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Vistas	from	a	drop	of	water	
	
Johan	van	Benthem	

	
“From	a	drop	of	water	a	logician	could	infer	the	possibility	of	an	Atlantic	or	a		

Niagara	without	having	seen	or	heard	of	one	or	the	other.”	Arthur	Conan	Doyle.	
	

1	 What	can	we	learn	from	a	single	fact?	

Can	logicians	infer	a	Niagara	from	a	single	drop	of	water,	as	Conan	Doyle	said?	We	

only	 observe	 singular	 facts.	 Can	 we	 draw	 any	 general	 conclusions	 from	 these?	

Logicians	might	give	answers	like	this.	We	can	never	infer	general	laws	from	singu-

lar	 observations,	 but	 individual	 facts	 can	 refute	 general	 laws,	 bringing	 down	 the	

mighty.		Or	more	precisely,	the	only	general	things	we	can	infer	from	single	facts	are	

pompous	reformulations,	as	in	the	valid	inference	from	Pa	to	∀x	(x	=	a	→	Px).		
	
But	this	cannot	be	the	whole	story.	The	theme	of	inferring	further	new	things	from	

concrete	instances	arises	in	many	places.	Consider	the	‘problem	of	Locke-Berkeley’	

as	discussed	 in	Beth	1959:	how	can	we	 infer	general	geometrical	statements	 from	

the	contemplation	of	a	single	triangle?	Beth	himself	thought	there	was	a	confusion	

here	 that	 is	 easily	dispelled	by	understanding	how	 the	 rule	 of	Universal	Generali-

zation	 functions	 in	 logical	 proof.	 But	 the	 debate	 about	 ‘arbitrary	 objects’,	 ‘generic	

structures’	and	other	ways	 in	which	observing	 typical	objects	can	yield	generality,	

both	in	daily	life	and	in	science,	continues	–	and	logic	can	even	inform	us	about	how	

much	generality	can	be	extracted	from	what	(van	Benthem	1981,	Fine	1985).		
	
In	this	piece,	I	will	ignore	the	generic	object	perspective,	interesting	though	it	is,	and	

focus	on	facts	about	ordinary	situations	and	what	these	can	tell	us	in	general.		
	
To	start	at	base	level,	consider	the	simplest	pattern	of	inference	by	analogy:		
	
	 from	Px,	x	~	y		to	Py.	
	
This	 is	 perhaps	 the	most	 frequent	 occurrence	 of	 reasoning	 in	 practice,	 with	 long	

historical	 credentials	 in	many	 logical	 traditions.	 If	P	 holds	of	 object	 or	 situation	x,	

and	x	 stands	 in	some	suitable	relationship	 to	y,	we	conclude	 that	P	holds	of	y.	But	

what	is	this	relation	~,	and	does	standard	logic	endorse	this	sort	of	inference?		
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For	a	first	illustration,	let	us	simplify	Conan	Doyle’s	ambition	to	just	the	following.		If	

x	is	a	drop	of	water	with	property	P,	what	objects	y	are	sufficiently	connected	to	x	to	

allow	for	the	conclusion	Py?	Various	candidates	come	to	mind.	Topologically,	drops	

of	water	are	isomorphic	to	the	whole	space	they	live	in,	so	the	topological	structure	

we	can	observe	in	the	small	holds	in	the	large.	1	But	of	course,	not	everything	goes:	

specific	metric	assertions	about	the	size	of	the	drop	will	not	transfer.		
	
From	this	brief	and	simplified	formulation	of	the	raindrop	example,	we	can	take	two	

points.	 Transfer	 is	 possible	 when	 there	 is	 enough	 similarity	 between	 situations,	

where	 similarity	 can	be	defined	 in	precise	mathematical	 terms.	But	 crucially	 also:	

what	can	be	transferred	depends	on	our	language	for	describing	properties.	We	will	

discuss	this	combined	perspective	in	Section	2	below.		
	
Our	second	example	comes	from	ancient	Indian	logic	(Bocheński	1961).	Simplifying	

a	 bit,	 we	 are	 at	 the	 foot	 of	 a	mountain,	 a	 situation	where	we	would	 like	 to	 draw	

inferences	 about	 what	 is	 the	 case	 on	 top	 of	 the	 mountain,	 a	 situation	 that	 is	

inaccessible	to	us.	We	see	smoke,	and	we	conclude	that	there	is	a	fire	on	top	of	the	

mountain,	 using	 the	 connecting	 statement	 that	 “smoke	means	 fire”.	 Examples	 like	

this	are	persistent	 in	the	history	of	 logic,	witness	the	following	version	from	Moist	

logic	in	ancient	China	(Liu	&	Zhang	2007).	You	see	an	object	in	a	dark	room,	but	not	

its	color.	You	see	an	object	outside	that	is	white.	Someone	tells	you	the	two	objects	

have	the	same	color.	You	conclude	that	the	object	inside	the	room	is	white.	2	
	
Similar	 examples	 with	 transfer	 from	 actual	 situations	 to	 inaccessible	 situations	

occur	right	in	modern	times	in	situation	theory	(Barwise	&	Seligman	1995).		
	
Examples	 like	 these	do	not	 turn	on	similarity	between	 the	 two	situations	at	 issue.		

To	see	this,	consider	again	the	above	inference	pattern	
	
		 from	Px,	x	~	y		to	Py.	
	
	
                                                
1	The	same	analogy	 inference	even	holds	 for	a	wide	range	of	suitably	stated	material	properties	 if	

one	believes	in	the	well-known	principle	of	Homogeneity	for	the	physical	universe.	
2 The	Chinese	example	was	meant	to	highlight	the	three	types	of	information	coming	together	here:	
observation,	communication,	and	inference	–	but	what	matters	for	us	here	is	the	transfer	pattern.		
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This	 time	 the	 relation	~	 is	different.	What	matters	 to	 the	 information	 flow	and	 its	

admissible	inferences	in	the	second	type	of	scenarios	is	correlation	of	facts	in	situa-

tions,	 or	 in	 more	 general	 settings,	 between	 the	 behavior	 of	 situations	 over	 time.		

This	is	a	serious	alternative	perspective	that	we	will	discuss	in	Section	3	below.	
	
But	there	 is	a	 further	relevant	distinction	to	be	made.	The	preceding	two	perspec-

tives	on	achieving	generality	might	be	called	static,	focusing	on	what	is	the	case.	The	

situation	we	have	access	 to	 satisfies	 some	 fact,	 there	 is	a	 connection	with	another	

situation,	and	the	fact	(or	some	suitably	adapted	variant	of	it)	also	holds	there.	This	

transfer	is	automatic.	But	there	is	also	another,	equally	ubiquitous,	sense	of	learning	

from	truth	 in	single	 instances,	where	we	have	to	do	serious	work,	by	reflecting	on	

the	how.	We	 identify	 the	reason	 for	our	saying	that	some	fact	holds	 in	a	particular	

situation,	and	then	see,	by	reflecting	on	this	reason,	that	it	applies	more	generally.		
	
For	 a	 concrete	 illustration,	 consider	 standard	 game-theoretic	 semantics	 for	 first-

order	logic	(cf.	the	survey	in	van	Benthem	2014).	A	first-order	formula	ϕ	 is	true	in	

model	 M	 with	 variable	 assignment	 s	 iff	 Verifier	 has	 a	 winning	 strategy	 against	

Falsifier	in	the	evaluation	game	for	ϕ	in	(M,	s).	These	winning	strategies	(there	can	

be	more	 than	one)	are	not	 just	 truth	values:	different	winning	strategies	stand	 for	

different	reasons	why	ϕ	is	true	in	M	–	and	described	in	suitable	generic	terms,	they	

can	be	played	elsewhere,	allowing	us	to	see	ϕ	that	holds	in	other	models	as	well.	
	
Now	this	brings	us	 to	a	potential	controversy.	 In	 the	above	 terms,	model	checking,	

testing	whether	a	given	 formula	ϕ	 is	 true	 in	a	given	 finite	model	M,	 starts	 looking	

like	 proof,	 showing	 that	 ϕ	 follows	 from	 premises	Π	 identified	 in	 the	 process	 of	

model	checking.	But	these	things	are	very	different:	a	statement	Π	 |=	ϕ	 tells	us	so-

mething	about	all	models	of	Π.	And	this	difference	also	shows	up	in	computational	

complexity.	For	first-order	logic,	model	checking	is	decidable,	but	testing	for	validi-

ty	 is	 undecidable.	 So,	 our	 jump	 to	 generality	 seems	 to	 disregard	 an	 unavoidable	

serious	barrier	in	complexity:	and	as	we	all	know,	miracles	do	not	happen	in	logic.	3	
	

                                                
3 Model	checking	and	testing	for	validity	do	coincide	for	suitably	weak	sublanguages	of	 first-order	
logic	admitting	minimal	models	(Kolaitis	&	ten	Cate	2015).	Also,	model	checking,	validity	testing	and	

model	construction	get	entangled	in	practical	tasks	(Goranko	2018).	We	ignore	this	line	here. 
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Even	so,	the	interplay	of	semantic	truth	and	proof	is	natural,	and	we	will	take	it	on	

board	as	a	running	theme	in	discussing	transfer	from	the	particular	to	the	general.	
	
It	is	easy	to	identify	further	ways	in	which	singular	facts	can	lead	to	general	conclu-

sions,	especially	if	we	also	consider	inductive	and	abductive	reasoning.	But	we	will	

not	go	there:	our	aim	with	this	article	is	not	to	exhaust,	but	to	instruct	and	alert.	
	
2	 Similarity	and	preservation	

Many	 relations	between	models	 support	 transfer	 of	 properties	 expressed	 in	 some	

matching	language.	A	typical	instance	in	logic	textbooks	is	the		
	
	 Isomorphism	Lemma				If	f	is	an	isomorphism	from	model	M	to	N,			

	 then,	for	all	first-order	formulas	ϕ,					M,	s	|=	ϕ		iff		N,	f•s	|=	ϕ,		

	 where	f•s	is	the	assignment	that	sends	variables	x	to	f(s(x)).		
	
In	fact,	all	standard	logical	systems	have	this	property,	which	is	therefore	one	of	the	

basic	defining	features	of	logical	systems	in	Abstract	Model	Theory.	
	
But	 isomorphic	 images	of	 given	models	 are	not	 all	 that	 interesting,	 since	 they	 are	

really	just	presentations	of	the	very	same	structure	in	different	guise.	Transfer	gets	

more	 interesting	 when	 we	 weaken	 the	 language,	 and	 concomitantly,	 coarsen	 the	

structural	 relation	between	models.	For	 instance,	modal	 formulas	 are	 invariant	 for	

bisimulation,	 a	 much	 less	 demanding	 notion	 of	 structural	 similarity	 than	 isomor-

phism,	which	connects	a	given	model	(M,	 s)	 to	many	more	variants.	And	there	are	

many	further	similarity	relations,	each	coming	with	their	own	special	syntax	for	the	

invariant	structural	properties	(cf.	van	Benthem	2018	for	a	survey).	4		
	
Summarizing	all	of	this,	picture	a	single	model	as	a	radio	transmitter	 in	a	vast	uni-

verse.	Its	truths	transfer	in	circles	around	it,	where	larger	circles	represent	weaker	

similarity	 relations,	 and	what	 gets	 through	 gets	 ever	 less	 detailed,	 requiring	 ever	

more	 restricted,	 less	 expressive	 syntax.	 This	 broadcast	 metaphor	 supports	 gene-

rality	from	individual	facts,	of	the	first	kind	discussed	in	our	introduction.	
	

                                                
4 We	can	even	make	the	similarity	dependent	on	the	particular	formula	ϕ	we	started	with,	deman-
ding	only	structural	equivalence	of	models	up	to	the	quantifier	depth	of	ϕ,	by	playing	Ehrenfeucht-

Fraïssé	games	up	to	a	fixed	finite	length,	or	yet	finer	pebble	versions	thereof	(van	Benthem	2014). 
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But	this	perspective	can	still	be	generalized.	So	 far,	we	considered	equivalences	of	

truth	 between	 models,	 but	 this	 is	 not	 needed	 at	 all.	 The	 standard	 preservation	

theorems	of	 logical	model	theory	tell	us	that	special	syntax	supports	unidirectional	

generality.	For	 instance,	a	positive	sentence	 true	 in	a	model	M	will	 still	hold	 in	all	

homomorphic	images	of	M,	and	many	further	such	preservation	results	exist.		
	
And	going	yet	one	step	further,	there	is	no	need	to	just	have	the	same	formula	trans-

ferred	to	other	situations,	witness	the	following	generalized	notion	of	consequence	

proposed	 in	 Barwise	&	 van	Benthem	1999.	 Let	R	 be	 any	 binary	 relation	 between	

models	(such	as	isomorphism,	bisimulation,	homomorphic	image,	submodel,	...).		
	
	 Formula	ϕ	entails	ψ	along	R	if,	whenever	M	R	N,	and	M	|=	ϕ,	then	N	|=		ψ.		
	
One	 motivation	 for	 this	 goes	 back	 to	 our	 earlier	 examples:	 we	 observe	 ϕ	 in	 our	

actual	situation	M	to	learn	that	ψ	in	some	inaccessible	(but	still	related)	situation	N.	

Standard	logical	consequence	is	then	the	special,	somewhat	timid,	case	of	inference	

where	R	 is	 the	 identity	relation.	Entailment	along	relations	has	 interesting	proper-

ties,	such	as	supporting	new	types	of	interpolation	theorem	for	logical	systems,	but	

these	need	not	detain	us	here.	Our	main	point	is	that	generality	from	similarity	and	

transfer	 is	 entirely	 feasible,	 when	 we	 keep	 a	 clear	 view	 of	 the	 balance	 involved	

between	similarity	relations	and	the	syntax	of	the	observed	individual	facts.	
	
The	 above	 discussion	 of	 the	 broadcast	 setting	 naturally	 shifted	 to	 consequence	

relations,	and	thus,	 it	also	suggests	a	proof-theoretic	perspective.	By	the	complete-

ness	theorems	for	many	logics,	there	is	a	proof	system	for	transfer	consequences	if	

the	model	relation	can	be	defined	in	the	language	of	the	logic.	Whether	this	is	possi-

ble	 depends.	 Definability	 holds	 for	 transfer	 under	 isomorphism	 and	 homomor-

phism	 in	 first-order	 logic,	 but	 the	 crucial	modal	 invariance	 of	 bisimulation	 is	 not	

definable	inside	the	modal	language	(van	Benthem,	ten	Cate	&	Väänänen	2009).	5	
	
A	particular	case	of	definable	cross-model	relations	arises	when	we	think	of	models	

as	situations	that	can	be	changed,	for	instance,	by	update	with	new	information	or	

                                                
5 Axiomatizing	 complete	meta-model-theories	 in	 this	 style	may	 have	 its	 surprises.	 E.g.,	 the	modal	
logic	 of	 bisimulation	 relating	modal	 models	 may	 be	 undecidable:	 the	 back-and-forth	 property	 of	

bisimulation	defines	a	grid	whose	complete	modal	logic	is	known	to	be	of	high	complexity. 



 6 

other	actions.	In	that	case,	the	discussion	of	learning	from	single	situations	acquires	

a	new	flavor,	entangled	with	proof,	which	we	will	discuss	in	Section	4.	
	
3	 Correlation	

Next,	 let	us	 return	 to	 the	Smoke	and	Fire	example	of	our	 Introduction.	Here	some	

different	 logical	structures	emerge.	 In	 the	simplest	case,	we	have	 two	situations	s1	

and	s2,	one	close	to	us,	one	far	away:	there	is	a	fact	p	about	s1	that	we	can	observe,	

and	since	s1	and	s2	are	correlated,	this	tells	us	that	some	other	fact	q	holds	in	s1.		
	
To	model	 this,	we	need	to	think	about	the	 logic	of	correlations	 (cf.	van	Benthem	&	

Martinez	2008,	a	discussion	of	the	great	variety	of	notions	of	 information	found	in	

contemporary	logic).	We	have	a	possibly	large	set	of	situations	or	locations	that	can	

have	various	properties,	and	 there	may	be	constraints	on	 the	occurrence	of	 these:			

in	the	simplest	case,	as	equivalences	p:	s1	↔	q:	s2.	 In	this	setting,	transfer	is	not	by	

similarity,	but	by	constraints	or	correlations	among	situations.		
	
Correlations	can	have	many	sources:	from	ontological	(say,	through	laws	of	nature)	

to	conventional	(say,	notes	played	by	instruments	in	a	performing	a	piece	of	music).	

These	sources	are	not	themselves	logical,	but	there	are	interesting	logical	issues	in	

understanding	correlation.	The	above	equivalence	p:	s1	↔	q:	s2	may	seem	just	brute	

force	stipulation,	but	more	can	be	said	when	we	enrich	the	setting	a	bit.		
	
Consider	a	system	of	many	situations	evolving	 through	time,	where	each	situation	

can	have	or	lose	properties	p,	q,	…	This	results	in	behaviors,	histories	whose	stages	

are	truth-value	assignments	to	p,	q,	...	at	each	situation.	6	Correlation	now	means	that	

not	 all	 histories	 are	 possible:	 there	 are	gaps.	 These	 gaps	 encode	 important	 infor-

mation,	namely,	that	there	can	be	various	dependencies.	Say,	if	we	fix	the	value	of	p	

among	the	admissible	histories,	we	automatically	also	fix	the	value	of	q	–	or,	if	we	try	

to	change	the	value	of	p	at	one	location	inside	an	admissible	histories,	we	find	that	

that	of	q	at	another	location	must	change	as	well.	These	are	just	a	few	options,		many	

further	natural	forms	of	dependence	can	occur	in	a	given	set	of	behaviors.		
	
In	 a	 stark	 mathematical	 model,	 we	 can	 just	 think	 of	 the	 preceding	 behaviors	 as	

assignments	of	values	 to	variables,	and	what	we	end	up	with	are	models	 for	 first-

                                                
6 Significantly,	this	is	again	a	move	to	dynamics	and	time,	which	will	occur	again	in	Section	4.	
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order	logic	that	do	not	have	the	full	space	of	all	functions	from	variables	to	objects	

as	available	assignments,	but	only	a	subset.	These	models	validate	a	decidable	ver-

sion	of	first-order	logic,	the	basic	logic	that	remains	after	the	standard	Tarskian	as-

sumption	of	total	independence	of	variables	has	been	lifted	(van	Benthem	1996).	7		

Extensions	of	the	standard	first-order	language	with	explicit	information	about	de-

pendencies	still	validate	a	decidable	base	logic	(Baltag	&	van	Benthem	2018).		
	
Of	course,	it	will	not	always	be	the	case	that	knowing	the	value	of	one	variable	tells	

us	 the	 exact	 value	 of	 another.	 There	 can	 be	 weaker	 dependencies	 where	 restric-

tions	on	values	of	x	merely	 induce	 restrictions	on	values	of	y.	 But	 these,	 too,	may	

convey	general	information	out	of	particular	observations	in	our	sense.		
	
Logical	 languages	and	systems	accessing	this	correlation	structure	occur	 in	a	 large	

variety.	 These	 range	 from	decidable	 first-order	modal-style	 logics	 for	 dependence	

and	independence	(Andréka,	van	Benthem	&	Németi	1998,	Wang	2016,	Baltag	&	van	

Benthem	2018)	to	second-order	dependence	logics	in	the	style	of	Väänänen	2007.	In	

whatever	 format,	 such	 logics	 can	 be	 seen	 as	 vehicles	 for	 explaining	 how	 general	

information	can	come	from	observations	of	a	single	situation	or	variable.		
	
In	 this	 setting,	 generality	 from	 facts	 about	 single	 situations	 does	 not	 arise	 from	

similarity,	and	it	does	not	broadcast	through	the	whole	meta-universe	of	all	models.	

The	 generality	 rather	 arises	 from	 constraints	 encoded	 inside	 the	 current	model	 of	

our	 system	of	 situations,	 our	 ‘distributed	 system’	 in	 the	 sense	of	Barwise	&	 Selig-

man	1995,	and	 its	universal	spread	from	one	situation	to	others	 is	confined	to	the	

situations	(or	more	abstractly,	variables)	represented	inside	that	model.		
	
Instead	 of	 our	 earlier	 broadcast	 metaphor	 for	 similarity,	 one	 can	 think	 here	 of	 a	

system	of	linkages	through	information	channels	–	or	more	irreverently,	of	an	infor-

mational	puppet	theatre	with	rods	and	strings	between	puppets	and	players.		
	
This	style	of	viewing	things	through	linkages	has	great	power,	it	applies	very	widely,	

and	its	potential	for	systematic	theorizing	has	not	been	exhausted	by	far.		
	
	

                                                
7	The	lower	complexity	is	no	accident.	Andréka,	van	Benthem,	Bezhanishvili	&	Németi	2014	discuss	

general	assignment	models	as	Henkin	models,	and	clarify	connections	with	algebraic	semantics.	
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At	this	point,	one	might	ask	whether	the	similarity	view	and	the	correlation	view	are	

related:	could	not	one	subsume	the	other?	In	special	cases,	one	can,	but	I	do	not	see	

much	advantage	in	undermining	an	illuminating	conceptual	distinction.	8	
	
4	 Interfacing	models	and	proofs:	dynamic-epistemic	update	

In	 this	section,	we	show	the	how	perspective	of	our	 introduction	 in	action,	by	dis-

cussing	a	concrete	form	of	information	flow	where	single	models	meet	with	proof.	
	
A	particular	case	of	using	single	models	can	be	found	in	the	dynamic-epistemic	logic	

of	 information-driven	agency	(van	Benthem	2011).	Consider	the	standard	example	

in	that	literature	of	the	Three	Cards.	Cards	red,	white,	blue	are	dealt	to	players	1,	2,	3,	

one	for	each.	Initially,	each	player	sees	his	own	card	only.	The	real	distribution	over	

1,	2,	3	is	<red,	white,	blue>.	Now	player	2	asks	player	1:	“Do	you	have	the	blue	card?”	

Next,	1	answers	truthfully	“No”.	Who	knows	what	then?		
	
Here	is	the	effect	in	words:			
	

Assuming	the	question	is	sincere,	2	indicates	that	she	does	not	know	the	answer,		

and	so	she	cannot	have	the	blue	card.	This	tells	1	at	once	what	the	deal	was.	But		

3	does	not	learn,	since	he	already	knew	that	2	does	not	have	blue.	When	1	says		

she	does	not	have	blue,	this	now	tells	2	the	deal.	3	still	does	not	know	even	then.	

But	since	3	can	go	through	the	above	reasoning,	he	knows	that	the	others	know.	
	
Now	 let	 us	 turn	 to	models,	 the	 vehicle	 for	 our	 discussion	 so	 far.	 It	 is	 standard	 to	

picture	 the	 information	 flow	 in	 this	 scenario	 by	 means	 of	 updates	 in	 a	 diagram,	

making	these	considerations	geometrically	transparent.	9	
	
The	initial	situation	can	be	represented	as	the	following	epistemic	model,	with	the	

actual	deal	of	the	cards	marked	in	bold-face	as	rwb,	and	the	indexed	lines	indicating	

situations	that	the	players	cannot	distinguish	visually:	

                                                
8	 Perhaps	 a	more	 fruitful	 approach	 to	 analyzing	 transfer	 is	 trying	 to	merge	 the	 two	perspectives.							

If	 one	were	 to	 include	universes	 of	models	 as	 in	 Section	2,	 correlation	would	 again	 have	 to	 arise	

from	gaps.	We	might	drop	 some	models	 from	 the	 relevant	 family	of	models	 around	our	model	 of	

origin,	constraining	 the	domain	and	range	of	 familiar	operations	on,	or	relations	between	models.	

The	effect	of	this	move,	reminiscent	of	‘protocol	models’	for	dynamic-epistemic	logic	(van	Benthem,	

Gerbrandy,	Hoshi	&	Pacuit	2009),	on	exploring	meta-model-theory	remains	to	be	explored.	
9	Technically,	these	diagrams	are	models	for	epistemic	logic,	but	details	need	not	concern	us	here.	
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	 	 	 			rwb													1													rbw	

	 	 									2	 	 	 					3	 											2	
	 													bwr	 	 			 	 	3	 wbr	
	 	 									1	 	 																	3	 											1	

	 	 	 			brw	 										2														wrb		
	
Here	are	the	effects	of		the	successive	updates:	
	
	 After	2's	question:	 	 	 	 After	1's	answer:	
	
	 	 					rwb															 	 	 	 	 	rwb	
	 													2	 	 	 	 					 												
	 bwr	 	 								3	 		 									 	 	 									3	
			 											1		
	 	 			brw										2	 					wrb			 	 	 	 wrb			
We	see	in	the	final	diagram	that	players	1,	2	know	the	initial	deal	rwb,	as	they	have	

no	uncertainty	lines	left.	But	3	still	does	not	know,	given	her	remaining	line,	but	she	

does	know	that	1,	2	know	–	and	in	fact,	the	latter	fact	is	common	knowledge.	Here	

updates	with	new	information	work	as	follows.	Publicly	learning	that	a	statement	ϕ	

is	 the	case	restricts	the	current	model	(M,	 s)	 (with	actual	world	s)	to	the	definable	

submodel	(M|ϕ,	s)	whose	worlds	are	only	those	worlds	in	M	that	satisfy	ϕ.	
	
Now	here	is	an	issue.	The	graphical	representation	just	given,	though	concrete	and	

in	line	with	diagrams	that	people	draw	naturally,	is	just	about	one	single	situation.	

But	one	could	read	the	Three	Cards	scenario	as	being	more	general.	It	stipulates	just	

some	facts	about	the	start	of	a	game,	and	makes	an	assertion	about	what	happens	

after	two	specific	rounds	of	update.	This	should	apply	to	any	initial	model	satisfying	

the	facts,	so	we	are	really	aiming	for	a	universal	statement,	and	a	proof	for	it.	
	
Here	is	some	syntax	to	make	this	precise.	The	initial	conditions	of	the	scenario	are	

defined	by	a	formula	ϕ	expressing	the	precondition,	the	final	effects	are	defined	by	a	

postcondition	ψ.	Updates	are	triggered	by	events	!α,	where	α	is	the	true	information	

conveyed,	of	which	there	may	be	one	or	more.	Let	α 	stand	for	the	whole	sequence.	

The	above	suggests	that	we	want	to	pass	on	to	valid	general	insights	of	the	form		
	
	 ϕ	→	[α]ψ,		
	
where	[α]	is	a	dynamic	modality	stating	what	is	the	case	after	α 	has	been	executed.		
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Now,	the	single	model	we	considered	does	not	support	these	per	se,	but	it	does	con-

tain	 clues.	 Analyzing	 the	 above	 update	 events	 !α,	 we	 see	 they	 validate	 ‘recursion	

laws’	that	describe	effects	of	an	update	in	terms	of	what	was	true	one	step	before.	

The	most	striking	recursion	law	is	that	for	knowledge	of	agents	after	update:		
	
		 [!α]Kϕ		↔	(α	→	K(α	→	[!α]ϕ)).		
	
For	the	complete	logic	of	information	update,	we	refer	to	the	cited	literature.		
	
The	key	point	for	us	is	just	this.	Using	these	principles	backwards,	given	a	post-con-

dition	ψ	and	update	sequence	α ,	we	can	compute	in	a	stepwise	manner	just	what	is	

needed	in	the	initial	situation	for	the	update	sequence	to	have	the	intended	effect.	10		

Thus,	analyzing	our	example	reveals	a	general	pattern.	Any	model	satisfying	a	pre-

condition	that	implies	the	condition	just	computed	will	have	the	required	effects.	11	
	
This	case	study	of	information	update	shows	how	analysis	of	single	models	and	their	

definable	updates	 can	go	hand	 in	hand	with	proof	 analysis,	where	analyzing	well-

chosen	single	models	can	suggest	useful	proof-theoretic	principles	which	can	 then	

be	used	to	extract	more	generality	from	the	initial	scenario.	Of	course,	as	stated	in	

Section	1,	this	does	involve	a	shift	from	the	broadcast	scenario	of	Section	2,	where	

transfer	comes	for	free	along	similarity	relations.	One	has	to	do	real	work	to	uncover	

the	proof-theoretic	recursion	laws	that	induce	generality.		
	
Finally,	in	practice,	entanglement	of	models	and	proofs	is	widespread.	Solving	real-

life	practical	problems	often	involves	an	interplay	of	model-checking	over	diagrams,	

when	useful	and	fast,	with	symbolic	proof	steps	that	agents	already	know	to	bypass	

more	tedious	episodes	of	model-checking	(van	Benthem	1996).	12	
                                                
10	Technically,	this	procedure	computes	 ‘weakest	preconditions’	for	the	intended	effect.	One	might	

also	think	that	the	Three	Cards	asks	for	a	‘strongest	postcondition’	given	just	the	precondition	ϕ	and	

the	update	sequence	α ,	but	computing	this	is	a	much	more	delicate	matter	(van	Benthem	2011).	
11 Sometimes,	single	models	are	all	that	is	needed.	The	preconditions	in	the	original	scenario	may	be	

so	strong	 that	 they	admit	of	only	one	model	up	 to	bisimulation.	Arguably,	 this	 is	 true	 in	 the	Three	

Card	scenario	and	other	famous	update	puzzles	such	as	Muddy	Children.	Then	updates	on	this	single	

model	 capture	 the	 scenario	 as	 stated,	 up	 to	 some	 inevitable	 bisimulation	 variants.	 But	 the	 pre-

condition-postcondition	analysis	still	has	its	uses,	as	it	will	apply	to	changes	in	the	original	scenario.	
12 Even	 more	 subtle	 mixtures	 of	 proof	 and	 model	 checking	 occur	 in	 efficient	 symbolic	 model-
checking	techniques	for	dynamic-epistemic	logic,	cf.	van	Benthem,	van	Eijck,	Gattinger	&	Su	2018. 
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5	 Conclusion	

We	have	discussed	several	roads	to	generality	from	one	single	situation,	all	of	them	

with	roots	in	logic.	There	is	similarity	and	laws	of	transfer,	there	is	correlation	and	

dependence,	 and	orthogonally	 to	 these	 two,	 there	 is	 the	 interplay	between	 seeing	

individual	facts	and	reflecting	on	the	proofs	that	led	to	their	recognition.	And	these	

different	roads	co-exist,	there	is	no	need	to	prefer	one	over	the	other.	
	
Here	 is	one	 further	 thought	on	achieving	generality.	Either	we	already	have	 it,	 via	

similarity	or	correlation,	or	we	can	achieve	 it	by	reflecting	on	specific	 truths	using	

suitable	abstractions	that	result	in	proof	systems	capturing	our	handling	of	models.	

The	latter	procedure	is	not	deterministic,	and	to	some	extent,	an	art	–	but	this	crea-

tive	art	can	be	enhanced	through	the	use	of	logical	notions	and	techniques.	13	
	
But	logic	is	not	all	there	is	to	abstraction	from	single	cases.	When	describing	what	is	

general	 about	 concrete	 situations,	 logical	 syntax	 sometimes	 seems	 too	 rigid	 and	

particular,	and	natural	 language	has	the	edge.	For	 instance,	 in	agent	scenarios	 like	

the	Three	Cards	puzzle,	standard	logical	formulas	force	us	to	be	specific	about	small	

details,	 whereas	 natural	 language	 has	 wonderfully	 concise	 indexical	 expressions	

such	as	“each	agent	knows	his	own	card,	but	not	 those	of	 the	others”.	 It	 is	easy	 to	

find	 further	 examples	 of	 this	 virtue.	 Even	 mathematicians	 use	 natural	 language	

when	describing	high-level	features	of	models	or	proofs	in	an	illuminating	manner.	

Explaining	 the	 fascinating	 interplay	 of	 natural	 and	 formal	 languages	 in	 achieving	

generality	is	not	my	task	here,	14	but	it	deserves	at	least	this	much	mention.	
	
Thus,	our	discussion	of	moving	from	the	small	to	the	large	comes	to	an	open	end.	

	
	
                                                
13	It	may	seems	as	if	this	article	suggested	that,	to	achieve	abstraction	and	generality,	we	must	use	

logical	 syntax.	But	as	explained	 in	 the	 influential	manifesto	Halpern	&	Vardi	1991	 that	advertized	

the	virtues	of	model	 checking	over	proof	 in	 concrete	 computational	 applications,	 the	art	 is	 rather	

what	to	leave	in	the	meta-language	of	the	models	and	what	to	highlight	in	logical	syntax. 
14	As	a	slightly	tongue-in-cheek	example,	consider	the	phenomenon	of	ambiguity,	usually	considered	

a	disadvantage,	but	in	fact	a	stimulus	for	creativity.	Take	the	very	metaphor	of	the	“drop	of	water”	

which	opened	 this	article.	This	expression	has	a	 slight	ambiguity,	 since	 ‘drop	of	water’	might	also	

suggests	a	waterfall,	as	in	dropping	some	object.	But	then	we	are	much	closer	to	the	Niagara,	and	in	

fact	also	to	the	dynamic	perspectives	discussed	later	on	in	this	article.	
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