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Abstract

The Gibbard-Satterthwaite Theorem states that any non-dictatorial and surjective social choice
function is susceptible to manipulation if there are at least three alternatives. This classical
result assumes that manipulators are naive: they think that every other voter will cast a sincere
ballot. Furthermore, it is assumed that voters have full information regarding the preferences of
other voters. These assumptions make it unrealistically easy to manipulate an election. We argue
that voters are likely to realise that other voters may act strategically too, and choose the best
strategy accordingly. This thesis investigates the strategic incentives of higher-order reasoning
voters, that is, voters who reflect on the uncertainty about the uncertainty of other voters,
and so on. We develop a dynamic epistemic model for strategic voting and use this model to
analyse strategic behaviour of higher-order reasoning voters. In the traditional ‘one-shot’ voting
setting, voters use their cognitive capacities to predict the votes of fellow voters, in order to
determine their own optimal (sincere or insincere) ballot. We show that in general, sophisticated
agents who apply higher-order reasoning will not refrain from manipulation. We also consider
higher-order reasoning in iterative voting procedures. We investigate whether voters that are
able to predict (possibly harmful) future manipulations by fellow voters will avoid a strategic
vote. For positional scoring rules and Condorcet extensions, we prove that this is not the case.
Finally, we investigate how strategic incentives are affected if we allow voters to communicate
with each other. It is shown that in many cases, voters cannot improve the outcome of the
election by sharing personal information with their peers.
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Chapter 1

Introduction

Social choice theory is the study of mechanisms for aggregating individual preferences, opinions
or judgments into a collective decision. In this thesis, we focus on a specific method for collective
decision making: voting. Voting is a commonly used procedure to make a collective choice, for
example when a group of individuals wishes to resolve a disagreement, determine a common
opinion, elect a representative, choose a public policy, find a winner in a contest or to solve
any other problem of aggregating individual preferences over a set of candidates into a group
decision. One of the main questions is: how can a collective make a democratic and reasonable
decision between the alternatives, on the basis of its members’ individual preferences?

An important topic in social choice theory and in voting theory in particular is strategic manipu-
lation. Often, we want the voting procedure to be strategyproof: we do not want individuals to
have an incentive to lie about their preferences. This incentive exists whenever it is beneficial
for an agent to lie about her preference1. Strategic manipulation is undesirable, because a fair
and democratic method to make a collective decision should elect the best candidate given
everyone’s preference. If the voting procedure creates an incentive for voters to misrepresent
their preferences, the outcome of the election may not be a good reflection of the voters’ opinions.

A central result in Computational Social Choice is the Gibbard-Satterthwaite Theorem, which
states that every reasonable voting rule is sensitive to manipulation. However, this does not
imply that any democratic election has to deal with manipulative voters. There are some
implicit assumptions in the Gibbard-Satterthwaite theorem that are disputable. First of all, the
Gibbard-Satterthwaite Theorem assumes that any preference order is possible (the universal
domain assumption), while in reality, single-peaked preferences are more natural in many cases.
Moulin (1980) showed that if we restrict to single-peaked preferences, there exist strategyproof
voting rules. Another escape from the Gibbard-Satterthwaite theorem that is widely studied
is the complexity of manipulation: even though it is theoretically possible to manipulate, it is
computationally too hard to find a successful manipulative ballot (see Conitzer and Walsh (2016)
for an overview of work on computational complexity as barrier to manipulation).

Finally, it is assumed that there is just a single manipulator with full information about the
preferences of the other voters. This means that only situations in which a single voter might
cast a strategic vote are considered, while every other voter votes truthfully, no matter what

1In this thesis, we use feminine pronouns to refer to a voter. When a second voter is considered, we refer to
that voter by masculine pronouns.
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the outcome of the election will be. Many recent papers have studied situations where a single
voter or a small coalition tries to manipulate an election, assuming that the other voters always
cast a sincere vote. Since there is only one manipulator, the knowledge of the other agents does
not have to be taken into consideration: no matter how much information they have, they will
always vote truthfully. Therefore, the manipulative voter does not have to worry about the
strategic behaviour of the other voters: she only cares about how her own (possibly untruthful)
ballot can affect the outcome of the election.

These circumstances make it unrealistically easy for the manipulator to strategise, because a
manipulation is completely risk-free. When voters have less information about the preferences
of other voters, strategising can be risky: when a manipulative voter is uncertain about the
ballots of the other voters, her manipulation might turn out badly and may result in an outcome
that is less favourable than if she had not strategised. Situations where voters have some
uncertainty about the preferences of the others haven been considered in recent work (see for
example Conitzer et al. (2011); Reijngoud and Endriss (2012)). In these analyses of manipulation
under partial information, it is generally assumed that all available information is publicly
announced. This could be interpreted as poll information provided by a reliable authority and
sharing information results in common knowledge of all participating voters. This is a very
basic framework: information is static, and there is no form of communication between individuals.

To get an understanding of how voting rules function under more realistic assumptions, we have
to study a more sophisticated model of strategic manipulation in which there can be multiple
voters who consider a strategic vote. A situation where multiple voters might strategise is more
complex than the situation with a single manipulator: a voter should not only reason about the
effect of her own strategic ballot on the outcome of the election, but she should also take into
account the possible strategic ballots of other manipulators. When reflecting on her information
about the preferences of other voters, a voter might realise that some of her fellow voters have
an incentive to vote strategically. In that case, it makes sense that she will determine her best
(sincere or insincere) ballot given that some other voters report an untruthful ballot. So, she
starts reasoning about the strategic reasoning of other voters, which we call higher-order reasoning.

When we study the manipulability of voting procedures, communication between voters is
important, because new information might affect the manipulability of the election. Information
about other voters’ ballots will be useful for a voter to determine whether she has a strategic
vote. From new information, a voter might learn that she has the possibility to cast a strategic
vote and change the outcome of the election in her favour, or she might learn that an untruthful
ballot will not result in a better outcome. To analyse situations in which multiple manipulators
operate, for example cases where manipulators try to form coalitions, a richer framework of
information exchange can be useful.

A very interesting question will be what happens in a situation where voters are higher-order
reasoners with the ability to communicate. For example, voter 1 knows that voter 2 has a
strategic manipulation that is beneficial for both of them, but she also knows that voter 2 does
not know this. Then she has an incentive to inform voter 2 about the manipulation. In other
situations, communication between voters might enable them to form coordinated coalitions that
try to manipulate the election as a group.

We investigate this issue by developing a model of strategic voting, in which agents are able
to apply higher-order reasoning. We want to develop a framework in which we can model
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information exchange, model-changing actions like changing a ballot and higher-order knowledge
(knowledge about the knowledge of other agents). This is exactly what Dynamic Epistemic
Logic (DEL) allows us to do: DEL, broadly conceived, is the study of logics of information
change and makes it possible to analyse epistemic and doxastic consequences of new informa-
tion and factual change (Van Benthem, 2011; Van Ditmarsch et al., 2007). Before elaborating
on the content of this thesis in more detail, we will first motivate the general idea with an example.

Example 1.1. Four friends, Alice, Bob, Carol and Dave, have decided to go on a vacation, but
they have not agreed on their holiday destination yet. They have a shortlist of three countries:
Austria (a), the Bahamas (b) and China (c). Alice and Bob really like skiing and hiking, so
Austria is their top choice. Their second choice is the Bahamas. Carol and Dave are not really
into a very active vacation, so Austria is their least favourite option. Carol really likes beaches
with white sand and clear blue water, so she prefers the Bahamas, and her second choice is China.
Dave likes visiting big cities and cultural attractions, so he prefers China over the Bahamas.
Table 1.1 summarises their preferences. Alice is voter 1, Bob is voter 2, Carol is voter 3 and
Dave is voter 4. We abbreviate a � b � c by abc, b � c � a by bca and so on.

1 abc
2 abc
3 bca
4 cba

Table 1.1: The preferences of the four friends

They decide to vote about the alternatives on the shortlist. They use the Borda rule with
lexicographic tie-breaking2. If all friends vote truthfully, they will go to the Bahamas. Carol and
Dave know exactly what everyone’s preferences are, but are not considering a manipulative vote.
Alice and Bob both know the preferences of Carol and Dave. Moreover, they know from each
other that Austria is their top choice. However, they are uncertain about each others’ second
and third choice.

In Figure 1.1, the voting situation and possible worlds are shown3. In the actual world, indicated
with grey, alternative b (the Bahamas) is elected. Alice is uncertain about the ballot of Bob, and
Bob is uncertain about the ballot of Alice: they both think that the other voter will vote either
abc or acb. Alice (voter 1) cannot distinguish between the two upper worlds. If she changes her
ballot to acb, there are two options: if the left upper world is the actual world, changing her
ballot to acb makes alternative a win, so then she has a successful manipulation, and they will
go to Austria. However, if the right upper world is the actual world, changing her ballot makes
alternative c win, which is worse than b for her, because she prefers the Bahamas to China.
Since this is risky, she is not able to strategise. In the same way, Bob (voter 2) is not able to
cast a safe strategic vote. Even if Alice and Bob would know that they both have preference
abc, it is still impossible to manipulate: if Alice considers it possible that Bob manipulates the
election by voting acb, reporting acb as well would result in electing c. The same holds for Bob.

2Under the Borda rule, every voter assigns a number of points to the alternatives. Every voter submits a full
ballot order. In the case of four alternatives, for every submitted ballot, the alternative ranked first gets 3 points,
the alternative ranked second gets 2 point, the alternative ranked third gets 1 point and the alternative ranked
last gets no points. The score of an alternative is the sum of all its points, and the alternative with the highest
score wins. Ties are broken according to the order a � b � c.

3See Section 2.2 for a basic introduction to dynamic epistemic models.
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So, if Alice and Bob are uncertain about each other’s votes, it is too risky to manipulate. They
cannot safely manipulate individually, and they need some form of communication to coordinate
a manipulation.

1:abc
2:abc
3:bca
4:cba

1:abc
2:acb
3:bca
4:cba

1:acb
2:abc
3:bca
4:cba

1:acb
2:acb
3:bca
4:cba

1

2

1

2

1, 2, 3, 4 1, 2, 3, 4

1, 2, 3, 4 1, 2, 3, 4

Figure 1.1: Alice (voter 1) and Bob (voter 2) are not able to vote strategically

If Bob in front of the group says: ‘I will vote abc’ (and it is common knowledge that no voter
considers it possible that this is false information), then we can update the model by simply
removing the worlds in which this statement is not true. The new model is shown in Figure 1.2.
Now, Alice knows that she can cast a safe strategic vote: by voting acb instead of abc, Austria
will become the holiday destination of the group.

1:abc
2:abc
3:bca
4:cba

1:acb
2:abc
3:bca
4:cba

2

1, 2

1, 2

Figure 1.2: Alice (voter 1) learns that she has a successful strategic vote

The main goal of this thesis will be to investigate what kind of knowledge, reasoning and
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communication is required to be able to manipulate, and under which conditions the Gibbard-
Satterthwaite Theorem ceases to hold. In this thesis we start with developing a framework that
models higher-order reasoning agents who reflect on the reasoning of their peers, different types
of partial information and communication between agents in the setting of voting and strategising.

We will demonstrate how this framework can be used to model classical voting settings, where
manipulative voters are naive and think that every other voter reports a sincere ballot. First,
we will analyse strategic behaviour of higher-order reasoning in the setting where voting is a
‘one-shot’ event: you have one chance to cast a ballot and you are not able to change your vote
afterwards. This setting fits many traditional political elections. When voting is a one-shot
event, higher-order reasoning voters will use their cognitive capacities to predict the votes of
fellow voters, in order to be able to determine their own optimal (sincere or insincere) ballot.

Another way to understand an election is to treat it as a process, and see if we can reach
some point of equilibrium, where all voters are satisfied with their votes, no longer wishing to
change them. This setting is called iterative voting and fits many non-traditional settings of
voting, for example the process of making a social decision via websites as Doodle and Facebook.
In an iterative voting process, higher-order reasoning voters use their cognitive capacities to
obtain a more farsighted view of the consequences of their manipulative ballots. Before they
decide to manipulate, they predict how their manipulation could trigger future manipulations
in the iterative voting procedure, and whether the long-term consequences of a manipulation
are beneficial or not. In this thesis, we will investigate how higher-order reasoning affects the
manipulability of voting rules.

Finally, we will analyse whenever it is beneficial for a voter to share information with other
voters. In some cases, a voter is not able to manipulate the election with her own ballot, but she
might be able to stimulate another voter to strategise by sharing certain information. We will
make a first attempt to explore the relation between communication and strategic manipulation
in voting.

1.1 Outline of the thesis

Chapter 2: In this chapter, we will provide the technical background that forms the baseline of
this thesis.

Chapter 3: Our starting point is the standard DEL framework. In Chapter 3, we extend this
standard model to a framework that can be used to reason about strategic manipulation, and
for which there is a sound and complete axiom system.

Chapter 4: In Chapter 4, we will discuss how standard approaches in strategic voting can
be modelled in our framework. We will discuss the characteristics of models that satisfy the
assumptions of the Gibbard-Satterthwaite theorem, but we will also consider some examples
with weaker assumptions, such as partial information about the preferences of other voters.

Chapter 5: In Chapter 5, we will introduce higher-order reasoning agents. We will first show
how the notion of safe manipulation (Slinko and White, 2014) can be seen as a setting in which
some of the agents apply higher-order reasoning. Then, we generalise this to a setting in which
all agents may apply some form of higher-order reasoning. We follow the cognitive hierarchy
theory and define level-k reasoners as agents who believe that every other agent is a level-(k− 1)
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reasoner. We will show that in general, reasoning on a higher level will not make voters refrain
from manipulation.

Chapter 6: We propose a new perspective on higher-order reasoning about manipulation in
iterative voting. If voters apply higher-order reasoning in iterative voting and are able to predict
future manipulations, there might be iterative voting procedures that do not converge in the
classical setting, but do converge in this higher-order reasoning setting. We show that positional
scoring rules and Condorcet extensions are not strategyproof for voters that are able to look one
step ahead. However, there are iterative voting procedures that always converge if voters apply
second-order reasoning instead of first-order reasoning.

Chapter 7: In Chapter 7, we will explore how communication between agents affects strategic
manipulation in voting. We will introduce the idea of strategic communication: a voter has an
incentive to strategically communicate some information, if a voter thinks that the outcome of
the election can be improved by sharing that information with like-minded voters. We discuss
under which conditions a voter may benefit from sharing information.

Chapter 8: In Chapter 8, we give a conclusion of this thesis and we discuss some directions for
future research.

1.2 Related work

A link between epistemic logic and voting has been given in Chopra et al. (2004). They use
knowledge graphs to indicate the uncertainty of voters regarding other voters’ preferences and
develop a bimodal logic.

Van Ditmarsch et al. (2013) propose a model for strategic voting in which voters have partial
information about other voters’ preferences or about other voters’ knowledge about their own
vote. They define notions of manipulation and equilibrium, and they model information updates
about preferences as public announcements. They show that some forms of manipulation are
preserved under such updates and others not. A local preference of an agent in a state induces a
global preference of that agent on the model. This means that some states are more preferable
for an agent than others. Technically, these models are similar to epistemic plausibility models.

Bakhtiari et al. (2018) follow-up on this paper and use a similar framework for strategic voting
and higher-order knowledge via knowledge profiles, which are standard S5 epistemic models.
Information updates are modelled as truthful public announcements. An election is modelled as
an (imperfect information) Bayesian game. Bakhtiari et al. explore how dominant manipulation
and knowledge of manipulation are related and which forms of manipulation and (conditional)
equilibria are preserved under such information updates and present a logic for strategic vot-
ing. In this thesis, we will work with a dynamic epistemic model that also captures insincere
announcements and false belief, but also more complex forms of communication such as private
announcements.

Modal logics of social choice and of voting have been proposed by Troquard et al. (2011) and,
building on that, by Ciná and Endriss (2016) and Perkov (2016). In these logics the semantic
primitives are ballots of individual voters and ballot profiles. There are two levels of preferences:
reported preferences, given by the valuation on the model, and true preferences given by a
general parameter of the model. The modalities only encode manipulability and true preferences,
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and not uncertainty, as we do.

Van Eijck (2013) discusses how Propositional Dynamic Logic (PDL) can be used as a multi-agent
strategic logic. This logic for strategic reasoning has group strategies as first class citizens, and
brings game logic closer to standard modal logic. It is demonstrated that Multi-Agent Strategy
Logic (MASL) can express key notions of game theory, social choice theory and voting theory in
a natural way. Van Eijck gives a sound and complete proof system for MASL and also discusses
an extension of this language to epistemic multi-agent strategic logic.

Terzopoulou (2017) extends the basic framework of judgment aggregation, which is another
branch of Computational Social Choice, to a framework that deals with partial knowledge and
higher-order reasoning about strategic behaviour. Terzopoulou follows the idea of the cognitive
hierarchy theory, that defines level-k reasoners as agents who believe that every other voter
reasons at level-(k − 1). We translate this framework to the setting of voting theory, and show
how level-k reasoners can be modelled in our dynamic epistemic framework.
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Chapter 2

Background

This chapter is meant to provide a baseline for the formal notions of this thesis.

2.1 Voting theory

Let N = {1, . . . , n} be a finite set of voters and X = {x1, . . . , xm} a finite set of alternatives.
Let L(X) denote the set of all strict linear orders on X, which means that the order is irreflexive,
transitive, and for any two alternatives x, y ∈ X, exactly one of the following is true: x � y,
y � x or x = y. We use elements of L(X) to model true preferences and declared ballots. Each
voter has a preference over the alternatives in X, where pi denotes the preference of voter i.
The preferences of all voters together are called a preference profile pi = (p1, . . . , pn) ∈ L(X)n.
Every voter submits a ballot bi, which is again a strict linear order over the alternatives in X,
giving rise to a ballot profile b = (b1, . . . , bn) ∈ L(X)n. Given a preference profile p, p(i) refers
to the ith component of the vector, so the preference order of voter i in p. We define b(i) in the
same way. For a set of voters G ⊆ N , p(G) and b(G) respectively denote the (partial) preference
profile and (partial) ballot profile. Let −i := N\{i}. We use x �pi y to denote that x is ranked
higher in the preference pi of voter i, and x �bi y to denote that x is ranked higher in the ballot
bi of voter i. A social choice function or voting rule F for N and X selects one or more winners
for every ballot profile:

F : L(X)n → ℘(X) \ {∅}.

The following examples are common social choice functions:

• Positional scoring rules (PSRs): a positional scoring rule is defined by a so-called scoring
vector score = (score1, . . . , scorem) ∈ Rm with score1 ≥ score2 ≥ · · · ≥ scorem and score1 >
scorem. A PSR with scoring vector (m − 1,m − 2, . . . , 0) is called Borda, plurality is a
PSR with scoring vector (1, 0, . . . , 0), anti-plurality or veto is a PSR with scoring vector
(1, . . . , 1, 0) and for any k < m, k-approval is a PSR with scoring vector (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m-k

).

An alternative receives scorej points for each voter who ranks him at the jth position. The
alternative(s) with the most points win(s) the election.

• Copeland: an alternative’s score is the number of pairwise majority contests he wins minus
the number he loses. The alternative with the highest score wins. A pairwise majority
contest between candidates x and y is won by x if a majority of voters rank x above y.
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• Single transferable vote (STV): An STV election proceeds in rounds. In each round the
alternative ranked first by the fewest voters gets eliminated. This process is repeated
until only one candidate remains (or until all remaining candidates are ranked first equally
often).

Sometimes, it is useful to refer directly to the position of an alternative in the ballot of an agent
i. We define it as follows:

Definition 2.1. Let i ∈ N be a voter with ballot bi. Let x ∈ X be an alternative. Then

rankbi(x) := |{y | y �bi x}|+ 1.

If |F (b)| = 1 for all ballot profiles b, then F is called resolute. Most natural voting rules are
irresolute and have to be paired with a tie-breaking rule to always select a unique election
winner. A tie-breaking rule picks a unique winner from the set of initial winners. We assume that
tie-breaking rules are choice functions: T : 2X\{∅} → X, where T (Y ) ∈ Y for every Y ⊆ X. An
example of a tie-breaking rule that is not a choice function is the random tie-breaking rule which
breaks ties randomly. Another example is a tie-breaking rule that depends on the ballot profile,
for example the tie-breaking rule that picks the alternative that is ranked highest by voter 1.
Sometimes we further restrict attention to rationalisable tie-breaking rules, i.e., tie-breaking rules
under which ties are broken according to some fixed but arbitrary order . over the candidates.
If F is resolute, instead of F (b) = {x}, we will write F (b) = x.

A resolute voting rule is surjective if each candidate wins under at least one ballot profile. If
voters are treated equally, we say that a voting rule is anonymous. When all alternatives are
treated equally, we call the voting rule neutral. Constant voting procedures always elect the
same, unique winner. If a voting rule is a dictatorship, the alternative that is ranked first by the
dictator always wins. A voting procedure is unanimous if it elects alternative x whenever x is
ranked first by all voters. A voting procedure satisfies the Pareto condition if it does not return
a alternative that is ranked below some other alternative by all voters. A social choice function
is Condorcet-consistent if an alternative wins whenever it is ranked higher than every other
alternative by a majority of the voters. It is strongly Condorcet-consistent if all alternatives are
elected that are ranked higher than every other alternative by at least half of the voters. These
properties are formally defined as follows:

Definition 2.2 (Properties of social choice functions). Some important properties of social
choice functions are:

• A resolute social choice function F is surjective if for any alternative x ∈ X there is a
ballot profile b ∈ L(X)n such that F (b) = x.

• A social choice function F is anonymous if F (b1, . . . , bn) = F (bτ(1), . . . , bτ(n)) for any ballot
profile b ∈ L(X) and any permutation τ : N → N .

• A social choice function F is neutral if alternatives are treated symmetrically: F (τ(b)) =
τ(F (b)) for any profile b and any permutation τ : X → X (with τ extended to preferences
and profiles in the natural manner)

• A social choice function F is constant if there is a candidate x ∈ X such that F (b) = x for
any ballot profile b ∈ L(X)n.

• A social choice function is a dictatorship if there exists i ∈ N such that for all b ∈ L(X)n,
F (b) = x for x ∈ X with rankb(i)(x) = 1. That is, F always selects the alternative that is
ranked first by voter i.
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• A social choice function F is unanimous if it always selects an alternative that is top-ranked
by everyone. Thus, if rankb(i)(x) = 1 for all i ∈ N , then F (b) = x.

• A social choice function F is Pareto-efficient if for every ballot profile b ∈ L(X)n: y /∈ F (b)
if there exists x ∈ X such that y �b(i) x for every voter i ∈ N .

• A social choice function F is Condorcet-consistent if for any ballot profile b ∈ L(X)n:

F (b) = {x} whenever |b(x � y)| > |b(y � x)| for all y ∈ X\{x}.

Social choice functions that are Condorcet-consistent are called Condorcet extensions.

• A social choice function F is strongly Condorcet-consistent if for any ballot profile b ∈
L(X)n:

F (b) = W b whenever W b 6= ∅,
where W b is the set of all weak Condorcet winners of b, i.e.:

W b = {x ∈ X | |b(x � y)| ≥ |b(y � x)| for all y ∈ X\{x}}

2.1.1 Manipulation
A voter is pivotal at a ballot profile if she can change the outcome of an election by just changing
her own ballot. A voter is pivotal with respect to an alternative x, if she can make x a winner of
the election by just changing her own ballot.

Definition 2.3. A voter i is pivotal at ballot profile b under a social choice function F if there
exists a ballot b′i 6= b(i) such that

F (b′i, b(−i)) 6= F (b).

If F (b′i, b(−i)) = x, we say that voter i is pivotal with respect to x.

A voter i votes truthfully if she reports her true preference pi, and untruthfully otherwise. In
classical voting theory, a voter i is said to have an incentive to manipulate if she can improve the
election outcome with respect to pi by voting untruthfully. A resolute voting rule is susceptible
to manipulation if there is a profile in which some voter has an incentive to manipulate. If a
resolute voting rule is not susceptible to manipulation, then it is immune to manipulation.

Definition 2.4 (Incentive to manipulate - classical voting theory). Given a resolute voting rule
F , a voter i and a ballot profile b with bi = pi, i has an incentive to manipulate if there exists a
ballot b′i 6= bi such that

F (b′i, b(−i)) �pi F (b)

Definition 2.5. A social choice function F is strategyproof if for any ballot profile, no individual
voter has an incentive to manipulate.

From the perspective of computational social choice, strategyproof voting procedures are desirable:
a fair and democratic voting rule should elect the best candidate given everyone’s preference,
and the voting rule should not create an incentive for voters to misrepresent their preferences. In
particular when many voters try to manipulate, the resulting ballot profile may turn out to be
very far from the electorate’s true preferences and thus not representative. In addition, voters
should not have to waste resources pondering over what other voters will do and trying to figure
out how best to respond. Unfortunately, it turns out that for any ‘democratic’ voting rule, there
exist situations in which there is a voter with an incentive to manipulate. Gibbard (1973) and
Satterthwaite (1975) independently proved the following theorem:
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Theorem 2.6 (Gibbard-Satterthwaite). When m ≥ 3, any resolute social choice function that
is surjective and strategyproof, is a dictatorship.

For a simple proof of the Gibbard-Satterthwaite Theorem, see Benoît (2000). This central
result has far-reaching implications: it states that if you have three or more alternatives, any
‘reasonable’ voting rule is susceptible to manipulation. As discussed in the introduction, the
assumption of full information is very strong and makes it unrealistically easy for a voter to
manipulate.

2.1.2 Manipulation under partial information
In this section, we will recall the framework of Conitzer et al. (2011) and Reijngoud and Endriss
(2012) that is used to analyse manipulation of a single manipulator under partial information.
In order to study strategic behaviour of voters with incomplete information, we have to refine
the definition of strategic manipulation. Since a voter might have incomplete information about
the ballots of the other voters, she might be uncertain about the winner of the election under
the current profile and about the election outcome when she changes her ballot. We define the
information set of a voter i as the set of partial ballot profiles (with a ballot order for every voter
except i) that i considers possible, given the information π(b).

A poll information function (PIF) is a function π that maps ballot profiles to ‘pieces of infor-
mation’. This piece of information allows an agent to define a set of ballot profiles, exactly
those satisfying the provided information. The formal definition of that pieces of information
and the corresponding poll information function depends on the type of information that is
communicated to the voters. The following examples are choices for PIFs that were introduced
by Reijngoud and Endriss (2012):

• The profile-PIF π : L(X)→ L(X) simply outputs the full ballot profile: π(b) = b.

• Given a social choice function F , the corresponding winner-PIF maps ballot profiles to
the winning alternative under the ballot profile with respect to F : π : L(X)→ X, where
π(b) = F (b).

• The MG-PIF returns the majority graph of the ballot profile. A majority graph is a
directed graph in which each node represents an alternative. There is an edge (x, y) from
x to y if and only if x wins the pairwise majority contest between x and y. Let G denote
the set of all finite graphs. Then π : L(X) → G, and if mg(b) is the majority graph of
ballot profile b, we have π(b) = mg(b).

• The WMG-PIF returns the weighted majority graph of the ballot profile. A weighted
majority graph is a majority graph in which every edge is assigned a label. Each edge
(x, y) is labelled with the difference between the number of voters ranking x above y, and
the number of voters ranking y above x. Let Gweighted be the set of all finite weighted
graphs, then π : L(X)→ Gweighted. Let wmg(b) be the weighted majority graph of ballot
profile b. Then π(b) = wmg(b).

• Given a social choice function F , the corresponding score-PIF returns for each candidate
its score under the input profile according to F . F should assign points to each candidate
for this PIF to be well-defined. Formally, π(b) = (scoreF (x1, b), . . . , scoreF (xm, b)), where
scoreF : X × L(X)n → N computes the score of an alternative x ∈ X under ballot profile
b ∈ L(X)n according to F .
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Then, given the information π(b), every agent has an information set consisting of partial ballot
profiles that she considers possible.

Definition 2.7 (Information set).

Wπ(b)
i = {b′(−i) ∈ L(X)n−1 | π(bi, b(−i)′) = π(b)}

We say that a voter has an incentive to manipulate if there is a scenario in her information
set for which some untruthful ballot would result in a better outcome for her, and there is no
scenario in which changing her ballot to that new ballot would result in a worse outcome than
when she would vote truthfully.

Definition 2.8 (Incentive to manipulate with partial information). Given an info set Wπ(b)
i of

voter i, we say that voter i has an incentive to manipulate by voting b′i 6= b(i) if b′i 6= p(i), there
exists a partial ballot profile b′(−i) ∈ Wπ(b)

i such that F (b′i, b
′(−i)) �p(i) F (b(i), b′(−i)) and

for every ballot profile b′′(−i) ∈ Wπ(b)
i , F (b′i, b

′′(−i)) �p(i) F (b′′).

Thus, manipulation must be ‘safe’: by manipulating, the outcome under the untruthful ballot will
never be worse than the outcome under the truthful ballot. We say that voters are risk-averse:
if there exists a situation in which an untruthful ballot would result in a worse outcome, they
refrain from strategising. This amounts to de re knowledge of manipulation (Van Ditmarsch
et al., 2013): there is a vote that is strategic for any ballot profile she considers possible. A
weaker form of knowledge is de dicto knowledge of manipulation: in this case, the voter knows
that for every ballot profile she considers possible, she has a strategic vote, but this vote is not
the same strategic vote for every ballot profile. So, she knows that she has a strategic vote, but
she does not know what the manipulation is.

Another important aspect of the definition is that the manipulative vote only has to (weakly)
improve the outcome given a certain ballot profile: the outcome under a partial ballot profile
and a strategic ballot of voter i, should be (weakly) better than the outcome under that same
partial profile and a truthful ballot of voter i.

An alternative way to specify the incentives of an agent to manipulate an election is by looking
at her best strategies under the information she holds. Consider a social choice function F , a
ballot profile b, preference profile p and an agent i ∈ N with information set W. We say that a
ballot order bi is undominated if there is no other ballot b′i such that

• F (b′i, b(−i)) �p(i) F (bi, b(−i)) for all b(−i) ∈ W, and

• F (b′i, b(−i)) �p(i) F (bi, b(−i)) for some b(−i) ∈ W.

If agent i’s true preference pi is undominated, then this will be her unique best strategy.
Otherwise, all the undominated ballots form her set of best strategies. We assume that she will
pick a strategy from this set by some decision mechanism D : ℘(L(X))→ L(X). For example, a
voter may choose the strategy that is closest to her truthful ballot. In this thesis, we will assume
that every voter uses the same decision mechanism D to pick a strategy from the set of best
strategies, and that D is common knowledge in the group of voters. We define the best strategy
of a voter i as follows:

Definition 2.9 (Best strategy). Let i ∈ N be a voter with information setW and true preference
pi. Then her best strategy is defined as

Si(W, pi) :=

{
pi if pi is undominated
D({bi | bi ∈ L(X) is undominated}) otherwise
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So, Si always returns a single ballot order.

2.1.3 Iterative voting
So far we have modelled voting as a one-shot event: voters declare their preferences and the
voting rule computes a definitive outcome. There is no option to change or revise a decision.
While this assumption fits some political voting settings, the reality is more complex. Committees
often follow an informal voting process where members are free to revise their votes or hold
straw polls. Online voting tools such as Facebook and Doodle allow voters to see previous votes
and to change their vote later on, and even in traditional political voting, polls broadcast in the
media may trigger voters to change their vote.

In iterative voting, voting proceeds in rounds. We assume that in the first round, every voter
reports her truthful preference order. Every round, the reported ballot profile and the outcome
are announced, but voters may change their votes after observing the current ballot profile
and outcome. The game proceeds in turns, where a single voter changes her vote at each turn,
until no voter has objections and the final outcome is announced. The common assumption in
iterative voting is that voters do not reason about the other voters’ preferences or who might
change their vote, and thus act in a myopic way. That is, the voters vote in every round as if it
is the last one, since they are not able to make a future prediction. In game-theoretic terms,
each voter will play a best response to the current ballot profile of the other voters.

We use the following notation: bt = (bt1, b
t
2, . . . , b

t
n) is the ballot profile declared in round t ≥ 0.

In general, we assume that b0 = p. Let F be a resolute voting rule. After round t, voter i ∈ N
has a better response b′i ∈ L(X) with b′i 6= bt(i) if F (b′i, b(−i)t) �i F (bt).

A profile without better responses, is a Nash equilibrium. After each round, one voter with
better responses implements one of them. The process stops when there are no more better
responses. We speak of convergence for the voting rule F , if the process always stops eventually.
Often, we restrict to best responses. A best response for voter i is a better response b∗i that
cannot be improved:

F (b∗i , b(−i)t) �i F (bt) and F (b∗i , b(−i)t) �i F (b′i, b(−i)t) for all b′i ∈ L(X)

A central question for iterative voting is under which conditions a process of iterative voting
converges. The following result was proved by Meir et al. (2010) and later strengthened by
Reijngoud (2011) and Brânzei et al. (2013).

Theorem 2.10. Iterative voting restricted to arbitrary best responses converges for the plurality
rule paired with lexicographic tie-breaking.

Lev and Rosenschein (2012) and Reyhani and Wilson (2012) proved (independently from each
other) a very similar result for anti-plurality.

Theorem 2.11. An iterative election with anti-plurality as voting rule, a rationalisable linear-
order tie-breaking and voters that use a best-response strategy, converge even when not starting
from a truthful profile.

Unfortunately, plurality and anti-plurality are the only positional scoring rules for which such a
result is attainable. It was shown by Lev and Rosenschein (2016) that for any other scoring rule,
the iterative voting process will not converge:
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Theorem 2.12. Under the iterative procedure, using a best response strategy and when voters
are myopic, no scoring rule apart from plurality and veto converges.

For other types of voting rules, it is an open problem whether iterative voting converges or not.

In the next section, we will introduce the basic epistemic framework to model knowledge, belief
and information change.

2.2 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is an extension of the basic epistemic logic with event models
and product updates. It is a powerful framework that can be used to study model-changing
actions (Baltag et al., 1999; Van Ditmarsch et al., 2007; Van Benthem et al., 2006; Van Benthem,
2011). The basic language of DEL is the same as standard epistemic logic.

Definition 2.13 (Language). The language of multi-agent epistemic logic LDEL is generated
by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ

where p ∈ P and P is a countable set of atomic sentences. Other Boolean connectives are defined
in the standard way. “Kaϕ” reads as “The agent a knows ϕ”.

Definition 2.14 (Epistemic model). For a set P of propositions, an epistemic model is a triple
M = (S, {Ra}a∈A, V ), where S is a non-empty set of possible worlds, {∼a}a∈A ⊆ S ×S a family
of binary equivalence relations over S indexed by agents a ∈ A, and V a valuation V : P → ℘(S),
assigning a set of states to each proposition p ∈ P . By (M, s∗) we denote the epistemic model
M with an actual world s∗ ∈ S.

Definition 2.15 (Semantics).

M, s � > ⇐⇒ always
M, s � p ⇐⇒ s ∈ V (p)

M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ1 ∧ ϕ2 ⇐⇒ M, s � ϕ1 and M, s � ϕ2

M, s � Kaϕ ⇐⇒ for all t ∈ S with s ∼a t,M, t � ϕ

Event models are relational structures that can be used to describe a variety of informational
actions, from public announcements to more subtle communications that may be private or
(semi-)public, deception, and suspicion, and many other more complex forms of communication
(Baltag et al., 1999).

Definition 2.16 (Event model). An event model is a tuple U = (Σ, {Ra}a∈A, pre) where Σ is a
non-empty set of events, {Ra}a∈A ⊆ Σ× Σ is a set of equivalence relations over Σ associated to
the agents A and pre is a precondition map associating a formula pree ∈ LDEL to each event
e ∈ Σ. By (U, e∗), we denote the event model U with actual event e∗.

Given an initial epistemic model, we determine the model-transforming effect of an event model
by constructing a new epistemic model. This is called the product update and it is used to
model changes of information or belief1.

1In this thesis, we will not deal with the philosophical meaning of the terms knowledge and belief. We assume
that voters directly use whatever they think is true to reason about strategic behaviour, and hence we do not
make a distinction between knowledge and belief

18



Definition 2.17 (Product update). Given an epistemic modelM = (S, {Ra}a∈A, V ) with actual
state s∗ and an event model U = (Σ, {Ra}a∈A, pre) with actual event e∗, we define their product
update M ⊗ U = (S ⊗ Σ, {RM⊗Ua }a∈A, VM⊗U ) to be a new state model, given by

• S ⊗ Σ = {(s, e) ∈ S × Σ |M, s � pree}

• (s, e)RM⊗Ua (s′, e′) if and only if sRMa s′ and eRUa e′

• VM⊗U (p) = {(s, e) ∈ S ⊗ Σ | s ∈ V S(p)}.

and with actual state (s∗, e∗).

Proposition 2.18. Let M be an epistemic model with actual world s∗ and let U be an event
model U with actual event e∗ such that M, s∗ � pre(e∗). Then, M ⊗ U is again an epistemic
model.

Proof. See Van Ditmarsch et al. (2007).

In the next chapter, we will extend this basic DEL framework to a model and a logic that can
be used to analyse strategic manipulation in voting.
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Chapter 3

The model

3.1 A dynamic epistemic model for strategic voting

In this section, we will introduce the framework that will be used in this thesis to model strategic
voting.

Let N = {1, . . . , n} be the set of voters, and X = {x1, . . . , xm} be the set of alternatives they
have to elect a winner from. Let B denote all possible ballot profiles and let P denote all possible
preference profiles. Recall that ballot orders and preference orders are strict linear orders over
the set of alternatives. Hence, B = P = L(X)n. The framework presented here is based on the
DEL framework that was first introduced in Baltag et al. (1999) and extended by Van Benthem
et al. (2006), but here we follow Van Ditmarsch and Kooi (2006).

Since we want to consider both truthful and untruthful votes, we have to make a distinction
between true preferences and reported ballots. Therefore, we will use two types of propositional
variables in the model: preference profiles and ballot profiles. We assume that every voter knows
her own preference and ballot, so she will never be doubtful between two states in which her
preference orders or ballot orders are distinct. This technical condition leads to a dependence of
the accessibility relation for an agent i on the valuation on the model. Hence, we first define a
valuation on the states of the model, and then we define the accessibility relations. This is all
formalised in the following definition.

Definition 3.1 (Epistemic model for strategic voting). Let N be a set of voters, X a set of
alternatives and F : B → X a resolute social choice function. An epistemic model for strategic
voting for F is a triple M = (S, V,R), where

(i) S is a non-empty set of states

(ii) V : S → P × B is a valuation on S that assigns a preference profile and a ballot profile to
each world

(iii) R : N → ℘(S × S) assigns an accessibility relation1 to every agent i ∈ N , such that sRit
implies that proj1(V (s))(i) = proj1(V (t))(i) and proj2(V (s))(i) = proj2(V (t))(i).

1We do not impose further restrictions on the accessibility relations of the voters in N . However, all models
that will be used in this thesis are KD45 models, which means that the accessibility relations are serial, transitive
and Euclidean.

20



By (M, s∗), we denote an epistemic model for strategic voting with actual world s∗.

Given an epistemic model for strategic voting M = (S, V,R), if (s, t) ∈ R(i), we also denote this
by sRit. If it is clear from the context which valuation is used, we denote proj1(V (s)) by ps (the
preference profile in state s), and proj2(V (s)) by bs (the ballot profile in state s). We refer to the
preference and ballot order of voter i in state s by ps(i) and bs(i). We can extend this notation
to sets of voters: if G ⊆ N , then ps(G) is the (partial) preference profile of the voters in G and
bs(G) is their (partial) ballot profile. To denote an arbitrary ballot profile or a partial ballot
profile of G ⊆ N , we use b and b(G) respectively. Finally, we write −i := N\{i} and −G := N\G.

We use a language with three types of atoms: atoms that express the winner, atoms that express
the order of two alternatives in a ballot and atoms that express the order of two alternatives
in a preference. The modalities are PDL-style. Like Van Eijck (2013), we use two types of
actions: one to express the accessibility relations of the voters (so, doxastic relations), the other
to express updates.

Definition 3.2 (Language). Let x, y ∈ X be alternatives, and let i ∈ N be a voter. The
language L is defined as

ϕ ::= > | x | x �pi y | x �
b
i y | ¬ϕ | ϕ1 ∧ ϕ2 | [γ]ϕ | [α]ϕ

γ ::= (U, e) | γ1 ∪ γ2
α ::= i | G∗

The modality [G∗] is associated with ‘common knowledge among the agents in G’, and (U, e)
is an update model as defined below. We work with the usual abbreviations: ⊥ is shorthand
for ¬>, ϕ1 ∨ ϕ2 is shorthand for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬ϕ1 ∨ ϕ2 and 〈α〉ϕ is
shorthand for ¬[α]¬ϕ. The weak order �pi is defined as:

x �pi y :=

{
> if x = y

x �pi y otherwise

x �bi is defined analogously. Furthermore, let bi = x1 � x2 � · · · � xm, then in the language bi
is shorthand for the conjunction of all atoms that express the relative orders of alternatives with
respect to bi:

bi = (x1 �bi x2) ∧ (x2 �bi x3) ∧ · · · ∧ (xm−1 �bi xm)

Since the ballot must be a linear order, the conjunction of atoms uniquely defines a ballot bi. In
the same way, if pi = x1 � · · · � xm, we define pi in the language as follows:

pi = (x1 �pi x2) ∧ (x2 �pi x3) ∧ · · · ∧ (xm−1 �pi xm).

Although we overload notation for bi and pi, because bi and pi both may refer to a linear order
of alternatives (a semantic object) and to a sentence in the logic (a syntactic object), this will
not cause confusion. Since we are only working with finite number of voters and alternatives,
there is a canonical way to translate formulas into ballots and preferences or vice versa, provided
that the formula has the appropriate shape. It will be clear from the context whether we talk
about the linear orders or the logic.

The update model should capture two types of dynamics: not only the model should be able to
update the agent’s knowledge, the model also has to capture that voters might want to change
their ballots when they have an incentive to manipulate. Let B denote the set of all ballot atoms
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(i.e., atoms of the form x �bi y). Let Bi ⊆ B denote the set of all ballot atoms of voter i. If a
voter changes her ballot, we model this by defining postconditions for every ballot atom. The
postconditions turn some ballot atoms ‘on’ (namely, exactly the ballot atoms that define the
new ballot), and some ballot atoms ‘off’ (namely, the ballot atoms that are the reverse of the
new ballot). Of course, the new ballot should also be a strict linear order. This is all formalised
in the following definition.

Definition 3.3 (Update model for strategic voting). An update model for strategic voting is a
tuple U = (Σ, R, pre, post), where

(i) Σ is a non-empty set of events

(ii) pre : Σ→ L assigns a precondition to each event

(iii) post : Σ→ (B → B ∪ {>,⊥}) assigns a postcondition to each event. A postcondition is a
function that maps a ballot atom to either >, ⊥ or itself2. Postconditions must satisfy the
following conditions: let e ∈ Σ, take i ∈ N and any alternatives x, y, z ∈ X. Then

(a) if post(e)(x �bi y) 6= > and post(e)(x �bi y) 6= ⊥, then post(e)(x �bi y) = x �bi y
(b) if post(e)(x �bi y) = x �bi y, then for all x′, y′ ∈ X, post(e)(x′ �bi y′) = x′ �bi y′

(c) if x = y, then post(e)(x �i y) 6= >
(d) if post(e)(x �bi y) = > and post(e)(y �bi z) = >, then post(e)(x �bi z) = >
(e) if x 6= y, then post(e)(x �bi y) = > ⇐⇒ post(e)(y �bi x) = ⊥

(iv) R : N → ℘(Σ× Σ) assigns an accessibility relation3 to every agent i ∈ N , such that eRif
implies that the following holds: for all x �bi y ∈ Bi, post(e)(x �bi y) = post(f)(x �bi y)

An update model for strategic voting (U, e∗) with an actual event e∗ ∈ Σ is called an update. An
update model with a singleton set of events, accessible to all agents, and precondition >, is a
public assignment. An update model with a singleton set of events, accessible to all agents, and
the identity function as postcondition, is a public announcement.

The semantics for our language L is given in the following definition:

Definition 3.4 (Semantics). Let F be a social choice function and let M = (S, V,R) be an
epistemic model for strategic voting for F . Then we define

M, s � > ⇐⇒ always
M, s � x �pi y ⇐⇒ x � y ∈ proj1(V (s))(i)

M, s � x �bi y ⇐⇒ x � y ∈ proj2(V (s))(i)

M, s � x ⇐⇒ F (proj2(V (s))) = x

M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ1 ∧ ϕ2 ⇐⇒ M, s � ϕ1 and M, s � ϕ2

M, s � [U, e]ϕ ⇐⇒ if M, s � pre(e), then M ⊗ U, (s, e) � ϕ
M, s � [γ1 ∪ γ2]ϕ ⇐⇒ M, s � [γ1]ϕ and M, s � [γ2]ϕ

M, s � [i]ϕ ⇐⇒ for all s′ with (s, s′) ∈ R(i) : M, s′ � ϕ

M, s � [G∗]ϕ ⇐⇒ for all s′ with (s, s′) ∈ R∗(G) : M, s′ � ϕ.

Here, R∗ denotes the reflexive and transitive closure of R.
2each postcondition is required to be only finitely different from the identity id; this condition is met since

there are always finitely many ballot atoms
3We do not impose further restrictions on the accessibility relations of the voters in N . However, the accessibility

relations of all update models that will be used in this thesis are serial, transitive and Euclidean.
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We now define the effect of the execution of an update model on an epistemic model for strategic
voting.

Definition 3.5 (Product update). Given an epistemic model for strategic votingM = (S, V,RM )
with actual state s∗ and an update (U, e∗) with U = (Σ, RU , pre, post) such that M, s∗ � pre(e∗),
the result of updating (M, s∗) with (U, e∗) is the epistemic model for strategic voting M ⊗ U =
(S′, R′, V ′) with actual state s′∗, where

(i) S′ = {(s, e) |M, s � pre(e)}

(ii) V ′ : S′ → P × B with V ′((s, e)) = (proj1(V (s)), {x �bi y |M, s � post(e)(x �bi y)})

(iii) R′(i) = {((s, e), (t, f)) | (s, e), (t, f) ∈ S′ and (s, t) ∈ RM (i) and (e, f) ∈ RU (i)}

(iv) s′∗ = (s∗, e∗)

The atomic valuation V of an updated model M ⊗ U is constructed as follows: for each new
state (s, e), it simply takes the preference profile of the world s, since preferences never change.
For the ballot profile, it takes all those ballot atoms whose postcondition at e holds in the initial
model at s. Given the restrictions on the postcondition function of an update model, such set
does define a ballot profile, and thus the valuation function in the resulting model is of the
appropriate form.

Proposition 3.6. The result of updating an epistemic model for strategic voting with an update
model, is again an epistemic model for strategic voting.

Proof. Let M = (S, V,RM ) be an arbitrary epistemic model and U = (Σ, RU , pre, post) an
arbitrary update model. We have to show that M ⊗ U = (S′, V ′, R′) is an epistemic model for
strategic voting. The non-trivial part is proving that V ′ is a well-defined valuation on M ⊗ U
and that the relation R′ satisfies the requirements.

To show that V ′ is well-defined, we have to check that linearity of ballot orders still holds. Let
(s, e) ∈ M ⊗ U . Let x, y ∈ X two alternatives, and let i ∈ N . Now suppose that post(e)(x �i
y) = x �i y. Then it must hold that for every x′, y′ ∈ X, post(e)(x �bi y) = x �i y. Then
V ′(s, e) = (proj1(V (s)), {x �bi y | M, s � post(e)(x �bi y)}). Note that M, s � post(e)(x �bi y if
and only if M, s � x �bi y, and hence V ′(s, e) = (ps, bs), so in this case V is well-defined.

If post(e)(x �bi y) 6= x �i y, we have that for every x′, y′ ∈ X, either post(e)(x′ �bi y′) = > or
post(e)(x′ �bi y′) = ⊥. If we have x′ and y′ such that x = y, then post(e)(x′ �bi y′) = ⊥, which im-
plies thatM⊗U, (s, e) 2 x �bi y, so irreflexivity is guaranteed. Furthermore, for any x′, y′, z′ ∈ X
we have that post(e)(x′ �bi y′) = > and post(e)(y′ �bi z′) = >, then post(e)(x′ �bi z′) = >. This
implies that since M, s � >, in particular M, s � post(e)(x �bi z. Hence, if M ⊗U, (s, e) � x �bi y
and M ⊗ U, (s, e) � y �bi z, then M ⊗ U, (s, e) � x �bi z, so this guarantees transitivity. Finally,
since x 6= y, then post(e)(x �bi y) = > ⇐⇒ post(e)(y �bi x) = ⊥, we have that the ballot order
of i in (s, e) must be total. It follows that V ′ must assign a linear ballot order for i to state
(s, e). Since i was arbitrary, this holds for every voter.

It is left to show that R′ is well-defined. Let (s, e), (t, f) ∈ S′ such that ((s, e), (t, f)) ∈ R′(i)
for some i ∈ N . We have to show that b(s,e)(i) = b(t,f)(i) and p(s,e)(i) = p(t,f)(i). Since
(s, e)R′i(t, f), it must hold that sRMi t and eRUi f . Thus, bs(i) = bt(i) and ps(i) = pt(i). The
valuations are given by V ′((s, e)) = (proj1(V (s)), {x �bi y | M, s � post(e)(x �bi y)}) and
V ′((t, f)) = (proj1(V (t)), {x �bi y |M, t � post(f)(x �bi y)}). Since ps(i) = pt(i), it follows that
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p(s,e)(i) = p(t,f)(i).

Since eRUi f , it holds that for every x �bi y ∈ Bi, post(e)(x �bi y) = post(f)(x �bi y). Furthermore,
M, s � x �bi y if and only if M, t � x �bi y. Hence, proj2(V ′(s, e))(i) = {x �bi y | M, s �
post(e)(x �bi y)} = {x �bi y | M, s � post(f)(x �bi y)} = {x �bi y | M, t � post(f)(x �bi y)} =
proj2(V ′(t, f))(i), as was required.

Composition of two update models is not part of the language. We define composition of two
update models semantically:

Definition 3.7 (Composition of update models). Let U = (Σ, R, pre, post) and U ′ = (Σ′, R′, pre′, post′)
be update models with actual events e∗ and e′∗ respectively. The composition (U, e∗); (U ′, e′∗)
of these update models is (U ′′, e′′∗), where U ′′ = (Σ′′, R′′, pre′′, post′′) is defined by

(i) Σ′′ = Σ× Σ′

(ii) R′′(i) = {((f, f ′), (g, g′)) | (f, g) ∈ R(i) and (f ′, g′) ∈ R′(i)}

(iii) pre′′(f, f ′) = pre(f) ∧ [U, f ]pre′(f ′)

(iv)

post′′(f, f ′)(x �bi y) =

{
post(f)(x �bi y) if post′(f ′)(x �bi y) = x �bi y
post′(f ′)(x �bi y) otherwise

and the actual event in U ′′ is e′′∗ = (e∗, e′∗).

Next, we prove that composition of update models is well-defined.

Proposition 3.8. M, s � [(U, e); (U ′, e′)]ϕ ⇐⇒ M, s � [U, e][U ′, e′]ϕ

Proof. Let M = (S, V,R) be an arbitrary model with actual state s. It suffices to show that
(M ⊗U)⊗U ′ is isomorphic to M ⊗ (U ;U ′). A detailed proof for purely epistemic update can be
found in Van Ditmarsch et al. (2007). The postconditions only play a part in the proof that the
valuations correspond. Let V ′ be the valuation of M ⊗ U , V1 be the valuation of (M ⊗ U)⊗ U ′
and V2 the valuation of M ⊗ (U ;U ′). We show that V1 and V2 correspond.

Let ((s, e), e′) be a state in (M ⊗ U)⊗ U ′. We have that

V ′(s, e) = (proj1(V (s)), {x �bi y |M, s � post(e)(x �bi y)}).

If post′(e′)(x �bi y) = x �bi y, it holds that

V1((s, e), e′) = (proj1(V ′(s, e)), {x �bi y |M ⊗ U, (s, e) � post′(e′)(x �bi y)})
= (proj1(V (s)), {x �bi y |M ⊗ U, (s, e) � x �bi y})
= (proj1(V (s)), {x �bi y |M, s � post(e)(x �bi y)}).

In that case, we have

V2(s, (e, e′)) = (proj1(V (s)), {x �bi y |M, s � post′′(e, e′)(x �bi y})
= (proj1(V (s)), {x �bi y |M, s � post(e)(x �bi y})
= V1((s, e), e′).
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If post′(e′)(x �bi y) 6= (x �bi y), it holds that for all x′, y′ ∈ X, either post′(e′)(x′ �bi y′) = > or
post′(e′)(x′ �bi y′) = ⊥. Hence, we have

V1((s, e), e′) = (proj1(V ′(s, e)), {x �bi y |M ⊗ U, (s, e) � post′(e′)(x �bi y)})
= (proj1(V (s)), {x �bi y | post′(e′)(x �bi y) = >})
= (proj1(V (s)), {x �bi y |M, s � post′(e′)(x �bi y)}).

Furthermore, we have

V2(s, (e, e′)) = (proj1(V (s)), {x �bi y |M, s � post′′(e, e′)(x �bi y)})
= (proj1(V (s)), {x �bi y |M, s � post′(e′)(x �bi y)})
= V1((s, e), e′).

This shows that V1 = V2.

In modal logic, the notion of bisimulation is central. We define a bisimulation for epistemic
models for strategic voting in the standard way. The only difference is that our bisimulation is
working over a different kind of valuation.

Definition 3.9 (Bisimulation). Let two epistemic models for strategic voting M = (S, V,R)
and M ′ = (S′, V ′, R′) be given. A non-empty relation R ⊆ S × S′ is a bisimulation if for all
s ∈ S and all s′ ∈ S′ with (s, s′) ∈ R:

(i) V (s) = V ′(s′)

(ii) for all i ∈ N and all t ∈ S: if sRit, then there is t′ ∈ S′ such that s′R′it′ and (t, t′) ∈ R

(iii) for all i ∈ N and all t′ ∈ S′: if s′R′it′, then there exists t ∈ S such that sRit and (t, t′) ∈ R.

If there exists a bisimulation between two models M and M ′, we call M and M ′ bisimilar.

The notion of bisimulation captures the expressivity of the language.

Theorem 3.10. Let M with actual state s∗ and M ′ with actual state s′∗ be epistemic models
for strategic voting. If M, s∗ and M ′, s′∗ are bisimilar, then M, s∗ � ϕ ⇐⇒ M ′, s′∗ � ϕ for
every modal formula ϕ.

Proof. The proof is standard, by induction on ϕ. There are three base cases. For atoms of the
form x �pi y and x �bi y, it follows directly by part (i) of Definition 3.9. For atoms of the form x,
we have that when two worlds have the same ballot profile, the voting rule assigns the same
winner; thus, bisimilar worlds coincide on formulas of the form x. The final non-standard part
of the proof is to show that formulas of the form [U, e]ϕ are respected by bisimulations. It is
well-known that the product update operation preserves bisimulation: if you take two bisimilar
models and apply a product update with the same event model on both, the resulting models
are also bisimilar (Van Ditmarsch et al., 2007).

This shows that bisimular models (M, s∗) and (M ′, s′∗) represent essentially the same epistemic
situation.
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3.2 Manipulation in the dynamic epistemic model for strate-
gic voting

Now we can define an incentive to manipulate in an epistemic model for strategic voting. A
voter i has an incentive to manipulate if there is a strategic ballot bi that (weakly) improves
the outcome from the perspective of that voter and voter i believes that this is the case. So,
de re belief of her manipulation is required. For now, we stick to the classical notion of an
incentive to manipulate and we assume that the manipulator is naive and does not take in
consideration manipulations of other voters. This definition follows the train of thought the
notion of a dominant manipulation of an information set introduced by Conitzer et al. (2011)
and used in Reijngoud and Endriss (2012) and Bakhtiari et al. (2018).

Definition 3.11 (Incentive to manipulate). In an epistemic model for strategic voting M =
(S, V,R) with actual state s∗, we say that voter i with preference pi has a dominant manipulation
b′i 6= pi if:

• There exists a state s with s∗Ris such that F (b′i, bs(−i)) �pi F (bs)

• For every t with s∗Rit, it holds that F (b′i, bt(−i)) �pi F (bt)

Voter i has an incentive to manipulate if there exists a ballot bi such that bi is a dominant
manipulation.

As discussed in Subsection 2.1.2, another way to specify the incentives of a voter to manipulate
is by looking at her best strategy under the information she has. In Definition 2.9, a voter’s
best strategy is defined given her information set. We translate this notion and define the best
strategy of a voter in an epistemic model for strategic voting:

Definition 3.12 (Best strategy in an epistemic model for strategic voting). Let M = (S, V,R)
be an epistemic model for strategic voting with actual state s∗.

Si(M, s∗) := Si({b(−i) | there exists s ∈ S with s∗Ris and M, s � b},ps∗(i))

Proposition 3.13. A voter i has an incentive to manipulate in a model M with actual world
s∗ if and only if Si(M, s∗) 6= ps∗(i).

Proof. This follows directly from the definitions.

If a voter i has an incentive to manipulate, we assume that the voter will actually commit to her
strategic ballot. This means that she will factually change her ballot. We model this as a single
manipulation by i and fully private announcement to a group of agents G ⊆ N with i ∈ G. This
means that the commitment of i to her strategic ballot bi is noticed by every voter in G and this
is common knowledge within the group G, while the other agents do not suspect anything. This
is modelled via the execution of an update model.

Definition 3.14. Let M be an epistemic model for strategic voting with actual state s∗. Take
i ∈ N and a insincere ballot bi 6= pi (here, pi is the truthful preference of i in M , so M, s∗ � pi)
and a group of voters G ⊆ N , with i ∈ G. Recall that we can write bi in the language as a
conjunction of ballot atoms. We say that UbGi is an bGi -manipulation update model for M if
UbGi = (Σ, R, pre, post) with

• Σ = {e1, e2}
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• R(i) = {(e1, e1), (e2, e2)} for every i ∈ G and R(j) = {(e1, e2), (e2, e2)} for every j /∈ G

• pre(e1) = pre(e2) = >

• For any j 6= i, for any ballot atom x �bj y ∈ Bj , post(e1)(x �bj y) is the identity function.
For any ballot atom x �bi y ∈ Bi, post(e1)(x �bi y) = > ⇐⇒ x �bi y ∈ bi.

The actual event in U is e1.

In the language, instead of using [UbGi ], we will write [bGi ] for short.

Example 3.15. Suppose we have voters N = {1, 2, 3}, three alternatives and voter 1 changes
her ballot to b1 = a � b � c, which is only noticed by herself and voter 2. Then U

b
{1,2}
1

is the
following update model illustrated in Figure 3.1. Here, we only specify the postconditions that
are not the identity function.

> >
3

1, 2 3

a �bi b 7→ >
a �bi c 7→ >
b �bi c 7→ >
b �bi a 7→ ⊥
c �bi b 7→ ⊥
c �bi a 7→ ⊥

id

Figure 3.1: The update model U
b
{1,2}
1

Intuitively, if two agents i and j (i 6= j) change their ballots and a group G ⊆ N with i ∈ G
notices the first change, and H ⊆ N with j ∈ H the second, then the order in which the agents
change their ballots should not matter. The following Proposition shows that this is indeed
correct.

Proposition 3.16. M, s � [bGi ][bHj ]ϕ ⇐⇒ M, s � [bHj ][bGi ]ϕ.

Proof. See Appendix.

3.3 Expressing manipulation in the language

We give some examples to demonstrate that our language expresses important concepts of
strategic voting in a dynamic epistemic setting, introduced in Section 3.1. In the examples
discussed below we do not specify G, because in the definition of a dominant manipulation of
an information set and an incentive to manipulate, we assume that voters only reason about
the effect of changing their own vote to the outcome of the election, and the knowledge of other
voters is not taken into account.

Recall Definition 3.11: an agent i has a dominant manipulation bi for her information set if, in
at least one accessible world, after changing her ballot to bi, the new winning alternative x′ in
that world is strictly preferred over the original winner x. In every accessible world, changing
her ballot to bi should result in a winner that is at least as good as the original winner x. Recall
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that L(X) denotes the finite set of all possible linear orders over the finite set of alternatives,
and that bi (in the language) denotes a conjunction of atoms that indicate the relative order of
alternatives in the ballot bi of i. Then the statement that voter i has an incentive to vote bi is
expressed in the language as follows:

α(bi) := 〈i〉
( ∧
x∈X

∧
x′∈X,x′ 6=x

((x∧[bGi ]x′)→ x′ �pi x)
)
∧[i]

( ∧
x∈X

∧
x′∈X,x′ 6=x

((x∧[bGi ]x′)→ x′ �pi x)
)

Voter i has an incentive to manipulate when there exists a dominant manipulation for her
information set: ∨

bi∈B

(
α(bi)

)
There is a voter with an incentive to manipulate is expressed as follows:∨

i∈N

∨
bi∈B

(
α(bi)

)
If no voter has an incentive to manipulate, the voting situation is strategyproof. In the logic, we
express this as ∧

i∈N

∧
bi∈B

[i]
( ∧
x∈X

∧
x′∈X,x′ 6=x

((x ∧ [bGi ]x′)→ x �i x′)
)
,

which is logically equivalent to ¬
∨
i∈N

∨
bi∈L(X)

(
α(bi)

)
.

3.4 Axiomatisation

In Table 3.1, a proof system for the dynamic epistemic logic of strategic voting is given.
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axiom/rule description

all instantiations of propositional tautologies

from ϕ and ϕ→ ψ, infer ψ modus ponens

from ϕ, infer [α]ϕ necessitation for belief

[α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) distribution for knowledge

[G∗]ϕ→ (ϕ ∧ [G][G∗]ϕ) mix

[G∗](ϕ→ [G]ϕ)→ (ϕ→ [G∗]ϕ) induction axiom

x �bi y → [i]x �bi y knowledge of own ballot

x �pi y → [i]x �pi y knowledge of own preference

¬(x �bi x) irreflexivity of ballot orders

(x �bi y ∧ y �bi z)→ x �bi z transitivity of ballot orders

x �bi y ∨ y �bi x if x 6= y totality of ballot orders

¬(x �pi x) irreflexivity of preference orders

(x �pi y ∧ y �
p
i z)→ x �pi z transitivity of preference orders

x �pi y ∨ y �
p
i x if x 6= y totality of preference orders

x↔
∨

b∈B,F (b)=x

b axioms that characterise F

from ϕ, infer [γ]ϕ necessitation for updates

[γ](ϕ→ ψ)→ ([γ]ϕ→ [γ]ψ) distribution for updates

[U, e]x �pi y ↔ (pre(e)→ x �pi y) update and preferences

[U, e]x �bi y ↔ (pre(e)→ post(e)(x �bi y) update and ballots

[U, e]x↔
(
pre(e)→

∨
b∈B,F (b)=x

∧
x�b

iy∈b

[U, e]x �bi y
)

update and winners

[U, e]¬ϕ↔ (pre(e)→ ¬[U, e]ϕ) update and negation

[U, e]ϕ ∧ ψ ↔ ([U, e]ϕ ∧ [U, e]ψ) update and conjunction

[U, e][i]ϕ↔ (pre(e)→
∧

(e,f)∈R(i)

[i][U, f ]ϕ) update and knowledge

[U, e][U ′, e′]ϕ↔ [(U, e); (U ′, e′)]ϕ update composition

Let (U, e) be an update model and let a set of formulas χf be given
for every f such that (e, f) ∈ R∗(G). From χf → [U, f ]ϕ and
(χf ∧ pre(f)) → [i]χg for every f ∈ Σ such that (e, f) ∈ R∗(G),
i ∈ G and (f, g) ∈ R(i), infer χe → [U, e][G∗]ϕ.

updates and common knowledge

Table 3.1: Axiomatisation for the dynamic epistemic logic of strategic voting

Since there are finitely many ballot profiles, one can indeed characterise the winner by listing
the ballots in which it wins, according to the chosen social choice function. However, in this
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thesis, we will not focus on a particular social choice function, so we will not give an explicit list
of axioms.

Lemma 3.17. The axioms for knowledge of own ballot and preference, the axioms for linearity
of ballot and preferences and the axioms for updates and preferences, ballot and winners are
sound with respect to the class of epistemic models for strategic voting.

Proof. The axioms for knowledge of own ballot and knowledge of own preference formalise
the constraint on epistemic models for strategic voting that sRit implies that proj1(V (s))(i) =
proj1(V (t))(i) and proj2(V (s))(i) = proj2(V (t))(i). The axioms for linearity of ballot and
preferences are valid since a valuation always assigns a single preference profile and ballot profile
to each state. The axiom for update and preferences are valid since preferences never change: if
M is a model with valuation V , and M ⊗U is a product update of M with any update model U
such that V ′ is the valuation of M ⊗ U , then proj1(V ′(s)) = proj1(V (s)) for every s ∈ S. Hence,
preferences never change. The axiom for update and ballots corresponds to the axiom for update
and atoms in Van Ditmarsch and Kooi (2006). The axiom for update and winners is similar to
this axiom, but extended to winners: x is the winner after an update U , if and only if there is a
ballot profile b such that F (b) = x, and after the update, exactly that ballot profile b holds.

Theorem 3.18. The axiomatisation for the dynamic epistemic logic of strategic voting is sound
and complete with respect to the class of epistemic models for strategic voting.

Proof (sketch). We only show the soundness of the updates and common knowledge rule, as
soundness of the rest of the axioms is evident or already shown in 3.17. Let (U, e) be an
update model and let a set of formulas χf be given for every f such that (e, f) ∈ R∗(G). From
χf → [U, f ]ϕ and (χf ∧ pre(f)) → [i]χg for every f ∈ Σ such that (e, f) ∈ R∗(G), i ∈ G and
(f, g) ∈ R(i). Now we have to show that χe → [U, e][G∗]ϕ is valid. Let M, s be an epistemic
model and suppose M, s � χe. We show that M, s � [U, e][G∗]ϕ. This is the case if and only if
M, s � pre(e) implies that M ⊗ U, (s, e) � [G∗]ϕ, so suppose M, s � pre(e). Let (t, f) ∈ S ⊗ Σ
such that ((s, e), (t, f)) ∈ (RM⊗U )∗(G). This means that there is a path of arbitrary but finite
length between (s, e) and (t, f) for agents in G. We have to prove that M ⊗ U, (t, f) � ϕ. We
use induction on the length of the path.

If the length of the path is 0, we have (s, e) = (t, f). We have M, s � χe and since (e, e) ∈
(RM⊗U )∗(G), we also have M, sχe → [U, e]ϕ. Hence, M, s � [U, e]ϕ and therefore M ⊗U, (s, e) �
ϕ. It follows that M ⊗ U, (t, f) � ϕ.

Now consider a path of length n+ 1. Let i ∈ G and (u, g) ∈M ⊗ U such that ((s, e), (u, g)) ∈
RM⊗U (i) and ((u, g), (t, f)) ∈ (RM⊗U )∗(G). Since (e, g) ∈ RM⊗U (i), it must hold that
(e, g) ∈ RU (i). Hence, χg is defined and from the validity (χe ∧ pre(e))→ [i]χg, M, s � χe and
M, s � pre(e) we infer that M, s � [i]χg. Since (e, g) ∈ RM⊗U (i), it must hold that (s, u) ∈ R(i)
and this implies that M,u � χg. From χg → [U, g]ϕ, we can induce that M,u � [U, g]ϕ and
hence M ⊗ U, (u, g) � ϕ. We now apply the induction hypothesis of the length n path between
(u, g) and (t, f), and therefore M ⊗ U, (t, f) � ϕ, as required.

This axiomatisation is an extension of the logic of ontic and epistemic change (Van Ditmarsch
and Kooi, 2006): we add axioms for knowledge of own ballot and preference, axioms for linearity
of ballot and preferences, and we distinguish axioms for updating ballots, preferences and winners.
For completeness, we observe that the canonical model to determine the completeness of the
logic without dynamics is an epistemic model for strategic voting (Lemma 3.17), and that the
completeness of the logic without dynamics is as usual (see Van Ditmarsch and Kooi (2006);
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Van Ditmarsch et al. (2007); Baltag et al. (1999)) because every formula is equivalent to one
without updates (the axioms are rewriting rules, pushing all logical connectives beyond the
modal operators).

3.5 Concluding remarks

The dynamic epistemic logic presented here is able to deal with very complex forms of commu-
nication. However, there is one disadvantage of this logic: it is essentially monotonic, because
uncertainty can only be decreased, and not increased by an update. This means that no belief
revision is allowed. The product update works very well when dealing with ‘knowledge’, or
even with (possibly false) beliefs, as long as these false beliefs are never contradicted by new
information. If new information is contradictory with the current belief of an agent, the product
update gives non-intuitive results: if an agent i is confronted with a contradiction between
previous beliefs and new information she starts to believe the contradiction, and so she gets ‘crazy’
and starts to believe everything. In this thesis, we only work with classes of epistemic models for
strategic voting and update models that are KD45, that is, all accessibility relations are serial,
transitive and Euclidean. Furthermore, in this thesis we assume that only true information is
communicated, and only true commitment to a new ballot is considered. Hence, agents will not
have to deal with false information and inconsistent beliefs. Therefore, the absence of belief
revision will not cause any problems.
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Chapter 4

Naive manipulation

In this section, we will discuss some important results from voting theory and show how they
fit into our framework. We will illustrate that the presented framework is general enough to
model different voting settings. This chapter is focused on the classical setting with a naive
manipulators, that is, with manipulators who think that every other voter will report a sincere
ballot. We translate the classical setting with full information as well as more recent research on
manipulation under partial information to our framework.

4.1 Gibbard-Satterthwaite manipulation

In the Gibbard-Satterthwaite theorem, it is assumed that every voter has full information about
every other voter’s preference. Furthermore, it is assumed that every voter (initially) casts a
sincere vote. The class of models that meet these conditions is defined as follows:

Definition 4.1. The class of epistemic models for strategic votingMfull info,sincere consist of all
models M = (S, V,R) that satisfy the following conditions:

• S = {s∗}

• M, s∗ � x �bi y ⇐⇒ M, s∗ � x �pi y

• for all i ∈ N , s∗Ris∗

We rephrase the Gibbard Satterthwaite theorem as follows (Gibbard, 1973; Satterthwaite, 1975):

Theorem 4.2 (Gibbard-Satterthwaite). Let N be the set of voters that have to make a choice
between m alternatives. Let F be a resolute, non-dictatorial and surjective social choice function.
Then there exists a model M ∈Mfull info,sincere for F such that there exists a voter j ∈ N with
an incentive to manipulate.

4.2 Manipulation under partial information

On the other side, there is a situation in which the voters have no information at all about their
fellow voters. If every voter votes truthfully, only knows her own preference and has absolutely
no information about the preferences of other voters, and this is common knowledge, we obtain
a model with m!n worlds (since there are m! possible preference orders, and hence m!n possible
preference profiles) where two states s and t are i-related if and only if the ballots and preferences
of voter i in s and t are identical.
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Definition 4.3. Let Mign,sincere denote the class of ‘ignorant’ models, namely, models M =
(S, V,R) that satisfy the following conditions:

• |S| = n!m

• for all p ∈ P, there exists s ∈ S with proj1(V (s)) = p

• for all i ∈ N , it holds that sRit ⇐⇒ ps(i) = pt(i) and bs(i) = bt(i)

• for all s ∈ S, M, s � x �bi y ⇐⇒ M, s � x �pi y.

For many important voting rules, it is not possible to manipulate in this situation, because
voters have too little information. Conitzer et al. (2011) showed this for Condorcet extensions
and positional scoring rules. Here, we rephrase their results in our framework.

Theorem 4.4. Let F be a Condorcet-consistent social choice function. Then in every M ∈
Mign,sincere for F it holds that there is no voter with an incentive to manipulate.

Theorem 4.5. If F is the Borda rule, in every M ∈Mign,sincere for F it holds that there is no
voter with an incentive to manipulate.

Theorem 4.6. If F is a positional scoring rule and in every model M ∈Mign,sincere for F and
n ≥ 6(m− 2), it holds that there is no voter with an incentive to manipulate..

Albeit it is not realistic to assume full information, nor is it realistic to assume no information at
all. This is why partial information is more interesting. Reijngoud and Endriss (2012) analyse
the strategic behaviour of voters under different types of partial information. If agents have
partial information, the model grows from a single-state model to a multi-state model. The
framework of Reijngoud and Endriss (2012) can be interpreted as a voting situation in which a
single agent responds to an opinion poll. The opinion poll reveals a certain type of information,
for example, it reveals the winner under the truthful profile, or it reveals the weighted majority
graph. We discuss one susceptibility and one immunity result. Reijngoud and Endriss show that
any unanimous positional scoring rule is susceptible to winner-manipulation. We first define
the class of models in which voters have winner information. This means that they know the
winner under the truthful profile, but nothing more then that (except for their own preference
and ballot). Suppose that the winner under the truthful profile is x. Then the possible ballot
profiles are all ballot profiles under which x would be the winner.

Definition 4.7. The class of modelsMwinner,sincere is defined as the set of modelsM = (S, V,R)
that satisfy the following conditions: there exists x ∈ X such that

• |S| = |{b | F (b) = x}|

• for all b ∈ B with F (b) = x, there exists s ∈ S with proj2(V (s)) = b

• for all i ∈ N , it holds that sRit ⇐⇒ ps(i) = pt(i) and bs(i) = bt(i)

• for all s ∈ S, M, s � x �bi y ⇐⇒ M, s � x �pi y.

The result translates to our framework in the following way:

Theorem 4.8. Whenm > 3 and n > 4, and F is a unanimous positional scoring rule (paired with
the lexicographic tie-breaking rule) for N and X, then there exists a model M ∈Mwinner,sincere
for F such that there is a voter i with an incentive to manipulate.
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An important immunity result from Reijngoud & Endriss is that anti-plurality is immune to
manipulation under winner information (when the number of voters is large enough). We
rephrase it as follows:

Theorem 4.9. When n > 2m− 2, and F is the anti-plurality rule paired with the lexicographic
tie-breaking rule for N and X, then there is no model M ∈ Mwinner,sincere for F in which a
voter has an incentive to manipulate.

The restatement of some well-known results in voting theory demonstrates that in the classical
framework, there are many implicit assumptions: it is generally assumed that there is just a
single manipulator reasoning from an information set of possible preference profiles. Since there
is only one manipulator, we do not have to consider the epistemic states of the other agents:
no matter how much information they have, they will always vote truthfully. Therefore, the
manipulative voter does not have to worry about the behaviour of the other voters: she only
cares about how her (possibly untruthful) ballot can affect the outcome of the election. These
assumptions are very strong. It is more realistic to consider situations in which multiple (groups
of) voters try to manipulate the election. In such situations, voters have to reason about the
manipulative behaviour of other voters, so we have to model higher-order reasoning, as we will
do in the following chapters.
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Chapter 5

Manipulation under higher-order
reasoning

In the previous chapter, we discussed naive manipulation, i.e., cases where just a single voter
votes strategically and the remaining voters are sincere. However, it is likely that other voters
may consider a strategic vote as well. Moreover, voters could realise that other voters may reason
strategically too, and therefore choose the best strategy accordingly. A natural question that
arises here is that what will happen if all voters behave strategically and all of them know that
too. In this case, the strategy of each agent depends on the strategy of other agents. In this
chapter, we study the reasoning and voting behaviour of sophisticated voters. We do this by
looking at a voter’s higher-order reasoning, which arises when a voter recognizes that the other
voters reflect on her uncertainty about their uncertainty, and so on.

To illustrate the impact of higher-order reasoning on an agent’s strategy, we first introduce a
simple example, which is a variant of the well-known Battle of the sexes game. A couple, Alice
and Bob, has agreed to meet this evening. However, they have not yet decided where to go. Alice
would prefer to go to the football game, Bob would rather go to the opera. The third option
is staying at home. Both would prefer to go somewhere rather than not going at all, and this
is all common knowledge. If they vote for the same activity, they will go there. If they choose
different activities, they are not going anywhere. What should they choose? Initially, it seems
reasonable for Alice to vote for the football game, because that is her top choice. However, if
she thinks that Bob will go for his top choice as well, the opera, they will end up going nowhere,
which is her least favourite outcome. Therefore, it is better for Alice to vote for the opera as
well. But, what if Bob also realised this and therefore decided to vote for the football game? In
that case, Alice should vote for the football game as well, because then they will go to the game.
However, if Bob reasons in the same way, he thinks that she will vote for the opera, and therefore
he will also vote for the opera. This reasoning process can theoretically be continued indefinitely.
Depending on the level of reasoning that Alice thinks that Bob applies, her best strategy would
either be to vote for the football game (a sincere vote) or the opera (a strategic ballot). The
same holds for Bob. So, whether Alice and Bob have an incentive to vote insincerely, really
depends on their level of higher-order reasoning.

In this chapter, we will analyse voting procedures in which all voters vote simultaneously: all
voters have one chance to report a ballot, so voting is a ‘one-shot’ event. In this situation, voters
have to determine the votes of other voters by applying higher-order reasoning before they cast
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a vote, and determine their own best strategy based on what they think that the other agents
will do. In the first section, we will discuss the notion of safe manipulation, introduced by Slinko
and White (2014). We show why voters have to apply some form of higher-order reasoning in
order to be able to cast a safe strategic vote. The rest of the chapter will be devoted to a more
general notion of higher-order reasoning, based on the principles of cognitive hierarchy theory.
The cognitive hierarchy model has recursively defined strategic categories: a level-k reasoning
agents think that all other agents reason at level k− 1. So, each player assumes that her strategy
is the most sophisticated. This model was first introduced by Stahl and Wilson (1994, 1995) and
Nagel (1995). Using this behavioural model to analyse strategic behaviour from the perspective
of computational social choice was first done by Terzopoulou (2017), and we will translate some
of her results to our framework.

5.1 Safe manipulation

Safe manipulation was introduced by Slinko and White (2014). In many cases, a voter would
like to change the outcome of the election, but she is not able to achieve this on her own (she
is not pivotal). However, she may still cast a strategic vote and hope that other voters with
a preference order identical to hers act in the same way. If the right set of like-minded fellow
voters follow her, they may be able to change the outcome in their favour as a group. There can
be cases where it really matters which set of voters joins the manipulative coalition: if the wrong
set of voters decide to cast a strategic vote, the collective manipulation results in an outcome
that is worse (from their perspective) than if they had not strategised. In such scenarios the
strategic vote is called unsafe.

When determining whether a strategic vote is safe, voters also use higher-order reasoning, but
restricted to fellow voters with the same preference order. If a group of voters with identical
preferences has a shared incentive to manipulate, and there is no coordination in the group, it is
possible that they overshoot or undershoot. In that case, the outcome of the election will be
worse than the outcome under the truthful profile.

We assume that the strategic voters all have the same sincere preferences and all contem-
plate casting the same strategic vote, while all other voters are not strategic. So, every voter
with a preference different from the preference order of the manipulative group, will just vote
truthfully. The voters in the manipulative group are higher-order reasoners: each voter in
this group knows that the other voters in the group have an incentive to manipulate, and
each voter also knows that the other voters know that she has an incentive to manipulate,
etcetera. However, in order to manipulate the election in a way that the outcome is beneficial
for them, they have to coordinate: the right set of voters in the group should cast a strategic vote.

Example 5.1. Recall the example of the introduction. Four friends have to decide if they go
on a vacation to Austria, to the Bahamas or to China. Their preferences are given by:

1 abc
2 abc
3 bca
4 cba

and the rule to be used is Borda with tie-breaking order a . b . c. If everybody votes sincerely,
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then b is elected. Voters 3 and 4 are non-manipulative, and this is common knowledge. Suppose
that voters 1 and 2 are higher-order reasoners and that they know each other’s preferences, and
this is also common knowledge. Voter 1 can make a win by voting a � c � b and voter 2 can do
the same. However, if they both try to manipulate, their worst alternative c will become the
winner. They both know that it is best for both of them if one of the agents casts a strategic
vote, while the other votes truthfully. Now suppose that voter 1 realises this: if she thinks
that voter 2 will manipulate the election, it is better for her to vote according to her truthful
preference. However, if she thinks that voter 2 thinks that voter 1 will manipulate the election,
it is better to cast the strategic vote, as voter 2 (by her reasoning) will refrain from strategising.
This reasoning process can be continued, because what if in fact voter 1 thinks that voter 2
thinks that voter 1 thinks that voter 2 will cast a strategic vote?

A manipulation is safe when regardless the set of like-minded voters that join in the act of
manipulating, the outcome will not be worse than the outcome under the truthful profile. Thus,
even if a voter is uncertain about which fellow voters with identical preference will cast the
same strategic vote, the outcome must be at least as good as under the truthful profile. Safe
manipulation is only defined for scenarios in which all voters have full information and vote
sincerely, and this is common knowledge. To define safe manipulation formally, we introduce an
update model in which the manipulative voters are uncertain about the set of voters who cast a
strategic vote.

Definition 5.2 (Uncoordinated coalitional manipulation update model). LetM ∈Mfull info, sincere.
Let voter 1 be a voter with preference p1 and an incentive to strategically vote b′. Let G ⊆ N
be the set of voters with preference p1 (so 1 ∈ G). Then every voter in G has an incentive to
strategically vote b′. Now we define an uncoordinated coalitional manipulation update model for
G and b′ as UGb′ = (Σ, RU , pre, post), with:

(i) Each event represents a subset of G: Σ = ℘(G). Let eG1
, . . . , eG

2|G|
denote the states of U .

(ii) For k ∈ {1, . . . , 2|G|}, in event eGk
, the subset of voters Gk change their ballots to b′. For

every i ∈ Gk, and every x � y ∈ b′:

post(eGk
)(x �bi y) = > and post(eGk

)(y �bi x) = ⊥
For every j /∈ Gk, and every x, y ∈ X:

post(eGk
)(x �bj y) = x �bj y

(iii) No information is shared: pre(eGk
) = > for k ∈ {1, . . . , 2|G|}

(iv) Every voter only knows whether she changes her own ballot:
for every i ∈ N : eRUi f ⇐⇒ for all x �bi y ∈ Bi: post(e)(x �bi y) = x �bi y

(v) eGk
with Gk = ∅ is the actual world

We say that a manipulation b′ is safe for voter i, if the initial model (in which every agent has
full information and votes sincerely) updated with the corresponding uncoordinated coalitional
manipulation update model entails an incentive to manipulate for voter i. This is formally
defined as follows:

Definition 5.3. Let M ∈ Mfull info, sincere with M, s∗ � y, and let i ∈ N be a voter with an
incentive to strategically vote b′. Let UGb′ an uncoordinated coalitional manipulation update
model. Then voter i has a safe manipulation b′ if for every (s, e) ∈M ⊗UGb′ with (s∗, e∗)Ri(s, e),
if M ⊗ UGb′ , (s, e) � x, then M, s � x �pi y.
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Note that the updated model M ⊗ UGb′ is no longer in the class of modelsMfull info,sincere. We
continue with the example from the introduction of this section to show how this definition can
be applied.

Example 5.1 (continued). The initial epistemic model for strategic voting (with full information
and every voter casting a sincere ballot) is shown in Figure 5.1. In this model, no voter attempted
to manipulate yet.

1:abc
2:abc
3:bca
4:cba

1, 2, 3, 4

Figure 5.1: The epistemic model M for Borda, with four voters and three alternatives

The uncoordinated coalitional manipulation update model for G = {1, 2} and b′ = acb is given in
Figure 5.2. Here, we abuse notation and use a �bi c �bi b 7→ > to summarise the postconditions
a �bi c 7→ >, a �bi b 7→ >, c �bi b 7→ >, c �bi a 7→ ⊥, b �bi a 7→ ⊥ and b �bi c 7→ ⊥.

> >

>>

1, 3, 4

2, 3, 42, 3, 4

1, 3, 4

1, 2, 3, 4 1, 2, 3, 4

1, 2, 3, 41, 2, 3, 4

a �b2 c �b2 b 7→ >
a �b1 c �b1 b 7→ >
a �b2 c �b2 b 7→ >

a �b1 c �b1 b 7→ >id

Figure 5.2: The uncoordinated coalitional manipulation update model for G = {1, 2} and b′ = acb

38



1:acb
2:abc
3:bca
4:cba

1:acb
2:acb
3:bca
4:cba

1:abc
2:acb
3:bca
4:cba

1:abc
2:abc
3:bca
4:cba

1, 3, 4

2, 3, 42, 3, 4

1, 3, 4

1, 2, 3, 4 1, 2, 3, 4

1, 2, 3, 41, 2, 3, 4

Figure 5.3: The model M ⊗ UGb′

The result of taking the product update M ⊗ UGb′ is given in Figure 5.3. In this model, voter
1 and 2 do not have an incentive to manipulate, because they both consider it possible that
the other voter strategises, and in that case it is harmful to cast a strategic vote. Thus, this
manipulation is unsafe.

Which voting rules are susceptible to safe manipulation? Slinko and White (2014) proved that
even if we restrict the possible manipulative ballots to safe manipulations, every non-dictatorial
and surjective voting rule is susceptible to manipulation:

Theorem 5.4. Suppose that F is a surjective and non-dictatorial social choice function for
m ≥ 3. Then there exists a model M ∈ Mfull info, sincere such that there is a voter with a safe
manipulation.

This result can be seen as a strengthening of the Gibbard-Satterthwaite theorem. The natural
question that arises is what happens if agents not only consider it possible that like-minded fellow
voters will cast the same strategic ballot, but when they start reasoning about the strategic
behaviour of all their fellow voters, who might have conflicting interests. In the next section, we
will set up the formal framework to answer that question.

5.2 Level-k reasoning

The framework introduced in Chapter 3 can be used to analyse very complex voting situations.
We could assume that voters are cognitively very capable and that they are able to apply arbitrary
levels of higher-order reasoning. They would not only be able to reason about other voters’
voting behaviour (like manipulation), but also about the interaction between manipulations
of multiple voters at the same time, and they would be able to analyse whenever it would be
strategic to share information with other agents. When the number of voters, the number of al-
ternatives and the cognitive levels of voters increase, the reasoning process becomes very complex.
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Are real voters capable of such complex forms of higher-order reasoning? Behavourial game
theorists study how people in reality actually reason, by conducting experiments in which people
interact strategically (Camerer et al., 2004; Costa-Gomes et al., 2001; Camerer, 2003). Theo-
retical and experimental studies show that human beings are not perfectly rational reasoners,
but that on the contrary, our rational behaviour endures serious limitations. Although there
is no general consensus on the depth of reasoning by humans in games, experimental studies
often show that subjects do not use more than three steps of higher-order reasoning. Many
results indicate that it would be very unlikely to observe level-4 reasoning or higher (Arad and
Rubinstein, 2012; Camerer et al., 2004; Camerer, 2003). In this thesis, we only consider strategic
manipulation under finite levels of reasoning.

Agents with a theory of mind have the ability to understand that other agents’ perspectives
may differ from their own, and they are able to attribute mental states to others. When a voter
reasons on a higher level about strategic manipulation in an election, her picture of the situation
not only includes information about her own preference and ballot, but also a ‘mental model of
other minds’. These mental models of other people’s minds often have a hierarchical, reflexive
structure that is used to reason about strategic situations (‘What do you think I think you
think...’) (Hedden and Zhang, 2002).

Cognitive hierarchy theories capture these mental models of other minds by classifying the voters
according to their degree of reasoning in forming expectations of others. In the setting of voting,
we define level-0 voters as voters who always vote truthfully. Level-1 voters think that every
other voter is a level-0 reasoner. So, a level-1 voter determines her best strategy given that
everyone else reports a sincere ballot. We can generalise this to level-k voters: a level-k voter
(k ≥ 1) assumes a homogeneous population consisting of voters reasoning at level k − 1. Thus,
higher-level reasoning voters assume that the other voters do fewer reasoning steps than they do:
every higher-order reasoning voter thinks that she is the most sophisticated reasoner. In this
way, we can distinguish different strategic types of voters. A strategic type characterises the
level of strategic sophistication of a voter and is determined by the number of steps of reasoning
that the voter performs in a sequence of iterated best strategies.

Suppose that voter i is a second-order reasoning voter. This means that she assumes that all
other voters reason at level 1, i.e., that they assume that every other voter votes truthfully. Let
j be some other agent. According to agent i’s second-order reasoning, agent j thinks that every
other voter reports a sincere ballot. Agent i may realise that following j’s reasoning under this
assumption, voter j has an incentive to cast a strategic vote. Hence, she will not consider the
case in which agent i votes truthfully anymore: in order to determine her own best strategy,
agent i will only analyse the cases in which j manipulates. We will construct models in which a
k-level reasoner has simulated the reasoning process of all other voters, who are (in her mind)
k − 1-reasoners. Since we want to analyse strategic behaviour of higher-order reasoning voters,
we have to observe whenever a k-level reasoner has an incentive to manipulate.

When voter i simulates the strategic reasoning of the other voters in her own mind, she assumes
that the other voters are rational, meaning that she thinks that they will determine their vote
in the same way as she does. In Definition 2.9 we defined the procedure that is used by voters
to pick a ballot (or in other words, best strategy). A higher-order reasoner thinks that every
other voter thinks that every voter chooses her best strategy rationally, that every voter thinks
that every voter thinks that every other voter chooses her best strategy rationally, and so on.
This assumption is called common belief in rationality and is extensively discussed in Perea (2012).
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To formalise this, we will use a semantic approach, because our main focus is the semantic
interaction of knowledge and voting, not the logic. We think that the semantic approach is more
intuitive and comprehensible than expressing notions of higher-order reasoning in the language,
as expressing first-order notions already results in complicated and long formulas. We recursively
define an epistemic model for strategic voting with a k-level reasoner. We will do this by first
defining models in which voters apply level-zero reasoning, which means that every voter will
report a sincere ballot. In this section, we will make the extra assumption that in the initial
model, the voters have no incorrect information or false beliefs about each others’ preferences or
about other voters’ knowledge. This implies that every voters considers the actual state possible,
and that we are working with S5 models as initial level-zero models. The reason is twofold: first,
it is natural to assume that if voters are level-zero reasoners, they have no reason to care about
(possibly false) information about the knowledge and preferences of other voters, because in
any case, they will just vote truthfully. The second reason is technical: if in the initial model,
voters have false beliefs, this will lead to very complicated higher level models. Higher-level
reasoning agents ‘simulate’ the reasoning process of other agents to deduce their decisions. The
advantage of starting with an S5 model1 is that no voter has false beliefs about the knowledge or
preferences of other voters, so the reasoning of an agent j about the reasoning of another agent
i, coincides with the actual reasoning of an agent i. This allows us to create level-k-models by a
relatively simple cut-and-paste operation.

This chapter is mainly based on the Master’s Thesis of Terzopoulou (2017). The framework
presented here is an extension of the model that is used in Terzopoulou (2017). The main
difference is that we do not work with information sets, but dynamic epistemic models. This
allows us to consider changes in information (for example as a consequence of a public, semi-
private or private announcement) changes in ballots. In Subsection 5.2.3, we will show how some
results of Terzopoulou (2017) can be translated to our framework.

5.2.1 Level-0 and level-1 models
First, we characterise models in which all voters are level-0 reasoners:

Definition 5.5 (Level-0 model). An epistemic model for strategic voting M = (S, V,R) is
level-0 if it is an S5 model (this means that for every i ∈ N , Ri is an equivalence relation) and
in every state s ∈ S, and every voter i ∈ N , it holds that

M, s � x �pi y ⇐⇒ M, s � x �bi y.

Let M = (S, V,R) be a level-0 model and let i be a voter. Now suppose that voter i starts
reasoning on level 1. This means that she assumes that all other voters are level-0 reasoners,
and hence that they will just vote truthfully. Gibbard-Satterthwaite manipulators are first-
level reasoners: they assume that they are the only voter who takes a strategic ballot into
consideration.

Definition 5.6 (i-level-1 model). Let M0 = (S0, V 0, R0) be a level-0 model with actual state
s∗. Given this model, we can define a model in which voter i is a first-order reasoner by defining
M1,i,s∗ = (S1,i,s∗ , V 1,i,s∗ , R1,i,s∗) as follows:

• Let S0 = {s1, . . . , sh}. To obtain the set of states of the model in which i is a first-level
reasoner, we need a copy of S0 for every agent j 6= i. The relevant states for agent i are

1In an S5 model, all accessibility relations R are equivalence relations.
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the states that are accessible for i, so we also copy every state that i considers possible in
M0. To distinguish the copies of S0, we index the states with the voter concerned: For
j 6= i, let S0,j := {sjx | 1 ≤ x ≤ h}. For i, let S0,i := {s | s∗R0

i s}. Then we define:

S1,i,s∗ :=
⋃
j∈N

S0,j .

• In the states that voters j 6= i consider possible, preferences and ballots remain the same
as in the level-0 model. So, for all j 6= i, 1 ≤ x ≤ h and sjx ∈ S0,j :

V 1,i,s∗(sjx) = V 0(sx)

However, in the states that voter i considers possible, i uses her best strategy given the
truthful votes of the other voters. The preferences and ballots of other voters do not
change. Hence, for all sx ∈ S0,i:

V 1,i,s∗(sx) = (proj1(V 0(sx)), (×
j<i

proj2(V 0(sx))(j)× Si(M0, s∗)××
j>i

proj2(V 0(sx))(j)))

• For voter i, all states in S0,i are accessible, and we copy the accessibility relations from
the original model M0 for every agent j 6= i:

R1,i,s∗(i) = {(sx, sy) | sx, sy ∈ S0,i} ∪ {(sjx, sjy) | j 6= i, sjx, s
j
y ∈ S0,j and sxR0

i sy}

For every voter j 6= i, all states in her personal copy S0,j are accessible, and we copy the
accessibility relations from the original model for every agent l 6= i:

R1,i,s∗(j) = {(sx, sjy) | 1 ≤ x, y ≤ h and sxR0
jsy}∪

{(slx, sly) | l ∈ N such that l 6= i, 1 ≤ x, y ≤ h, and sxR0
jsy}

• The actual state of M1,i,s∗ is the copy of s∗ in this model, so s∗ ∈ S0,i.

M1,i,s∗ is called an i-level-1 model.

To get an idea how level-0 and level-1 models look like, we give a simple example of a model in
which the truthful preference profile is common knowledge. Suppose that we have a set of voters
N with truthful preference profile p. The level-0 model is given by the following single-world
model:

p = b

N

Figure 5.4: A level-0 model M0 in which the preference profile is common knowledge

If voter i starts reasoning at level 1, she assumes that every other voter votes truthfully. Let bi

be the ballot profile in which every voter j 6= i votes truthfully, and voter i votes according to
her best strategy Si(M0, s∗). The i-level-1 model is presented in Figure 5.5.
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p = b

bi

p = b

p = b

p = b

N

N

N

N

i− 1

1

i+ 1

n

i

...

...

Figure 5.5: The i-level-1 model

If the best strategy of first-level reasoning agent i is not her truthful preference, then this notion
should be consistent with the concept of a single agent who (secretly) commits to a strategic
ballot. The following Proposition shows that these models indeed coincide.

Proposition 5.7. LetM0 be a level-0 model with actual state s∗. Suppose that Si(M0, s∗) = bi.
Let Ubii be a bii-manipulation update model for M0. Then (M1,i,s∗ , s1,i,s

∗
) is bisimilar to

(M0 ⊗ Ubii , (s
∗, e∗)).

Proof. See Appendix.

5.2.2 Higher-level models
What happens if i realises that other voters also might consider a strategic vote? This means
that she assumes that all other voters assume that every other voter votes truthfully. So, voter i
engages in second-order reasoning. Suppose that according to agent i’s second-order reasoning,
some other agent j has an incentive to manipulate and casts a strategic vote (following agent
j’s level-1 reasoning). Then, she will not consider the case in which agent i votes truthfully
anymore: in order to determine her own best strategy, agent i will only analyse the cases in
which j manipulates. To determine the votes of her fellow voters, voter i first has to figure
out which truthful preferences the other voters have, and which preferences profiles every other
voter considers possible. As an illustration, the i-level-2 model based on the level-0 model
in which the preference profile is common knowledge is shown in Figure 5.6. Here, for j 6= i,
bj := (Sj(M0, s

∗),p(−j)). The ballot profile b′ := (b1, . . . , bn) is the ballot profile in which every
voter j 6= i votes according to her best strategy given the level-0 model, so bj := Sj(M0, s∗).
Then, voter i determines her best strategy given all the strategies of voters j 6= i and her true
preference p(i): bi := Sj(×j 6=i Sj(M

0, s∗),p(i)).
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n

N

Figure 5.6: An i-level-2 model in which the preference profile is common knowledge

We design our level-k-framework along the lines of the game-theoretical model of Stahl (1993)
and Stahl and Wilson (1995). To formally define models in which a voter reasons at level k, we
use models in which voters reason at level k − 1. Suppose that we want to transform voter i to
a level-k reasoner. For every voter j 6= i, and for every state s that i considers possible in the
initial model M0, we take the model in which voter j reasons at level k − 1, and in which s is
the actual state. We combine these models together and ‘glue’ them together to obtain a model
that reflects i’s level-k reasoning. So, we an i-level-k model is recursively defined and we make it
precise in the following way:

Definition 5.8 (i-level-k model). Let M0 = (S0, R0, V 0) be a level-0 model with actual
world s∗. Suppose that for every voter i ∈ N and for every s ∈ S0, we have the model
Mk−1,i,s = (Sk−1,i,s, V k−1,i,s, Rk−1,i,s) with actual world sk−1,i,s. We again define S0,i := {s |
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s ∈ S0 and s∗Ri0s}. Then Mk,i,s∗ = (Sk,i,s
∗
, V k,i,s

∗
, Rk,i,s

∗
) is defined as follows:

• Sk,i,s∗ := S0,i ∪
⋃
t∈S0,i

⋃
j 6=i S

k−1,j,t

• For every t ∈ S0,i, j 6= i, u ∈ Sk−1,j,t with sk−1,j,tRk−1,j,tj u}:

V k,i,s
∗
(u) := V k−1,j,t(u)

In the states that represent the level-k reasoning of voter i, the preferences are equal to
the preferences the level-0 model, the ballots of voters j 6= i are the ballots following their
level-(k− 1) reasoning, and the ballot of voter i is her best strategy given the k− 1-ballots
of all other voters j 6= i. So, for every t ∈ S0,i:

V k,i,s
∗
(t) :=

(
proj1(V 0(t)),

(×
j<i

proj2(V k−1,j,t(t))(j)︸ ︷︷ ︸
ballot of j

×

best strategy of i given ballots of other voters︷ ︸︸ ︷
Si
( ⋃
t′∈S0,i

×
j 6=i

proj2(V k−1,j,t
′
(t′)),ps∗(i)

)
××
j>i

proj2(V k−1,j,t(t))(j)︸ ︷︷ ︸
ballot of j

))
For every v ∈ S such that ¬sk−1,jtRj,k−1,tj v for all t ∈ S0,i and j 6= i:

V k,i,s
∗
(v) := V k−1,i,t(v)

• For voter i:

Rk,i,s
∗
(i) :=

⋃
l 6=i

Rk−1,l,s(i) ∪ {(s, t) | s, t ∈ S0,i}

For voters j 6= i:

Rk,i,s
∗
(j) :=

⋃
l 6=i

Rk−1,l,s(j) ∪ {(t, u) | t ∈ S0,i and u ∈ Sk−1,j,t such that sk−1,i,tRk−1,j,tj u}

• The actual state sk,i,s
∗

:= s∗

With every extra step of higher-order reasoning, i-level-k models grow exponentially. Therefore,
it is hard to visually demonstrate a general i-level-k model. In the following section, we will
discuss an example in which we recursively construct a higher-level model up to level 2.

We have seen how to construct a model in which a single voter is a level-k reasoner. If a voter is
a k-reasoner, she thinks that every other voter reasons at level k − 1. However, this does not
have to be the actual situation. For example, if every voter is a level-2 reasoner, every voter
(falsely) believes that all other voters in the group are first-order reasoners. A model in which
every voter is a level-k reasoner will be called a N -level-k model. It is formally defined as follows:

Definition 5.9 (N -level-k model). Let M0 = (S0, V 0, R0) be a level-0 model with actual state
s∗. Suppose that for every i ∈ N , and every s ∈ S0 we have the model Mk,i,s, with actual world
sk,i,s. Then an N -level-k model Mk,N,s∗ = (Sk,N,s

∗
, V k,N,s

∗
, Rk,N,s

∗
) is defined as follows:

• Sk,N,s∗ = t ∪
⋃
i∈N S

k,i,s∗

• For every i ∈ N :
Rk,N,s

∗
= {(t, u) | (sk,i,s∗ , u) ∈ Rk,i,s∗} ∪

⋃
j∈N R

k,j,s∗(j)

• For every i ∈ N , s ∈ Sk,i,s∗ :
V k,N,s

∗
(s) = V k,i,s

∗
(s),

and V k,N,s
∗
(t) = (ps∗ ,×i∈N bk,i,s∗(i)).
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5.2.3 Manipulation under level-k reasoning
The central question now is: are these higher-level models susceptible to manipulation? We first
define the notion of a kth-order incentive to manipulate:

Definition 5.10 (kth-order incentive to manipulate). Let M0 be a level-0 model. Let Mk,G,s∗

be a model with G = {i} or G = N and actual state sk,G,s
∗
. So, Mk,G,s∗ is either an i-level-k

model or an N -level-k model based on M0. Let s ∈ Sk,G,s∗ such that sk,G,s
∗
Rk,G,s

∗

i s. If

bs(i) 6= ps∗(i),

we say that i has a kth-order incentive to manipulate in M0.

Alternatively, we can define a kth-order incentive to manipulate in terms of the best strategy of
a voter i in a model in which i reasons at level k. We show that a voter has a kth-order incentive
to manipulate if and only if her best strategy in a model in which she reasons at level k, is not
equal to her truthful preference.

Proposition 5.11. Let M0 be a level-0 model. Let G = {i} or G = N . Then i ∈ G has an
kth-incentive to manipulate if and only if

Si(Mk,G,s∗ , sk,G,s
∗
) 6= ps∗(i)

Proof. See Appendix.

Definition 5.12 (Strategyproofness under level-k reasoning). A level-0 model M0 with actual
world s∗ is strategyproof under level-k reasoning if no voter i ∈ G has a kth-order incentive to
manipulate. A social choice function F is strategyproof under level-k reasoning if any level-0
model for F is strategyproof under level-k reasoning.

Example 5.13. We consider an example with two voters, four alternatives and social choice
function Borda with lexicographic tie-breaking. Voter 1 and 2 are both have some uncertainty
about each other’s preferences. The initial level-0 model is shown in Figure 5.7. We are going to
show that voter 1 does not have a first-order incentive, but does have a second-order incentive
to manipulate.

1:abcd
2:dcba

1:abcd
2:cdba

1:acdb
2:dcba

1:acdb
2:cdba

1

2

1

2

1, 2 1, 2

1, 2 1, 2

s∗ t

u v

Figure 5.7: The level-0 model M0
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Voter 1 does not have an incentive to manipulate: in the upper left world, her favourite al-
ternative a is already winning. In the upper right world, c is winning. Voter 1 could prevent
c from winning by voting abdc instead in this case, but if the upper left world is the actual
state, this manipulation will result in making d win, which is worse than b for voter 1. Hence,
abdc is not a dominant manipulation. Now suppose that voter 1 starts reasoning at level 2.
To construct the 1-level-2 model, we first need the models in which voter 2 reasons at level
1. Since voter 1 cannot distinguish between state s∗ and state t, we need both the 2-level-
1 modelM1,1,s∗ and the 2-level-1 modelM1,1,s′ . These models are presented in Figure 5.8 and 5.9.

If s∗ is the actual state, voter 2 cannot distinguish between states s∗ and u. So, the 2-level-1 model
looks as follows2. Not all transitive arrows are shown. Voter 2 has a dominant manipulation
cdba: voter 2 thinks that voter 1 votes truthfully, so either abcd or acdb. In case abcd is the
ballot of voter 1, then voter 2 can strictly improve the outcome by voting cdba. In that case, c
will become the winner instead of a. If acdb is the ballot of voter 1, then c will be the winner of
the outcome. If voter 2 votes cdba, c will still be the winner of the election. We indicate the
dominant manipulation of voter 2 with red in 5.8.

1:abcd
2:cdba

1:acdb
2:cdba

1:abcd
2:dcba

1:abcd
2:cdba

1:acdb
2:dcba

1:acdb
2:cdba

1

2

1

2

1

1

2

1, 2

1, 2

1, 2
1, 2

2

2

Figure 5.8: The 2-level-1 model M1,2,s∗ given that s∗ is the actual world

If t would be the actual state, voter 2 cannot distinguish between states s∗ and u. Here, voter
2 does not have an incentive to manipulate, as she realises that her favourite alternative c is
already winning in both scenarios.

2If we apply Definition 5.8, we would actually obtain a bigger model, namely the model that contains two
copies of the level-0 model. However, that model is bisimilar to the model presented here. For the sake of space
and complexity of the model, we show smaller versions of the models here.
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1:abcd
2:cdba

1:acdb
2:cdba

1:abcd
2:dcba

1:abcd
2:cdba

1:acdb
2:dcba

1:acdb
2:cdba

1

2

1

2

1

1

2

1, 2
1, 2

1, 2
1, 2

2

2

Figure 5.9: The 2-level-1 model M1,2,t given that t is the actual world

Now, we can construct the 1-level-2 model. This will result in the model of Figure 5.10.
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1:abcd
2:cdba

1:acdb
2:cdba

1:abcd
2:dcba

1:abcd
2:cdba

1:acdb
2:dcba

1:acdb
2:cdba

1

2

1

2

1

1

2

1, 2

1, 2

1, 2
1, 2

2

2

1:abcd
2:cdba

1:acdb
2:cdba

1:abcd
2:dcba

1:abcd
2:cdba

1:acdb
2:dcba

1:acdb
2:cdba

1

2

1

2

1

1

2

1, 2
1, 2

1, 2
1, 2

2

2

1:abdc
2:cdba

1:abdc
2:cdba

2

2

2

2

1

1

1

Figure 5.10: The 1-level-2 model of initial model M0. The red ballots are insincere ballots.

In M2,1,s∗ , we have transformed voter 1 to a level-2 reasoner, so voter 1 thinks that voter 2 is a
level-1 reasoner, which means that voter 2 thinks that voter 1 will declare a truthful ballot. After
reflecting on this, voter 1 realises that if dcba is the truthful preference of voter 2, then voter 2
has an incentive to manipulate by voting cdba (indicated in red in Figure 5.10), as we saw in
Figure 5.8. If cdba is the true preference of voter 2, then voter 2 does not have an incentive to
manipulate, as we saw in Figure 5.9. In any case, voter 2 will vote cdba and voter 1 knows this.
But now, voter 1 has an incentive to manipulate: if voter 2 votes cdba, voter 1’s best strategy is
voting abdc. She knows that she can safely strategise by voting abdc and make alternative a win.

The following theorems are analogues of the results of Terzopoulou (2017), here applied to our
framework in Voting Theory instead of Judgment Aggregation.

Theorem 5.14. For every social choice function F , if F is strategyproof under level-1 reasoning,
then F is strategyproof under level-k reasoning for every k ∈ N.

Proof. Let F be a social choice function that is strategyproof under level-1 reasoning. We
show this by induction on k. Suppose that F is strategyproof under level-k reasoning. Let

49



Mk,N,s∗ = (Sk,N,s
∗
, V k,N,s

∗
, Rk,N,s

∗
) be an N -level-k model (based on a level-0 model M0) with

actual world sk,N,s
∗
. Since F is strategyproof under level-k reasoning, for all j ∈ N and all

s ∈ S0, it holds that
Sj(Mk,j,s, sk,j,s) = ps(j).

Now take arbitrary i ∈ N consider the model Mk+1,i,s∗ . We apply Proposition 5.11 and show
that

Si(Mk+1,i,s∗ , sk+1,i,s∗) = ps∗(i).

We have

Si(Mk+1,i,s∗) =Si({(proj2(V k+1,i,s∗(t))(−i) | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t}
=Si

(
{×
j 6=i
Sj(Mk,j,t, sk,j,t | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t},ps∗(i)

)
=Si

(
{×
j 6=i
pt(j) | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t},ps∗(i)

)
(since F is strategyproof under level-k reasoning)

=Si
(
{pt(−i) | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t},ps∗(i)

)
=ps∗(i) (since F is strategyproof under level-1 reasoning)

Thus, i does not have a k+ 1th-order incentive to manipulate. Since i was arbitrary, we conclude
that F is strategyproof under k + 1-level reasoning.

Theorem 5.15. Let F be the plurality rule along with a lexicographic tie-breaking rule. Then

(i) F is susceptible to winner-manipulation under first-level reasoning.

(ii) F is immune to winner-manipulation under second-level reasoning.

Proof. (i) Let X be the set of alternatives and N be the set of voters. Consider a model
M ∈Mwinner,sincere (this is a level-0 model) with truthful preference profile p, F (p) = xm, and
voter i with preference pi = x1 � · · · � xm. Then voter i has an incentive to manipulate, because
the outcome can never be worse than xm and in some cases, the outcome of the election will be
strictly better.

(ii) Let M ∈ Mwinner,sincere (which is again a level-0 model), i an arbitrary voter, p the
truthful profile and F (p) = x. Let voter i’s top choice be y. Suppose that there is a strategic
ballot bi 6= pi such that F (bi,p(−i)) = z and y �pi x (note that z 6= y and x 6= y). Since
i only has winner information, there exists a state s ∈ S such that M, s � p′ such that
{j ∈ N | rankp′(j)(x) 6= 1 and rankp′(j)(y) = 2} = {k ∈ N | rankp′(k)(x) = 1}. Following the
first-order reasoning of the voters in {j ∈ N | rankp′(j)(x) 6= 1 and rankp′(j)(y) = 2}, they
all have an incentive to strategically vote for y (that is, report any ballot with y on the first
position). So following the second-order reasoning of voter i, there exists a state (s, e) ∈M ⊗ U
with (s∗, e∗)Ri(s, e) such that M1,N,s∗ , s � y and M1,N,s∗ ⊗ Ubii , (s, e) 2 y. In that state (s, e), i
is pivotal with respect to y. Thus, i’s manipulation would obstruct the manipulations of the
first-level reasoners, and hence it would prevent alternative y from winning. Therefore, i does
not have an incentive to manipulate under second-level reasoning.

Terzopoulou (2017) showed that if a voting rule is manipulable for level-1 reasoners, it will also
be manipulable for some higher level reasoners.
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Theorem 5.16. Consider any social choice function F . If F is susceptible to manipulation
under first-level reasoning, then even if F is immune to manipulation under level-k reasoning
for some k, it is susceptible to manipulation under level-k + 1 reasoning.

Proof. See Appendix.

This theorem shows that taking in consideration the strategic behaviour of other voters will in
general not stop the manipulating behaviour of voters.

5.3 Concluding remarks

In this chapter, we introduced the cognitive hierarchy theory as model for higher-order reasoning
voters. We showed that in general, sophisticated agents who apply higher-order reasoning will
also not refrain from voting strategically. Even if a non-dictatorial and surjective voting rule
is strategyproof under level-k reasoning for some k ∈ N, it will be susceptible to manipulation
under level-(k + 1) reasoning. However, this result does not imply that every voting rule can
always be manipulated by real human beings. It would be useful to study the manipulability
of specific voting rules under level-2 and level-3 reasoning, as those levels seem to be the most
realistic levels of reasoning in practice.

One limitation of the iterated reasoning models described here is that a level-k agent assumes
that all other agents are exactly one level of sophistication lower than herself. Every agent
assumes that she is the most sophisticated voter. Although there is experimental evidence for
this theory, it could be interesting to consider other structures of higher-order reasoning. For
example, it is reasonable to assume that a level-k agent thinks that not every agent will reason
at level k − 1 exactly, but that some of them are more sophisticated than others. An even more
realistic situation would be when which agents are uncertain about the level of reasoning of their
peers: in such scenarios, an agent reasoning at level k cannot distinguish between submodels in
which agents reason at level 1, 2, . . . or k−1. This would introduce a lot of uncertainty and might
even complicate manipulation for that agent. Hence, it would be interesting to analyse to which
degree voting rules are susceptible to manipulation under a generalised notion of level-k reasoning.
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Chapter 6

Higher-order reasoning in iterative
voting

In most voting settings, it is assumed that the votes are collected in one step, without allowing
the voters to adapt their ballots to the ballots of other voters. However, in many applications,
a dynamic approach may represent a more realistic model of the process of collective decision
making. Iterative voting is a dynamic procedure where voters are allowed to change their
ballots as often as they want. An equilibrium point is reached when no voter wishes to change
its preference. Real-life examples include websites as event scheduler Doodle, Facebook, and
consensus decision making in Wikipedia.

In many papers that study iterative voting procedures, it is assumed that voters only consider
changing their vote if they can improve the current situation, and that they do not take into
account future steps by other players. These voters are myopic. If we consider voters with the
capacity to reason on a higher level, these voter will take into account future steps by other
players when determining a best response. Higher-order reasoners have a more farsighted view
of the consequences of their manipulative ballots: they are able to look ahead and predict future
steps by other voters.

To illustrate how higher-order reasoning could play a role in iterative voting, we consider an
example. Suppose that six colleagues want to schedule a meeting. There are four possible
moments: Monday (a), Tuesday (b), Wednesday (c) of Friday (d). They use an online internet
tool to pick a day of the meeting. In this online internet tool, every participant reports a ballot
order and the tool uses 2-approval (and tie-breaking order b . c . a . d) to decide on the day the
meeting will take place. Every colleague can change her reported ballot order as often as she
wants. Suppose that the preferences of the colleagues are as follows:

1 abdc
2 dbca
3 cadb
4 cadb
5 bcda
6 abdc

Under this truthful profile, alternative a and b are tied, so b will be the winner. Colleague 1
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realises that she can improve the outcome by voting adbc instead of abcd, because then b will
lose a point and a will become the winner:

1 adbc
2 dbca
3 cadb
4 cadb
5 bcda
6 abdc

However, this is outcome not favourable for colleague 2, as a is his least favourite option. He can
improve by voting dcba instead of dbca, and then c will become the winner. The new situation
is as follows:

1 adbc
2 dcba
3 cadb
4 cadb
5 bcda
6 abdc

Note that this is harmful for colleague 1: option c is her least favourite alternative, and she cannot
make b win anymore. Moreover, there is no voter who can improve the outcome: alternative b
and d have to little points, so no voter can individually make them win. For alternative a, it
holds that no voter who prefers a to the current winner c can improve the outcome: colleague
1 and 6 do not have a strategic ballot that would make a win from c. After reflecting on this,
colleague 1 realises that in retrospect, changing her vote was not strategic, because now she
ends up with option c, which is worse for her than option b. If she had realised this before, by
predicting the iterative voting process in advance, she would have avoided this situation by not
changing her vote. In that case, b would have become the winner.

In the best scenario, iterative voting procedures may even become strategyproof: if a voter
knows that a manipulation of the truthful ballot might cause a sequence of manipulations by
other voters such that the outcome of the election will be worse for her than the outcome under
the truthful profile, she might decide to not manipulate at all in the first round.

In this chapter, we will focus on second-order reasoning in iterative voting. A second-order
reasoning voter is able to look one step in the future: she does not just analyse how her vote
affects the outcome of the election, but she is also able to analyse how the new ballot profile
can be manipulated in the next round. In the next section, we discuss how two subsequent
manipulations interact.

6.1 Interaction of manipulations

We consider situations in which there is a manipulative voter who casts a strategic vote, such
that an incentive to manipulate for a second manipulator is created. We can think of the
interaction between the first and the second manipulator as a symbiosis: the second manipulation
would not have been possible if the first voter had not manipulated. The second manipulation
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can be beneficial for the first voter, in the sense that the winner of the election of the double-
manipulated ballot is even better than the winner under the single-manipulated profile, from her
perspective. However, the second manipulation can also be harmful for her: the winner of the
double-manipulated ballot profile can be worse than the winner under the truthful profile. The
interaction between the first and the second manipulator can be characterised in terms of types
of symbiosis: the second manipulation can be mutualising, neutralising or parasitising. These
types of symbiosis were first introduced by De Bary (1879).

6.1.1 Mutualising manipulation
We say that a consecutive manipulation is mutualising if both manipulators benefit from the
second manipulation. Let F be a social choice function, let N be a set of voters with current
ballot profile b. Suppose that voter i is the initial manipulator and has an incentive to vote
b′i 6= b(i), so F (b′i, b(−i)) �pi F (b). Now suppose that voter j has an incentive to manipulate
the profile ((b′i, b(−i))) and that b′j is the dominant manipulation. If F (b′j , b

′
i, b(−i, j)) �pi F (b)

and no voter had an incentive to make F (b′j , b
′
i, b(−i, j)) win under the initial profile, then

the manipulation of voter j is mutualising. It does not have to hold that the outcome under
the double-manipulated profile is better than the outcome when only voter i manipulates: it
may hold that F (b′i, b(−i)) �pi F (b′j , b

′
i, b(−i, j)). In this case, the manipulation of j is still

mutualising. Although the outcome after two rounds is not as good as the outcome after one
round for voter i, when reasoning from the initial state, this still stimulates voter i to manipulate.

Example 6.1. We have four voters, four alternatives and the voting rule is Borda, paired with
the lexicographic tie-breaking rule. Suppose that voter 1 has preference a � b � c � d, voter 2
has preference c � a � d � b, voter 3 has preference b � d � c � a and voter 4 has preference
c � b � a � d. If every voter reports a truthful ballot, c will win. This is disadvantageous for
voter 1 and she can manipulate by voting abdc. If she does so, in the second round b will win.
Voter 2 was very happy with the result in the first round, but alternative c is his worst option.
He can manipulate by voting acdb and make a win. This is very beneficial for voter 1, as this is
her top choice. So, the manipulation of voter 2 is mutualising.

1: abcd 1: abdc 1: abdc
2: cadb 2: cadb 2: acdb
3: bdca 1−→ 3: bdca 2−→ 3: bdca
4: cbad 4: cbad 4: cbad

a:6, b:7, c:8, d:3 a:6, b:7, c:7, d:4 a:7, b:7, c:6, d:4
c wins b wins a wins

6.1.2 Neutralising manipulation
When a voter casts a strategic vote and manages to improve the outcome from her perspective,
this might be disadvantageous for another voter. The other voter was quite happy with the
winner under the truthful ballot profile, but does not like the outcome under the new, untruthful
ballot profile. In this case, she might try to neutralise the strategic vote: by casting a strategic
vote, the elected alternative will be the same alternative as the winner under the truthful ballot
profile. This is unfavourable for the first manipulator, but not harmful.

Example 6.2. We have five voters, three alternatives and the voting rule is plurality, paired
with the lexicographic tie-breaking rule. The preferences of the voters are given in the table
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below. If every voter reports a truthful ballot, then b will win. Voter 1 has an incentive to vote
acb and make a the winner. However, voter 2 does not like this, since a is her least favourite
alternative. She can neutralise this manipulation by voting bca, which will make b again the
winner.

1: cab 1: acb 1: acb
2: cba 2: cba 2: bca
3: acb 1−→ 3: acb 2−→ 3: acb
4: bac 4: bac 4: bac
5: bac 4: bac 4: bac

a:1, b:2, c:2 a:2, b:2, c:1 a:2, b:3, c:0
b wins a wins b wins

6.1.3 Parasitising manipulation
Suppose that voter i manipulates and this manipulation creates an incentive for voter j to
manipulate as well. If, from the perspective of the initial manipulator, the winner of the double-
manipulated profile is less preferred than the alternative that was elected under the truthful
profile, this is harmful for voter i. So, the second manipulator parasitises the manipulation
of the first manipulator. Formally, let b be the initial ballot profile and suppose that voter
i has an incentive to manipulate by voting b′i. Furthermore, suppose that under the new
profile, voter j has an incentive to manipulate by voting b′j and let F (b′i, b

′
j , b(−i, j) = x. If

F (b′i, b(−i)) �pi F (b′i, b
′
j , b(−i, j), while no voter had an incentive to make x win under the

initial profile, then the second manipulation is a parasitising manipulation.

Example 6.3. In this example, the voting rule is Borda, paired with the lexicographic tie-
breaking rule.

1: abcd 1: bacd 1: bacd
2: dcba 2: dcba 2: dacb
3: cdab 1−→ 3: cdab 2−→ 3: cdab
4: bcda 4: bcda 4: bcda

a:4, b:6, c:8, d:6 a:3, b:7, c:7, d:7 a:5, b:6, c:6, d:7
c wins b wins d wins

We assume that it is not the goal of the second manipulator to harm the first manipulation,
or to help the first manipulator to improve the outcome. The goal of a manipulator is always
to improve the outcome of the election from her own perspective. So, a manipulator can
unintentionally cast a parasitising strategic vote, and in some cases the manipulator might not
even know whether her manipulation is beneficial or not for the other voters.

6.2 Second-order manipulation in iterative voting

As discussed before, the main goal of this thesis is to investigate under which circumstances a
voting situation is strategyproof, i.e., under which circumstances no voter has an incentive to
manipulate. If a voter is a second-order reasoner in an iterative voting procedure, her reasoning
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consists of the following two questions: how does my manipulative ballot affect the outcome of
the election, and could my manipulation stimulate a subsequent manipulation by another voter
that affects the outcome of the election? We assume that in case of a mutualising or neutralising
manipulation, this will not stop the initial manipulator from voting strategically: in the case of
a mutualising manipulation, the second manipulation is even beneficial for the first manipulator.
In the case of a neutralising manipulation, the first manipulator might be disappointed that her
manipulation turned out to be unsuccessful, but the second manipulation was not harmful and
therefore there is no reason for the first manipulator to refrain from strategising.

However, in the case of a parasitising manipulation, this might discourage a manipulative voter:
if a voter knows that if she manipulates the election, she creates an opportunity for another
voter to parasitise that manipulation, she will probably decide not to strategise at all (recall
that we assumed voters to be risk-averse). This is because she knows that if she would cast a
strategic ballot, another voter would manipulate as well and she would end up with a worse
outcome than the initial outcome. Iterative voting procedures that are not convergent if voters
are first-level reasoners, might become convergent when voters think a bit more about the
consequences of their manipulative behaviour. For voter i, a ballot bi is a second-order risk-free
dominant manipulation if bi is a dominant manipulation and if she knows that there is no voter
who could parasitise her strategic vote. The following definitions formalise this idea.

Definition 6.4 (Second-order risk-free incentive to manipulate). Let F be an iterative social
choice function, and let M be an epistemic model for strategic voting for F with actual world s∗.
Let i ∈ N with preference pi and bi 6= ps∗(i) and bi 6= bs∗(i). Then bi is a second-order risk-free
dominant manipulation if:

• Voter i considers it possible that bi is a successful manipulation:
There exists a state s ∈ S with s∗Ris such that F (bi, bs(−i)) �pi F (bs)

• This manipulation bi is a dominant manipulation:
For every t with s∗Rit, F (bi, bt(−i)) �pi F (bt)

• This manipulation bi is not parasitisable
For every t with s∗Rit, if there exists a voter j with a dominant manipulation bj 6= ps∗(j)
of the ballot profile (bi, b(−i)), then either:

– The manipulation bj is not harmful for voter i:
F (bi, bj , bt(−i, j)) �pi F (bt), or

– Under the initial profile, there was already a voter that had an incentive to make
F (bi, bj , b(−i, j)) win:
There exists a voter k ∈ N , u ∈ S with s∗Riu such that k has an incentive to
strategically vote bk 6= pu(k) and F (bk, b(−k)) = F (bi, bj , b(−i, j)).

If there exists a second-order risk-free dominant manipulation for voter i, we say that i has
a second-order risk-free incentive to manipulate. Instead of second-order risk-free dominant
manipulation, we will often say second-order risk-free manipulation for short.

Definition 6.5. If no voter has a second-order risk-free incentive to manipulate in a model M ,
then M is strategyproof under second-order reasoning. F is strategyproof under second-order
reasoning if all models M for F are strategyproof under second-order reasoning.

Example 6.6. (Second-order risk-free incentive) Suppose we have five alternatives and three
voters, the voting rule is Borda paired with tie-breaking order d . c . a . e . b and the epistemic
model M = (S, V,R) is given in Figure 6.1.
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1:abcde
2:dcbea
3:dceba
d wins

1:abcde
2:dcbea
3:cdeba
c wins

1
1, 2, 3 1, 2, 3

s t

Figure 6.1: Epistemic model M = (S, V,R)

Voter 1 has an incentive to vote cabde. If voter 1 changes her ballot to cabde, the updated model
will be M ′ as illustrated in Figure 6.2.

1:cabde
2:dcbea
3:dceba
c wins

1:cabde
2:dcbea
3:cdeba
c wins

1
1, 2, 3 1, 2, 3

s′ t′

Figure 6.2: Updated epistemic model M ′ = (S′, V ′, R′)

This manipulation is also a second order dominant manipulation: this manipulation did not
create an opportunity to make an alternative win that is less preferred by 1 than the winner in
the corresponding state in M . More precisely, in state s the winner is d. The only alternative
that is worse for 1 than d is alternative e. In state s′, voter 2 and 3 cannot and do not want to
make alternative e win. In state t, the winner is c, so only alternatives d and e are worse for 1.
In state t′, if voter 2 changes her ballot to debac, then d would win. However, this was already
possible in state s, so the manipulation cabde of voter 1 did not create an opportunity for voter
2 to strategise and make d win. Like in state s and s′, there is no way voter 2 or 3 could make
alternative e win. This means that cabde is a second-order risk-free manipulation of voter 1’s
epistemic state.

Example 6.7. (Dominant manipulation that is not second-order risk-free) Suppose we have
four alternatives, four voters and the voting rule is Borda paired with lexicographic tie-breaking.
Consider the following epistemic model M = (S, V,R):

57



1:dcba
2:bacd
3:bcad
4:dacb
b wins

1:dcba
2:bacd
3:bcad
5:dcba
b wins

1
1, 2, 3 1, 2, 3

s t

Figure 6.3: Epistemic model M = (S, V,R)

Voter 1 is uncertain about the ballot of voter 4, and has a dominant manipulation cdab. If voter
1 changes her ballot to cdab, the updated model will be M ′, presented in Figure 6.4.

1:cdab
2:bacd
3:bcad
4:dacb
c wins

1:cdab
2:bacd
3:bcad
4:dcba
c wins

1
1, 2, 3 1, 2, 3

s′ t′

Figure 6.4: Updated epistemic model M ′ = (S′, V ′, R′)

In both states that voter 1 considers possible, c will be the new winner, so this manipulation
looks successful. However, this manipulation is not risk-free, because in state s′, voter 4 can
parasitise this manipulation by voting adcb, while this was not possible in the initial model M .

1:cdab
2:bacd
3:bcad
4:adcb
a wins

1:cdab
2:bacd
3:bcad
4:dcba
c wins

1
1, 2, 3 1, 2, 3

s′′ t′′

Figure 6.5: Updated epistemic model M ′′ = (S′′, V ′′, R′′)

In M ′′, the winner in state s′′ is alternative a, the alternative that is ranked last in voter 1’s
preference. Hence, the manipulation of voter 4 is parasitising and and thus the ballot cdab is a
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not second-order risk-free manipulation for voter 1.

Note that every strategyproof social choice function is also second-order strategyproof. A
second-order strategyproof social choice function is not necessarily strategyproof: a second-order
strategyproof social choice function allows situations where voters have a dominant manipulation,
but this manipulation must always be parasitisable: there must be another voter that could
parasitise this manipulation.

In the situation of full information, we can express the notion that bi is a second-order risk-free
manipulation for voter i in the language as follows:

∧
x∈X

∧
y∈X

∧
z∈X

(
〈i〉(x ∧ [bi]y → y �pi x) ∧ [i](x ∧ [bi]y → y �pi x)

)
(6.1)

∧
(( ∧

j∈N

∧
bj∈B

(
〈i〉〈j〉([bi][bj ]z → z �pj y) ∧ [i][j]([bi][bj ]z → z �pj y)

)
(6.2)

→
(
z �pi y ∨

∨
k∈N

∨
bk∈B

〈i〉〈k〉([bk]z ∧ z �pk x) ∧ [k]([bk]z ∧ z �pk x)
))

(6.3)

Here, line (6.1) reads as “If voter i has an incentive to vote bi”, line (6.2) reads as “And there is a
voter j that has an incentive to vote bj under the profile in which i votes bi”, and finally line
(6.3) reads as “Then either, this manipulation is risk-free for voter i or there is a voter k that
had an incentive to make z win under the initial profile”.

The main issue of this thesis is to investigate the manipulability of social choice functions, so
the rest of this chapter will focus on that. If voters are second-order reasoners, and refrain
from risky manipulations, are there ‘reasonable’ iterative voting procedures that are immune to
manipulation? We show that in the case of three alternatives, the answer is no. The following
Theorem can be interpreted as a variant of the Gibbard-Satterthwaite Theorem for second-order
strategyproof social choice functions, in the case of three alternatives.

Theorem 6.8. Any surjective and non-dictatorial social choice function for three alternatives
is susceptible to second-order risk-free manipulation.

Proof. Let n be the number of voters, and suppose that we have alternatives a, b and c. Let
F be a surjective and non-dictatorial social choice function. We will show that there exists
a second-order risk-free manipulation. By the Gibbard-Satterthwaite Theorem, there exists a
profile and a voter i such that there is a voter i ∈ N with an incentive to manipulate. Without
loss of generality, say that the preference of i is a �pi b �

p
i c. We can assume that the winner

under the truthful preference profile must be b: if it is a, i would not have an incentive to
manipulate, and if it is c, then the manipulation would certainly be risk-free. Voter i has a
manipulative vote bi of the truthful profile p such that F (bi,p(−i)) = a. If this manipulation is
second-order risk-free, we are done, so suppose that it is not risk-free. If bi = bca or bi = cba,
then if (bi,p(−i)) would be the truthful preference profile, i would have a risk-free strategic
vote abc. If bi = bac, then either abc or bac must be a risk-free manipulation for voter i: if bac
is not risk-free, there exists a parasitising manipulation for some voter j such that j was not
able to make c win under the truthful profile, but has an incentive to manipulate and make c
win under the manipulated profile (bac,p(−i)). But since bac was not risk-free, no voter has an
incentive to manipulate and make c win under p, so then abc must be a risk-free strategic vote
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for i if (bac,p(−i)) would have been the truthful profile. It is left to consider bi = cab and bi = acb.

Suppose that acb is not a manipulative ballot, so only cab is. Then we have the following situation:
F (p) = b, F (acb,p(−i)) 6= a since acb not a manipulative ballot, and F (cab,p(−i)) = a. If
F (acb,p(−i)) = b, then voter i has a risk-free manipulation cba if (acb,p(−i)) would be the
truthful profile. If F (acb,p(−i)) = c and F (cab,p(−i)) = a, we have that both p and (acb,p(−i))
are manipulable by i. If one of these manipulations is risk-free, we are done, so suppose they are
both not risk-free. This means that there exists a parasitising manipulator that can manipulate
(cab,p(−i)) and make c win (parasitising the manipulation of the voter with preference abc), and
that there exist a parasitising manipulator that can make b win (parasitising the manipulation
of the voter with preference acb). But that means that no matter what the preference of the
parasitising manipulators is, the manipulation is risk-free: a is the winner under (cab,p(−i)),
and there is a voter with an incentive to manipulate and make a win, and there is a voter with
an incentive to manipulate and make b win. Thus, their manipulations will never create a new
opportunity for a voter to parasitise the manipulation, and hence they are safe. We conclude
that if acb is not a manipulative ballot for i, then there is a risk-free manipulation. So, in the
rest of the proof, we only have to consider situations where acb is a manipulative ballot (note
that we do not exclude cab to be a manipulative ballot as well).

Since the manipulation of i is not risk-free, there is a parasitising manipulator j. Voter j must
have preference cab, or else j would not have an incentive to manipulate, or the manipulation
would be risk-free. In the same way as for voter i, we can argue that ballots bj = abc, bj = bac or
bj = acb entail a risk-free manipulation for j. So, we only have to consider bj = cba and bj = bca.
Now suppose that cba is not a manipulative ballot, so F (bi,p(−i)) = a, F (bi, cba,p(−i, j)) 6= c
and F (bi, bca,p(−i, j)) = c. If F (bi, cba,p(−i, j)) = a, voter j would have a risk-free incentive to
manipulate under the profile (bi, cba,p(−i, j)). If F (bi, cba,p(−i, j)) = b, then in the same way
as for i, there is a manipulation of both (bi,p(−i)) and (bi, cba,p(−i, j)). If the manipulations
are both not risk-free, then there must exist parasitising manipulations of (bi, bca,p(−i, j)), one
that makes a, and one that makes b win. Again, there is a risk-free manipulation. So, in the rest
of the proof, we only have to consider situations where cba is a manipulative ballot (note that
we do not exclude cab to be a manipulative ballot as well).

If the manipulation cba is risk-free, we are done, so suppose that it is not risk-free: there
is a parasitising manipulator k ∈ N who has an incentive to manipulate under the profile
(bi, bj ,p(−i, j)) and make b win. The parasitising manipulator k must have preference bca,
or else k would not have an incentive to manipulate, or the manipulation would be risk-free.
Again, if bk = acb, bk = cab or bk = cba, then there is a risk-free manipulation. So, consider
bk = bac and bk = abc. If bac is not a manipulative ballot, then F (bi, bj , bac,p(−i, j, k)) 6= b
and F (bi, bj , abc,p(−i, j, k)) = b and by the same reasoning as before, there exists a risk-free
manipulation. Thus, we only have to consider the situation in which bac is a manipulative ballot.
If this manipulation is not risk-free, there must be a parasitising voter with preference abc that
manipulates in order to make a win. By the same reasoning as for voter i, the manipulative ballot
of this voter must be acb. So, the manipulation process starts again. Let n1 denote the number
voters with preference abc, n2 number the voters with preference acb, n3 the number voters with
preference cab, n4 the number voters with preference cba, n5 the number voters with preference
bca and n6 the number voters with preference bac. Now consider the following sequence of
manipulations, where the labels of the arrows indicate which type of voter is manipulating in
each round, and the red text indicates the strategic ballot of that voter (and hence which group
of voters increases by 1):
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n1: abc n1 − 1: abc n1 − 1: abc n1 − 1: abc
n2: acb n2 + 1: acb n2 + 1: acb n2 + 1: acb
n3: cab

1−→ n3: cab
3−→ n3 − 1: cab 5−→ n3 − 1: cab 1−→

n4: cba n4: cba n4 + 1: cba n4 + 1: cba
n5: bca n5: bca n5: bca n5 − 1: bca
n6: bac n6: bac n6: bac n6 + 1: bac

b a c b
n1 − 2: abc n1 − 2: abc n1 − 2: abc . . .

n2 + 2: acb n2 + 2: acb n2 + 2: acb . . .

n3 − 1: cab 3−→ n3 − 2: cab 5−→ n3 − 2: cab 1−→ . . .
...−→

n4 + 1: cba n4 + 2: cba n4 + 2: cba . . .

n5 − 1: bca n5 − 1: bca n5 − 2: bca . . .

n6 + 1: bac n6 + 1: bac n6 + 2: bac . . .

a c b

So, the voters of groups n1, n3 and n5, will one by one move to groups n2, n4 and n6 respectively.
This means that eventually, one of the groups will be empty. Suppose for example that n3 < n1

and n3 ≤ n5. After a finite number of rounds, the iterative voting procedure will continue as
follows:

p∗ p∗∗

n1 − n3: abc n1 − n3: abc n1 − n3: abc n1 − (n3 + 1): abc
n2 + n3: acb n2 + n3: acb n2 + n3: acb n2 + n3 + 1: acb

n3 − (n3 − 1): cab 3−→ n3 − n3: cab
5−→ n3 − n3: cab

1−→ n3 − n3: cab
n4 + (n3 − 1): cba n4 + n3: cba n4 + n3: cba n4 + n3: cba
n5 − (n3 − 1): bca n5 − (n3 − 1): bca n5 − n3: bca n5 − n3: bca
n6 + (n3 − 1): bac n6 + (n3 − 1): bac n6 + n3: bac n6 + n3: bac

a c b a

Let p∗ be second last ballot profile in this sequence, and p∗∗ the last profile. The last manipulation
in this sequence is by a voter with preference abc, who commits to the strategic ballot acb.
Now, suppose that profile p∗ is the truthful preference profile. Then there is no voter with
preference cab. Under p∗∗, voters with preference abc and acb do not have an incentive to
manipulate. If a voter with preference bac has an incentive to manipulate, this is not risky for
voters with preference abc, because this will be a neutralising manipulation, making b win. So,
in that case the last manipulation in this sequence is risk-free. If a voter with preference cba or
bca has an incentive to manipulate, this manipulation is risk-free for them, because their least
preferred alternative is winning under p∗∗. Thus, in either case, there is a second-order risk-free
manipulation. If n1 ≤ n3, n5 or if n5 < n1, n3, the sequence of parasitising manipulations will
‘terminate’ in a similar way, but with a different second-order risk-free manipulation and winner.
We conclude that in every case, there is a second-order risk-free manipulation, and hence that
every non-dictatorial and surjective social choice function for three alternatives is susceptible to
second-order manipulation.

In the rest of the section, we will work with social choice functions that are not antagonistic:
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Definition 6.9. A social choice function F is antagonistic if there exists a ballot profile b in
which every voter ranks a particular alternative x ∈ X last, but where F (b) = x

Non-antagonistic voting rules allow us to define ‘subrules’ derived from the main rule F , which
will be used in the remainder of this section. Given any alternative a, the subrule F−a is
designed to pick alternatives from X\{a}, and operates as follows. Let p be an arbitrary profile
of preferences over the set X\{a}. Let p be the profile of preferences over the original set of
alternatives X formed by appending an a to the bottom of every preference order in p. Then we
define F−a(p) := F (p). Provided that F is not antagonistic, F−a will not select a at p and will
therefore be well-defined.

6.2.1 Positional scoring rules
Lemma 6.10. Let F be a positional scoring rule paired with a rationalisable tie-breaking rule,
and let b be a ballot profile such that F (b) = x. Suppose that voter i has a strategic ballot b′i
such that F (b′i, b(−i)) = y. Then at least one of the following must hold:

(i) The position of y in b′i is strictly higher than in bi.

(ii) The position of x in b′i is strictly lower than in bi.

Proof. To make y win from x, the score of y should be at least as high as the score of x. Since
F (b) = x, the score of y must be (weakly) lower than the score of x. To make y win, the score
of y must be increased, or the score of x must be decreased. For any positional scoring rule, this
means that the rank of alternative y must be increased, or the rank of alternative x must be
decreased.

Theorem 6.11. Anti-plurality is susceptible to second-order risk-free manipulation.

Proof. Let F be the anti-plurality rule and let xm−1 . x1 . x2 . · · · . xm be the tie-breaking
rule. Now consider the preference profile p where pi = x1 � x2 � · · · � xm for every i ∈ N .
By applying the tie-breaking rule, we obtain F (p) = xm−1. However, this outcome is far from
ideal for every voter. In this situation, any voter i ∈ N has an incentive to strategically vote
bi = x1 � x2 � · · · � xm � xm−1, since F (bi,p(−i)) = x1. Obviously, if a single voter i
manipulates, this is risk-free, as no voter would have an incentive to manipulate when i casts a
strategic vote.

Theorem 6.12. Any positional scoring rule is susceptible to second-order risk-free manipulation.

Proof. We prove this by induction on the number of alternatives. By Theorem 6.8, we know that
this must hold for the case where m = 3. Now assume that it holds for m alternatives. Let F be
a positional scoring rule for m+ 1 alternatives with scoring vector score = (score1, . . . , scorem+1).
Take an alternative x ∈ X and let F−x be the derived subrule. If F is anti-plurality (or a scoring
rule equivalent to anti-plurality), then we can apply Theorem 6.11. So, assume that F is not
(equivalent to) anti-plurality. Note that in this case, it must hold that score1 > scorem. Hence,
F−x is a positional scoring rule. Thus, we can apply the inductive hypothesis to infer that there
exists a preference profile p over m alternatives such that there exists a voter with a second-order
risk-free manipulation. Without loss of generality, let this be voter 1 with manipulative ballot
b1. Let F−x(p) = a and F−x(b1,p(−1)) = b. By Lemma 6.10, in b1 the position of alternative b
is increased, or the position of alternative a is decreased (or both).

Now consider profile p, where x is added to the bottom of every preference order in this profile.
By definition of F−x, it holds that F (p) = a and F (b1,p(−1)) = b. So, the manipulation of voter
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1 is still successful. However, to guarantee that this manipulation is risk-free, we need an extra
step. Suppose without loss of generality that voter 2 prefers c to b, while a �p1 c. Then voter
2 is a potential parasitising manipulator. Since the manipulation of voter 1 of the profile p is
risk-free, either some voter could already manipulate the profile p and make c win, or voter 2 is
not able to manipulate the profile (b1,p(−1)) to make c win. In the first case, the manipulation
that makes c win must also be successful under the extended profile p. Therefore, in that case
voter 1’s manipulation is risk-free. In the second case, the extension of the ballot might create
the opportunity for voter 2 to cast a successful strategic ballot: by putting alternative x between
c and b, the gap between the score of c and b can be decreased, and the score of c might even
exceed the score of b (depending on the scoring vector). In that case, c would win and the
manipulation of voter 1 would not be risk-free. To ‘secure’ voter 1’s manipulative ballot b1, she
should move alternative x right below b. In this way, she increases the gap between the score
of alternative xb and the score of any less preferred alternative, and hence she prevents any
potential parasitising manipulation. This is illustrated in Figure 6.6. We conclude that this
manipulation is second-order risk-free.

p1

p2

pm

b a x

x

x

a

1

b1
p2

pm

b a x

x

x

b

1

b′1
p2

pm

b ax

x

x

b

Figure 6.6: Voter 1 has risk-free manipulation b′1

Suppose that the voting rule is a positional scoring rule. Let Y be set of alternatives that are at
least as bad as a from the perspective of voter i. Then if voter i has a strategic ballot in which
the positions of the alternatives in Y are not changed, this ballot is a second-order risk-free
manipulation.

Proposition 6.13. Let F be a positional scoring rule, b some ballot profile with F (b) = a and
b′i a strategic ballot for some voter i such that F (b′i, b(−i)) = b. Let Y = {y | a �pi y}. If for all
y ∈ Y , rankbi(y) = rankb′i(y), then b′i is a second-order risk-free manipulation.

Proof. By Lemma 6.10, it must hold that the position of alternative b is strictly higher in b′i
than in b, and the score of b′i must strictly increase. The position of all ‘bad’ alternatives does
not change. Hence, this ballot can not create an opportunity for another voter to parasitise the
manipulation and we conclude that b′i is a second-order risk-free manipulation.

It is easy to see that by Lemma 6.10, manipulation of plurality under winner-information is
always second-order risk-free:

Corollary 6.14. If F is the plurality and winner information is given, every manipulation is a
second-order risk-free manipulation.
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6.2.2 Condorcet extensions
In this section, we will show that if the number of voters is even, any non-antagonistic strong
Condorcet-extension is susceptible to second-order risk-free manipulation. We will first prove
that strong Condorcet extensions are susceptible to second-order risk-free manipulation, and
in particular that there exist second-order risk-free manipulations that involve weak Condorcet
winners. This implies that the manipulability of strong Condorcet extensions does not (fully)
arise from the profiles under which no weak Condorcet winners exist.

Lemma 6.15. For m = 3 and an even number of voters n ≥ 4, any strong Condorcet-extension
is susceptible to second-order risk-free manipulation, such that the manipulated ballot profile is
a Condorcet profile (that is, a profile such that there exists a (weak) Condorcet winner).

Proof. Let n be the number of voters and let X = {a, b, c}. Let F be any strongly Condorcet-
consistent social choice function with tie-breaking function T , and assume without loss of
generality that T (a, b) = a. Now consider the following preference profile:

number of voters ballot
1
2n− 1 abc
1
2n− 1 bca

1 bac

1 cab

Under this profile, alternatives a and b are weak Condorcet winners. Hence, a will be the winner.
Now, the voter with preference bac has an incentive to manipulate, because if she votes bca, then
alternative a will no longer win the pairwise majority contest between alternative c and a, in
which case a would no longer be a weak Condorcet winner. Hence, b would become the unique
Condorcet winner and hence the winner of the election. This manipulation is second-order
risk-free because no voter has an incentive to manipulate under this ballot profile.

We can use this result as the base case for the following theorem:

Theorem 6.16. Any non-antagonistic, strongly Condorcet-consistent social choice function F
for at least three alternatives and an even number of voters n ≥ 4, paired with a tie-breaking
choice function T is susceptible to second-order risk-free manipulation.

Proof. We show something stronger, namely that there exists a second-order risk-free manipula-
tion that such that the manipulated profile is a Condorcet profile. We prove this by induction
on the number of alternatives. By Proposition 6.15, we know that this must hold for the case
where m = 3. Now assume that it holds for m alternatives. Let F be a strong Condorcet
extension with tie-breaking rule T for m + 1 alternatives. Take an alternative x ∈ X and let
F−x be the derived subrule. Now consider a preference profile p over alternatives X\{x} and let
p be the profile p with x attached to the bottom of every preference order. Note that F−x is
well defined: in case there are weak Condorcet winners under p, T chooses an alternative from
the set of weak Condorcet winners, but x cannot be a weak Condorcet winner. If there are no
weak Condorcet winners, F (p) 6= x since F is not antagonistic. Furthermore, F−x is strongly
Condorcet-consistent as well: alternative y 6= x is a weak Condorcet winner under p if and only
if y is a weak Condorcet winner under p.
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Since F−x is a strong Condorcet extension for m alternatives, we can apply the inductive hypoth-
esis, so we obtain that there exists a voter, say voter 1, with a second-order risk-free manipulation
b1, and (b1,p(−1)) is a Condorcet profile. Let F−x(p) = xa and F−x(b1,p(−1)) = xb. Then
by definition, F (p) = xa and F (b1,p(−1)) = xb. So, b1 is also a successful manipulation of the
profile p. There are two options: if xb is a weak Condorcet winner under p, but loses from
xa in the tie-breaking, the manipulative ballot of voter 1 must result in xa losing a pair-wise
majority contest, in order to eliminate xa. If xb is not a weak Condorcet winner under p, then
the manipulative ballot of voter 1 must involve making xb a weak Condorcet winner. Next, we
show that voter 1’s manipulation must be second-order risk-free.

Since voter 1’s manipulation of p was second-order risk-free, voter 2 does not have a parasitising
manipulative ballot under (b1,p(−1)). Suppose that there is a voter, say voter 2, that has a
parasitising manipulation b2 of the profile (b1,p(−1)) that makes alternative xc win. Let bX
denote the ballot profile (b1,p(−1)). By the inductive hypothesis, we know that under bX ,
alternative xb is a weak Condorcet winner. Claim: there exists a manipulation b′2 of voter 2 with
x ranked last that makes xc win. We consider two cases:

Case 1: Voter 2 has a manipulation b2 that makes xc a Condorcet winner under (b2, bX(−2)).
To make xc an Condorcet winner, voter 2 should report a ballot that results in alternative xc
winning every pairwise majority contest. Under bX , xc is not a Condorcet winner, so there is
at least one pairwise majority contest that xc loses. This implies that in b2, voter 2 must have
swapped alternative xc with the alternative(s) from which xc is currently losing. However, xc
does not lose against alternative x, because that alternative is ranked last in every ballot in bX .
Hence, let b′2 be defined as b2 with x shifted to the last position. Then b′2 should still make xc a
Condorcet winner, and hence the manipulation b′2 makes xc win.

Case 2: Voter 2 has a manipulation b2 that dethrones xb as Condorcet winner. Claim: there
exists a manipulation b′2 of voter 2 with x ranked last that dethrones xb as Condorcet winner.
To dismiss xb as Condorcet winner, voter 2 should report a ballot that results in alternative
xb losing at least one pairwise majority contest. This implies that in b2, voter 2 must have
swapped alternative xb with at least one alternative, such that xb now loses the pairwise ma-
jority contest with that alternative. This alternative cannot be alternative x, because x is
ranked last in every other ballot in bX , so xb will still not lose from x. We can define the ballot
b′2 as b2 with x shifted to the last position, and b′2 should still dethrone xb, which proves the claim.

Note that since x is ranked last in b2, b′2 = b for some ballot b of voter 2, and hence voter 2 has a
strategic manipulation of the profile (b1,p(−1)) that elects xc. This contradicts the assumption
that voter 2 does not have a parasitising manipulation of that profile. Thus, voter 2 cannot have
a manipulation of pX that makes xc win.

We conclude that there is no voter with a parasitising manipulation, and hence the manipulation
of voter 1 is second-order risk-free. This proves that for any number of alternatives, there is
a preference profile that is sensitive to second-order risk-free manipulation. Hence, every non-
antagonistic strongly Condorcet-consistent social choice function F is susceptible to second-order
risk-free manipulation if the number of voters is even.

This proof does not work for voting situations with an odd number of voters. With an odd
number of voters, Condorcet winner are always unique. Therefore, there is no manipulation
that replaces the current Condorcet winner by a new Condorcet winner. In that case, a pivotal
voter would have to swap at least two alternatives (the current Condorcet winner and the new
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one), but she has never an incentive to do that, because then a less preferred alternative would
win. Hence, a successful manipulation of a Condorcet extension should either change the ballot
profile from a Condorcet profile to a non-Condorcet profile, or vice versa, or it should change a
non-Condorcet profile to another non-Condorcet profile. We were not able to show that in the
first case, such a manipulation must be second-order risk-free, because the manipulated profile
is non-Condorcet. The Condorcet criterion only requires that Condorcet winners are elected
when they exist, so under non-Condorcet profiles, we do not know how the social choice function
behaves. Therefore, we cannot prove that there must exist a second-order risk-free manipulation.

6.2.3 Other classes of social choice functions
In the previous sections, we showed that any non-dictatorial and surjective iterative voting
procedure for three alternatives is susceptible to second-order risk-free manipulation. We also
showed that for any number of alternatives, positional scoring rules and non-antagonistic Con-
dorcet extensions are susceptible to second-order risk-free manipulations (the latter if the number
of voters is even). It remains an open problem whether for any number of alternatives, any
number of voters, and any non-dictatorial and surjective iterative voting procedure, there exists
a situation in which a voter has a second-order risk-free incentive to manipulate. We conjecture
that this is the case, but we were not able to show it. The inductive argument that is used in
the proofs for positional scoring rules and Condorcet extensions cannot be applied here. Suppose
that F is any non-dictatorial and surjective social choice function for m alternatives. We consider
an alternative x ∈ X and the derived subrule F−x, which is only defined for ballot profiles over X
in which every voter ranks x last. We suppose that there is a second-order risk-free manipulation
under the subrule F−x of the preference profile p over alternatives X\{x}. It is easy to show that
this manipulation is also a successful manipulation of the extended profile p, under the original
social choice function F . However, we cannot guarantee that this manipulation is risk-free: we
know (by induction) that there is no parasitising manipulation in which x is ranked last, but
the inductive hypothesis says nothing about ballots in which x is not ranked last. This means
that there could exist a ballot in which x is not ranked last, that is a parasitising manipulation.
Therefore, we conclude that this issue remains an open problem.

Even though it seems that most reasonable social choice functions are even manipulable by
voters that have a more farsighted view, higher-order reasoning about iterative voting procedures
could also shine a new light on another aspect of iterative voting, namely convergence. We will
discuss this topic in the next section.

6.3 Convergence of iterative voting procedures

An important question for iterative voting procedures is whether an iterative election will always
converge. As discussed in Chapter 2, for positional scoring rules it is known that only for iterative
elections with the plurality rule or the anti-plurality rule, convergence is guaranteed. The new
perspective on manipulation introduced in this Chapter allows us to reconsider these results: if
we assume that voters will only cast a strategic ballot when they know that their manipulation
cannot be parasitised in the next round, it becomes harder to find a risk-free manipulation.
Which implications does this have for the convergence of iterative voting rules? We show that in
the case of three alternatives, the Borda rule will always converge.

Proposition 6.17. An iterative Borda voting procedure with lexicographic tie-breaking always
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converges when m = 3.

Proof. The idea of the proof is that we show that in every sequence of manipulations, the
election tends to become a two-party system: if an alternative does not win in round 1 or round
2, it will never become a winner in a later round. Therefore, the iterative procedure must converge.

Let X = {a, b, c}. There are (at most) six possible preference orders: abc, acb, bac, bca, cab
or cba. First, suppose that under the truthful ballot p profile, c is the winner. This implies
that score(c)p > score(a)p, score(b)p. In the first round, the ballot profile is b1 = p. Let voter 1
be the first voter to change her ballot. So, voter 1 has a second-order risk-free manipulation
b1 6= p(1). We consider two cases:

Case 1: Voter 1 has a strategic manipulation that makes b the new winner. Then her truthful
preference is either abc or bca, and in both cases her manipulative ballot is bac. Claim: for every
t ≥ 3, F (bt) 6= a. We prove this by induction. If voter 1’s truthful preference is abc, it must
hold that scorep(b) = scorep(c) − 1. Under the new profile, 1 transfers one point from a to b,
so scoreb2a ≤ scoreb2(b)− 2, and scoreb2(b) = scoreb2(c). First, note that since the difference in
the score of alternative a and b under profile b2 is at least 2, so an individual voter j could only
make a win if a is currently ranked last in j’s ballot. However, since under b2, all voters with a
ranked last cast a truthful ballot, those voters do not have an incentive to make a win. So, a
will not win under ballot profile b3. If voter 1’s truthful ballot is bca, she will only manipulate
after round 2 if she knows that no voter can make alternative a win at t = 3, otherwise the
manipulation would not be risk-free. This proves the base case.

Now suppose that under all ballot profiles bk for k ≤ t, a does not win. This implies that in
every round k ≤ t, the best response of a voter either has the goal to change the winner from b
to c, or to change the winner from c to b. Voters that prefer b to c have true preference bca, bac
or abc. If a voter’s true preference is bac, she cannot manipulate. If a voter’s true preference is
bca or abc, her manipulative ballot must be bac. In the same way, we can argue that for voters
who prefer c to b, if they can manipulate, their strategic ballot must be cab. So, in every round
k ≤ t, a voter changes her ballot to either bac or cab.

Furthermore, since a never wins, it holds that scorebk(a) < scorebk(b), scorebk(c) for all k ≤ t.
Now suppose that there is a voter i that can make a win at time t+ 1, so voter i has a strategic
manipulation b′i such that F (b′i, b

t(−i)) = a. This implies that (ii) scorebt(a) = scorebt(b) − 1
and scorebt(b) ≥ scorebt(c) or (ii) scorebt(a) = scorebt(c)− 1 and scorebt(c) > scorebt(b).

(i) In the first case, b is the winner under bt. That means that after round t− 1, there was
a voter j with an incentive to make b win, and that his strategic ballot must have been
bac. If his truthful preference is abc, then it must hold that scorebt−1(a) = scorebt−1(b) + 1.
However, then F (bt−1) = a, which contradicts our assumption that a is not a winner
in round k ≤ t. Hence, j’s truthful preference must be bca. But this contradicts our
assumption that manipulations are second-order risk-free: if voter j with preference bca
manipulates after round t−1 to make b win in round t, he will only do this when alternative
a cannot win in round t+ 1. Hence, it must hold that F (bt+1) 6= a.

(ii) In the second case, c is the winner under bt. That means that in round t− 1, there was
a voter j with an incentive to make c win, and that his strategic ballot must have been
cab. If his truthful preference is acb, then scorebt−1(a) = scorebt−1(c) + 1. However, then
F (bt−1) = a, which contradicts our assumption that a is not a winner in round k ≤ t.
Hence, j’s truthful preference must be cba. But this contradicts our assumption that
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manipulations are second-order risk-free: if voter j with preference cba manipulates after
round t − 1 to make c win in round t, he will only do this when voter a cannot win in
round t+ 1. Hence, it must hold that F (bt+1) 6= a.

This proves our claim. Since a will never be a winner in any round t ≥ 3, we can apply the
same argumentation to obtain that since b and c will be the only winners, the only manipulative
ballots can be bac and cab. After every voter with a truthful preference not equal to bac or cab
changed her ballot to either bac or cab, the voting process converges.

Case 2: Voter 1 has a strategic manipulation that makes a the new winner. Following the same
argumentation as in Case 1, we can show by induction on the number of rounds that b will never
become a winner. It also follows that abc and cba are the only possible manipulative ballots,
and hence that the voting process will converge.

We can give a similar argument if the winner under the truthful profile is a or b. If a is the winner
under the truthful profile, it must hold that score(a)p ≥ scorep(b), scorep(c). If voter 1 has a
strategic manipulation that makes b the new winner, her manipulative ballot must be bca. Again,
we can show by induction that c will never become a winner. In the same way, we can show that
if voter 1 has a strategic vote that makes c win, b will never win. Finally, if b is is the winner
under the truthful profile, it must hold that scorep(b) > scorep(a) and scorep(b) ≥ scorep(c).
Again, we distinguish two cases, one in which alternative a wins after the first manipulation,
and one in which c wins after the first manipulation. In both cases, we show that the other
alternative (respectively c and b) will never become a winner.

This result shows that in the case of three alternatives, iterative voting procedures with Borda as
voting rule always converge. It remains an open problem whether similar results are attainable
for the general case of m alternatives, or whether similar results hold for other voting rules. As
the convergence of iterative voting procedures is not the main focus of this thesis, these question
are left for future research.

6.4 Concluding remarks

Our investigation concentrated on the hope that agents who are able to look ahead and predict
future manipulations of their peers, would realise that their manipulations would be unsuccessful
in the end, and that they would therefore choose to remain truthful themselves. Unfortunately,
this turned out not to be the case. For two important classes of social choice functions, positional
scoring rules and (non-antagonistic) Condorect extensions, we showed that even if voters do not
want to risk a worse outcome in the consecutive round of voting, it is still possible to manipulate.
It remains an open problem whether this holds for every non-dictatorial and surjective social
choice function.

In this chapter, we focused on second-order reasoning agents, that is, agents that are able to look
one step ahead. Although they are able to reason about the future, these agents still have a very
short-term view. In future work, it would be interesting to consider voters with a more long-term
view. One could define a model of rationality in which agents take into account the long-term
effects of their choices. Suppose that under the truthful profile p, voter i has a manipulative
ballot. After she reports this ballot, a sequence of strategic votes begins, eventually terminating
in a Nash equilibrium. In this scenario, voter i will be more interested in comparing the winner
under the truthful profile p with the outcome after the iterative voting process has converged,
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if i casts a strategic vote that triggers a sequence of other manipulations. If the winner under
the Nash equilibrium is worse than F (b), and i realises that this is a consequence of her own
manipulative ballot, it would be better for her to not cast that vote. This is related to the
idea of second-order Nash equilibria, introduced by Bilò and Flammini (2011) and based on
non-myopic equilibria discussed in Brams and Wittman (1981) and Kilgour (1984). In future
work, it would be interesting to analyse the strategic incentives of voters that are able to predict
in which Nash equilibrium the election will result.

Here, we only concentrated on parasitising manipulations: the initial manipulator refrains from
strategising, because a second manipulation could be harmful. Another direction would be to
investigate other intentions of voters for casting a strategic vote. If a voter is able to predict what
other voters will do in the future, she might adapt her manipulative behaviour. For example, she
may consider a strategic vote that is initially not beneficial for herself, but if that manipulation
would provoke a manipulation by another voter that is beneficial for her, she might still cast
the strategic vote. So, she attempts to vote strategically in the sense of misleading other voters.
Or, following the same kind of reasoning, she might cast a vote that is not resulting in the best
outcome from her perspective, but by casting that strategic vote, she blocks a manipulation of
another voter that would result in an even worse outcome. For future work, we believe that it
would be interesting to investigate these new types of incentives for voters to manipulate an
election.

An interesting direction for future research would be to explore whether iterative voting procedures
are convergent, or even immune to manipulation if voters have partial information. Meir et al.
(2014) and Meir (2015) introduce a behavioural game-theoretic model for iterative voting under
uncertainty. Meir et al. (2014) proved that if all voters have the same uncertainty level, start by
voting truthfully, then they always converge to a voting equilibrium. It might be interesting to
investigate how higher-order reasoning voters will behave in such scenarios.
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Chapter 7

Strategic communication

Recall the example from the introduction: there are four voters, three alternatives and the
voting rule is Borda, and the epistemic model is given in Figure 7.1. Alice and Bob both have
preference order abc, although they do not know this from each other. Both voters consider it
possible that the other voter has preference order acb. If both voters report ballot abc, then b
will be the winner. If one of them reports the ballot abc and the other reports acb, then a will
be the winner. However, if both voters report acb, then c will be the winner. Hence, there is no
voter with an incentive to manipulate. Alice could improve the situation by voting acb if Bob
votes abc, but she also consider the situation where Bob votes acb possible. In that situation,
the outcome of the election would be worse. This also holds for Bob. No matter whether Alice
and Bob’s true preferences are abc or acb, it is beneficial for both voters if one of them votes
abc and the other acb, because then a will win, and in any case a is their favourite alternative.
Although Bob does not know whether Alice prefers b to c or vice versa, he knows that if Alice
would know that he votes abc, then she would definitely report the ballot acb (see Figure 7.2).
In that case, the outcome of the election would be strictly better for both Alice and Bob than
when Bob had not revealed his ballot to Alice. In this situation, Bob does not have an incentive
to manipulate, but he rather has an incentive to communicate.

1:abc
2:abc
3:bca
4:cba

1:abc
2:acb
3:bca
4:cba

1:acb
2:abc
3:bca
4:cba

1:acb
2:acb
3:bca
4:cba

1

2

1

2

1, 2, 3, 4 1, 2, 3, 4

1, 2, 3, 4 1, 2, 3, 4

Figure 7.1: Both manipulative voters are not able to vote strategically
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1:abc
2:abc
3:bca
4:cba

1:acb
2:abc
3:bca
4:cba

2

1, 2

1, 2

Figure 7.2: Alice learns that she has a successful strategic vote

In this chapter, we will explore the idea of strategic communication in voting. Pre-vote com-
munication can help voters to coordinate their ballots, for example when they try to form a
coalition. Assuming that agents are strategic and do anything to obtain the best outcome, which
role does communication play in strategic behaviour? Under which circumstances do voters have
an incentive to communicate information, and which effect has this information exchange on the
outcome of the election?

7.1 Sharing factual information

The simplest form of communication is the exchange of factual statements. In this section, we
will discuss situations in which a voter believes that sharing personal information with other
voters might result in a better outcome of the election.

First, we assume that voters will not cheat by intentionally spreading false information: a voter
only shares information that she thinks is true. This is a common assumption in game-theoretic
models of reasoning. The most basic type of information exchange treats the source of the
information as fully reliable, and this is common knowledge. This means that if voter i shares ϕ
with voter j, voter j does not consider it possible that ϕ is not true. Furthermore, voter i knows
that voter j believes this, and voter j again knows that voter i knows that j believes this, etcetera.

The communicator assumes that the voters who receive her information do not do not care
about the reason why she sent that information: they do not question the intentions of the
communicator. So, we assume that a potential communicator only reasons about the effect of
the information update on the voting behaviour of the other agents: if a group of voters G knows
ϕ, what is their best strategy? By sharing information, a communicator wants to stimulate the
receiver(s) of the message to vote in a certain way.
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In this chapter, we do not take into account higher-order reasoning about incentives of other
voters to communicate. In theory, if a voter i shares some information with j, this could create an
incentive to for voter j to share information with voter k, which again could create an incentive
for a voter k to communicate something, etcetera. We assume that the communicator is not
able to predict the consequences of her communication for the incentives of other voters to
communicate, but that she will only analyse the consequences of the new information to the
voting behaviour of other agents.

7.1.1 When is it beneficial to share information?
We first have to shine a light on the question whenever communicating a piece of information is
beneficial for a voter in the voting framework presented in this thesis.

We have assumed that voters are risk-averse manipulators: even if there is just a single scenario in
which a manipulation would result in an unfavourable outcome, the voter will just vote truthfully.
Since we have a dynamic epistemic model without belief revision, there are two scenarios in
which a voter would change her vote: if she learns that she can safely cast a strategic vote (by
ruling out situations in which the strategic vote would result in an unfavourable outcome), or if
she learns that her strategic vote in fact will not be successful (by ruling out situations in which
the strategic vote would strictly improve the outcome).

Taking these assumptions into account, it follows that a voter only has an incentive to share
information with some other voters if she thinks that the new information will stimulate her peers
to vote in such a way that it is beneficial for her. Which information should a communicator
share in order to stimulate a fellow voter to adopt a certain idea? At first sight, it may seem that
providing truthful information can never be harmful. However, it turns out that this is not true:
it can sometimes be useful to conceal some information, as the following example will illustrate.

Example 7.1. This example is from Bakhtiari et al. (2018). The voting rule is plurality, with
tie-breaking according to b . a . c. In the first figure, voter 1 does not have an incentive to
communicate her ballot to voter 2, since voter 2 would then have an incentive to strategically vote
bca and b would be the winner. Here, voter 2’s uncertainty is beneficial for voter 1, because voter
2 considers it possible that they both have preference order cba, in which case a manipulation
would be harmful: by voting bca, she would make alternative b win.

1:abc
2:cba
a wins

1:cba
2:cba
c wins

2
1, 2 1, 2
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1:abc
2:cba
a wins

1:cba
2:cba
c wins

2
1, 2 1, 2

When a voter i is uncertain about the which state is the actual one, it may be the case that she
has a strategic vote that will improve the outcome in some of the situations that she considers
possible, but the outcome in the actual state. So in fact, the strategic vote is unsuccessful.
However, the strategic vote of i is neither harmful, because the winner under the manipulated
ballot profile will be identical to the winner under the truthful profile. This implies that even if
a fellow voter j knows all this, he does not have an incentive to inform i that her manipulation
will in fact turn out unsuccessful, because this will have no effect on the outcome of the election.
Therefore, we assume that a voter only has an incentive to communicate if she believes that the
information will stimulate the receiver of the message to vote strategically.

Definition 7.2 (Communication update model). Let ϕ be a sentence in the logic. We want to
define the update model in which ϕ is secretly announced to a group of voters G ⊆ N . After the
announcement of ϕ, ϕ is common knowledge within the group G, while none of the other voters
suspect anything. Let UGϕ = (Σ, R, pre, post) be the following update model:

(i) Σ = (e1, e2)

(ii) For every j ∈ G, R(j) = {(e1, e1), (e2, e2)}
For every l /∈ G, R(l) = {(e1, e2), (e2, e2)}

(iii) pre(e1) = ϕ
pre(e2) = τ

(iv) post(e1) = post(e2) = id

(v) The actual event is e1.

We call UGϕ a ϕG-communication update model. Note that if G = N , this update model
represents the public announcement of ϕ.

In the following definition, we will formalise the idea of having an incentive to communicate ϕ.
Following the line of this thesis, we assume that voters are risk-averse communicators. This
means that a voter will only choose to strategically communicate certain information if in at
least one case, the outcome of the election will be strictly better than in the initial situation. In
every other situation she considers possible, communicating the information should not make the
situation worse. To make the situation strictly better from the perspective of the communicator,
at least one of the voters that receive her message has to decide to strategise in such a way that
it is beneficial for the communicator. So, her information must create an incentive to manipulate.
In all other cases, the information ϕ must not lead to voters manipulating in a way that the
outcome is worse from the perspective of the manipulator. The following definition formalises
this idea.
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Definition 7.3. Let F be a voting rule and letM = (S, V,R) be an epistemic model for strategic
voting with actual state s∗. A voter i has an incentive to strategically communicate ϕ to a group
of voters G ⊆ N with i ∈ G if:

(i) For all s ∈ S with s∗Ris, M, s � ϕ

(ii) There exists s ∈ S with M, s � y such that the following hold:

• s∗Ris
•×
j∈G
Sj(M ⊗ UGϕ , (s, e1))××

l/∈G
bs(l))

• M, s � x �pi y

(iii) For all s ∈ S with s∗Ris it holds that:
if M, s � y and M, s � (×

j∈G
Sj(M ⊗ UGϕ , (s, e1))××

l/∈G
bs(l))→ x, then M, s � x �pi y.

Now that we have a formal notion of having an incentive to communicate, we can investigate
under which circumstances such an incentive exists.

7.1.2 Information-stable models
When studying strategic manipulation in voting under partial information, we should concentrate
our search to situations in which no voter has an incentive to communicate some information.
Suppose that we have a voting situation that is strategyproof, but that there is a voter with
an incentive to communicate some piece of information to a group of fellow voters. So, the
communicator thinks that this new information might result in a manipulation of the election
by some voters in such a way that the outcome of the manipulated profile is beneficial for the
communicator. Although the initial voting situation was strategyproof, the final outcome of the
election could still be the result of a manipulation. We call models in which no voter has an
incentive to communicate information-stable.

Definition 7.4. An epistemic model for strategic voting M with actual state s∗ is information-
stable if no voter i ∈ N has an incentive to strategically communicate some sentence ϕ to some
group of voters G ⊆ N .

Proposition 7.5. Every model M ∈Mfull info,sincere is information-stable.

Proof. This follows directly by the fact that all voters already have full information.

Proposition 7.6. Every model M ∈Mign,sincere for plurality is information-stable if n ≥ 3.

Proof. Let M ∈ Mign,sincere be a model for the plurality rule. In M , every voter only knows
her own preference and ballot. Suppose that voter i considers to communicate her preference
to a group G ⊆ N and let j ∈ G, j 6= i. We show that voter j does not have an incentive to
manipulate. Suppose that voter j has preference pj = x1 � x2 � . . . � xm. After voter j learns
ϕ, voter j considers it possible that there are exactly bn2 c other voters with alternative x1 as
their top choice. In that case, x1 will win if voter j votes truthfully, and x1 will not win if voter
j ranks another alternative first. So, no matter the ballot of voter i, voter j will not deviate
from her truthful ballot.

Proposition 7.7. Every model M ∈Mwinner,sincere for plurality is information-stable if n ≥ 3.
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Proof (sketch). Let M ∈Mwinner,sincere be a model for plurality paired with some tie-breaking
rule T . Assume, for the sake of contradiction, that voter i has an incentive to communicate ϕ to
a group of voters G. Recall that she only shares information she knows, so either ϕ contains
information about her own preference or ballot, or ϕ is already common knowledge. If ϕ is
not common knowledge, it must hold that M, s∗ � (bs∗(i) ∧ ps∗(i)) → ϕ. In other words: for
any ϕ that voter i is able to send, ϕ cannot contain more information than the ballot and the
preference of voter i. We show that even if voter i shares all her personal information with
G, incentives of the voters in G to manipulate will not change. Hence, let ϕ = bs∗ ∧ ps∗ . As
discussed before, voter i can only have an incentive to communicate if she believes that her
information will stimulate another voter to manipulate. Without loss of generality, we assume
that she tries to stimulate another voter to vote for the alternative that she ranks first.

Suppose that F (bs∗) = x. Let j ∈ G and let voter j’s preference be pj = y � z � . . . , for y 6= x
(if y = x, j can certainly not be stimulated to manipulate). Since voter j’s favourite alternative
is not the winner, if z 6= x, she has an incentive to vote for her second choice z, because she
considers it possible that she is pivotal with respect to alternative z. Let b′j a ballot order with
z ranked first. Without loss of generality, assume T (x, z) = x1. Now there are three cases:

Case 1: rankbs∗ (i)(z) = 1. Then there exists s ∈ S with s∗Rjs such that j is pivotal with respect
to alternative z:

|{k ∈ N | rankps(k)
(z) = 1}| = |{k ∈ N | rankps(k)

(x) = 1}|,

and since i ∈ {k ∈ N | rankps(k)
(z) = 1}, M, s � ϕ. Hence, for (s, e1) ∈ M ⊗ UGϕ it holds that

(s∗, e1)Ri(s, e1) and voter j is still pivotal with respect to alternative z. Hence, there is no ballot
that could dominate b′j , so she will still vote b′j in M ⊗ UGϕ .

Case 2: rankps∗ (i)
(x) = 1. Then there exists t ∈ S with s∗Rjt such that j is pivotal with respect

to alternative z:

|{k ∈ N | rankpt(k)
(z) = 1}| = |{k ∈ N | rankpt(k)

(x) = 1}|,

and since i ∈ {k ∈ N | rankpt(k)
(x) = 1}, M, s � ϕ. Hence, for (t, e1) ∈ M ⊗ UGϕ it holds that

(s∗, e1)Ri(t, e1) and voter j is still pivotal with respect to alternative z. Hence, there is no ballot
that could dominate b′j , so she will still vote b′j in M ⊗ UGϕ .

Case 3: There is alternative a 6= x, z with rankbs∗ (i)(a) = 1. Then there exists u ∈ S with s∗Rju
such that rankbu(i)(a) = 1 and j is pivotal with respect to alternative z:

|{k ∈ N | rankpu(k)
(z) = 1}| = |{k ∈ N | rankpu(k)

(x) = 1}|,

Since M, s � ϕ, we have M, s � pre(e1) and hence for (s, e1) ∈ M ⊗ UGϕ , it holds that
(s∗, e1)Ri(u, e1) and voter j is still pivotal with respect to alternative z. Hence, there is
no ballot that could dominate b′j , so she will still vote b′j in M ⊗ UGϕ .

So, learning ϕ will not stimulate voter j to change her ballot, because she always considers it
possible that she is pivotal with respect to alternative z, and hence she will vote in favour of z.
Since j was arbitrary, it follows that no agent in G will change her vote after learning ϕ. Hence,
it is not beneficial for voter i to share all her personal information, namely her ballot and her

1If T (x, z) = z, we can give a similar proof but with one extra voter who ranks x first.
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preference. But then, it will also not help to share a information that is weaker. We conclude
that M is information-stable.

These results show that sharing information by a single agent will, in many general cases, not
stimulate other voters to manipulate. One reason for this could be that when a group tries
coordinate ballots and tries to manipulate the election, there are cases where common knowledge
is necessary in order to safely manipulate the election. The group of voters must avoid situations
that are similar to the well-known coordinated attack problem (Halpern, 1986) by establishing a
way of communication that makes the voting strategy common knowledge among the members
of the group, but not known to any voter that is not in the group.

In most cases however, the lack of incentives to communicate is caused by the fact that even
though the voters receive personal information from one of their fellow voters, they still consider it
possible that their current ballot (truthful or insincere) is pivotal, and hence, the new information
will not change their minds. This contradicts our expectations: intuitively, if the voting rule
is plurality, we would expect voters with winner information to try to coordinate with other
voters whenever they are not happy with the winner under the truthful profile. So, apparently,
sharing factual information is not helpful when voters are trying to form coalitions. To get a
better understanding of strategic communication between voters, we need a different notion of
an incentive to communicate. In the next section, we will discuss some possible directions.

7.2 Normative communication

In order to understand coordination, we need a different type of communication. In the previous
section, we saw that only sharing factual information will not help voters to coordinate their
votes to form a coalition. In order to form a coalition or to coordinate ballots in some way,
agents must be able to communicate their ideas about how an agent should vote instead of
just factual information about how an agent currently votes. Game theorists have started to
formalise the role of communication in strategic settings, e.g. Rabin (1990), Parikh (1991) and
Farrell (1993). Franke and van Rooij (2015) explore psychological and social aspects of strategic
communication in games. Those ideas of rationality and strategic interaction can be used to
model communication with a more normative nature.

Farrell (1988) uses the notion of a suggestion. In terms of voting theory, if G ⊆ N , a suggestion
is a (partial) ballot profile b(G) specifying, for each player i ∈ G, a ballot order b(i). We can
interpret this as a piece of information, containing a proposal how every voter in G should vote
given a model M . A suggestion is consistent if every ballot suggested to each voter is a best
strategy, given that every other voter follows the suggestion. The notion of a suggestion seems
appropriate in the case of a group of like-minded voters, and when the fact that they have
similar preferences is common knowledge in that group. In order to coordinate their ballots,
one member of the group must utter a suggestion, and if it is the case that if every voter votes
accordingly, their favourite alternative wins, then every voter in the group will follow the sugges-
tion. A higher-order reasoning voter would check whether following the suggestions is rational for
other agents, before determining whether it would be strategic for herself to follow the suggestion.

However, it is not straightforward how we can formally incorporate this idea in our framework.
Our dynamic epistemic model can deal with complicated forms of communication regarding
facts, but it is not possible to make a distinction between facts and suggestions in the language.
In our framework, agents are able to change their ballot, but we assume that they only change
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their ballot whenever they are certain that it will (weakly) improve the outcome of the election
from their perspective. This means that in every state an agent considers possible, the new
ballot must result in an outcome that is at least as good as the outcome when the agent reports
her original ballot. In reality however, an agent may have good reasons to be less risk-averse,
for example because a credible and like-minded fellow voter does a suggestion how to vote. In
order to model this, we need a framework that is more flexible with respect to the ballots a voter
commits to. Van Benthem and Liu (2007) provide a model that deals with preference dynamics.
They argue that statements not only update our current knowledge, but also have other dynamic
effects. The idea of this framework is that preferences are not static, but that they can change
through commands of moral authorities, suggestions from friends, or just changes in our own
evaluation of the world and our possible actions. In voting theory, it is generally assumed that
preferences are static, but in future work, ideas from this framework could be applied to design
a model that has richer ballot dynamics.

Another way to model coalition forming and exchange of (strategic) ideas between voters is
to see the set of voters as a social network. In Baltag et al. (2018), the idea is that agents
are socially connected to each other and that their ideas and behaviour are socially influenced.
Adopting a certain opinion or behaviour, or a certain strategic ballot in our case, is contagious:
agents adopt new behaviour when the fraction of the people in their network who have already
adopted it meets a certain threshold. In Baltag et al. (2018) the notion of an epistemic treshold
is introduced and agents are assumed to only adopt a certain opinion if they have sufficient
information about their neighbours. Our notion of changing a ballot could be related to an
epistemic treshold in a natural way, because as we have seen in this thesis, voters must have
enough information about their fellow voters before they commit to a certain strategic ballot, in
particular when they try to form a coalition. In order to understand under which circumstances
agents start following each other’s strategic suggestions, for example suggestions on how to vote,
the process of how social networks within a group of voters are formed is particularly interesting.
Smets and Velázquez-Quesada (2018) propose a model for this. An agent is classified by the
different features she may have. Following to the similarity approach of Smets and Velázquez
Quesada, the more similar two agents are, the more likely it is for them to end up in the same
social network. In the setting of voting, the preferences of a voter can be modelled as her features.
We believe that modelling a group of voters as a social network is a promising approach to get a
deeper insight into the ballot coordination of groups of voters.
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Chapter 8

Conclusion and future research

8.1 Conclusion

The main goal of this thesis was to analyse strategic manipulation of higher-order reasoning
voters. We presented a dynamic epistemic model for strategic voting and its corresponding sound
and complete logic for strategic voting. We showed that this model fits many different types of
voting settings. For the classical setting, in which it is often assumed that there is just a single
manipulator who assumes that every other voter will report a sincere ballot, we defined classes
of models in which voters have partial information about the preferences of their peers.

The focus of this thesis was higher-order reasoning: reasoning about the reasoning of other
voters. Voters are likely to realise that other voters may reason strategically too, and therefore
choose the best strategy given what they know about the ballots of the other voters. When a
voter realises that fellow voters may reflect on her own strategic behaviour as well, she will start
reasoning about the reasoning of other voters.

We first discussed the well-known phenomenon of safe manipulation. If a coalition of voters with
the same preference tries to manipulate the election, we say that their manipulation is safe if no
matter which subgroup of the coalition casts a strategic vote, the outcome will never be worse
than under the truthful profile. We argued that in order to determine whether a manipulation is
safe, agents have to figure out how they think that the other voters in the coalition will vote.
Thus, she reasons on a higher-order level about the voting behaviour of other members of her
coalition.

It is likely that sophisticated voters not only reason about the reasoning of like-minded voters,
but also about the reasoning of voters that have conflicting interests. We generalised the idea of
reasoning about the reasoning of other voters based on the principles of the cognitive hierarchy
theory. One can distinguish different strategic types of players. A strategic type captures the
level of strategic sophistication of a player and corresponds to the number of steps that the
agent will compute in a sequence of iterated best strategies. We developed an epistemic model
that represents the k steps of higher-order reasoning of a level-k reasoning voter. We showed
that any non-dictatorial and surjective social choice function F for three or more alternatives is
susceptible to manipulation under at least some levels higher-order reasoning: even if F is immune
to manipulation under level-k reasoning, it will be manipulable by voters who reason at level k+1.
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In an iterative voting procedure, voters are allowed to change their ballots as often as they want.
Higher-order reasoning voters know this and will try to predict the iterative voting process by
reasoning about possible future manipulations of fellow voters. We focused on second-order
reasoning voters, that is, voters who are able to look one step ahead. Because we assumed that
voters are risk-averse, it is reasonable to assume that a voter will refrain from manipulating
the election if she knows that a second manipulator could parasitise her manipulation: in that
case, the second manipulator casts a strategic vote that results in an outcome that is worse
than if she had not strategised at all. We showed that even if a voter is able to predict a future
parasitising manipulation, under positional scoring rules and (if the number of voters is even)
under non-antagonistic and strongly Condorcet-consistent voting rules, she is still able to cast a
second-order risk-free strategic vote.

In this thesis, we regarded higher-order reasoning in one-shot voting and iterative voting as two
completely different mental processes. Nonetheless, they may be more closely related than it
seems. We will illustrate this with an example. Suppose that voter i has a dominant manipulation
of the truthful profile. If a voter is a level-3 reasoner, she thinks that every other voter is a level-2
reasoner, so she thinks that every other agent thinks that she is a level-1 reasoner. In that case,
the other agents will realise that she has a strategic vote and apply their best strategy given her
strategic vote. Now, suppose that there exists an agent j with a parasitising manipulation: he
has a best strategy that results in a winner that is worse than the winner under the truthful
profile, from the perspective of i. Since i is a level-3 reasoner, she realises that in that case, it is
better to not cast the strategic ballot. So, second-order reasoning in iterative voting is in some
way similar to level-3 reasoning in one-shot voting. This observation suggests that manipulation
under higher-order reasoning in one-shot voting and manipulation under higher-order reasoning
in iterative voting are more connected than it seemed, and it might be fruitful to explore which
results can be translated from the one-shot voting setting to the iterative voting setting and vice
versa.

Finally, we discussed a basic notion of strategic communication in which voters are able to share
factual information. We discussed under which conditions a voter has an incentive to share
factual information with other voters. We assumed that a voter only wants to reveal certain
information is she considers it possible that this will stimulate another voter to vote strategically,
in such a way that it is beneficial for the communicator. We showed that in many widely studied
voting situations, no voter has an incentive to communicate. However, these results are not very
intuitive, because in some cases it can definitely be beneficial for a group of voters to try to form
a coalition and coordinate ballots. We realised that the conditions we require in our definition of
an incentive to communicate are too strong to explain communication between agents in general.
In order to get a better understanding of communication in a voting setting, we need to study
more normative models of communication. This requires a model with richer ballot dynamics.
Furthermore, we may have to weaken our assumption that voters are completely risk-averse.
Models of social networks in which socially connected agents influence each other’s opinions
and behaviour should also be explored in more detail, in particular their connection with social
choice theory.

8.2 Directions for future research

This thesis is rich in potential future work. Some possible directions are discussed in the conclud-
ing subsections of the chapters, more general ideas are considered here. First, we should mention
that we have not used the full potential of this model yet. The model allows us to investigate
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more complex forms of partial knowledge, such as scenarios in which not all voters have the
same type of information, and where agents are uncertain about each other’s uncertainty. Future
research could shed light on how higher-order reasoning voter behave in scenarios in which they
do not know what the others know. Another direction would be to focus on more concrete
social choice functions and analyse under which conditions (classes of) social choice functions
are susceptible to manipulation under higher-order reasoning and partial information.

It might also be interesting to delve deeper into manipulation of iterative voting procedures by
agents that are able to predict future steps. In particular, if a voter is able to analyse the outcome
of a convergent iterative voting process, that voter might adapt her manipulative behaviour in
order to affect the final outcome rather than the outcome in the next round. In future work, the
implications for her strategic incentives could be investigated.

To model more dynamic phenomena, it might be useful to look at richer dynamic epistemic
structures that are able to deal with belief revision. Plausibility models (Baltag and Smets, 2008)
are used to represent more nuanced versions of knowledge and belief. In a plausibility model,
every agent composes a plausibility order over the set of states in the model, indicating how
plausible the agent thinks a certain world is relative to another world. New information only
increases or decreases the plausibility of a world, which is a less rigorous update procedure than
the update procedure of the model presented in this thesis. Plausibility models could be useful
to model more dynamics, such as a voter who changes the level of her reasoning or a voter who
strategically spreads a lie.

We established that in many cases, higher-order reasoning agents are able to manipulate the
election. However, it can computationally be very hard to do so. Future research could investigate
the computational complexity of manipulation under higher-order reasoning.

80



Appendix

Proof of Proposition 3.16:
Let M be an epistemic model for strategic voting with actual world s∗. Let UbGi and UHbj
a bGi -manipulation update model and a bHj -manipulation update model for M respectively.
We show that the UbGi ;UbHj is isomorphic to UbGj ;UbHi . Then, by Proposition 3.8, it follows
that M, s � [bGi ][bHj ]ϕ ⇐⇒ M, s � [bHj ][bGi ]ϕ. The non-trivial part is to show that the
postconditions coincide. Let post1 denote the postconditions of UbGi , post2 the postconditions of
UbHj , post12 the postconditions of UbGi ;UbHj and post21 the postconditions of UbHj ;UbGi . Consider
(e1, e

′
1) ∈ UbGi ;UbHj . For any x, y ∈ X and k 6= i, j, we have

post12(e1, e
′
1)(x �bk y) = x �bk y = post21(e′1, e1).

For i, we have that post1(e1)(x �bi y) = > or post2(e1)(x �bi y) = ⊥, and post2(e1)(x �bi y) =
x �bi y for all x, y ∈ X. Hence,

post12(e1, e
′
1)(x �bi y) = post1(e1)(x �bi y) = post21(e′1, e1)(x �bi y)

For j, in the same way we can show that for every x, y ∈ X,

post12(e1, e
′
1)(x �bj y) = post2(e1)(x �bj y) = post21(e′1, e1)(x �bj y)

For the other states (e1, e
′
2), (e2, e

′
1) and (e2, e

′
2) we can show in a similar way that their post-

conditions correspond with the postconditions of states (e′2, e1), (e′1, e2) and (e′2, e2) respectively.

Proof of Proposition 5.7:
As a notational convention, we will write U for Ubii in this proof. For j 6= i, we have S0,j := {sjx |
1 ≤ x ≤ h}. For i, let S0,i := {s | s∗R0

i s}. Then S1,i,s∗ =
⋃
j∈N S

0,j . Recall that SM
0⊗U =

{(sx, e1) | sx ∈ S0} ∪ {(sx, e2) | sx ∈ S0}. We define the following relation R ⊆ S1,i,s∗ × SM0⊗U :

R := {(sx, (sx, e1)) | sx ∈ S0,i} ∪ {(sjx, (sx, e2)) | sx ∈ S0, j 6= i}

We show that R is a bisimulation. First, we show that if (s, (s, e)) ∈ R, then V 1,i,s∗(s) =

VM
0⊗U (s, e). For sx ∈ S0,i:

V 1,i,s∗(sx) = (proj1(V (sx)), (Si(M0, s∗), proj2(V (sx))(−i)))
= (proj1(V (sx)), (bi, proj2(V (sx))(−i)))

= VM
0⊗U (sx, e1).

For sjx ∈ S0,j :
V (sjx) = V 0(sx) = V (sx, e2).
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Next, we show that the forth condition holds. First, we consider R1,i,s∗(i). For sx, sy ∈ S0,i, we
have that sxR0sy by definition of S0,i. Furthermore, since e1RUi e1, we have (sx, e1)RM⊗Ui (sy, e1).
If (sjx, s

j
y) ∈ R1,i,s∗(i), it must hold that sxR0

i sy. We have (sjx, (sx, e2)) ∈ R and (sjy, (sy, e2)) ∈ R.
Since (e2, e2) ∈ RU (i), it follows that (sx, e2)RM

0⊗U
i (sy, e2).

For R1,i,s∗(j), we have two options again: for (sx, s
j
y) ∈ R1,i,s∗(j), it holds that (sx, (sx, e1)) ∈ R

and (sjy, (sy, e2)) ∈ R. We have (sx, sy) ∈ R0(j) by definition of R1,i,s∗(j), and furthermore
(e1, e2) ∈ RU (j). We conclude that (sx, e1)RM⊗Ui (sy, e2). The second case is when for some
voter l 6= i, (slx, s

l
y) ∈ R1,i,s∗(j). In this case, it holds that sxR0

jsy. We have (slx, (sx, e2)) ∈ R
and (sly, (sy, e2)) ∈ R. Since (e2, e2) ∈ RU (j), it follows that (sx, e2)RM⊗Uj (sy, e2).

It is left to show that the back condition holds. For RM⊗U (i), since (e1, e2), (e2, e1) /∈ RU (i),
we either have a relation of the form ((sx, e1), (sy, e1)) for 1 ≤ x, y ≤ h or a relation of the
form ((sx, e2), (s, y, e2)) for 1 ≤ x, y ≤ h. In the first case, it must hold that sxR0

i sy, and
(sx, (sx, e1)) ∈ R and (sy, (sy, e1)) ∈ R for sx, sy ∈ S0,i. By definition of R1,i,s∗(i), it follows
that (sx, sy) ∈ R1,i,s∗(i). In the second case, it must hold that sxR0

i sy, and that (sjx, (sx, e2)) ∈ R
and (sjy, (sy, e2)) ∈ R for sx, sy ∈ S0,i and some j ∈ N . Again, it follows that (sx, sy) ∈ R1,i,s∗(i)
by definition.

Now take j 6= i. For RM⊗U (j), since (e1, e1), (e2, e1) /∈ RU (j), there are two cases: a relation
of the form ((sx, e1), (sy, e2)) or a relation of the form ((sx, e2), (s, y, e2)) for 1 ≤ x, y ≤ h. In
the first case, it must hold that sxR0

jsy. We have (sx, (sx, e1)) ∈ R and for all voters l 6= i,
(sly, (sy, e2)), so in particular (sjy, (sy, e2)) ∈ R. By definition, (sx, s

j
y) ∈ R1,i,s∗(j). In the second

case, it must hold that sxR0
jsy and for all voters l 6= i, (slx, (sx, e2)) ∈ R and (sly, (sy, e2)) ∈ R.

Since sxR0
jsy, it follows that for all voters l 6= i, we have (slx, s

l
y) ∈ R1,i,s∗ .

Proof of Proposition 5.11:
Let M0 be a level-0 model with actual state s∗. For k = 1, take i ∈ N and let G = N or
G = {i}. We consider a model in which i is a level-1-reasoner: M1,G,s∗ . Take s ∈ S1,G,s∗ with
s1,G,s

∗
R1,G,s∗

i s. Then s ∈ S0,i, and hence

bs(i) = proj2(V 1,G,s∗(s))(i)

=
(×
j<i

proj2(V 0(sx))(j)× Si(M0, s∗)××
j>i

proj2(V 0(sx))(j)
)
(i)

=Si(M0, s∗)

=Si({b(−i) | there exists s′ ∈ S0 with s∗Ris′ and M0, s′ � b})
=Si({p(−i) | there exists s′ ∈ S0 with s∗Ris′ and M0, s′ � p}) (by definition of M0)

=Si({p(−i) | there exists t ∈ S1,G,s∗ with s1,G,s
∗
R1,G,s∗

i t and M1,G,s∗ , t � b})
(since the preferences that i considers possible do not change)

=Si({b(−i) | there exists t ∈ S1,G,s∗ with s1,G,s
∗
R1,G,s∗

i t and M1,G,s∗ , t � b}) (i is a level-1 reasoner)

=Si(M1,G,s∗)

For k > 1, let i ∈ N and consider Mk,G,s∗ with G = {i} or G = N and actual state sk,G,s
∗
. Let

82



s ∈ Sk,G,s∗ such that sk,G,s
∗
Rk,G,s

∗

i s. Then we have:

bs(i) = proj2(V k,G,s
∗
(s))(i)

=
(×
j<i

Sj(Mk−1,j,t, sk−1,j,t)× Si
( ⋃
t′∈S0,i

×
j 6=i
Sj(Mk−1,j,t′ , t′),ps∗(i)

)
××
j>i

Sj(Mk−1,j,t, sk−1,j,t)
)
(i)

= Si
( ⋃
t′∈S0,i

×
j 6=i
Sj(Mk−1,j,t′ , t′),ps∗(i)

)
= Si

( ⋃
t′∈S0,i

proj2(V k,G,s
∗
(t′))(−i),ps∗(i)

)
= Si({proj2(V k,G,s

∗
(t′))(−i) | t′ ∈ S0,i},ps∗(i))

= Si({proj2(V k,G,s
∗
(t′))(−i) | t′ ∈ Sk,G,s

∗
with sk,G,s

∗
Rk,G,s

∗

i t′},ps∗(i))
= Si(Mk,G,s∗ , sk,G,s

∗
).

So, we have that Si(Mk,G,s∗ , sk,G,s
∗
) = bs(i), and hence it holds that i has an incentive if and

only if Si(Mk,G,s∗ , sk,G,s
∗
) 6= ps∗(i).

Proof of Theorem 5.16:
Let F be a social choice function and let M0 be a level-0 model with actual state s∗ such that
voter i has a first-order incentive to manipulate. This means that

Si(M1,i,s∗ , s1,i,s
∗
) 6= ps∗(i).

Now let k ∈ N and suppose that F is immune to manipulation under level-k reasoning. This
means that in particular, for any s ∈ S0 and any j ∈ N , the j-level-k model Mk,j,s based on
M0 and with actual world sk,j,s, is immune to manipulation. In other words, for all j ∈ N , and
all s ∈ S0,

Sj(Mk,j,s, sk,j,s) = ps(j).

Now considerMk+1,i,s∗ with actual world sk+1,i,s∗ . We show that i has a (k+1)th-order incentive
to manipulate by proving that

Si(Mk+1,i,s∗ , sk+1,i,s∗) 6= ps∗(i).

We have

Si(Mk+1,i,s∗) =Si({(proj2(V k+1,i,s∗(t))(−i) | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t}
=Si

(
{×
j 6=i
Sj(Mk,j,t, sk,j,t | t ∈ Sk+1,i,s∗ with sk+1,i,s∗Rk+1,i,s∗t},ps∗(i)

)
=Si

(
{×
j 6=i
Sj(Mk,j,t, sk,j,t | t ∈ S0,i},ps∗(i)

)
=Si

(
{×
j 6=i
pt(j) | t ∈ S0,i},ps∗(i)

)
(since F is strategyproof under level-k reasoning)

=Si
(
{pt(−i) | t ∈ S0,i},ps∗(i)

)
=Si

(
M1,i,s∗ , s1,i,s

∗)
6=ps∗(i) (since i has a first-order incentive to manipulate).

We conclude that i has a (k+ 1)th-order incentive to manipulate, and hence that F is susceptible
to manipulation under level-k + 1 reasoning.
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