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Abstract

We study probabilistic neural language models that are obtained by marginalizing a
structured latent variable in the recurrent neural network grammar (RNNG), a joint
model of sentences and their syntactic structure. Supervised RNNGs produce com-
petitive language models that are sensitive to syntactic phenomena. However, they
require annotated data and the intractable sum over the structured variable compli-
cates straightforward learning from data in which that structure is latent. Approximate
learning with variational inference provides a solution, enabling estimation from unan-
notated data, but the effectiveness of this approach will crucially depend on the quality
of the approximate posterior. In this thesis we take a first step in this direction. We in-
troduce a neural conditional random field (CRF) constituency parser—which proves a
competitive parser in its own right—and experiment with the CRF as approximate pos-
terior in variational learning where the two models are jointly optimized to maximize
a lower bound on the marginal log-likelihood. This opens the door to semisupervised
and unsupervised learning. The CRF formulation of the parser allows the exact com-
putation of key quantities in the lower bound, and the global normalization provides
a robust distribution for the sampling based gradient estimation. Preliminary results
with unlabeled trees suggest the potential of this approach for unsupervised n-ary tree
induction, and we formulate future work towards this goal. Finally, to evaluate how the
joint formulation differentiates the RNNG we perform targeted syntactic evaluation,
and compare its performance with that of neural language models that are etimated
using multitask learning with a syntactic side objective.
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Notation

a,b, . . . Vectors over the reals, i.e. a 2 Rm.
A,B, . . . Matrices over the reals, i.e. A 2 Rm⇥n.
[a]i Vector indexing: [a]i 2 R for 1  i  m.
[a;b] Vector concatenation: a 2 Rm, b 2 Rn, [a;b] 2 Rm+n.
A � B Hadamard product (A � B)ij = (A)ij(B)ij .

X Finite vocabulary of words x.
Y(x) Finite set of trees y over a sentence x.
V(x) Finite set of labeled spans v over a sentence x.
X, Y, . . . Random variables with sample spaces X , Y, . . .
x A word from X , outcome of random variable X .
y A tree from Y(x), outcome of random variable Y .
xm

1 A sequence of words hx1, . . . , xmi from X m, shorthand: x.
x<i The sequence xi�1

1 preceding xi.

PX Probability distribution.
pX Probability mass function.
p(x) Probability P (X = x).
p✓, q� Probability mass functions with emphasis on parameters.
E[g(X)] Expectation of g(X) with respect to distribution PX .
H(X) Entropy of random variable X .
KL(q||p) Kullback-Leibler divergence between distributions q and p.

⇤ Finite set of nonterminal labels.
A, B, . . . Nonterminal labels from ⇤.
? Dummy label used for binarization, in ⇤.
S† Special root label, not in ⇤.

2A The powerset of set A.
1(p) Indicator function of predicate p: 1(p) := {1 if p, 0 otherwise}
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1. Introduction

Perhaps the most basic yet profound task in probabilistic modelling of language is
to assign probabilities to sentences—such probability distribution is called a language
model. This thesis studies how such distributions can be extended to incorporate that
which is not observed in words alone: the sentence’s syntactic structure.

In this thesis we are interested in distributions that assign probabilities p(x, y) to pairs
of observations—both the sentence x and its syntactic structure y. Rules of probability
then gives us a language model for free because for any joint probability distribution

p(x) =
X

y2Y(x)

p(x, y).

‘For free’, because for any combinatorial structure of any interest the sum over y will be
daunting, and can generally be computed exactly only for models that factorize p(x, y)
along significant independence assumptions. Approximations are in place when p is
too expressive. The above marginalization is the core subject of this thesis: the spread
of probability p(x) over the many probabilities p(x, y), each describing how sentence x
and structure y cooccur. How does this spread make p a better model of sentences x?
How can we approximate the sum over y when the model p is too expressive? And
how can we estimate probabilities p(x, y) when only x is ever observed?

We ask these questions for one joint model in particular: the recurrent neural network
grammar (RNNG) [Dyer et al., 2016]. The RNNG models this joint distribution as a se-
quential generation process that generates words together with their phrase structure.
It merges generative transition-based parsing with recurrent neural networks (RNNs),
factorizing the joint probability as the product of probabilities of actions in a transi-
tion system that builds trees top-down. It makes no independence assumptions about
this sequential process: at each step, the model can condition on the entire derivation
constructed thus far, which is summarized by a syntax-dependent RNN.

As a joint model, the RNNG also defines a language model by marginalization of the
structured variable y, but the lack of independence assumptions precludes the efficient
computation of this sum, an instance of the phenomenon that we alluded to above. Im-
portance sampling provides a tractable alternative, approximating this sum with the
help of a separately trained discriminative proposal model q(y | x) that provides sam-
ples of trees y for the sentence x. The proposal model acts as an approximation to the
intractable true posterior p(y | x), and Dyer et al. [2016] show how a discrminative
formulation of the RNNG can be used for this role. Supervised RNNGs are trained
on annotated data, requiring both the sentence x and the its syntactic analysis y to be
known, for which the Penn Treebank [Marcus et al., 1993] is used. They are a strong
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model of language that can outperform RNN language models in terms of perplexity
[Dyer et al., 2016] and on a targeted syntactic agreement task [Kuncoro et al., 2018].

The approximate marginalization is central in the application of the RNNG as lan-
guage model, and the supervised learning requires annotated data. In this thesis we
study this marginalization, to see if we can extend estimation to data without annota-
tion.

Our central contribution is the introduction of a neural conditional random field
(CRF) constituency parser that can act as an alternative approximate posterior for the
RNNG. The CRF parser can be used as proposal model for a trained RNNG, but we
also experiment with the CRF as approximtate posterior in variational learning of the
RNNG, in which we jointly learn the RNNG and CRF by optimizing a lower bound on
the marginal log-likelihood. This opens the door to semisupervised and unsupervised
learning of the RNNG. The CRF formulation of the parser allows the exact computation
of key quantities involved in the computation of the lower bound, and the global nor-
malization provides a robust distribution for the sampling based gradient estimation.

To evaluate how the joint formulation differentiates the RNNG from neural language
models that model only x we perform targeted syntactic evaluation of these models on
the dataset of [Marvin and Linzen, 2018]. A competitive alternative to the full joint
model of the RNNG are RNN language models that receive syntactic supervision dur-
ing training in the form of multitask learning. We compare the RNNG to these models,
as well as to an RNN language that is trained without any additional syntactic super-
vision.

The organization of this thesis is as follows.

Chapter 2 In this chapter we describe the background to this thesis. We first describe
the fundamentals of phrase structure, motivating why we might need it for a
characterization of language. We then describe syntactic parsing, emphasizing
the difference between globally and locally normalized models. Similarly, we
describe language modelling, emphasizing relevant related models. We conclude
with a review of the neural networks used in this thesis.

Chapter 3 In this chapter we review the RNNG. We describe the exact probabilistic
model, the neural parametrization, the supervised training, and the approximate
inference. We report results with our own implementation, and analyze the ap-
proximate inference with the discriminative RNNG.

Chapter 4 This chapter contains part one of our core contribution: the neural CRF
parser. We present a neural CRF parser by borrowing the span factored approach
and neural scoring function from Stern et al. [2017a] and by deriving custom ex-
act inference algorithms from general inside and outside recursions [Goodman,
1999]. We show how these algorithms are used to solve a number of inference
problems, including sampling and the computation of the entropy, which plays
an important role in chapter 5. We report results of supervised training, showing
that it is a strong parser, and proceed to use it in the importance sampling infer-
ence of the supervised RNNG. This experiment brings to light a slight caveat in
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the way our model deals with n-ary trees which leads to derivational ambiguity.
The derivational ambiguity is not a direct problem for the application of the CRF
as a parser, but does become one in its application as posterior distribution in the
approximate inference. We provide solutions in the form of alternative inference
algorithms, and preliminary results show that these are easy to implement and
resolve the ambiguity.

Chapter 5 This chapter contains part two of our core contribution: we address the
semisupervised and unsupervised learning of the RNNG, focussing on the CRF
as approximate posterior. We derive a variational lower bound on the marginal
log likelihood and show how this can be optimized by sampling based gradient
estimation. We perform experiments with semisupervised, and unsupervised ob-
jectives, for labeled and unlabeled trees, but a full exploration of the CRF in this
role is halted by the derivational ambiguity. Preliminary results with unlabeled
trees suggest the potential of this approach for unsupervised n-ary tree induction,
and we formulate future work towards this goal.

Chapter 6 In the final chapter we perform syntactic evaluation using the dataset of
Marvin and Linzen [2018]. We compare the supervised RNNG with RNN lan-
guage models that are trained with a syntactic side objective, a type of multitask
learning. We additionally propose a novel side objective inspired by the scoring
function of the CRF.

Conclusion We summarize our work and list our main contributions, and finish with
suggestions for future work that departs from where our investigation leaves off.

Our implementations are available at https://github.com/daandouwe/thesis.
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2. Background

This section provides background on the four topics that are combined in this thesis:
syntax, parsing, language modelling, and neural networks.

2.1. Syntax

We first introduce some concepts relating to syntax that are relevant for this thesis.
In particular, we introduce the notion of a constituent, and the hierarchical organization
of constituents in a sentence as described by phrase-structure grammars. The aim is to
provide a succinct and compelling answer to the question: why should we care about
constituency structure when modelling language?

Our exposition primarily follows Huddleston and Pullum [2002], a well established
reference grammar of the English language that is relatively agnostic with respect to
theoretical framework, with some excursions into Carnie [2010] and Everaert et al.
[2015], which are less language-specific but rooted more in a particular theoretical
framework1. We take the following three principles from Huddleston and Pullum
[2002] as guiding:

1. Sentences consist of parts that may themselves have parts.
2. These parts belong to a limited range of types.
3. The constituents have specific roles in the larger parts they belong to.

To each principle we now dedicate a separate section.

2.1.1. Constituents

Sentences consist of parts that may themselves have parts. The parts are groups of
words that function as units and are called constituents. Consider the simple sentence
A bird hit the car. The immediate constituents are a bird (the subject) and hit the car (the
predicate). The phrase hit the car can be analyzed further as containing the constituent
the car. The ultimate constituents of a sentence are the atomic words, and the entire
analysis is called the constituent structure of the sentence. This structure can be indi-
cated succinctly with the use of brackets

(1) [ A bird ] [ hit [ the car ] ]

or less succinctly as a tree diagram. Evidence for the existence of such constituents

1Broadly subsumable under the name generative grammar.
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·

·

·

carthe

hit

·

birdA

can be provided by examples such as the following, which are called constituent tests
[Carnie, 2010]. Consider inserting the adverb apparently into our example sentence, to
indicate the alleged status of the event described in the sentence. In principle there are
six positions available for the placement of apparently (including before, and after the
sentence). However, only three of these placements are actually permissible:2

(2) a. Apparently a bird hit the car.
b. *An apparently bird hit the car.
c. A bird apparently hit the car.
d. *A bird hit apparently the car.
e. *A bird hit the apparently car.
f. A bird hit the car, apparently.

Based on the bracketing that we proposed for this sentence we can formulate a general
constraint: the adverb must not interrupt any constituent. Indeed, this would explain
why apparently cannot be placed anywhere inside hit the car and not between a and
bird. For full support, typically, results from many more such test are gathered, and in
general these tests can be much more controversial than in our simple example [Carnie,
2010].

2.1.2. Categories

The constituents of a sentence belong to a limited range of types that form the set of
syntactic categories. Two types of categories are distinguished: lexical and phrasal.
The lexical categories are also known as part-of-speech tags. A tree can be represented
in more detail by adding lexical (D, N, V) and phrasal categories (S, NP, VP). In this

S

VP

NP

N

car

D

the

V

hit

NP

N

bird

D

A

2We use an asterisk * to indicate a sentence that is judged ungrammatical, as is customary in linguistics.
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example, the noun (N) car is the head of the noun phrase (NP) the car, while the head
of the larger phrase hit the car is the verb (V) hit, making this larger constituent a verb
phrase (VP). The whole combined forms a sentence (S).

2.1.3. Hierarchy

The constituents have specific roles in the larger parts they belong to. This structure
provides constraints that are not explainable from the linear order of the words them-
selves [Everaert et al., 2015]. Consider for instance the following example of the syn-
tactic behaviour of negative polarity items (NPIs) from Everaert et al. [2015]. A negative
polarity item is, to first approximation, a word or group of words that is restricted to
negative context [Everaert et al., 2015].3 Take the behaviour of the word anybody:

(3) a. The talk I gave did not appeal to anybody.
b. *The talk I gave appealed to anybody.
c. *The talk I did not give appealed to anybody.

From sentences (a) and (b) we might formulate the hypothesis that the word not must
linearly precede the word anybody, but a counter example refutes this hypothesis: sen-
tence (c) is also not grammatical. Instead—it is argued—the constraints that govern this
particular pattern depend on hierarchical structure: the word not must ‘structurally pre-
cede’ the word anybody [Everaert et al., 2015]. Figure shows the constituent structure
of both sentences. The explanation goes as follows: “In [the left tree] the hierarchical
structure dominating not also immediately dominates the hierarchical structure con-
taining anybody. In [the right tree], by contrast, not sequentially precedes anybody, but
the triangle dominating not fails to also dominate the structure containing anybody.”
[Everaert et al., 2015].

Examples adapted from Everaert et al. (TICS 2015)

containing anybody. (This structural configuration is called c(onstituent)-command in the
linguistics literature [31].) When the relationship between not and anybody adheres to this
structural configuration, the sentence is well-formed.

In sentence (3), by contrast, not sequentially precedes anybody, but the triangle dominating not
in Figure 1B fails to also dominate the structure containing anybody. Consequently, the sentence
is not well-formed.

The reader may confirm that the same hierarchical constraint dictates whether the examples in
(4–5) are well-formed or not, where we have depicted the hierarchical sentence structure in
terms of conventional labeled brackets:

(4) [S1 [NP The book [S2 I bought]S2]NP did not [VP appeal to anyone]VP]S1
(5) *[S1 [NP The book [S2 I did not buy]S2]NP [VP appealed to anyone]VP]S1

Only in example (4) does the hierarchical structure containing not (corresponding to the sentence
The book I bought did not appeal to anyone) also immediately dominate the NPI anybody. In (5)
not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
and (5) is not, exactly the predicted result if the hierarchical constraint is correct.

Even more strikingly, the same constraint appears to hold across languages and in many other
syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump

(A) (B)

X X

X X X X

The book  X X X The book           X   appealed to anybody
did not

that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.
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not is embedded in at least one phrase that does not also include the NPI. So (4) is well-formed
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syntactic contexts. Note that Japanese-type languages follow this same pattern if we assume
that these languages have hierarchically structured expressions similar to English, but linearize
these structures somewhat differently – verbs come at the end of sentences, and so forth [32].
Linear order, then, should not enter into the syntactic–semantic computation [33,34]. This is
rather independent of possible effects of linearly intervening negation that modulate acceptability
in NPI contexts [35].

The Syntax of Syntax
Observe an example as in (6):

(6) Guess which politician your interest in clearly appeals to.

The construction in (6) is remarkable because a single wh-phrase is associated both
with the prepositional object gap of to and with the prepositional object gap of in, as in
(7a). We talk about ‘gaps’ because a possible response to (6) might be as in (7b):

(7) a. Guess which politician your interest in GAP clearly appeals to GAP.
b. response to (7a): Your interest in Donald Trump clearly appeals to Donald Trump
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that I bought appeal to anybody that I did not buy

Figure 1. Negative Polarity. (A) Negative polarity licensed: negative element c-commands negative polarity item.
(B) Negative polarity not licensed. Negative element does not c-command negative polarity item.

734 Trends in Cognitive Sciences, December 2015, Vol. 19, No. 12

Generalization: not must “structurally precede” anybody
- many theories of the details of structure 
- the psychological reality of structural sensitivty  

is not empirically controversial 
- much more than NPIs follow such constraints

Language is hierarchical

The talk

I gave
did not

appeal to anybody

appealed to anybodyThe talk

I did not give

Figure 2.1.: Dependance on hierarchical structure of negative polarity items. Left shows
the word anybody in the licensing context of not. Right shows the ungram-
matical sentence where the word is not. Figure taken from Everaert et al.
[2015]. The triangles indicate substructre that is not further explicated.

3More generaly, they are words that need to be licensed by a specific licencing context [Giannakidou,
2011].
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2.1.4. Controversy

Theoretical syntax is rife with controversy, and wildly differing viewpoints exist. In
fact, for each point made in our short discussion the exact opposite point has been
made as well:

• Work in dependency grammar and other word-based grammar formalisms de-
parts from the idea that lexical relations between individual words are more fun-
damental than constituents and their hierarchical organization [Tesnière, 1959,
Nivre, 2005, Hudson, 2010], and dispenses with the notion of constituents alto-
gether.

• A recurring cause of controversy is the question whether hierarchical structure
needs to be invoked in linguistic explanation. That is, whether the kind of anal-
ysis we presented with embedded, hierarchically organized constituents is really
fundamental to language. Frank et al. [2012] argue for instance that a shallow
analysis of sentences into immediate constituents with linear order but no hier-
achical structure4 is sufficient for syntactic theories, a claim that is vehemently
rejected by Everaert et al. [2015].

• Research in cognitive neuroscience and psycholinguistics shows that human sen-
tence processing is hierachical, giving evidence that processing crucially depends
on the kind of structures introduced in the sections above [Hale, 2001, Levy, 2008,
Brennan et al., 2016]. However, research also exists that shows that purely linear
predictors are sufficient for modeling sentence comprehension, thus showing the
exact opposite to be true [Conway and Pisoni, 2008, Gillespie and Pearlmutter,
2011, Christiansen et al., 2012, Gillespie and Pearlmutter, 2013, Frank et al., 2012].

Our work, however, takes a pragmatic position with respect to such questions: syn-
tax, we assume, is whatever our dataset says it is. And to some degree, the question
whether language is hierachical or linear is a question that this thesis engages with from
a statistical and computational standpoint.

2.2. Parsing

Parsing is the task of predicting a tree y for a sentence x. Probabilitic parsers solve this
problem by learning a probabilistic model p that describes a probability distribution
over all the possible parses y of a sentence x. This distribution quantifies the uncertainty
over the syntactic analyses of the sentence, and can be used to make predictions by find-
ing the trees with highest probability. A further benefit of the probabilistic formulation
is that the uncertainty over the parses can be determined quantitatively by computing
the entropy of the distribution, and qualitatively by obtaining samples from the dis-
tribution. This section describes the form that such probabilistic models take, and the
data from which they are estimated.

4A structure reminiscent of that predicted in the task of chunking, or shallow parsing.
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(d) In normal form with spans.

Figure 2.2.: Converting a treebank tree (withouth part-of-speech tags).
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2.2.1. Treebank

A treebank is a collection of sentences annotated with their grammatical structure that
allows the estimation of statistical parsings models. The Penn Treebank [Marcus et al.,
1993] is such a collection, consisting of sentences annotated with their constituency
structure. Figure 2.2a shows an example tree from this dataset and figure 2.2b shows
the tree after basic processing5. Some parsing models require trees to be in normal form:
fully binary, but with unary branches at the terminals. The CRF parser introduced in
chapter 4 is an example of such a model. Figure 2.2c shows the result of the (invertible)
normalization that we use. The tree is obtained by right branching binarization, intro-
ducing a special dummy label ? in the process that can be treated as any other label in
tree. Annotating the labels with left and right endpoints of the words they span results
in the tree in figure 2.2d.

A tree can be factorized into its parts: we can think of tree as a set of labeled spans,
or as a set of anchored rules. A labeled span is a triple (A, i, j) of a syntactic label A
from a labelset ⇤ together with the left and right endpoints i, j that the label spans. An
anchored rule is a triple (r, i, j) or four-tuple (r, i, k, j), containing a rule r in normal form
with span endpoints i, j, and a split-point k of the left and right child when r is not a
lexical rule. Consider these two representations of the tree in figure 2.2d given in table
2.1. These different factorizations will become relevant in chapter 4 when formulating
the probabilistic model.

Labeled spans Anchored rules

(S, 0, 10) (S ! SBAR ?, 0, 3, 10)

(SBAR, 0, 3) (SBAR ! WHNP S+VP, 0, 1, 3)

(WHNP, 0, 1) (WHNP ! What, 0, 1)
...

...

(?, 9, 10) (? ! ., 9, 10)

Table 2.1.: Two representations of the tree in 2.2d.

2.2.2. Models

The probabilistic model of a parser can be discriminative, describing the conditional
probability distribution p(y | x), or generative, describing the joint distribution p(x, y).
The form that the model takes is largely dictated by the algorithm used to build the
parses.

Transition-based methods formulate parsing as a sequence of shift-reduce decisions
made by a push-down automaton that incrementally builds a tree. The design of the

5This removes the functional tags and annotation of argument structure introduced in version 2 of the
Penn Treebank [Marcus et al., 1994].
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transition system determines whether the tree is constructed bottom-up, top-down,6 or
otherwise, and determines whether the trees need to be in normal form. The proba-
bilistic model is defined over the sequences of actions, and the probability distribution
typically factorizes as the product of conditional distributions over the next action given
the previous actions. This makes it a directed model that is locally normalized.7

Definition 2.2.1. A probalistic model p over sequences a 2 An is locally normalized if

p(a) =

nY
i=1

p(ai | a<i)

=

nY
i=1

 (a<i, ai)

Z(a<i)
,

where Z(a<i) =
P

a2A (a<i, a) is a local normalizer and  is a nonnegative scoring
function:  (a<i, ai) � 0 for all a<i and ai.

Such a model is discriminative when the actions only build the tree, but can be made
generative when word prediction is included in the action set.

Chart based parsing, on the other hand, factorizes trees along their parts, and defines
the probabilistic model over the shared substructures. Representing the model as the
product of local parts greatly reduces the number of variables required to specify the
full distribution, and allows the use of dynamic programming for efficient inference.
Discriminitive models based on conditional random fields (CRFs) [Lafferty et al., 2001]
follow this factorization: local functions independently predict scores for the parts, and
the product of this score is normalized globally by a normalizer that sums over the ex-
ponential number structures composable from the parts.

Definition 2.2.2. A probalistic model p over sequences a 2 An is globally normalized if

p(a) =
 (a)

Z
,

where Z =
P

a2An

 (a) is a global normalization term, and  (a) � 0 for all a. To
allow efficient computation of the normalizer Z, the function  typically factors over
parts—or cliques—of a as the product of local potentitals  (a) =

Q
C2C  C(aC), where

C ✓ 2{1,...,n} contains sets of indices and aC := {ai}i2C . The choice of parts depends on
the model and determines the feasibility of the sum computing Z.

Generative chart-based models, instead, estimate rule probabilities directly from a
treebank. The probability of a tree is computed directly as the product of the probabili-
ties of the rules that generate it, thus requiring no normalization.8

6Post-order and pre-order, respectively.
7With the exception of those approaches that instead define a conditional random field over the action

sequences [Andor et al., 2016], in which case the model is defined over the globally normalized action
sequences.

8In fact, this makes generative chart-based models directed, locally normalized models: they generate
trees top-down by expanding localized normally rules.
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Either method have their advantages and disadvantages. The transition-based meth-
ods are fast, running in time linear in the sequence length, and allow arbitrary features
that can condition on the entire sentence and the partially constructed derivation. How-
ever, directed models with local normalization are known to suffer from the problem
of label bias [Lafferty et al., 2001], and conditioning on large parts of the partial deriva-
tions prohibits exact inference, so that decoding can be done only approximately, either
with greedy decoding or with beam search. The chart based methods, on the other
hand, allow efficient exact inference, and the global training objective that results from
the global normalization receives information from all substructures. The method is
much slower, however, running in time cubic in the sentence length for normal form
trees 9 and linear in the size of the grammar10, and the strong factorization of the struc-
ture, which makes the exact inference tractable, also means that features can condition
only on small parts instead of large substructures.

A general challenge for sequential transition based models, related to the problem of
label bias, is that their training is highly local: during training the models are only ex-
posed to the individual paths that generate the example tree, which is a mere fraction
of all the possible paths that the model is defined over.11 Compare this with a glob-
ally normalized model, where the factorization over parts lets the model learn from an
example tree about all the trees that share substructure.

In this thesis we investigate models where the scoring function  , or its factorized
version  , is implemented with neural networks. Chapter 3 describes a locally normal-
ized transition-based model that has a discriminative and generative formulation, and
chapter 4 introduces a globally normalized, discriminative chart-based parser.

2.2.3. Metrics

The standard evaluation for parsing is the Parseval metric [Black et al., 1991], which
measures the number of correctly predicted labeled spans. The metric is defined as the
harmonic mean, or F1 measure, of the labelling recall R and precison P :

F1 =
2PR

P + R
. (2.1)

Let R be the set of labeled spans of the gold reference trees, and let P be the set of
labeled spans of the predicted trees. The recall is the fraction of reference spans that

9With greater exponents for trees that are not in normal form.
10Giving a total time complexity of O(n3|G|), where G is the set of normal form rules of the grammar.
11One way to answer to this challenge is to use use a dynamic oracle during training [Goldberg and

Nivre, 2013], also called exploration [Ballesteros et al., 2016, Stern et al., 2017a], which allow the model
to explore paths that deviate from the single gold path in a principled way. The approach can be
considered an instance of imitation learning [Vlachos, 2013, He et al., 2012]. In constituency parsing,
dynamic oracles can produce substantial improvements in performance [Ballesteros et al., 2016], but
they must be custom designed for each transition system [Fried and Klein, 2018]. However, we do not
consider this directions in this thesis.
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were predicted

R =
|R \ P|

|R| ,

and the precision is the fraction of the predicted spans that is correct

P =
|R \ P|

|P| .

The cannonical implementation of the Parseval metric is EVALB [Sekine and Collins,
1997].

2.3. Language models

A language model is a probability distribution over sequences of words. There are
many ways to design such a model, and many datasets to estimate them from. This
section focusses on those that are relevant to the models in this thesis.

2.3.1. Models

A language model is a probabilistic model p that assigns probabilities to sentences, or
more formally, to sequences x 2 X ⇤ of any length over a finite vocabulary. Factorizing
the probability of a single sequence x 2 X m over its timesteps gives the directed model:

p(x) =
mY

i=1

p(xi | x<i). (2.2)

This distribution can be approximated by lower order conditionals that condition on
smaller, fixed-size, history, by making the Markov assumption assumption that

p(xi | x<i) = p(xi | xi�1
i�j�1).

This is the approach taken by n-gram language models. The lower order conditionals
can be estimated directly by smoothing occurence counts [Kneser and Ney, 1995, Chen
and Goodman, 1999], or they can be estimated by locally normalized scores (xi�1

i�j�1, xi),
given by a parametrized function . This function can be log-linear or a non-linear neu-
ral network [Rosenfeld, 1996, Bengio et al., 2003]. The lower order approximation can
also be dispensed with, making the model more expressive, but the estimation problem
much harder. Language models based on recurrent neural networks (RNNs) follow
this approach by using functions that compute scores  (x<i, xi) based on the entire
history [Mikolov et al., 2010]. These models, and in particular the approaches based
on the LSTM variant of the RNN [Hochreiter and Schmidhuber, 1997], have shown to
be remarkably effective and substantially improve over the above methods to give the
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current state of the art [Zaremba et al., 2014, Jozefowicz et al., 2016, Melis et al., 2017].12

Other neural network architectures based on convolutions [Kalchbrenner et al., 2014]
and stacked feedforward networks with ‘self-attention’ [Vaswani et al., 2017] have been
succesfully applied to language modelling with unbounded histories as well.

Alternatively, a language model can be obtained by marginalizing a structured latent
variable h in a joint model p(x, h):

p(x) =
X
h2H

p(x, h). (2.3)

The structure of h allows this joint distribution to be factorized in a ways very much
unlike that of equation 2.2. Such language models are defined for example by a Proba-
bilistic Context Free Grammar (PCFG), in which case h is a tree, and a Hidden Markov
Model (HMM), in which case h is a sequence of tags. The strong independence as-
sumptions of these models allows the marginalization to be computed efficiently, but
also disallows the models to capture arbitrary dependencies in x, which is precisely
what we want from a language model. The recurrent neural network grammar (RNNG)
[Dyer et al., 2016] model introduced in chapter 3 also defines a language model through
a joint distribution, but that model is factorized as a sequential generation process over
both the structure h and the sequence x, which makes it a competitive language model,
but at the price of losing efficient exact marginalization.

This thesis focusses on language models that incorporate syntax. The models have
precedents. Most directly related to our discussion are: language models obtained from
top-down parsing with a PCFG [Roark, 2001]; syntactic extensions of n-gram models
with count-based and neural network estimation [Chelba and Jelinek, 2000, Emami and
Jelinek, 2005]; and a method that is reminiscent of n-gram methods, but based on arbi-
trary overlapping tree fragments [Pauls and Klein, 2012].

2.3.2. Data

Language models enjoy the benefit that they require no labeled data; any collection of
tokenized text can be used for training. In this work we focus on English language
datasets. The sentences in the Penn Treebank have long been a popular dataset for this
task. More recently has seen the introduction of datasets of much greater size, such
as the One Billion Word Benchmark [Chelba et al., 2013] that consists of news articles,
and datasets that focus on long-distance dependencies, such as the Wikitext datasets
[Merity et al., 2016] that consists of Wikipedia articles grouped into paragraphs.

12Although recent work shows that the effective memory depth of RNN models is much smaller than the
unbounded history suggests: Chelba et al. [2017] show that, in the perplexity they assign to test data,
an RNN with unbounded history can be approximated very well by an RNN with bounded history.
To be precise: a neural n-gram language model, with the fixed-size history encoded by a bidirectional
RNN, is equivalent to an RNN with unbounded history for n = 13, and to an RNN that is reset at the
start of sentences for n = 9. This finding is consistent accross dataset sizes.
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2.3.3. Metrics

The standard metric to evaluate a language model is the perplexity per token that it
assigns to held out data. The lower the perplexity, the better the model. Perplexity is
an information theoretic metric that corresponds to an exponentiated estimate of the
model’s entropy normalized over number of predictions, measured in nats, and was
introduced for this purpose by Jelinek [1997]13. The metric can be interpreted as the
average number of guesses needed by the model to predict each word from its left
context.

Definition 2.3.1. The perplexity of a language model p on a sentence x of length m is
defined as

exp

(
� 1

m
log p(x)

)
.

The perplexity on a set of sentences {x(1), . . . , x(N)} is defined as the exponentiated
mean over all words together:

exp

(
� 1

M

NX
n=1

log p(x(n))

)
,

where M =
PN

n=1 mn is the sum of all the sentence lengths mn.

The appeal of perplexity is that it is an aggregate metric, conflating different causes
of succes when predicting the next word. This conflation is also its main shortcom-
ing, making it hard to determine whether the model has robustely learned high-level
linguistic patterns such as those described in syntactic and semantic theories. For this
reason, alternative methods have been proposed to evaluate language models: evalu-
ation with adversarial examples [Smith, 2012]; prediction of long distance subject-verb
agreement [Linzen et al., 2016]; and eliciting syntactic acceptability judgments [Marvin
and Linzen, 2018]. Chapter 6 discusses these alternatives in greater detail, and demon-
strates evalution with the method proposed in [Marvin and Linzen, 2018].

2.4. Neural networks

In this thesis we use neural networks to parametrize probability distributions. We con-
sider a neural network an abstraction that denotes a certain type of parametrized dif-
ferentiable function. We describe the functions used in this thesis, and describe how
they are optimized using stochastic gradients.

13According to [Chelba et al., 2017].
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2.4.1. Functions

Let x be a word from a finite vocabulary X , and let x and y be vectors in respectively
Rn and Rm.

Definition 2.4.1. A word embedding is vector representation of a word, assigned by an
embeding function E that takes elements from X to Rn:

x = E(x).

The function can be a simple lookup table, or a more elaborate function that depends
for example on the orthography of the word.

Definition 2.4.2. A feedforward neural network is a parametrized function FFN from Rn

to Rm:

y = FFN(x).

Internally, the function computes stacks of affine transformations followed by an ele-
mentwise application of a nonlinear function. The number of repetitions of these appli-
cations is refered to as the number of layers of the network.

Definition 2.4.3. A recurrent neural network (RNN) is a parametrized function RNN that
takes a sequence of vectors x

k
1 = [x1,x2, . . . ,xk], each in Rn, and produces a sequence

of output vectors [y1,y2, . . . ,yn] each in Rm:

[y1,y2, . . . ,yk] = RNN(xk
1).

Each vector yi is a function of the vectors [x1,x2, . . . ,xi], for which reason we refer
to the vector yi as a context-dependent encoding of the vector xi. An RNN can be ap-
plied to the input sequence in reverse. This makes each yi a function of the vectors
[xi,xi+1, . . . ,xk]. We denote the output of the forward direction with f and the output
of the backward direction with b.

Definition 2.4.4. An RNN is bidirectional when it combines the output of an RNN that
runs in the forward direction, with the output of an RNN that runs in the backward
direction. Combining their output vectors by concatenation gives for each position a
vector hi = [fi;bi] that is a function of the entire input sequence.

Definition 2.4.5. An LSTM [Hochreiter and Schmidhuber, 1997] is a particular way to
implement the internals of the RNN function. It is the only type of RNN used in this
work, and we use the two names exchangeably.

2.4.2. Optimization

We use the neural networks to parametrize probability distributions, subtly summa-
rized by the set of parameters ✓ in a probability mass function p✓. The parameters ✓ are
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optimized to find a maximum of an objective function L using gradients. With neural
networks, the function L will be highly nonconvex, in which case we can at most hope
to find ✓ that give a good local optimum of L (i.e. satisfying r✓ L(✓) = 0). Our proto-
typical objective is to optimize the log likelihood of a set of independent observations
D = {x(n)}N

n=1:

L(✓) =
NX

n=1

log p✓(x
(n)).

We perfom iterative parameter updates, obtaining new parameters ✓(t+1) at timestep
t + 1 from parameters ✓(t) at timestep t using the update rule

✓(t+1) = ✓(t) + �(t)r✓(t)L(✓(t)),

where the value �(t) is a time-indexed learning rate. We replace r✓L(✓) with an unbi-
ased estimate

N

K

KX
k=1

r✓ log p✓(x
(k)),

where {x(1), . . . , x(K)} are sampled uniformly from D, making our optimization pro-
cedure stochastic. This set of data samples is referred to as a minibatch. This works
because for and index s distributed uniformly between 1 and N the gradients equals
an expectation

r✓L(✓) = N E
h
r✓ log p✓(x

(s))
i
.

Under certain conditions on the learning rate �(t) this method is guaranteed to converge
to a local optimum [Robbins and Monro, 1951]. For the computation of r✓ log p✓(x) we
rely on automatic differentation [Baydin et al., 2018].
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3. Recurrent Neural Network Grammars

This chapter describes the Recurrent Neural Network Grammar (RNNG), a probabilis-
tic model of sentences with phrase structure introduced by Dyer et al. [2016]. The model
has a discriminative and generative formulation, but both are based on a shift-reduce
transition system that builds trees in top-down order and define locally normalized
probability distributions over action sequences. While the discriminative model is a
constituency parser, the generative model is a joint model that can be evaluated both as
constituency parser and as language model. The strength of both models lies in their
unbouded history: at each step the model can condition on the entire derivation con-
structed thus far. This derivation is summarized by a syntax-dependent recurrent neu-
ral networks. This parametrization without independence assumptions, however, does
preclude the use of exact inference—for example based on dynamic programming—but
approximate inference based on greedy decoding and importance sampling provides
tractable alternatives.

In this chapter:

• We describe the discriminative and generative formulations of the RNNG in de-
tail.

• We describe the approximate inference algorithms that allow the RNNG to be
used as parser and as language model.

• We implement the models and reproduce the results of Dyer et al. [2016].

3.1. Model

The discriminative RNNG is a transition based parser that uses regular RNNs to sum-
marize the actions in the history and the words on the buffer into vectors, and uses a
special RNN with a syntax-dependent recurrence to obtain a vector representation of
items on the the stack. The generative RNNG can be seen as a generative formulation
of the RNNG that jointly models the words instead of merely conditioning on them.
Alternatively, it can be seen as a structured model of language that predicts words to-
gether with their structure. From the parsing perspective, the generative RNNG simply
dispenses with the buffer to instead predict the words. But as a model of sentences, it
can best be understood as kind of structured RNN: it predicts words incrementally, but
compresses and labels them recursively whenever they form a complete constituents.
In this section we introduce both models, starting at their backbone: the transition sys-
tem.
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3.1.1. Transition sytem

Both RNNG models use a transition system crafted for top-down tree generation. The
discriminative transition system has three actions:

• OPEN(X) opens a new nonterminal symbol X in the partially constructed tree.

• SHIFT moves the topmost word x from the buffer onto the stack.

• REDUCE closes the open constituent by composing the symbols in it into a single
item representing the content of the subtree. This allows nodes with an arbitrary
number of children.

How these actions work to build a tree is best illustrated with an example derivation.

Example 3.1.1. (Discriminative transition system) The following table shows the con-
secutive states of the parser that produces the gold tree for input sentence The hungry
cat sleeps. Individual items are separated by the midline symbol.

Stack Buffer Action
0 The | hungry | cat |meows | . OPEN(S)
1 (S The | hungry | cat |meows | . OPEN(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP |The hungry | cat |meows | . SHIFT
4 (S | (NP |The | hungry cat |meows | . SHIFT
5 (S | (NP |The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . OPEN(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP |meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Table 3.1.: Discriminative transition system. Example from Dyer et al. [2016].

The actions are constrained in order to only derive well-formed trees:

• SHIFT can only be excecuted if there is at least one open nonterminal (all words
must be under some nonterminal symbol).

• OPEN(X) requires there to be words left on the buffer (all constituents must even-
tually hold terminals).1

• REDUCE requires there to be at least one terminal following the open nonterminal,
and the topmost nonterminal can only be closed when the buffer is empty (all
nodes must end under a single root node).

1Additionally, the number of open nonterminals can be at most some arbitrary number n, in practice 100.
This constraint prevents the model from generating trees with arbitrarily long unary chains.
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The generative transition system is derived from this system by replacing the SHIFT
action, which moves the word x from the buffer into the open constituent on the stack,
with an action that predicts the word:

• GEN(x) predicts that x is the next word in the currently open constituent, and puts
this word on the top of the stack.

The buffer is dispensed with and is replaced by a similar structure that records the
sequence words predicted so far.

Example 3.1.2. (Generative transition system) Generating the sentence of example 3.1.1
together with its tree.

Stack Terminals Action
0 OPEN(S)
1 (S OPEN(NP)
2 (S | (NP GEN(The)
3 (S | (NP |The The GEN(hungry)
4 (S | (NP |The | hungry The | hungry GEN(cat)
5 (S | (NP |The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat OPEN(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP |meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Table 3.2.: Generative transition system. Example from Dyer et al. [2016].

With the transition system in place, we now move to describe how the RNNG defines
a probability distribution over the sequeunces of transition actions.

3.1.2. Model

Fundamentally, the model is a probability distribution over transition action sequences
a = ha1, . . . , aT i that generate trees y. Conditionally—given a sequence of words x—
in the discriminative model, and jointly—predicting the sequence x—in the generative
model. The model then defines a distribution over trees Y(x) through the bijective
transformation that maps transition sequences a to trees y and vice versa.2 Put simply,
the model is thus defined as

p(a) =

TY
t=1

p(at | a<t), (3.1)

where in the discriminative case p(a) = p(y | x) and in the generative model p(a) =
p(x, y). The exact model however is slightly more complicated, a consequence of the

2 Note that as a result of the transition system, the trees in the set Y(x) are rather unconstrained: the trees
can have any arity, and can contain arbitrarily long unary chains, depending on the maximum number
of open nonterminals n chosen.
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difference between the discriminative and the generative actions and of practical con-
cerns regarding the implementation. We will define the model more precisely. For this
we need to introduce some things.

First we define the set of discriminative actions as

AD = {SHIFT, OPEN, REDUCE}, (3.2)

and the set of generative actions as

AG = {GEN, OPEN, REDUCE}. (3.3)

The finite set of nonterminals is denoted by ⇤ and the finite alphabet of words by X .
For the discriminative model a is sequence over AD, and in the generative model a
is a sequence over AG. In both cases a is restricted to sequences that form a valid
tree y. The sequence of nonterminals n = hn1, . . . , nKi from ⇤K is the sequence of
nonterminal nodes obtained from a tree y by pre-order traversal, and we let a sentence
x be an element of X N . Finally, we introduce two functions that map between sets of
indices to indicate the number of times a particular action has been taken at each time
step:

µa : {1, . . . , T} ! {1, . . . , K} : t 7!
t�1X
i=1

1(ai = OPEN),

and

⌫a : {1, . . . , T} ! {1, . . . , N} : t 7!
t�1X
i=1

1(ai = GEN),

but for brevity we drop the subscript a. We are now in the position to write down the
exact models.

Definition 3.1.3. (Discriminative RNNG) Let a be a sequence over AD of length T , let
x be a sentence over X of length N , and let n be the sequence on nonterminals over ⇤
of length K obtained from tree y. Then the model for the discrminative RNNG is

p(y | x) := p(a, n, | x)

=

TY
t=1

p(at | ut, x)p(nµ(t) | ut, x)1(a
t

=OPEN),

where ut := (a<t, n<µ(t)) is shorthand for the full history that is conditioned on at time t.
Whenever the prediction is to open a new nonterminal the action probability factorizes
as the product of two separate probabilities: the probability of the action itself, and the
probability of the next upcoming label in n, which is indexed by µ(t).
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Definition 3.1.4. (Generative RNNG) Let a be a sequence over AG of length T , let x be
a sentence over X of length N , and let n be the sequence on nonterminals over ⇤ of
length K obtained from tree y. The model for the generative RNNG then is

p(x, y) := p(a, n, x)

=
TY

t=1

p(at | ut)p(nµ(t) | ut)
1(a

t

=OPEN)p(x⌫(t) | ut)
1(a

t

=GEN),

where ut := (a<t, n<µ(t), x<⌫(t)) is shorthand for the full history that is conditioned on at
time t. This corresponds with the discriminative model on the actions that they share.
For the action that predicts the next word, the factorization is identical to that of the
action that predicts the next nonterminal, with the difference that the next word in x is
instead indexed by ⌫(t).

The probabilities in these products are computed by classifiers on a vector represen-
tation ut, which represents the parser configuration ut at time t. The probabilities are
computed as

p(at | ut) / exp
n

[FFN�(ut)]a
t

o
(3.4)

and

p(nµ(t) | ut) / exp
n

[FFN (ut)]n
µ(t)

o
(3.5)

used by both models, and for the generative model alone

p(x⌫(t) | ut) / exp
n

[FFN⇠(ut)]x
⌫(t)

o
, (3.6)

where we let at, nµ(t), and x⌫(t) double as indices. We use different feedforward net-
works for the distributions, meaning that �,  , and ⇠ are separate sets of parameters.
The computation of the vector ut is described in the next section.

Remark 3.1.5. We could have defined the actions as

AD = {REDUCE, SHIFT} [ {OPEN(n) | n 2 ⇤},

and

AG = {REDUCE} [ {OPEN(n) | n 2 ⇤} [ {GEN(x) | x 2 X},

and defined p(a) as in 3.1. However, in the case of the generative model this is particu-
larly inefficient from a computational perspective. Note that the set X is generally very
large3, and the normalization in 3.6 requires a sum over all actions while a large number
of the actions do not generate words. Besides, the presentation in definitions 3.1.3 and

3On the order of tens or hundreds of thousands.
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3.1.4 is conceptually cleaner: first choose an action, then, if required, choose the details
of that action. For these reasons we opt for the two-step prediction. For consistency
we extend this modelling choice to the discriminative RNNG. And although it appears
that Dyer et al. [2016] model the sequences according to 3.1, followup work takes our
approach and models the actions of the generative RNNG as in definition 3.1.4 [Hale
et al., 2018].

3.2. Parametrization

The transition probabilities are computed from the vector ut that summarizes the parser’s
entire configuration history at time t. This vector is computed incrementally and in a
syntax-dependent way. It is defined as the concatenation of three vectors, each summa-
rizing one of the three datastructures separately:

ut = [st;bt;ht].

Here, st represents the stack, bt represents the buffer, and ht represents the history of
actions.

The vectors bt and ht are computed each with a regular RNN: the history vector
is computed in the forward direction, and the buffer is encoded in the backward di-
rection to provide a lookahead. The vector st represents the partially constructed tree
that is on the stack, and its computation depends on this partial structure by using a
structured RNN that encodes the tree in top-down order while recursively compressing
constituents whenever they are completed.

3.2.1. Stack encoder

The stack RNN computes a representation based on incoming nonterminal and termi-
nal symbols while these are respectively opened and shifted, as a regular RNN would,
but rewrites this history whenever the constituent that they form is closed. Whenever a
REDUCE action is predicted, the RNN rewinds its hidden state to before the constituent
was opened; the items making up the constinuent are composed into a single vector by
a composition function; and this composed vector is then fed into the rewound RNN
as if the subtree were a single input. The closed constituent is now a single item rep-
resented by a single vector. Due to the nested nature of constituents this procedure
recursively compresseses subtrees.

Example 3.2.1. (Composition function) Consider the state of the parser in example 3.1.1
at step 5, when the stack contains the five items

(S | (NP | The | hungry | cat.

Each first represented by an embedding vector, and then encoded by an RNN in the
regular way. A REDUCE action is now predicted: the items are popped from the stack
until the first open bracket is popped, which in this example is the item that opens the
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NP bracket. This process also rewinds the RNN state to before the bracket was ope-
nend, which in this example brings the RNN back to its state at step 1. The composition
now computes a vector representation for the four popped items, returning a single
representation for the composed item

(NP The hungry cat).

The RNN is fed this reduced input, resulting in the encoding of stack at step 6, and
finalizing the reduction step. This process is recursive: consider the reduction that
takes the stack from the five items

(S | (NP | The | (ADJP very hungry) | cat

to the two items

(S | (NP The (ADJP very hungry) cat).

The items in the constituent (ADJP very hungry) have already been composed into a
single item, and now it takes part in the composition at a higher level.

3.2.2. Composition function

Two kinds of functions have been proposed to for the composition described above: the
original function based on a bidirectional RNN [Dyer et al., 2016], and a more elaborate
one that additionally incorporates an attention mechanism [Kuncoro et al., 2017]. Both
methods encode the invidual items that make up the constituent with a bidirectional
RNN, but where the simpler version merely concatenates the endpoint vectors, the at-
tention based method computes a convex combination of all these vectors, weighted
by predicted attention weights. Kuncoro et al. [2017] show that the models with the
attention-based composition outperform the models with the simpler composition, and
that the attention mechanism adds interpretability to the composition. For these rea-
sons we only consider the attention-based composition.

The attention-based composition is defined as follows. Let h1, . . . ,hm be the vector
representations computed by a dedicated bidirectional LSTM for the m words making
up the constituent that is to be compressed, and let n be the learned embedding for the
nonterminal category of that constituent. The attention weight ai for the i-th position
is computed as the exponentiated bilinear product

ai / exp
n
h

>
i V [ut;n]

o
between the vector representation hi and the concatenation of current parser state rep-
resentation ut and nonterminal representation n. The values a1, . . . , am are normalized
to sum to 1, and the matrix V is part of the trainable parameters. The convex combina-
tion of the vectors hi weighted by values ai gives the vector

m =

mX
i=1

aihi,
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which represents the words in the constituent, and the final representation of the con-
stituent is the gated sum

c = g � n + (1 � g) � m.

of this vector and the vector n representing the nonterminal, weighted by a gating vec-
tor g. The vector of gates g is computed by an affine transformation on [n;m] followed
by an elementwise application of the logistic function.4 This final representation can
weigh the contribution to the final representation of the words and their nonterminal
category, depending on the context.

3.3. Training

The discriminative and generative model are trained to maximize the log likelihood of
a labeled dataset D of pairs (x, y)

L(✓) =
X

(x,y)2D
log p✓(y | x),

respectively

L(✓) =
X

(x,y)2D
log p✓(x, y),

by gradient-based optimization on the parameters ✓.

3.4. Inference

The two formulations of the RNNG have complementary applications: both models can
be used for parsing, but the generative model can additionally be used as a language
model. How these problems can be solved is the topic of this section.

3.4.1. Discriminative model

Parsing a sentence x with the discriminative model corresponds to solving the follow-
ing search problem of finding the maximum a posteriori (MAP) tree

ŷ = arg max
y2Y(x)

p✓(y | x).

Solving this exactly is intractable due to the parametrization of the model. At each
timestep, the model conditions on the entire derivation history which excludes the use

4Our definition of c is slightly different from that of Kuncoro et al. [2017]: they use a vector representation
t different from n in the above definition; we use n to compute both the attention weights and the final
vector.
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of dynamic programming to solve this efficiently. Instead we rely on an approximate
search strategy. There are two common approaches for this: greedy decoding and beam
search. We only focus on the first. Greedy decoding is precisely what it suggests: at
each timestep we greedily select the best local decision

ât = arg max
a

p✓(a | â<t).

The predicted parse is then the approximate MAP tree y⇤ = yield(â), which is the tree
constructed from the sequence â = hâ1, . . . , âmi.

3.4.2. Generative model

Given a trained generative model p✓ we are interested in solving the following two
problems: parsing a sentence x

ŷ = arg max
y2Y(x)

p✓(x, y),

and computing its marginal probability

p(x) =
X

y2Y(x)

p✓(x, y).

Either inference problem is intractable. Computing the marginal requires a sum over
all possible action sequences, and the lack of conditional independence between ac-
tions inhibits any approach based on dynamic programming. Parsing would similarly
require exhaustive enumeration of all trees. Luckily, both problems can be effectively
approximated with the same approximate inference method: importance sampling us-
ing a conditional proposal distribution q�(y | x) [Dyer et al., 2016].

Approximate marginalization The proposal distribution allows us to rewrite the marginal
probability of a sentence as an expectation under this distribution:

p(x) =
X

y2Y(x)

p✓(x, y)

=
X

y2Y(x)

q�(y | x)
p✓(x, y)

q�(y | x)

= Eq


p✓(x, y)

q�(y | x)

�

This expectation can be approximated with a Monte Carlo estimate

Eq


p✓(x, y)

q�(y | x)

�
⇡ 1

K

KX
k=1

p✓(x, y(k))

q�(y(k) | x)
, (3.7)

using proposal samples y(k) sampled from the proposal model q� conditioning on x.
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Approximate MAP tree To approximate the MAP tree ŷ we use the same set of pro-
posal samples as above, and choose the tree y from the proposal samples that has the
highest probability probability under the joint model p✓(y, x). We thus effectively use
the generative model to rerank proposals from the discriminative model.

The rationale behind this is as follows. We want to obtain trees y for which the true
posterior p✓(y | x) = p✓(x, y)/p✓(x) is high. If q� is similar to this true posterior, it will
tend to produce samples y for which p✓(y | x) is also high. The tree y that is highest
under p✓(x, y) will then also be highest under p✓(y | x) because

arg max
y

p✓(y | x) = arg max
y

p✓(x, y),

which is precisely what we wanted. For this approximation it is thus beneficial for the
proposal model q�(y | x) to be ‘close to’ the true posterior p✓(y | x). 5

Proposal distribution The proposal distribution must have a support that covers that
of the joint model. This corresponds to the property that for all x and y 2 Y(x)

p(x, y) > 0 ) q(y | x) > 0.

We additionally want that the samples can be obtained efficiently, and that their con-
ditional probability can be computed. All these requirements are met by the discrim-
inative RNNG: samples can be obtained by ancestral sampling over the transition se-
quences, and their probability is given by the product of probabilities of these transition
actions. Dyer et al. [2016] use this as their proposal, and in this chapter we will follow
their example. In principle, any discriminatively trained parser that meets these re-
quirements can be used, but as we argued in the previous paragraph: the closer to the
true posterior p✓(y | x) the better.

3.5. Experiments

This section reports the results of the experiments performed with our own implemen-
tation of the RNNG. We train the discriminative and generative model on the Penn
Treebank with the same hyperparameters as Dyer et al. [2016], and compare our results
to conclude the correctness of our implementation. We then investigate how the ap-
proximate marginalization depends on two parameters: the number of samples, and
the temperature used to scale the distribution of the proposal model. For the general
training setup and details about data and optimization we refer the reader to appendix
A.

5The notion of ‘close to’ is made precise in variational inference as the KL divergence between q
�

and the
true posterior in a setup similar to this. More about this in chapter 5.
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3.5.1. Setup

We use the same hyperparameters as [Dyer et al., 2016]. For both models the embed-
dings are of dimension 100, and the LSTMs have 2 layers. The LSTMs have dimension
128 in the discriminative model and 256 in the generative model, and the dimension
of the feedforward networks that compute the action distributions are the same as the
LSTMs. We use weight decay of 10�6, and apply dropout to all layers including the
recurrent connections6 using a dropout ratio of 0.2 in the discriminative model and 0.3
in the generative model. Given the above dimensions, the total number of trainable
parameters is approximately 0.8M for the discriminative model and 9.6M for the gen-
erative model (the exact numbers are given in table A.1).

Our discriminative model does not use tags, which contrasts with Dyer et al. [2016]
who use tags predicted by an external tagger. This decision was made with the appli-
cation of the RNNG as language model in mind, in which case tags are not available,
but this choice will affect the parsing accuracy of the discriminative model. For a more
elaborate justification of this choice we refer the reader to section A.1.2 of the imple-
mentation appendix A.

3.5.2. Results

We train 10 separate models from different random seeds.7 We report mean and stan-
dard deviation to give a sense of the variability of the accuracy, as well as the value of
the model with the best development performance. Model selection is based on devel-
opment F1 for the discriminative model, and based on development perplexity for the
generative model. For inference with the generative model we follow Dyer et al. [2016]
and sample 100 trees from our best discriminative model. The samples are obtained by
ancestral sampling on the action sequeunces, and we flatten this ditribution by raising
each action distribution to the power ↵ = 0.8 and renormalizing it.

The parsing F1 of the discriminative model are shown in table 3.3, and the results
of the generative model are shown in tables 3.4 (F1) and 3.5 (perplexity). The value
between brackets is the value based on model selection.

Ours Dyer et al. [2016]
F1 88.47 ± 0.17 (88.58) – (91.7)

Table 3.3.: F1 scores for the discriminative RNNG.

The accuracy of our discriminative model is below that of Dyer et al. [2016], a gap
that we think can reasonably be attributed to the absence of tag information in our
implementation. This gap in F1 is carried through in a lesser degree to the generative
model, resulting in a lower F1 than reported by Dyer et al. [2016] when using our own

6Also called variational dropout [Gal and Ghahramani, 2016], which is implemented by default in Dynet
[Neubig et al., 2017a].

7The random seeds control both the random initialization of the model parameters as well as the order
in which we pass through the training data.
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Our samples Dyer et al. [2016]
Our RNNG 91.07 ± 0.1 (91.12) 93.32 ± 0.1 (93.32)
Dyer et al. [2016] – – (93.3)
Kuncoro et al. [2017] – – (93.5)

Table 3.4.: F1 scores for the generative RNNG for different proposal models.

Our samples Dyer et al. [2016]
Our RNNG 108.76 ± 1.52 (107.43) 107.80 ± 1.59 (106.45)
Dyer et al. [2016] – – (105.2)
Kuncoro et al. [2017] – – (100.9)

Table 3.5.: Perplexity of the generative RNNG for different proposal models.

samples. The reranking by the generative models still finds better trees than the greedy
decoding of the discriminative model, as evidenced by the higher F1 score, and when
we evaluate with the proposal samples used in the original work we find that the F1
agrees perfectly with that of Dyer et al. [2016] and is on par with the results reported
in Kuncoro et al. [2017].8. The difference in perplexity performance is less pronounced,
and with our own samples we manage to get close to the perplexity published in Dyer
et al. [2016]. The perplexity does lag behind the results reported in Kuncoro et al. [2017],
which are the results obtained with the attention-based composition function.

3.5.3. Analysis

We now take a closer look at the approximate inference of the RNNG. The tempera-
ture ↵ affects the proposal model and this, together with the number of samples, affects
the approximate inference of the generative model. The temperature is used to flatten
the proposal distribution to more evenly cover the support of the joint model, with the
rationale of thus being closer to the true posterior;9 the number of samples is used to
increase the accuracy of our unbiased MC estimate. The number of samples should
particularly garner our attention: the approximate marginalization is compuationally
expensive, requiring at least as many forward computations as there are unique sam-
ples.10 The less samples we can get away with the better. To see how these values affect
the generative RNNG in practice we perform two experiments: first we evaluate the
RNNG with increasing number of samples, obtained with and without annealing; then
we use these same samples to estimate the conditional entropy of the proposal models.

For the first experiment we evaluate the generative RNNG as in the above setting,
while varying the number of samples, and the temperature ↵: we let the number of

8The proposal samples used by Dyer et al. [2016] are availlable at https://github.com/clab/rnng.
9After all, the proposal model was trained on a maximum likelihook objective, and we can thus expect it

to be too peaked.
10For efficiency we already partition the samples into groups of identical samples, where for each group

we need to compute just ones and scale by the size of the group.

35

https://github.com/clab/rnng


samples be in {10, 25, 50, 75, 100} and let ↵ be in {0.8, 1}.11. To quantify the variability
of the proposal model in this we repeat the experiment 10 times. Figure 3.1 shows the
results of this experiment for the parsing F1, and 3.2 shows the results for the perplex-
ity. The F1 of the generative model increases with the number of samples, but clearly
converges at around 100 samples; the difference between 10 and 100 samples is about
1 F1 on average. This appears to tell us that the generative model finds the better trees
at the tails of the proposal distribution—the trees that are only observed, on expecta-
tion, given enough samples. There is little difference between the different temperature
values when using many samples, but when few samples are used the proposal model
that is left unchanged performs best. In the case of perplexity we can see a consistent
difference between the values of ↵, always favoring the proposal model where ↵ = 0.8.
A striking feature that can be observed in the plot is that the perplexity estimates lie in
small regions that decrease with increasing number of samples. The estimate is in fact
an upper bound on the perplexity, a result of our estimator, the definition of perplexity,
and Jensen’s inequality.12 Each of the independent estimates vary litle between each
other, but the gap between 10 and 100 samples is a significant 10 nats in perplexity,
on avergare. It moreover appears from the trend of the curve that 100 samples is not
yet enough to close the bound, and that more samples would still further lower the
perplexity—an unfortunate finding given our concerns about computational efficiency.

Figure 3.1.: F1 estimated with increasing number of samples, with and without an-
nealed distributions, for 10 independent repetitions. Horizontal lines show
values of individual outcomes.

11When ↵ = 1, the distribution is left unchanched.
12We compute p(x) as an expectation E[p(x, y)], and because logE[p(x, y)]  E[log p(x, y)] by Jensen’s

inequality we find for our perplexity estimate that exp{� 1
m

logE[p(x, y)]} � exp{� 1
m

E[log p(x, y)]}.
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Figure 3.2.: Perplexity estimated with increasing number of samples, with and with-
out annealed distributions, for 10 independent repetitions. Horizontal lines
show values of individual outcomes.

Figure 3.3.: Conditional entropy estimated with increasing number of samples, with
and without annealed distributions, for 10 independent repetitions. Hori-
zontal lines show values of individual outcomes.
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We move to the second experiment. To quantify the uncertainty in the discriminative
proposal model we compute the conditional entropy. The conditional entropy of Y
given X is defined as

H(Y | X) =
X
x2X

p(x) H(Y | X = x),

where

H(Y | X = x) = �
X
y2Y

p(y | x) log p(y | x).

In our case, the distribution p is given by the discriminative RNNG. Because for this
model the sum over Y cannot be computed efficiently we estimate it with a Monte
Carlo estimate as

H(Y | X = x) = �E[log p(Y | X = x)]

⇡ � 1

K

KX
k=1

log p(y(k) | x),

for which we can use the same samples y(k) drawn from p(Y | X = x) as in the above
experiments. To estimate the sum over X we can use the test set D that, which we
consider a large sample from the data distribution p(x):

H(Y | X) ⇡ 1

|D|
X

(x,y)2D
H(Y | X = x).

What this means effectively is that we compute the average negative log-likelihood
over all samples, for all sentences in the test set. We repeat this for each of the 10 sets of
samples, for the same increasing number of samples. The results are show in figure 3.3.
The results are as expected: the estimate converges as the number of samples increases,
and the entropy of the proposal model flattened with ↵ = 0.8 is much higher than that
of the original.

3.6. Related work

Most directly related to the RNNG is the work on generative dependency parsing [Titov
and Henderson, 2007, Buys and Blunsom, 2015a,b, 2018] and the work on language
modelling via top-down generative parsing models in Roark [2001]. Buys and Blunsom
[2018] introduced a joint model based on dependency trees that allows exact marginal-
ization based on dynamic programming. This comes at the cost of a less expressive
parametrization, one in which the features cannot depend on the structure of the tree
being constructed, and the model does not outperform an RNN language model in
terms of perplexity.
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It has been investigated what RNNGs learn about syntax beyond their supervision.
Kuncoro et al. [2017] show that the attention mechanism in the composition function
learns a type of ‘soft’ head-rules13, in which most of the attention weight is put on the
item that linguists consider the synactic head of such constituents. Another finding
shows that when trained on unlabeledd trees, the RNNG learns representations for
constituents that cluster according to their withheld gold label. Additionally, it has been
found that RNNGs are much better at a long-distance subject-verb agreement task than
LSTM language models [Linzen et al., 2016, Kuncoro et al., 2018], which advantage they
owe to the composition function that by repeatedly compressing intervening structure
decreases the distance between the two words at stake.

It appears also that RNNGs can tell us something about our brains: psycholinguistic
research has shown that top-down parsing is a cognitively plausible parsing strategy
[Brennan et al., 2016], and recently, RNNGs have been shown to be particularly good
statistical predictors for human sentence comprehension [Hale et al., 2018]. In this ex-
periment, the sequential word-probabilities derived from a generative RNNG14 pro-
vide a per-word complexity metric that predicts human reading difficulty well. Much
better at least than predictions from the word probabilities obtained from a purely se-
quential RNN language model.

13A head is the lexical item in a phrase that determines the syntactic category of that phrase, cf.the back-
ground.

14Obtained by using ‘word-synchronous beam-search’ [Stern et al., 2017b].

39



4. Conditional Random Field parser

In the previous chapter we described how inference with the RNNG can be performed
using a discriminative proposal model. We there used a discriminative RNNG; in this
chapter we introduce an alternative. We introduce a novel neural conditional random
field (CRF) parser. The model is a CRF factored over labeled spans, and is an adap-
tation of the chart-based parser introduced in Stern et al. [2017a] from margin-based
training to global CRF training. The model is defined over normal form trees, but can
deal with n-ary trees by binarization using a dummy label, and with unary chains by
collapsing them to an atomic label.1. Each of these labels are in turn treated as any other
nonterminal label. This solution is adequate for the supervised training of the CRF and
its application as parser, but does pose a challenge for the use of this model as pro-
posal for the RNNG. The indifferent treatment of the dummy label causes derivational
ambiguity, which in turn causes a subtle mismatch between the set of trees modelled
by the CRF and the set of trees modelled by the RNNG. We discuss the effects of the
derivational ambiguity and describe solutions at the end of the chapter.

In this chapter:

• We present the model and describe how it is an adaptation into a CRF of the max-
margin trained model of Stern et al. [2017a].

• We show how several inference problems of interest—parsing, sampling, and
computing the entropy—can be solved exactly and efficiently by deriving spe-
cific instances of the inside and outside algorithms.

• We train the model in and show its effectiveness as discriminative parser: with
the same number of parameters as the discriminative RNNG it achieves 90.04 F1,
surpassing RNNG by more than 1 point F1.

• We use the trained model as a proposal distribution for the generative RNNG, and
show that this does not affect the parsing accuracy, but does affect the perplexity,
albeit negatively.

• We desribe the problems of the current formulation of the model as a proposal
model for the RNNG, and we provide solutions. Preliminary results show that
this solves the problem.

1Cf. figure 2.2 for this normalization process.

40



4.1. Model

The model is a span-factored CRF that predicts scores for labeled spans over the sen-
tence using neural networks, which then interact in a tree-structured dynamic program,
giving a compact description of the probability distribution over all parses. This ap-
proach combines the efficient exact inference of chart-based parsing, the rich nonlinear
features of neural networks, and the global training of a CRF. The factorization enables
efficient exact inference alowing for exact decoding and global sampling while the neu-
ral features can be complex and can condition on the entire sentence.

Let x be a sentence, and y a tree from Y(x). We define a function  that assings
nonnegative scores  (x, y) and let the probability of a tree be its globally normalized
score

p(y | x) =
 (x, y)

Z(x)
, (4.1)

where

Z(x) =
X

y2Y(x)

 (x, y)

is the normalizer, or partition function, that sums over the exponential number of trees
availlable for x.

To allow efficient computation of the normalizer, we let the scoring function  fac-
torize over the parts of y. We consider a tree as a set of labeled spans yc = (A, i, j),
indicating that a label A 2 ⇤ spans the words hxi+1, . . . , xji, and thus write y = {yc}C

c=1.
The value  (x, y) is then defined as the product

 (x, y) =
CY

c=1

 (x, yc), (4.2)

where nonnegative potentials  (x, yc) score the parts. The function  scores each la-
beled span yc seperately, but conditional on the entire sentence.

The above model is your typical constituency parsing CRF [Finkel et al., 2008, Durrett
and Klein, 2015]. But where those models factorize trees over anchored rules, our model
the factorizes over labeled spans,2 an approach first taken in Stern et al. [2017a]. This
factorization imposes an even stronger independence assumption than that imposed
by factorizatin over anchored rules. By factorizing over labeled spans, the potential
function  has no access to information about the direct substructure under the node,
such as the child nodes and their split point, and the function can thus rely less on
the (local) tree structure and must thus rely more on the surface features of the input
sentence. It will, however, greatly reduce the size of the state-space of the dynamic
programs, speeding up training and inference, and the burden of the scoring function
will be carried by a rich neural network parametrization. Together this will make the
parser fast yet effective, which we will detail in section 4.3 on inference.

2Compare table 2.1 for the different representations of a tree.
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<START> She
0

played
1

(f1,b1)

soccer
2

in
3

the
4

(f4,b4)

park
5

.
6

<STOP>
7

[f4 � f1,b1 � b4]

Figure 1: Span representations are computed by running a bidirectional LSTM over the input sentence and taking
differences of the output vectors at the two endpoints. Here we illustrate the process for the span (1, 4) correspond-
ing to “played soccer in” in the example sentence.

Since � decomposes over spans, the inner loss-
augmented decode maxT [s(T ) + �(T, T ⇤)] can
be performed efficiently using a slight modifica-
tion of the dynamic program used for inference.
In particular, we replace s(i, j, �) with s(i, j, �) +
1[� 6= �⇤

ij ], where �⇤
ij is the label of span (i, j) in

the gold tree T ⇤.

2.7 Results
We use the Penn Treebank (Marcus et al., 1993)
for our experiments with the standard splits of sec-
tions 2-21 for training, section 22 for develop-
ment, and section 23 for testing. Details about
our model hyperparameters and training prodecure
can be found in Appendix A.

Across 10 trials, our model achieves an average
development F1 score of 92.22 on section 22 of the
Penn Treebank. We use this as our primary point
of comparison in all subsequent analysis. The
model with the best score on the development set
achieves a test F1 score of 92.08 on section 23 of
the Penn Treebank, exceeding the performance of
other recent state-of-the-art discriminative models
which do not use external data or ensembling.1

3 Output Correlations

Output correlations are information about compat-
ibility between outputs in a structured prediction
model. Since outputs are all a function of the in-
put, output correlations are not necessary for pre-
diction when a model has access to the entire in-
put. In practice, however, many models through-
out NLP have found them useful (Collins, 1997;
Lafferty et al., 2001; Koo and Collins, 2010), and

1Code for our parser is available at https://github.
com/dgaddy/parser-analysis.

Liang et al. (2008) provides theoretical results sug-
gesting they may be useful for learning efficiently.
In constituency parsing, there are two primary
forms of output correlation typically captured by
models. The first is correlations between label de-
cisions, which often are captured by either produc-
tion scores or the history in an incremental tree-
creation procedure. The second, more subtle cor-
relation comes from the enforcement of tree con-
straints, since the inclusion of one bracket can af-
fect whether or not another bracket can be present.
We explore these two classes of output correla-
tions in Sections 3.1 and 3.2 below.

3.1 Parent Classification

The base parser introduced in Section 2 scores la-
beled brackets independently then uses a dynamic
program to select a set of brackets that forms the
highest-scoring tree. This independent labeling
is an interesting departure from classical parsing
work where correlations between predicted labels
played a central role. It is natural to wonder why
modeling label correlations isn’t as important as
it once was. Is there something about the neural
representation that allows us to function without
it? One possible explanation is that the neural ma-
chinery, in particular the LSTM, is handling much
of the reconciliation between labels that was previ-
ously handled by an inference procedure. In other
words, instead of using local information to sug-
gest several brackets and letting the grammar han-
dle interactions between them, the LSTM may be
making decisions about brackets already in its la-
tent state, allowing it to use the result of these de-
cisions to inform other bracketings.

One way to explore this hypothesis would be

1002

Figure 4.1.: Representation for the span (1, 4) computed from RNN encodings. Figure
taken from Gaddy et al. [2018].

4.2. Parametrization

The scoring function  is implemented with neural networks following Stern et al.
[2017a]. Again, let yc denote a labeled span (A, i, j) in a tree y, and let  (x, yc) � 0
be the score of that labeled span for sentence x. These local potentials can only make
minimal use of structural information but they can depend on the entire sentence. This
suggest the use of bidirectional RNN encodings. Let fi and bi respectively be the vec-
tors computed by a forward and backward RNN for the word in position i. The repre-
sentation of the span (i, j) is the concatenation of the difference between the vectors on
the endpoints of the span:

sij = [fj � fi;bi � bj ]. (4.3)

The vector sij represents the words xj
i , and equation 4.3 is illustrated in figure 4.1. The

scores for each label in that position are computed from this vector using a feedforward
network with output dimension R|⇤|, and the score of label A is given by the index
corresponding to it:

log (x, yc) = [FFN(sij)]A, (4.4)

where we pretend that A doubles as an index. This architecture is rightly called min-
imal, but it works surprisingly well: Stern et al. [2017a] also experiment with more
elaborate functions based on concatenation of vectors (a strict superset of the minus
approach) and biaffine scoring (inspired by Dozat and Manning [2016]), but these func-
tions improve marginally, if they do at all.

4.3. Inference

Because our model is span-factored it allows efficient inference. In this section we de-
scribe efficient solutions to four related problems:

42



• Compute the normalizer Z(x) =
P

y2Y(x)

QC
c=1  (x, yc).

• Find the best parse ŷ = arg maxy p(y | x)

• Sample a tree Y ⇠ P (Y | X = x).

• Compute the entropy H(Y | X = x) over parses for x.

These problems can be solved by instances of the inside algorithm and outside algorithm
[Baker, 1979] with differentent semirings, an insight we take from semiring parsing
[Goodman, 1999]. In the following derivations we will make use of the notion of a
weighted hypergraph as a compact representation of all parses and their scores [Gallo
et al., 1993, Klein and Manning, 2004], and use some of the ideas and notation of semir-
ing parsing [Goodman, 1999, Li and Eisner, 2009]. First we describe the structure of the
parse forest specified by our CRF parser, and then derive the particular form of the
inside and outside recursions for this hypergraph from the general formulations. We
refer the reader to appendix B for background on these ideas, and the introduction of
the notation.

4.3.1. Weighted parse forest

The the CRF parser defines a hypergraph G = (V, E) with the following structure. We
treat the dummy label ? 2 ⇤ as any other label, unless we explictly indicate otherwise.

The set V is defined relative to the sentence x, and contains the invidual words of a
sentence x, together with all possible labeled spans over that sentence:

V =
n

xi

��� 1  i  n
o

[
n

(A, i, j)
��� A 2 ⇤, 0  i < j  n

o
[
n

(S†, 0, n)
o

,

where (S†, 0, n) is a designated root node. The dependence on x can be made explicit
by writing V(x).

The set of hyperedges E ✓ 2V ⇥ V specifies all the ways that adjacent constituents
can be combined to form a larger constituent, under a particular grammar. The edges
connect sets of nodes at the tail with a singel node at the head. Because we (implicitly)
assume a normal form grammar that contains all possible productions, the set of hy-
peredges is particularly regular: the set E contains all edges that connect nodes (B, i, k)
and (C, k, j) at the tail with (A, i, j) at the head for all 0  i < k < j  n, all edges that
connect xi to (A, i, i + 1), and all labels can appear in the top node, with the exception
of the dummy label ?:

E =

(Dn
(B, i, k), (C, k, j)

o
, (A, i, j)

E ����� A, B, C 2 ⇤, 0  i < k < j  n

)

[
(D

{xi}, (A, i � 1, i)
E ����� A 2 ⇤, 1  i  n

)

[
(D

{(A, 0, n)}, (S†, 0, n)
E ����� A 2 ⇤ \ {?}

)
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The three kind of edges that make up E are illustrated in figure 4.2. A tree is a set of
nodes y ✓ V(x), and the parse forest a set of trees Y(x) ✓ 2V(x).

xi Bk
i Cj

k
An

0

Ai
i�1 Aj

i S†n
0

Figure 4.2.: The edge-types making up the hypergraph. The edges are instatiated for all
A, B, C 2 ⇤ and all 0  i < j  n. Only for the rightmost edge holds the
restriction A 6= ?, to ensure that the dummy label cannot be the top node.

We connect a semiring K to the hypergraph by defining the weight function as ! :
E ! K, and by accumulating the weights with its binary operations. The function ! that
assigns weights to the edges is given by either the function  or (log � ), depending
on the semiring used. Because of this association, the function ! has a very particular
property: the function effectively depends only on the head of the edge. Given edges
e = h{u, w}, vi and e0 = h{u0, w0}, vi for u 6= u0 and w 6= w0, their weights are equal:
!(e) = !(e0). For this reason we write !(v) instead.3 This fact will allow us to greatly
simplify the recursions that follow. Additionally, this means that instead of computing
independent scores for each of the O(n3|⇤|3) edges, we only need to compute scores for
the O(n2|⇤|) vertices. For a scoring function like a neural network, for which computa-
tion can be relatively expensive, this will make a significant difference.

With this structure in place, we are ready to derive the form of the inference algorithm
particular to this structure.

4.3.2. Inside recursion

The inside recursion computes quantities ↵(A, i, j) for all labels A 2 ⇤ and all spans
0  i < j  n with respect to a semiring. What the quantity represents depends on the
semiring used. In this section we derive the inside recursion specific to our hypergraph
from the general result given.

Let K be some semiring with binary operations � and ⌦ and identity elements 0̄ and
1̄. The inside recursion is given by the formula [Goodman, 1999]

↵(v) =

8><>:
1̄ if I(v) = ?,M
e2I(v)

!(e) ⌦
O

u2T (e)

↵(u) otherwise.

Here I(v) ✓ E is the set of edges incoming at node v, and T (e) ✓ V is the set of nodes
in the tail of edge e.

3Thus implicitly defining ! : V ! K.
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At a node v = (A, i, i + 1) that spans one word xi, the inside value is just the weight
of the single edge incoming from that word:

↵(A, i, i + 1) = !(A, i, i + 1) ⌦ ↵(xi) = !(A, i, i + 1), (4.5)

for A 2 ⇤, for all 0  i < n. We used the fact that ↵(xi) = 1̄, which follows from the fact
that there are no arrows incoming at xi.

For a general node ↵(A, i, j), j > i + 1, we observe that all the incoming edges have
at the tail the nodes (B, i, k) and (C, k, j), for all B, C 2 ⇤ and i < k < j. The sum over
edges thus reduces to independent sums over B, C, and k, and the product over the
inside values at the tail reduces to the product of values ↵(B, i, k) and ↵(C, k, j). The
form of ! allows us to rewrite this greatly as

↵(A, i, j) =
M
B2⇤

M
C2⇤

j�1M
k=i+1

!(A, i, j) ⌦ ↵(B, i, k) ⌦ ↵(C, k, j)

= !(A, i, j) ⌦
j�1M

k=i+1

M
B2⇤

↵(B, i, k) ⌦
M
C2⇤

↵(C, k, j)

= !(A, i, j) ⌦
j�1M

k=i+1

�(i, k) ⌦ �(k, j), (4.6)

where we have introduced the notational abbreviation

�(i, j) =
M
A2⇤

↵(A, i, j).

Looking at 4.6 we can see the marginalized values �(i, j) are all that are needed for the
recursion. This suggest simplifying the recursion even further as

�(i, j) =
M
A2⇤

↵(A, i, j)

=

"M
A2⇤

!(A, i, j)

#
⌦
"

j�1M
k=i+1

�(i, k) ⌦ �(k, j)

#
, (4.7)

where we put explicit brackets to emphasize that independence of the subproblems of
labeling and splitting.

These values can be computed by visiting the nodes of the parse forest in topolog-
ical order. This order ensures that the quantities in the tail of an edge will have been
computed when the value at the node at the head is at turn. Given the highly regular
form of the parse forest, this order boils down to something quite simple: the nodes
are visited by increasing width of the span; the order in which the starting-points are
visited does not matter because these nodes are not connected among each other.4. We
choose to visit the starting points from left to right, that is, from 0 to n.

4Cf. figure B.1 in appendix B: the width of the span determines the vertical level of the node in the parse
forest; for a fixed width, the label and startpoint are all unconnected along this vertical level, and thus
independent.
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4.3.3. Outside recursion

The outside algorithm computes the quantities �(A, i, j) for all labels A 2 ⇤ and all
spans 0  i < j  n. The general recursion is given by:

�(v) =

8>><>>:
1̄ if O(v) = ?,M
e2O(v)

!(e) ⌦ �(H(e)) ⌦
O

w2T (e)
w 6=u

↵(w) otherwise.

Here, O(v) ✓ E is the set of edges outgoing from v, i.e. the edges for which v is in the
tail, and define H(e) 2 V as the node at the head of edge e.

The only node without outgoing edges is the root node, and thus

�(S†, 0, n) = 1̄.

To compute �(A, i, j) in the general case we need to sum over all outgoing edges. These
come in two kinds: either (A, i, j) combines with (C, j, k) to form constituent (B, i, k);
or (A, i, j) combines with (C, k, i) to form constituent (B, k, j). This corresponds to the
following expression, that we can simplify by making use of the properties of !:

�(A, i, j) =
M
B2⇤

M
C2⇤

i�1M
k=1

!(B, k, j) ⌦ ↵(C, k, i) ⌦ �(B, k, j)

�
M
B2⇤

M
C2⇤

nM
k=j+1

!(B, i, k) ⌦ �(B, i, k) ⌦ ↵(C, j, k)

=

i�1M
k=1

" M
B2⇤

!(B, k, j) ⌦ �(B, k, j)

#
⌦

"M
C2⇤

↵(C, k, i)

#

�
nM

k=j+1

" M
B2⇤

!(B, i, k) ⌦ �(B, i, k)

#
⌦
"M

C2⇤

↵(C, j, k)

#

=
i�1M
k=1

�0(k, j) ⌦ �(k, i) �
nM

k=j+1

�0(i, k) ⌦ �(j, k)

where

�(i, j) =
M
A2⇤

↵(A, i, j),

�0(i, j) =
M
A2⇤

!(A, i, j)�(A, i, j).

These values can be computed by visiting the nodes of the parse forest in reverse
topological order, exactly the opposite of the inside recursion. This order ensures that
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the quantities in the head of an edge will have been computed when the values in the
tail are at turn. Again, this this order boils down to something quite simple: the nodes
are visited based by decreasing width of their span, and again the order of the start-
points are free.

4.3.4. Solutions

Equiped with the two recursions and a handful of semirings we can provide the solu-
tions promised at the outset of this section.

Normalizer When we intantiate the inside recursion with the real semiring, the value
of ↵ at the root is the normalizer:

↵(S†, 0, n) = Z(x),

and when we instantiate the inside recursion with the log-real semiring we obtain the
log-normalizer

↵(S†, 0, n) = log Z(x).

Parse To find the viterbi tree ŷ = arg maxy p(y | x) and its probability p(ŷ | x) we
use the Viterbi semirings (cf. examples B.3.7 and B.3.8 in appendix B). We take equation
4.7 and use the Viterbi semiring operations to derive that the value of the best subtree
spanning words i to j is given by

�(i, j) = max
A

[log (A, i, j)] + max
k

[�(i, k) + �(k, j)]. (4.8)

The value log (x, ŷ) is then given by �(0, n), and can be normalized with to give the
probability

log p(ŷ | x) = �(0, n) � log Z(x). (4.9)

The best label and splitpoint Â and k̂ for the span (i, j) are obtained by using the
argmax:

Â = arg max
A

log (A, i, j) (4.10)

k̂ = arg max
k

�(i, k) + �(k, j), (4.11)

and the best tree ŷ is found by following back from the root down to the leaves the best
splits and labels.
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Sample Unbiased samples from the model can be obtained by recursively sampling
incoming edges, starting at the root node (S†, 0, n), ending at the word nodes. The
probability of an edge is proportional to the weight of all the trees under that edge. This
is precicely what is represented by the inside value ↵ computed in the real-semiring.
At node v = (A, i, j) the probability of edge e = h{u, w}, vi, with u = (B, i, k) and
w = (C, k, j), is thus

P (E = e | V = v) =
!(e) ⌦

N
u2T (e) ↵(u)

↵(v)

=
 (A, i, j)↵(B, i, k)↵(C, k, j)

↵(A, i, j)
. (4.12)

Once an edge is sampled, the process is repeated at the nodes in the tail of that edge.
We stop when we reach the nodes that span individual words. The sampled edges
together then are guaranteed to form a tree. From a compuational point of view, this
sampling is very efficient: the scores for the labeled spans need to be computed only
once, followed by a single run of the inside and outside algorithm. Beyond this point,
no costly computation is required. In our case, where the scores are predicted by a
neural network, this means that we need to perfom just a single forward pass. Compare
this with a sequential model such as the discriminative RNNG, where each sample
requires an separate forward pass.

Entropy To compute the entropy H(Y | X = x) we need to first introduce the notion
of a node maginal. The marginal of a node v = (A, i, j) in a hypergraph is the probability
that it occurs in a tree y for the sentence x, according to the probability distribution p
over trees. The node marginal µ(v) is defined as the expectation

µ(v) := E[1(v 2 Y )]

=
X

y2Y(x)

p(y | x)1(v 2 y). (4.13)

This can be computed from the inside and outside values computed in the real semiring
as

µ(v) =
↵(A, i, j)�(A, i, j)

Z(x)
, (4.14)

a result from [Goodman, 1999]. This can also be seen by noting that the product of
↵(A, i, j) and �(A, i, j) is the sum over all trees that contain the node v, and Z(x) the
sum over all trees in general.

48



The entropy, then can then be written in terms of these marginals:

H(Y | X = x) = �
X

y2Y(x)

p(y | x) log p(y | x)

= log Z(x) �
X

y2Y(x)

p(y | x)
X
v2y

log (x, v)

= log Z(x) �
X

y2Y(x)

p(y | x)
X

v2V(x)

1(v 2 y) log (x, v)

= log Z(x) �
X

v2V(x)

log (x, v)
X

y2Y(x)

1(v 2 y)p(y | x)

= log Z(x) �
X

v2V(x)

log (x, v)µ(v) (4.15)

4.4. Training

The CRF is trained to maximize the log likelihood of a labeled dataset D of pairs (x, y)

L(✓) =
X

(x,y)2D
log p✓(y | x)

with respect to the model parameters ✓. We now have a closer look at this objective,
followed by an discussion of the speed of training.

4.4.1. Objective

Writing out the objective for a single example as

log p✓(y | x) = log (x, y) � log Z(x)

reveals that the maximization of this value decomposes as two separate optimization-
problems: to maximize the log-score of the example tree log (x, y), whilst minimizing
the log of the total weight of the parse forest log Z(x). The solution is thus to move
probability mass onto the gold tree y, and away from all other trees. Because the log-
score of the tree decomposes as a sum of log-scores of the nodes that it comprises, the
objective is effectively to increase the scores of the labeled spans that make up the gold
tree, and decrease the scores of all other labeled spans not observed. Another effect of
this factorization into spans is that such an update increases not only the probability of
the gold tree, but the probability of all trees that share substantial substructure. It is in
this precise sense that we mean that the model learns about all substructures.

We rely on automatic differentiation to compute the derivatives, but note that in prin-
ciple it is possible to efficiently combine the computation of the inside and outside val-
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ues with their derivatives, a fact demonstrated in [Li and Eisner, 2009] and [Eisner,
2016], and implemented in [Kim et al., 2017].5

It is fruitful to see how our global objective differs from the margin-based objective
in [Stern et al., 2017a]. The margin-based objective is to maximize the difference, or
‘margin’, between the score of the gold tree and the highest scoring, incorrect tree.
Given a sentence x the model computes the predicted tree ŷ. If the predicted tree equals
the gold tree, ŷ = y, then no changes to the model parameters are made. Otherwise, the
model parameters are updated to maximize the difference between their scores

log (x, y) � log (x, ŷ),

maximizing the score of the correct tree, and minimizing the score of the predicted
tree.6 This objective shows a striking similarity with our CRF objective, with one very
particular difference. The goal is still to maximize the score of the gold tree. But the
minimization that in the CRF objective concerns all possible trees through Z(x), in this
objective concerns just the single tree ŷ that was incorrectly predicted. The scores of all
other nodes not observed in either tree are not affected directly.

4.4.2. Speed and complexity

During training the computation time is dominated by two computations: the forward
pass with the neural networks to obtain the node scores, and the time complexity of the
inside algorithm to obtain the lognormalizer. The general time complexity of the inside
recursion for normal form rules is O(n3|E|), where n is the sentence length and |E| is the
number of edges in the parse hypergraph. In our case is |E| = O(|⇤|3), which means
that the complexity is cubic in both the sentence length and the number of labels.

About the sentence length we cannot change much, but over the size of the set ⇤
we have some control. Recall that we deal with unary chains by collapsing then to
single, new labels. This has a great impact on the number of labels we use. In fact,
out of the full 112 labels obtained in this way, only 32 occur more than 100 times in the
entire dataset, and most of the ones that occur less are collapsed unary chain labels.
Experimentally we find that moving from a set ⇤ of size 112 to 32 results in more than a
3⇥ speedup. Removing those trees from our training data (and thus the labels from our
labelset) we lose less than 2% or our trees, showing that the unary chains are a relatively
scarce phenomenon. We do not experiment with this pruning, and leave investigation
into the effects of it on the parsing accuracy to future research.

5Amongst others, we do not take because it would require us to implement custom gradient computa-
tions in our toolkit of choice Dynet Neubig et al. [2017a], which is far from trivial.

6The full objective reported in the paper is minimizing the hinge loss max
⇣
0, 1�log (x, y)+log (x, ŷ)

⌘
,

and the above is what the actual implementation comes down to. Note that Viterbi ensures that for all
y, log (x, ŷ) � log (x, y).
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4.5. Experiments

This section reports the results of the experiments performed with the CRF parser. We
first train the model on the Penn Treebank and show that it is a strong parser. The
CRF obtains a higher F1 than the discriminative RNNG when trained with the same
number of parameters; an even higher F1 is obtained when or models is trained with
the same hyperparameters as the model in Stern et al. [2017a]. We then use the CRF as
an alternative proposal model for the generative RNNG and perform analyses similar
to those in chapter 3. This use of the CRF leads to some theoretical challenges. We note
these, but discuss them in detail in the next section.

4.5.1. Setup

We train two versions of the model on the Penn Treebank: a small version and a large
version. The smaller model allows us to compare the CRF parser to the discriminative
RNNG, while the larger model allows us to compare it to the parser of Stern et al.
[2017a]. The smaller model has dimensions to match the number of parameters in the
discriminative RNNG from chapter 3 and is trained in the same way. For the larger
model we follow the dimensions and optimization details of Stern et al. [2017a].

For both models the embeddings are of dimension 100, and the LSTMs have 2 layers.
For the smaller model the dimension of forward and backward the LSTM is 128, and
the feedforward network has one hidden layer with dimension 256. For the larger
model we follow the hyperparameters of Stern et al. [2017a]: the LSTMs have dimesion
250, just as the feedforward network. Given these dimensions, the total number of
parameters in the small model is around 0.75M and around 2.5M for the large model
(the exact numbers are in table A.1). The small CRF is comparable in size with the
discriminative RNNG (around 0.8M parameters) and less than a third in size of the
larger model. The smaller model is optimized exactly as the discriminative RNNG:
SGD with learning rate 0.1, and dropout of 0.2. For the larger model we use Adam
[Kingma and Ba, 2014] with 0.001 and dropout of 0.4, exactly following Stern et al.
[2017a].

4.5.2. Results

The evaluation setup is the same as in the previous chapter. We train 10 models from
different random seeds, and we report mean and standard deviations, as well as scores
of the best model selected by development F1.

Small Large Stern et al. [2017a]
F1 89.94± 0.12 (90.04) 90.31± 0.15 (90.43) – (91.79)

Table 4.1.: F1 scores for the CRF.

The results are shown in 4.1. Both models perform well, achieving on average 89.94
F1 for the smaller model and 90.31 F1 for the larger model. The small difference in F1
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between the two is surprising given difference in size and optimization, and speaks for
the relative robustness of our model with respect to these choices. Our best small CRF
(90.04 F1) surpasses the best discriminative RNNG (88.58) by almost 2.5 F1, but our best
large CRF (90.43) performs below the model of Stern et al. [2017a] (91.79). Just as for the
RNNG, we believe this can be attributed to the absence of tags. However, we can note
that—in case this is true—the negative impact is much greater for the RNNG (around
3.1 F1 lower) than in the CRF (around 1.4 F1 lower).

4.5.3. Proposal distribution

We have introduced the CRF parser as an alternative proposal model for the genera-
tive RNNG, and we now evaluate the CRF in this role. We repeat the same inference
procedure as in chapter 3: we sample 100 trees from the small CRF with the highest
development F1, and use these to evaluate the same generative RNNG as before. The
results are shown in tables 4.2 (F1) and 4.3 (perplexity), and include the previous results
for comparison.

RNNG CRF Dyer et al. [2016]
Our RNNG 91.07± 0.1 (91.12) 91.02± 0.05 (91.04) 93.32± 0.1 (93.32)
Dyer et al. [2016] – – – (93.3)

Table 4.2.: F1 scores for the generative RNNG for different proposal models.

RNNG CRF Dyer et al. [2016]
Our RNNG 108.76± 1.52 (107.43) 117.79± 2.1 (116.28) 107.80± 1.59 (106.45)
Dyer et al. [2016] – – – (105.2)
Kuncoro et al. [2017] – – – (100.9)

Table 4.3.: Perplexity on the PTB of the generative RNNG, for different proposal mod-
els.

The results for the F1 are virtually the same. Although the CRF is the better parser
by F1, both are equivalent with respect to generative RNNG. On average, however,
because the discriminative RNNG proposals performs better on the selected model. A
real difference can be observed in the perplexity, with a difference of over 9 nats in
favour of the RNNG.

4.5.4. Analysis

We perform the same analyses of the approximate inference as in chapter 3, this time
with the CRF as proposal model. The results of the experiment on aproximate inference
are shown in figure 4.3 (F1) and 4.4 (perplexity), where they are compared to the results
of the annealed RNNG. With respect to parsing F1, the CRF is the better choice when
using few samples, but for this difference disappears for larger number of samples.
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Figure 4.5 shows the estimation of the conditional entropy, now including the results
for the CRF. The estimates of the CRF converge to the true conditional entropy, which
can be computed exactly and equals 2.84.7 Furthermore we can note that the condi-
tional entropy of the CRF is higher than that of the discriminative RNNG when not
annealed. This could indicate that the CRF maintains a higher number of alternative
parses per sentence on average than the RNNG. Another plausible explanation is that
the higher entropy is caused by the derivational ambiguity: the higher entropy reflects
that each tree has multiple derivations. We address this possibility in the next section.

Figure 4.3.: F1 estimated with increasing number of samples, with CRF and discrimina-
tive RNNG annealed with ↵ = 0.8, for 10 independent repetitions.

7To be precise, the values H(Y | X = x) can be computed exactly, the value H(Y | X) is still estimated
by a mean over the test set.
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Figure 4.4.: Perplexity estimated with increasing number of samples, with CRF and dis-
criminative RNNG annealed with ↵ = 0.8, for 10 independent repetitions.

Figure 4.5.: Conditional entropy estimated with increasing number of samples.
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4.6. Trees and derivations

The use of the CRF as a proposal distribution brings to light a subtle issue: by our
choice of binarization we have introduced derivational ambiguity, and this affects the
approximate marginalization. In this section we will describe the issue, which we char-
acterize as the difference between the binary derivations and the trees they collapse to.
We analyze the impact of this on the approximate marginalization, and then propose
solutions. We will return to this difference in chapter 5, where the computation of the
entropy plays a central role.

4.6.1. Derivational ambiguity

The way our CRF deals with binarization and its inverse introduces the problem deriva-
tional ambiguity: many binary derivation d modelled by the CRF as distinct map to the
same tree y when the dummy node is collapsed. In other words: we map a treebank
tree to a single normal form derivation, but many normal form derivations map to a
that treebank tree. For example, the two normal form trees in 4.6 both collapse to the
same tree when dummy labels ? are collapsed:

(S (NP The other hungry cat) (VP meows) .).

However, when going the other way—applying the normal form transformation to the
above tree—we always obtain the left tree, and never the right tree. Let f : Y(x) ! D(x)
be the transformation that we defined that produces normal form trees from treebank
trees, and let g : D(x) ! Y(x) be the transformation that takes a normal form tree
and collapses the dummy nodes. Then f is a bijection, but g is not: for any tree y the
preimage of g is the set of derivations g�1(y) = D ✓ D(x) that collapse to the same tree.
And generally, |D| > 1. This is the issue at hand: going from derivations to trees causes
derivational ambiguity.

S

?

?

.

VP

meows

NP

?

?

?

cat

?
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?

other

?

The

S

?

?
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?

other

?
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Figure 4.6.: Two normal form derivations that collapse to the same tree.
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4.6.2. Consequences

The direct consequence of the derivational ambiguity is that our CRF actually defines a
distribution over D(x), and over Y(x) only through by summing over the derivations
that collapse to it. Let y be a general tree such as is modelled by the RNNG. Our CRF
assigns probabilities to all d 2 f�1(y) and defines a distribution over Y(x) through

p(y | x) =
X

d2f�1(y)

p(d | x).

As a consequence p(d | x)  p(y | x) for all of the derivations d that collapse to y. This
has three direct consequences:

• We overestimate the marginal probability in the importance sampling:

1

K

KX
i=1

p✓(x, y(i))

q�(d(i) | x)
� 1

K

KX
i=1

p✓(x, y(i))P
d2f�1(y(i)) q�(d | x)

=
1

K

KX
i=1

p✓(x, y(i))

q�(y(i) | x)

⇡ Eq


p✓(x, y)

q�(y | x)

�
= p✓(x).

• Viterbi returns the best derivation, not necessarily the best tree. In other words, if
d̂ = arg maxd p(d | x) then g(d̂) 6= arg maxy p(y | x) in general. This is a situation
similar to decoding in latent variable PCFGs [Petrov et al., 2006], which is known
to be intractable [Sima’an, 2002].

• The entropy is over derivations instead over trees, and it is not clear how one
relates to the other.

The derivational ambiguity does not affect the samples: the probability that we draw
y is precisely the probability that we draw any d in f�1(y). Furthermore, these facts
do not directly harm the CRF as a parsing model, although the loss in guarantee of the
viterbi with respect to trees is an unfortunate loss of certainty.

4.6.3. Solutions

We propose two solutions to this problem:

1. We can dispense with the dummy label altogether, and instead alter our CRF so
that it can deal directly with m-ary trees, for any order m. This means that we
add all hyperedges with more than 2 children. The general formulation of the
inside and outside recursions remain unaltered, but the specific form becomes
less efficient because we now need to deal with a sum over all possible partitions
of the span under a node.
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2. We keep the dummy label, but prune the hyperforest to only contain derivations
that are reachable by the normal form transformation. This means that we assign
probability zero to all trees that do not correspond to the cannonical normal form
that we commited to by choosing the transformation. Because this transformation
is very regular, we can easily incorporate this pruning in the inside and outside
algorithms.

We now describe either solution, starting with the solution of making the CRF deal
directly with m-ary trees. However, we can preview that it is the second solution that
is most appealing, because its implementation is a straightforward adaptation of our
existing algorithms.

4.6.4. Unrestricted parse forest

One solution, as noted, is to make the parse-forest deal with m-ary trees directly. This
requires that for each noterminal node, we add incoming edges that contain more
than two children in the tail. This needs to be done for each permissible number of
children—determined by the width of the span—and for all possible partitions of that
size of the span.

More formally, let (A, i, j) be a node with i + 1 < j, so that it can expand to other
noterminal nodes. Then let i = k0 < k1 < k2 < · · · < km = j be a partition of the
discrete interval [i, j] into m subspans. Since a span must have a width of at least 1, m
can be at most j � i Letting B1, . . . , Bm be labels for those subspans we can form an
edge that connects the setn

(B1, k0, k1), (B2, k1, k2), . . . , (Bm, kn�1, km)
o

at the tail to the node (A, i, j) at the head. Adding all such nodes to the parse forest for
each m will allow us to deal with trees of unrestricted arity directly.

The generality of the semiring formulations of the inside and outside algorithms,
allows us to seamlesly apply them to this new parse forest. If we let v = (A, i, j) such
that I(v) 6= ? we can derive the inside value ↵(v) as

↵(v) =
M

e2I(v)

!(e) ⌦
O

u2T (e)

↵(u)

=

j�iM
m=2

M
k0<k1<···<k

m

M
B12⇤

· · ·
M

B
m

2⇤

!(A, i, j) ⌦
nO

l=1

↵(Bl, kl�1, kl)

= !(A, i, j) ⌦
j�iM
m=2

M
k0<k1<···<k

m

nO
l=1

M
B2⇤

↵(B, kl�1, kl)

= !(A, i, j) ⌦
j�iM
m=2

M
k0<k1<···<k

m

nO
l=1

�(kl�1, kl),
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where logic that allows us write

M
B12⇤

· · ·
M

B
m

2⇤

nO
l=1

↵(Bl, kl�1, kl) =
nO

l=1

M
B2⇤

↵(B, kl�1, kl)

is the same as in the binary case, but generalized to m terms.
For the outside value �(v) we can follow a similar derivation. Let

0  k0 < · · · < ka = i < j = ka+1 < · · · < km  n

be a partition of the discrete interval [k0, km] into m pieces, one of which is [i, j], namely
the interval [ka, ka+1]. This partition represents one way in wich the interval [i, j] can
be completed with m � 1 other intervals into an interval [k0, km]. With this in place, we
can derive the outside recursion as

�(v) =
M

e2O(v)

!(w) ⌦ �(H(e)) ⌦
O

w2T (e)
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l 6=a

�(kl�1, kl).

The above two recursions show that this approach is challenging, despite its ele-
gance. Enumerating the sets of partitions is in itself already a nontrivial task. We put
our hopes on the second solution, which we move to now.

4.6.5. Pruned parse forest

Another solution is to prune the parse forest: to keep only those trees that can be ob-
tained by the normal form transformation. Going back to the example at the beginning
of the example, this solution asks us to assign probability zero to the right tree, the tree
that we cannot obtain by the normal form transformation. Since the transformation that
we apply is very regular, we can easily characterize the set of trees that are impossible
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to derive. In fact, it boils down to one characteristic: a node can have the label ? only
when either that node spans a single word or that node is the right child of its parent
node.8 That means we should remove from the parse forest all edges of the form illus-
trated in figure 4.7. By this same reasoning we conclude that the parse forest should
also be rid of all nodes of the form (?, 0, j) for j > 1, which cannot occur in any tree
obtained with our transformation.

?k
i Bj

k

Aj
i

Figure 4.7.: Edges in the parse forest that produce the derivational ambiguity, whenever
k > i + 1.

With this characterization in hand, we can alter the recursions, starting with the in-
side algorithm.

↵(A, i, j) =
M
B2⇤

M
C2⇤
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= !(A, i, j) ⌦
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B2⇤
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C2⇤

↵(C, i + 1, j)

�
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B2⇤\{?}

↵(B, i, k) ⌦
M
C2⇤
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#

= !(A, i, j) ⌦
"
�(i, i + 1) ⌦ �(i + 1, j) �

j�1M
k=i+2

�̃(i, k) ⌦ �(k, j)

#
(4.16)

where

�̃(i, k) =
M

B2⇤\{?}
↵(A, i, k). (4.17)

For the outside algorithm we need to split cases: the outside algorithm sums over
ways to complete a labeled span into a larger labeled span, and as we have noted, the
node (A, i, j), for all A 6= ?, is allowed to combine in ways that (?, i, j) is not, whenever
j > i + 1. Specifically, when j > i + 1, the node (?, i, j) is not allowed to combine with

8We binarize rightwards, thus introducting the dummy labels in that position, and can only ever introduce
the dummy label in the left child position when it spans a single word.
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any node of the form (C, j, k) for any C 2 ⇤. That would constitute an edge that we
deemed illegal. We thus split the computation of �(A, i, j) into the following two cases:
the case where j > i + 1 and A = ?, and otherwise.

First, consider the case where either A 6= ?, or j = i+1. In this case, the node (A, i, j)
can combine any way it desires, as the left node, and as the right node, but note that
when we complete it as the right node—thus adding a node to it on the left—we still
need to avoid completing it with (?, k, i) if k 6= i � 1. Taking this into account we can
derive

�(A, i, j) =
M
B2⇤

M
C2⇤

!(B, i � 1, j) ⌦ ↵(C, i � 1, i) ⌦ �(B, i � 1, j) (4.18)
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C2⇤\{?}

i�2M
k=1

!(B, k, j) ⌦ ↵(C, k, i) ⌦ �(B, k, j) (4.19)
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k=1

�0(k, j) ⌦ �̃(k, i) �
nM

k=j+1

�0(i, k) ⌦ �(j, k).

(4.21)

Now consider the special case where A = ? and j > i + 1. In this case we must
disallow the node to combine in the left position. This corresponds simply to removing
that part of the sum; in the above derivation this is the third term. This gives:

�(A, i, j) = �0(i � 1, j) ⌦ �(i � 1, i) �
i�2M
k=1

�0(k, j) ⌦ �̃(k, i) (4.22)

As demonstrated, this approach yields inside and outside recursions that bear close
resemblance to what we have derived in section 4.3. In fact, we have succeeded in
adapting the implementation—requiring only a few adaptations—and experiments show
that this solves the problem. Preliminary results for the supervised parser shows little
difference, but a full evaluation—due to the considerable training time of the model—is
left to future work.

4.7. Related work

The model that we presented regards a constituency tree as a collection of labeled spans
over a sentence. Earlier CRF models for constituency parsing, both log-linear and
neural, factorize trees over anchored rules [Finkel et al., 2008, Durrett and Klein, 2015].
This puts most of the expressiveness of the model in the state space of the dynamic
program—modelling interactions between subparts of the trees through their interac-
tion in the rules—instead of at the feature level. The model in Stern et al. [2017a] re-
moves part of this structure, and puts more expressiveness in the input space by using
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rich neural feature representations conditioning on the entire sentence. The discrete
interaction between the local scores remains only at level of labeled spans. This dra-
matically improves the speed of this model, which will become evident in the next
section.

In recent decades, discriminative chart-parsing has moved from grammar to features.
Hall et al. [2014] show how the log-linear CRF model of Finkel et al. [2008] can work
with bare unnanotated grammars when relying more heavily on surface features of
the sentence. Durrett and Klein [2015] show how the linear scoring function in the
model of Hall et al. [2014] can be replaced by a neural network. The work of [Stern
et al., 2017a] moves one step further: the model is span-factored—thus dispensing with
the structure of a grammar altogether—and the scoring function can condition on the
surface features of the entire sentence with the use of recurrent neural networks.

Contrast this with generative parsing based on treebank grammars, where features
are not available because the models are not conditional. These models instead rely en-
tirely on detailed rule information. Basic treebank grammars do not parse well because
the rules provide too little context, and good results can only be obtained by enriching
grammars. The independence assumptions in the grammar are thus typically weak-
ened, not strengtehened. Such approaches lexicalize rules [Collins, 2003], annotate the
rule with parent and sibling labels [Klein and Manning, 2003], or automatically learn
refinements of nonterminal categories [Petrov et al., 2006].

In terms of the probabilistic model, the closest predecessor to our model is the neu-
ral CRF parser of Durrett and Klein [2015], which predicts local potential for anchored
rules using a feedfoward network. It differs from our approach in two ways. Their
method requires a grammar, extracted from a treebank beforehand, whereas our ap-
proach implictly assumes all rules are possible rules in the grammar. Secondly, their
scoring function conditions only on the parts of the sentence directly under the rule,
dictated by the use of a feedforward network, whereas our scoring function computes
a score bassed on representations computed from the entire sequence.
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5. Semisupervised learning

The generative RNNG defines a joint distribution over trees and sentences. In chapter 3
we showed how this distribution can be estimated from labeled data; in this chapter we
show how estimation can be extended to unlabeled data. We optimize a tractable lower
bound on the marginal log likelihood using amortized variational inference with an
approximate posterior parametrized by a neural network—a procedure reminiscent of
the importance sampling inference, and both the discriminative RNNG as the CRF can
be used. To estimate gradients we use samples from the posterior, and the CRF partic-
ularly excels in this role: the entropy term in the lower bound can be computed exactly,
and the global normalization of the distribution makes the model a well behaved sam-
pler. The lower bound allows us to formulate a semisupervised training objective. This
in principle allows us to add any amount of unlabeled data to the already existing la-
beled data, thus extending the training to both more data and different domains. A
further question is whether the RNNG can be estimated from unlabeled data alone.
This is particularly challenging because the RNNG makes no independence assump-
tions and as such it is questionable whether a model so expressive possesses enough
inductive bias to induce any consistent structure without supervision. Very recently,
concurrent work by Kim et al. [2019] has shown the success of this approach for unla-
beled binary trees in an approach that is remarkably similar to ours, also making use of
a CRF inference model.

In this chapter:

• We describe how the RNNG can be used to learn from unlabeled data using amor-
tized variational inference with an approximate posterior.

• We show how to obtain estimates of the gradients of the lowerbound by using the
score function estimator, and show how to reduce the variance of this estimator
using a parsing based baseline.

• We describe how the discriminative RNNG and the CRF parser introduced in
chapter 4 both can be used as approximate posterior, but emphasize how a glob-
ally normalized CRF excels in this role.

• We describe experiments with semisupervised and unsupervised training—with
both the CRF and RNNG as posteriors, for both labeled an unlabeled trees, with
and without supervised pretraining—and obtain no definitive results, but analyze
our preliminary findings.

• We conclude that with the appropriate changes to the CRF posterior, the unsu-
pervised and unlabeled learning of the RNNG could prove succesful, indicated
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by the very recent success of Kim et al. [2019] with this approach for unlabeled
binary trees. Preliminary work shows that the changes solve the problem, but
that inducing non-trivial trees will require more finetuned optimization strate-
gies, possibly using the methods used by Kim et al. [2019].

5.1. Unsupervised learning

We first describe how the joint distribution of the RNNG can be estimated from unla-
beled data by maximizing the marginal likelihood, making the trees a latent variable.
We derive the lower bound and describe how the choice of approximate posterior af-
fects the optimization of it.

5.1.1. Variational approximation

The joint log likelihood log p✓(x, y) of the generative RNNG defines a marginal likeli-
hood

log p✓(x) = log
X

y2Y(x)

p✓(x, y).

Optimizing this with respect to ✓ directly is intractable due to the sum over trees and
so we must resort to an approximate method. We use variational inference [Jordan
et al., 1999, Blei et al., 2016] and introduce a posterior q�(y|x) parametrised by � and
use Jensen’s inequality to derive a variational lower bound on the marginal likelihood:

log p(x) = log
X

y2Y(x)

q�(y|x)
p✓(x, y)

q�(y|x)

= logEq
�


p✓(x, y)

q�(y|x)

�
� Eq

�


log

p✓(x, y)

q�(y|x)

�
.

= Eq
�

[log p✓(x, y) � log q�(y|x)]. (5.1)

This is called the evidence lower bound (ELBO) [Blei et al., 2016], and we define it as a
function of parameters ✓ and � given a single datapoint x as

E(✓,�; x) = Eq
�


log

p✓(x, y)

q�(y|x)

�
. (5.2)

The objective is optimized with respect to both the generative and inference param-
eters. We can rewrite it in two ways, each providing different perspective on this opti-
mization procedure. On the one hand we can write the as [Blei et al., 2016]

E(✓,�; x) = log p✓(x) � KL(q�(y | x)||p✓(y | x)).
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This reveals that maximizing the ELBO is equivalent to minimizing the KL divergenge
between the approximate posterior q�(y | x) and the true posterior p✓(y | x), while max-
imizing the marginal log likelihood log p✓(x).1 Because the KL is positive, this equation
tells us that the gap between the ELBO and the true log marginal p✓(x) is given by how
well q� approximates the true posterior. The gap would vanish if these equal each other,
but this is an unlikely event, and can be impossible in the case that the support of q� is
strictly smaller than that of p✓.

Because the true posterior p✓(y | x) cannot be computed efficiently—for the same
reason that we cannot compute the marginalization—this formulation has no purposes
for us other than theoretical insight. The alternative formulation will have practical
purpose:2

E(✓,�; x) = Eq
�

[log p✓(x, y)] � Eq
�

[log q�(y|x)]

= Eq
�

[log p✓(x, y)] + H(q�(y | x)). (5.3)

The first term is the expectation of the joint model under the posterior distribution, and
the second is the entropy of that distribution. This reveals that the objective is twofold:
the posterior is encouraged to put its mass on those trees that have likelihood under
the joint model, while the entropy regularizes q� from overly concentrating probability
mass. The first part of the objective is now in the form of an expectation which we can
approximate using samples from the our approximate posterior. Whether the entropy
can be computed depends on the choice of posterior, and can otherwise be estimated
with samples as well.

5.1.2. Approximate posterior

As approximate posterior we can use both the RNNG and CRF: both models satisfy
the condition that their support is a subset of the support of the true posterior p(y | x),
which is required for the ELBO optimization [Kucukelbir et al., 2017]. The support of
the RNNGs match up. The support of the CRF is a strict subset, because although it
can handle common unary chains, it cannot handle the arbitrary chains that are in the
support of the generative RNNG. Because this is a marginal phenomenon the space
outside the reach of the CRF will be low density anyhow.

5.2. Training

We use the ELBO to formulate a semisupervised and an unsupervised optimization ob-
jective. Let DL = {(x(n), y(n))}N

n=1 be the familiar dataset from the supervised training,

1The KL divergence is a measure of divergence between two probability distributions. It is asymetric
and positive, and KL(q||p) = 0 only when p = q.

2We move to a slightly different notation for the entropy, emphasizing the distribution instead of the
random variable, and write H(q

�

(y | x)) := �
P

y2Y(x) q�(y | x) log q
�

(y | x).
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and let DU = {x(m)}M
m=1 be an unlabeled dataset consisting merely of sentences x. The

unsupervised objective is then to maximize

E(✓,�) =
X

x2D
U

E(✓,�; x), (5.4)

while the semisupervised objective combines the supervised and the unsupervised ob-
jective into one as

L(✓,�) = LS(✓) + E(✓,�),

where LS(✓) =
P

(x,y)2D log p✓(x, y) is the supervised objective.
The objectives are optimized with gradient based optimization, which means that we

need to compute the gradients r✓ E(✓,�) and r� E(✓,�). These gradients are estimated
with samples from the posterior, and the form of those estimates will depend on the
posterior model used. With the CRF as posterior, we write ELBO as

ECRF(✓,�; x) = Eq
�

[log p✓(x, y)] + H(q�(y | x)), (5.5)

to emphasize that we can compute the entropy exactly and that only the first part of the
sum needs to be estimated. With the RNNG as posterior we write the ELBO as

ERNNG(✓,�; x) = Eq
�

[log p✓(x, y) � log q�(y|x)], (5.6)

emphasizing that the entire quantity needs to be estimated. We stress however, that
this is a purely practical distinction for the objectives are analytically identical.

5.2.1. Gradients of generative model

Computing the gradient with respect to ✓ is easy and permits a straightforward Monte-
Carlo estimate:

r✓ ECRF(✓,�; x) = r✓ Eq
�

[log p✓(x, y)] + r✓ H(q�(y | x))

= Eq
�

[r✓ log p✓(x, y)]

⇡ 1

K

KX
k=1

r✓ log p✓(x, y(k)) (5.7)

where y(k) are independent samples from the approximate posterior q�(·|x). We can
move the gradient inside the expectation because q does not depend on ✓ and for the
same reason the gradient of the entropy is zero. In the case of the RNNG posterior we
end up with the same estimator:

r✓ ERNNG(✓,�; x) = r✓ Eq
�

[log p✓(x, y)] � log q�(y|x)]

= Eq
�

[r✓ log p✓(x, y)]

⇡ 1

K

KX
k=1

r✓ log p✓(x, y(k)) (5.8)
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5.2.2. Gradients of inference model

Computing the gradient with respect to � is less straightforward. The difference will
be in the expectation: where in the previous derivations we could freely exchange gra-
dients and expectations now we cannot. This requires us to rewrite the gradient as the
score function estimator [Fu, 2006]. We will first derive the estimator for the RNNG ELBO
and define the learning signal as everything that is inside the expectation

L�(x, y) = log p✓(x, y) � log q�(y|x). (5.9)

We then use equality C.1 to derive

r� ERNNG(✓,�) = r� Eq
�

[L�(x, y)]

= Eq
�

[L�(x, y)r� log q�(y|x)] (5.10)

In this rewritten form the gradient is an expectation, which does permit a straightfor-
ward MC estimate:

Eq
�

[L�(x, y)r� log q�(y|x)] ⇡ 1

K

KX
k=1

L�(x, y(k))r� log q�(x|y(k)) (5.11)

where again y(k) are independent samples from q�(·|x).
For the CRF posterior we need the score function estimator only for the part inside

the expectation—the gradient of the entropy can be computed exactly. We thus define

L�(x, y) = log p✓(x, y), (5.12)

and derive

r� ECRF(✓,�) = r� Eq
�

[L�(x, y)] + r� H(q�(y | x))

= Eq
�

[L�(x, y)r� log q�(y|x)] + r� H(q�(y | x)). (5.13)

The computation of H(q�(y | x)) is fully differentiable (cf. 4.15), and so we can rely on
automatic differentiation to compute r� H(q�(y | x)).

Estimators of this form have been derived by Williams [1992], Paisley et al. [2012],
Mnih and Gregor [2014], Ranganath et al. [2014] and Mnih and Rezende [2016], and is
also known as the reinforce estimator [Williams, 1992].

5.2.3. Variance reduction

The score function estimator is unbiased but is known to have high variance—often too
much to be useful in practice [Paisley et al., 2012]. To reduce variance we use a data
dependent baseline b(x) and redefine the estimator as

1

K

KX
k=1

(L�(x, y(k)) � b(x))r� log q�(x|y(k)). (5.14)
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The more the value b(x) correlates with with L�(x, y(k)) the greater the reduction in
variance, but the baseline cannot depend on the samples y(k) (cf. appendix C). We use
a clever baseline introduced by Rennie et al. [2017] which is based on the argmax de-
coding of the posterior, that almost depends on the samples without being a control
variate. Letting ŷ = arg maxy q�(y | x) we define

b(x) = L�(x, ŷ). (5.15)

The reasoning is elegant: the samples will tend to look like ŷ when the mass of the q�
concentrates, in turn making L�(x, ŷ) close to L�(x, y(k)). And while this is a data de-
pendent baseline it involves no additional parameters, in contrast with baselines based
on feedforward networks [Mnih and Gregor, 2014, Miao and Blunsom, 2016] or RNN
language models [Yin et al., 2018]. For the RNNG, we compute use the gready approx-
imation y⇤ but with the CRF we can obtain ŷ exactly.

5.3. Experiments

The above training objectives give us a range of options to investigate, and we explore
them all. We have two posteriors at our disposal, labeled and unlabeled data, and the
option to work with unlabeled trees. Yet unfortunately, none of the experiments we
describe will lead to any defnitive results. But while we show how some approaches
do not work for reasons practical and theoretical, other directions look promising. One
stands out: to use the CRF as posterior, on unlabeled trees, in the semisupervised and
even unsupervised learning setting. In fact concurrent work by Kim et al. [2019]—
recently published and remarkably similar to ours—shows that, with the proper op-
timization strategies, such an approach can be made to work with unlabeled, binary
trees. Our approach differs from theirs because we dot not restrict our CRF to binary
trees, and use the original formulation of the RNNG and not a simplified architecture.
Unfortunately—as we will describe—the derivational ambiguity in the CRF comes back
with a vengeance, and our attempts at this approach strand. For now.

We now describe the experiments that we performed, and the preliminary results
that we obtained. We use the same model architectures as before, and details about
optimization and unlabeled data are in appendix A. We finish on a positive and describe
the future work that will make it likely for our CRF approach to succeed.

5.3.1. RNNG posterior

We experimented with the discriminate RNNG posterior in the semisupervised set-
ting, using the One Billion Word benchmark to obtain unlabeled data. Altough we use
pretrained models we do not obtain succes. We consistenly find that the model de-
teriorates to pathological trees, typically producing endless unary chains of the same
symbol. This automatically stops the training by causing problems with numerical sta-
bility in the action distributions. Although we could invest more time in trying to make
the transition-based posterior more stable—the results of a similar setup for semantic
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parsing also with a transition based posterior by Yin et al. [2018] did show succes—we
decide against further exploration, and focuss on the CRF posterior instead.

5.3.2. CRF posterior

Initial experiments with a pretrained CRF on the semisupervised objective—analog to
the RNNG experiment—show us the practical limitations of the CRF posterior: this
combination is strikingly slow. We fit not even one epoch in 48 hours, and decide
against further investigation.

On unlabeled trees the CRF is a lot faster.3 Using the CRF for unlabeled parsing is
straightforward. We use two labels: the dummy label and a label X that all constituents
start with. We experiment with the CRF for unlabeled trees and observe promising
stability that we did not observe with the RNNG, even without any pretraining.

We run into the problem of the derivational ambiguity, however, which halts this
investigation. We have noted the problem in chapter 4, but here the problem is even
more pronounced because there is just one label besides the dummy label. In this case
the problem boils down to the computation of the entropy: with the current setup of
the parser forest, we compute the entropy over derivations, not the entropy over trees.
Our optimization exploits this error in a brilliant way: the CRF posterior collapses to a
single trivial tree—with all the leaves directly under a single root node—while it learns
a perfectly uniform distribution4 over the many derivations that collapse to that triv-
ial tree.5. Because that number is very large, the entropy over derivations is in this
way very high, but since we sample the same (collapsed) tree the entropy over trees
is in fact 0. Note though, that altough this breaks our computation of the entropy, the
sampled trees obtained from the posterior (note: not their probabilities) still reflect the
proper probability distribution: the sampling procedure implictly marginalized over
the derivations.

The way forward from here is clear—we have already discussed the core solution in
chapter 4. Altering the inference algorithms removes the derivational ambiguity and
allows us to compute the correct entropy term. Furthermore, we can learn from the
optimization details of Kim et al. [2019], who found that their approach required con-
siderable finetuning to avoid the posterior to collapse to trivial trees.6 This required
separate optimizers for the generative and inference models, annealing the posterior
entropy, and freezing the posterior after two epochs [Kim et al., 2019]. Preliminary
results indicate that this will be necessary for our approach as well, as exploratory ex-

3The unlabeled CRF is over 8 times as fast as the CRF with the full 100+ PTB labelset (this includes all the
labels resulting from our treatment of unary chains as unique lables). With the speed of the CRF, this
is the difference between a few days and a few weeks.

4Easily achieved by the CRF by assigning the exact same score to each labeled span.
5This set corresponds to the number of binary trees over that sentence (all of which have the same dummy

label). For a sentence of length n, the size of that set is given by the (n � 1)th Catalan number C
n�1,

where C
n

= 1
n+1

�
2n
n

�
is defined in terms of binomial coefficients. Note that for even modest n, this

numer is enormous: for n = 26 (a sentence of modest length), C
n�1 = 4, 861, 946, 401, 452.

6Binary right branching trees in their case.
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periments failed to induce anything beyond trivial trees. However, we are happy to
observe that with the new, unambiguous hypergraph, this does correspond to a poste-
rior whose computed entropy is exactly 0.

5.4. Related work

Our approach is informed by work in (neural) variational inference with (discrete) la-
tent variables using the score function estimator [Paisley et al., 2012, Mnih and Gregor,
2014, Ranganath et al., 2014, Mnih and Rezende, 2016]. In language, this approach
has been applied to—among others—text summarization [Miao and Blunsom, 2016],
semisupervised semantic parsing [Yin et al., 2018], and tree induction in the context of
classification [Yogatama et al., 2016].

Close to our approach is Yogatama et al. [2016], who induce binary tree structures in a
classification task by maximizing the expected log likelihood of a tree-structured neural
classifier under a distribution described by a shift-reduce parser—a type of reinforce-
ment learning. Their use of a shif-reduce parser conjures up our use of the RNNG as
approximate posterior, and they also obtain gradient estimates using the score function
estimator. Although this method is highly consistent over random restarts, it invariably
produces trivial left-branching trees [Williams et al., 2018].

Similarly close is the work of Yin et al. [2018], who use a transition based semantic
parser as posterior and a joint model that factorizes as a prior over semantic trees and
a conditional model that generates sequences given those trees. Their transition-based
posterior does not wander off like does ours, possibly helped by their use of trainable
baselines based on a language model, clipping of the learning signal, or the joint model
itself with its different factorization from the RNNG.

Semisupervised learning of the RNNG has been investigated by Cheng et al. [2017],
who like us derive a lower bound on the marginal log likelihood and use the discrim-
inative RNNG as approximate posterior. It appears however that they use pretrained
models, keeping the parameters of the approximate posterior fixed while updating only
the parameters of the generative models, based on the samples of the approximate pos-
terior.7 Although this does circumvent the need for gradient estimation using the score
function estimator, it does not constitute variational inference. Instead of optimizing
the models in tandem, this method actually fits the true posterior to the approximate
posterior. Doing this, however, does appear to be helpful as this method of finetuning
does lower the perplexity on the Penn Treebank [Cheng et al., 2017].

There is a different line of work that circumvents the probabilistic marginalization of
a joint model by instead computing deterministic interpolations inside the vector rep-
resentations themselves, leading to differentiable layers inside the neural network that
have a structural bias. An example is the work of Kim et al. [2017] who use this ap-
proach to compute structured attention, in which the attention coefficients are given by
the posterior marginals of an edge-factored CRF. Because marginal inference is differ-

7Cf. this conference talk: https://vimeo.com/234957682#t=601s.
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entiable, the described interpolation is. This is different from our use of a CRF. Though
the structured attention can add a strong inductive bias, it is part of the parametrization
of the model, while our work focusses on the statistical model itself. That is, our trees
are discrete latent variables in a joint probability distribution p(x, y), about which we
can ask such general probabilistic questions as: what is the posterior probability p(y | x)
of such a tree given an observation x? and what is the marginal probability p(x)? The
interpolations computed inside the parametrization do not permit these questions as
the vectors nor the coefficients that interpolate them are random variables.

Variational inference for models with continuous latent variables suggests an alterna-
tive route for dealing with structured latent variables. Arguably, the succes of amor-
tized variational inference with continuous latent variables [Kingma and Welling, 2014,
Rezende et al., 2014] is due to the reparametrization trick, which allows the direct dif-
ferentiation of the sampling operation by writing it as a deterministic computation on
external random noise. This circumvents the use of the score function estimator, and the
high variance that it brings along. Extending this reparametrization to discrete latent
variables has been explored for integer valued variables [Jang et al., 2017, Maddison
et al., 2017]. Corro and Titov [2018] show how the idea can be extended to tree struc-
tured variables by adding noise to a differentiable dynamic programming to obtain
approximate samples that result in gradient estimates with lower variance. This en-
ables semisupervised learning with dependency trees as latent variables, a goal similar
to ours albeit for a different grammatical representation.

Finally, the concurrent work of Kim et al. [2019] in particular shares many ideas with
our work: the use of a CRF inference model, the parametrization of the CRF following
Stern et al. [2017a], the exact entropy computation, and even syntactic evaluation on the
dataset of Marvin and Linzen [2018]. We consider these similarities to be a remarkable
coincidence. Our work differs from theirs however because we do not restrict to binary
trees and use the original formulation of the RNNG.
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6. Syntactic evaluation

Language models are typically evaluated by the perplexity they assign to held out data,
and thus did we evaluate our language models in the previous chapters. In this chapter
we look at alternatives. In particular, we look at evaluation that specifically probes the
syntactic abilities of a language model. To this end we take the dataset introduced by
Marvin and Linzen [2018], which presents a comprehensive set of syntactic challenges,
and evaluate the models presented thus far against them. The dataset consists of con-
structed sentence pairs that differ in only one word, making one sentence grammatical
and the other not. The task is to assign higher probability to the grammatical sentence.
We can think of this task as soliciting comparative acceptability judgements—a key con-
cept in linguistics. We will refer to this dataset as Syneval, for syntactic evaluation.

In this chapter:

• We review the Syneval dataset: we describe syntactic phenomena that it tests and
discuss how this dataset relates to other work on syntactic evaluation.

• We modify the training of standard RNN language model by adding a syntactic
side objective, a form of multitask learning previously proposed to improve RNN
language models on this task. We review a previously proposed approach that
combines language modelling with CCG supertagging [Enguehard et al., 2017],
and introduce a novel multitask language model based on span labeling inspired
by the scoring function of our CRF parser.

• We evaluate all the models introduced thus far on this dataset and show that this
gives finegrained differentation between the various models, generally favoring
the RNNG, but often closely followed by and sometimes surpassed by the multi-
task models.

• We conclude that none of the models particularly excel on the tasks, with some
performance close to a coin-flip baseline. In comparison with Marvin and Linzen
[2018] we can attribute to our relatively small dataset. Finally, performance on the
class of negative polarity items is so variable between runs of the same model that
we conclude that on our small dataset none of the models converge to consistent
judgements.

6.1. Syntactic evaluation

A shortcoming of perplexity is that the metric conflates various sources of success [Mar-
vin and Linzen, 2018]. A language model can make use of many aspects of language
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to predict the probability of a sequence of words. And although we would like the
probability of a sentence to depend on high-level phenomena such as syntactic well-
formedness or global semantic coherence, a language model can also focus on lower
hanging fruit such as collocations and other semantic relations predicted from local
context. Syntax is especially difficult to evaluate given that most sentences in a corpus
are grammatically simple [Marvin and Linzen, 2018]. Arguably, this conflation is also
the appeal: perplexity is a one size fits all metric. But for a fine-grained analysis we
must resort to a fine-grained metric.

Recently, a series of papers has introduced tasks that specifically evaluate the syntac-
tic abilities of language models [Linzen et al., 2016, Gulordava et al., 2018, Marvin and
Linzen, 2018]. And such tasks can be very revealing. The task introduced by Linzen
et al. [2016] is to predict the correct conjugation of a verb given an earlier occuring
subject—especially in the presence of distracting subjects that intervene1. This task has
revealed that lower perplexity does not imply greater success on this task [Tran et al.,
2018], and that an explicitly syntactic model like the RNNG significanlty outperforms
purely sequential models, especially with increasing distance between the subject and
the verb [Kuncoro et al., 2018]. This type of agreement is one of the phenomena evalu-
ated in Syneval.

6.1.1. Dataset

The Syneval dataset consists of contrastive sentence pairs that differ in only one word.
Let (x, x0) be this minimal pair, with grammatical sentence x and an ungrammatical
sentence x0. Then a language model p makes a correct prediction on this pair if p(x) >
p(x0).

The classification is based on the probability of the entire sequence. This makes the
task applicable to grammatical phenomena that involve interaction between multiple
words, or where the word of contention does not have any left context. This contrasts
with the task introduced in Linzen et al. [2016]. This approach is also more natural for a
model like the RNNG, where the probability of the sentence is computed by marginal-
izing over all latent structures, whereas individual word probabilities can only be ob-
tained when conditioning on a single structure—for example a predicted parse—as is
done in Kuncoro et al. [2018].

The sentence pairs fall into three categories that linguists consider to depend crucially
on hierachical syntactic structure [Everaert et al., 2015, Xiang et al., 2009]:

1. Subject-verb agreement (The farmer smiles.)
2. Reflexive anaphora (The senators embarassed themselves.)
3. Negative polarity items (No authors have ever been famous.)

The dataset contains constructions of increasing difficulty for each of these categories.
For example, the distance between two words in a syntactic dependency can be in-
creased by separating them with a prepositional phrase: The farmer next to the guards

1E.g. Parts of the river valley have/has.
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smiles. In this example the guards additionally forms a distractor for the proper conju-
gation of smiles, making the example extra challenging. The dataset is constructed au-
tomatically using handcrafted context-free grammars. The lexical rules are finegrained
so that the resulting sentences are semantically plausible. In particular there are rules
for animate and innanimate objects so a sentence like The apple laughs cannot be con-
structed. The total dataset consists of around 350,000 sentence pairs. The full set of
sentence types per category, including examples, is listed appendix D.

6.1.2. RNNG

What would be the advantage of the RNNG on this task? To illustrate this, consider
the following the example taken from the dataset, which will also illustrate the impor-
tant role played by the posterior. One of the classes—long VP coordination—has the
sentence pair

(1) a. the author knows many different foreign languages and likes to watch tele-
vision shows

b. *the author knows many different foreign languages and like to watch televi-
sion shows

as first example.
Parsing the grammatical sentence with the discriminative RNNG gives the sensible

analysis shown in figure 6.1a as prediction, while parsing the ungramatical sentence
results in the tree shown in figure 6.1b. While the first analysis correctly recognizes
the verb phrase ‘knows x and likes y’ as the conjunction of two verb phrases, the most
likely analysis of the odd like in the second sentence seems to be dangle as a fragment.
Moreover, for the grammatical tree the samples all correspond closely to the predicted
parse, while the samples for the second sentences vary greatly, containing such unlikely
trees as those in figure 6.1c, which interpret like as a preposition.

A similar pattern is observed for the CRF parser, in which case the observed differ-
ence in the conditional distributions can additionally be confirmed by their difference
in entropy: 1.43 for the grammatical sentence against 4.23 for the ungrammatical one.
In other words: for the grammatical sentence the generative RNNG will receive quality
trees of high likelihood, while for the ungrammatical sentence incoherent trees of low
likelihood. Of course, the final probability of the sentence will depend equally on the
joint probability that the RNNG will assign to each of the trees.2

2Spoiler alert: the marginalized RNNG actually gets this prediction wrong (but so does the RNN language
model). It is, apparently, a challenging sentence.
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(a) Predicted parse for sentence (1a).
S

VP

FRAG

S

VP

VP

NP

showstelevision

watch

to

likeand

NP

languagesforeigndifferentmany

knows

NP

authorthe

(b) Predicted parse for sentence (1b).
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(c) Sample for sentence (1b).

Figure 6.1.: Examples from the posterior for the grammatical sentence (1a) and ungram-
matical sentence (1b).
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6.2. Multitask learning

One method that makes language models perform better in the tasks described in this
chapter is to provide stronger syntactic supervision by using multitask learning [En-
guehard et al., 2017, Marvin and Linzen, 2018]. Multitask learning is a simple yet effec-
tive way of providing additional supervision to neural network models by combining
multiple tasks in a single objective while sharing parameters [Caruana, 1997], and has
been succcesfully applied in natural language processing [Collobert and Weston, 2008,
Collobert et al., 2011, Zhang and Weiss, 2016, Søgaard and Goldberg, 2016]. By combin-
ing objectives that share parameters the model is encouraged to learn representations
that are useful in all the tasks.

In this section we describe two simple baselines for the syntactic evaluation task that
are based on multitask learning. Both methods are based on language modelling with
a syntactic side objective. The first side objective is to predict combinatory categorical
grammar (CCG) supertags [Bangalore and Joshi, 1999] for each word in the sentence,
and is proposed in [Enguehard et al., 2017]. The second side objective is to label spans
of words with their category. This objective is inspired by the label scoring function in
the CRF parser introduced in chapter 4.3 Both objectives are challenging and should
require representations that encode a fair amount of syntactic information.

6.2.1. Multitask objective

In our case we combine a language model p with a syntactic model q, and optimize
these jointly over a single labeled dataset D4. In this case, we maximize the objective

L(✓,�, ⇠) =
X

(x,y)2D
log p✓,�(x) + log q✓,⇠(y|x) (6.1)

with respect to the parameters ✓, � and ⇠. The key feature of multitask learning is that
the two models p and q share the set of parameters ✓ and that in objective 6.1 these
parameters will thus be optimized to fit both the models well. The parameters in �
and ⇠ are optimized for their respective objectives separately. The proportion and the
nature of the parameters that belong to ✓ is a choice of the modeller and determines
how both objectives influence one another. In the following paragraphs we specify this
parametrization.

3This is similar to an approach found in recent work on semantic parsing where a similar side-objective
is used and where it is called a ‘syntactic scaffold’ [Swayamdipta et al., 2018]. The exact form of our
side-objective is novel, as far as the author is aware of, and is parametrized in a considerably simpler
way.

4Note that it is our choice to focus on only a single dataset, and that multitask learning is principle more
flexible than that, providing the option to combine multiple disjoint datasets in a single objective.
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6.2.2. Models

We have introduced the multitask model as consisting of 2 models, p and q. The main
model p is a regular RNN language model on sentences x:

log p✓,�(x) =
nX

i=1

log p✓,�(xi | x<i),

where the conditional probabilities of xi are computed by linear regression on forward
RNN vectors fi�1 as

p✓,�(x | x<i) / exp
n

[Wfi�1 + b]x

o
,

where x doubles as an index. The parameters � = {W,b} are specific to the language
model, and the vectors fi are computed using a forward RNN parametrized by ✓. The
vectors fi are used in the side objective as well, and it is in this precise sense that the
parameters ✓ are shared between p and q.

Word labeling Let y = hy1, . . . , yni be a sequence of CCG supertags for the sentence
x, with one tag for each word. The side model is then a simple greedy tagging model:

log q✓,⇠(y | x) =

nX
i=1

log q✓,⇠(yi | x).

The probability over tags for position i are computed from fi using a feedforward net-
work parametrized by ⇠

q✓,⇠(yi | x) / exp
n

[FFN⇠(fi)]y
i

o
,

where yi doubles as index. This side objective is taken from Enguehard et al. [2017] and
is the side objective that is used in the multitask model of Marvin and Linzen [2018].

Span labeling Let y be a sequence of labeled spans (Ak, ik, jk) obtained from a gold
parse tree for x. Given span endpoints i and j and the sentence x, the side model q
predicts a label A:

log q✓,⇠(y | x) =

KX
k=1

log q✓,⇠(Ak | x, ik, jk).

The representation for the span is defined as in the CRF parser as sij = fj � fi, and the
distribution over labels is computed using a feedforward network parametrized by ⇠
as

q✓,⇠(A | x, i, j) / exp
n

[FFN⇠(sij)]A

o
,
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RNNLM RNNLM-span RNNLM-CCG
ppl 97.77± 0.65 (97.32) 102.92± 0.64 (102.39) 143.9± 1.79 (143.04)

Table 6.1.: Perplexity of the language models on the PTB test set.

where A doubles as index. This model differs from the supertagging model in the
interaction of the vectors f in the definition of sij . This linear defintion puts significant
restraints on the encodings, which is precisely what we want. This side objective is
inspired by the label scoring function of the CRF parser, and is novel as a multitask
objective, as far as we know.

6.3. Experiments

In this section we report the results of the evaluation on the Syneval dataset. We eval-
uate all the models proposed thus far: the generative RNNG with the two proposal
models as described in chapters 3 and 4; the multitask models described in the previ-
ous section; and a baseline RNN language model. We first describe the training setup
and results of the (multitask) RNN language models. We then describe the evaluation
setup and discuss the results.

6.3.1. Setup

We first train the three language models. We train one baseline RNN language model
(RNNLM), and two RNN language models trained with multitask learning using the
span side objective (RNNLM-span) and the CCG side objective (RNNLM-CCG). Be-
cause the RNNLM will function as a baseline comparison to the RNNG we choose the
dimensions of the states to result in a similar number of parameters. The models use
the same vocabulary as the generative RNNG, and the embeddings are of size 100 as
well. The LSTM has dimension 330 and has 2 layers. The feedforward networks used
by the side models q in the multitask models have 1 hidden layer with dimension 250.
The number of parameters the models totals around 9.3M parameters, not counting the
parameters of q which we discard after training. We train the three language models
exactly as the generative RNNG, using SGD with a learning rate of 0.1, and dropout of
0.3.

We train 10 separate seperate runs of each model. The perplexity results are shown
in table 6.1. The multitask models take considerably more epochs to converge5 and
perform worse in terms of perplexity than the single task language model. The gap
with the RNNLM-CCG model is particularly large. This contrasts with Marvin and
Linzen [2018] who obtain a lower perplexity with CCG tagging than without. This
opposite result is probably caused by a difference in training data. Marvin and Linzen
[2018] use an unlabeled dataset of 90 million words—almost 100 times the size of the

5Around 150 versus 100.
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PTB—which puts much more weight on the language modelling part of the multitask
objective, favoring the word prediction over the tagging.

6.3.2. Results

We evaluate four models on the syneval dataset: the generative RNNG with RNNG
proposals (RNNG) and CRF proposals (RNNG-CRF); the multitask RNNLM models
(RNNLM-span and RNNLM-CCG); and the RNNLM baseline. For the RNNG we use
100 samples and for the RNNG proposals we use a temperature of 0.8. We evaluate
each of the 10 trained runs per model and report the mean and standard deviation on
the dataset. We do not preprocess the Syneval dataset in any way, leaving the sentences
with their original lowercase initial letter and without period at the end, and keep all
sentences that contain unknown words. The results are shown in figure 6.2 broken
down per detailed category, corresponding to the list in appendix D. The results with
a less finegrained view can bee seen in figure 6.3, showing the average accuracy per
broad category.6

In 6.2 we can see that overall the results are close, especially taking into consideration
the deviation within each model. The most striking immediate fact is that the accuracy
in the NPI category shows enormous variation, while on average performing rather
poorly. This variation is between models, but most importantly it is within the runs of
single models. The variation within model is so great for this class that we think it
precludes us from drawing many conclusions about it other than these: that none of
the models converge to a consistent attitude with respect to negative polarity items;
and that what some of these models learn seems te be quite the opposite of what is
expected. In categories 1 and 2, things are looking more definitive within models, but
less definitive between models. One category stands out: for the object relative clauses
the RNNG outperforms the other models by a large margin. The results in the other
categories look less convincing.

When we move to figure 6.3 and consider the accuracies on average we see a clearer
pattern: the RNNG performs best in the first category, and the multitask models perfom
best in the second. But the results remain rather close. The RNNG also outperforms the
others in the third category—on average, because again we can see the large deviation
within the different runs.

We also investigate the impact of some basic preprocessing of the Syneval dataset.
Uppercasing the initial letter of each sentence resulted in much lower perplexities for
each sentence—to be expected because we use case sensitive vocabularies—but did
not affect the classification accuracy in any category, indicating that capitalization does
not affect the comparative differences in perplexity. Removing all pairs with unknown
words—about half of the dataset—did affect the classification, but not always in a clear
way. For the RNNG and RNNLM we did find an interesting pattern, shown in figures

6This average is computed over the accuracies per subcategory in figure 6.2 not over the per-sentence
predictions, thus disregarding the difference in number of sentences per detailed category. The standard
deviation is still over the runs.
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6.4 and 6.5. For both models the results are better without unknown words, but the
impact on the RNNLM is much greater. In particular, in the first three subcategories
of the agreement category, the RNNLM is worse than the RNNG when including un-
known words, but outperforms the RNNG when the unknown words are excluded.
This shows that in the ideal situation the RNNLM can learn agreement as well as the
RNNG, but that it has a hard time dealing with the grammatical function of the un-
known words compared to the RNNG. Quite possibly this shows the added benefit of
structural information in the interpretation of the unknown words.
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Figure 6.2.: Syneval results for all models per category, bars showing standard devia-
tion. The categories are described in appendix D.
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Figure 6.3.: Syneval results averaged over the three main categories.

6.4. Related work

There has been a surge recently of work on syntactic evaluation. Linzen et al. [2016]
introduce the task of long distance subject-verb agreement and Gulordava et al. [2018]
make this test more challenging by turning the sentences nonsensical while keeping
them grammatical. Both datasets are extracted from a wikipedia corpus based on prop-
erties of their predicted dependency parse. To make the sentences nonsensical, Gu-
lordava et al. [2018] randomly substitute words from the same grammatical category.7
Warstadt et al. [2018] fine-tune neural models to learn to immitate grammatical accept-
ability judgments gathered from linguistics textbooks.

In a similar syntactic spirit, McCoy et al. [2018] train a neural machine translation
that turns a declarative sentence into a question, a kind of transformation that linguists
have argued requires the existence of hierarchical structure in language [Everaert et al.,
2015].8

Finally, targeted evaluation has been introduced previously for semantic compre-
hension by Zweig and Burges [2011] in a sentence completion task, and minimal con-
trastive sentence pairs have been used to evaluate neural machine translation by Sen-
nrich [2017].

7An approach inspired by Chomsky’s (in)famous sentence Colorless green ideas sleep furiously that is both
grammatical and nonsensical.

8Such declarative-question pairs play a central role as empirical evidence in the argument—known as the
argument from the poverty of the stimulus—that humans have an innate predisposition for generalizations
that rely on hierarchical structure rather than linear order [Chomsky, 1980].
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Figure 6.4.: Syneval results for RNNLM and RNNG.

Figure 6.5.: Syneval results for RNNLM and RNNG, pairs with unknown words re-
moved.
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7. Conclusion

We considered neural network language models that incorporate syntactic structure.
Central to our discussion was the RNNG, in which the syntactic structure is mod-
elled explicitly in a joint distribution p(x, y) and a language model p(x) is obtained
through approximate marginalization over y using a discriminative proposal model.
The approximate marginalization is central in the application of the RNNG as language
model, and we have introduced a neural CRF parser to investigate the impact of an al-
ternative proposal distribution. As a side gain we obtained a competitive probabilistic
parser, and with that a globally normalized probability distribution over trees that has
aplications beyond what we discussed. We showed how the RNNG and CRF can be
combined in semisupervised and unsupervised learning, but must leave the full explo-
ration of those ideas for future work. We briefly discussed neural language models that
only model x but receive syntactic supervision during training in the form of multitask
learning. To gain insight in their comparative syntactic abilities we performed targeted
syntactic evaluation using the Syneval dataset, which gave us a detailed breakdown.

We now list the main constributions of this thesis and follow this with suggestions
for future work that depart from them.

7.1. Main contributions

The main contributions of this thesis are: (1) the neural CRF parser introduced in chap-
ter 4; (2) the semisupervised and unsupervised learning of the RNNG guided by a CRF
posterior in chapter 5; (3) the syntactic evaluation of all our models and (4) the compar-
ison of the RNNG to syntactic multitask models in chapter 6.

Neural CRF parser We presented a neural CRF parser by borrowing the span factored
approach and neural scoring function from Stern et al. [2017a] and deriving cus-
tom inference algorithms from general inside and outside recursions. We showed
that the model is a competitive parser that outperforms a discriminative RNNG
of the same size by a large margin and moreover appears to deal with the ab-
sence of tag information much better. We used the CRF as a proposal distribution
for the RNNG, but noted that there is a subtle mismatch between the space of
trees modelled by the CRF and the RNNG. This is caused by derivational ambi-
guity which in turn is caused by the way we deal with the dummy label in the
CRF. We showed how the parse forest of the CRF can be altered to deal with this
but must leave the full evaluation to future work. Finally, the prohibitively slow
training is a drawback of the model, but we noted that pruning the labelset—
removing mostly labels corresponding to rarely occuring unary chains—results
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in great speedup. The pruning will inevitably affect the accuracy of the model,
and future research can investigate this.

Semisupervised learning of RNNG We formulated semisupervised and unsupervised
estimation of the RNNG using variational inference. We showed how the CRF
posterior allows us to derive a particularly satisfying version of the ELBO in
which the entropy term can be computed exactly, and have argued that the global
normalization makes for a distribution that is more amenable to sampling based
gradient estimation. Our first attempt at semisupervised learning from pretrained
models turned out unsuccesful: the CRF is too slow, and with the RNNG we could
not prevent the posterior from degenerating to pathological trees. The unlabeled
setting proved more promising, but the derivational ambiguity in the CRF pre-
vented us from optimizing the proper objective. We have described the solutions
to this, and preliminary results show that they fix the problem. Concurrent work
shows that—given appropriate tuning—this approach works for binary trees.

Syntactic evaluation of RNNG We performed targeted syntactic evaluation of the RNNG
on the dataset of Marvin and Linzen [2018]. This gave us a detailed breakdown
of performance. However, the finegrained evaluation also poses an interpretative
challenge, and we additionally opted for a broader view provided by averaging
the results.

Comparison with multitask learning We proposed a novel multitask language model
with a side objective inspired by the span scoring function of the CRF, and de-
scribed a previous model based on CCG supertagging. This method provides an
alternative way to bias language models towards syntax, and in at least one cate-
gory of the Syneval dataset this method outperformed the RNNG (on average).

7.2. Future work

We see two directions for future work, both on unsupervised learning of the RNNG
with the CRF as posterior. The first continues with the unsupervised learning where
this thesis left off, following through with our proposed refinements of the CRF. The
second direction that we propose takes the RNNG and CRF into the direction of sparse
structured inference.

Unsupervised RNNG with CRF posterior The line of work that departs from where
this thesis left off: the further investigation of our CRF as approximate posterior
for unsupervised learning of the RNNG. That this direction is fruitful has recently
been shown by Kim et al. [2019]. But our work differs from theirs because we do
not restrict to binary trees and use the original formulation of the RNNG. We have
made the first steps in this direction, but were halted by a fundamental mismatch
between the support of the RNNG and the CRF. We have described the steps
that need to be taken to overcome this mismatch. We can learn from the insights
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of Kim et al. [2019] and follow the training strategy that found was required to,
including separate optimizers, annealing the posterior, and early stopping.

SparseMAP inference Another direction of interest is to perform unsupervised learn-
ing of the generative RNNG with CRF posterior using the recently proposed
SparseMAP inference [Niculae et al., 2018a]. SparseMAP allows sparse structured
inference with neural networks by inducing sparse posterior distributions over
the latent strucutre, so that sums over that space can be computed as exact sums
over only the small numer of structures with nonzero probability. This allows
fully differentiable training of neural networks with discrete latent structure, and
has been used effectively for unsupervised induction of dependency trees [Nicu-
lae et al., 2018b]. The key requirement for sparseMAP is that the posterior model
permits efficient and exact MAP inference: this is precicely what is provided for
our CRF parser by the Viterbi algorithm. And in contrast with the approaches that
we have discussed in chapter 5 SparseMAP requires no approximation by sam-
pling. A first sketch of our approach would be to optimize a kind of autoencoding
objective X

y2Y(x)

p✓(x | y)q�(y | x),

with trees as discrete latent structure. Here q would be the CRF model, and p
an adaptation of the joint RNNG in which only the words are modelled, and the
structure y is conditioned on.1. SparseMAP makes the sum over Y(x) tractable
by inducing sparsity in q, such that most of the terms in the sum are zero. Only
for the small number of trees for which the posterior is nonzero do we need to
compute p✓(x | y). This training objective is not probabilistic, and the two condi-
tional models p and q together do not define a language model, but it can be used
to for unsupervised tree induction, and as such provide interesting comparison
with the approaches based on variational inference.

1A straightforward adaptation of the transition system achieves this: all other actions are provided, and
only the word in the GEN action needs to be predicted.
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A. Implementation

This appendix reports all details about the implementation of the models, including the
datasets and their pre-processing, optimization, and hyperparameters. We have made
some deliberate choices which we will motivate. As a general rule, we choose simplic-
ity over maximal performance: we use a minimal scheme for dealing with unknown
words, we use only word embeddings—which are learned from scratch—and use reg-
ular SGD optimization. The reason: to compare the models in a minimal setting so as to
maximally focus on the essential modelling differences between the models. All code
is available at https://github.com/daandouwe/thesis.

A.1. Data

A.1.1. Datasets

We use three datasets: the Penn Treebank for the parsing models; CCG supertags for
the RNNLM-CCG multitask model; and (part of) the One Billion Word Benchmark for
unlabeled data in the semisupervised training.

Penn Treebank We use a publicly available version of the Penn Treebank (PTB) that
was preprocessed and published by Cross and Huang [2016], and that has since been
used in the experiments of Stern et al. [2017a], Kitaev and Klein [2018]. The data is di-
vided along the standard splits of sections 2-21 for training, section 22 for development,
and section 23 for testing. The dataset comes with predicted tags, which is a require-
ment for neural parsers to avoid overfitting, but note however that none of our models
use tag information. The dataset is availlable at https://github.com/jhcross/
span-parser/data.1

CCG supertags For the multitask language model with CCG supertagging we use the
CCGBank [Hockenmaier and Steedman, 2007] processed by Enguehard et al. [2017] into
a word-tag format. This is the dataset also used by Marvin and Linzen [2018]. It follows
the same splits of the Penn Treebank as described above, and restricts the size of the
tagset from the original 1363 different supertags to 452 supertags that occurred at least
ten times, replacing the rest of the tags with a dummy token. The dataset is publicly
availlable at https://github.com/BeckyMarvin/LM_syneval/tree/master/
data/ccg_data.

1Although I do not know how it is possible to make the PTB public, given the licensing restrictions of the
LDC, I am very thankful that it was done. Now, all the data used in this thesis is publicly availlable.
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One Billion Word Benchmark In the experiments on semisupervised learning we
use the One Billion Word Benchmark (OBW) dataset [Chelba et al., 2013] to obtain un-
labeled data. This is a common dataset for large-scale language modelling [Jozefowicz
et al., 2016], and has the advantage that it has sentences seperated by a newline; a
requirement for the RNNG language model, which should only be applied to entire
sentences and not to longer or shorter segments.2 The dataset in its entirety is far too
large for our purposes, so instead we select sentences from the first section of the train-
ing data3 by selecting the first 100,000 sentences that have at most 40 words. Because
the OBW uses slightly different tokenization and standardization of characters than the
Penn Treebank we perform a number of processing steps to smooth out these difference.
First, we escape all brackets following the Penn Treebank convention (replacing ( with
-LRB-) and do the same for the quotation marks (replacing " with ‘‘). Finally, tok-
enization of negation is handled differently in the OBW, and we change this to the PTB
convention (replacing don ’t with do n’t). These simple changes together avoid
a lot of incoherences when combining this dataset with the PTB. The dataset is pub-
licly availlable at http://www.statmt.org/lm-benchmark/, and scripts for pre-
processing are availlable at https://github.com/daandouwe/thesis/scripts.

A.1.2. Vocabularies

We use two types of vocabularies corresponding to the two types of models that we
study this thesis: a vocabulary for the discriminative models and a vocabulary for
the generative models. The vocabulary used in the discrminative models contains all
words in the training data, whereas the vocabulary used in the generative models only
includes words that occur at least 2 times in the training data4. Finally, in the semisu-
pervised models we construct the vocabulary from the labeled and unlabeled datasets
combined. To keep the vocabulary size manageable in this larger dataset we restrict the
vocabulary of the generative model to words that occur at leest 3 times.

Unknown words We use a single token for unknown words, and during training
replace each word w by this token with probability

1

1 + freq(w)
,

where freq(w) is the frequency of w in the training data. In this we follow Stern et al.
[2017a]. We deviate from Dyer et al. [2016], who use a set of almost 50 tokens each
with detailed lexical information about the unknown word in question.5 This elaborate

2For this reason we cannot use the otherwise appealing Wikitext dataset [Merity et al., 2016]: this dataset
has sentences grouped into paragraphs.

3Section news.en-00001-of-00100.
4This makes training of the generative model faster, because the softmax normalization involves less

terms in the sum, and additionaly avoids the statistical difficulty related to predicting words that occur
just once. The discrminative model has neither of these problems, since the words are just conditioned
on.

5An approach taken from the Berkeley parser [Petrov et al., 2006].
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approach is common in parsing but certainly not in language modelling [Dyer et al.,
2016], for which reason we opt for the simpler scheme of a single token.

Embeddings All word embeddings are learned from scratch: the embeddings are
considered part of the model’s parameters and are optimized jointly with the rest of
them, starting from random initialization [Glorot and Bengio, 2010]. We surmise that
more elaborate embeddings should improve performance of the models, but such in-
vestigation is in principle othogonal to our work.6 We furthermore do not experiment
with any kind of subword information in the embeddings and, as noted before, make
no use of tags in any of the models. The influence of such embeddings on the discrim-
inate parser of Stern et al. [2017a] is analysed extensively by Gaddy et al. [2018], who
investigate all combinations of word, tag, and character-LSTM embeddings, and find
that the best model7 improves on the worst model8 by only 0.8 F1, which is a relative
improvement of just 1%. We believe this justifies our basic approach.

Model Parameters
Discriminative RNNG 798,078
Generative RNNG 9,610,736
CRF 762,752
CRF (big) 2,337,282
RNNLM 9,308,979
RNNLM-span 9,420,172
RNNLM-CCG 9,498,986

Table A.1.: Number of parameters of all models used.

A.2. Implementation

All our models are implemented in Python using the Dynet neural network library
[Neubig et al., 2017a], and use automatic batching [Neubig et al., 2017b]. Autobatching
enables efficient training of our models, for which manual batching is too difficult.

Optimization All our models are optimized with stochastic gradient-based methods,
in which we use mini-batches to compute stochastic approximations of the model’s
gradient on the entire dataset, and let Dynet compute the gradients using automatic
differentiation [Neubig et al., 2017a, Baydin et al., 2018]. For all our supervised models
we use regular stochastic gradient descent (SGD), with an initial learning rate of 0.1,

6See for example the impact of ELMo embeddings [Peters et al., 2018] on the performance of the parser
in Kitaev and Klein [2018] (an adaptation of the chart parser in Stern et al. [2017a]).

7A tie between the model that uses all embeddings concatenated and the model that uses just the
character-LSTM, both with an F1 of 92.24.

8Using only word embeddings, at an F1 of 91.44.

88



and anneal this by a factor of 2 when the performance on the development set fails to
improve. This follows the recommendations of Wilson et al. [2017], who show that on
models and datasets similar to ours this method finds good solutions and is more ro-
bust against overfitting than methods with adaptive learning rates. This also follows
Dyer et al. [2016], who obtain their best RNNG models using this optimizer and learn-
ing rate. Our models use dropout on all layers, including recurrent layers, and use
weight decay of 10�6. For our semisupervised model we do rely on adaptive gradi-
ent methods, and use Adam [Kingma and Ba, 2014] with the default learning rate9 of
0.001. Adaptive learning are considered more suitable for dealing with the dramatic
variability in magnitude of the surrogate obective [Ranganath et al., 2014, Fried and
Klein, 2018]. For all supervised models we use minibatches of size 10.

9To be precise, this is the value ↵ in Kingma and Ba [2014].
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B. Semiring parsing

The derivation of the inference algorithms in chapter 4 makes use of the notion of a
weighted hypergraph as a compact representation of all parses and their scores [Gallo
et al., 1993, Klein and Manning, 2004], and also makes use some of the ideas and nota-
tion of semiring parsing [Goodman, 1999, Li and Eisner, 2009].

B.1. Hypergraph

We use a backward hypegraph to compactly represent all possible trees over a sentence
under a grammar, an idea introduced in Klein and Manning [2004]. We call such hy-
pergraph a parse forest.

Definition B.1.1. A directed hypergraph is a pair G = (V, E), consisting of a set of nodes
V , and a set of directed hyperedges E ✓ 2V ⇥ 2V that connect a set of nodes at the tail
of the arrow to a set of node at the head of the arrow.

Definition B.1.2. A backward-hypergraph is a directed hypergraph where the hyperedges
E ✓ 2V ⇥ V connect to a single node. For a node v 2 V the set I(v) ✓ E denotes the set
of edges incoming at v and the set O(v) ✓ E denotes the set of edges outgoing from v,
i.e. the edges for which v is in the tail. For an edge e we write T (e) ✓ V for the set of
nodes in the tail of e, and define H(e) 2 V as the node at the head of the edge.

Definition B.1.3. A weighted hypergraph is any hypergraph G equiped with a weight
function ! : E ! K that to each edge assigns a weight from a weight-set K. Typically
K the set of real numbers, or the set of integers.

Definition B.1.4. A hyperpath in a backward-hypergraph is a set of edges that connects
a single node v 2 V at the sink to a set of nodes W ✓ V upstream. Formally defining a
hyperpath is a little cumbersome, but informally, a hyperpath is a set of edges obtained
by the following recursive procedure: starting at v, follow a single incoming hyperarc
e backwards, save the edge and repeat this for all nodes in T (e); stop when all nodes
in W have been encountered. In the context of parsing we also call a hyperpath from
the root node to the set of words {x1, . . . , xn} a derivation: this hyperpath represents a
single tree for the sentence.

Example B.1.5. (Parse forest) Figure B.1 shows a fragment of a hypergraph that repre-
sents the parse forest over an example sentence. Shown are the two hyperpaths corre-
sponding to the two partially overlapping derivations

(S (NP The (ADJP very hungry) cat) (VP meows) .) (B.1)
(S (NP The (NP (ADJP very hungry) cat)) (VP meows) .) (B.2)
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after collapsing the empty nodes ?. The edges that direct to the special node (S†, 0, n)
make the hypergraph rooted: each hyperpath with the set of all words at the source ends
at this one node.

The very hungry cat meows .

?1
0 ?2

1 ?3
2 ?4

3 VP5
4 ?6

5

ADJP3
1

?4
1 NP4

1

NP4
0

?6
4

S6
0

S†
0
6

Figure B.1.: A fraction of a parse hypergraph showing two possible parses.

B.2. Semiring

We use semirings to compute various quantities of interest over a weighted hypergraph.

Definition B.2.1. A semiring is an algebraic structure

K = (K, �, ⌦, 0̄, 1̄),

over a field K, with additive and multiplicative operations � and ⌦, and additive and
multiplicative identities 0̄ and 1̄. A semiring is equivalent to a ring1, without the re-
quirement of an additive inverse for each element.

Some of the semirings relevant to our discussion are the following:
1Perhaps the most common algebraic structure around: the real numbers with regular addition and

multiplication form a ring.
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Example B.2.2. The real semiring

(R�0, +, ⇥, 0, 1),

defined over the nonnegative reals, with regular addition and multiplication is a semir-
ing. Note that the additive inverse is missing for all elements greater than zero (i.e.
missing the negative reals).

Example B.2.3. The boolean semiring

({>, ?}, _, ^, >, ?),

is defined over truth values > (True, or 1), and ? (False, or 0). The binary operations
are the logical ‘and’ and ‘or’ operations.

Example B.2.4. The log-real semiring,

(R [ {�1}, �, +, �1, 0),

defined over the reals extended including �1, with addition defined as the logarithmic
sum2

a � b = log(ea + eb),

and multiplication is defined as regular addition.

Example B.2.5. The max-tropical semiring, or Viterbi semiring3

(R�0 [ {�1}, max, +, �1, 0),

is the log-real semiring that uses the max operator for addition.

B.3. Semiring parsing

A semiring K can be connected to a weighted hypergraph by defining the function !
over its field K, and by accumulating the weights with its binary operations. When the
hypergraph represents a parse forest, we are in the realm of semiring parsing [Goodman,
1999].

The key result derived by Goodman [1999] is that many quantities of interest can be
computed by a single recursion but over different semirings. First, we establish the
relation between the weight function and the structures encoded in the hypergraph by
defining the weight of a derivation and the weight of an entire hypergraph.

2Also known as log-sum-exp, or log-add-exp.
3This naming will become clear.
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Definition B.3.1. (Hypergraph weights) Let G! = (V, E,!) be a weighted hypergraph,
with ! defined over a semiring K. We define the weight of the derivation D ✓ E as the
product of the weights of the edges: O

e2D

!(e). (B.3)

Let D ✓ 2E be the set of all derivations in the hypergraph G. Then the total weight of
the hypergraph under ! is defined as the sum of the weights of all the derivations in it:M

D2D

O
e2D

!(e). (B.4)

Example B.3.2. (CRF parser) The CRF parser assigns a score  (x, y) � 0 by factorizing
over parts of y = {yc}C

c=1 as a product of potentials  (x, yc) � 0 of the parts. The parts
yc are the edges in the hyperpath that create the derivation y. In our CRF, thus, the
weight function ! is given by the function  ; the function  is equivalent to equation
B.3; and the sum over Y(x) is equivalent to equation B.4.

B.3.1. Inside and outside recursions

We follow the exposition of Li and Eisner [2009], but the results where first derived in
Goodman [1999].

Definition B.3.3. The inside value ↵(v) at a node v 2 V accumulates the weight of all
the paths that converge at that node. The accumulation is relative to a semiring, and is
defined as

↵(v) =

8><>:
1̄ if I(v) = ?,M
e2I(v)

!(e) ⌦
O

u2T (e)

↵(u) otherwise.

The value ↵(v) at the root node v is the sum of the weight of all the derivations in the
hypergraph. The recursion can solved by visiting the nodes in V in topological order.

Definition B.3.4. The outside value �(v) at a node v 2 V accumulates over the weights
of all the paths that head out from v. The accumulation is relative to a semiring, and is
defined as:

�(v) =

8>><>>:
1̄ if O(v) = ?,M
e2O(v)

!(w) ⌦ �(H(e)) ⌦
O

w2T (e)
w 6=u

↵(w) otherwise.

The recursion can solved by visiting the nodes in V in reverse topological order.
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B.3.2. Instantiated recursions

By instanstiating the inside and outside recursions with different semirings we solve a
whole range of problems.

Example B.3.5. (Inside and outside values) When we intantiate the inside recursion
and the outside recursion with the real semiring, the algorithms reduce to the classical
inside-outside algorithm [Baker, 1979]. The values ↵(v) and �(v) are the inside and
outside values. In particular, the value of ↵ at the root is the normalizer:

↵(S†, 0, n) = Z(x).

In our CRF parser, the function ! is given by the nonnegative function  .

Example B.3.6. (Logarithmic domain) When we are concerned with numerical stabil-
ity, or we only need the logarithm of the quantities of interest, we can use the log-real
semiring. The values ↵(v) and �(v) now give the log-inside and log-outside values re-
spectively. In particular, the value ↵ at the root now gives the lognormalizer:

↵(S†, 0, n) = log Z(x).

The semiring addition a � b = log(ea + eb) is made numerically stable by writing

log(ea + eb) = a + log(1 + eb�a) = b + log(1 + ea�b)

and choosing the expression with the smaller exponent. In the CRF, the function ! is
given by the composed function log � .

Example B.3.7. (Viterbi weight) When we intantiate the inside recursion with the max-
tropical semiring we get the recursion that computes at each node the subtree of maxi-
mum weight. The value ↵ at the root is the weight of the derivation with the maximum
weight

↵(S†, 0, n) = log (x, ŷ),

where ŷ is the Viterbi tree. Normalizing the score with the lognormalizer gives the
log-probability

log p(ŷ | x) = ↵(S†, 0, n) � log Z(x).

Hence the alternative name Viterbi semiring.

Example B.3.8. (Viterbi derivation) The Viterbi semiring derives the weight of the best
tree. Replacing the max in the Viterbi semiring with an argmax derives the best tree
itself:

↵(S†, 0, n) = ŷ, ŷ := arg max
y2Y(x)

p(y | x).
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Roughly spearking, because although this idea can be made precise by a constructing
the Viterbi-derivation semiring [Goodman, 1999] over the set of possible derivations, with
corresponding binary operations and set-typed identity elements 0̄ and 1̄, it is a litle
more complicated than that.4

Example B.3.9. (Recognition) When we intantiate the inside recursion with the boolean
semiring we get the recursion that recognizes wheter a hyperpath exists from the words
spanned by the node:

↵(S†, 0, n) =

(
> if x 2 L(G),

? otherwise.

The value at the root tells wether the sentence has at least one parse. Due to the trivial
grammar used this will always be > in our CRF.

4And most of all, a bit cumbersome.
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C. Variational inference

This appendix contain derivations and background used in chapter 5 on semisuper-
vised learning. We derive the score function estimator, describe variance reduction of
the estimator by using control variates and baselines, and detail how the estimator is
implemented in an automatic differentiation toolkit.

C.1. Score function estimator

In this section we derive the score function estimator

r� Eq[L�(x, y)] = Eq[L�(x, y)r� log q�(y|x)], (C.1)

where L�(x, y) is some function of x and y. We derive it for the case where

L�(x, y) := log p✓(x, y) � log q�(y|x),

which is the form used for the RNNG posterior, and note that the simpler form for the
CRF posterior follows from it. The line by line derivation is given by

r� Eq[L�(x, y)] = r� Eq[log p✓(x, y) � log q�(y|x)]

= r�

X
y2Y(x)

q�(y|x) log p✓(x, y) � q�(y|x) log q�(y|x)

=
X

y2Y(x)

r�q�(y|x) log p✓(x, y) � r�q�(y|x) log q�(y|x) � q�(y|x)r� log q�(y|x)

=
X

y2Y(x)

r�q�(y|x) log p✓(x, y) � r�q�(y|x) log q�(y|x)

=
X

y2Y(x)

L�(x, y)r�q�(y|x)

=
X

y2Y(x)

L�(x, y)q�(y|x)r� log q�(y|x)

= Eq[L�(x, y)r� log q�(y|x)].

In this derivation we used the identity

r�q�(y|x) = q�(y|x)r� log q�(y|x),
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which follows from the derivative

r� log q�(y|x) = r�q�(y|x)q�(y|x)�1,

and finally the fact thatX
y2Y(x)

q�(y|x)r� log q�(y|x) =
X

y2Y(x)

q�(y|x)
r�q�(y|x)

q�(y|x)

=
X

y2Y(x)

r�q�(y|x)

= r�

X
y2Y(x)

q�(y|x)

= r�1

= 0.

C.2. Variance reduction

The score function estimator is unbiased, but is known to have high variance, often too
much to be useful in practice [Paisley et al., 2012]. Two effective methods to counter
this are control variates and baselines [Ross, 2006], and in this section we describe what
they are and why they work. For the rest of this section we consider ourselves with
expectations of the general form

µ := E[f(X)]

that we estimate as

µ̂ =
1

K

KX
k=1

f(X(k))

using samples X(1), . . . , X(K).

C.2.1. Control variate

A control variate is another function of X that we subtract from f(X), redefining the
estimator. When g and f are correlated the resulting estimator has lower variance. For
this, we consider a function g with known expectation

µg = E[g(X)]

and define a new function f̂ as

f̂(X) := f(X) � g(X) + µg.
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We note that this function is also an estimator for µ because

E[f̂(X)] = E[f(X)] � µg + µg

= E[f(X)],

and we can compute the variance of the new function as

Var[f̂(X)] = E[(f(X) � g(X) + µg) � µ)2]

= E[(f(X) � g(X) + µg)
2] � 2E[(f(X) � g(X) + µg)µ] + E[µ2]

= E[(f(X) � g(X) + µg)
2] � 2E[(f(X) � g(X) + µg)]µ + µ2

= E[(f(X) � g(X) + µg)
2] � 2µ2 + µ2

= E[f(X)2 + g(X)2 + µ2
g � 2f(X)g(X) + 2f(X)µg � 2g(X)µg] � µ2

= E[f(X)2] � E[f(X)]2

� 2(E[f(X)g(X)] � E[f(X)]E[g(X)])

+ E[g(X)2] � E[g(X)]2

= Var[f(X)] � 2 Cov[f(X), g(X)] + Var[g(X)].

This means we can get a reduction in variance whenever

Cov[f(X), g(X)] >
1

2
Var[g(X)], (C.2)

which will be the case when f(X) and g(X) are correlated.
The function g is called a control variate, and can be chosen in any way as long as the

expectation can be computed exactly. A more general formulation of the control variate
is to introduce a scalar a

f̂(X) := f(X) � a(g(X) � E[g(X)]),

which can be used to maximize the correlation between f and g. This function f̂ has
variance

Var[f̂(X)] = Var[f(X)] � 2a Cov[f(X), g(X)] + a2 Var[g(X)].

We take a derivative of this with respect to a

d

da
Var[f̂(X)] = �2 Cov[f(X), g(X)] + 2a Var[g(X)],

set to zero, solve for a to obtain

a =
Cov[f(X), g(X)]

Var[g(X)]
(C.3)

as optimal choice for a.
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Plugging in this solution into the expression for Var[f̂(X)] and dividing by Var[f(X)]
we get

Var[f̂(X)]

Var[f(X)]
= 1 � Cov[f(X), g(X)]

Var[f(X)] Var[g(X)]
(C.4)

= 1 � corr2[f(X), g(X)]. (C.5)

This shows that given the optimal choice of a the reduction in variance is directly de-
termined by the correlation between f(X) and g(X).

Combined this gives the new estimator

E[f(X)] = E[f̂(X)] ⇡ 1

K

KX
k=1

[f(X(k)) � ag(X(k))] + µg,

Example C.2.1. [Ross, 2006] Suppose we want to use simulation to determine E[eX ]
with X ⇠ Uniform(0, 1). Of course, we can compute analytically that

E[eX ] =

Z 1

0
exdx = e � 1

A natural control variate to use in this case is the random variable X itself, g(X) := X ,
which gives the new estimator

f̂(X) = f(X) � g(X) + E[g(X)]

= eX � X +
1

2
.

Then to compute the reduction in variance with this new estimator, we first note that

Cov(eX , X) = E[XeX ] � E[X]E[eX ]

=

Z 1

0
xexdx � e � 1

2

= 1 � e � 1

2
⇡ 0.14086,

that

Var[eX ] = E[e2X ] � (E[eX ])2

=

Z 1

0
e2xdx � (1 � ex)2

=
e2 � 1

2
� (1 � ex)2 ⇡ 0.2420,
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and that

Var[X] = E[X2] � (E[X])2

=

Z 1

0
x2dx � 1

4

=
1

3
� 1

4
=

1

12
.

When we choose a as in formula C.3 we can use formula C.4 to compute that

Var[f̂(X)]

Var[f(X)]
= 1 � (0.14086)2

0.2420
12

⇡ 0.0161.

This is a reduction of over 98%!

C.2.2. Baseline

Using a control variate requires us to know E[g(X)], which is unlikely for the distribu-
tions that we consider in this work. An alternative that does not have this requirement
is a baseline, which is a scalar value b that unlike the function g does not depend on the
random variable X . Using the baseline we formulate the estimator

E[f(X) � b] + b (C.6)

⇡ b +
1

K

KX
k=1

f(X(k)) � b, (C.7)

which is trivially also an estimator for f(X), because adding and subtracting b does not
change anything. Why would this do anything? Well, in the case that the distribution
of X is parametrised by some ✓ and we compute gradients with respect to the estimator
we see that the

r✓ E[f(X)] = r✓ E[f(X) � b] + b (C.8)
= E[(f(X) � b)r✓ log p(X)] (C.9)

=⇡ 1

K

KX
k=1

(f(X(k)) � b) log p(X(k)), (C.10)

and again we get a reduction in variance if b correlates well with f(X).

C.3. Optimization

We use automatic differentiation [Baydin et al., 2018] to obtain all our gradients. In
order to obtain the gradients in formula C.1 using this method we rewrite it in the form
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of a surrogate objective [Schulman et al., 2015]:

LSURR(✓,�) =
1

K

KX
k=1

log q�(x|y(k))BLOCKGRAD(L�(x, y(k))). (C.11)

The function BLOCKGRAD detaches a node from its upstream computation graph, re-
moving its dependence on the parameters. To roughly illustrate this, let f be function
(computed by a node in the computation graph) with parameters ✓ and input x, then

BLOCKGRAD(f✓(x)) := f(x),

such that

r✓BLOCKGRAD(f✓(x)) = r✓f(x) = 0.

Automatic differentiation of equation C.11 with respect to � will give us the exact ex-
pression we are looking for

r� LSURR(✓,�) =
1

K

KX
k=1

L�(x, y(k))r� log q�(x|y(k)),

hence the adjective surrogate.
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D. Syneval dataset

The following list is the complete set of categories that are evaulated in the Syneval
dataset, taken from Marvin and Linzen [2018] with slight alterations. There is a slight
ambiguity in the category of negative polarity items, with two different types on con-
structions, one of sentences starting with most and the other of sentences starting with
most, combined into one positive set; we choose to separate them into two different cat-
egories. For the full list of lexical items used to build variants of these constructions we
refer the reader to Marvin and Linzen [2018].

1. Simple agreement:

a) The farmer smiles.
b) *The farmer smile.

2. Agreement in a sentential complement:

a) The mechanics said the author laughs.
b) *The mechanics said the author laugh.

3. Agreement in short VP coordination:

a) The authors laugh and swim.
b) *The authors laugh and swims.

4. Agreement in long VP coordination:

a) The author knows many different foreign languages and enjoys playing ten-
nis with colleagues.

b) *The author knows many different foreign languages and enjoy playing ten-
nis with colleagues.

5. Agreement across a prepositional phrase:

a) The author next to the guards smiles.
b) *The author next to the guards smile.

6. Agreement across a subject relative clause:

a) The author that likes the security guards laughs.
b) *The author that likes the security guards laugh.

7. Agreement across an object relative:

a) The movies that the guard likes are good.
b) *The movies that the guard likes is good.
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8. Agreement across an object relative (no that):

a) The movies the guard likes are good.
b) *The movies the guard likes is good.

9. Agreement in an object relative:

a) The movies that the guard likes are good.
b) *The movies that the guard like are good.

10. Agreement in an object relative (no that):

a) The movies the guard likes are good.
b) *The movies the guard like are good.

11. Simple reflexive anaphora:

a) The author injured himself.
b) *The author injured themselves.

12. Reflexive in sentential complement:

a) The mechanics said the author hurt himself.
b) *The mechanics said the author hurt themselves.

13. Reflexive across a relative clause:

a) The author that the guards like injured himself.
b) *The author that the guards like injured themselves.

14. Simple NPI:

a) No authors have ever been famous.
b) *Most authors have ever been famous.

15. Simple NPI (the):

a) No authors have ever been popular.
b) *The authors have ever been popular.

16. NPI across a relative clause:

a) No authors that the guards like have ever been famous.
b) *Most authors that no guards like have ever been famous.

17. NPI across a relative clause (the):

a) No authors that the guards like have ever been famous.
b) *The authors that no guards like have ever been famous.
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