7, Theorem 2.1.2]) that the ∀2 theory of an arbitrary computable structure is shared by
each of its cohesive (=r.e. prime) powers (Remark 2.4). Recall that TA2 is axiomatized by Th∀2 �

to see that our Corollary 2.8 is a consequence of Dimitrov’s theorem. Furthermore, our Σ1-Łoś
Lemma 2.7 now follows from Dimitrov’s ∃1-Łoś Lemma, for the Σ1 formulas of L are equivalent
in TA2 (hence both in � and in �[p]) to ∃1 formulas (Fact 1.10(a)).

2.10. Lemma. Let f be a partial recursive function, let X be r.e., and g ∈ Pp.

(a) �[p] |= [g] ∈ X iff g−1[X] ∈ p. In particular, �[p] |= x ∈ X iff X ∈ p.

(b) �[p] |= f ([g])↓ iff dom f Ò g ∈ p. In particular, �[p] |= f (x)↓ iff dom f ∈ p;

(c) If conditions from clause (b) hold, then �[p] |= f ([g]) = [ f Ò g]. In particular, �[p] |=
f (x) = [ f ].

Proof. (a) By the Σ1-Łoś Lemma, �[p] |= [g] ∈ X iff p 3 { x ∈ dom g | g(x) ∈ X } = g−1[X].

(b) By the Σ1-Łoś Lemma, �[p] |= f ([g])↓ iff p 3 { x ∈ dom g | f (g(x))↓ } = dom f Ò g.

(c) also follows from Σ1-Łoś, for { x ∈ dom g | f (g(x)) = f Ò g(x) } = dom f Ò g ∈ p.

2.B. The failure of Σ1 collection

The collection schema

∀x, ®w
(
∀z<x ∃u γ(z,u; ®w) → ∃t ∀z<x ∃u<t γ(z,u; ®w)

)
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restricted to Γ formulas γ(· · · ) is denoted BΓ. According to Lemma I.2.10 in Hájek & Pudlák [14],
BΣ1 is equivalent to B∆0 modulo I∆0.

Basing on the argument in Hirschfeld & Wheeler [18, 9.8], McLaughlin [33, Theorems 1.1
and 1.4] shows that BΣ1 fails in each recursive ultrapower and in each r.e. ultrapower. (See also
Paris & Kirby [38, proof of Proposition 7] for a similar technique.) The gist of the matter is
that finite generation is the nemesis of collection. Essentially the same reasoning extends to all
r.e. prime powers:

2.11. Proposition. �[p] /|= BΣ1.

Proof. Recall that the formula u : {y}(x) = z is ∆0 according to our conventions. We are going
to show that �[p] violates the following substitution instance of B∆0:

(*) ∀z≤x ∃u ∃y<x u : {y}(x) = z −→ ∃t ∀z≤x ∃u<t ∃y<x u : {y}(x) = z.

To show that the antecedent of (*) holds, consider an arbitary element z of�[p]. Then z = [ f ] for
some total recursive f with index y ∈ ω (in particular, y < x), and �[p] |= {y}(x) = [ f ] = z by
Lemma 2.10(c). Hence there is some u in �[p] with u : {y}(x) = z.

Fix an arbitrary t. For any x and y, there is at most one z with ∃u<t u : {y}(x) = z. This
consideration, beingΠ1 and true, persists from� to�[p] (Lemma 2.8). Thus the conclusion of (*)
says that y 7→ z is a partial function (with the ∆0 graph ∃u<t u : {y}(x) = z) from x onto x + 1.
Yet the (true) Pigeonhole Principle for ∆0-definable partial functions

∀x, t
(
∀y<x ∀z0, z1≤x

(
δ(y, z0; x, t) ∧ δ(y, z1; x, t) → z0 = z1

)
−→ ∃z≤x ∀y<x ¬δ(y, z; x, t)

)
is also Π1, so it must hold in �[p]. This contradiction shows that the conclusion of (*) fails
in �[p].

Recall that an extension M ⊇ K between models of I∆0 is a (proper) end-extension if K is a
(proper) initial segment of M . An embedding ι is (properly) initial if the target model is a (proper)
end-extension of the range of ι.

The following corollary extends Corollary 4.13(2) in McLaughlin [31].

2.12. Corollary. �[p] cannot be properly end-extended to any model of I∆0.
In particular, �[p] admits no properly initial self-embeddings.

Reference. Any model of I∆0 with a proper end-extension to a model of I∆0 must satisfy BΣ1 —
see e.g. Hájek & Pudlák [14, Theorem IV.1.22, k = 0] or Kaye [22, Proposition 10.5] while
recalling that initial embeddings between I∆0-models are ∆0-elementary.

2.C. Σ1 and ∆1 types and embeddability

2.13. Definition. Let M be a model of TA2 and a an element of M . We identify the Σ1 type of a
with the collection of r.e. sets to which a belongs in M:

tpMΣ1
a = { r.e. X ⊆ ω | M |= a ∈ X }.
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12 V. Yu. Shavrukov

The identification is correct because when i and j are indices of the same r.e. set, the sentence
∀x ({i}(x)↓ ↔ { j}(x)↓), being Π2 and true, holds in M . Similarly,

tpM
∆1

a = { recursive R ⊆ ω | M |= a ∈ R }.

The following lemma is immediate:

2.14. Lemma. If an element a of M |= TA2 is nonstandard, then tpM
Σ1

a is a prime and tpM
∆1

a is a
recursive ultrafilter.

If a is standard, then tpM
Σ1

a is a maximal principal prime filter in E , and tpM
∆1

a is a principal
ultrafilter in R .

Embeddability criteria for r.e. and recursive ultrapowers are implicit in papers by Hirschfeld and
McLaughlin. Here is the version for r.e. prime powers:

2.15. Lemma. Suppose � < a ∈ M |= TA2.

(a) An embedding ι : �[p] → M with ι(x) = a exists if and only if p ⊆ tpM
Σ1

a, in which case
we have ι([ f ]) = f (a) for each f ∈ Pp, so that the condition ι(x) = a uniquely determines ι.

(b) If conditions from clause (a) are met, then ι is Σ1-elementary if and only if p = tpM
Σ1

a.
In this case ι[�[p]] is the smallest Σ1-elementary submodel of M containing a.

Proof. (a) Assume ι exists. Suppose X ∈ p, so that �[p] |= x ∈ X by Lemma 2.10(a). Then
M |= a ∈ X by Σ1 persistence. Thus X ∈ tpM

Σ1
a.

In the opposite direction, assume p ⊆ tpM
Σ1

a. Let us verify that ι : [ f ] 7→ f (a) for f ∈ Pp
is an embedding. If f ∈ Pp then dom f ∈ tpM

Σ1
a, so M |= f (a)↓. If [ f ] = [g], that is, f and g

agree on a set Y ∈ p, then M |= a ∈ Y , and M |= f (a) = g(a) because ∀x∈Y f (x) = g(x) is a true
Π2 statement. Further, in M ,

ι([ f ] + [g]) = ι([ f + g]) = ( f + g)(a) = f (a) + g(a) = ι([ f ]) + ι([g]),

and similarly for 0, 1, and ×.
Uniqueness holds because we have �[p] |= [ f ] = f (x) for f ∈ Pp by Lemma 2.10(c), and,

y = f (x) being a Σ1 formula, we must have M |= ι([ f ]) = f (ι(x)) = f (a).

(b) Suppose ι is Σ1-elementary and M |= a ∈ X where X is r.e. By the Σ1 elementarity of ι
one has �[p] |= x ∈ X , so X ∈ p by Lemma 2.10(a). Thus tpM

Σ1
a ⊆ p.

Conversely, suppose p = tpM
Σ1

a. With the pairing/projection functions available in both
�[p] and M , it suffices to consider the single-parameter case. In view of the Σ1-Łoś Lemma 2.7,
an arbitrary Σ1 formula with at most the variable x free is equivalent to a formula of the form x ∈ Y
for an appropriate r.e. set Y . So let �[p] |= [ f ] ∈ Y with Y r.e. and f ∈ Pp. We then have
�[p] |= [ f ] = f (x), so �[p] |= x ∈ f −1[Y ] by Lemma 1.4(e), hence f −1[Y ] ∈ p. By our
assumption, M |= a ∈ f −1[Y ], which implies M |= ι([ f ]) = f (a) ∈ Y . Thus ι is Σ1-elementary.

If M |= f (a)↓ with partial recursive f , then dom f ∈ tpM
Σ1

a = p, and f (a) = ι([ f ]) has to
belong to any Σ1-elementary submodel of M that contains a because the formula f (x) = y is Σ1.
Thus ι[�[p]] ⊆ K .

In view of Fact 1.10(c), we can draw the following

February 25, 2019, 20:31 CET



R.e. prime powers and total rigidity 13

2.16. Corollary. If q ⊆ p are primes, then the inclusion Pq ⊆ Pp gives rise to an embedding
ν : �[q] → �[p] with ι(xp) = xq.

The embedding ν is Σ1-elementary if and only if ν is cofinal if and only if p = q.

The following corollary is implicit in McLaughlin [34].

2.17. Corollary. Suppose � < a ∈ M |= TA2, and let u be a recursive ultrafilter. Then x 7→ a
extends to an embedding ι : �[u] → M if and only if u = tpM

∆1
a. The extension is unique.

Proof. Suppose u = tpM
∆1

a. Recall that ū is the minimal prime containing u = tpM
∆1

a ⊂ tpM
Σ1

a,
hence ū ⊆ tpM

Σ1
a. Lemma 2.6 says that �[u] is isomorphic to �[ū] with xu corresponding to xū,

and Lemma 2.15(a) supplies a unique embedding ε : �[ū] → M with ε(xū) = a.
In the other direction, the embedding ι together with Lemmas 2.10(a), 2.6 and 2.15(a) entail

ū = tp�[u]
Σ1

xu = tp�[ū]
Σ1

xū ⊆ tpM
Σ1

a, hence u = tp�[u]
∆1

xu ⊆ tpM
∆1

a. But then u = tpM
∆1

a because
both are ultrafilters.

R.e. prime powers are fully representative of all finitely generated models of TA2:

2.18. Proposition. Suppose M is a non-standard model of TA2.

(a) If M is finitely generated w.r.t. partial recursive functions, then M is isomorphic to an
r.e. prime power.

(b) If M is finitely generated w.r.t. total recursive functions, then M is isomorphic to a
recursive ultrapower.

Proof. In view of the TA2-availability of pairing/projection functions, it suffices to consider the
case when M is generated by a single non-standard element a.

(a) Let p = tpM
Σ1

a. Lemma 2.15(a) provides an embedding ι : �[p] → M with ι(x) = a.
If f is a partial recursive function and M |= f (a)↓, then dom f ∈ p, so f ∈ Pp, hence [ f ] is an
element of �[p], and ι([ f ]) = f (a) by Lemma 2.15(a). Thus ι is an isomorphism.

(b) is established analogously, usingCorollary 2.17 to see that M is isomorphic to the recursive
ultrapower �[u], where u = tpM

∆1
a.

2.D. Rigidity

Rigidity (i.e., the absence of non-identity automorphisms) was shown byHirschfeld&Wheeler [18,
9.6(iii)] for r.e. ultrapowers and by McLaughlin [30, Theorem 3.7] for recursive ones (see also
McLaughlin [31, Theorem 2.11]). All these arguments made use of

2.19. Lemma. Suppose f is a one-to-one partial recursive function. Then there exists a partial
recursive f -colouring of dom f − fix f with 3 colours.

Proof. Let us first note that X = dom f − fix f is r.e. The situation where X is finite is straight-
forward, so assume that X is infinite. Let (xi)i∈ω be an effective repetition-free listing of X .

We calculate χ(xi) by recursion on i: Compute f (x0), . . . , f (xi). Find out if there are j < i
and/or k < i such that f (xj) = xi and f (xi) = xk — there can be at most one of each since f is a
one-to-one function. Select χ(xi) distinct from χ(xj) and χ(xk) if any of j, k are indeed present.
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Clearly, the colouring χ : X → 3 instantiates the conclusion of the lemma because f |X is
fixed-point-free.

2.20. Proposition. Each r.e. prime power �[p] is rigid.

Proof. Consider an arbitrary automorphism ι of �[p]. Let f ∈ Pp be such that ι(x) = [ f ].
Since ι is an automorphism, [ f ] generates �[p] w.r.t. partially recursive functions. So there is a
partial recursive g with �[p] |= g( f (x)) = g([ f ]) = x. By the Σ1-Łoś Lemma, the set Z = { i ∈
dom g Ò f | g( f (i)) = i } is an element of p. In�, f |Z must be one-to-one. By Lemma 2.19, there
is a partial recursive f -colouring χ of Z − fix f with 3 colours. Since p 3 Z is prime, either fix f
or one of the sets χ−1(i) with i < 3 must be an element of p. Hence �[p] |= f (x) , x → χ(x)↓.

In �[p], assume f (x) , x. Then χ(x) is defined. On the one hand, f (x) < fix f , χ( f (x))↓,
and χ(x) = χ( f (x)) because the automorphism ι maps x to f (x). On the other hand, χ( f (x)) ,
χ(x) by Lemmas 2.19 and 2.8, for ∀x ({x, f (x)} ⊆ Z − fix f → χ( f (x)) , χ(x)) is a true
Π2 statement.

The contradiction shows �[p] |= x ∈ fix f . Hence �[p] |= x = f (x) = ι(x). By
Lemma 2.15(a), ι is the identity automorphism.

3. A self-embeddable r.e. prime power

In this section we show that, in contrast to McLaughlin’s Theorem 1.6(b), self-embeddings of
r.e. prime powers can exist:

3.1. Theorem. There is an r.e. prime p such that �[p] admits a non-identity self-embedding.

The partial recursive function f from the following proposition diguises a non-trivial self-
embedding of an appropriate r.e. prime power. The proposition can be seen as the failure of
a sequence of attempts to adapt Lemma 1.9 to partial recursive functions and colourings.

3.2. Proposition. There exists a fixed-point-free partial recursive function f such that for no
integer ` ≥ 1 is there a recursive f -colouring of dom f ` with finitely many colours.

3.A. From uncolourable functions to self-embeddings

Before constructing the function f of Proposition 3.2, let us see how it helps with procuring the
prime p of Theorem 3.1.

3.3. Definition. Let f be a fixed-point-free partial recursive function. An r.e. subset X ⊆ dom f
is chromatic (w.r.t. f ) if for some ` ≥ 1 the set

⋂
0≤i<` f −i[X] admits a recursive f -colouring with

finitely many colours.

3.4. Lemma. In the setup of Definition 3.3, the collection of chromatic r.e. subsets of dom f forms
an ideal in the lattice of r.e. subsets of dom f . This ideal contains all finite subsets.

Proof. It is clear that all finite subsets of dom f are chromatic, and that chromaticity is inherited
by subsets. The variables i and j below stand for non-negative integers.

Suppose that r.e. subsets X and Y of dom f are both chromatic. We aim to show the
chromaticity of X ∪ Y . In view of the Reduction Principle, we may assume that X and Y are
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disjoint. There are ` ≥ 1 and recursive f -colourings of
⋂

i<` f −i[X] and
⋂

i<` f −i[Y ] in finitely
many colours. Let us assume these use disjoint sets of colours. We are going to f -colour the set⋂

i<` f −i[X ∪Y ] while keeping the existing colourings of
⋂

i<` f −i[X] and
⋂

i<` f −i[Y ] and using
2` − 2 fresh colours that are thought of as non-constant `-tuples of 0’s and 1’s.

Since X andY are disjoint, f −i[X∪Y ] is the disjoint union of f −i[X] and f −i[Y ]. An element x
of the set

E =
⋂
i<`

f −i[X ∪ Y ] −
(⋂
i<`

f −i[X] ∪
⋂
i<`

f −i[Y ]
)

of elements not yet coloured is assigned the colour (ε0, . . . , ε`−1) where

εi =

{
0 if f i(x) ∈ X ,
1 if f i(x) ∈ Y .

Note that E is r.e., the colour assignment is recursive, and that all εi cannot coincide for a fixed x,
for in that case x ∈

⋂
i<` f −i[X] ∪

⋂
i<` f −i[Y ], so x < E . To see that this defines an f -colouring

of
⋂

i<` f −i[X ∪ Y ], it suffices to show that the colours (ε0, . . . , ε`−1) and (δ0, . . . , δ`−1) assigned
to x and f (x) respectively are distinct whenever x, f (x) ∈ E . In this case we have εi = δi−1 for
0 < i < ` because f i(x) = f i−1( f (x)). Let j < ` − 1 be such that εj , εj+1. Then δj = εj+1 , εj ,
so x and f (x) acquire distinct colours.

3.5. Definition. We say that a partial recursive function f ∈ Pp induces a self-embedding of
the r.e. prime power �[p] when x 7→ f (x) extends to a self-embedding of �[p]. (Recall from
Lemma 2.15(a) that in this case the extension ι is unique.)

3.6. Proposition. Let f be a fixed-point-free partial recursive function. Suppose F is a filter in E
with F 3 dom f but such that no chromatic subset of dom f belongs to F.

Then there exists a prime p ⊇ F such that f induces a non-identity self-embedding of �[p].

Proof. We construct a ⊆-descending chain (Xi)i∈ω of r.e. sets which is going to serve as a base
for the required prime p = { r.e. Y | ∃i∈ω Y ⊇ Xi }. For each i and each V ∈ F, the set Xi ∩V will
be achromatic w.r.t. f —we use this as inductive hypothesis.

Put X0 = dom f ∈ F. By assumption, X0 is achromatic when intersected with any element
of F. Next proceed in stages.

At odd stages i, consider a next pair Y, Z of r.e. sets such that Y ∪ Z ⊇ Xi ∩W for some
W ∈ F (we assume an exhaustive infinitely repetitive enumeration of all r.e. pairs). Suppose
there existed U,V ∈ F such that both Xi ∩ Y ∩ U and Xi ∩ Z ∩ V were chromatic. Then
(Xi ∩Y ∩U)∪ (Xi ∩ Z ∩V) ⊇ Xi ∩(U∩V ∩W)would also be chromatic by Lemma 3.4, contrary to
the inductive hypothesis. Thus at least one of the choices Xi+1 = Xi ∩Y or Xi+1 = Xi ∩ Z satisfies
the inductive hypothesis. Odd stages ensure that p is going to be a prime filter.

At even stages, we put Xi+1 = Xi ∩ f −1[Xi]. Suppose Xi+1 ∩ V were chromatic for some
V ∈ F. Then for some `, the set

⋂
j<` f −j[Xi+1 ∩ V] would admit a recursive f -colouring with

finitely many colours. But since⋂
j<`

f −j[Xi+1 ∩ V] =
⋂
j<`

f −j
[
Xi ∩ f −1[Xi] ∩ V

]
=

⋂
j<`

(
f −j[Xi ∩ V] ∩ f −(j+1)[Xi]

)
⊇

⋂
j<`

(
f −j[Xi ∩ V] ∩ f −(j+1)[Xi ∩ V]

)
=

⋂
j<`+1

f −j[Xi ∩ V],

February 25, 2019, 20:31 CET



16 V. Yu. Shavrukov

the set Xi ∩ V would then have to be chromatic as well contradicting the inductive assumption.
Since all elements of p are achromatic, the prime filter p is non-principal. If V ∈ F, then at

some odd stage, our construction handles the pair V,� resulting in V ∈ p, so p ⊇ F. Even stages
ensure the property Y ∈ p⇒ f −1[Y ] ∈ p for all r.e. Y .

Since p 3 dom f , we have �[p] |= f (x)↓. Furthermore, �[p] |= f (x) , x because f is
fixed-point-free. Finally, for an r.e. Y ,

�[p] |= x ∈ Y ⇔ Y ∈ p ⇒ f −1[Y ] ∈ p ⇔ �[p] |= x ∈ f −1[Y ] ⇔ �[p] |= f (x) ∈ Y .

Thus tp�[p]
Σ1

x ⊆ tp�[p]
Σ1

f (x). By Lemma 2.15(a), there is then an embedding ι : �[p] → �[p]
with ι(x) = [ f ] = f (x). As x , f (x), one has ι , id.

The converse to the argument of Proposition 3.6 is also clear: if, for some `, the set dom f ` can be
recursively f -coloured in a finite number of colours, then x and f (x) have incomparable Σ1 types
in any r.e. prime power where f (x) converges — this is similar to applications of Katětov-like
lemmas as in, e.g., the proof of Theorem 1.6.

3.7. Proof of Theorem 3.1 (modulo Proposition 3.2). Requisition the partial recursive function f
from Proposition 3.2, and note that f together with the principal filter determined by dom f satisfy
the premisses of Proposition 3.6. The latter Proposition then provides the required prime p such
that f induces a non-identity self-embedding of �[p].

3.B. Three colours suffice

In this subsection we show that three colours always suffice for any chromatic subset of dom f .
The argument consists in a re-colouring technique which we borrow from Krawczyk &
Steprāns [25]. While not a deal-breaker for our purposes, the sufficiency of three colours is
an interesting fact which will also help the rest of this section save a little space on subscripts.

3.8. Lemma (after Krawczyk & Steprāns [25, Lemma 2.1]). Let f be a partial recursive function,
let X ⊆ dom f be an r.e. set, k ≥ 3 and ` ≥ 1. Suppose

⋂
0≤i<` f −i[X] admits a partial recursive

f -colouring with k + 1 colours.
Then

⋂
0≤i<`+2 f −i[X] admits a partial recursive f -colouring with k colours.

Proof. Let χ :
⋂

0≤i<` f −i[X] → k + 1 be a partial recursive f -colouring with k + 1 colours.
Define a new colour assignment ψ with k colours for x ∈

⋂
0≤i<`+2 f −i[X] by

ψ(x) =

{
χ( f (x)) if χ( f (x)) < k,
min(k − {χ(x), χ( f 2(x))}) if χ( f (x)) = k.

Note that x, f (x), f 2(x) ∈
⋂

0≤i<` f −i[X], so χ(x), χ( f (x)), χ( f 2(x)) are defined. The set k −
{χ(x), χ( f 2(x))} is never empty because k ≥ 3. The colouring ψ is partial recursive because χ is.

Let us verify that ψ is an f -colouring. Suppose f (x) ∈
⋂

0≤i<`+2 f −i[X], so that
χ(x), . . . , χ( f 3(x)) are defined.

It cannot be the case that χ( f (x)) = χ( f 2(x)) = k because χ is an f -colouring.
If χ( f (x)) and χ( f 2(x)) are both smaller than k, then ψ(x) = χ( f (x)) , χ( f 2(x)) = ψ( f (x)).
If χ( f (x)) = k > χ( f 2(x)), then ψ(x) = min(k − {χ(x), χ( f 2(x))}) , χ( f 2(x)) = ψ( f (x)).
If χ( f (x)) < k = χ( f 2(x)), then ψ(x) = χ( f (x)) , min(k−{χ( f (x)), χ( f 3(x))}) = ψ( f (x)).
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Thus ψ always assigns distinct colours to x and f (x).

3.9. Corollary. If f is a partial recursive function and dom f ` is f -colourable with finitely
many colours for some ` ≥ 1, then there is a k ∈ ω such that dom f k admits an f -colouring with
3 colours.

Hint. dom f i+1 = f −i[dom f ].

We can now strengthen both Lemma 3 in McLaughlin [34] and our Lemma 1.9:

3.10.Corollary. For any total recursive f there is a recursive f -colouring of fix f with 3 colours.

Proof. If f [fix f ] ⊆ fix f , then a single colour siffices to f -colour fix f . So suppose there is an
s ∈ fix f with f (s) < fix f . Define the function f̂ : fix f → fix f by

f̂ (x) =

{
f (x) if f (x) < fix f ,
s if f (x) ∈ fix f .

Observe that any f̂ -colouring of fix f is also an f -colouring of fix f . Furthermore, f̂ is fixed-point-
free because f̂ (s) = f (s) , s. We have an f̂ -colouring of fix f with 5 colours from Lemma 1.9,
hence there is also one with 3 colours by Corollary 3.9 as dom f̂ i = fix f for each i > 0.

3.C. Painter vs Forester

We now describe a game of the type that presumably first appeared in Bean [1, proof of Theorem 2]
and Gyárfás & Lehel [13, proof of Theorem 2.5]. In our case, we use the game as the lazy person’s
means to avoid the explicit description of a brute-force winning strategy for one of the players.

3.11. Construction. Let ` ≥ 1. Consider a Gale–Stewart win/lose game G` between Player F
and Player P. A position p in G` is a finite directed graph (no loops, no multiple edges) with some
vertices assigned one of 3 colours. Vertices of the position p graph that are incident on no outbound
edges are called (p-)open. The game starts with an empty graph.

In each round ofG` , Player Fmoves first, adding a single vertex to the graph, possibly together
with edges from some of the existing open vertices to the new vertex, thereby relieving the former
of their open status. Thus Player F’s move is determined by the choice of a subset of the currently
open vertices.

It is clear that each vertex can only ever be incident on at most one outbound edge, so after
each round we are left with a forest where each edge is directed away from leaves and towards one
of the roots, the roots being exacly the open vertices.

Player P has a palette of 3 colours, and Player P’s response move consists in colouring each
vertex v such that there is a directed path v = v0, . . . , v` of length ` (i.e., with ` many edges) starting
at v, provided v has not been assigned a colour in the course of one of the preceding rounds. For
each vertex v such a path, if it exists, is unique. Clearly, only the startpoints of directed length `
paths ending at the newly added vertex require attention, all the others having been coloured in one
of the previous rounds.

Any edge whose start- and endpoint are assigned the same colour signifies an immediate win
for Player F. Any infinite play (without monochromatic edges) is a win for Player P.

Player F’s win-set being open, one of the players must have a winning strategy. Also note
that the tree of legal positions is finitely branching, with any infinite branch corresponding to a win
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18 V. Yu. Shavrukov

for Player P. In view of Kőnig’s lemma, this means that any winning strategy for Player F ensures
victory in boundedly many rounds, so that strategy is described by a finite function. Given such a
finite candidate strategy, one can effectively determine whether it is a winning strategy for Player F
via exhaustive search through Player P’s legal moves. Thus there exists a recursive function which,
given `, will output a winning strategy for Player F in G` provided such a strategy exists.

The closest relative of the game G` in existing literature may be the task of 1-inductive on-line
graph colouring with lookahead as described by Irani [20, section 5]. 1-inductivemeans that all but
at most one edge connect any vertex v to vertices that appear earlier than v in a given enumeration.
The vertex v is always enumerated together with all edges connecting it to the vertices enumerated
earlier. This situation is parallelled in G` . On-line with lookahead ` means that we are allowed
to have a look at the next ` vertices to be enumerated before assigning a colour to v. In our
case, Player P waits for v to acquire a chain of ` successors — which may or may not eventually
happen — before deciding on a colour for v.

3.12. Definition. We define an `-seedling to be a finite directed tree with edges oriented away
from the leaves towards the root where all leaves have depth ` (i.e. the path from any leaf to the
root has length `). Furthermore, each leaf of an `-seedling is assigned one of the 3 colours.

Let γ be the graph corresponding to a position after some round in a play of G` and let v be
an open vertex of γ. Suppose the subtree of γ consisting of all vertices at edge-distance at most `
from v together with leaf colouring induced by that play forms an `-seedling. Then that `-seedling
is said to be associated with v. (Some open vertices may fail to have an associated seedling because
there may be leaves of γ at a smaller distance from v, but this will not affect our arguments.)

Given an (`+1)-seedling s and a vertex u in s such that there is an edge from u to the root of s,
the immediate (`-)subseedling of s determined by u is the subtree of s consisting of vertices that
are startpoints of directed paths to u including the zero-length path. Leaf colouring is inherited
from s.

The strain of a 1-seedling s is the set of colours of the leaves of s. The strain of an (` + 1)-
seedling t is the set of strains of all immediate (`-)subseedlings of t. An `-strain is the strain
of some `-seedling. Equivalently, a 1-strain is a non-empty subset of the 3 colours, while an
(`+1)-strain is a non-empty set of `-strains. Clearly, for each ` ≥ 1 the number of distinct `-strains
is finite.

A homomorphism between directed graphs is a vertex mapping that preserves directed edge
presence from source to target. Any homomorphism between `-seedlings must map leaves to
leaves and root to root. Such a homomorphism is a chromomorphism if it preserves leaf colours.

3.13. Lemma. For each ` ≥ 1 and any `-seedlings s and t of the same strain, there is a chromo-
morphism ϕ : s→ t.

Proof. This is clear enough for ` = 1.
Suppose the statement holds for ` and consider (` + 1)-seedlings s and t. Since the strains of

s and t coincide, to each immediate subseedling s′ of s there corresponds at least one immediate
subseedling t ′ of t of the same `-strain as s′. Select one of those arbitrarily and use the induction
hypothesis to find a chromomorphism ϕs′ : s′ → t ′. Let ϕ map the root of s to that of t and put
ϕ|s′ = ϕs′ for each immediate subseedling s′ of s.

The conclusion of Lemma 3.13 can be derived from assumptions weaker than equality of strains,
but its current form will already suffice for our purposes.
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The ` = 0 case of the following proposition would, if present, have some similarity to
Theorem 2.5 in Gyárfás & Lehel [13].

3.14. Proposition. For each ` ≥ 1 Player F has a winning strategy for G` .

Proof. We fix an ` ≥ 1 and show that Player P cannot have a winning strategy for G` . Towards
contradiction, suppose π were such a winning strategy.

Call a set W of `-strains widespread if for each n > 0, there is a position p in a play of G`

in which Player P follows π such that for each element e ∈ W there are at least n many p-open
vertices with associated `-seedlings of strain e . To see that non-empty widespread sets exist, let
Player F progressively construct more and more disjoint single-leaf `-seedlings.

Now let Z be ⊆-maximal among widespread sets. Suppose there are N many `-strains in
total (not just in Z ).

Consider an n > 0. Since Z is widespread, there is a position pn in a π-play of G` with, for
each e ∈ Z , at least (N + 1) · n many open vertices with associted `-seedlings of strain e . Starting
from pn, let Player F successively introduce N · n new vertices v with an edge to v from a pn-open
vertex associated with an `-seedling of strain e , one for each e ∈ Z . This still leaves n many
pn-open vertices for each element of Z which remain open in the new position:

· · ·

Z︷          ︸︸          ︷
· · ·

Z︷          ︸︸          ︷
· · ·

Z︷          ︸︸          ︷
· · ·

Z︷          ︸︸          ︷
· · ·· · ·

n︷                                          ︸︸                                          ︷N · n︷                                          ︸︸                                          ︷

Since Z , �, Player P’s π-responses associate `-seedlings to the N · n newly introduced vertices,
bringing the play to position qn. By the Pigeonhole principle, there are n many among the new
vertices with associated `-seedlings of the same strain f n.

Select an `-strain f such that f = f n for n from an infinite set I ⊆ ω. For n ∈ I, in position qn

there are n many open vertices with associated `-seedlings of strain e for each e ∈ Z , as well as
n many open vertices with associated `-seedlings of strain f . Since I is infinite, the set Z ∪ { f }
is widespread. By the maximality assumption on Z , we must have f ∈ Z .

Thus for n ∈ I, the partially coloured graph corresponding to position qn has a subtree which
is an `-seedling s of strain f while one of the vertices of s adjacent to the root of s was in position pn

associated with an `-seedling t of the same strain.
Let ϕ : s → t be the chromomorphism from Lemma 3.13. Let σ be the mapping from the

set L of leaves of t to the set of leaves of s defined by σ(u) = z if (u, z) is an edge in t. Note that
σ is well-defined as all elements of L are located at depth ` in t.

s
t

uw
L

σ(u)σ(w)
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Let d be the edge-distance function (disregarding edge orientation). For all u,w ∈ L we have

d(u,w) =

{
0 if u = w,
d(σ(u), σ(w)) + 2 otherwise.

Furthermore, d(u,w) ≤ 2` (down to the root of t and back at worst). Hence d(u,w) − 2 ≤
`−1
` · d(u,w). Therefore

d
(
ϕ
(
σ(u)

)
, ϕ

(
σ(w)

) )
≤ d

(
σ(u), σ(w)

)
= max

{
0, d(u,w) − 2

}
≤
` − 1
`
· d(u,w)

with the leftmost inequality holding because ϕ is a homomorphism. Thus ϕ Ò σ : L → L is a
contraction mapping. Being finite, (L, d) is a complete metric space. By Banach’s contraction
principle, ϕ Ò σ has a fixed point v = ϕ(σ(v)) ∈ L. The colour of v = ϕ(σ(v)) coincides with
that of σ(v) since ϕ preserves leaf colours. But v and σ(v) are adjacent by definition. The
monochromatic edge (v, σ(v)) contradicts the victoriousness of π, which brings the proof to its
conclusion.

For the final stretch of the argument, we follow in the slipstream of the proof of Theorem 2 in
Bean [1].

3.15. Proof of Proposition 3.2 concluded. Let (〈e〉)e∈ω be a uniformly recursive indexing of
all partial recursive functions with values in {0,1,2}— these are the three colours. Fix a uniformly
r.e. family (R`,e)`≥1,e∈ω of pairwise disjoint infinite sets. R`,e will be viewed as a playboard for
applying Player F’s winning strategy τ` for G` against 〈e〉. Recall that τ` exists for each ` ≥ 1
by Proposition 3.14, and that τ` can be chosen recursively in ` as explained in Construction 3.11.
We describe an effective procedure for enumerating a directed graph Γ whose vertex set is a subset
of

⋃
`≥1,e∈ω R`,e, and such that the start- and endpoint of each edge belong to the same R`,e:
The graph Γ`,e, the restriction of the graph Γ to R`,e, is to correspond to a play of G` where

Player F follows the winning strategy τ` . Each new vertex introduced by Player F is identified
with a fresh element of R`,e in some recursive manner. Player P’s moves are given by 〈e〉: before
moving on to the next round, Player F waits for 〈e〉(x) to converge for all x ∈ R`,e that, according
to the rules of G` , need to acquire a color value in the current round — if this never happens,
this counts as Player P’s failure to make a move, so no further moves within R`,e will be made by
Player F either.

The function f is defined by putting f (x) = y each time there is a Γ-edge from x to y— recall
that each vertex is incident on at most one outbound edge. Note that f is partial recursive because
the enumeration procedure for the graph is effective, and f is fixed-point-free because Player F
never introduces loops.

Suppose for some ` ≥ 1, the function 〈e〉 effected a recursive f -colouring of dom f ` with
3 colours, and proceed towards contradiction. Let us focus on Γ`,e. If x ∈ R`,e and there is a
directed Γ-path of length ` starting at x, then x ∈ dom f ` , so 〈e〉 assigns a colour to x. In other
words, 〈e〉 makes all the moves required of Player P by G` . On the other hand, since Player F
follows the winning strategy τ` for the construction of Γ`,e, there will be a monochromatic edge
between two vertices of Γ`,e, both of which lie in dom f ` . Hence 〈e〉 cannot represent a recursive
f -colouring of dom f ` .

Thus dom f ` cannot be recursively f -coloured with 3 colours for any ` ≥ 1. By Corollary 3.9,
no finite number of colours suffices either.

February 25, 2019, 20:31 CET



R.e. prime powers and total rigidity 21

3.16. Remark. For each `, the strategy τ` sees Player F to victory in finitely, say n` , many rounds,
as explained in Construction 3.11. Hence we could have chosen each set R`,e in the proof of
Theorem 3.1 to contain n` rather than infinitely many elements. Player F, if desired, can choose
fresh vertices in R`,e in ascending or descending order. The two possibilities would lead to
x < f (x) or f (x) < x respectively for all x ∈ dom f . For the self-embedding ι of Theorem 3.1 one
can therefore arrange for either one of �[p] |= ι(x) = f (x) > x and �[p] |= ι(x) = f (x) < x to
hold. In contrast to this, Proposition 5.12(b) will show that x must be much smaller than the time
it takes to compute f (x).

3.17. Remark. A previously studied partial recursive function can take the place of the function f
constructed in the proof of Theorem 3.1. A partial recursive j is a unary universal function if there
exists a binary total recursive function s satisfying {d}(x) = j(s(d, x)) for all d and x. According
to e.g. Ershov [9, Lemma II.10] or [10, Лемма 2.5.9], the graph of any partial recursive function,
in particular, that of our f , can be effectively and faithfully embedded into the graph of j. In other
words, there exists a one-to-one total recursive e such that

f (x) = y ⇔ j
(
e(x)

)
= e(y) for all x, y.

It follows that there exists a prime q 3 e[dom f ] such that j induces a non-identity self-embedding
of �[q].

4. Σ1 types, restricted RK, and hinged primes

In this section, p and q are arbitrary r.e. primes on which individual lemmas may or may not place
additional assumptions.

4.A. An RK-like ordering of primes and Σ1 types

4.1. Definition. Let f be a partial recursive function with dom f ∈ p. Put

f∗(p) =
{
r.e. X ⊆ ω

�� f −1[X] ∈ p
}
.

The following lemma is a miniaturization of Lemma 1(a) in Ng & Render [36].

4.2. Lemma. If � < a ∈ M |= TA2 and f is partial recursive with dom f ∈ p = tpM
Σ1

a, then
f∗(p) = tpM

Σ1
f (a). In particular, f∗(p) = tp�[p]

Σ1
f (x).

Thus f∗(p) is a prime if M |= f (a) > �, and f∗(p) is a principal maximal filter in E if
M |= f (a) ∈ �.

Hint. Lemmas 1.4(e) and 2.14.

4.3. Lemma. Let f ∈ Pp. The following are equivalent:

(i) f∗(p) = q;

(ii) tp�[p]
Σ1

f (xp) = q;

(iii) xq 7→ f (xp) extends to a Σ1-elementary embedding �[q] → �[p].
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Proof. (i)⇒(ii) is immediate from Lemma 4.2, and (ii)⇒(iii) follows from Lemma 2.15(b).

For (iii)⇒(i), use Σ1 elementarity and Lemmas 2.10(a) and 4.2 to show q = tp�[q]
Σ1

xq =

tp�[p]
Σ1

f (xp) = f∗(p).

4.4. Definition (Shavrukov [43, Definition 5.8]).

q ≤rk p⇔ ∃ f ∈ Pp f∗(p) = q.

We call a function f as above an (rk-)reduction. That ≤rk is a preorder among r.e. primes follows
e.g. from (i)⇔(iii) of Corollary 4.5 to Lemma 4.3.

The definition of ≤rk is obviously modelled on the classical Rudin–Keisler ordering of ultrafilters
on, say,ω—see e.g. Rudin [39], Comfort &Negrepontis [5, § 9], or Ng&Render [36]. A definable
variant of Rudin–Keisler obtains by considering complete non-principal (1-)types of a theory such
as PA together with the ordering determined by (definable) Skolem term reductions between the
types — see Schmerl [41, Section 4], who explains how the classical setup can be subsumed as
a particular case, or Lascar [26] for an even more general setting where the ordering is defined
in terms of elementary embeddability of models. In our circumstances, the appropriate analogue
is Σ1-elementary embeddability between r.e. prime powers. The classical vesion of the following
corollary is found in e.g. Cherlin & Hirschfeld [4, Theorem 2.6].

4.5. Corollary. The following are equivalent:

(i) q ≤rk p;

(ii) there is an element a of �[p] with tp�[p]
Σ1

a = q;

(iii) �[q] embeds Σ1-elementarily into �[p].

The r.e. primes underlying our version of ≤rk represent a departure from the Boolean nature of
traditional variants of Rudin–Keisler in that now we have a meaningful inclusion ordering to
contend with. Lemma 4.7 lists the first simple facts about the interplay between reductions and
inclusion.

4.6. Fact. Suppose � < a ∈ M |= TA2 and the prime q satisfies q ⊇ tpM
Σ1

a. Then M extends to a
TA2-model K such that tpK

Σ1
a = q.

Comment. Proposition 2.13 in Shavrukov [43] establishes this with M and K being models of full
1st order aritmetic TA. Its proof however holds verbatim with TA2 in place of TA. (Alternatively,
observe that any model of TA2 embeds Σ1-elementarily into some model of TA.)

4.7. Lemma. (a) Suppose p ⊆ q and f ∈ Pp (so that f∗(p) is defined). Then f∗(q) is defined and
f∗(p) ⊆ f∗(q).

(b) If (qi)i∈I is a chain of primes and f ∈ Pqi for all i ∈ I, then f∗(
⋃

i∈I qi) =
⋃

i∈I f∗(qi).

(c) Suppose f ∈ Pp is such that f∗(p) ⊆ q. Then there exists a prime r ⊇ p satisfying
f∗(r) = q.
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Proof. Clauses (a) and (b) are immediate from the definitions.
(c) Since q ⊇ f∗(p) = tp�[p]

Σ1
f (x) (Lemma 4.2), Fact 4.6 supplies a TA2-extension K of�[p]

such that q = tpK
Σ1

f (x). Put r = tpK
Σ1

x. Then r ⊇ tp�[p]
Σ1

x = p because formulas of the form
x ∈ X with X r.e. are Σ1 and therefore persist from �[p] to K . Finally, f∗(r) = tpK

Σ1
f (x) = q by

Lemma 4.2.

4.B. The category rkΣ

4.8. Definition. The small category rkΣ has as objects all r.e. primes p ∈ (E ∗)?. The arrows
p → q are represented by partial recursive functions f ∈ Pp such that f∗(p) = q. Two such
functions f and g represent the same arrow when f ≡p g — this identification is easily seen to be
correct w.r.t. compositon. The relation of isomorphism in rkΣ is denoted by ∼rk.

Blass [2, § 2] studied a somewhat similar category of ultrafilters (in full powersets) with arrows
represented by arbitrary functions.

4.9. Lemma. One has p ∼rk q if and only if �[p] � �[q].

Proof. Follows at once from (i)⇔(iii) of Lemma 4.3.

4.10. Exercise. Suppose the primes p and q are rkΣ-isomorphic. Then
(a) if f : p→ q and g : q → p are partial recursive functions witnessing the isomorphism

between p and q, then there are r.e. sets X ∈ p and Y ∈ q with X ⊆ dom f and Y ⊆ dom g such
that f |X and g |Y are mutually inverse bijections between X and Y ;

(b) the quotient lattices E /p and E /q are isomorphic.

The classical analogue of Exercise 4.10(a) is found in Blass [2, Proposition I.7] or Comfort &
Negrepontis [5, Theorem 9.2(b)], and an analogue for recursive ultrapowers in McLaughlin [30,
Lemma 3.2].

4.11. Observation. For each prime p, the identity is the only rkΣ-automorphism p→ p.

Proof. If f and g are partially recursive functions representing mutually inverse rkΣ-arrows
p → p, then xp 7→ f (xp) and xp 7→ g(xp) induce mutually inverse self-embeddings (hence
automorphisms) of �[p] by Lemma 4.3. By Proposition 2.20, both automorphisms are the
identity, so f ≡p g ≡p id.

4.C. ≤≤, skies, and hinged primes

4.12. Definition. In a model M of TA2, a << b means that f (a) < b for all total recursive f .
Accordingly, a ≤≤ b means that f (b) ≥ a for some total recursive f . ≤≤ is a total preorder.
The corresponding equivalence relation is denoted ≈ and its classes are called (total recursive)
skies. Skies are convex subsets of M . The standard numbers � form the lowermost sky in M .

Observe that a ≤≤ b is absolute for embeddings between models of TA2 because so are the
formulas f (b) ≥ a.

4.13. Convention. Recall that a (recursive) enumeration of an r.e. set X is an increasing recursive
sequence (Xt )t∈ω of finite sets such that X =

⋃
t∈ω Xt and max Xt < t whenever Xt , �. We shall
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always silently assume that a recursive enumeration of each r.e. set we consider is chosen and stays
the same throughout an argument. The same accord extends to partial recursive functions f , where
( ft )t∈ω is understood to recursively enumerate the graph of f , and one has ft (x) = y ⇒ x, y < t.

4.14. Definition (Shavrukov [43, Definition 3.9 and Proposition 3.11]). For r.e. sets X and Y and
a total recursive function f , define the r.e. set

X \ f Y =
{

x ∈ Y
��� µt [x ∈ Xt ] ≤ f

(
µt [x ∈ Yt ]

) }
.

Note that X \ f Y ⊆ X ∩Y and that X \ f Y depends on the choice of individual enumerations of X
and Y rather than just on the sets X and Y .

A prime p is hinged on Y if Y ∈ p and p is minimal among the primes containing Y .
Equivalently, Y ∈ p and for each X ∈ p there is a total recursive f with X \ f Y ∈ p. The set Y is
then called a hinge for Y . A prime is hinged if it has a hinge. For example, each inclusion-minimal
prime is hinged (on, say, ω).

Given any Z ∈ p, there is a prime q ⊆ p which hinges on Z (Shavrukov [43, Lemma 3.14]).
The prime q ⊆ p with this property is unique by Fact 2.2, and q =

⋂
{ primes r ⊆ p | r 3 Z }.

We denote this q by pdZ .

4.15. Lemma. If f is total recursive and X \ f Y ∈ p ⊇ q 3 Y , then X \ f Y ∈ q.

Proof. Since { X \ f Y,Y − X \ f Y } is an r.e. splitting of Y ∈ q (see Shavrukov [43, Lemma 3.8]),
exactly one of its pieces must belong to q. As X \ f Y ∈ p ⊇ q, one cannot have q 3 Y − X \ f Y .

The next lemma tells us that, in a TA2-model, the sky witnessing the entrance of a given element
into a given r.e. set is uniquely determined.

4.16. Lemma. Suppose M is a model of TA2 and a ∈ M |= a ∈ X where X is r.e. If (Xt )t∈ω and
(X̂t )t∈ω are two enumerations of X , then M |= µt[a ∈ Xt ] ≈ µt [a ∈ X̂t ].

Hint. The function t 7→ µs[Xt ⊆ X̂s] is total recursive.

4.17. Definition. For X,Y ∈ p, write X ≤≤p Y if�[p] |= µt[x ∈ Xt ] ≤≤ µt[x ∈ Yt ], and similarly
for <<p and ≈p.

Observe that in view of Lemma 4.16, X ≤≤p Y does not depend on the choice of enumerations
for X and Y . Neither do the relations <<p and ≈p. Therefore ≤≤p is a (total) preordering on p.

Define the ordering Sp as (p/≈p,≤≤p) where, strictly speaking, ≤≤p stands in for ≤≤p/≈p.
(We shall also freely confuse individual elements X ∈ p with the ≈p-equivalence classes they
represent.)

The pre-ordering ≤≤p records a coarse chronology of x entering the r.e. sets that it belongs to
in �[p].

It should be noted that rkΣ-isomorphism between primes p and q does not generally imply the
isomorphism between Sp and Sq, except for the case when both directions of the rkΣ-isomorphism
are effected by total recursive functions.

The following lemma holds for the same reason as Lemma 1.4.
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4.18. Lemma. Suppose a ∈ M |= TA2, X and Y are r.e., and f is total recursive. Then

M |= a ∈ X \ f Y ↔ µt [a ∈ Xt ] ≤ f
(
µt [a ∈ Yt ]

)
.

4.19. Lemma. For X,Y ∈ p, the following are equivalent:

(i) X ≤≤p Y ;

(ii) There is a total recursive f such that X \ f Y ∈ p;

(iii) X ∈ pdY .

Proof. (i)⇔(ii) For a total recursive f ,�[p] |= µt[x ∈ Xt ] ≤ f (µt[x ∈ Xt ]) iff�[p] |= x ∈ X\ fY
iff X \ f Y ∈ p by Lemmas 4.18 and 2.10(a).

(ii)⇒(iii) SinceY ∈ pdY and X \ f Y ∈ p ⊇ pdY , we must by Lemma 4.15 have X \ f Y ∈ pdY ,
hence X ∈ pdY .

(iii)⇒(ii) Since Y is a hinge for pdY 3 X , X \ f Y ∈ pdY holds for some total recursive f .

The equivalence (i)⇔(ii) of Lemma 4.19 allows us to rephrase Lemma 4.15 as

4.20. Corollary. If p ⊇ q 3 Y and X ≤≤p Y , then X ∈ q and X ≤≤q Y .
In particular, ≤≤q is the restriction of ≤≤p to q when q ⊆ p.

4.21. Lemma. (a) If p 3 X ⊆∗ Y , then Y ≤≤p X .

(b) If R ∈ p is recursive, then R ≤≤p X for all X ∈ p.

(c) Y ≤≤p X for all X ∈ p iff Y ≤≤p ω iff Y ∈ p◦ (Definition 2.5).
Hence p◦ is the ≈p-equivalence class of ω is the least element of Sp.

(d) If X,Y ∈ p, then X ∩ Y ≤≤p X or X ∩ Y ≤≤p Y .

(e) If X ∪ Y ∈ p, then X ≤≤p X ∪ Y or Y ≤≤p X ∪ Y .

Proof. Clause (a) is left to the reader.

(b) Since R ∈ p is recursive, we have q 3 R for all q ⊆ p. In particular, R ∈ pdX , so R ≤≤p X
for each X ∈ p by Lemma 4.19.

(c) If Y ≤≤p X for all X ∈ p, then Y ≤≤p ω. Since ω ∈ p◦ ⊆ p, one has Y ∈ p◦ by
Corollary 4.20.

In the opposite direction, Y ∈ p◦ says that Y ⊇ R ∈ p for some recursive R, hence Y ≤≤p
R ≤≤p X for each X ∈ p by clauses (a) and (b).

(d) Since ≤≤p is total, we may assume X ≤≤p Y by symmetry. Then X ∈ pdY by Lemma 4.19,
so �[pdY ] |= x ∈ X ∧ x ∈ Y . Therefore �[pdY ] |= x ∈ X ∩ Y , hence X ∩ Y ∈ pdY , yielding
X ∩ Y ≤≤p Y .

(e) As �[pdX∪Y ] |= x ∈ X ∪ Y , we have �[pdX∪Y ] |= x ∈ X ∨ x ∈ Y . Assume �[pdX∪Y ] |=
x ∈ X by symmetry. Then X ∈ pdX∪Y , so X ≤≤p X ∪ Y by Lemma 4.19.

4.22. Proposition. The mapping q 7→ q/≈p is an isomorphism of the inclusion ordering on
↓ p = { primes q | q ⊆ p } to the collection of non-empty initial segments of Sp with inclusion
ordering.
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Proof. By Corollary 4.20, q/≈p = q/≈q is a (non-empty) initial segment of Sp for each prime
q ⊆ p. Conversely, if I a non-empty initial segment of Sp, then Lemma 4.21 guarantees that⋃

I ⊆ p is a prime. Inclusion is clearly preserved in either direction.
Finally, q =

⋃
(q/≈p) and I = (

⋃
I)/≈p are straightforward.

Observe that the isomorphism of Proposition 4.22 sends p◦ = min↓ p to the singleton initial
segment {p◦} of Sp in view of Lemma 4.21(c).

4.23. Lemma. The mapping X 7→ µt[x ∈ Xt ] is a cofinal order-embedding of Sp into �[p]/≈.

Proof. Both correctness and the embedding property are clear from the definition of ≤≤p and
Lemma 4.16. The embedding is cofinal because, for an arbitrary element [ f ] of �[p] where
f ∈ Pp and X = dom f , one has �[p] |= µt[x ∈ Xt ] ≈ µt[ ft (x)↓] ≥ f (x) = [ f ].

Under the order-embedding from Lemma 4.23, the image of the least element of Sp is the sky of x.
The range of the embedding need not generally contain all of the non-standard skies of �[p], nor
even all sufficietntly large ones.

Proposition 4.22 and Lemma 4.23 underscore the fact that, more than being an unstructured
collection of r.e. sets, an r.e. prime can be said to possess a semblance of historical memory.

4.D. Topmost skies and recursive ultrapowers

4.24. Lemma. The prime p is minimal if and only if the generator xp belongs to the topmost sky
of �[p].

Proof. (only if) If p is minimal, then p = ū for the recursive ultrafilter u = p◦ (Definition 2.5).
The generator xu belongs to the topmost sky of the recursive ultrapower�[u] because each element
of �[u] is the value of some total recursive function at xu. By Lemma 2.6, xu 7→ xp extends to
an isomorphism between �[u] and �[p].

(if) If p is not minimal, fix a prime q $ p. The embedding ν : �[q] → �[p] given by
xq 7→ xp is not Σ1-elementary by Corollary 2.16, hence ν cannot be cofinal by Fact 1.10(c), so
any element t ∈ �[p] with ν[�[q]] < t lies in a higher sky of �[p] than xp = ν(xq) does.

4.25. Proposition. The following are equivalent:

(i) p is hinged;

(ii) �[p] is isomorphic to a recursive ultrapower;

(iii) p is rkΣ-isomorphic to a minimal prime;
(iv) �[p] possesses a topmost sky;

(v) The ordering Sp possesses a largest element.

Proof. (i)⇒(ii) Suppose p hinges on X . Since X ∈ p, we have �[p] |= x ∈ X (Lemma 2.10(a)).
Consider s = 〈x, µt[x ∈ Xt ]〉, where 〈x, y〉 is any of the conventional pairing functions with
matching projections x = (〈x, y〉)0 and y = (〈x, y〉)1. We claim that s generates �[p] w.r.t. total
recursive functions.

Let [g] be an arbitrary element of�[p]. We haveY = dom g ∈ p. Since X is a hinge for p, one
hasY \ f X ∈ p for some total recursive f . Then�[p] |= x ∈ Y \ f X so that�[p] |= x ∈ Yf (µt[x∈Xt ]).
Let k be a total recursive function with the Π2 property ∀x,u (x ∈ Yu → k(x,u) = g(x)). Then
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�[p] |= k(x, f (µt[x ∈ Xt ])) = g(x) = [g]. Therefore �[p] |= k((s)0, f ((s)1)) = [g], so every
element [g] of �[p] is a total recursive value of s. By Proposition 2.18(b), �[p] is isomorphic to
a recursive ultrapower.

(ii)⇔(iii) holds thanks to Lemmas 2.6 and 4.9.
(ii)⇒(iv) is clear — the sky containing the recursive ultrapower generator is topmost

(Lemma 4.24).
(iv)⇒(v) follows at once from Lemma 4.23.
(v)⇒(i) Let the r.e. set X ∈ p represent the largest element of Sp. We argue that X is a

hinge for p. Indeed, for an arbitray Y ∈ p we have Y ≤≤p X and hence Y \ f X ∈ p for some total
recursive f by Lemma 4.19.

From Lemma 4.9 and Proposition 4.25 we obtain

4.26. Corollary. rkΣ-isomorphisms between primes preserve the property of being hinged.

4.27. Corollary. The mapping q 7→ max(q/≈p) is an isomorphism of the subordering of hinged
primes in ↓ p to Sp.

Proof. According to (i)⇔(v) of Lemma 4.25, the isomorphism q 7→ q/≈p from Proposition 4.22
restricts to an isomorphism between the collection of hinged primes in ↓ p and the collection of
initial segements of Sp with a largest element, the latter collection being clearly isomorphic to Sp.

The next corollary settles question Q3 from McLaughlin [32].

4.28. Corollary. Each r.e. prime power which embeds cofinally into a recursive ultrapower is
itself isomorphic to a recursive ultrapower.

Proof. If ι is a cofinal embedding of an r.e. prime power �[p] into a recursive ultrapower �[u],
then any element of �[p] taken by ι to the topmost sky of �[u] must belong to the topmost
sky of �[p] (this happens because formulas of the form f (x) < y with f total recursive, being
∆1 in TA2, are absolute for embeddigs between TA2-models). By (iv)⇒(ii) of Proposition 4.25,
�[p] is isomorphic to a recursive ultrapower.

Shavrukov [43, Proposition 3.23] shows that each hinged maximal prime is, in fact, minimal.
It follows that r.e. ultrapowers�[p]with a topmost sky are exactly those corresponding to minimax
primes p.

The following is immediate from (i)⇒(ii) of Proposition 4.25 and Theorem 1.6:

4.29. Corollary. If p is hinged, then �[p] is totally rigid.

Proposition 4.25 tells us that each hinged prime p is rkΣ-isomorphic to some minimal prime. All
minimal primes are hinged. Which minimal primes are isomorphic to some non-minimal (hinged)
prime?

Say that a non-standard model M |= TA2 is single-sky if all the non-standard elements of M
belong to one and the same sky. In the opposite case, M is multi-sky. Both single- and multi-sky
recursive ultrapowers exist. Schmerl & Shavrukov [42] show that in each multi-sky model of TA2
the ordering of skies is dense.
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A prime p is single-sky if �[p] is. A single-sky prime must be minimal in view of
Lemma 4.24 — the r.e. prime powers corresponding to non-minimal primes p possess skies
higher than that of xp. For the same reason, no single-sky prime can be rkΣ-isomorphic to any
non-minimal prime.

4.30. Question. Must each multi-sky minimal prime be rkΣ-isomorphic to a non-minimal one?

A negative answer would be equivalent to the existence of a multi-sky recursive ultrapower �[u]
such that the initial segment I = { a ∈ �[u] | �[u] |= a << xu } (i.e., I is �[u] with the topmost
sky removed) is Σ1-elementary in �[u].

5. Properties of non-trivial self-embeddings

In this section we analyse the structure of a non-identity self-embedding in order both to learn what
we can about existing self-embeddings and to grease the wheels for the proof of total rigidity in
the next section.

We keep the convention that p and q are arbitrary primes.

5.A. Self-embeddings and rkΣ-endomorphisms

In the proof of Proposition 3.6, we had the function f induce a non-trivial self-embedding of�[p]
by virtue of the inclusion tp�[p]

Σ1
f (x) ⊇ tp�[p]

Σ1
x. We now argue that these two Σ1 types must,

in fact, coincide, for the application of any partial recursive function cannot properly inflate the
Σ1 type of an element.

5.1. Proposition. If q % p, then �[q] is not embeddable into �[p].
(In view of Corollary 4.5, this is equivalent to q % p ruling out q ≤rk p.)

Proof. Suppose X ∈ q − p and let r = qdX ⊆ q. The prime r is hinged. Since X ∈ r − p, we have
p $ r by Fact 2.2.

Suppose we had ι : �[q] → �[p], and let νrq : �[r] → �[q] and νpr : �[p] → �[r] be
the embeddings from Corollary 2.16. In view of Fact 1.10(c), the range of νpr is bounded in�[r],
hence the composition

�[r]
νrq
−→ �[q]

ι
−→ �[p]

νpr
−→ �[r]

cannot be the identity. The prime r being hinged, we have reached a contradiction with Corol-
lary 4.29. This proves the non-existence of ι.

5.2. Corollary. (a) For a self-embedding ι : �[p] → �[p], one has tp�[p]
Σ1

ι(x) = p.
In particular, any self-embedding is Σ1-elementary.

(b) Suppose� < a ∈ M |= TA2+ f (a)↓where f is partial recursive. Then tpM
Σ1

f (a) % tpM
Σ1

a
cannot hold.

Proof. (a) Since ι is an embedding, we have q = tp�[p]
Σ1

ι(x) ⊇ p by Lemma 2.15(a). By the same
Lemma, there is an embedding �[q] → �[p]. Now Proposition 5.1 tells us that q = p, so ι is
Σ1-elementary by Lemma 2.15(b).
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(b) According to Lemma 2.15(b), the smallest Σ1 elementary submodel K 3 a of M is
isomorphic to�[tpM

Σ1
a]. If tpM

Σ1
f (a) ⊇ tpM

Σ1
a, then tpK

Σ1
f (a) = tpM

Σ1
f (a) ⊇ tpM

Σ1
a = tpK

Σ1
a, hence

a 7→ f (a) extends to a self-embedding of K by Lemma 2.15(a). Therefore tpM
Σ1

f (a) = tpM
Σ1

a by
clause (a).

5.3. Question. Can a non-identity self-embedding of �[p] be Σ2-elementary? Can a self-
embedding fail to be Σ2-elementary?

5.4. Corollary. (a) A partial recursive f ∈ Pp induces a non-identity self-embedding of �[p]
if and only if f represents a non-identity rkΣ-arrow p→ p.

(b) There exists a prime p with a non-identity rkΣ-arrow p→ p.

Proof. (a) (if) Suppose f∗(p) = p and f .p id. Then tp�[p]
Σ1

f (x) = p by Lemma 4.3. Hence
f induces a self-embedding ι of �[p] by Lemma 2.15(a), and ι , id because �[p] |= f (x) , x
in view of Lemma 2.10(c).

(only if) If f induces a non-identity self-embedding of �[p], then f∗(p) = tp�[p]
Σ1

f (x) = p
by Lemma 4.3 and Corollary 5.2(a). As �[p] |= f (x) , x, we cannot have f ≡p id.

(b) follows from Theorem 3.1 and clause (a).

As counterbalance to Corollary 5.4(b), Proposition 2.20 tells us that identities are the only rkΣ-
automorphisms of r.e. primes.

Corollary 5.4(b) marks a notable difference between rkΣ and the traditional Rudin–Keisler
variants where the only endomorphism of any object is the identity — see Blass [2, Theorem I.5]
or Comfort & Negrepontis [5, Theorem 9.2(a)] for the classical version, and Ehrenfeucht [8],
Gaifman [11, Theorem 4.1], or Kossak & Schmerl [24, Theorem 1.7.2] for types over 1st order
arithmetic. McLaughlin’s Theorem 1.6 establishes the analogous property for the category of
recursive ultrafilters and total recursive reductions. Uniqueness of endomorphisms immediately
implies that, between any twoobjects, the presence of arrows in both directions entails isomorphism.
I do not know if this is the case in rkΣ:

5.5. Question. Does p ≤rk q ≤rk p always imply p ∼rk q ?

5.B. The anatomy of a self-embedding

The following proposition, combined with Theorem 3.1, shows that, in contrast to Proposition 5.1,
pairs p $ q of primes with p ≤rk q do exist, and, furthermore, such pairs are indicative of proximity
to non-trivially self-embeddable powers.

5.6. Proposition. (a) If f ∈ Pp induces a non-trivial self-embedding of �[p], then for any hinged
prime q ⊆ p with q 3 dom f one has f∗(q) $ q.

(b) If f ∈ Pq satisfies f∗(q) $ q, then there is a prime p ⊇ q such that f induces a non-trivial
self-embedding of �[p].

Proof. (a) We have f∗(p) = p by Corollary 5.2(a), hence f∗(q) ⊆ p by Lemma 4.7(a). Note
that f ≡q id cannot hold, for that would imply �[q] |= f (x) = x, and then �[p] |= f (x) = x.
By Fact 2.2, f∗(q) is comparable with q w.r.t. ⊆. We cannot have f∗(q) ⊇ q, as that eventuality
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would have f induce a non-trivial self-embedding of �[q] via Lemma 2.15(a), contradicting
Corollary 4.29. Thus f∗(q) $ q.

(b) Let q0 = f∗(q) and q1 = q. Suppose we have constructed (qi)i≤n satisfying qj+1 ⊇ qj =

f∗(qj+1) for all j < n. Since f∗(qn) = qn−1 ⊆ qn, Lemma 4.7(c) furnishes a prime qn+1 ⊇ qn with
f∗(qn+1) = qn. Let p =

⋃
n∈ω qn. Then

f∗(p) = f∗

(⋃
n∈ω

qn

)
= f∗(q) ∪

⋃
n∈ω

qn = p ⊇ q

because f∗ commutes with unions of chains by Lemma 4.7(b). By Lemma 2.15(a), f induces a
self-embedding ι of �[p]. Since f∗(q) , q, one has f .q id, hence f .p id so ι cannot be trivial
by Corollary 5.4(a).

5.7.Remark. In the situation of Proposition 5.6(a) with f∗(q) properly included in q (as instantiated
by Theorem 3.1), we have by Lemma 2.15 that x f∗(q) 7→ f (xq) extends to a Σ1-elementary
embedding �[ f∗(q)] → �[q], whereas, according to Corollary 2.16, the generator-to-geneator
embedding ν : x f∗(q) 7→ xq is not Σ1-elementary.

5.8. Lemma. Suppose M 3 a and K ⊇ M both model TA2, and X and Y are r.e. sets such that
M |= a ∈ X ∧ a < Y while K |= a ∈ X ∩ Y .

Then K |= µt[a ∈ Xt ] << µt[a ∈ Yt ].

Proof. Towards contradiction, suppose K |= µt[a ∈ Yt ] ≤≤ µt[a ∈ Xt ]. Then K |= a ∈ Y \g X for
an appropriate total recursive g. Now recall that {Y \g X,X − Y \g X } is an r.e. splitting of X .
The possibility M |= a ∈ Y \g X cannot materialize, for M |= a < Y . Hence M |= a ∈ X −Y \g X .
But since X − Y \g X is an r.e. set, this situation persists to K and contradicts K |= a ∈ Y \g X .

When f induces a non-trivial self-embedding of �[p], we now show that the element f (x)
eventually falls behind x in the race to enter r.e. sets — remember that in �[p], x and f (x) are
elements of exactly the same r.e. sets (Corollary 5.2(a)).

5.9. Lemma. Suppose f ∈ Pp induces a non-identity self-embedding ι of �[p], X ∈ p, and
�[p] |= µt[ ft (x)↓] ≤≤ µt[x ∈ Xt ]. Then

(a) �[p] |= µt[x ∈ Xt ] << µt[ f (x) ∈ Xt ] = ι(µt[x ∈ Xt ]);

(b) f∗(pd f −1[X]) = pdX . (Note that f −1[X] ∈ p because X ∈ p = f∗(p).)

Proof. (a) µt[ f (x) ∈ Xt ] = ι(µt[x ∈ Xt ]) follows at once from Lemma 2.15(a).
Next observe that �[p] |= x ∈ X , f∗(p) = p (Corollary 5.4(a)), pdX is hinged, and dom f ∈

pdX because dom f \g X ∈ p for some total recursive g. Hence Proposition 5.6(a) yields f∗(pdX) $
pdX . Therefore X < f∗(pdX), or, equivalently, �[pdX] |= x < f −1[X]. Applying Lemma 5.8 with
K = �[p], M = �[pdX] embedded into K as in Corollary 2.16, a = x, and Y = f −1[X], we obtain
�[p] |= µt[x ∈ Xt ] << µt[x ∈ Yt ] ≈ µt[x ∈ f −1

t [Xt ]] because ( f −1
t [Xt ])t∈ω is an enumeration of

f −1[X] = Y . In �[p] one has

(†) µt
[
x ∈ f −1

t [Xt ]
]
= max

{
µt

[
ft (x)↓

]
, µt

[
f (x) ∈ Xt

] }
= µt

[
f (x) ∈ Xt

]
,

for µt[ ft (x)↓] ≤≤ µt[x ∈ Xt ] by assumption and µt[x ∈ Xt ] << µt[x ∈ f −1
t [Xt ]] as we have just

shown. All in all, �[p] |= µt[x ∈ Xt ] << µt[ f (x) ∈ Xt ] as promised.
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(b) For an arbitrary r.e. set Y , the following equvalences hold:

Y ∈ pdX ⇔ Y ≤≤p X (by Lemma 4.19)

⇔ �[p] |= µt [x ∈ Yt ] ≤≤ µt [x ∈ Xt ]

⇔ �[p] |= µt
[

f (x) ∈ Yt
]
≤≤ µt

[
f (x) ∈ Xt

]
(for f (x) = ι(x) and ι is Σ1 elementary)

⇔ �[p] |= µt
[
x ∈ f −1

t [Yt ]
]
≤≤ µt

[
f (x) ∈ Xt

]
(as µt[x ∈ f −1

t [Yt ]] = max{µt[ ft (x)↓], µt[ f (x) ∈ Yt ]} while µt[ ft (x)↓] << µt[ f (x) ∈ Xt ] by (a))

⇔ �[p] |= µt
[
x ∈ f −1

t [Yt ]
]
≤≤ µt

[
x ∈ f −1

t [Xt ]
]

(by (†))

⇔ f −1[Y ] ≤≤p f −1[X]

(since ( f −1
t [Yt ])t∈ω and ( f −1

t [Xt ])t∈ω are enumerations of f −1[Y ] and f −1[X] resp.)

⇔ f −1[Y ] ∈ pd f −1[X] (by Lemma 4.19)

⇔ Y ∈ f∗
(
pd f −1[X]

)
.

The next corollary strengthens Corollary 5.2(a).

5.10. Corollary. Each self-embedding of any r.e. prime power is cofinal.

Proof. Let f induce a self-embedding ι of�[p]which we may assume to be non-trivial. Consider
an arbitrary element g(x) ≥ µt[ ft (x)↓] of �[p], and let X = dom g. Then by Lemma 5.9(a),

�[p] |= g(x) ≤ µt
[
gt (x)↓

]
≈ µt [x ∈ Xt ] << µt

[
f (x) ∈ Xt

]
= ι

(
µt [x ∈ Xt ]

)
.

Lemma 5.9(a) tells us that ι(a) >> a for each a that belongs to a sufficiently large sky that witnesses
the entrance of x into some r.e. set— these are exactly the�[p]-skies in the range of the embedding
of Sp from Lemma 4.23. This does not generally cover all sufficiently large elements of �[p].

5.11. Question. Suppose f induces a non-trivial self-embedding ι of�[p]. Must�[p] |= ι(a) >>
a hold for all sufficiently large a ∈ �[p] ?

5.12. Proposition. Suppose f ∈ Pp induces a non-identity self-embedding of �[p]. Then

(a) �[p] |= f n(x)↓ for all n ∈ ω;

(b) �[p] |= x << µt[ ft (x)↓]. Hence f cannot be total recursive;

(c) �[p] |= µt[ ft ( f n(x))↓] << µt[ ft ( f n+1(x))↓] for all n ∈ ω;

(d) �[p] |= µt[ ft ( f n(x))↓] ≈ µt[x ∈ Xt ] for X = dom f n+1 and all n ∈ ω;

(e) dom f n <<p dom f n+1 for all n > 0;

(f) f∗(pddom f n+1) = pddom f n for all n > 0.

Proof. Let ι be the self-embedding induced by f .

(a) Assuming�[p] |= f n(x)↓, we have�[p] |= f n(ι(x))↓ by Σ1 persistence. As ι(x) = f (x),
the claim follows.
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(b) If�[p] |= µt[ ft (x)↓] ≤≤ x, then�[p] |= f (x) = g(x) , x for some total recursive g, so g
also induces ι. By Corollary 5.2(a) we have tp�[p]

Σ1
g(x) = p = tp�[p]

Σ1
x. Therefore, since g is total

recursive, tp�[p
◦]

∆1
g(x) = tp�[p]

∆1
g(x) = tp�[p]

∆1
x = tp�[p

◦]

∆1
x (Definition 2.5). By Corollary 2.17,

g induces a self-embedding ε of the recursive ultrapower �[p◦]. Since g(x) , x is absolute for
the natural embedding �[p◦] → �[p] from Lemma 2.6 and Corollary 2.16, the embedding ε is
not trivial. But this contradicts Theorem 1.6.

(c) Apply Lemma 5.9(a) with X = dom f to see that

�[p] |= µt
[

ft (x)↓
]
≈ µt [x ∈ Xt ] << µt

[
f (x) ∈ Xt

]
≈ µt

[
ft
(
f (x)

)
↓

]
.

Assuming �[p] |= µt[ ft ( f n(x))↓] << µt[ ft ( f n+1(x))↓], the same must hold with ι(x) = f (x) sub-
stituted for x since ι is a self-embedding. This yields�[p] |= µt[ ft ( f n+1(x))↓] << µt[ ft ( f n+2(x))↓].

(d) is immediate for n = 0 by Lemma 4.16. With Xn = dom f n for n > 0, it follows by
induction from clause (c) that

�[p] |= µt [x ∈ Xn+1,t ] ≈ max
{
µt [x ∈ Xn,t ], µt

[
ft
(
f n(x)

)
↓

] }
= µt

[
ft
(
f n(x)

)
↓

]
.

(e) is a consequence of clauses (c) and (d).

(f) Let X = dom f n. In view of clause (c), one has�[p] |= µt[ ft (x)↓] ≤≤ µt[x ∈ Xt ]. Hence
Lemma 5.9(b) yields f∗(pddom f n+1) = f∗(pd f −1[dom f n]) = pddom f n .

5.13. Corollary. If f ∈ Pp induces a non-identity self-emdedding of �[p], then f also induces
a (non-identity) self-embedding of �[q], where q =

⋃
n∈ω pddom f n ⊆ p.

The sequence (µt[ ft ( f n(x))↓])n∈ω is cofinal in �[q]. The sequence (dom f n)n>0 is cofinal
in Sq (Definition 4.17).

Proof. Just as in the proof of Proposition 5.6(b), we have f∗(q) = q thanks to Proposition 5.12(f).
Hence f induces a self-embedding of �[q].

Cofinality of (µt[ ft ( f n(x))↓])n∈ω in�[q] follows fromProposition 5.12(c). This is equivalent
to the cofinality of (dom f n)n>0 in Sq by Proposition 5.12(d).

We do not know if the situation q $ p ever obtains in the setting of Corollary 5.13.

5.14. Question. Can there exist primes q $ p and an f ∈ Pq inducing non-identity self-
embeddings of both �[q] and �[p] ?

Equivalently, is there a prime p and f ∈ Pp inducing a non-identity self-embedding of �[p]
such that (µt[ ft ( f n(x))↓])n∈ω is not cofinal in �[p] ?

A negative answer to Question 5.14 would imply a positive one to Question 5.11.

5.C. A normal form for self-embedding-inducing functions

5.15. Notation. In this subsection, we write f (x)↓ < f (y)↓ for µt [ ft (x)↓] < µt [ ft (y)↓].

From Proposition 5.12(a) and (c) one immediately has
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5.16. Corollary. Suppose f ∈ Pp induces a non-identity self-embedding of �[p].
Then �[p] |= f ( f (x))↓ ∧ f (x)↓ < f ( f (x))↓.

With the following definition we aim to bring an arbitrary partial recursive function inducing
a non-identity self-embedding into a workable tamer form.

5.17. Definition. Let f be any partial recursive function. Define the partial recursive function f̃
by

f̃ (x) = y ⇔ f (x) = y & f (y)↓ & f (x)↓ < f (y)↓.

Note that f̃ ⊆ f and that the last condition implies x , y.

The following lemma, which follows immediately from Corollaries 5.16 and 2.8, says that f̃ is
as good as f .

5.18. Lemma. If f ∈ Pp induces a self-embedding of �[p], then �[p] |= f̃ (x)↓ ∧ f̃ (x) = f (x),
i.e. f̃ induces the same self-embedding of �[p] as f does.

The next lemma explains why f̃ is better than f . Clause (b) is inspired by the notion of highly
recursive graph from Bean [1].

5.19. Lemma. Let f be any partial recursive function. Then

(a) f̃ has no fixed points nor other cycles;

(b) for each y ∈ dom f̃ ∪ rng f̃ , the set ©y =
⋃

n∈ω f̃ −n[{y}] is finite and computable in y,
as is the restriction of f̃ to ©y − {y}.

Proof. (a) A fixed point or other cycle f̃ n(x) = x (n > 0) leads to f (x)↓ < f (x)↓ according to
the definition of f̃ .

(b) Observe that y ∈ dom f̃ ∪ rng f̃ implies f (y)↓ and that for x ∈ ©y − {y} we must have
f (x)↓ < f (y)↓, so there are at most finitely many such x (see Convention 4.13). All these x
together with the values of f can be found by bounded search below µt [ ft (y)↓].

6. Relatively maximal r.e. prime powers are totally rigid

In this section we establish

6.1. Theorem. Suppose P is r.e. and the prime q is maximal w.r.t. the property P < q. Then�[q]
is totally rigid.

The r.e. prime powers �[q] with q satisfying the premiss of the theorem for some r.e. P are the
relatively maximal r.e. prime powers of the section title. With P = �, this includes r.e. ultrapowers
as a particular case:
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6.2. Corollary. All r.e. ultrapowers are totally rigid.

The case of single-sky r.e. ultrapowers — these correspond to minimax primes q — is already
covered by McLaughlin’s Theorem 1.6, because these are isomorphic to recursive ultrapowers
(Lemma 2.6). The corollary fills in a blank pointed out by Hirschfeld & Wheeler [18, 9.6(iii)].

6.A. A large diagonal intersection

The following lemma presents a version of diagonal intersection of a uniformly r.e. family with a
largeness property (ii) resembling simplicity (of Z in the “meet” of all Xi − P). The function I is a
free by-product of the construction for Z , but its role in the proof of the key Proposition 6.7 below
will be rather crucial.

6.3. Lemma. Let P be an r.e. set and (Xi)i∈ω a uniformly r.e. downward chain, i.e. Xi+1 ⊆ Xi for
all i. There exists an r.e. set Z such that

(i) for all i, Z − P ⊆∗ Xi − P, and

(ii) for each r.e. set U, U ∩ Z − P is infinite if and only if U ∩ Xi − P is infinite for all i.

Furthermore, there is a recursive function I with dom I = Z such that

(iii) the restriction I |Z−P is one-to-one, and

(iv) if x ∈ Z , then x ∈ XI (x).

Proof. Fix a conventional uniformly r.e. family (Wi)i∈ω of all r.e. sets.
In the beginning, call each index i open. Simultaneously for all open i, look for the first (in a

fixed uniform enumeration) element inWi ∩ Xi which has not yet been enumerated into P. As soon
as such an element x is found, associate x to i, call the index i closed (i.e., not open), enumerate
x into Z , and, finally, put I(x) = i unless I(x) has been defined earlier. If the number x associated
to i is enumerated into P at some later stage, we dissociate x from i, and i becomes open again,
hungry for a fresh element of Wi ∩ Xi.

The set Z is clearly r.e., and I is one-to-one on Z − P because at most one number can stay
forever associated to a given index. The assignment I(x) = i is only possible when x ∈ Xi, so
condition (iv) is also met. Each element x of Z − Xi must satisfy I(x) < i, so by condition (iii)
there are at most i many elements in (Z − Xi) − P — this takes care of condition (i).

As for condition (ii), supposingU∩Z −P is infinite,U∩Xi −P must also be infinite for each i
by condition (i). Conversely, supposeU∩ Z −P is finite. Let i be such thatWi = U−(Z −P) =∗ U.
If Wi ∩ Xi − P were non-empty, then one of its elements would have gone into Z , contradicting the
choice of i. Thus Wi ∩ Xi − P = �, so U ∩ Xi − P is finite.

The lemma above can be adapted to uniformly r.e. families (Yi)i∈ω that are not chains by putting
Xi = Y0 ∩ · · · ∩ Yi. In this latter form, Lemma 6.3 is an analogue of Theorem 4 in Lindström [29]
on Π1-conservative Σ1 sentences. In fact, we can rephrase conditions (i) and (ii) of our lemma
as saying that the theory TA2 + x > � + x < P + x ∈ Z is a Π1(x)-conservative extension of
TA2 + x >� + x <P + {x ∈ Xi}i∈ω. Lemma 6.4 below underscores the similarity. In our context,
however, the proof of Lemma 6.3 is much less sophisticated than the one in [29].

6.4. Lemma. Suppose P and (Xi)i∈ω satisfy the assumptions of Lemma 6.3, Z is r.e., and the
prime q is maximal w.r.t. the property P < q.
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(a) If Z satisfies condition (i) of Lemma 6.3, then Z ∈ q implies Xi ∈ q for all i.

(b) If Z satisfies condition (ii) of Lemma 6.3 and Xi ∈ q for each i, then Z ∈ q.

Proof. (a) If Z ∈ q then Xi ∈ q as Z ⊆∗ Xi by condition (i) of Lemma 6.3.

(b) Conversely, suppose Z < q. By the maximality property of q, there is U ∈ q with
U ∩ Z ⊆ P. Then by condition (ii) of Lemma 6.3, q 3 U ∩ Xi ⊆

∗ P for some i. Therefore U < q.
The contradiction shows Z ∈ q.

With P = �, Lemma 6.3 becomes

6.5. Corollary. Let (Xi)i∈ω be a uniformly r.e. downward chain. Then there exists an r.e. set Z
such that

(i) for all i, Z ⊆∗ Xi, and

(ii) for each r.e. set U, U ∩ Z is infinite if and only if U ∩ Xi is infinite for all i.

Our application of Lemma 6.3 will consist in acquiring a colouring target.

6.6. Definition. Let A and B be sets and f a function. We say that an k-colour assignment
χ : A→ k is an f -colouring of A excepting B with k colourswhen for each a, b ∈ A−B satisfying
f (a) = b one has χ(a) , χ(b). Observe that this coheres with Definition 1.7.

The proof of the following proposition is postponed until the next subsection. We are going to see
first how it helps with Theorem 6.1.

6.7. Proposition. Suppose P is r.e. and g is a partial recursive function without fixed points or
other cycles with the property that for each y ∈ dom g ∪ rng g, the set ©y =

⋃
n∈ω g−n[{y}] is finite

and computable in y.
Then there exists an r.e. set Q such that

(i) U ∩Q − P is infinite whenever U is r.e. and U ∩ dom gn − P is infinite for all n ∈ ω, and

(ii) There is a recursive g-colouring χ of Q excepting P with 3 colours.

6.8. Proof of Theorem 6.1 (modulo Proposition 6.7). Suppose f is a partial recursive function
inducing a non-identity self-embeddig of�[q] with q maximal w.r.t. P < q. By Lemma 5.18, this
self-embedding is also induced by f̃ . By Lemma 5.19 and Proposition 6.7, there is a recursive
f̃ -colouring χ of an r.e. set Q excepting P with 3 colours s.t. Q − P has infinite intersection
with each r.e. set which has infinite intersections with each of dom f̃ n − P. For all n, we have
q 3 dom f̃ n by Proposition 5.12(a). By Lemma 6.4(b), Q ∈ q, so �[q] |= {x, f̃ (x)} ⊆ Q − P by
Lemma 2.10(a). Since

∀x, y ∈ Q − P
(
f̃ (x) = y → χ(x)↓ ∧ χ(y)↓ ∧ χ(x) , χ(y)

)
is a true Π2 statement, in�[q] the colour of x cannot coincide with the colour of f̃ (x), so f̃ cannot
give rise to a self-embedding in view of Corollary 5.2(a). By Lemma 5.18, neither can f . We have
therefore shown that no non-identity self-embeddings of �[q] exist.
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6.B. Painter’s revanche

This subsection is devoted to a proof of Proposition 6.7. Our construction of the recursive colouring
can be seen as a (recursive) winning strategy for Painter in an approprite on-line game.

Assume that the partial recursive g satisfies the assumptions of that Proposition. We are going
to talk about the graph of g using directed graph terminology. Consider the graph Γ on ω where
there is a directed edge from x to y just in case g(x) = y. As g is a function, each vertex is incident
on at most one outbound edge. Since g has no cycles, Γ is tree-like. Say that x lies upstream of y if
x ∈ ©y. In the same situation, y lies downstream of x. The upstream closure ©X of a set X is defined
by ©X =

⋃
n∈ω g−n[X] where g0 = id. Note that this coheres with the notation ©x. The finiteness of

©x for each x enables downstream-inductive definitions and arguments by downstream induction.
We also note that since g is partial recursive and the finite set ©y is recursive in y ∈ dom g∪rng g, the
restriction of g to ©y−{y}, as well as that of Γ to ©y, must also be recursive in these y. All colourings
in this subsection are g-colourings (equivalently, Γ-colourings) with 3 colours.

6.9. Construction. Lemma 6.3 applied to the uniformly r.e. downward chain (dom g1+n)n∈ω
supplies us with the r.e. set Q satisfying condition (i) of Proposition 6.7 together with a recursive
function I with dom I = Q such that x ∈ dom g1+I (x) for each x ∈ Q, and I is one-to-one on Q− P.

We fix effective enumerations (Qn)n∈ω and (Pn)n∈ω of Q and P respectively as increasing
chains of finite subsets satisfying the properties

(E1) Q0 = P0 = �;

(E2) |Qn+1 −Qn | + |Pn+1 − Pn | ≤ 1 for each n ∈ ω;

(E3) I is one-to-one on Qn − Pn for each n ∈ ω.

Property (E3) is achieved by slowing down a given enumeration of Q as follows: When a number x
with the same value of I as some number y , x already present in Qn − Pn wishes to enter Q,
we know that at least one of x and y is going to eventually enumerate into P because I |Q−P is
one-to-one. So we wait for one of x and y to appear in Pm before enumerating x into Qk for an
appropriate k > m. Any other candidates for membership in Q with the same value of I await their
turn in a first-in-first-out queue.

6.10. Construction. We define an increasing sequence (Fi)i∈ω of finite sets by

F0 = � and Fn+1 =

{←−−−−−−−−
g1+I (x)(x) ∪ Fn if {x} = Qn+1 −Qn,
Fn if Qn+1 = Qn.

The r.h.s. is always well-defined thanks to the properties of I. Induction on n shows that Fn is
upstream-closed. Fn is therefore a finite disjoint union of finite upstream-closed subtrees of Γ. Call
the roots of those subtrees Fn-sinks. In other words, Fn-sinks are the downstream-most elements
of Fn.

By the assumptions of Proposition 6.7 on g and since g1+I (x)(x) ∈ rng g, Fn is a recursive
function of n, as is the restriction of Γ to Fn.

Summarizing informally, the latest addition x to Qn+1 is decorated by a downstream tail of
edge-length 1 + I(x). The end of this tail is g1+I (x)(x). All the structure upstream of the tail’s end
is recursive in n and goes into Fn+1.

Note that Qn ⊆ Fn for all n as x ∈
←−−−−−−−−
g1+I (x)(x).
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We now define a numerical characteristic which will aid further construction:

6.11. Construction. For X,Y ⊆ ω and y ∈ ω, define the congestion grade c(y,X,Y ) of X at y
excepting Y by downstream recursion:

c(y,X,Y ) =


0 if y ∈ Y ,
1 if y ∈ X − Y ,
1
2 ·

∑
g(x)=y c(x,X,Y ) otherwise.

The values of c are always non-negative (induction). Note that c(y,X,Y ), when restricted to y ∈ Fn

and finite X,Y , is a recursive function of n, y, X , and Y .

6.12. Lemma. (a) c(y,X ∪ Z,Y ) ≤ c(y,X,Y ) + c(y, Z,Y ).

(b) c(y,X,Y ) ≤ c(y,X − Y,�).

(c) If ©y ∩ X = ©y ∩ Z , then c(y,X,Y ) = c(y, Z,Y ).

(d) If y < ©X , then c(y,X,Y ) = c(y, ©X,Y ).

(e) If c(z,X,Y ) ≥ 1 for all z ∈ Z , then c(y,X ∪ Z,Y ) ≤ c(y,X,Y ).

(f) If x ∈ ©y, then c(y, {x},�) = 2−d(x,y), where d is the number-of-edges distance.

Proof. All clauses are established by straightforward (downstream) induction on y. We only
handle clause (e) by way of example:

If y ∈ Y , then c(y,X ∪ Z,Y ) = c(y,X,Y ) = 0.
If y ∈ X − Y , then c(y,X ∪ Z,Y ) = c(y,X,Y ) = 1.
If y ∈ Z − Y , then c(y,X ∪ Z,Y ) = 1 ≤ c(y,X,Y ) by the property of Z .
Finally, when y < X ∪ Z ∪ Y , the induction hypothesis yields

c(y,X ∪ Z,Y ) =
1
2

∑
g(x)=y

c(x,X ∪ Z,Y ) ≤
1
2

∑
g(x)=y

c(x,X,Y ) = c(y,X,Y ).

6.13. Lemma. If w is an Fn-sink, then

c(w,Qn,Pn) ≤
∑

x∈ ©w∩Qn−Pn

2−1−I (x).

Proof. When x ∈ ©w∩Qn, one has c(w, {x},�) ≤ 2−1−I (x) by Lemma 6.12(f) because g1+I (x) ∈ ©w,
so d(x,w) ≥ 1 + I(x). Therefore

c(w,Qn,Pn) ≤ c(w,Qn − Pn,�) (by Lemma 6.12(b))

= c(w, ©w ∩Qn − Pn,�) (by Lemma 6.12(c))

≤
∑

x∈ ©w∩Qn−Pn

c
(
w, {x},�

)
(by Lemma 6.12(a))

≤
∑

x∈ ©w∩Qn−Pn

2−1−I (x).
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6.14. Lemma. Suppose ψ is a g-colouring of an finite upstream-closed set X exceptingY , Z ⊇ X is
a finite upstream-closed set, and c(z,X,Y ) < 1 for all z ∈ Z − X . (Recall that all colourings only
use 3 colours.)

Then ψ extends to a g-colouring of Z excepting Y .

Proof. We are going to show by downstream induction that for each y ∈ Z−X there is an extension
υy of ψ to a g-colouring of ©y ∪ X excepting Y . To keep the induction going, we require a stronger
conclusion, namely,

There are two extensions of ψ to g-colourings of ©y∪X exceptingY , assigning distinct colours
to y.

As c(y,X,Y ) < 1, either y ∈ Y , in which case any of the three colours can be assigned to y, or
there is at most one z ∈ X − Y with g(z) = y (so z ∈ domψ and c(z,X,Y ) = 1). Assign to y

one of the colours distinct from ψ(z) if such z is indeed present — note that this gives at least
two choices. By the induction hypothesis, for each u < X with g(u) = y there is a g-colouring of
©u ∪ X excepting Y extending ψ which assigns to u a colour distinct from the one that we have just
assigned to y. Use it to patch together the extension υy of ψ to ©y ∪ X excepting Y .

If S is the set of downstream-most elements of Z , then
⋃

x∈S υx extends ψ to a g-colouring
of Z excepting Y because the graph Γ is tree-like.

6.15. Construction. We construct a recursive upward chain (χn)n∈ω where each χn is a colour
assignment ©Qn → 3. The intention is to have the desired g-colouring of Q excepting P equal to the
restriction of

⋃
n∈ω χn to Q. We shall find it convenient to cultivate an auxiliary sequence (υn)n∈ω

where υn ⊇ χn is a colour assignment Fn → 3. Accordingly, we maintain the inductive conditions

(I1(n)) χn is a g-colouring of ©Qn excepting Pn;

(I2(n)) χn ⊇ χm for all m < n;

(I3(n)) υn is a g-colouring of Fn excepting Pn;

(I4(n)) υn ⊇ χn.

The role of υn will be both to ensure a measure of consistency in χn and to serve as a possible
sketch for (fragments of) χn+1. We do not require υn+1 ⊇ υn.

Put χ0 = υ0 = �. Conditions (I1–4(0)) hold by virtue of (E1).
The construction of χn+1 and υn+1 distinguishes three cases:

Case 1: Qn+1 = Qn.
In this case we have Fn+1 = Fn. We put χn+1 = χn and υn+1 = υn, and note that any colouring

excepting Pn is also a colouring excepting Pn+1 ⊇ Pn, so (I1–4(n + 1)) hold.

Case 2: Qn+1 , Qn and Fn+1 = Fn.
Note that Pn+1 = Pn by (E2).
Put χn+1 = υn | ©Qn+1

and υn+1 = υn.
(I4(n + 1)) is clearly met. Further, χn+1 extends χn because, according to (I4(n)), υn does —

this takes care of (I2(n + 1)). Conditions (I1(n + 1)) and (I3(n + 1)) follow at once from (I3(n)).
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Case 3: Qn+1 −Qn = {x} and Fn+1 , Fn.
In this case we also have Pn+1 = Pn by (E2), there is a new Fn+1-sink w = g1+I (x)(x) which

is not an Fn-sink, and Fn+1 = ©w ∪ Fn.

x

w = g1+I (x)(x)

Fn+1 Fn

©Qn

upstream

downstream

Put

Cn =
{

z ∈ Fn

�� c(z,Qn,Pn) ≥ 1
}

and ψn = υn
��
©Cn∪ ©Qn

⊇ χn.

Then ψn is a g-colouring of ©Cn ∪ ©Qn ⊆ Fn excepting Pn by (I3(n)).
Consider an arbitary u ∈ Fn+1 − ( ©Cn ∪ ©Qn). Observe that

c
(
u, ©Cn ∪ ©Qn,Pn

)
= c

(
u,Cn ∪ ©Qn,Pn

)
(by Lemma 6.12(d) as ©Cn ∪ ©Qn =

←−−−−−−−
Cn ∪ ©Qn)

≤ c
(
u, ©Qn,Pn

)
(by Lemma 6.12(e))

= c(u,Qn,Pn) (by Lemma 6.12(d)).

If u ∈ Fn − ( ©Cn ∪ ©Qn), then c(u,Qn,Pn) < 1 as u < Cn. If u ∈ Fn+1 − Fn, then

c(u,Qn,Pn) ≤
1
2

∑
Fn-sinks v∈©u

c(v,Qn,Pn) ≤
∑

Fn-sinks v∈©u

c(v,Qn,Pn)

≤
∑

z∈©u∩Qn−Pn

2−1−I (z) (by Lemma 6.13)

< 1 (by (E3)).

Thus c(u, ©Cn ∪ ©Qn,Pn) < 1 holds for all u ∈ Fn+1 − ( ©Cn ∪ ©Qn). To accomodate (I3(n+ 1)), we may
therefore use Lemma 6.14 to produce the extension υn+1 of ψn (and hence of χn) to a g-colouring
of Fn+1 excepting Pn+1 = Pn. We put χn+1 = υn+1 | ©Qn+1

⊇ χn, which takes care of (I1(n + 1)),
(I2(n + 1)), and (I4(n + 1)).

The construction is effective because the restriction of the graph of g to Fn, as well as the
restriction of the function c to Fn and subsets of Fn, are recursive uniformly in n.

6.16. Proof of Proposition 6.7 concluded. Since (χn)n∈ω from Consruction 6.15 is a recursive
chain of g-colourings of ©Qn excepting Pn, its union χ =

⋃
n∈ω χn is a recursive 3-colour assignment

to ©Q, and for all x, y ∈ ©Q − P with g(x) = y there is an m ∈ ω such that x, y ∈ ©Qm − Pm, so
χ(x) = χm(x) , χm(y) = χ(y). Therefore the restriction χ |Q is a g-colouring of Q excepting P
which establishes the remaining condition (ii) of Proposition 6.7.

We close with a couple of questions.
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6.17. Question. Suppose the sequence (Pi)i∈ω is uniformly r.e. and the prime q is maximal w.r.t.
the property Pi < q for all i. Must �[q] be totally rigid?

Σ1 induction implies Σ1 collection and therefore fails in each r.e. prime power (Proposition 2.11).
Hirschfeld & Wheeler [18, Theorem 8.30] show that r.e. ultrapowers �[p] nevertheless satisfy
(parametric) Σ1 overspill for �: if σ(x, y) is Σ1 and a ∈ �[p] |= σ(n,a) for each n ∈ ω, then
�[p] |= σ(c,a) for some non-standard c ∈ �[p]. Σ1 overspill for � also holds in �[q] with
relatively maximal q or even with primes q from Question 6.17.

6.18. Question. Do r.e. prime powers satisfying Σ1 overspill for � have to be totally rigid?

In the opposite direction, it can be shown that each multi-sky recursive ultrapower, while totally
rigid by Theorem 1.6, violates Σ1 overspill for �.
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