
Surreal Blum-Shub-Smale Machines

Lorenzo Galeotti1,2,3

1 Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg,
Germany

2 Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Postbus 94242, 1090 GE Amsterdam, The Netherlands

3 Amsterdam University College, Postbus 94160, 1090 GD Amsterdam, The
Netherlands

Abstract. Blum-Shub-Smale machines are a classical model of com-
putability over the real line. In [9], Koepke and Seyfferth generalised
Blum-Shub-Smale machines to a transfinite model of computability by
allowing them to run for a transfinite amount of time. The model of
Koepke and Seyfferth is asymmetric in the following sense: while their
machines can run for a transfinite number of steps, they use real num-
bers rather than their transfinite analogues. In this paper we will use the
surreal numbers in order to define a generalisation of Blum-Shub-Smale
machines in which both time and register content are transfinite.

1 Introduction

In 1989 Blum, Shub and Smale introduced a model of computation to study
computability over rings; see [1]. Of particular interest for us is the notion of
computability that Blum-Shub-Smale machines (BSSM) induce over the real
numbers. A BSSM for the real numbers is a register based machine in which each
register contains a real number. A program for such a machine is a finite list of
commands. Each command can be either a computation or branch command.
The execution of a computation command allows the machine to apply a rational
function to update the content of the registers. A branch command, on the other
hand, leaves the content of the registers unchanged and allows the machine to
apply a rational function to some register and execute a jump based on the result
of this operation, i.e., to jump to a different point of the code if the result is 0
and to continue the normal execution otherwise.

In [9, 11], Koepke and Seyfferth defined the notion of infinite time Blum-
Shub-Smale machine that is a generalised version of Blum-Shub-Smale machines
which can carry out transfinite computations over the real numbers.

Infinite time Blum-Shub-Smale machines work essentially as standard BSSMs
at successor times apart from the fact that, contrary to classical BSSMs, they
can only apply rational functions with rational coefficients1. At limit stages an

1 A stronger version of infinite time Blum-Shub-Smale machines could be obtained by
allowing infinite time Blum-Shub-Smale machines to use rational functions with real
coefficients, but this was not done in [11].

infinite time Blum-Shub-Smale machine computes the content of each register
by taking the limit over the real line of the values that the register assumed at
previous stages (if this exists); and updates the program counter to the inferior
limit of its values at previous stages. The theory of infinite time Blum-Shub-
Smale machine was further studied in [7].

Infinite time Blum-Shub-Smale machines provide an asymmetric generalisa-
tion of BSSMs. In particular, while infinite time Blum-Shub-Smale machines are
allowed to run for arbitrary transfinite time, they are using real numbers, a set
that can be very small compared to the running times. It is then natural to ask
whether a symmetric notion can be defined.

The first problem in doing so is, as usual in this context, that of finding a
suitable structure which one can use in place of the real line in the generalised
context. As we will see, the surreal numbers, a very general number system
which contains both real and ordinal numbers, will provide a natural framework
to develop this generalised theory.

In this paper, we will introduce a generalised version of Blum-Shub-Smale
machines based on surreal numbers and we will show some preliminary results
of the theory of these machines.

2 Surreal Numbers

The surreal numbers were introduced by Conway in order to give a mathematical
definition of the abstract notion of “number”. In this section we will present basic
results on surreal numbers; see [2, 5] for a detailed introduction. A surreal number
is a function from an ordinal α to {+,−}, i.e., a sequence of pluses and minuses
of ordinal length. We denote the class of surreal numbers by No. The length of
a surreal number x (i.e., its domain) is denoted by `(x).

For surreal numbers x and y, we define x < y if there exists α such that
x(β) = y(β) for all β < α, and x(α) = − and either α = `(y) or y(α) = +, or
α = `(x) and y(α) = +.

In Conway’s original construction, every surreal number is generated by filling
some gap in the previously generated numbers. The following theorem connects
this intuition to the surreal numbers as we have defined them. First, given sets
of surreal numbers X and Y , we write X < Y if for all x ∈ X and y ∈ Y we
have x < y.

Theorem 1 (Simplicity theorem). If L and R are two sets of surreal numbers
such that L < R, then there is a unique surreal x of minimal length such that
L < {x} < R, denoted by [L|R]. Furthermore, for every x ∈ No we have x =
[Lx|Rx] for Lx = {y ∈ No ; x > y∧y ⊂ x} and Rx = {y ∈ No ; x < y∧y ⊂ x}.

Given two subsets L and R of surreal numbers such that L < R, we will call
the pair (L,R) a cut. For any surreal number x ∈ No we define the canonical
representation of x as the cut (Lx, Rx).

Using the simplicity theorem Conway defined the field operations +s, ·s, −s,
and the multiplicative inverse over No and proved that these operations satisfy

the axioms of real closed fields; see [2, 5]. Moreover, Ehrlich proved that No is
the universal class real closed field in the sense that every real closed field is
isomorphic to a subfield of No; cf., e.g., [3].

3 Generalising Infinite Time BSSMs

The main goal of this paper is to introduce a notion of register machine which
generalises infinite time Blum-Shub-Smale machines in order to allow them to
work with arbitrary transfinite space. To do so we want to make our machines
able to perform transfinite computations over surreal numbers.

A very natural approach to this problem would be to allow infinite time Blum-
Shub-Smale machine registers to store surreal numbers keeping the behaviour of
the machine the same. This means that at successor stages the machine will still
be allowed to either branch or apply a rational function with surreal coefficients
to the registers. At limit stages the machine would have then to use limits2

over No to compute the contents of the registers. Unfortunately this approach
does not work: one can show that if a totally ordered field3 K has cofinality
κ > ω, then every non-eventually constant sequence of length <κ diverges in K.
Similarly for surreal numbers we have the following result:

Lemma 2 (Folklore). For every ordinal α, every non-eventually constant se-
quence of length α of surreal numbers diverges.

The previous result tells us that the classical notion of limit is not the right
notion in the context of transfinite computability over a field. Note that the phe-
nomenon of diverging sequences is not a special feature of the surreal numbers,
but follows from the basic theory of ordered fields. Thus, any generalisation of
the theory of BSSMs to a non-archimedean field would need to deal with this
issue.

4 Surreal Blum-Shub-Smale machines

A surreal Blum-Shub-Smale machine (SBSSM) is a register machine. Since, as we
will see, the formal definition of SBSSMs is quite involved, let us start by giving
a brief informal explanation of how they work. There are two different types
of registers in our machines: normal registers and Dedekind registers. Normal
registers are just registers that contain surreal numbers; as we will see, the
machine can write and read normally from these registers. Dedekind registers on
the other hand are a new piece of hardware. Each Dedekind register R can be
thought of as to have three different components SL, SR, and R. The components

2 By this we mean the notion of limit coming from the order topology over No.
3 A totally ordered field is a field together with a total order ≤ such that for all x, y,

and z, we have that if x ≤ y, then x + z ≤ y + z, and if x and y are positive, then
x · y is positive. The cofinality of an ordered field is the least cardinal λ such that
there is a sequence of length λ cofinal in the field.

SL and SR called left and right stack of R, respectively, can be thought of as two
possibly infinite stacks of surreal numbers. The last component R of the register
can be thought as a normal register whose content is automatically updated by
the machine to the surreal [SL|SR]. Note that it could be that SL 6< SR; in this
case we will assume that the machine crashes.

A SBSSM is just a finite set of normal and Dedekind registers. A program
for such a machine will be a finite linear sequence of commands. As for BSSMs
there are two types of commands:
Computation: the machine can apply a rational function to a normal register
or to a Dedekind register and save the result in a register (either Dedekind or
normal) or in a stack.
Branch: the machine can check if the content of a normal register or of a
Dedekind register is bigger than 0 and perform a jump based on the result.

In each program we should specify two subsets of the set of normal registers;
one that will contain the input of the program, and the other that will contain
the output of the program.

A surreal Blum-Shub-Smale machine will behave as follows: at successor
stages our machine just executes the current command and updates content
of stacks, registers, and program counter accordingly. At limit stage α, the pro-
gram counter is set using lim inf as for infinite time Blum-Shub-Smale machines;
the content of each normal register is updated as follows: if the content of the
register is eventually constant with value x, then we set the value of the register
to x; otherwise we set it to 0. For Dedekind registers we proceed as follows: if
from some point on the content of the stacks is constant, we leave the content of
the stacks, and therefore the content of the register, unchanged. If the content
of the stacks is not eventually constant but from some point β < α on there is
no computation instruction whose result is saved in the register, then we set the
value of each stack to the union of its values from β on, and we set the content
of the register accordingly. If none of the previous cases occurs, then we set the
content of the register to 0 and empty the stacks.

We are now ready to give a formal definition of surreal Blum-Shub-Smale
machine.

Given two polynomials p, q ∈ No[X0, . . . , Xn], we will call p(X0,...,Xn)
q(X0,...,Xn)

a formal

polynomial quotient over No in n+ 1 variables.

Let n ∈ N and F : Non+1 → No be a partial class function. Then, we say
that F is a rational map over No if there are polynomials in n+1 variables p, q ∈
No[X0, . . . , Xn] such that F (s0, . . . , sn) = p(s0,...,sn)

q(s0,...,sn)
for each s0, . . . , sn ∈ No. In

this case, we will say that p(X0,...,Xn)
q(X0,...,Xn)

is a formal polynomial quotient defining

F .

Denote by
−→
X the set of finite tuples of variables of any length. Then, we

will denote by No(
−→
X) the class of formal polynomials quotients over No in any

number of variables. Given a subclass K of No(
−→
X) and a partial class function

F : Nom+1 → No with m ∈ N, we will say that F is in the class K, in symbols
F ∈ K, if there is a formal polynomial quotient in K defining F . Finally, given

a subclass K of No we will denote by K(
−→
X) the the class of formal polynomial

quotients with coefficients in K.

Definition 3. Let N and D be two disjoint sets of natural numbers, I and O be
two disjoint subsets of N, and K be a subclass of No. A (N,D, I, O,K)-SBSSM
program P is a finite sequence (C0, . . . , Cn) with n ∈ N such that for every
0 ≤ m ≤ n the command Cm is of one of the following types:

1. Computation Ri:=f(Rj0 , . . . , Rjm) were f : Non+1 → No is a map in K(
−→
X)

and i ∈ (N \ I) ∪D and j0, . . . , jm ∈ N ∪D.
2. Stack Computation Pushd(Ri, Rj) were i ∈ D, j ∈ N ∪D and d ∈ {L,R}.
3. Branch if Ri then j were i ∈ N ∪D and j ≤ n.

The sets N and D are the sets of normal and Dedekind registers of our program,
respectively; and, I and O are the sets of input and output registers, respectively.
When the registers are irrelevant for the argument we will omit, N, D, I, and

O and call P a K(
−→
X)-SBSSM program.

Definition 4. Let N and D be two disjoint sets of natural numbers, the sets
I = (i0, . . . , im) and O = (i0, . . . , im′) be two disjoint subsets of N, K be a
subclass of No, and P = (C0, . . . , Cn) be a (N,D, I, O,K)-SBSSM program.
Given x ∈ Nom+1 the SBSSM computation of P with input x is the transfinite
sequence4

(RN(t), SL(t), SR(t),PC(t))t∈θ ∈ (NoN × ℘(No)D × ℘(No)D × ω)θ

where

1. θ is a successor ordinal or θ = On;
2. PC(0) = 0;
3. RN(0)(ij) = x(j) if ij ∈ I and RN(0)(i) = 0 otherwise;
4. for all i ∈ D we have SL(0)(i) = SR(0)(i) = ∅;
5. if θ = On then for every t < θ we have 0 ≤ PC(t) ≤ n. If θ is a successor

ordinal PC(θ − 1) > n and for every t < θ − 1 we have 0 ≤ PC(t) ≤ n;
6. for all t < θ for all j ∈ D we have SL(t)(j) < SR(t)(j);
7. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = Ri:=f(Rj0 , . . . , Rjn) then

PC(t + 1) = PC(t) + 1 and: RN(t + 1)(i) = f(c(j0), . . . , c(jn)) if i ∈ N,
(SL(t+1)(i), SR(t+1)(i)) is the canonical representation of f(c(0), . . . , c(n))
if i ∈ D, where for every m < n c(m) := [SL(t)(jm)|SR(t)(jm)] if jm ∈ D,
and c(m) := Rjm otherwise.

8. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = Pushd(Ri, Rj) then PC(t +

1) = PC(t) + 1 and Sd(t + 1)(i) := RN(t)(j) if j ∈ N; Sd(t + 1)(i) :=
[SL(t)(j)|SR(t)(j)] if j ∈ D. The rest is left unchanged in t+ 1;

9. for every t < θ if 0 ≤ PC(t) ≤ n and CPC(t) = if Ri then j then:
PC(t + 1) := j if i ∈ N and RN(t)(i) > 0; PC(t + 1) := j if i ∈ D and
[SL(t)(i)|SR(t)(i)] > 0; PC(t + 1) := PC(t) + 1 if i ∈ N and RN(t)(i) ≤ 0;
and, PC(t + 1) := PC(t) + 1 if i ∈ D and [SL(t)(i)|SR(t)(i)] ≤ 0. The rest
is left unchanged in t+ 1;

4 By abuse of notation we write ℘(No) for the class of subsets of No.

10. for every t < θ if t is a limit ordinal then: PC(t) = lim infs<t PC(s), for
every i ∈ N we let RN(t)(i) := RN(t′)(i) if there is t′ such that ∀t > t′′ >
t′RN(t′)(i) = RN(t′′)(i); RN(t)(i) := 0 if there is no such a t′.
For all i ∈ D, if there are t′L and t′R smaller than t such that for every
t′L < t′′L < t and t′R < t′′R < t we have SL(t′′L)(i) = SL(t′L)(i) and SR(t′′R)(i) =
SRL(t′R)(i) we have SL(t)(i) = SL(t′L)(i) and SR(t)(i) = SR(t′R)(i). Other-
wise, let Ut,i := {t′′ < t | ∀t′′ ≤ t′ < t(CPC(t′) = Rj :=f(Rj0 , . . . , Rjn) → i 6=
j)}. Then SL(t)(i) =

⋃
t′∈Ut,i S

L(t′)(i) and SR(t)(i) =
⋃
t′∈Ut,i S

R(t′)(i).

If θ is a successor ordinal, we say that P halts on x with output y := (RN(θ −
1)(i))i∈O and write P (x) = y.

In the previous definition, for each α ∈ θ and i ∈ N, RN(α)(i) is the content of
the normal register i at the αth step of the computation; similarly, SL(α)(i) and
SR(α)(i) are the sets representing the left and the right stack of the Dedekind
register i; moreover, PC(α) is the value of the program counter. Items 2, 3, and
4 describe the initialisation of the machine. In particular, the program counter is
set to 0, each normal register but the input registers are initialised to 0, the input
registers are initialised to x, and each stack is emptied. Item 5 ensures that the
program counter assumes correct values and that the computation stops. Items
7, 8, and 9 describe the semantics of the instructions according to our previous
description. Finally, item 10 describes the behaviour of the machine at limit
stages according to the description we gave before.

Definition 5. Let n,m ∈ N and F : Non → Nom be a (partial) class function

over the surreal numbers and K a subclass of No. Then we say that F is K(
−→
X)-

SBSSM computable iff there are N,D, I, O ⊂ N with |I| = n, |O| = m and
there is a (N,D, I, O,K)-SBSSM program P such that for every n-tuple x of
surreal numbers we have that: if F (x) = y then P (x) = y, and if x /∈ dom(F)
then P (x) does not halt. Moreover, we say that F is SBSSM computable if it is

No(
−→
X)-SBSSM computable.

As show in [7], infinite time Blum-Shub-Smale machines can only compute
reals in the ωωth level Lωω of constructible universe. Since R is a subfield of

No, every constant real function is R(
−→
X)-SBSSM computable. Therefore, our

SBSSM machines are stronger than infinite time Blum-Shub-Smale machines.
Note that the hardware of our machines in principle does not allow a di-

rect access to the sign sequence representing a surreal number, e.g., there is no
instruction which allows us to read the αth sign of a surreal in the register i.

Lemma 6. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, the

following functions are K(
−→
X)-SBSSM computable:

1. The function Lim that given an ordinal number α returns 1 if α is a limit
ordinal and 0 otherwise;

2. Gödel’s pairing function g : On×On→ On;

3. The function sgn : No × On → {0, 1, 2} that for every α ∈ On and s ∈ No
returns 0 if the 1 +αth5 sign in the sign expansion of s is −, 1 if the 1 +αth
sign in the sign expansion of s is + and 2 if the sign expansion of s is shorter
than 1 + α;

4. the function seg : No × On → No that given a surreal s and an ordinal
α ∈ dom(s) returns the surreal whose sign sequence is the initial segment of
s of length α.

5. The function cng : No × On × {0, 1} → No that given a surreal s ∈ No,
sgn ∈ {0, 1} and α ∈ On such that α < dom(s) returns a surreal s′ ∈ No
whose sign expansion is obtained by substituting the 1 + αth sign in the
expansion of s with − if sgn = 0 and with + if sgn = 1;

Proof. For the first item, the algorithm is illustrated in Alg.4.
For the second item of the lemma, note that there is an algorithm that, given

an ordinal γ, computes the 1+γth pair (α, β) in the ordering given by the Gödel
map; see Alg.1. Now, to compute the value of the Gödel map for the pair (α, β)
our algorithm can just start generating pairs of ordinals in the order given by
the Gödel map using the algorithm in Alg.1 until the pair (α, β) is generated.

For the third item, it is enough to note that there is a program that can go
through the surreal tree No using s as a guide. The pseudo algorithm for such a
program is illustrated in Alg.2.

For fourth item, note that in Alg.2 at each step α, the register Curr contains
the surreal whose sign sequence is the prefix of the sign sequence of s of length
α.

Finally for fifth item, note that, by using fourth item of the lemma, one can
easily compute s′ by using a Dedekind register. The algorithm is illustrated in
Alg.3.

By interpreting 0 as − and 1 as +, every binary sequence corresponds naturally
to a surreal number. Therefore, we can represent the content of a tape of Turing
machines, infinite time Turing machines (ITTMs), and ordinal Turing machines
(OTMs) as a surreal number. Lemma 6 tells us that we can actually access this
representation and modify it.

5 Computational power of surreal Blum-Shub-Smale
machines

Now that we introduced a notion of computability over No, we shall compare
our new model of computation with classical and transfinite models of compu-
tation. In this section, we will assume that the reader is familiar with the basic
definitions of classical computability theory, infinite time Turing machines com-
putability theory, and ordinal Turing machines computability theory; see, e.g.,
[6, 8].

5 In this sentence 1 + α should be read as the ordinal addition so that for α ≥ ω we
have 1 + α = α.

Given a class C and a set X we will denote by X<C the class of functions
whose domain is in C and codomain is X. Let α be an ordinal, X be a set, and
C be a class. Given a sequence (wβ)β<α of elements in X<α, we define [wβ]β<α
to be the concatenation of the wβs.

We start by fixing a representation of binary sequences in No. Let ∆ : No→
2<On be such that for all s ∈ No, ∆(s) is the binary sequence of length dom(s)
obtained by substituting each + in s by a 1 and each − by a 0.

Definition 7. Given a partial function f : 2<On → 2<On and a class of rational

functions K(
−→
X) we say that f is K(

−→
X)-SBSSM computable if there is a K(

−→
X)-

SBSSM program which computes the surreal function F such that f = ∆ ◦ F ◦
∆−1.

As we will see, if K is a subclass of No containing {−1, 0, 1} then K(
−→
X)-

SBSSMs are very powerful. In order to show this, we will now begin by proving
their capability of simulating all the most important classical models of transfi-
nite computation. Using Lemma 6 it is immediate to see that if K is a subclass
of No such that {−1, 0, 1} ⊆ K, then every function computable by an ordinary

Turing machine is K(
−→
X)-SBSSM computable; moreover, the classical halting

problem is K(
−→
X)-SBSSM computable.

The following notion was introduced by Hamkins and Lewis in [6] and further
studied by several authors; see, e.g., [12]. An ordinal α is clockable if there is an
ITTM which runs on empty input for exactly α steps. We will denote by λ the
supremum of the clockable ordinals.

Theorem 8. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every

ITTM-computable function is K(
−→
X)-SBSSM computable. Moreover, if λ ∈ K,

then the halting problem for ITTMs is K(
−→
X)-SBSSM computable.

Proof. We will assume that our ITTM has only one tape; a similar proof works
in the general case. We call a snapshot of an execution of an ITTM at time α a
tuple (T (α), I(α), H(α)) ∈ {0, 1}ω×ω×ω where T (α) is a function representing
the tape content of the ITTM at time α, I(α) is the state of the machine at
time α, and H(α) is the position of the head at time α. We know that we can
code T (α) as a sign sequence of length ω. Moreover, at the successor stages,
by Lemma 6, we can modify this sequence in such a way that the result is a
sign sequence in Noω coding the ITTM tape after the operation is performed.
Moreover, we know that there is a bound, λ, to the possible halting times of an
ITTM. Therefore, we can code the list of the T (α) in the snapshots of an ITTM
as a sequence of pluses and minuses length λ; hence, as a surreal number of

the same length. Consider the K(
−→
X)-SBSSM program that uses two Dedekind

registers T and S, and two normal registers I and H. The first Dedekind register
is used to keep track of the tapes in the snapshots, the second Dedekind register
is used to keep track of how many ITTM instructions have been executed, the
register I is used to keep track of the current state of the ITTM, and the register
H to keep track of the current head position.

At each step α, if S is a successor ordinal, the program first copies the last
ω-many bits of T into a normal register R; then, executes the instruction I with
head position6 (ω × S) +H on the string sequence of T writing the result in R.
Then, the program computes the concatenation sα of T and R; and pushes the
canonical representation of sα into the stacks of T . Since for all β < α, the sign
sequence of sβ is an initial segment of sα, T will contain

⋃
β∈α sα at limit stages.

Now, if S is a limit, the program first computes the content of R as the point-
wise lim inf of the snapshots in T . Note that this is computable. Indeed, suppose
that the program needs to compute the lim inf of the bit in position i; then it
can just look sequentially at the values of the snapshots at i and if it finds a 0
at i in the αth snapshot it pushes α−1 into the left stack of a Dedekind register
R′. Once the program has looked through all the snapshots, it will compute the
lim inf of the cell in position i as 0 if R′ = S and as 1 otherwise. Then, the
program will set H to 0 and I to the special limit state and continue the normal
execution. This ends the first part of the proof.

Now, assume that λ ∈ K. Note that the K(
−→
X)-SBSSM program we have

just introduced can simulate the ITTM and check after the execution of every
ITTM step that S < λ. If at some point the program simulates λ-many steps of
the ITTM, i.e., S ≥ λ, the program will just halt knowing that the ITTM can
not halt.

Since, by [11, Lemma 5], ITTMs can decide the halting problem of infinite
time Blum-Shub-Smale machines we get:

Corollary 9. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every

function computable by an infinite time Blum-Shub-Smale machine is K(
−→
X)-

SBSSM computable and the halting problem for infinite time Blum-Shub-Smale

machine is K(
−→
X)-SBSSM computable.

Proof. This follows from Theorems 8 and from the fact that ITTM can simulate
and decide the halting problem of infinite time Blum-Shub-Smale machines; see
[9, Lemma 5].

As shown in [8, Lemma 6.2], every OTM computable real is in the con-
structible universe L. Therefore, if V 6= L, we have that the notions of OTM

and R(
−→
X)-SBSSM computability do not coincide. As usual we will denote by

ZFC the axioms of set theory with the Axiom of Choice.

Lemma 10. If ZFC is consistent, so is ZFC+“there is a function that is R(
−→
X)-

SBSSM computable but not OTM computable”.

Proof (Lemma 10). Let V[G] be the forcing extension of V obtained by adding a

Cohen real r. Then the constant function F : x 7→ r is R(
−→
X)-SBSSM computable.

But, since from [8, Lemma 6.2] OTMs only compute elements of L, we have that
F is not OTMs computable.

6 Once again the operations in (ω×S) +H must be interpreted as ordinal operations.

Theorem 11. Let K be a subclass of No such that {−1, 0, 1} ⊆ K. Then, every

OTM computable partial function f : 2<On → 2<On is K(
−→
X)-SBSSM com-

putable.

Proof. We will assume that our machine has two tapes, one read-only input tape
and an output tape; the general case follows.

Our program will be very similar to the one we used for ITTMs. For this
reason, we will mostly focus on the differences.

The main difference is that, while for ITTM we can just save the sequence
of tape snapshots, for OTM we cannot simply do that because the tape has
class length. The problem can be solved by padding. Given a binary sequence
b := [bβ]β∈α where bβ ∈ {−,+} for each β < α, let bp be the sequence obtained
by concatenating the sequence [+bβ+]β∈α with the sequence −−. We call bp the
padding of b. With this operation, we can now save the initial meaningful part
of the OTM tape in a register.

The program has four Dedekind registers T , S, Hi, Ii, and two normal reg-
isters H and I. As for ITTMs, the Dedekind register T is used to keep track
of the tapes in the snapshots; the Dedekind register S is used to keep track of
how many OTM instructions have been executed; the register I is used to keep
track of the current state of the OTM; and the register H to keep track of the
current head position. Note that, since at limit stages the head position and the
state of the machine need to be set to the lim inf of their previous contents, we
added the Dedekind registers Hi and Ii to keep track of the histories of H and
I, respectively.

The registers T , Hi and Ii are really the main difference between this pro-
gram and the one we used to simulate ITTM. At each stage, T will contain the
concatenation of the paddings of the previous configurations of the OTM tape.
Note that the sequence −− works as a delimiter between one snapshot and the
next one. Also, since we cannot save all the OTM tape, each time we will just
record the initial segment of the OTM tape of length S, i.e., the maximum
portion we could have modified.

If S := α + 1, the program first copies the last snapshot in T to a normal
register sα removing the padding. At this point, the program can just simulate
one step of OTM and then compute the padding spα of sα, and push the standard
representation of spα in T .

Now, the program will take the content of Hi, and will compute the surreal
number hα whose sign sequence is Hi followed by H minuses and one plus. Then,
the program will push the canonical representation of hα into the stacks of Hi.
Similarly for I, the program will take the content of Ii, and will compute the
surreal number iα whose sign sequence is Ii followed by Ii minuses and one plus.
Then, the program will push the canonical representation of iα into the stacks
of Ii.

Again, note that, as for ITTMs, at limit stages T , Hi and Ii will contain the
concatenation of the padded snapshots of the tape, H and I, respectively.

If S is a limit ordinal, with a bit of overhead due to padding, the program
can compute the pointwise lim inf of the tape. It is not hard to see that this

operation is a minor modification of the one used for ITTMs. Note that, in this
case, not all the bits will be present in every snapshot; if we want to compute
the ith bit of the limit snapshot we will have to start computing the lim inf from
the ith snapshot in T . The rest is essentially the same as what we did for ITTM
case. Then, the program will compute the content of I using Alg.5; and, using
Hi and Ii, it can compute the lim inf of H only considering the stages where I
was the current state. Then, the program can proceed exactly as in the successor
case.

As we have seen so far, if K is a subclass of No such that {−1, 0, 1} ⊆ K

then K(
−→
X)-SBSSMs are at least as powerful as OTMs. It turns out that, if

K = {−1, 0, 1}, the two models of computation are actually equivalent; see
Theorem 14.

As shown in [4], via representations it is possible to use OTMs to induce a
notion of computability over surreal numbers. We will take the same approach
here.

Let δNo : 2<On → No be the function that maps each surreal number to
a binary sequence as follows: δNo(p) = q iff p is a binary sequence of length
2 × `(q) + 2, such that p = [wα]α∈`(q)+1 where: wα := 00 if α ∈ dom(q) and
q(α) = − and, wα := 11 if α ∈ dom(q) and q(α) = +, and w`(q) := 01.

To avoid unnecessary complications, in the following we will only deal with
unary surreal functions.

Definition 12. Given a partial function F : No→ No, we say that F is OTM
computable if there is an OTM program that computes the function G such that
F = δNo ◦G ◦ δ−1No .

Note that the function δNo is essentially7 an extension to the class of surreal
numbers of the function δQκ introduced in [4]. From this fact, and from the
fact that, as shown in [4, Lemma 9 & 10], OTMs are capable of computing
surreal operations and convert back and forth from cut representation to sign

sequences, it is easy to see that OTMs and {−1, 0, 1}(
−→
X)-SBSSM have the same

computational strength.

Theorem 13. Let K be a subclass of OTM computable elements of No, i.e.,
such that for every s ∈ K the sequence δ−1No (s) is computable by an OTM with

no input. Then, every K(
−→
X)-SBSSM computable function is OTM computable.

In particular, every {−1, 0, 1}(
−→
X)-computable function is OTM computable.

Proof. It is enough to note that rational functions and the behaviour of Dedekind
registers can be simulated by an OTM. Moreover, note that our representation

7 The class function δNo is not literally an extension of δQκ just because in [4] we
assumed dom(δQκ) ⊂ 2κ rather than dom(δQκ) ⊂ 2<κ. This does not make much of
a difference in our algorithms as far as we have a marker for the end of the code of
the sign sequence (i.e., the last two bits in the definition of δNo).

function for surreals is the extension of δQκ introduced in [4] to the all class of
surreals.

Using the algorithms that we have introduced in [4, Lemma 9] and [4, Lemma
10] to compute the field operations over Qκ, one can see that rational functions
with computable coefficients can be computed. Moreover, again by using the
algorithms in [4, Lemma 10] that convert δQκ into δCutQκ and vice versa, it is
easy to see that each Dedekind register can be simulated. Therefore, since by

assumptions the (codes for) the elements of K are computable, every K(
−→
X)-

SBSSM computable function is OTM computable.

So, {−1, 0, 1}(
−→
X)-SBSSM have the same computational power as OTMs.

Note that, if we enlarge the class of rational functions our machine is allowed
to use, we obtain progressively stronger models of computations. Moreover, it is
easy to see that the class of coefficients allowed in the class of rational functions
acts as a set of parameters on the OTMs side.

Theorem 14. Let K be a subclass of No. Then a partial function F : No→ No

is K(
−→
X)-SBSSM computable iff it is computable by an OTM with parameters in

K.

Proof. For the right to left direction, note that each element of K is K(
−→
X)-

SBSSM computable. Therefore, by using the algorithm in the proof of Theorem

11 we have that, if F is OTM computable with parameters in K, then it is K(
−→
X)-

SBSSM computable. For the other direction, note that, as we have just showed
in Theorem 13, surreal operations and operations of SBSSM which involve com-
putable coefficients are computable. Therefore, it is enough to input to the OTM

the coefficients of the rational functions involved in the K(
−→
X)-SBSSM algorithm

in order to make the OTM capable of computing F . Therefore, F : No → No
will be OTM computable with parameters in K as desired.

Corollary 15. Every partial function F : No → No which is a set is No(
−→
X)-

SBSSM computable.

Proof. Note that F is a sequence of pairs of surreal numbers {(s`β , srβ) | β ∈ α}
for some α ∈ On. Consider the function G := {(∆(s`β), ∆(srβ)) | β ∈ α}. As usual,
using some padding bits, we can code each pair in G as a binary sequence. Then,
by using the Gödel function g we can code G as a binary sequence. Therefore,
using ∆ again, G can be coded a surreal number s.

Now, given a surreal s′, our program can just go through the coding of G
using the functions in Lemma 6 looking for a pair of the form (s′, s′′). Then, the
program will return s′′ in case of success or will diverge otherwise.

In [10], Ethan Lewis defines a notion of computability based on OTMs which
allows for infinite programs. We will call these machines infinite program ma-
chines (IPMs). In [10], Lewis shows that IPMs are equivalent to OTMs with

parameters in 2On. Therefore, Theorem 14 tells us that No(
−→
X)-SBSSM are a

register model for IPMs.

We end this paper by introducing halting sets and universal programs for
our new model of computation. Using classical coding techniques, given a class

of rational functions K(
−→
X), every K(

−→
X)-SBSSM program can be coded as one

(possibly infinite) binary sequence, i.e., a surreal number.
Given two natural numbers n and m, and a subclass K of surreal numbers we

will denote by Pn,m
K the class of (N,D, I, O,K)-SBSSM programs with |I| = n,

|O| = m.
Let K be a class of the surreal numbers. We define the following class8:

Hn,m
K := {(p, s) ∈ No | p is a K(

−→
X)-SBSSM program in Pn,m

K halting on s}.
As usual, we say that a set of surreal numbers is decidable if its characteristic

function is computable.
If we assume that K contains {−1, 0, 1} we can use the code of a program,

together with the fact that OTMs can simulate K(
−→
X)-SBSSM and can be sim-

ulated by K(
−→
X)-SBSSM, to define a universal SBSSM program.

Let N and D be two disjoint sets of natural numbers, I and O be two disjoint
subsets of N, and K be a class of surreal numbers. A (N,D, I, O,K)-SBSSM
program P with |I| = n+ 1 and |O| = m is called universal if for every code p′

of a program in Pn,m
K and for every x ∈ Non we have P (p′, x) = P (x).

A straightforward generalisation of the classical arguments shows the follow-
ing results:

Theorem 16. Let K be a subclass of No containing {−1, 0, 1}. Moroever, let
N,D, I, O ⊂ N be such that: N and D are disjoint; and, I and O are disjoint
subsets of N. Then, there is a universal (N,D, I, O,K)-SBSSM program.

Proof. It is enough to note that any reasonable coding of a K(
−→
X)-SBSSM pro-

gram can be computably translated into a code for an OTM computing the same

function. In particular, note that all the functions in K(
−→
X) used in the program

will be in the code and all the parameters will also be encoded. So our universal
program can start by taking the code of the program and converting it into an
OTM simulation of the corresponding SBSSM program with the coefficients of

the rational functions in K(
−→
X)-SBSSM program as parameters as in Theorem

11. Then, by using the algorithms in Lemma 6, the universal program will com-

pute δ−1No of the input of the K(
−→
X)-SBSSM program; and, as in Theorem 11, it

will simulate the OTM obtained with the translation on the δ−1No of the input.
Finally, the universal program will, again by using the algorithms in Lemma 6,
translate back the output of the OTM using δNo.

Corollary 17. Let K be a subclass of No containing {−1, 0, 1}. Then H1,1
K is

not K(
−→
X)-SBSSM computable.

Proof. Assume that H1,1
K is computable. Then, there is a program P that com-

putes it. Now, consider the program P ′ that converges on x only if (x, x) /∈ H1,1
K .

8 Note that, if K is a set Hn,m
K is also a set.

This program is computable by Theorem 16 and by the assumptions. Now, let
p′ be a code for P ′. We have that, P ′(p′) converges if and only if (p′, p′) /∈ HK

diverges if and only if P ′(p′) diverges.

References

[1] Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21, 1–46 (1989)

[2] Conway, J.H.: On Numbers and Games. A K Peters & CRC Press (2000)
[3] Ehrlich, P.: An alternative construction of Conway’s ordered field No. Algebra

Universalis 25(1), 7–16 (1988)
[4] Galeotti, L., Nobrega, H.: Towards computable analysis on the generalised real

line. In: Kari, J., Manea, F., Petre, I. (eds.) Unveiling Dynamics and Complexity:
13th Conference on Computability in Europe, CiE 2017, Turku, Finland, June
12–16, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10307, pp.
246–257. Springer (2017)

[5] Gonshor, H.: An Introduction to the Theory of Surreal Numbers, London Mathe-
matical Society Lecture Note Series, vol. 110. Cambridge University Press (1986)

[6] Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic
Logic 65, 567–604 (2000). https://doi.org/10.2307/2586556

[7] Koepke, P., Morozov, A.S.: The computational power of infinite time Blum-Shub-
Smale machines. Algebra and Logic 56(1), 37–62 (2017)

[8] Koepke, P.: Turing computations on ordinals. Bulletin of Symbolic Logic 11(3),
377–397 (2005)

[9] Koepke, P., Seyfferth, B.: Towards a theory of infinite time Blum-Shub-Smale
Machines. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) How the World Computes:
Turing Centenary Conference and 8th Conference on Computability in Europe,
CiE 2012, Cambridge, UK, June 18-23, 2012. Proceedings. vol. 7318, pp. 405–415.
Springer (2012)

[10] Lewis, E.: Computation with Infinite Programs. Master’s thesis, ILLC Master of
Logic Thesis Series MoL-2018-14, Universiteit van Amsterdam (2018)

[11] Seyfferth, B.: Three Models of Ordinal Computability. Ph.D. thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn (2013)

[12] Welch, P.D.: The length of infinite time turing machine computations. Bulletin of
the London Mathematical Society 32(2), 129–136 (2000)

Pseudo Algorithms

Algorithm 1: Gödel Map G(α)

Input: Input in R0

Output: Output in R1 and R2

Data: Dedekind Registers: Max, Alpha, Beta, Count
1 0→ Beta
2 0→ Alpha
3 PushL(Beta,Max− 1)
4 if Count = R0 then
5 R1 := Alpha
6 R2 := Beta
7 Stop

8 if Alpha < Max then
9 PushL(Count, Count)

10 if Count = R0 then
11 R1 := Alpha
12 R2 := Beta
13 Stop

14 PushL(Alpha,Alpha)
15 Jump to 8

16 0→ Beta
17 if Beta < Max then
18 if Count = R0 then
19 R1 := Alpha
20 R2 := Beta
21 Stop

22 PushL(Beta,Beta)
23 PushL(Count, Count)
24 Jump to 17

25 if Count = R0 then
26 R1 := Alpha
27 R2 := Beta
28 Stop

29 PushL(Max,Max)
30 PushL(Count, Count)
31 Jump to 1

Algorithm 2: Sign Sequence sgn(s, α)

Input: Input in R1, R2

Output: Output in R0

Data: Dedekind registers: Step, Curr
1 if Curr = R1 then
2 R0 := 2
3 Stop

4 if R1 < Curr then
5 R0 := 0
6 PushR(Curr, Curr)

7 if Curr < R1 then
8 R0 := 1
9 PushL(Curr, Curr)

10 PushL(Step, Step)
11 if Step < R2 then
12 GoTo 1

Algorithm 3: Bit Change cng(s, α, sgn)

Input: Input in R1, R2, R3

Output: Output in R0

Data: Dedekind registers: Step, Curr
1 R0 := Curr
2 if R2 = Step then
3 if R3 = 0 then
4 PushR(Curr, Curr)
5 else
6 PushL(Curr, Curr)

7 if sgn(R1, Step) = 0 ∧R2 6= Step then
8 PushR(Curr, Curr)
9 if sgn(R1, Step) = 1 ∧R2 6= Step then

10 PushL(Curr, Curr)
11 PushL(Step, Step)
12 if sgn(R1, Step) 6= 2 then
13 GoTo 1

Algorithm 4: Limit Ordinal Lim(α)

Input: Input in R1

Output: Output in R0

Data: Dedekind registers: Step
1 if R1 = Step then
2 R0 := 1
3 Stop;

4 if R1 = Step+ 1 then
5 R0 := 0
6 Stop;

7 PushL(Step, Step)
8 Jump 1

Algorithm 5: Liminf Subroutine

Input: Input in Hi
Data: Dedekind registers: Inf , Aus, Step, Step2, Lim, Zero

1 0→ Step
2 0→ Inf
3 0→ Zero
4 if Zero < Step2 ∧ sgn(Hi, Step) 6=⊥ then
5 if sgn(Hi, Step) = + then
6 PushL(Zero, Zero)

7 PushL(Step, Step)
8 Jump 4

9 if Pluses(Hi) = Step2 then
10 Stop

11 if sgn(Hi, Step) = − then
12 PushL(Aus,Aus)
13 PushL(Step, Step)
14 Jump 11

15 if sgn(Hi, Step) = + then
16 PushL(Step, Step)
17 PushR(Inf,Aus+ 1)
18 Aus := 0
19 Jump 11

20 PushL(Lim, Inf − 1)
21 PushL(Step2, Step2)
22 Jump 1

Algorithm 6: Pluses Subroutine

Input: Input in Hi
Data: Dedekind registers: Plus, Step

1 if sgn(Hi, Step) 6=⊥ then
2 if sgn(Hi, Step) = + then
3 PushL(Plus, P lus)

4 PushL(Step, Step)
5 Jump 1

Algorithm 7: CanonicalRep Subroutine

Input: Input in R1

Data: Dedekind registers: Step, H
1 if sgn(R1, Step) 6=⊥ then
2 if sgn(R1, Step) = + then
3 PushL(H, seg(R1, Step))

4 if sgn(R1, Step) = − then
5 PushR(H, seg(R1, Step))

6 PushL(Step, Step)
7 Jump 1

