
The Logic of Fault-Tolerance in Message-Passing Concurrency

MSc Thesis (Afstudeerscriptie)

written by

Bas van den Heuvel
(born 8 February 1993 in Amsterdam)

under the supervision of Dr Jorge A. Pérez (RUG) and Dr Alban Ponse, and submitted to
the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
4 July 2019 Dr Benno van den Berg

Dr Sung-Shik Jongmans
Dr Jorge A. Pérez
Dr Alban Ponse
Dr Bernardo Toninho
Prof Dr Yde Venema (chair)

Abstract

Exception handling is a widespread method of making programs fault-tolerant. Exploiting a Curry-
Howard correspondence with linear logic, Caires and Pérez have shown how to use modalities
denoting non-deterministically available behaviour in the π-calculus to interpret a functional pro-
gramming language with exception handling. Their work did, however, not address constructs for
exception handling in the relevant setting of programming languages with message-passing concur-
rency. This thesis focusses on this limitation, and uses their ideas to give a new, logically motivated
account of exception handling in message-passing concurrency. As key reference in this study, we
examine the typed framework for interactional exception handling by Carbone et al., which is fairly
expressive, but does not rest upon Curry-Howard foundations. We identify a fragment of this
framework on which we can define a conversion to an asynchronous version of the typed π-calculus
from Caires and Pérez. Our main result is that source processes and their respective conversions
correspond in terms of typing and progress; based on our conversion, we conjecture an operational
correspondence result.

Contents

1 Introduction 3

2 An asynchronous session calculus with non-determinism 6

2.1 Inference rules and cut reductions as asynchronous communication 7

Example 1: division by zero . 15

Example 2: exception handling . 16

2.2 Asynchrony through buffers . 19

3 Fault-tolerance through exception handling 24

3.1 The fault-tolerant calculus CYH . 24

3.2 The fragment CYHCH . 26

Limitation 1: Parallelism . 26

Limitation 2: Requests in services . 28

Limitation 3: Recursion . 29

Limitation 4: Conditional statements . 29

3.3 The conversion from CYHCH to DCPTP . 29

3.4 Results . 43

3.4.1 Typing results . 43

3.4.2 Deadlock-freeness . 53

3.4.3 Discussion: operational correspondence . 55

4 Future and related work 57

4.1 Multiparty session types . 57

4.2 Validity of the conversion . 58

4.3 Related work . 59

1

4.4 Extensions to the binary calculus . 60

5 Conclusion 61

References 62

Appendices 66

A The CYH type system 67

B Conversion example 68

C Synchronization diagrams 75

Example 1 . 75

Example 2 . 76

Example 3 . 76

Example 4 . 77

Example 5 . 78

Example 6 . 78

D A multiparty calculus 79

D.1 Global and local types . 79

D.1.1 Discussion: non-deterministic global type . 82

D.2 Mediums and binary local types . 83

D.3 Characterization results . 85

D.3.1 Simple well-formedness . 85

D.3.2 Merge well-formedness . 91

2

Chapter 1

Introduction

Logic is deeply rooted in many aspects of society, from reasoning and argumentation techniques in
philosophy and politics, to scientific research. It plays a particularly prominent role in the field of
computer science, for example as basis for decisions in the design of programming languages, or to
verify programs against desirable correctness properties, such as termination.

In the twentieth century, great scientists, such as Haskell Curry and William Howard, have
discovered that logic may not only serve as a means to reason about programming, but that logic
and programming are in fact the same mathematical object. It has been shown that different logics
correspond exactly to different classes of programs [14, 15, 31, 16, 34, 13]. An important result
of these correspondences is that logical proofs can actually be interpreted as programs, and hence
executed. This has led to the development of mathematical tools, such as proof assistants. These
tools have, for example, enabled mathematicians to prove conjectures that are now theorems, such
as the Kepler Conjecture [27, 28] and the Four-Color Theorem [24].

This so-called Curry-Howard correspondence (sometimes called Curry-Howard-De Bruijn corre-
spondence, because De Bruijn independently discovered the correspondence as well) has not only
proven to be fruitful from the perspective of logicians. It goes both ways: programs can be inter-
preted as logical proofs. This means that programmers can use methods from logic to reason about
programming. For example, propositional formulas in intuitionistic implicational natural deduction
can be used to type terms in the λ-calculus [12], making it possible to verify the consistency of such
typed programs. See [41] for a history and overview of the Curry-Howard correspondence.

Another, more recent example of the Curry-Howard correspondence involves Girard’s linear
logic [22, 23]. This logic was invented to model systems with a fine-grained management of resources.
In 2010, Caires and Pfenning showed that this substructural logic can justify a calculus that can
be used to model concurrent computation [7]. This calculus is a fragment of the well-known typed
π-calculus [35, 38], which is widely accepted as the λ-calculus for interaction and concurrency.
The π-calculus models parallel programs that communicate over channels through message passing.
These channels are typed with so-called session types that describe the order in which messages will
be passed over the channel [29]. The following example is a formula in linear logic that represents
the session type of a channel over which a value of type A will be sent (⊗), followed by the reception
of a value of type B (

&

), after which the channel will be closed (1):

A⊗ (B

&

1)

3

The fragment of this calculus that linear logic induces is guaranteed to be free from deadlock:
no program will be waiting for another program that is also waiting. The isomorphism between the
logic and the calculus exists on two levels: proofs are processes and cut reduction is computation,
or, in the case of the π-calculus, communication. Consider, for example, the following cut reduction
in linear logic, involving multiplicative conjunction ⊗ and its dual multiplicative disjunction

&

:

` ∆, A; Θ ` ∆′, B; Θ
(T⊗)

` ∆,∆′, A⊗B; Θ

` Γ, A,B; Θ
(T

&

)
` Γ, A

&

B; Θ
(Tcut)

` ∆,∆′,Γ; Θ

→
` ∆, A; Θ ` Γ, A,B; Θ

(Tcut)
` ∆,Γ, B; Θ ` ∆′, B; Θ

(Tcut)
` ∆,∆′,Γ; Θ

In the π-calculus, x〈y〉 denotes the sending of a channel y over channel x, and x(v) the reception of a
channel over x which will be used as v in the following process. P ‖Q denotes parallel composition,
and (νx)(P ‖ Q) creates a channel x, making one end available in P and the other in Q. If we
interpret ⊗ as sending, and

&

as receiving, the above cut reduction corresponds to the following
computational reduction in the π-calculus:

(νx)((νy)(x〈y〉;P ‖Q) ‖ x(v);R)→ (νx)(P ‖ (νy)(Q ‖R{y/v}))

The channel y, provided by the process Q, is transferred and becomes available to the process R.
After the transfer, the channel v in R has to be renamed to y.

In order to be able to use session type theory to study a wide range of concurrent programming
principles, many extensions have been proposed. See [33] for an overview of the development of
session types in the past twenty years. After the discovery of the Curry-Howard correspondence
with linear logic, such extensions have been re-examined to see to what extent a logical basis can
support them. Examples are recursion [39] and polymorphism [20, 6].

Caires and Pérez developed a session type theory based on classical linear logic, extended with
types that can be used to indicate non-deterministically available session protocols [4]. The following
logical formula represents the newly added monad & to type a channel that might be used to send
a value of type A, but it could also be possible that no such behaviour happens at all (i.e. failure):

&(A⊗ 1)

In order to demonstrate the power of their extension, Caires and Pérez showed how to encode a
higher-level functional programming language into their session calculus. This language is similar to
the λ-calculus, albeit somewhat artificial. It supports a very limited form of concurrency through the
usage of threads (sequences of instructions that can be run independently from the main program),
and its main feature is the support of try-catch blocks, a well-known construction used to make
programs fault-tolerant.

tryP catchQ

The above line of pseudo-code is executed by running P , in which exceptional behaviour might
occur. If it does, an exception is thrown. When that happens, the rest of the try-block gets
cancelled, and replaced by Q, the catch-block, also called the exception handler. For example, a
try-block could contain code to open a user-selected file. If this file does not exist, an exception is
thrown, triggering the exception handler, which warns the user to pick a file that does exist.

4

The logically supported fault-tolerance in functional programming from Caires and Pérez leaves
us to wonder what this means for concurrent programming. Can we adopt their ideas to model
exception handling in the Curry-Howard fragment of the π-calculus? To what extent can their
modality for non-determinism play a role in this? How does this compare to other process calculi
with fault-tolerance through exception handling, with or without a logical basis?

In this thesis, we use the types for non-determinism of Caires and Pérez to implement fault-
tolerance through exception handling for concurrent programming. We do this by studying the
session type system of Carbone et al. [10, 11], which does have fault-tolerance for concurrency, but
lacks a logical basis in the form of a Curry-Howard correspondence. The main contributions are

• the identification of a fragment of the system by Carbone et al., suitable for a conversion to
a system that does have such a logical foundation;

• the conversion itself; and
• correspondence results between source processes and their conversions.

This offers a first answer to how the session type extension of Caires and Pérez can be used to
implement fault-tolerance through exception handling for message-passing concurrency.

We first define the session type calculus we will be using in Chapter 2. This calculus implements
the types for non-determinism of Caires and Pérez and a form of asynchronous communication
from DeYoung et al. [17]. In Chapter 3, we describe the calculus by Carbone et al., and define a
conversion on a fragment of it to our calculus. Chapter 4 contains some suggestions for future work,
such as fault-tolerance in multiparty session type systems (used to model message-passing protocols
between multiple participants from a global perspective). The thesis is concluded in Chapter 5. In
Appendix A we give the typing system from Carbone et al. as in [11], Appendix B contains an
example of a converted process, Appendix C contains some diagrams to visualise the idea behind
our conversion, and Appendix D gives a multiparty session type calculus extended with a modality
for non-deterministic availability.

5

Chapter 2

An asynchronous session calculus
with non-determinism

In this chapter we present our process calculus, which we call DCPTP (for DeYoung, Caires, Pfen-
ning, Toninho, Pérez). It is based on the system by Caires and Pérez [4], which is an extension
of the π-calculus [35, 38] with new constructs for non-deterministically available resources. The
system of [4] maintains a correspondence to the classical linear logic Σ2 described by Andreoli [2],
based on the work by Girard [22]. By adopting the method by DeYoung et al. [17], the process
terms of [4] are changed such that messages are sent asynchronously, allowing for more concurrency.
For this, we base our system on the polyadic π-calculus, which allows for communicating multiple
values at once. To demonstrate the viability of our process calculus, we show in Section 2.2 that it
adequately models a π-calculus using buffers to exhibit asynchronous communication [21, 17, 30,
18] – a concrete and plausibly implementable notion.

Definition 2.1 (Process terms)

Process terms (P,Q) are given by
P,Q ::= (P ‖Q) | (νx)P | 0 | [x↔ y] | x.close | x.close

| x〈y, x′〉 | x(y, x′);P | x.inl〈x′〉 | x.inr〈x′〉 | x.case(x′) (P,Q)

| !x(y);P | x〈y〉 | x.some〈x′〉 | x.none | x.somew̃(x′);P | P ⊕Q

where x, y, w̃ are channel names.

In the above definition, (P ‖ Q) denotes parallel composition. It is standard in the π-calculus
that if P reduces to P ′, then (P ‖Q) reduces to (P ′ ‖Q). The term (νx)P denotes the creation of a
new channel with name x, available to P (i.e. x is bound in P). Actions with an overbar and angled
brackets denote sending, e.g. x〈y, x′〉 (“send y and x′ over x”) and x.some〈x′〉 (“send some and x′

over x”). Actions with round brackets denote receiving, e.g. x(y, x′);P (“receive y and x′ over x,
continue with P”) and x.somew̃(x′);P (“wait for some and x′ on x, continue with P”). Besides the
ones presented in this section, the standard congruence and reduction rules from [35, 38] apply.

6

Note that in the π-calculus, it is common that any communication action is a prefix to another
process (e.g. x〈y〉;P). Due to asynchrony, sending actions in our inference rules would never be a
prefix to the continuation, so we would always get sending actions such as x〈y, x′〉; 0. It is common
to omit trailing 0 processes, so we have decided to present sending actions as singular actions, i.e.
not as a prefix.

Definition 2.2 (Types)

Types are given by
A,B ::= 1 | ⊥ | A⊗B | A

&

B | A&B | A⊕B | ?A | !A | &A | ⊕A

A type A represents one end of a channel. The other end of the channel should have a com-
plementary behaviour. For example, if on one end a value is sent, on the other end that value
should be received. In our session type system, this is captured by the duality of types: one end of
a channel is typed A, while the other end is typed with the dual type A. Duality is defined with
standard DeMorgan-style laws, and corresponds to negation in classical linear logic A⊥. It is easy

to see that duality is an involution [22]: A = A.

Definition 2.3 (Duality)

The duality relation on types is given by

1 = ⊥
⊥ = 1

A⊗B = A

&

B

A

&

B = A⊗B
A&B = A⊕B
A⊕B = A&B

?A = !A

!A = ?A

&A = ⊕A
⊕A = &A

2.1 Inference rules and cut reductions as asynchronous com-
munication

Linear logic is commonly presented using a collection of sequent calculus style inference rules. We
present our process terms and types by annotating those inference rules with process terms and
channel names. A sequent is then of the form P ` ∆; Θ. Here, P is the process term. ∆ is the linear
context, consisting of pairs x : A where x is a channel name and A its type. Θ is the unrestricted
context, consisting of similar channel/type pairs. We sometimes omit the unrestricted context,
when it is irrelevant for the rule or explanation. We give a summary of all the rules in Figure 2.1.

By applying these rules, we can obtain process terms with channels of dual types and combine
them using (Tcut). This makes it possible to apply linear logic cut reduction. The resulting
transformations of process terms in the sequents correspond to the computational semantics of
our process calculus. Therefore, in order to demonstrate the Curry-Howard correspondence, our
process reductions are presented along with their respective cut reductions. We summarize all
process reductions in Figure 2.2.

We end the section with two example processes (see “Example 1: division by zero” and “Example
2: exception handling”).

7

Note that many rules use Greek capital letters to represent arbitrary collections of channel/type
pairs. In order to be consistent with cut reduction examples, we generally use ∆ for sending
rules, and Γ for receiving ones. If an inference rule has different Greek letters throughout its
premises and conclusion, they are meant to represent disjoint collections of channel/type pairs, e.g.
∆∩Γ = ∅. If the same letter appears throughout premises and conclusion, it is meant to represent
the same collection of channel/type pairs in each occurrence. In essence, these collections place
requirements on the linear context for inferencing. Also, some rules have requirements on channel
names appearing in collections. This is to ensure that a channel is or is not free in a process. We
often omit these requirements after presenting them the first time.

Weakening and contraction. Because unrestricted resources need not be consumed, the un-
restricted context, which is used for persistent processes, can be filled at will using the weakening
rule (T<). Redundant unrestricted resources can be merged using the contraction rule (T>). It
is, however, not possible to completely remove a resource from this context once it has been added.
Note that in session type literature, it is common to use these rules implicitly.

P ` ∆; Θ
(T<)

P ` ∆;x : A,Θ

P ` ∆;x : A, y : A,Θ
(T>)

P ` ∆;x : A,Θ

Composition. There are two ways of composing processes. If the processes do not have channels
in common, they can be composed to run in parallel using the mix rule (T‖). However, if processes
have channels of dual types, they can be composed with the cut rule (Tcut). This binds the common
channel, removing it from the linear context.

P ` ∆; Θ Q ` Γ; Θ
(T‖)

P ‖Q ` ∆,Γ; Θ

P ` ∆, x : A; Θ Q ` Γ, x : A; Θ
(Tcut)

(νx) (P ‖Q) ` ∆,Γ; Θ

Because duality is an involution (A = A), the rule (Tcut) is symmetric. This corresponds to
the commutativity of parallel composition in the π-calculus (which also holds for our calculus):
P ‖ Q and Q ‖ P denote the same unique process (formally, P ‖ Q ≡ Q ‖ P). The strength of the
correspondence between our calculus and linear logic is reflected in the fact that symmetric uses of
(Tcut) are congruent in linear logic:

` ∆, A; Θ ` Γ, A; Θ
(Tcut)` ∆,Γ; Θ

∼= ` Γ, A; Θ ` ∆, A; Θ
(Tcut)` Γ,∆; Θ

The empty process and forwarding. The empty process 0 does not have any behaviour, so
it can only be introduced along with an empty linear context. This can be done using the empty
axiom (T·). The forwarding process [x ↔ y] mimics the behaviour of channel x on channel y.
The types of x and y are dual: everything that goes into x comes out of y and vice versa. The
identity axiom (Tid) introduces this term. Again, due to the involutivity of duality, forwarding is
symmetric: [x↔ y] ≡ [y ↔ x]. Note that these rules allow an arbitrary unrestricted context.

(T·)
0 ` ·; Θ

(Tid)
[x↔ y] ` x : A, y : A; Θ

8

Since the empty process does not have any behaviour, there are no process reductions associated
with it. However, the process equivalence P ‖ 0 ≡ P does correspond to the following proof
congruence:

(T·)` ·; Θ ` ∆; Θ
(T‖)` ∆; Θ

∼= ` ∆; Θ

Our first process reduction involves (Tid). A process P that acts on a channel x that is being
forwarded to a channel y can be changed to directly act on y by renaming all occurrences of x in
P to y:

(νx) (P ‖ [x↔ y])→ P{y/x}

This corresponds to the following cut reduction:

` A; Θ
(Tid)

` A,A; Θ
(Tcut)

` A; Θ
→ ` A; Θ

Closing channels. Types 1 and its dual⊥ represent channels that can be closed. The termination
axiom (T1) closes the channel on one end, and allows an arbitrary unrestricted context. After
closing a channel, the process terminates, so no continuation is allowed. On the other end of a
channel, it is necessary to wait for it to close. This can be done using the closing rule (T⊥). In
standard π-calculus, the waiting action is a prefix to the remaining process (i.e. the conclusion of
(T⊥) is x.close;P). However, since the closing channel cannot be used in the remaining process,
we can increase concurrency by waiting for the channel to close in parallel with the continuation.

(T1)
x.close ` x : 1; Θ

P ` ∆; Θ x /∈ ∆
(T⊥)

x.close ‖ P ` x : ⊥,∆; Θ

If a process is waiting for a channel to close, while a parallel process closes it, the channel can
actually be closed, leaving only the continuation process:

(νx)
(
x.close ‖ (x.close ‖ P)

)
→ P

This corresponds to the following cut reduction in linear logic:

(T1)` 1; Θ

` ∆; Θ
(T⊥)` ⊥,∆; Θ
(Tcut)` ∆; Θ

→ ` ∆; Θ

9

Sending and receiving. If a channel has type A⊗B, another channel of type A will be sent over
it, after which it continues to behave as type B. To optimize concurrency in the involved process,
we want to send the A channel asynchronously. Our first attempt at the send rule (T⊗′), also used
as a first attempt in [17], is as follows:

R ` ∆, y : A; Θ Q ` ∆′, x : B; Θ x /∈ ∆, y /∈ ∆′
(T⊗′)

(νy) (x〈y〉 ‖R ‖Q) ` ∆,∆′, x : A⊗B; Θ

This rule is, however, flawed, as explained in [17]. For example, if the continuation Q sends on x,
that action will be put in parallel with the first send action. Now if this process would be composed
with a process receiving on x, two possible reductions could take place: the communication of the
first send action, or that of the second. This violates the guarantee that messages are sent in order.
Another problematic situation would be if Q were to receive on x. Reduction would then allow the
just sent message to be wrongly received by Q.

We implement the solution to this from [17], which is to continue as B on a new channel, which
is sent along with the channel of type A. This send rule (T⊗) guarantees that any consecutive
communication actions happen on another channel, maintaining the order of messages.

R ` ∆, y : A; Θ Q ` ∆′, x′ : B; Θ x, x′ /∈ ∆, y /∈ ∆′
(T⊗)

(νy)(νx′) (x〈y, x′〉 ‖R ‖Q) ` ∆,∆′, x : A⊗B; Θ

The dual of A ⊗ B is A

&

B. A channel of this type will receive a channel of type A and
continue as B. The receive rule (T

&

) receives the channel and the continuation channel from (T⊗)
simultaneously.

P ` Γ, u : A, x′ : B; Θ x /∈ Γ
(T

&

)
x(u, x′);P ` Γ, x : A

&

B; Θ

When two parallel processes simultaneously send and receive a channel y over the same channel,
y is sent and becomes available to the receiving process P . Since the rule (T⊗) dictates that y cannot
be used in Q after sending it, y only needs to be shared between P and the process providing y, R.
Both remaining processes continue their communications on the now shared continuation channel.

(νx) ((νy)(νx′) (x〈y, x′〉 ‖R ‖Q) ‖ x(u, x′);P)→ (νx′) ((νy) (R ‖ P{y/u}) ‖Q)

This corresponds to the following cut reduction:

` ∆, A; Θ ` ∆′, B; Θ
(T⊗)

` ∆,∆′, A⊗B; Θ

` Γ, A,B; Θ
(T

&

)
` Γ, A

&

B; Θ
(Tcut)

` ∆,∆′,Γ; Θ

→
` ∆, A; Θ ` Γ, A,B; Θ

(Tcut)
` ∆,Γ, B; Θ ` ∆′, B; Θ

(Tcut)
` ∆,∆′,Γ; Θ

10

Branching. A channel typed A&B offers a choice between two behaviours A and B. A channel
of dual type A ⊕ B chooses which branch to take. Since the channel type after the choice is
already known at the choosing side beforehand, it is possible to add concurrency by sending the
selection asynchronously. However, similar problems to those with asynchronous sending might
occur. Therefore, we again send a continuation channel along with the choice. These types can be
inferred with the offer rule (T&) and the left and right select rules (T⊕1) and (T⊕2).

P1 ` Γ, x′ : A; Θ P2 ` Γ, x′ : B; Θ x /∈ Γ
(T&)

x.case(x′)(P1, P2) ` Γ, x : A&B; Θ

Q ` ∆, x′ : A; Θ x /∈ ∆
(T⊕1)

(νx′)
(
x.inl〈x′〉 ‖Q

)
` ∆, x : A⊕B; Θ

Q ` ∆, x′ : B; Θ x /∈ ∆
(T⊕2)

(νx′)
(
x.inr〈x′〉 ‖Q

)
` ∆, x : A⊕B; Θ

When a choice is offered while a choice is made on the same channel in parallel, a process reduces
to the chosen branch composed with the choosing side’s continuation process. Both processes then
continue their communications on the now shared continuation channel.

(νx)
(
(νx′)

(
x.inl〈x′〉 ‖Q

)
‖ x.case(x′) (P1, P2)

)
→ (νx′) (Q ‖ P1)

(νx)
(
(νx′)

(
x.inr〈x′〉 ‖Q

)
‖ x.case(x′) (P1, P2)

)
→ (νx′) (Q ‖ P2)

The left choice process reduction corresponds to the following cut reduction (the right choice re-
duction is analogous):

` ∆, A; Θ
(T⊕1)

` ∆, A⊕B; Θ

` Γ, A; Θ ` Γ, B; Θ
(T&)` Γ, A&B; Θ

(T cut)` ∆,Γ; Θ

→ ` ∆, A; Θ ` Γ, A; Θ
(Tcut)` ∆,Γ; Θ

By consecutively applying rules (T&), (T⊕1) and (T⊕2), it is possible to model a choice between
more than two branches. This is a common practice in session type calculi. We can formally
generalise this notion by defining n-ary choice:

Pi ` Γ, x′ : Ai; Θ (for all i ∈ I) x /∈ Γ
(T&I)

x.case(x′) (li : Pi)i∈I ` Γ, x : &{li : Ai}i∈I ; Θ

Q ` ∆, x′ : Ai; Θ x /∈ ∆
(T⊕i∈I)

(νx′)
(
x.li〈x′〉 ‖Q

)
` ∆, x : ⊕{li : Ai}i∈I ; Θ

The process reduction then looks as follows:

(νx)
(
(νx′)

(
x.li〈x′〉 ‖Q

)
‖ x.case(x′) (li : Pi)i∈I

)
→ (νx′) (Q ‖ Pi)

11

Persistence. To be able to model a situation in which a server concurrently offers a service to any
amount of clients, one can use persistent processes. This is where the unrestricted context comes
in: in order to continuously offer the same service, the resources needed for it must not run out.

A channel typed !A offers a persistent service of type A. By using the persistent offer rule (T!),
a persistent process receives a channel on which the service will take place. The dual channel type
?A merely exists to make a persistent service available to clients using (Tcut). This type can be
introduced using the persistent request rule (T?), which indeed does not have any effect on the
process term.

P ` u : A; Θ
(T!)

!x(u);P ` x : !A; Θ

Q ` ∆;x : A,Θ
(T?)

Q ` ∆, x : ?A; Θ

To request a service that is persistently offered, one can use the copy rule (Tcopy). This rule lets
the client send a channel on which the service will take place. Sending this channel asynchronously
does not pose the same problems as before. The channel x over which the client sends its channel y
is persistent and can only be used to request services. The service happens over the sent channel y.
This service channel y can be interpreted as a continuation channel, thus saving us from problems in
the order of messages. The persistent cut rule (Tcut?) composes a persistent service with a possible
client.

Q ` ∆, y : A;x : A,Θ
(Tcopy)

(νy) (x〈y〉 ‖Q) ` ∆;x : A,Θ

Q ` ∆;x : A,Θ P ` u : A; Θ
(Tcut?)

(νx) (Q‖ !x(u);P) ` ∆; Θ

Offering and requesting a service in parallel spawns the service and copies the service offer for
further requests:

(νx) ((νy) (x〈y〉 ‖Q) ‖ !x(u);P)→ (νx) ((νy) (P{y/u} ‖Q) ‖ !x(u);P)

This corresponds to the following cut reduction:

` ∆, A;A,Θ
(Tcopy)

` ∆;A,Θ
(T?)

` ∆, ?A; Θ

` A; Θ
(T!)` !A; Θ
(Tcut)` ∆; Θ

→
` A; Θ

(T<)
` A;A,Θ ` ∆, A;A,Θ

(Tcut)
` ∆;A,Θ ` A; Θ

(Tcut?)` ∆; Θ

12

Non-determinism. The following rules are asynchronous versions of those from [4]. When op-
erations fail or resources turn out to be unavailable (e.g. network connection is lost or memory is
full), a graceful method of cancellation is desired. The type &A models possible failure. By sending
a message over a channel x of that type, one can indicate whether the behaviour A is available. The
some rule (T&x

d) announces availability and continues to provide the promised behaviour. The none
rule (T&x) announces unavailability, so it disallows any further behaviour. We add concurrency
by sending the announcement asynchronously, so, as before, it is necessary to send a continuation
channel along with the message in order to prevent message order violations.

P ` ∆, x′ : A; Θ x /∈ ∆
(T&x

d)
(νx′) (x.some〈x′〉 ‖ P) ` ∆, x : &A; Θ

(T&x)
x.none ` x : &A; Θ

These rules can be used to model explicitly waiting for a resource to become available (or not).
One could argue that this is a reason not to send the availability announcement asynchronously:
the resource might be used on the sending side before the announcement is even received. How-
ever, when constructing process terms using our inference rules, availability is known beforehand.
Moreover, communications considering the available resource can only happen after the availabil-
ity announcement has been received and the receiving process is ready to communicate over the
continuation channel.

The channel on the receiving side has dual type ⊕A. The non-deterministic select rule (T⊕xw̃)
waits for the complementary process to announce availability. It requires all channels in the linear
context, w̃, to be of type &−, such that in case the resource is not available, the process can be
gracefully shut down by announcing non-availability over all those channels.

Q ` w̃ : &Γ, x′ : A; Θ x /∈ w̃
(T⊕xw̃)

x.somew̃(x′);Q ` w̃ : &Γ, x : ⊕A; Θ

The process reductions associated with these types depend on what rule the (T⊕xw̃) rule is
composed with. If it is composed with rule (T&x

d), the expected behaviour is available, so both
processes continue their computations:

(νx) ((νx′) (x.some〈x′〉 ‖ P) ‖ x.somew̃(x′);Q)→ (νx′) (P ‖Q)

The corresponding cut reduction is:

` ∆, A; Θ
(T&x

d)` ∆,&A; Θ

` &Γ, A; Θ
(T⊕xw̃)

` &Γ,⊕A; Θ
(Tcut)` ∆,&Γ; Θ

→ ` ∆, A; Θ ` &Γ, A; Θ
(Tcut)` ∆,&Γ; Θ

13

If it is composed with rule (T&x), the expected behaviour is not available, so both processes
terminate, and all remaining channels in the linear context of the receiving process are concurrently
announced to be unavailable.

(νx) (x.none ‖ x.somew̃(x′);Q)→ w1.none ‖ · · · ‖ wn.none

This corresponds to the following cut reduction:

(T&x)` &A; Θ

` &Γ, A; Θ
(T⊕xw̃)

` &Γ,⊕A; Θ
(Tcut)` &Γ; Θ

→
(T&w1)` &A; Θ · · · (T&wn)` &A; Θ

(T‖)` &Γ; Θ

As explained before, when constructing process terms, one needs to decide whether the resource
is actually available to apply above rules. This is only non-determinism in the sense that the
receiving side and reductions can take care of both availability and unavailability. It is, however,
possible to determine the availability by looking at the complementary sending process. This limits
the possibilities of modelling true non-determinism.

To achieve true non-determinism, we define the non-deterministic composition rule (T&nd), also
from [4]. It combines two processes with identical contexts.

P ` &∆; Θ Q ` &∆; Θ
(T&nd)

P ⊕Q ` &∆; Θ

Reductions happen within the composition, so if P → P ′, then P ⊕Q→ P ′ ⊕Q, and similarly for
Q. Non-deterministic composition is distributive, due to the following process equivalence:

(νx) ((P ⊕Q) ‖R) ≡ (νx) (P ‖R)⊕ (νx) (Q ‖R)

This corresponds to the following proof congruence:
` &∆,&A; Θ ` &∆,&A; Θ

(T&nd)` &∆,&A; Θ ` &Γ,⊕A; Θ
(Tcut)` &∆,&Γ; Θ

∼=

` &∆,&A; Θ ` &Γ,⊕A; Θ
(Tcut)` &∆,&Γ; Θ

` &∆,&A; Θ ` &Γ,⊕A; Θ
(Tcut)` &∆,&Γ; Θ

(T&nd)` &∆,&Γ; Θ

By combining above availability rules and the non-deterministic composition, one can model
true non-deterministic availability. Consider, for example, processes P and Q such that P ` x′ : A
and Q ` x′ : A, w̃ : &∆. We make x non-deterministically available by i) applying (T&x

d) to
P , (T⊕xw̃) to Q, and composing them using (Tcut); ii) applying (T&x) to P , (T⊕xw̃) to Q, and
composing them using (Tcut); and non-deterministically composing the results from i) and ii) using
(T&nd). The result of this composition reduces as follows:

(νx) ((νx′) (x.some〈x′〉 ‖ P) ‖ x.somew̃;Q)⊕ (νx) (x.none ‖ x.somew̃;Q)

→ (νx′) (P ‖Q)⊕ (w1.none ‖ · · · ‖ wn.none)

Notice how there are actually two reductions going on here: one within the left and the other within
the right of the non-deterministic composition.

14

Example 1: division by zero

Suppose we have a process D that receives a natural number and sends the result of dividing 5 by
that number: D ` y : Div = nat

&

(nat⊗⊥)

It is unclear what would happen if we send the number 0. In order to gracefully handle such a
situation, we make a safe version of D. It uses a process Z which receives a natural number, and
returns it if it is not equal to 0. Otherwise, it cancels the communication with none:
Z ` z : NZero = nat

&

(&(nat⊗⊥))

Our safe process SafeD will use D and Z as services, on respective channels y′ and z′. The goal
is to receive a natural number, and if it is not equal to 0, to send the result of 5 divided by the
number. Otherwise, the none from Z should cascade to our process, gracefully cancelling it and
the process expecting a result from it.

SafeD ` x : nat

&

(&(nat⊗⊥); y′ : Div, z′ : NZero

For clarity, we annotate the lines of the process definition with their meaning.

SafeD =

x(u, x1); (νz)(z′〈z〉 ‖ receive value, connect to Z

99
9

(νu′)(νz1)([u↔ u′] ‖ z〈u′, z1〉 ‖ send value to Z

99
9

99
9 z1.some(x1)(z2); z2(v, z3); (z3.close ‖ SafeD1) (possibly) receive value from Z

99
9) and close connection

)

SafeD1 =

(νy)(y′〈y〉 ‖ connect to D

99
9

(νv′)(νy1)([v ↔ v′] ‖ y〈v′, y1〉 ‖ send value to D

99
9

99
9 y1(w, y2); (y2.close ‖ SafeD2) receive division result from D

99
9) and close connection

)

SafeD2 =

(νx2)(x1.some〈x2〉 ‖ announce successful computation

99
9

(νw′)(νx3)([w ↔ w′] ‖ x2〈w′, x3〉 ‖ x3.close) send division result

) close connection

If a process P ` x : nat⊗ (⊕(nat

&

1)) sends a non-zero number, the following process (we omit
the proper composition with services D and Z) reduces successfully: (νx)(P ‖ SafeD)→∗ P ′, where
P ′ is some unrelated continuation of P . However, if P sends 0, the division does not happen at all:

(νx)(P ‖ SafeD)→∗ (νx1)(x1.somew̃ ‖ x1.none)→ 0

Here →∗ denotes the transitive, reflexive closure of →.

15

Example 2: exception handling

This example showcases the exception handling as Caires and Pérez implement it for their functional
programming language [4]. The idea is that an exception “router” waits for an expression to
indicate success or failure. In a successful situation the router receives the result of the expression’s
computation and passes it to the continuation of the program. In case of a failure, the router
invokes the exception handler instead, which computes a result of the same type as expected in a
successful situation. Again, the router passes on this result to the continuation.

The fault-tolerant programming language of Caires and Pérez allows an exception to be thrown,
accompanied with a value. This value can be used in the exception handler. However, to keep
the example readable, we give a version of the exception handling principle without accompanying
such a value. The source program looks like TRY e1 CATCH e2, where e1 is either LIFT e′1 (in case of
success), or THROW (in case of failure). We given an asynchronous version of the encoding of Caires
and Pérez, where y is the channel on which a continuation can expect the result of the try-catch
block.

JTRY e1 CATCH e2Ky =

(νj)(the exception router

99
9

(νk)((possibly) will pass value to context

99
9

99
9 Je1Kk,j ‖ the expression

99
9

99
9 k.some∅(k1); k1(v, k2); (possibly) receive value

99
9

99
9 k2(z, k3); (k3.close ‖ receive router and close

99
9

99
9

99
9

(νz1)(z.inl〈z1〉 ‖ signal success

99
9

99
9

99
9

99
9

(νv′)(νz2)([v ↔ v′] ‖ z1〈v′, z2〉 ‖ z2.close) send value to router

99
9

99
9

99
9)

99
9

99
9)

99
9) ‖

99
9 j.case(j1)(

99
9

99
9 j1(v, j2); (j2.close ‖ receive value

99
9

99
9

99
9

(νv′)(νy1)([v ↔ v′] ‖ y〈v′, y1〉 ‖ y1.close) send value to continuation

99
9

99
9),

99
9

99
9 j1.close ‖ Je2Ky invoke exception handler

99
9)

)

The two possible encodings of e1 are given on the next page.

16

JLIFT e′1Kk,j =

(νq)(will receive value from expression

99
9 Je′1Kq ‖ the expression

99
9 q(v, q1); (q1.close ‖ receive value

99
9

99
9

(νk1)(k.some〈k1〉 ‖ signal success

99
9

99
9

99
9

(νv′)k2([v ↔ v′] ‖ k1〈v′, k2〉 ‖ send value

99
9

99
9

99
9

99
9

(νj′)(νk3)([j ↔ j′] ‖ k2〈j′, k3〉 ‖ k3.close) pass on router

99
9

99
9

99
9)

99
9

99
9)

99
9)

)

JTHROWKk,j =

k.none ‖ (νj1)(j.inr〈j1〉 ‖ j1.close) cancel value passing and signal failure

17

P ` ∆; Θ
(T<)

P ` ∆;x : A,Θ

P ` ∆;x : A, y : A,Θ
(T>)

P ` ∆;x : A,Θ

P ` ∆; Θ Q ` Γ; Θ
(T‖)

P ‖Q ` ∆,Γ; Θ

P ` ∆, x : A; Θ Q ` Γ, x : A; Θ
(Tcut)

(νx) (P ‖Q) ` ∆,Γ; Θ

(T·)
0 ` ·; Θ

(Tid)
[x↔ y] ` x : A, y : A; Θ

(T1)
x.close ` x : 1; Θ

P ` ∆; Θ x /∈ ∆
(T⊥)

x.close ‖ P ` x : ⊥,∆; Θ

R ` ∆, y : A; Θ Q ` ∆′, x′ : B; Θ x, x′ /∈ ∆, y /∈ ∆′
(T⊗)

(νy)(νx′) (x〈y, x′〉 ‖R ‖Q) ` ∆,∆′, x : A⊗B; Θ

P ` Γ, u : A, x′ : B; Θ x /∈ Γ
(T

&

)
x(u, x′);P ` Γ, x : A

&

B; Θ

P1 ` Γ, x′ : A; Θ P2 ` Γ, x′ : B; Θ x /∈ Γ
(T&)

x.case(x′)(P1, P2) ` Γ, x : A&B; Θ

Q ` ∆, x′ : A; Θ x /∈ ∆
(T⊕1)

(νx′)
(
x.inl〈x′〉 ‖Q

)
` ∆, x : A⊕B; Θ

Q ` ∆, x′ : B; Θ x /∈ ∆
(T⊕2)

(νx′)
(
x.inr〈x′〉 ‖Q

)
` ∆, x : A⊕B; Θ

Pi ` Γ, x′ : Ai; Θ (for all i ∈ I) x /∈ Γ
(T&I)

x.case(x′) (li : Pi)i∈I ` Γ, x : &{li : Ai}i∈I ; Θ

Q ` ∆, x′ : Ai; Θ x /∈ ∆
(T⊕i∈I)

(νx′)
(
x.li〈x′〉 ‖Q

)
` ∆, x : ⊕{li : Ai}i∈I ; Θ

P ` u : A; Θ
(T!)

!x(u);P ` x : !A; Θ

Q ` ∆;x : A,Θ
(T?)

Q ` ∆, x : ?A; Θ

Q ` ∆, y : A;x : A,Θ
(Tcopy)

(νy) (x〈y〉 ‖Q) ` ∆;x : A,Θ

Q ` ∆;x : A,Θ P ` u : A; Θ
(Tcut?)

(νx) (Q‖ !x(u);P) ` ∆; Θ

P ` ∆, x′ : A; Θ x /∈ ∆
(T&x

d)
(νx′) (x.some〈x′〉 ‖ P) ` ∆, x : &A; Θ

(T&x)
x.none ` x : &A; Θ

Q ` w̃ : &Γ, x′ : A; Θ x /∈ w̃
(T⊕xw̃)

x.somew̃(x′);Q ` w̃ : &Γ, x : ⊕A; Θ

P ` &∆; Θ Q ` &∆; Θ
(T&nd)

P ⊕Q ` &∆; Θ

Figure 2.1: Typed process inference rules.

18

(νx) (P ‖ [x↔ y])→ P{y/x}

(νx)
(
x.close ‖ x.close ‖ P

)
→ P

(νx) ((νy)(νx′) (x〈y, x′〉 ‖R ‖Q) ‖ x(u, x′);P)→ (νx′) ((νy) (R ‖ P{y/u}) ‖Q)

(νx)
(
(νx′)

(
x.inl〈x′〉 ‖Q

)
‖ x.case(x′) (P1, P2)

)
→ (νx′) (Q ‖ P1)

(νx)
(
(νx′)

(
x.inr〈x′〉 ‖Q

)
‖ x.case(x′) (P1, P2)

)
→ (νx′) (Q ‖ P2)

(νx)
(
(νx′)

(
x.li〈x′〉 ‖Q

)
‖ x.case(x′) (li : Pi)i∈I

)
→ (νx′) (Q ‖ Pi)

(νx) ((νy) (x〈y〉 ‖Q) ‖ !x(u);P)→ (νx) ((νy) (P{y/u} ‖Q) ‖ !x(u);P)

(νx) ((νx′) (x.some〈x′〉 ‖ P) ‖ x.somew̃(x′);Q)→ (νx′) (P ‖Q)

(νx) (x.none ‖ x.somew̃(x′);Q)→ w1.none ‖ · · · ‖ wn.none

if P → P ′, then P ⊕Q→ P ′ ⊕Q

if Q→ Q′, then P ⊕Q→ P ⊕Q′

Figure 2.2: Process reductions.

2.2 Asynchrony through buffers

A more common way of exhibiting asynchronous communication is through the use of buffers [21,
17, 30, 18]. Following the work of [17], in order to demonstrate that the use of floating messages is
adequate, we want to show that it is capable of modelling buffered communication. Therefore, we
define a more common version of the π-calculus in which sending actions are synchronous, but the
semantics (i.e. process reductions) are defined using buffers. Then, we show how this calculus can
be modelled by our asynchronous calculus by giving a relation between the two calculi and showing
how the reductions are perfectly matched.

The process terms are given in Definition 2.4, which also contains the definition of buffers.
The usual rules for structural congruence apply. Buffers are directed, so the buffer z[m〉x receives
messages on z and outputs on x. Empty buffers do not commit to a direction, so z[〉x ≡ z〈]x.
Reductions are given in Definition 2.5. They are separated into a sending and a receiving group.
These semantics show that, although sending actions are blocking, messages can always immediately
be placed into an available buffer. Note that, for a clear presentation, reductions are given for
untyped terms. However, they can only be applied to well-typed terms (i.e. all involved channel
names have to be bound and processes need to exhibit complementary behaviour on opposite sides
of channels).

19

Definition 2.4 (Process terms with buffers)

Process terms (P,Q) with buffers are given by
m ::= close | y | inl | inr | !y | some | none

P,Q ::= (P ‖Q) | (νx)P | 0 | x.close | x.close;P

| x〈y〉;P | x(y);P | x.inl;P | x.inr;P | x.case(P,Q)

| x〈!y〉;P | !x(y);P | x.some;P | x.none | x.somew̃;P | P ⊕Q
| x[m〉y

where x, y, z, w̃ are channel names.

Definition 2.5 (Buffered reductions)

The (untyped) reductions of the buffered calculus are given by
z.close ‖ z[m〉x→b z[close,m〉x (S-close)

z〈y〉;Q ‖ z[m〉x→b Q ‖ z[y,m〉x (S-chan)

z.inl;Q ‖ z[m〉x→b Q ‖ z[inl,m〉x (S-inl)

z.inr;Q ‖ z[m〉x→b Q ‖ z[inr,m〉x (S-inr)

z〈 !y〉;Q ‖ z[m〉x→b Q ‖ z[!y,m〉x (S-pers)

z.some;Q ‖ z[m〉x→b Q ‖ z[some,m〉x (S-some)

z.none ‖ z[m〉x→b z[none,m〉x (S-none)

z[close〉x ‖ x.close;P →b P (R-close)

z[m, y〉x ‖ x(u);P →b z[m〉x ‖ P{y/u} (R-chan)

z[m, inl〉x ‖ x.case(P1, P2)→b z[m〉x ‖ P1 (R-inl)

z[m, inr〉x ‖ x.case(P1, P2)→b z[m〉x ‖ P2 (R-inr)

z[m, !y〉x‖ !x(u);P →b z[m〉x‖ !x(u);P ‖ P{y/u} (R-pers)

z[m, some〉x ‖ x.somew̃;P →b z[m〉x ‖ P (R-some)

z[none〉x ‖ x.somew̃;P →b w1.none ‖ · · · ‖ wn.none (R-none)

if P →b P
′, then P ⊕Q→b P

′ ⊕Q (ND1)

if Q→b Q
′, then P ⊕Q→b P ⊕Q′ (ND2)

if P →b P
′, then P ‖Q→b P

′ ‖Q (Par1)

if Q→b Q
′, then P ‖Q→b P ‖Q′ (Par2)

if P →b P
′, then (νx)P →b (νx)P ′ (Res)

The relation between these buffered process terms and our asynchronous ones is given in Defi-
nition 2.6 on page 23 (we give it after the proof of Theorem 2.1, because we motivate some of the
assignments there). A message in a buffer can be seen as a floating send action. Therefore, the
left and right terms of a sending reduction using buffers are both related to equivalent terms in
the asynchronous calculus. Consequently, reductions in which a buffered message is received are
related to the synchronization of a floating send and a receive action.

20

The following theorem is based on [17, Thm. 2, p. 240].

Theorem 2.1

Take a well-typed buffered process term P from Definition 2.4.

i) If P →b Q through an R-rule (receiving), then there are processes P ′ and Q′ such that
P P∗ P ′ → Q′ ≡ Q.

ii) If P →b Q through an S-rule (sending), then there are process P ′ and Q′ such that
P P∗ P ′ ≡ Q′ P∗ Q.

We use →b as in Definition 2.5, → as in Section 2.1, and P as in Definition 2.6. P∗ denotes
the transitive, reflexive closure of P.

Proof. Because it is the most representative example, we start with the rule for receiving a channel:

z[m, y〉x ‖ x(u);P →b z[m〉x ‖ P{y/u} (2.1)

Well-typed, the left term looks like this:

(νx) ((νz) (Q ‖ (νy) (R ‖ z[m, y〉x)) ‖ x(u);P) (2.2)

We need to relate the buffered message to a floating send:

(νz)(Q ‖ (νy)(R ‖ z[m, y〉x)) P (νy)(νx′)(x〈y, x′〉 ‖R ‖ (νz)(Q ‖ z[m〉x′))

Also, we need to relate the receiving action and the reception of a continuation channel:

x(u);P P x(u, x′);P{x′/x}

This relates our well-typed term (2.2) to the following term, using a floating send instead of a
buffered messages:

(νx) ((νy)(νx′) (x〈y, x′〉 ‖R ‖ (νz) (Q ‖ z[m〉x′)) ‖ x(u, x′);P{x′/x})

This matches the left term of the send/receive reduction in the asynchronous system (modulo
α-conversion), so we can apply it:

→ (νx′)(νy) (R ‖ (νz) (Q ‖ z[m〉x′) ‖ P{y/u, x′/x})

This term is structurally congruent to

(νx)(νy) (R ‖ (νz) (Q ‖ z[m〉x) ‖ P{y/u}) ,

which is the right term z[m〉x ‖ P{y/u} of (2.1), but well-typed.

This shows that the reduction in (2.1) can be modelled exactly by relating to our asynchronous
calculus and applying the respective reduction from the previous section. The rest of the receiving
reduction rules require similar relations and the proofs of their correspondence to our asynchronous
system are analogous. This proves statement (i). We are only left with showing our result for the
sending reductions.

21

The rule we present is the reduction for sending a channel, which is a sufficiently representative
example for this proof:

z〈y〉;Q ‖ z[m〉x→b Q ‖ z[y,m〉x (2.3)

By defining a few additional process term relations, we can show that the left and right terms are
equivalent in our asynchronous system. The first new relation is for processes composed with an
empty buffer:

(νz)(P ‖ z[〉x) P P{x/z}

The other relation is for sending a continuation channel along with the channel:

x〈y〉;P
)
P (νx′)(x〈y, x′〉 ‖ P{x′/x})

We show by induction on the amount of messages in the buffer that the left and right terms
of (2.3) are structurally congruent. For the base case, we make the left term of (2.3) well-typed,
and assume its buffer is empty. Then, we apply our relation:

(νx) ((νz) ((νy) (R ‖ z〈y〉;Q) ‖ z[〉x) ‖ P)

P (νx) ((νy) (R ‖ x〈y〉;Q{x/z}) ‖ P)

P (νx) ((νy) (R ‖ (νx′) (x〈y, x′〉 ‖Q{x′/z})) ‖ P)

P (νx) ((νy) (R ‖ (νx′) (x〈y, x′〉 ‖ (νz) (Q ‖ z[〉x′))) ‖ P)

≡ (νx) ((νy)(νx′) (x〈y, x′〉 ‖R ‖ (νz) (Q ‖ z[〉x′)) ‖ P)

P (νx) ((νz) (Q ‖ (νy) (R ‖ z[y〉x)) ‖ P)

Indeed, this the well-typed form of the right term of (2.3).

For the induction step, we have an induction hypothesis:

(νx) ((νz) ((νy) (R ‖ z〈y〉;Q) ‖ z[m〉x) ‖ P)
IH≡ (νx) ((νz) (Q ‖ (νy) (R ‖ z[y,m〉x)) ‖ P)

This step is shown by cases on the type of message appended to the buffer. However, since these
cases can be proved similarly, we only show the channel name case. We use the induction hypothesis
and our relation to connect the left term and the right term of (2.3), well-typed and with an extra
channel name in the buffer.

(νx) ((νz) ((νy) (R ‖ z〈y〉;Q) ‖ (νw) (W ‖ z[m,w〉x)) ‖ P)

P (νx) ((νw)(νx′) (x〈w, x′〉 ‖W ‖ (νz) ((νy) (R ‖ z〈y〉;Q) ‖ z[m〉x′)) ‖ P)

IH≡ (νx) ((νw)(νx′) (x〈w, x′〉 ‖W ‖ (νz) (Q ‖ (νy) (R ‖ z[y,m〉x′))) ‖ P)

P (νx) ((νz) (Q ‖ (νw) (W ‖ (νy) (R ‖ z[y,m,w〉x))) ‖ P)

This proves statement (ii).

22

Definition 2.6 (Asynchronous process relations)

Let P be the smallest symmetric relation on typed processes defined as:

(νz) (P ‖ z[〉x) P P{x/z}

(νz) (z[close〉x) P x.close

x.close;P P x.close ‖ P

(νz) (Q ‖ (νy) (R ‖ z[m, y〉x)) P (νy)(νx′) (x〈y, x′〉 ‖R ‖ (νz) (Q ‖ z[m〉x′))
x〈y〉;P P (νx′) (x〈y, x′〉 ‖ P{x′/x})
x(u);P P x(u, x′);P{x′/x}

(νz) (Q ‖ z[m, inl〉x) P (νx′)
(
x.inl〈x′〉 ‖ (νz) (Q ‖ z[m〉x′)

)
(νz) (Q ‖ z[m, inr〉x) P (νx′)

(
x.inr〈x′〉 ‖ (νz) (Q ‖ z[m〉x′)

)
x.inl;P P (νx′)

(
x.inl〈x′〉 ‖ P{x′/x}

)
x.inr;P P (νx′)

(
x.inr〈x′〉 ‖ P{x′/x}

)
x.case(P1, P2) P x.case(x′) (P1{x′/x}, P2{x′/x})

(νz) (Q ‖ (νy) (R ‖ z[m, !y〉x)) P (νy) (x〈y〉 ‖R ‖ (νz) (Q ‖ z[m〉x))

x〈 !y〉;P P x〈y〉 ‖ P

(νz) (Q ‖ z[m, some〉x) P (νx′) (x.some〈x′〉 ‖ (νz) (Q ‖ z[m〉x′))
(νz) (z[none〉x) P x.none

x.some;P P (νx′) (x.some〈x′〉 ‖ P{x′/x})
x.somew̃;P P x.somew̃(x′);P{x′/x}

23

Chapter 3

Fault-tolerance through exception
handling

In this chapter we investigate how the non-determinism modalities introduced in the previous
chapter can be applied for fault-tolerance. Carbone et al. introduced a binary session calculus
in which one can design processes that can throw exceptions which will be handled in all the
appropriate places [10, 11]. After introducing this system, we define a conversion from a fragment
of it to the type system we defined in Chapter 2. We finish the chapter in Section 3.4 by proving
and conjecturing results about the relation between this fragment and its conversion.

3.1 The fault-tolerant calculus CYH

Processes in the system by Carbone et al. (we call this CYH for Carbone, Yoshida, Honda) consist
of services and requests, inside of which exceptions can be thrown. They are accompanied by
exception handler processes, which are invoked when an exception is thrown.

CYH has a type system with judgements which we represent in a slightly different form than
in [10, 11]. We prefer our simplified representation, because it is sufficient to reason about our
conversion. We include a copy of the original type system from [11] in Appendix A.

As a convention, we write D and G to represent order-preserving lists of channel names. Judg-
ments are of the following form:

G ` PD B (x : αx)x∈D

Here G is the list of service channels over which requests can be done. PD is our notation for a
process in which every channel x ∈ D is free. The judgement says that every channel x ∈ D has
behaviour αx. A behavioural type α can be plain (unprotected) or protected. Protected types are
of the form α{[β]}, where α is the default behaviour, and β is the behaviour after an exception is
thrown. We often omit the list of service channels and only display the type of a single channel.

24

A service looks as follows:
∗a(s)[P (s), Q(s)]

Here P (s) is the default handler, and Q(s) is the exception handler. When a service is requested
over channel a, the process P s is replicated and connected to the requesting process. Exceptions
inside both the service and the request replace the replicated default handler with the exception
handler.

A request looks as follows, where s ∈ D:

a(s)
[
D, PD, QD

]
Again, PD is the default handler, and QD is the exception handler. When an exception is thrown
on either side of any of the channels in D, the exception handler is invoked, as well as those of
the processes on the other sides of the channels in D. The type system of CYH has the following
rule about default and exception handlers (for both services and requests), which says that the
behaviour of a channel after an exception has been thrown should be captured in the type of the
channel in the default handler:

PD B x : α{[β]} =⇒ QD B x : β

The process of requesting a service inside an already established service or request is called
refinement. It replaces the current exception handler by a new exception handler that handles the
newly connected channel as well as those channels that were already connected. The following
example shows a refinement of the exception handler of the established request over a, after the
number 5 has been sent (x1!〈5〉). The exception handler R of the request over b refines the original
exception handler Q:

a(x1)
[
(x1), x1!〈5〉.b(x2)[(x1, x2), P (x1,x2), R(x1,x2)], Q(x1)

]
The exception handlers have the following requirement: the behaviour of a channel after an

exception has to be the same after refinement, i.e.:

∀x ∈ D.QD B x : β =⇒ RD∪(x) B x : β

Here, Q is the original exception handler, and R is the one that refines it.

When an exception is thrown (with the throw process), it affects parallel processes. Their scope,
however, is restricted by enclosing request or service definitions. So,

a(s)[D, PD, QD] ‖ throw ⇀ QD,

but
a(s)[D, PD, QD] ‖ b(s′)[D′, throw, RD

′
] ⇀ a(s)[D, PD, QD] ‖RD

′
.

Note the use of ⇀ instead of the usual → for reductions. This is because the semantics of CYH is
defined with buffers for asynchronous communication, and meta-reductions and runtime processes
for reductions. The reductions here are merely to demonstrate the outside behaviour of CYH.

25

3.2 The fragment CYHCH

The purpose of our intension to define a conversion from CYH processes to DCPTP processes is
to demonstrate the power of some and none. Exceptions can be thrown at any point in a process
and they affect multiple parts of the process. The general idea of our conversion is therefore to
synchronize all the parts that might affect each other, at each step of communication. We will use
some to indicate the absence of an exception, whereas we will use none to cancel processes when
an exception is thrown. Have a look at Appendix C for a visualization of this process.

We do, however, need the ability to invoke exception handlers. This means that we cannot simply
cancel all processes with none. This issue reflects the non-compositionality of CYH. Consider, for
example, the following two processes that are compositionally the same, but in which the exception
has different effects:

1. a(x1)
[
(x1), b(x2)[(x2), throw ‖ P (x2), Q(x2)] ‖R(x1), S(x1)

]
⇀ a(x1)

[
(x1), R(x1), S(x1)

]
‖Q(x2)

2. a(x1)
[
(x1), throw ‖ b(x2)[(x2), P (x2), Q(x2)] ‖R(x1), S(x1)

]
⇀ Q(x2) ‖ S(x1)

This places a limit on the extent to which we can convert CYH processes. Therefore, we define
a fragment of CYH on which we define our conversion, and call it CYHCH (for Curry-Howard). The
definition is given in Def. 3.1 on the next page. It consists of a series of service definitions followed
by a series of requests. The session inside a service cannot make requests, but can throw exceptions.
Exception handlers can neither make requests nor throw exceptions (this is a restriction already
present in CYH). Sessions inside requests or refinements can throw exceptions, and do allow making
requests, up to the point where multiple channels are used in parallel. We motivate our choices
after the definition.

Limitation 1: Parallelism

A notable limitation of our fragment is that refinement is not allowed inside parallel composition.
This is, however, a limitation of CYH, since it is a syntactical assumption under the name consistent
refinement. This assumption states that whenever a refinement is applied to an already connected
channel, the refinement should include all channels that are already connected.

The consistent refinement assumption prevents ambiguous situations such as in the following
example:

a(x2)
[
(x1, x2), P (x1) ‖ b(x3)[(x2, x3), throw, Q(x2,x3)], R(x1,x2)

]
⇀ a(x2)

[
(x1, x2), P (x1) ‖Q(x2,x3), R(x1,x2)

]
After the exception has been thrown, the channel x3 is not protected anymore, even though it is
inside a request. Since x2 is subject to exceptions, so is x3.

26

Definition 3.1

The fragment CYHCH is defined by the following, annotated grammar.
CYHCH ::=SERVICES∅

SERVICESG ::= (νa)

(
∗a(s)

[
SESSION

∅,(s)
X ,SESSION

∅,(s)
×

]
‖ SERVICESG∪(a)

)
|

REQUESTSG

REQUESTSG ::= a(s)
[
(s),SESSION

G,(s)
X ,SESSION

∅,(s)
×

]
| where a ∈ G

REQUESTSG ‖ REQUESTSG

SESSIONG,Dτ ::= 0 |
x?(y).SESSIONG,Dτ | x!〈e〉.SESSIONG,Dτ |
x B {li : SESSIONG,Dτ }i∈I | x C l.SESSIONG,Dτ |

}
where x ∈ D

SESSION∅,D1
τ ‖ SESSION∅,D2

τ | where D1 ∩ D2 = ∅ and D1 ∪ D2 = D

a(s)
[
D ∪ (s),SESSION

G,D∪(s)
X ,SESSION

∅,D∪(s)
×

]
| where s /∈ D and a ∈ G

throw where τ = X

Here, D is an order-preserving list of session channel names, G is a list of service channel
names, and τ ∈ {X,×} indicates the possibility of throwing exceptions. The prefix x?(y) is
input of y over x, x!〈e〉 is output of expression e over x, . offers a choice, and / selects one.

Consistent refinement does not prohibit what we call disjoint refinement, in which a request
can be used to connect to a new channel without refining the currently connected channels. The
following example is typable in CYH. Once the exception is thrown, the exception handler is not
susceptible to exceptions anymore.

a(x1)
[
(x1), P (x1) ‖ b(x2)[(x2), throw, Q(x2)], R(x1)

]
⇀ a(x1)[(x1), P (x1), R(x1)] ‖Q(x2)

As exceptions have an effect across parallel composition, our conversion will need to synchronize
those parallel processes. This is where we run into limitations of using none. Consider the following
process, which contains a disjoint refinement:

a
[
(x1), x1!〈5〉.throw ‖ b[(x2), x2?(y).x2 C l3.0, R

(x2)], Q(x1)
]

(3.1)

On both sides of the parallel composition, no exceptions are thrown, so in our conversion the two
parallel processes synchronize and the output on x1 and input on x2 occur. Indeed, the semantics
of CYH allows the process to reduce like this:

⇀ a
[
(x1), throw ‖ b[(x2), x2 C l3.0, R

(x2)], Q(x1)
]

Now the exception is thrown, so the process reduces to:

⇀ R(x2) ‖Q(x1)

27

One requirement of our conversion is that we want to keep the exception handlers with their
respective default handlers. In our example, this means that the request on b is responsible for
triggering its exception handler when an exception is thrown. Now, if we want to model the throw
using none, we would also cancel the exception handler, leaving us unable to reach the situation
above. This is why our fragment does not allow disjoint refinement.

The limitation does not have a significant effect on the expressivity of our fragment, because
disjoint refinement can be rewritten such that it is allowed. For example, the following process is
equivalent to our example with disjoint refinement in (3.1) in terms of reduction:

a
[
(x1), b[(x1, x2), x1!〈5〉.throw ‖ x2?(y).x2 C l3.0, R

(x2) ‖Q(x1)], Q(x1)
]

It is our design choice to make the leftmost process of the parallel composition responsible for
invoking the exception handler, so it can cancel the right process with none. Processes on the
right synchronize with this process using inl where there is no throw, and inr when there is.
See Example 4, Example 5 and Example 6 in Appendix C for a visualization of this process.

Note that the semantics of CYH does not require parallel processes to synchronize. Therefore,
reductions such as follows are possible:

a
[
(x1, x2), x1!〈5〉.x1 C l3.0 ‖ x2?(y).throw, Q(x1,x2)

]
⇀ a

[
(x1, x2), x1!〈5〉.x1 C l3.0 ‖ throw, Q(x1,x2)

]
⇀ Q(x1,x2)

Here, only a receive on x2 has happened before the exception is thrown. In our conversion, due to
the synchronization we need to perform, the send on x1 needs to be performed before the exception
can be thrown. Different orders of actions might be necessary to model specific situations in which,
due to their locality, exception handlers might have access to values received before the exception
was thrown. However, at the level of abstraction of the π-calculus, this would be an invisible
behaviour, and it is not the intended level of detail for this type of modelling.

Limitation 2: Requests in services

In CYH it is possible to have requests inside services.

∗a(s)
[
b(x1) [(s, x1), P,R] , Q

]
In our conversion, when an exception is thrown, the request side cancels the service side with

none. When its exception handler is invoked, this handler in turn invokes the handlers of the
connected services. This is why requests are not allowed in our fragment: a none would cancel the
request, making it unable to invoke its exception handler.

This limits the ability to model situations in which services need to invoke other services, such as
a bank that has to connect to another bank. However, such problems should be easy to overcome.
In this banking example, we could, for example, connect two banks using an intermediary request
that connects to both banking services.

28

Limitation 3: Recursion

CYH supports recursion in the form of minimal fixpoints. For example:

µX.x B {l1 : X, l2 : x!〈tt〉.0}

This process repeatedly receives label l1 until it receives label l2, after which it outputs tt and
terminates.

Recursion is still an open field of research for session type theory, especially with a Curry-
Howard basis. Since it is not the research topic of this thesis, our fragment does not support
recursion, although we do mention it as an option for further research in Section 4.4.

Limitation 4: Conditional statements

The final limitation is that we do not explicitly support conditional statements. The following
example uses a conditional statement on a received value to determine which value to send:

x?(v).if ok(v) thenP elseQ

This process receives a value v. If ok(v) evaluates to a truthy value, the process P gets executes,
and otherwise process Q will be run. It is required that P and Q have the same typings for all
channels.

We do no have conditional statements in our type system DCPTP. In fact, we do not support
conditionals in our fragment at all, since we do not want to clutter our conversion with details that
are irrelevant to our research topic. It is trivial to extend the conversion by modelling conditionals
using non-deterministic composition, e.g. P & Q. This is slightly more abstract than the original
conditional, since we do not evaluate the condition, but this should not be a problem when one
uses the systems discussed in this thesis to study processes on a high level of abstraction.

3.3 The conversion from CYHCH to DCPTP

In this section we define our conversion from the fragment CYHCH in Definition 3.1 to our type
system DCPTP from Chapter 2. As mentioned in the previous section, our conversion has two
important requirements, besides the typing and reduction rules we will discuss in Section 3.4. We
have included an example of what a converted process looks like in Appendix B.

The first requirement is that we use some and none wherever we can, such that we can explore
their abilities. The idea is to do this by synchronizing processes at every step of communication,
possibly cancelling processes when exceptions are being thrown. The diagram in Figure 3.1 on the
following page visualizes this process. It is wise to take a look at Appendix C, in which there are
more of these visualizations.

The second requirement is that exception handlers are to be local to their respective default
handlers. This is because we want to be able to use these calculi to model real problems. Consider,
for example, a model of an internet client/server interaction. When an exception is thrown by the
client, the server must invoke its exception handler itself, since the client does not have access to
it, let alone have access to the server’s resources.

29

x xsome

inl

some

5

some

inl

some

v

some

inl

some

close

Figure 3.1: Visualization of syn-
chronization in the conversion of
a(x)[(x), x!〈5〉.x?(v).0, Q(x)]

In our definitions, we use a few conventions for notation:

• For each function, a signature is given first. Here we use P(−)
to denote the power set, and C to denote the set of all channel
names.

• We match process terms by referring to the grammar rules
in Def. 3.1. This allows us to put restrictions on processes
without giving them as an annotation.

• Moreover, because the asynchrony of DCPTP needs fresh
channels at almost every communication, the channels in pro-
cess terms in recursive conversions are renamed where nec-
essary. This is depicted by changing the annotations of the
grammar terms. In use with actual process terms, this means
that α-conversion needs to be applied to the to be converted
process terms (e.g. P becomes P{x3/x} after three steps of
synchronization on x).

• Dealing with values and expressions goes beyond the scope of
this thesis. Therefore, we use abstract processes to generate
and consume expressions and values. Their typing depends
on the type of the expression or value in the original process.
We do not distinguish between primitive types (e.g. nat and
bool) in CYH and DCPTP, and assume that θ = θ, for any
primitive type θ.

The generator process takes an expression e of type θ and outputs it on a fresh channel v.

Ee→v ` v : θ

The consumer process consumes a value v of type θ.

Cv ` v : θ

• We write
∏

to denote the parallel composition of a process on all channels in a collection of
channels, i.e.: ∏

x∈{x1,x2,...xn} P := P{x1/x} ‖ P{x2/x} ‖ . . . ‖ P{xn/x}.

In the coming pages, we often fill the bottoms of pages with whitespace in order to minimize the
breaking of definitions across pages.

30

As a quick guide to the conversion, we give a short overview. The function { is the main
conversion. It converts services into replicated processes, converting their default handlers with
serv, taking care of synchronization, and their exception handlers with exc⊥, making sure that some
can be used to trigger, and none to cancel the handler. Requests and refinements are converted
with the function refine, keeping track of connected channels and parallel compositions. It converts
default handlers with req, which takes care of synchronization, and exception handlers with exc1,
which works similar as for services.

The conversion { is given in Definition 3.2. The conversion uses several different function
definitions. We give them one by one, with a general explanation of what they do. Where necessary,
we give a more detailed explanation, referring to the specific equation.

(3.2) The conversion of a service creates a channel for its exception handler, which it sends to its
connected request. The exception handler can now be invoked with some, or cancelled with none.

Definition 3.2

{ : CYHCH → DCPTP

Def. 3.3: exc

Def. 3.4: serv

Def. 3.5: refine

{
(
(νa)

(
∗a(s)

[
SESSION

∅,(s)
X ,SESSION

∅,(s)
×

]
‖ SERVICESG∪(a)

))
(3.2)

:= (νa)(!a(s);

99
9

(νs′)(νs1)(s〈s′, s1〉 ‖

99
9

99
9 s′.some∅(s

′
1); exc⊥

(
SESSION

∅,(s′1)
×

)
‖

99
9

99
9 serv

(
SESSION

∅,(s1)
X

)

99
9) ‖

99
9 {

(
SERVICESG∪(a)

)
)

{
(
a(s)

[
(s),SESSION

G,(s)
X ,SESSION

∅,(s)
×

])
(3.3)

:= refinea0(G, ∅, ·, s,SESSIONG,(s)X ,SESSION
∅,(s)
×)

{
(
REQUESTSG ‖ REQUESTSG

)
:= {

(
REQUESTSG

)
‖ {
(
REQUESTSG

)
(3.4)

31

An exception handler is not susceptible to exceptions and cannot throw them, nor make requests.
Its conversion exc, given in Definition 3.3, is therefore straightforward.

Definition 3.3

exc : {1,⊥} × P(C)× SESSION
∅,P(C)
× → DCPTP

excb(D,0) :=

{∏
x∈D x.close if b = 1∏
x∈D x.close if b = ⊥

(3.5)

excb(D, x?(y).SESSION∅,D×) :=x(y, x1); (Cy ‖ (3.6)

99
9 excb(D{x1/x},SESSION∅,D{x1/x}

×)

)

excb(D, x!〈e〉.SESSION∅,D×) := (νy)(νx1)(x〈y, x1〉 ‖ Ee→y ‖ (3.7)

99
9 excb(D{x1/x},SESSION∅,D{x1/x}

×)

)

excb(D, x B {li : SESSION∅,D× }i∈I) :=x.case(x1)((3.8)

99
9 li : excb(D{x1/x},SESSION∅,D{x1/x}

×)

)i∈I

excb(D, x C l.SESSION
∅,D
×) := (νx1)(x.l〈x1〉 ‖ (3.9)

99
9 excb(D{x1/x},SESSION∅,D{x1/x}
×)

)

excb(D,SESSION
∅,D1

× ‖ SESSION∅,D2

×) := excb(D1,SESSION
∅,D1

×) ‖ excb(D2,SESSION
∅,D2

×)
(3.10)

As a convention, we write “exc” when we mean “exc1”.

32

The conversion serv of the default handler of a service is given in Definition 3.4. It synchronizes
with its connected request before communication. Services cannot make requests, so they only act
on single channels. Therefore, a conversion for parallel composition is unnecessary.

(3.11) When an exception is thrown, this is communicated with the request with inr.

(3.12)–(3.16) When no exception is thrown, inl is used instead.

Definition 3.4

serv : C × SESSION
∅,(C)
X → DCPTP

serv(s, throw) := s.some∅(s1); (νs2)(s1.inr〈s2〉 ‖ (3.11)

99
9 s2.close

)

serv(s,0) := s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (3.12)

99
9 s2.some∅(s3); s3.close

)

serv(s, s?(y).SESSION
∅,(s)
X) := s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (3.13)

99
9 s2.some∅(s3); s3(y, s4); (Cy ‖

99
9

99
9 serv(s4,SESSION

∅,(s4)
X)

99
9)

)

serv(s, s!〈e〉.SESSION∅,(s)X) := s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (3.14)

99
9 s2.some∅(s3); (νy)(νs3)(s3〈y, s4〉 ‖ Ee→y ‖

99
9

99
9 serv(s4,SESSION

∅,(s4)
X)

99
9)

)

serv(s, s B {li : SESSION
∅,(s)
X }i∈I) := s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (3.15)

99
9 s2.some∅(s3); s3.case(s4)(

99
9

99
9 li : serv(s4,SESSION

∅,(s4)
X)

99
9)i∈I

)

33

serv(s, s C l.SESSION∅,(s)X) := s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (3.16)

99
9 s2.some∅(s3); (νs4)(s3.l〈s4〉 ‖

99
9

99
9 serv(s4,SESSION

∅,(s4)
X)

99
9)

)

The conversion refine of a request or refinement is given in Definition 3.5. It connects to the
service, sets up the exception handler, and runs the default handler.

(3.19)–(3.21) If this is a refinement, there is already an exception handler. It is told to cancel
itself, after which the already existing exception handling channels are received for use in the new
exception handler. Then, the old exception handler is closed.

(3.22) The exception handling channel for the freshly connected service is received, after which a
new exception handling channel is created. It offers two cases: the left case enables invocation of
the handler, and the right case forwards exception channels to a new handler. Also, the default
handler is put into place.

(3.23)–(3.24) The exception handlers of connected services are invoked, after which the exception
handler itself starts.

(3.25)–(3.26) The exception handling channels are forwarded to a new exception handler, after
which the current handler is closed.

Definition 3.5

refine : {0, 1, . . . , 6} × P(C) ∪ C ∪ {·} × P(C)× P(C)× C ∪ {·} × C ∪ {·}

×SESSIONP(C),P(C)
X × SESSION

∅,P(C)
× → DCPTP

refinea0(G,D, η, s, SESSIONG,D∪(s)
X ,SESSION

∅,D∪(s)
×) (3.17)

:= (νs)(a〈s〉 ‖

99
9 refine·1(G,D, η, s, SESSIONG,D∪(s)

X ,SESSION
∅,D∪(s)
×)

)

refine·1(G,D, η, s, SESSIONG,D∪(s)
X ,SESSION

∅,D∪(s)
×) (3.18)

:=

{
refine·2(G,D, y, s, SESSIONG,D∪(s)

X ,SESSION
∅,D∪(s)
×) if η = y

refine·4(G,D, ·, s,SESSIONG,D∪(s)
X ,SESSION

∅,D∪(s)
×) otherwise (if η = ·)

34

Def. 3.6: req

Def. 3.3: exc

refine·2(G,D, y, s, SESSIONG,D∪(s)
X ,SESSION

∅,D∪(s)
×) (3.19)

:= (νy1)(y.inr〈y1〉 ‖

99
9 refineD3 (G,D, y1, s,SESSION

G,D∪(s)
X ,SESSION

∅,D∪(s)
×)

)

refine
(x)∪D′′

3 (G,D, y, s, SESSIONG,D∪(s)
X ,SESSION

∅,D′∪(s)
×) (3.20)

:= y(x′, y1); refineD
′′

3 (G,D, y1, s,SESSION
G,D∪(s)
X ,SESSION

∅,D′{x′/x}∪(s)
×)

refine∅3(G,D, y, s, SESSIONG,D∪(s)
X ,SESSION

∅,D′∪(s)
×) (3.21)

:= y.close ‖ refine·4(G,D, ·, s,SESSIONG,D∪(s)
X ,SESSION

∅,D′∪(s)
×)

refine·4(G,D, ·, s,SESSIONG,D∪(s)
X ,SESSION

∅,D′∪(s)
×) (3.22)

:= s(s′, s1); (νy)(y.case(y1)(

99
9

99
9 y1.someD′∪(s′)(y2); (y2.close ‖

99
9

99
9

99
9 refine

D′∪(s′)
5 (∅, ∅, ·, ·,0,SESSION∅,D

′∪(s′)
×)

99
9

99
9),

99
9

99
9 refine

D′∪(s′)
6 (∅, ∅, y1, ·,0,0)

99
9) ‖

99
9 req(G,D ∪ (s1), ∅, ·, y,SESSIONG,D∪(s1)

X)

)

refine
(x)∪D′

5 (∅, ∅, ·, ·,0,SESSION∅,D×) (3.23)

:= (νx1)(x.some〈x1〉 ‖

99
9 refineD

′

5 (∅, ∅, ·, ·,0,SESSION∅,D{x1/x}
×)

)

refine∅5(∅, ∅, ·, ·,0,SESSION∅,D×) (3.24)

:= exc(SESSION∅,D×)

refine
(x)∪D
6 (∅, ∅, y, ·,0,0) (3.25)

:= (νx′)(νy1)(y〈x′, y1〉 ‖ [x↔ x′] ‖

99
9 refineD6 (∅, ∅, y1, ·,0,0)

)

refine∅6(∅, ∅, y, ·,0,0) (3.26)

:= y.close

35

The conversion of a request’s default handler req is given in Definition 3.6. It delegates the
conversion to different functions depending on the process.

(3.32) The amount of communications of parallel processes is calculated, taking the maximum of
the two as the lifetime for the composition. A new parallelism channel is created, which becomes
a slave (Λ for δοῦΛος, which is ancient Greek for “slave”) in the left process, and a master (µ for
Master) in the right.

Definition 3.6

req : P(C)× P(C)× P((C × N0))× (C × N0) ∪ {·} × C ∪ {·} × SESSION
P(C),P(C)
X

→ DCPTP

Def. 3.7: reqstep

Def. 3.8: card

Def. 3.5: refine

Def. 3.9: throw

req(G,D,Λ, µ, η,0) (3.27)

:= reqstep·0(G,D,Λ, µ, η, ·,0)

req(G,D,Λ, µ, η, x?(y).SESSIONG,DX) (3.28)

:= reqstep·0(G,D,Λ, µ, η, x, x?(y).SESSIONG,DX)

req(G,D,Λ, µ, η, x!〈e〉.SESSIONG,DX) (3.29)

:= reqstep·0(G,D,Λ, µ, η, x, x!〈e〉.SESSIONG,DX)

req(G,D,Λ, µ, η, x B {li : SESSIONG,DX }i∈I) (3.30)

:= reqstep·0(G,D,Λ, µ, η, x, x B {li : SESSIONG,DX }i∈I)

req(G,D,Λ, µ, η, x C l.SESSIONG,DX) (3.31)

:= reqstep·0(G,D,Λ, µ, η, x, x C l.SESSIONG,DX)

req(G,D,Λ, µ, η, SESSION∅,D1

X ‖ SESSION∅,D2

X) (3.32)

:= (νz)(

99
9 req(∅,D1,Λ ∪ (z, card(SESSION∅,D1 ‖ SESSION∅,D2)), µ, η, SESSION∅,D1) ‖

99
9 req(∅,D2, ∅, (z, card(SESSION∅,D1 ‖ SESSION∅,D2)), ·,SESSION∅,D2)

)

req(G,D, ∅, ·, y, a(s)[D ∪ (s),SESSION
G,D∪(s)
X ,SESSION

∅,D∪(s)
×]) (3.33)

:= refinea0(G,D, y, s, SESSIONG,D∪(s)
X ,SESSION

∅,D∪(s)
×)

req(G,D,Λ, µ, η, throw) (3.34)

:= throw0(D,Λ, µ, η)

36

The conversion of a communication in the default handler of a request reqstep is given in Def-
inition 3.7. It synchronizes with the connected service, as well as with slaves and master (the
parallelism channels; see (3.32)).

(3.35) If there is a master, listen to it for an exception, possibly forwarding a none to all connected
services and slaves.

(3.36)–(3.37) If the process is 0, we need to wait for the other sides of parallel compositions to
finish. When they are all done, we synchronise with all connected services. Otherwise, we only
synchronise with the relevant service. When an exception is received, we only forward it to the
other connected services and the slaves and master, and we invoke the exception handler if it is
present.

(3.38)–(3.39) We synchronise with slaves that are not done yet. When the process is not 0, none
of them are done yet. Otherwise, when they are all done, we synchronise with them all, so we can
close all channels. When an exception is received, we only forward it to the other slaves and the
connected services and master, and we invoke the exception handler if it is present.

(3.40) If there is a master, we tell it that we are not throwing an exception, and listen to if for an
exception again.

(3.41) If the process is 0 and not all parallel processes are done yet, we need to send some to those
slaves that are still active (3.42)–(3.43). If all are done, we send some to all connected services and
slaves, and close all those channels, as well as the master chancel. Also, we cancel the exception
handler. If the process is not 0, the actual communication can occur (3.44)–(3.47).

Definition 3.7

reqstep : {0, 1, . . . , 5} × P(C) ∪ P((C × N0)) ∪ {·} × P(C)× P(C)× P((C × N0))

×(C × N0) ∪ {·} × C ∪ {·} × C ∪ {·} × SESSION
P(C),P(C)
X → DCPTP

Def. 3.11: chans

Def. 3.13: getlive

Def. 3.14: islive

reqstep·0(G,D,Λ, µ, η, δ, SESSIONG,DX) (3.35)

:=

{
x.someD∪chans(Λ)(x1); reqstep·1(G,D,Λ, (x1, n), ·, δ,SESSIONG,DX) if µ = (x, n)

reqstep·1(G,D,Λ, ·, η, δ,SESSIONG,DX) otherwise (if µ = ·)

reqstep·1(G,D,Λ, µ, η, δ, SESSIONG,DX) (3.36)

:=

reqstep

(x)
2 (G,D,Λ, µ, η, x,SESSIONG,DX) if δ = x

reqstepD2 (G,D,Λ, µ, η, ·,0) if δ = · and (Λ 6= ∅ =⇒ getlive(Λ) = ∅)
and not islive(µ)

reqstep∅2(G,D,Λ, µ, η, ·,0) otherwise

37

Def. 3.12: rename

Def. 3.9: throw

Def. 3.10:
throwmaster

Def. 3.13: getlive

Def. 3.14: islive

Def. 3.11: chans

reqstep
(x)∪D′

2 (G,D,Λ, µ, η, δ, SESSIONG,DX) (3.37)

:= (νx1)(x.some〈x1〉 ‖
99
9 x1.case(x2)(

99
9

99
9 reqstepD

′

2 (G,D{x2/x},Λ, µ, η, rename(δ, x, x2),SESSION
G,D{x2/x}
X),

99
9

99
9 x2.close ‖ throw0(D \ x,Λ, ·, η) ‖ throwmaster(µ)

99
9)

)

reqstep∅2(G,D,Λ, µ, η, δ, SESSIONG,DX) (3.38)

:=

reqstep

getlive(Λ)
3 (G,D,Λ, µ, η, δ, SESSIONG,DX) if δ 6= · or

(Λ 6= ∅ =⇒ getlive(Λ) 6= ∅) or islive(µ)

reqstepΛ
3 (G,D,Λ, µ, η, δ,0) otherwise

reqstep
(x,n)∪Λ′

3 (G,D,Λ, µ, η, δ, SESSIONG,DX) (3.39)

:= (νx1)(x.some〈x1〉 ‖

99
9 x1.case(x2)(

99
9

99
9 reqstepΛ′

3 (G,D,Λ{x2/x}, µ, η, δ, SESSIONG,DX),

99
9

99
9 x2.close ‖ throw0(D,Λ \ x, ·, η) ‖ throwmaster(µ)

99
9)

)

reqstep∅3(G,D,Λ, µ, η, δ, SESSIONG,DX) (3.40)

:=

(νx1)(if µ = (x, n)

99
9 x.inl〈x1〉 ‖

99
9 x1.someD∪chans(Λ)(x2); reqstep·4(G,D,Λ, (x2, n), ·, δ,SESSIONG,DX)

)

reqstep·4(G,D,Λ, ·, η, δ, SESSIONG,DX) otherwise (if µ = ·)

38

Def. 3.13: getlive

Def. 3.14: islive

Def. 3.11: chans

Def. 3.15:
closemaster

Def. 3.16: cancel

Def. 3.17:
nextstep

Def. 3.18:
nextstepmaster

reqstep·4(G,D,Λ, µ, η, δ, SESSIONG,DX) (3.41)

:=

(νx1)(if δ = x

99
9 x.some〈x1〉 ‖

99
9 reqstepΛ

5 (G,D{x1/x},Λ, µ, η, x1,SESSION
G,D{x1/x}
X)

)

reqstep
getlive(Λ)
5 (G,D,Λ, µ, η, ·,0) if δ = · and

((Λ 6= ∅ =⇒ getlive(Λ) 6= ∅)
or islive(µ))∏

x∈D∪chans(Λ) (νx1)
(
x.some〈x1〉 ‖ x1.close

)
‖ otherwise

closemaster(µ) ‖ cancel(η)

reqstep
(x,n)∪Λ′

5 (G,D,Λ, µ, η, δ, SESSIONG,DX) (3.42)

:= (νx1)(x.some〈x1〉 ‖

99
9 reqstepΛ′

5 (G,D,Λ{x1/x}, µ, η, δ, SESSIONG,DX)

)

reqstep∅5(G,D,Λ, µ, η, ·,0) (3.43)

:= reqstep·0(G,D, nextstep(Λ), nextstepmaster(µ), η, ·,0)

reqstep∅5(G,D,Λ, µ, η, x, x?(y).SESSIONG,DX) (3.44)

:=x(y, x1); (Cy ‖

99
9 req(G,D{x1/x}, nextstep(Λ), nextstepmaster(µ), η,SESSION
G,D{x1/x}
X)

)

reqstep∅5(G,D,Λ, µ, η, x, x!〈e〉.SESSIONG,DX) (3.45)

:= (νy)(νx1)(x〈y, x1〉 ‖ Ee→y ‖

99
9 req(G,D{x1/x}, nextstep(Λ), nextstepmaster(µ), η,SESSION

G,D{x1/x}
X)

)

reqstep∅5(G,D,Λ, µ, η, x, x B {li : SESSIONG,DX }i∈I) (3.46)

:=x.case(x1)(

99
9 li : req(G,D{x1/x}, nextstep(Λ), nextstepmaster(µ), η,SESSION

G,D{x1/x}
X)

)i∈I

reqstep∅5(G,D,Λ, µ, η, x, x C l.SESSIONG,DX) (3.47)

:= (νx1)(x.l〈x1〉 ‖

99
9 req(G,D{x1/x}, nextstep(Λ), nextstepmaster(µ), η,SESSION

G,D{x1/x}
X)

)

39

Definition 3.8 (Cardinality (length) of processes)

card : SESSION
∅,P(C)
X → N0

card(0) := 0

card(throw) := 0

card(SESSION∅,D1

X ‖ SESSION∅,D2

X := max(card(SESSION∅,D1

X), card(SESSION∅,D2

X))

card(x?(y).SESSION∅,DX) := 1 + card(SESSION∅,DX)

card(x!〈e〉.SESSION∅,DX) := 1 + card(SESSION∅,DX)

card(x B {li : SESSION∅,DX }i∈I) := 1 + max({card(SESSION∅,DX)}i∈I)

card(x C l.SESSION∅,DX) := 1 + card(SESSION∅,DX)

When an exception is thrown, the throw function, given in Definition 3.9, cancels connected
requests and slaves, forwards the exception to the master, and invokes the exception handler.

Definition 3.9

throw : {0, 1, . . . , 4} × P(C)× P((C × N0))× (C × N0) ∪ {·} × C ∪ {·} → DCPTP

Def. 3.10:
throwmaster

throw0(D,Λ, µ, η) :=

{
throw1(D,Λ, ·, η) ‖ throw3(∅, ∅, (x, n), ·) if µ = (x, n)

throw1(D,Λ, ·, η) otherwise (if µ = ·)

throw1(D,Λ, ·, η) :=

{
throw2(D,Λ, ·, ·) ‖ throw4(∅, ∅, ·, x) if η = x

throw2(D,Λ, ·, ·) otherwise (if η = ·)

throw2(D,Λ, ·, ·) :=
∏
x∈D x.none ‖

∏
(x,n)∈Λ x.none

throw3(∅, ∅, (x, n), ·) :=x.some∅(x1); throwmaster(x1)

throw4(∅, ∅, ·, x) := (νx1)(

99
9 x.inl〈x1〉 ‖

99
9

(νx2)(

99
9

99
9 x1.some〈x2〉 ‖

99
9

99
9 x2.close

99
9)

)

40

Definition 3.10

throwmaster : C ∪ {·} → DCPTP

throwmaster(x) := (νx1)(x.inr〈x1〉 ‖

99
9 x1.close

)

throwmaster(·) := 0

The auxiliary function chans, given in Definition 3.11, takes the list of slave channels and removes
their length annotation.

Definition 3.11

chans : P((C × N0))→ P(C)

chans((x, n) ∪ Λ) := (x) ∪ chans(Λ)

chans(∅) := ∅

The auxiliary function rename, given in Definition 3.12, renames a specific channel, and leaves
it unchanged if it does not match or is ·.

Definition 3.12

rename : C ∪ {·} × C × C → C ∪ {·}

rename(δ, x, x′) :=

{
x′ if δ = x

δ otherwise

The auxiliary function getlive, given in Definition 3.13, gives a list of those slave channels
that belong to a parallel process that is not finished yet. The auxiliary predicate islive, given in
Definition 3.14, checks if the parallel process belonging to the master channel is not finished yet

Definition 3.13

getlive : P((C × N0))→ P((C × N0))

getlive((x, n+1) ∪ Λ) := (x, n+1) ∪ getlive(Λ)

getlive((x, 0) ∪ Λ) := getlive(Λ)

getlive(∅) := ∅

41

Definition 3.14

islive : (C × N0) ∪ {·} → B

islive((x, n+1)) := >

islive((x, 0)) := ⊥

islive(·) := ⊥

Definition 3.15

closemaster : (C × N0) ∪ {·} → DCPTP

closemaster((x, n)) := x.close

closemaster(·) := 0

Definition 3.16

cancel : C ∪ {·}

cancel(x) := (νx1)(x.inl〈x1〉 ‖

99
9 x1.none

)

cancel(·) := 0

The auxiliary function nextstep, given in Definition 3.17, decreases all the counters in a list of
slave channels that are bigger than one. The auxiliary function nextstepmaster, given in Defini-
tion 3.18, decreases the counter of the master channel if it is bigger than one.

Definition 3.17

nextstep : P((C × N0))→ P((C × N0))

nextstep((x, n+1) ∪ Λ) := (x, n) ∪ nextstep(Λ)

nextstep((x, 0) ∪ Λ) := (x, 0) ∪ nextstep(Λ)

nextstep(∅) := ∅

42

Definition 3.18

nextstepmaster : (C × N0) ∪ {·} → (C × N0) ∪ {·}

nextstepmaster((x, n+1)) := (x, n)

nextstepmaster((x, 0)) := (x, 0)

nextstepmaster(·) := ·

3.4 Results

In this section we formalise the connection between processes in CYHCH and their conversions
into DCPTP, in terms of types in Section 3.4.1 and in terms of deadlock-freeness in Section 3.4.2.
Moreover, we conjecture a connection in terms of reductions in Section 3.4.3

3.4.1 Typing results

In order to apply results that follow from the Curry-Howard correspondence between classical linear
logic and our process calculus DCPTP, we need to show that the processes that result from our
conversion are well-typed. This means that there are no free channels, i.e. that all channels are
connected to two processes of dual behaviour.

Conversion of types

Our proof of well-typedness involves several lemmas that show other interesting results about the
connection between processes in CYHCH and their conversions. They show a correspondence in the
types of channels within services, requests, and exception handlers. For this, we need to be able to
transform CYHCH types into DCPTP types. As stated at the beginning of Section 3.3, we assume
no distinction between primitive types θ in either system.

Definition 3.19

Tb(↓ (θ).α) := θ

&

Tb(α)

Tb(↑ (θ).α) := θ ⊗ Tb(α)

Tb(⊕{li : αi}i∈I) := ⊕{li : Tb(αi)}i∈I
Tb(&{li : αi}i∈I) := &{li : Tb(αi)}i∈I

Tb(α{[β]}) := Tb(α)

T1(end) := 1

T⊥(end) := ⊥

As a convention, we write “T ” when we mean “T1”.

43

Types of requests

Next, we need a way of expressing the type of a channel in the default handler of a request. This
shows all the points in a step of communication where an exception might be thrown. Only after
a some, then an inl, followed by another some can the communication take place.

Definition 3.20

?1 := &(&1 & 1)

?(A⊗B) := &(&(A⊗?B) & 1)

?(A

&

B) := &(&(A

&

?B) & 1)

?(A⊕B) := &(&(?A⊕?B) & 1)

?(A&B) := &(&(?A&?B) & 1)

Since converted requests are self-contained (i.e. they are in control of their own default and
exception handlers), upon connection with a service, a (cancelable) channel is received over which
communication can take place after an exception has been thrown. This is included in the full type
of the request.

Definition 3.21

A?E := (&E)

&

?A

Auxiliary types

Moreover, when refinement takes place, the new exception handler receives the handling channels
from the current one. The following definition expresses this process, where B is a list of types.

Definition 3.22

•∅ := 1

•((A) ∪ B) := A

&

(•B)

Our final definition describes the type of a slave channel, used for parallelism. It is very similar
to the default handler types in Def. 3.20, except that no actual communication takes place.

Definition 3.23

‖0 :=?1

‖n+1 := &(&‖n & 1)

44

The results

Our main well-typedness result is given in Theorem 3.1. Lemma 3.7 shows the connection between
the types of default handlers in requests, with Lemma 3.6 showing the same connection, but in-
cluding the exception handler’s type. Lemma 3.3 shows a similar connection for the server’s side of
things.

In our proofs, we often omit typings that remain unchanged across steps. Moreover, unless
otherwise stated, we superscript lists of channels (e.g. D or Λ) or optional channels (e.g. µ ∈
P(C)∪ {·}) with a number to denote the subscription of matching channels with that number. For
example, D3 = D{x3/x}x∈D. This is to improve readability, especially when new channel names
are required due to asynchrony.

Theorem 3.1

Given some well-typed program P ∈ CYHCH, the converted process {(P) is well-typed, i.e.
{(P) ` ·; ·, with { as in Def. 3.2.

Proof. By the grammar in Def. 3.1, it must be that P ∈ SERVICES∅. Hence, the thesis follows from
Lemma 3.2.

Lemma 3.2

Take some Γ ∈ P(C), and some P ∈ SERVICESΓ. Then,

{(P) ` ·; Γ,

with { as in Def. 3.2.

Proof. By induction on the structure of P .

(Case P ∈ REQUESTSΓ) The thesis follows from Lemma 3.5 on page 47.

(Case P = (νa)(∗a(s)[Q,R] ‖ S)) We assume that P is part of a well-typed program, so we can

take α, β such that Q Bα{[β]} and R B β. Moreover, by Def. 3.1, we know that S ∈ SERVICESG∪(a).
The induction hypothesis is that {(S) ` ·;G, a : T (α)?T (β).

By Def. 3.1, Q ∈ SESSION
∅,(s)
X and R ∈ SESSION

∅,(s)
× . Then, by Lemma 3.3 on the following

page, serv(Q{s1/s}) ` s1 : ?T (α), and by Lemma 3.4, exc⊥(S{s′1/s}) ` s′1 : T⊥(β). Using (Tsomes
′

∅)

and (T⊗), followed by an application of (Tcut?), the persistent channel a is of proper type and gets
removed from the persistent context.

45

Lemma 3.3

Take some P ∈ SESSION
∅,(s)
X . If P B s : α{[β]}, then

serv(P) ` s : ?T (α),

with serv as in Def. 3.4.

Proof. By induction on the structure of P .

(Case P = throw) By the typing rules of CYH, we know that α can be any type, so α can be
anything. We need to show

serv(throw) ` s : ?T (α) = ⊕(⊕A⊕⊥),

for appropriate A. This follows from an application of (T⊕s∅), (T⊕2), and then (T⊥).

(Case P = 0) By the typing rules of CYH, we know α = end, so α = end. We need to show

serv(0) ` s : ?1 = ⊕(⊕⊥⊕⊥),

which follows from an application of (T⊕s∅), (T⊕1), (T⊕s2∅), and then (T⊥).

(Case P = s?(e).P ′) We know α = ↓ (θ).α′, so α = ↑ (θ).α′. We need to show

serv(s?(e).P ′) ` s : ?(θ ⊗ T (α′)) = ⊕(⊕(θ

&

?T (α′))⊕⊥),

which follows from an application of (T⊕s∅), (T⊕1), (T⊕s2∅), (T
&

), consuming the received channel
with Ce ` e : θ, and then the induction hypothesis. The output/branch/select cases can be shown
in an analogous way, so we omit their proofs.

Lemma 3.4

Take some D ∈ P(C), some b ∈ {1,⊥}, and some P ∈ SESSION∅,D× . If P B x : βx for every
x ∈ D, then

excb(P) ` (x : Tb(βx))x∈D,

with exc as in Def. 3.3.

Proof. This proof by induction on the structure of P follows directly from the converted types, and
the induction hypothesis.

46

Lemma 3.5

Take some G ∈ P(C), and some P ∈ REQUESTSG . Then,

{(P) ` ·;G,

with { as in Def. 3.2.

Proof. By induction on the structure of P .

(Case P = a(s)[(s), Q,R]) We assume that P is part of a well-typed program, so we can take
α, β such that Q B α{[β]} and R B β. Moreover, we can assume that the service channel a ∈ G is of
proper type: T (α)?T (β). We need to show that

{(a(s)[(s), Q,R]) = refinea0(G, ∅, ·, s,Q,R) ` ·;G′, a : T (α)?T (β)︸ ︷︷ ︸
G

,

which follows from Lemma 3.6.

(Case P = Q ‖R) Since Q,R ∈ REQUESTSG , the thesis follows from the induction hypothesis
and an application of (T‖).

Lemma 3.6

Take some G,D ∈ P(C), some η ∈ C ∪ {·}, some s /∈ D, some P ∈ SESSION
G,D∪(s)
X , and some

Q ∈ SESSION
∅,D∪(s)
× . If P B (x : αx{[βx]})x∈D, s : α?{[β?]} and Q B (x : βx)x∈D, s : β?, then

refinea0(G,D, η, s, P,Q) ` (x :?T (αx))x∈D, η : &1⊕ (•(&T (βx))x∈D);G,

with refine as in Def. 3.5.

Proof. The persistent context can be achieved by an appropriate amount of applications of (T<).
The linear context remains to be proven.

We assume that the service channel a ∈ G is of proper type: T (α?)?T (β?). This means that,
after an application of (Tcopy), we need to show that

refine·1(G,D, η, s, P,Q) ` s : T (α?)?T (β?).

W.l.o.g., assume η = y ∈ C. Then, refine·1 = refine·2. After an application of (T⊕2) on y, we
have to show

refineD3 (G,D, y1, s, P,Q) ` y1 : •(&T (βx))x∈D.

Let Q′ := Q{x′/x}x∈D, and d := |D|. After an application of (T

&

) for every channel in D, we
need to show

refine∅3(G,D, yd+1, s, P,Q
′) ` yd+1 : 1, (x′ : &T (βx))x∈D.

47

We remove the channel yd+1 by an application of (T1), and have to show the typings for

refine·4(G,D, ·, s, P,Q′).

Let D′ = D{x′/x}x∈D. First, we apply (T

&

) on s and create a new channel y with (Tcut). In
the left process we apply (T&) on y. For the left case, we apply (T⊕y1D′∪(s′)) and (T⊥). Several

things need to be proven:

refine
D′∪(s′)
5 (∅, ∅, ·, s′,0, Q′{s′/s}) ` (x′ : &T (βx))x∈D, s

′ : &T (β?), (3.48)

refine
D′∪(s′)
6 (∅, ∅, y1, ·,0,0) ` y1 : •(B ∪ (&T (β?))),

(x′ : &T (βx))x∈D, s
′ : &T (β?), (3.49)

req(G,D ∪ (s1), ∅, ·, y, P{s1/s}) ` (x :?T (αx))x∈D, s1 :?T (α?),

y : &1⊕ (•((&T (βx))x∈D) ∪ (&T (β?))). (3.50)

To show (3.48), after an application of (T&x
d) to the channels in D′ and to s′, we need to show

that

refine∅5(∅, ∅, ·, ·,0, Q{x′1/x}x∈(D∪(s)))

= exc(Q{x′1/x}x∈(D∪(s))) ` (x′1 : T (βx))x∈D, s
′
1 : T (β?),

which follows from Lemma 3.4.

To show (3.49), we apply (T⊗) for every channel in D′ and for s′, removing the channels from
the content using (Tid). It remains to show that

refine∅6(∅, ∅, yd+2, ·,0,0) ` yd+2 : ⊥,

which we achieve by applying (T⊥).

(3.50) follows from Lemma 3.7 on the next page, or from its proof’s induction hypothesis when
it refers to this lemma.

48

Lemma 3.7

Take some G,D ∈ P(C), some Λ ∈ P(C × N0), some µ, η ∈ C × N0 ∪ {·}, and some P ∈
SESSIONG,DX . If

i) P B αx{[βx]} for every x ∈ D,
ii) n ≥ card(P) for every (y, n) ∈ Λ, and
iii) µ = (z, o) implies o ≥ card(P) and o ≥ n for every (y, n) ∈ Λ,

then

req(G,D,Λ, µ, η, P) ` (x :?T (αx))x∈D,

(y : ‖n)(y,n)∈Λ, (z : ‖o)if µ=(z,o),

η : &1⊕ (•(&T (βx))x∈D),

with req as in Def. 3.6.

Proof. By induction on the structure of P .

(Case P = throw) We have to show the typings for

throw0(D,Λ, µ, η),

which follows from Lemma 3.8 on page 52.

(Case P = 0) By the typing rules of CYH, we know 0 B (αx = end)x∈D. At certain steps, we
need to account for two cases, depending on the liveness of the parallelism channels. With getlive
as in Def. 3.13 and islive as in Def. 3.14, let L := ((Λ 6= ∅ =⇒ getlive(Λ) = ∅) and not islive(µ)).
We have to show the typing for

reqstep0(G,D,Λ, µ, η, ·,0),

with reqstep as in Def. 3.7.

If µ = (z, 0), we apply (T&z
D∪chans(Λ)), with chans as in Def. 3.11, to obtain

reqstep·1(G,D,Λ, (z1, 0), η, ·,0) ` z1 : ⊕⊥⊕⊥.

If µ = (z, o+1), we apply the same rule to obtain

reqstep·1(G,D,Λ, (z1, o+1), η, ·,0) ` z1 : ⊕‖o ⊕⊥.

If L, reqstep·1 = reqstepD2 , so, on every channel x ∈ D, we apply (T&x
d) and then (T&). The right

case follows from an application of (T1), and Lemma 3.8 on page 52 and Lemma 3.9 on page 53.
For the left case, we continue with the next channel until we arrive at the next step. We have to
show

reqstep∅2(G,D2,Λ, µ1, η, ·,0) ` (x2 : &1)x∈D.

Otherwise, let D2 := D. We have to show

reqstep∅2(G,D2,Λ, µ1, η, ·,0) ` (x :?1)x∈D.

49

If L, reqstep∅2 = reqstepΛ
3 . We apply a similar process as above to the channels (y, 0) ∈ Λ, and have

to show
reqstep∅3(G,D2,Λ2, µ1, η, ·,0) ` (y2 : &1)(y,0)∈Λ.

Otherwise, reqstep∅2 = reqstep
live(Λ)
3 . We also apply that similar process as above, but only to those

channels (y, n+1) ∈ live(Λ). Let Λ2 := Λ{y2/y}(y,n+1)∈live(Λ). We have to show

reqstep∅3(G,D2,Λ2, µ1, η, ·,0) ` (y2 : &‖n)(y,n+1)∈live(Λ),

(y : ‖0)(y,0)∈Λ\live(Λ).

If µ = (z, 0), we apply and (T⊕1) and (T⊕z2D2∪chans(Λ2)) to obtain

reqstep·4(G,D2,Λ2, (z3, 0), η, ·,0) ` z3 : ⊥.

If µ = (z, o+1), we apply the same rules to obtain

reqstep·4(G,D2,Λ2, (z3, o+1), η, ·,0) ` z3 : ‖o.

If L, we can finish the proof. We apply (T&x
d) and (T1) to every channel in D and Λ. If

µ = (z, 0) (it will not be (z, o+1) since not islive(µ)), we apply (T⊥) to z3. Finally, we apply (T⊕1)

to η and then (T&η1).

Otherwise, reqstep·4 = reqstep
live(Λ)
5 . We apply (T&x

d) to every channel in live(Λ). Let Λ3 :=
Λ{y3/y}(y,n+1)∈live(Λ). We obtain

reqstep∅5(G,D2,Λ3, µ3, η, ·,0)

= reqstep·0(G,D2, nextstep(Λ3), nextstepmaster(µ3), η, ·,0)

` (x :?1)x∈D,

(y3 : ‖n)(y,n+1)∈live(Λ), (y : ‖0)(y,0)∈Λ,

(z3 : ‖o)if µ=(z,o+1),

η : &1⊕ (•(&T (βx))x∈D).

Since the applications of nextstep (Def. 3.17) and nextstepmaster (Def. 3.18) guarantee that at some
point L will be true, we can show this by the induction hypothesis.

(Case P = d?(e).P ′) We know αd = ↓ (θ).α′d, where P ′ B d : α′d{[βd]}, (x : αx{[βx]})x∈D\(d).
Since card(P) ≥ 1, we have Λ 6= ∅ =⇒ live(Λ) = Λ and µ = (z, o) =⇒ islive(µ). We have to show
the typings for

reqstep·0(G,D,Λ, µ, η, d, d?(e).P ′).

If µ = (z, o+1), we apply (T&z
D∪chans(Λ)) to obtain

reqstep·1(G,D,Λ, (z1, o+1), η, d, d?(e).P ′) ` z1 : ⊕‖o ⊕⊥.

Otherwise, reqstep·0 = reqstep·1.

50

Since reqstep·1 = reqstep
(d)
2 , we apply (T&x

d) and (T&). The right case follows from an application
of (T1), and Lemma 3.8 on the next page and Lemma 3.9 on page 53. For the left case, we have to
show

reqstep∅2 = reqstep
live(Λ)
3 (G,D{d2/d},Λ, µ1, η, d2, d2?(e).P ′{d2/d})

` d2 : &(θ

&

?T (α′d)).

Since live(Λ) = Λ, we apply the same process to the channels in Λ as we did to d at reqstep
(d)
2 ,

obtaining

reqstep∅3(G,D{d2/d},Λ2, µ1, η, d, d2?(e).P ′{d2/d}) ` (y2 : &‖n)(y,n+1)∈Λ.

If µ = (z, o+1), we apply (T&1) to z1 and then (T&z2
D{d2/d}∪Λ2) to obtain

reqstep·4(G,D{d2/d},Λ2, (z3, o+1), η, d, d2?(e).P ′{d2/d} ` z3 : ‖o.

Otherwise, reqstep∅3 = reqstep·4.

Now, we apply (T&d2
d) and then (T&y2

d) to every (y, n+1) ∈ Λ to obtain

reqstep∅5(G,D{d3/d},Λ3, µ3, η, d3, d3?(e).P ′{d3/d}) ` d3 : θ

&

?T (α′d), (y3 : ‖n)(y,n+1)∈Λ.

Finally, we apply (T

&

) to d3, consuming the received channel with Ce ` e : θ. It remains to
show

req(G,D{d4/d}, nextstep(Λ3), nextstepmaster(µ3), η, P ′{d4/d}) ` d4 :?T (α′d),

which follows from the induction hypothesis. The output/branch/select cases can be shown in an
analogous way, so we omit their proofs.

(Case P = P1 ‖ P2) By the grammar in Def. 3.1, we know there are D1,D2 ∈ P(C) such that
D1 ∩ D2 = ∅ and D1 ∪ D2 = D, and that

P1
B (x : αx{[βx]})x∈D1 , and P2

B (x : αx{[βx]})x∈D2 .

Let ` := card(P1 ‖ P2). To justify the cut on the newly created parallelism channel, we have to
show

req(∅,D1,Λ ∪ (y, `), µ, η, P1) ` (x :?T (αx))x∈D1
,

(y : ‖n)(y,n)∈Λ∪(y,`),

(z : ‖o)if µ=(z,o),

η : &1⊕ (•(&T (βx))x∈D),

and

req(∅,D2, ∅, (z, `), ·, P2) ` (x :?T (αx))x∈D2
,

z : ‖`.

51

Both follow from the induction hypothesis.

(Case P = a(s)[D ∪ (s), Q,R]) By the grammar in Def. 3.1, we can assume Λ = ∅, µ = ·, and
η = y. We have to show

refinea0(G,D, y, s,Q,R) ` (x :?T (αx))x∈D, y : &1⊕ (•(&T (βx))x∈D),

which follows from Lemma 3.6.

Lemma 3.8

Take some ∆ ∈ P(C), some Λ ∈ P(C × N0), some µ ∈ C × N0 ∪ {·}, and some η ∈ C ∪ {·}.
Then,

throw0(∆,Λ, µ, η) ` (x : &Ax)x∈∆,

(y : &Ay)(y,n)∈Λ,

(z : ⊕(Az ⊕⊥))if µ=(z,o),

η : &1⊕Aη,

with every A◦ arbitrary and throw as in Def. 3.9.

Proof. We have to show the typings for ∆, Λ, and η in

throw1(∆,Λ, ·, η), (3.51)

and, if µ = (z, o), the typing for z in

throw3(∅, ∅, (z, o), ·). (3.52)

To show (3.51), we have to show the typings for ∆ and Λ in

throw2(∆,Λ, ·, ·),

which is achieved by an application of (T&x) for each of those channels. Moreover, if η = x, we
have to show its typing in

throw4(∅, ∅, ·, x),

which is achieved by applying (T&1), then (T&x
d), and finally (T1).

To show (3.52), we apply (T&z
∅). Now, we need to show

throwmaster(z1) ` Az ⊕⊥,

which follows from Lemma 3.9 on the next page.

52

Lemma 3.9

Take some µ ∈ C ∪ {·}. Then,

throwmaster(µ) ` µ : A⊕⊥,

with A arbitrary and throwmaster as in Def. 3.10.

Proof. If µ = ·, the thesis is vacuously true. Otherwise, it follows from an application of (T⊕2)
followed by (T⊥).

3.4.2 Deadlock-freeness

Our well-typedness result has the desired corollary that the resulting processes from our conversion
are deadlock-free. In combination with operational correspondence results (cf. Section 3.4.3), this
leads to a much simpler deadlock-freeness proof for the fragment CYHCH than the one given in [10].

Our definition of deadlock-freeness is an extension of the Progress Theorem from [4, Thm. 3.2,
p. 15]. It does not only guarantee for live processes (processes with a communication prefix that is
not a request or replication), but it also guarantees that pending service requests can be answered
at any moment. Before we give the definition, we need to formally define liveness, for which we
also need a non-prefixed (static) context.

Definition 3.24

The static context C is defined as follows.
C ::=C ‖ C | C ⊕ C | (νs)C | P | −

Definition 3.25 (Liveness)

A process P ∈ DCPTP is live (notation live(P)) if and only if P ≡ C[π.P ′], where π is a
communication prefix (i.e. input, output, branch, or select).

Definition 3.26 (Deadlock-freeness)

A process P ∈ DCPTP is deadlock-free if

i) P ` ·; Γ,
ii) P ≡ C[(νs)(a〈s〉 ‖Q)] implies P ≡ C ′[(νa)(!a(s);R ‖ R′)], P → S ≡ C[(νs)(R ‖Q)], and

S is deadlock-free, and
iii) live(P) implies there is T ∈ DCPTP such that P → T and T is deadlock-free.

53

Corollary 3.10

Given some well-typed program P ∈ CYHCH, the converted process {(P) is deadlock-free, with
{ as in Def. 3.2.

Proof. The proof relies on the main results from [4], which transfer to our system since we use
(structurally) identical inference and reduction rules.

By Theorem 3.1, {(P) ` ·; ·, satisfying condition (i).

Assume {(P) ≡ C[(νs)(a〈s〉 ‖ Q)]. This can only happen if P contains some request to a
service on channel a. By our well-typedness assumption, P contains the corresponding service
definition, so {(P) ≡ C ′[(νa)(!a(s);R ‖R′)]. By Lemmas 3.3 and 3.7, Q and R are of dual type, so
{(P) → S ≡ C[(νs)(R ‖ Q)]. By the Type Preservation Theorem [4, Thm. 3.2, p. 15], S ` ·; ·, so
we can show that S is deadlock-free by an easy induction proof. This satisfies condition (ii).

Assume live({(P)). By the Progress Theorem [4, Thm. 3.3, p. 15], there is a T such that
{(P) → T . By another application of the Type Preservation Theorem, T ` ·; ·. Again, a simple
proof by induction will show that T is deadlock-free. This shows condition (iii).

54

3.4.3 Discussion: operational correspondence

According to Gorla, one criterion for a valid encoding (we use the word “conversion” in this thesis) is
operational correspondence [25]. It consists of two parts: completeness, the notion that a reduction
in the source process can be simulated in the conversion, and soundness, the notion that a reduction
in a converted process reflects a reduction in the source process. We conjecture that our conversion
has (a form of) both completeness and soundness.

(νx1)(x.some〈x1〉 ‖

99
9 x1.case(x2)(

99
9

99
9

(νx3)(x2.some〈x3〉 ‖

99
9

99
9

99
9

(νz)(νx4)(x3〈z, x4〉 ‖ Ee→z ‖

99
9

99
9

99
9

99
9 req(G, (x4), ∅, ·, y, P{x4/x}(x4)

)

99
9

99
9

99
9)

99
9

99
9),

99
9

99
9 (x2.close ‖

99
9

99
9

99
9

(νy1)(y.inl〈y1〉 ‖

99
9

99
9

99
9

99
9

(νy2)(y1.some〈y2〉 ‖

99
9

99
9

99
9

99
9

99
9 y2.close

99
9

99
9

99
9

99
9)

99
9

99
9

99
9)

99
9

99
9)

99
9)

)

Figure 3.2: Conversion of the default
handler in equation (3.53)

In [10] a liveness proof for CYH is given, which is a condition
on processes that is equivalent to our definition of deadlock-
freeness (see Def. 3.26). The proof is, however, not trivial,
whereas our deadlock-freeness result is in fact a mere result
of the Curry-Howard correspondence with linear logic. An op-
erational correspondence proof would allow us to transfer our
deadlock-freeness result to the source fragment CYHCH.

Unfortunately, due to the synchronization steps in our con-
version, formalizing our completeness and soundness conjec-
tures is not straightforward. Consider the following CYHCH

request:

a(x)[(x), x!〈e〉.P (x), Q(x)] (3.53)

The conversion of the default handler is given in Figure 3.2,
where y is the channel over which the exception handler can
be invoked. Let R denote the process in this figure. When
no exceptions are thrown, it takes three steps before the actual
send action occurs, so after four steps, one step from the original
process has been taken:

R→4 req(G, (x4), ∅, ·, y, P{x4/x}(x4)
)

Another difficulty is that parallel communications always hap-
pen synchronously in converted processes.

To overcome these problems, we need to find an alternative
definition of reduction for which we can prove completeness and

soundness results. For the time being, we informally use 7→ to denote a step in CYHCH in which
parallel communications happen synchronously, and � to denote a step of actual communication
in converted processes. An intuition towards defining such steps is to use the types of the channels.
For example, the type of x in Fig. 3.2 is ?T (↑ (θ).α′) = &(&(θ⊗?T (α′)) & 1). One �-step would
involve reductions up to the point that the type of x is ?T (α′).

There are more issues. Once services and requests connect, the semantics of CYH turn the pro-
cesses into runtime processes, which uses protection constructs for exception handling and buffers for
asynchronous communication. Our conversion is, however, not defined on such runtime processes,
so we cannot directly relate them. Similar issues arise when exceptions are thrown and exception
handlers are invoked. Communication in exception handlers does not need to be synchronised, so
this needs to be taken into account.

55

The buffered semantics from Section 2.2 could come in handy here. We can use the equalities
in Definition 2.6 to convert asynchronous process terms to buffered terms, denoted �P . We would
then also need to define a notion of equivalence between buffered DCPTP processes and runtime
CYH processes. Without formally defining it, we denote this relation using − �̃−.

We believe that it is possible to prove an operational correspondence between source processes
and our conversion of them using the methods above. We are ready to state our conjectures. →∗
denotes the transitive, reflexive closure of →.

Conjecture 3.11 (Completeness)

For every P ∈ CYHCH and runtime CYH process Q such that P 7→ Q, there exists R ∈ DCPTP
such that {(P)→∗ R and �R �̃Q.

Conjecture 3.12 (Soundness)

For every P ∈ CYHCH and R ∈ DCPTP such that {(P)� R, there exists runtime CYH process
Q such that P →∗ Q and �R �̃Q.

We find these statements plausible, because our conversion was developed by carefully examining
the way in which CYH processes reduce. The fact that we can not state a direct operational
correspondence, but have to use intermediate correspondences, demonstrates the limitations of using
a Curry-Howard foundation to implement fault-tolerance through exception handling in message-
passing concurrency.

56

Chapter 4

Future and related work

In this chapter we discuss several directions for further research on fault-tolerance in Curry-Howard
session type theory. We discuss a way of exploring fault-tolerance in multiparty session types, which
are more expressive than the binary ones we have discussed so far. Moreover, we discuss the validity
of our conversion, and mention some fault-tolerant session calculi besides the one from Carbone et
al. [10, 11], and discuss how they might relate to the research in this thesis. Finally, we discuss
some extensions to session types that could be incorporated into our binary calculus.

4.1 Multiparty session types

Multiparty session types allow you to design communication protocols between multiple parties,
from a global perspective. It is then possible to obtain local perspectives of the protocol for each
participant by means of projections. Multiparty session types were introduced by Honda et al. [30].

The multiparty calculus can be more user-friendly than the binary one for designing protocols.
Consider for example a protocol with three participants. In the binary systems, they need to
be connected in series, i.e. the first communicates with the second, and the second with the first
and third, but the third not (directly) with the first. If the first and third participants want to
communicate, the second has to forward their messages to each other. This clutters their session
types, burying the intended protocol in housekeeping.

Despite the expressive advantages of the multiparty calculus, its global perspective makes it more
complex to prove results about. For this reason, Caires and Pérez presented a way of analysing
multiparty protocols in a synchronous binary calculus [5], based on intuitionistic linear logic [22,
23, 3].

In Appendix D, we present such a multiparty session calculus based on the one by Honda [30]
and the slightly more expressive version by Caires and Pérez [5]. We show how it relates to our
binary calculus, by exhibiting a conversion from multiparty to binary in the style of Caires and
Pérez [5]. The appendix also contains some results about the multiparty system and our conversion.

57

The conversion shows that multiparty session types are synchrony-agnostic, since our binary
system is asynchronous, and the relation has previously only been shown for synchronous binary
session types. Another novelty is that the classical basis, as opposed to the intuitionistic basis in
the original conversion, of our binary system has no (significant) influence on the relation.

We also give a multiparty version of the monadic session type for non-determinism, which relates
to non-determinism in the binary system naturally. One direction of future research would be to
explore how this newly introduced modality can be used to implement fault-tolerance. An important
challenge is to determine whether it would be possible to implement exception handlers using such
a type.

Another direction is to study the multiparty session type system by Capecchi et al. [9], which
supports fault-tolerance in the form of global try-catch blocks, but has no logical basis in the form
of a Curry-Howard correspondence. It would be interesting to explore the possibilities of projecting
such global types into our binary type system from Chapter 2, in a way similar to our conversion in
Chapter 3. Because the work by Capecchi et al. represents the multiparty extension of the system
by Carbone et al. [10, 11] in many ways, it would be an intriguing approach to see whether it is
possible to project the global types into the fragment of the system from Carbone et al. we support
in our conversion. Because we can convert this fragment into our binary system, this would simplify
the relation, and might give us deadlock-freeness for free. However, such a conversion would be
limited, because the system permits nested try-catch blocks, even in exception handlers, whereas
this is not allowed in CYH.

A similar multiparty session type system is presented by Adameit et al. in [1]. Instead of using
global try-catch blocks, they extend multiparty sessions with optional blocks. An optional block is
a prefix to another global type. This prefixed global type gets executed when the optional block
is successfully finished, or when failure occurs anywhere inside it. This essentially means that the
prefixed global session is actually the optional block’s exception handler, and additional optional
blocks would then be allowed in exception handlers.

4.2 Validity of the conversion

In an effort to standardize the comparison of process calculi, Gorla has proposed five criteria for an
encoding (or conversion, as we call it in this thesis) to be valid [25]. We summarize them briefly:

• Compositionality: the encoding of subterms is independent from the context they appear in.
• Name invariance: the encoding does not depend on the specific names of terms, i.e. there is

no difference between name substitution before or after encoding.
• Operational correspondence: reductions in the source process can be simulated in the encoding

(completeness), and reductions in the encoding are reflected by reduction in the source process
(soundness).

• Divergence reflection: the encoding does not add infinite behaviour, i.e. all infinite behaviour
in the encoding originates from infinite behaviour in the source process.

• Success sensitiveness: given some notion of successful computation in the source and target
calculi, when a source process may reach success, the encoding will as well.

58

We already discussed operational correspondence in Section 3.4.3, although the conjectures
in this section remain to be proven. Compositionality is a plausible property of our conversion,
albeit up to a limited notion of independence, due to the way parallel communications have to
synchronize. Name invariance has to be investigated, which might be a challenge due to the fact that
our asynchronous calculus constantly requires new channel names. Divergence reflection is a free
property of our conversion, since we do not allow processes with infinite behaviour in our fragment
CYHCH. Usually, success is expressed by an output on some specially reserved free name [37, 26].
Success sensitiveness may be provable, but we would need to add such a notion of success to both
CYHCH and to its conversion.

4.3 Related work

After the work by Carbone et al. [10, 11], Mostrous and Vasconcelos presented another binary
session type system with fault-tolerance in [36]. Their system focusses on affine types, which can
be removed from the context of a process without explicitly consuming it. This allows them to add
a cancellation primitive to their process algebra, which resembles the throwing of exceptions, but
not the handling of them.

Fowler et al. presented a fault-tolerant, session typed, functional programming language [19],
drawing from the work by Mostrous and Vasconcelos. It is different from the exceptional functional
language by Caires and Pérez [4] in that it does not rely on an underlying logical system. Another
difference is that it is asynchronous, which we have shown to not be an issue by redefining the
system by Caires and Pérez to be asynchronous (cf. Chapter 2). It would be interesting to compare
the expressivity of the work by Fowler et al., and that of the fragment CYHCH, which we can convert
to our logical system (cf. Chapter 3).

An early connection between session types and exception handling is presented by Dezani-
Ciancaglini et al. in [18]. They use session types to define an object oriented programming language.
When a property of an object is accessed and it is undefined, a null pointer exception is thrown.
When that happens, the entire program gets cancelled, i.e. there is no exception handling. It
would be interesting to apply the state-of-the-art of fault-tolerant exception types to add exception
handling to this programming language.

Another early connection can by found in [32] by Hu et al. They present an extension of the
Java programming language based on session type theory. They support try-catch blocks to handle
exceptions in IO and session connection. However, the use of session type theory and fault-tolerance
seem to be disjoint: the session principals stem from the theory, but exception handling was already
a part of Java. It might be interesting to connect this application of session types with the theory
more formally, using the now existing theory on fault-tolerance in session types.

The final paper including fault-tolerance we mention is [40] by Vieira et al. They present
a session calculus similar to the π-calculus, which they call the Conversion Calculus (CC). This
system supports try-catch blocks in a way that is very similar to that of Carbone et al. [10, 11].
However, the work does not include a type discipline. In a follow-up work, Caires and Vieira do
present a type system for CC [8]. However, the version of CC in this paper does not include the
aforementioned try-catch blocks. It would be interesting to see whether they can be included in
the type system for CC.

59

4.4 Extensions to the binary calculus

As we mention in “Limitation 3: Recursion” of our fragment of CYH given in Section 3.2, our binary
calculus has no support for recursion. In [39], Toninho et al. present a Curry-Howard session type
system, extended with support for infinite behaviour using corecursion. In order to support the
recursion of CYH, their method could be adapted to our type system. Just as our system does (cf.
Section 3.4), their system has a Type Preservation and a Progress Theorem [39, Thm. 1 and 2,
p. 10]. It is plausible that these results remain when we extend our system with corecursion, making
it possible to add recursion to the fragment of CYH we support in our conversion.

For our conversion, we have focussed on the version of CYH presented in [11]. In the original
presentation [10], however, there is support for session delegation. With session delegation, it is
not only possible to send values of primitive types, but also channels of session types. Support for
session delegation was already present in the original paper on the Curry-Howard correspondence for
concurrency [7], and so is it in our type system. However, by using abstract generator and consumer
processes (cf. the list of conventions from Section 3.3) in our conversion, we have abstracted away
from dealing with the values that are being sent. To allow session delegation in our conversion,
it is necessary to undo this abstraction. This would also make it possible to support conditional
statements (cf. “Limitation 4: Conditional statements” from Section 3.2).

60

Chapter 5

Conclusion

We have successfully exhibited a way of modelling fault-tolerance through exception handling in
a process calculus that is supported by strong logical foundations by means of a Curry-Howard
correspondence with classical linear logic. We have done so by identifying a fragment of a process
calculus with exception handling without such a logical foundation, (cf. Section 3.2), and by defining
a conversion from that fragment to our logical calculus (starting in Def. 3.2).

The fact that this conversion only supports a fragment of the source calculus illustrates how
complex the typed calculus of Carbone et al. is. This limited support is, however, not only due to
the complexity of the source calculus. The modalities for non-deterministically available behaviour
we have used can be seen as a unary version of branching: instead of a choice between multiple
options, there is a choice between behaviour or no behaviour. Indeed, our conversion demonstrates
that this is conceptually different from exception handling.

The result of the conversion does, however, give a clear means of understanding the intricacies
of and logic behind exception handling. Converted processes are deadlock-free (cf. Corol. 3.10),
and there is strong evidence for an operational correspondence between the source calculus and its
conversion (cf. Section 3.4.3). This would significantly simplify the proof of deadlock-freeness in
the source process calculus, since our results may transfer to it through our conversion.

We have also shown that the method of transforming a synchronous π-calculus into an asyn-
chronous one is straightforward; it was a routine job to make the process calculus from [4] asyn-
chronous. The classical logical basis did not induce a significant difference to an intuitionistic one.
Also, adapting the modalities for non-determinism did not give any problems. However, using the
asynchronous calculus can be tedious, due to the constant need for new names. This makes pro-
cesses difficult to read, and has had an effect on the complexity of our conversion (see for example
Def. 3.7, in which names change in almost every consecutive step of the conversion).

This thesis has laid a solid foundation to further research the logic behind exception handling.
Its place in multiparty session type theory is yet to be researched. Moreover, its influence on
extensions to session type theory, such as recursion, is an interesting subject for further studies.

61

References

[1] Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In Ahmed
Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects, Compo-
nents, and Systems, Lecture Notes in Computer Science, pages 1–16. Springer International
Publishing, 2017. isbn: 978-3-319-60225-7.

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297–347, June 1, 1992. issn: 0955-792X. doi: 10.1093/logcom/2.3.
297.

[3] Andrew Barber. Dual Intuitionistic Linear Logic. Technical Report ECS-LFCS-96-347, Uni-
versity of Edinburgh, 1996.

[4] Lúıs Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Hongseok
Yang, editor, Programming Languages and Systems, Lecture Notes in Computer Science,
pages 229–259. Springer Berlin Heidelberg, 2017. isbn: 978-3-662-54434-1.

[5] Lúıs Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed
Objects, Components, and Systems, Lecture Notes in Computer Science, pages 74–95. Springer
International Publishing, 2016. isbn: 978-3-319-39570-8.

[6] Lúıs Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-
phism and parametricity in session-based communication. In Matthias Felleisen and Philippa
Gardner, editors, Programming Languages and Systems, Lecture Notes in Computer Science,
pages 330–349. Springer Berlin Heidelberg, 2013. isbn: 978-3-642-37036-6.

[7] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, Lecture
Notes in Computer Science, pages 222–236. Springer Berlin Heidelberg, 2010. isbn: 978-3-
642-15375-4.

[8] Lúıs Caires and Hugo Torres Vieira. Conversation types. Theoretical Computer Science. Eu-
ropean Symposium on Programming 2009, 411(51):4399–4440, December 4, 2010. issn: 0304-
3975. doi: 10.1016/j.tcs.2010.09.010.

[9] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty sessions.
Mathematical Structures in Computer Science, 2016. doi: 10.1017/S0960129514000164.

62

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1016/j.tcs.2010.09.010
https://doi.org/10.1017/S0960129514000164

[10] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional exceptions in
session types. In Franck van Breugel and Marsha Chechik, editors, CONCUR 2008 - Concur-
rency Theory, Lecture Notes in Computer Science, pages 402–417. Springer Berlin Heidelberg,
2008. isbn: 978-3-540-85361-9.

[11] Marco Carbone, Nobuko Yoshida, and Kohei Honda. Asynchronous session types: excep-
tions and multiparty interactions. In Marco Bernardo, Luca Padovani, and Gianluigi Zavat-
taro, editors, Formal Methods for Web Services: 9th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM 2009, Bertinoro,
Italy, June 1-6, 2009, Advanced Lectures, Lecture Notes in Computer Science, pages 187–212.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. isbn: 978-3-642-01918-0. doi: 10.1007/
978-3-642-01918-0_5.

[12] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58(2):345–363, 1936. issn: 0002-9327. doi: 10.2307/2371045.

[13] Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computa-
tion, 76(2):95–120, February 1, 1988. issn: 0890-5401. doi: 10.1016/0890-5401(88)90005-3.

[14] Haskell B. Curry. Functionality in combinatory logic. Proceedings of the National Academy of
Sciences of the United States of America, 20(11):584–590, November 1934. issn: 0027-8424.

[15] Haskell B. Curry and Robert Feys. Combinatory logic. North-Holland, 1958.

[16] Nicolaas G. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its
extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, editors, Symposium
on Automatic Demonstration, Lecture Notes in Mathematics, pages 29–61. Springer Berlin
Heidelberg, 1970. isbn: 978-3-540-36262-3.

[17] Henry DeYoung, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Cut reduction in linear
logic as asynchronous session-typed communication. In Patrick Cégielski and Arnaud Durand,
editors, Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Con-
ference of the EACSL, volume 16 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 228–242, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.
isbn: 978-3-939897-42-2. doi: 10.4230/LIPIcs.CSL.2012.228.

[18] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko Yoshida.
Objects and session types. Information and Computation. From Type Theory to Morphologi-
cal Complexity: Special Issue dedicated to the 60th Birthday Anniversary of Giuseppe Longo,
207(5):595–641, May 1, 2009. issn: 0890-5401. doi: 10.1016/j.ic.2008.03.028.

[19] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. Proceedings of the ACM on Programming Languages,
3:1–29, POPL, January 2, 2019. issn: 24751421. doi: 10.1145/3290341.

[20] Simon J. Gay. Bounded polymorphism in session types. Mathematical Structures in Com-
puter Science, 18(5):895–930, October 2008. issn: 1469-8072, 0960-1295. doi: 10 . 1017 /

S0960129508006944.

[21] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20(1):19–50, January 2010. issn: 1469-7653, 0956-7968.
doi: 10.1017/S0956796809990268.

[22] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. issn: 03043975.
doi: 10.1016/0304-3975(87)90045-4.

63

https://doi.org/10.1007/978-3-642-01918-0_5
https://doi.org/10.1007/978-3-642-01918-0_5
https://doi.org/10.2307/2371045
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.4230/LIPIcs.CSL.2012.228
https://doi.org/10.1016/j.ic.2008.03.028
https://doi.org/10.1145/3290341
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0304-3975(87)90045-4

[23] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Hartmut Ehrig,
Robert Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, Lecture Notes in
Computer Science, pages 52–66. Springer Berlin Heidelberg, 1987. isbn: 978-3-540-47717-4.

[24] Georges Gonthier. Formal proof—the four-color theorem. American Mathematical Society,
55(11):12, 2008.

[25] Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, September 1, 2010. issn: 0890-5401.
doi: 10.1016/j.ic.2010.05.002.

[26] Bjørn Haagensen, Sergio Maffeis, and Iain Phillips. Matching systems for concurrent cal-
culi. Electronic Notes in Theoretical Computer Science. Proceedings of the 14th International
Workshop on Expressiveness in Concurrency (EXPRESS 2007), 194(2):85–99, January 16,
2008. issn: 1571-0661. doi: 10.1016/j.entcs.2007.11.004.

[27] Thomas C. Hales. Historical overview of the kepler conjecture. In Jeffrey C. Lagarias, editor,
The Kepler Conjecture: The Hales-Ferguson Proof, pages 65–82. Springer New York, New
York, NY, 2011. isbn: 978-1-4614-1129-1. doi: 10.1007/978-1-4614-1129-1_3.

[28] Thomas C. Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Le Truong
Hoang, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Tat Thang Nguyen, Quang Truong
Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Thi Hoai
An Ta, Nam Trung Tran, Thi Diep Trieu, Josef Urban, Ky Vu, and Roland Zumkeller. A
formal proof of the kepler conjecture. Forum of Mathematics, Pi, 5, 2017. issn: 2050-5086.
doi: 10.1017/fmp.2017.1.

[29] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Chris Hankin, editor, Program-
ming Languages and Systems, Lecture Notes in Computer Science, pages 122–138. Springer
Berlin Heidelberg, 1998. isbn: 978-3-540-69722-0.

[30] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’08, pages 273–284, New York, NY, USA. ACM, 2008. isbn:
978-1-59593-689-9. doi: 10.1145/1328438.1328472. event-place: San Francisco, California,
USA.

[31] William A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: Es-
says on combinatory logic, lambda calculus and formalism, pages 479–491. Academic Press,
London, 1980. The original version was circulated privately in 1969.

[32] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming in
java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, Lecture Notes in
Computer Science, pages 516–541. Springer Berlin Heidelberg, 2008. isbn: 978-3-540-70592-5.

[33] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, April 2016. issn: 0360-0300. doi: 10.1145/2873052.

[34] Per Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, Italy, 9, 1984.

64

https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.entcs.2007.11.004
https://doi.org/10.1007/978-1-4614-1129-1_3
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052

[35] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Informa-
tion and Computation, 100(1):1–40, September 1, 1992. issn: 0890-5401. doi: 10.1016/0890-
5401(92)90008-4.

[36] Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. In Eva Kühn and Rosario
Pugliese, editors, Coordination Models and Languages, Lecture Notes in Computer Science,
pages 115–130. Springer Berlin Heidelberg, 2014. isbn: 978-3-662-43376-8.

[37] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous pi-calculus. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’97, pages 256–265, New York, NY, USA. ACM,
1997. isbn: 978-0-89791-853-4. doi: 10.1145/263699.263731. event-place: Paris, France.

[38] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, October 16, 2003. 600 pages. isbn: 978-0-521-54327-9. Google-Books-
ID: QkBL 7VtiPgC.

[39] Bernardo Toninho, Luis Caires, and Frank Pfenning. Corecursion and non-divergence in
session-typed processes. In Matteo Maffei and Emilio Tuosto, editors, Trustworthy Global
Computing, Lecture Notes in Computer Science, pages 159–175. Springer Berlin Heidelberg,
2014. isbn: 978-3-662-45917-1.

[40] Hugo T. Vieira, Lúıs Caires, and João C. Seco. The conversation calculus: a model of service-
oriented computation. In Sophia Drossopoulou, editor, Programming Languages and Systems,
Lecture Notes in Computer Science, pages 269–283. Springer Berlin Heidelberg, 2008. isbn:
978-3-540-78739-6.

[41] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–84, December
2015. issn: 0001-0782. doi: 10.1145/2699407.

65

https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/263699.263731
https://doi.org/10.1145/2699407

Appendices

66

Appendix A

The CYH type system

For reference, we provide a copy of the type system of CYH, as presented by Carbone et al. in [11,
Table 4, p. 197]. We omit typings of terms we do not support in our conversion (cf. Section 3.2),
such as recursion and conditionals. In order to keep this thesis self-contained, we stick to the
notational conventions from this thesis, rather than those from [11].

(Name)
Γ, a : 〈α〉 ` a : 〈α〉

Γ, a : α{[β]} ` P B∆
(TRes)

Γ ` (νa)P B∆

Γ ` P B (xi : αi{[βi]})i
Γ′ ` Q B (xi : βi)i

Γ ` c : 〈αj{[βj]}〉
s = xj

Γ′ ⊆ Γ, fv(Γ′) = ∅
(TReq)

Γ ` c(s)[x̃, P,Q] B (xi : αi{[βi]})i6=j

Γ ` P B s : α{[β]}
Γ ` Q B s : β fv(Γ) = ∅

(TServ)
Γ, a : 〈α{[β]} ` ∗a(s)[P,Q] B ∅

fv(Γ) = ∅
(TThr)

Γ ` throw B (xi : αi)i

Γ ` Pi B∆i(i = 1, 2) ∆1 � ∆2
(TPar)

Γ ` P1 ‖ P2
B∆1 ∪∆2

Γ ` e : θ Γ ` P B∆ · x : α (TOut)
Γ ` x!〈e〉.P B∆ · x : ↑ (θ).α

Γ, y : θ ` P B∆ · x : α
(TIn)

Γ ` x?(y).P B∆ · x : ↓ (θ).α

Γ ` Pi B∆ · x : αi(∀i ∈ I)
(TBra)

Γ ` x B {li : Pi}i∈I B∆ · x : &{li : αi}i∈I

Γ ` P B∆ · x : αj j ∈ I
(TSel)

Γ ` x C lj .P B∆ · x : ⊕{li : αi}i∈I

fv(Γ) = ∅ αi ∈ {end, end{[βi]}}
(TInact)

Γ ` 0 B (xi : αi)i

Here, Γ is the unrestricted and ∆ the
linear context. fv(Γ) = ∅ makes sure
Γ contains no free variables, i.e. it pre-
vents certain rules from being used on
the service definition level. ∆1 � ∆2

(i.e. ∆1 and ∆2 are compatible) means
that ∆1 and ∆2 have no free channel
names in common.

67

Appendix B

Conversion example

(νa)(∗a(s)[

99
9

99
9 s B {l1 : s!〈5〉.0, l2 : throw},

99
9

99
9 s!〈tt〉.0

99
9] ‖

99
9 a(t)[(t),

99
9

99
9 t C l1.a(u)[(t, u),

99
9

99
9

99
9 t?(v).0 ‖ u C l2.u!〈ff〉.0,

99
9

99
9

99
9 t?(v).0 ‖ u?(v).0

99
9

99
9],

99
9

99
9 t?(v).0

99
9]

)

Figure B.1: A CYHCH process

In order to demonstrate what a converted process
looks like, we give an example that showcases the in-
tricacies of the conversion: multiple requests (refine-
ment), parallel processes of different length, and the
throwing of exceptions. We will convert the CYHCH

process P , given in Figure B.1, in which we connect
to the same service twice.

The converted process {(P) is given by:

(νa)(Q ‖R)

See (B.1) for Q and (B.4) for R.

The conversion of the service Q is given by:

Q = !a(s); (νs′)(νs1)(s〈s′, s1〉 ‖ (B.1)

99
9 s′.some∅(s

′
1);Qexc ‖Qserv

)

See (B.2) for Qexc and (B.3) for Qserv.

The exception handler Qexc is given by:

Qexc = (νv)(νs′2)(s
′
1〈v, s′2〉 ‖ Ett→v ‖ s′2.close)

(B.2)

68

The service default handler Qserv is given by:

Qserv = s.some∅(s1); (νs2)(s1.inl〈s2〉 ‖ (B.3)

99
9 s2.some∅(s3); s3.case(s4)(

99
9

99
9 l1 : s4.some∅(s5); (νs6)(s5.inl〈s6〉 ‖

99
9

99
9

99
9 s6.some∅(s7); (νv)(νs8)(s7〈v, s8〉 ‖ E5→v ‖

99
9

99
9

99
9

99
9 s8.some∅(s9); (νs10)(s9.inl〈s10〉 ‖

99
9

99
9

99
9

99
9

99
9 s10.some∅(s11); s11.close

99
9

99
9

99
9

99
9)

99
9

99
9

99
9)

99
9

99
9),

99
9

99
9 l2 : s4.some∅(s5); (νs6)(s5.inr〈s6〉 ‖ s6.close)

99
9)

)

The conversion of the request R is given by:

R = (νt)(a〈t〉 ‖ (B.4)

99
9 t(t′, t1); (νy)(y.case(y1)(

99
9

99
9

99
9 y1.some(t′)(y2); (y2.close ‖

99
9

99
9

99
9

99
9

(νt′1)(t
′.some〈t′1〉 ‖Rexc)

99
9

99
9

99
9),

99
9

99
9

99
9

(νt′′)(νy2)(y1〈t′′, y2〉 ‖ [t′ ↔ t′′] ‖ y2.close)

99
9

99
9) ‖Rreq

99
9)

)

See (B.5) for Rexc and (B.6) for Rreq.

The exception handler Rexc is given by:

Rexc = t′1(v, t′2); (Cv ‖ t′2.close) (B.5)

69

The request default handler Rreq is given by:

Rreq = (νt2)(t1.some〈t2〉 ‖ (B.6)

99
9 t2.case(t3)(

99
9

99
9

(νt4)(t3.some〈t4〉 ‖

99
9

99
9

99
9

(νt5)(t4.l1〈t5〉 ‖ S)

99
9

99
9), t3.close ‖ (νy1)(y.inl〈y1〉 ‖

99
9

99
9

99
9

(νy2)(y1.some〈y2〉 ‖ y2.close)

99
9

99
9)

99
9)

)

See (B.7) for S.

The refinement S is given by:

S = (νu)(a〈u〉 ‖ (B.7)

99
9

(νy1)(y.inr〈y1〉 ‖

99
9

99
9 y1(t′, y2); (y2.close ‖

99
9

99
9

99
9 u(u′, u1); (νy′)(y′.case(y′1)(

99
9

99
9

99
9

99
9

99
9 y′1.some(t′,u′)(y

′
2); (y′2.close ‖

99
9

99
9

99
9

99
9

99
9

99
9

(νt′1)(t
′.some〈t′1〉 ‖

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νu′1)(u
′.some〈u′1〉 ‖ Sexc)

99
9

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9

99
9),

99
9

99
9

99
9

99
9

99
9

(νt′′)(νy2)(y1〈t′′, y2〉 ‖ [t′ ↔ t′′] ‖

99
9

99
9

99
9

99
9

99
9

99
9

(νu′′)(νy3)(y2〈u′′, y3〉 ‖ [u′ ↔ u′′] ‖ y3.close)

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9) ‖ Sreq

99
9

99
9

99
9)

99
9

99
9)

99
9)

)

See (B.8) for Sexc and (B.9) for Sreq.

70

The exception handler Sexc is given by:

Sexc = t′1(v, t′2); (Cv ‖ t′2.close) ‖ u′1(v, u′2); (Cv ‖ u′2.close) (B.8)

The request default handler Sreq is given by:

Sreq = (νz)(S1 ‖ S2) (B.9)

See (B.10) for S1 and (B.13) for S2.

The left process S1 is given by:

S1 = (νt6)(t5.some〈t6〉 ‖ (B.10)
99
9 t6.case(t7)(

99
9

99
9

(νz1)(z.some〈z1〉 ‖

99
9

99
9

99
9 z1.case(z2)(

99
9

99
9

99
9

99
9

(νt8)(t7.some〈t8〉 ‖

99
9

99
9

99
9

99
9

99
9

(νz3)(z2.some〈z3〉 ‖

99
9

99
9

99
9

99
9

99
9

99
9 t8(v, t9); (Cv ‖ S′1)

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9), z2.close ‖ t7.none ‖ Sinvoke

99
9

99
9

99
9)

99
9

99
9), t7.close ‖ z.none ‖ Sinvoke

99
9)

)

See (B.11) for S′1 and (B.12) for Sinvoke.

71

The continuation of the left process S′1 is given by:

S′1 = (νz4)(z3.some〈z4〉 ‖ (B.11)

99
9 z4.case(z5)(

99
9

99
9

(νz6)(z5.some〈z6〉 ‖

99
9

99
9

99
9

(νt10)(t9.some〈t10〉 ‖
99
9

99
9

99
9

99
9 t10.case(t11)(

99
9

99
9

99
9

99
9

99
9

(νz7)(z6.some〈z7〉 ‖

99
9

99
9

99
9

99
9

99
9

99
9 z7.case(z8)(

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νt12)(t11.some〈t12〉 ‖ t12.close) ‖

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νz9)(z8.some〈z9〉 ‖ z9.close) ‖

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νy′1)(y
′.inl〈y′1〉 ‖ y′1.none),

99
9

99
9

99
9

99
9

99
9

99
9

99
9 z8.close ‖ t11.none ‖ Sinvoke

99
9

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9

99
9), t11.close ‖ z6.none ‖ Sinvoke

99
9

99
9

99
9

99
9)

99
9

99
9

99
9)

99
9

99
9), z5.close ‖ t9.none ‖ Sinvoke

99
9)

)

See (B.12) for Sinvoke.

The invocation of the exception handler Sinvoke is given by:

Sinvoke = (νy′1)(y
′.inl〈y′1〉 ‖ (νy′2)(y′1.some〈y′2〉 ‖ y′2.close)) (B.12)

72

The right process S2 is given by:

S2 = z.some(u1)(z1); (νu2)(u1.some〈u2〉 ‖ (B.13)

99
9 u2.case(u3)(

99
9

99
9

(νz2)(z1.inl〈z2〉 ‖

99
9

99
9

99
9 z2.some(u3)(z3); (νu4)(u3.some〈u4〉 ‖

99
9

99
9

99
9

99
9

(νu5)(u4.l2〈u5〉 ‖ S′2)

99
9

99
9

99
9)

99
9

99
9), u3.close ‖ (νz2)(z1.inr〈z2〉 ‖ z2.close)

99
9)

)

See (B.14) for S′2.

73

The continuation of the right process S′2 is given by:

S′2 = z3.some(u5)(z4); (νu6)(u5.some〈u6〉 ‖ (B.14)

99
9 u6.case(u7)(

99
9

99
9

(νz5)(z4.inl〈z5〉 ‖
99
9

99
9

99
9 z5.some(u7)(z6); (νu8)(u7.some〈u8〉 ‖

99
9

99
9

99
9

99
9

(νv)(νu9)(u8〈v, u9〉 ‖ Eff→v ‖

99
9

99
9

99
9

99
9

99
9 z6.some(u9)(z7); (νu10)(u9.some〈u10〉 ‖

99
9

99
9

99
9

99
9

99
9

99
9 u10.case(u11)(

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νz8)(z7.inl〈z8〉 ‖

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9 z8.some(u11)(z9); (

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9

(νu12)(u11.some〈u12〉 ‖ u12.close) ‖

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9 z9.close

99
9

99
9

99
9

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9

99
9

99
9

99
9), u11.close ‖ (νz8)(z7.inr〈z8〉 ‖ z7.close)

99
9

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9

99
9)

99
9

99
9

99
9

99
9)

99
9

99
9

99
9)

99
9

99
9), u7.close ‖ (νz5)(z4.inr〈z5〉 ‖ z5.close)

99
9)

)

74

Appendix C

Synchronization diagrams

This appendix contains several example CYHCH processes, complemented with diagrams showing
the synchronizations in the converted DCPTP process. This should give some insight in the workings
of the conversion given in Section 3.3.

We only give the requests of our example processes. In the diagrams, we indicate the server
side of a channel with an overbar (so x where x is used in the request). Dashed lines indicate
synchronization messages, and solid lines indicate the actual communication.

Example 1

This example shows a simple protocol that successfully per-
forms two communications.

a(x)[(x), x!〈5〉.x?(v).0, Q(x)]

x xsome

inl

some

5

some

inl

some

v

some

inl

some

close

75

Example 2

This example shows the same protocol as in the previous
example, except that an exception is thrown by the server
after the first communication succeeds.

a(x)[(x), x!〈5〉.x?(v).0, Q(x)]

x xsome

inl

some

5

some

inr

close

invoke exception handler

Example 3

This example shows the same protocol as in the previous
examples, except that it throws an exception after the first
communication succeeds.

a(x)[(x), x!〈5〉.throw, Q(x)]

x xsome

inl

some

5

none

invoke exception handler

76

Example 4

This example shows a protocol that connects to two services and then performs a single communi-
cation on each connected channel in parallel. All communications succeed.

a(x)[(x), b(y)[(x, y), x!〈5〉.0 ‖ y!〈tt〉.0, Q(x,y)], R(x)]

xx y ysome

some

inl

inl

some

inl

some

some
some

5 tt

some

some

inl

inl

some

inl

some

some
some

clos
e close close

77

Example 5

This example is similar to the previous one, except that an exception is thrown on the left side of
the parallel composition.

a(x)[(x), b(y)[(x, y), throw ‖ y!〈tt〉.0, Q(x,y)], R(x)]

xx y ynonenon
e

none

invoke exception handlers

Example 6

Again, this example is similar to the previous two, except now the exception is thrown on the right
side of the parallel composition.

a(x)[(x), b(y)[(x, y), x!〈5〉.0 ‖ throw, Q(x,y)], R(x)]

xx y ysome

noneinr

none
close

invoke exception handlers

78

Appendix D

A multiparty calculus

In this appendix, we describe a multiparty calculus, based on the original calculus by Honda et
al. [30] and the slightly more expressive version by Caires and Pérez [5], extended with a global
operator for non-determinism. We include a projection into our binary system DCPTP, given in
Chapter 2.

D.1 Global and local types

We define global types (G), base types (U) and local types (T). Here, p, q, r, . . . are participants,
and l1, l2, . . . are labels. At the end of this section, on page 82 we explain the design choice of the
new global type this thesis introduces: p&G.

Definition D.1 (Global and local types)

Global types (G) and local types (T) are given by
G ::= end | p� q :{li〈Ui〉 : Gi}i∈I | (G1 ‖G2) | p&G

U ::= bool | nat | str | · · · | T
T ::= end | p?{li〈Ui〉 : Ti}i∈I | p!{li〈Ui〉 : Ti}i∈I | &T | ⊕T

A global type G describes a sequence of interactions between two or more participants. The first
three types are as usual, taken from [30, 5]. The last type is newly added in this thesis.

• end indicates the end of communication for all participants.
• (G1 ‖G2) puts two independent global types in parallel. Here, independence means that G1

and G2 have no participants in common. The participants of a global type are defined in
detail below.

• p � q :{li〈Ui〉 : Gi}i∈I signifies a communication between p and q. Participant p will choose
between a set of labels li for i ∈ I (cf. branching in Chapter 2). A choice for li means p will
send a message of type Ui to q, after which the global session continues as Gi.

79

• p & G gives participant p the choice to continue the global session as G, or to abort all
communications. Here, the word “choice” does not induce determinism: p’s choice can depend
on external factors such as resource availability or the possibility of an operation to fail.

Local types T represent local views of the global type for a specific participant. They can be
obtained from a global type by means of projection. Before explaining local types, it is useful to
define the participants of a global type.

Definition D.2 (Participants)

Given a global type G, the set of participants part(G) is given recursively by

• part(end) = ∅
• part(G1 ‖G2) = part(G1) ∪ part(G2)
• part(p� q :{li〈Ui〉 : Gi}i∈I) = {p, q} ∪

⋃
i∈I part(Gi)

• part(p&G) = {p} ∪ part(G)

For a clear presentation, we assume the following types are projections under some participant p.

• end ends the session for p. This type is similar to the global one. However, globally, end indi-
cates the end of communications for all participants, while locally it only ends communications
for p.

• p!{li〈Ui〉 : Ti}i∈I means p will choose a label li, send a message of appropriate type Ui, and
continue as Ti. We will see later that the lack of a receiving participant does not make the
type ambiguous.

• q?{li〈Ui〉 : Ti}i∈I says that p will receive a choice from q for some label li, which will then
send a message of type Ui to p. After receipt, p continues as Ti.

• &T allows p to choose (possibly non-deterministically) to continue as T or to abort.
• ⊕T signifies that p will receive a message saying whether they may continue as T or whether

they must abort.

The projection of a global type under a participant uses an auxiliary operator which merges
two base types. This allows us to define the projection of a branch under a participant that is not
involved in the transaction, e.g. the projection of type p� q :{. . . } under some participant r.

80

Definition D.3 (Merge)

The merge operation t on types U is given by

1. bool t bool = bool (and similarly for other primitive types)
2. end t end = end

3. p!{li〈Ui〉 : Ti}i∈I t p!{li〈Ui〉 : Ti}i∈I = p!{li〈Ui〉 : Ti}i∈I
4. p?{lk〈Uk〉 : Tk}k∈K t p?{l′j〈U ′j〉 : T ′j}j∈J = p?{lk〈Uk〉 : Tk}k∈K\J

∪ p?{l′j〈U ′j〉 : T ′j}j∈J\K
∪ p?{li〈Ui t U ′i〉 : Ti t T ′i}i∈K∩J

5. &T1 t&T2 = &(T1 t T2)
6. ⊕T1 t ⊕T2 = ⊕(T1 t T2)

If types do not match any of the above clauses, their merge is undefined.

Two types U1 and U2 are mergeable if their merge U1 t U2 is defined. Rules 1–3 are taken exactly
from the original definition of merge in [30]. Rule 4 is taken from [5]. The original of this rule
only permits identical options when receiving, while here we allow different options, as long as the
options with the same labels are mergeable. Rules 5 and 6 are new and straightforward: inner types
need to be mergeable for non-deterministic types to be mergeable.

Definition D.4 (Projection)

Given a global type G and participant r, the projection G � r of G under r is given by

1. end � r = end

2. p� q :{li〈Ui〉 : Gi}i∈I � r =

p!{li〈Ui〉 : Gi � r}i∈I if r = p

p?{li〈Ui〉 : Gi � r}i∈I if r = q⊔
i∈I Gi � r otherwise

3. (G1 ‖G2) � r =

G1 � r if r ∈ part(G1) and r /∈ part(G2)

G2 � r if r /∈ part(G1) and r ∈ part(G2)

end if r /∈ part(G1) ∪ part(G2)

4. p&G � r =

&(G � r) if r = p

⊕(G � r) if r 6= p and r ∈ part(G)

end otherwise

If a side-condition does not hold, the map is undefined.

Rules 1–3 are taken from [30], but use the merge operation from [5]. Rule 2 shows that a branching
type can be projected under a participant either when they are partaking in the transaction, or
when they are a participant in all subtypes Gi (due to mergeability). Rule 3 shows that parallel
global types can only be projected if they do not share participants. Rule 4 is new in this thesis,
albeit straightforward.

81

Not all global types are useful or flawless. The notion of projection to local types provides
a means to characterize the well-formedness of global types. This definition is justified by the
characterization results presented in Section D.3.

Definition D.5 (Well-formed global types)

A global type G is well-formed (WF) if the projection G � r is defined for all participants
r ∈ part(G).

We will see later that it is useful to use the term “Merge well-formedness” for well-formed global
types, since it is based on projection using the merge operation. So, we say a global type is merge
well-formed (MWF) if and only if it is well-formed (WF).

D.1.1 Discussion: non-deterministic global type

We discuss our choice for the global type with non-determinism p&G. The first question that comes
to mind when considering this global type for non-determinism is: why must there be a participant
that decides? The reason is that global sessions contain no information about the implementation.
Therefore, it is possible to consider a situation where participants are directly connected to each
other. In this situation, there is no global party that can independently decide whether to continue
or to abort. I.e., the responsibility is with the participants.

Then, why can only one participant decide at a time? It would be possible to give the respon-
sibility to a set of (one or more) participants. We try to add concurrency where possible, so we
would like those participants to announce their resource availability in any order. However, we also
keep in mind that we want to eventually convert this global type to the binary system, in which
we have to use rules such as (T⊕xw̃). The process reduction associated with this rule discards the
process (T⊕xw̃) prefixes, and the channels w̃ can and must be used only in that prefixed process.
This makes it impossible to compose those prefixed process using (T‖), while still assuring that the
rest of the global session will be discarded if a participant announces unavailability. Hence, there
would have to be a pre-determined order for the participants to decide, e.g. {p, q}&G 6= {q, p}&G.

Let us design a potential non-deterministic global type with ordered consensus: {p1, . . . , pk}&G
with part(G) = {p1, . . . , pk, pk+1, . . . , pn}. Then, for any 1 ≤ i ≤ k,

({p1, . . . , pk}&G) � pi = ⊕i−1 &⊕k−i(G � pi)

and for any k < j ≤ n,

({p1, . . . , pk}&G) � pj = ⊕(G � pj).

Actually, it is possible to model this type using the existing single-participant type:

{p1, . . . , pk}&G , p1 & . . . pk &G

82

Only for large k and n is the first explicit consensus type more efficient than the modelling, because
then those participants not involved in the consensus (so the pj where k < j ≤ n) would only have
to receive an availability message once, whereas in the modelled version they would have to receive
a message from every participant involved in consensus. However, k and n are not likely to be
sufficiently large for this to be an issue. If such a situation does occur, it is always possible to tweak
the calculus to use the more efficient definition above.

D.2 Mediums and binary local types

In order to study the multiparty types from the previous section in a binary setting, we define a
conversion, based on [5]. The conversion from local types to binary types is straightforward.

Definition D.6 (Binary local types)

The mapping 〈〈·〉〉 from local types to binary types is given by

1. 〈〈end〉〉 = 1
2. 〈〈bool〉〉 = 1 (and similarly for other primitive types)
3. 〈〈p!{li〈Ui〉 : Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I
4. 〈〈p?{li〈Ui〉 : Ti}i∈I〉〉 = &{li : 〈〈Ui〉〉

&

〈〈Ti〉〉}i∈I
5. 〈〈&T 〉〉 = &〈〈T 〉〉
6. 〈〈⊕T 〉〉 = ⊕〈〈T 〉〉

This definition showcases an important difference between the intuitionistic and classical systems.
Here, rules 3 and 4 exhibit a duality in the type of message that is being exchanged. This makes
sense: the sending party has one end of a channel, and sends the other end (of dual type) to the
receiving party. In the intuitionistic system (cf. [5]), duality is achieved by placing judgements on
the left and the right of the process term, with corresponding (dual) left and right rules. Therefore,
the converted intuitionistic binary local types have no duality in the types of the messages.

In order to compose the binary versions of participants, a medium process is extracted from
the global type. This process acts as a message router, forwarding messages and choices between
participants. The medium process is defined using a mapping C from participants to channel names.

In order to keep things readable, we do not use common function notation (e.g. C(p)), but we
write Cp to denote the channel name for p. The mapping is assumed to have a unique channel
name for each participant: for every p 6= q, Cp 6= Cq. Also, using the mapping with a prime creates
a new unique channel name for the given participant: Cp 6= C′p. However, these primed channel
names are always the same for the same amount of primes and the same participants. The notation
C{x 7→C′x}x∈X

transforms C to use the name from C′ for each participant in X.

83

Definition D.7 (Mediums)

Given a global type G and mapping C from participants to channel names, the medium MJGKC
is given by

• MJendKC = 0
• MJ(G1 ‖G2)KC = (MJG1KC ‖MJG2KC)
• MJp� q :{li〈Ui〉 : Gi}i∈IKC =

Cp.case(C′p)(

99
9 li : C′p(u, C′′p); (νC′

q)(

99
9

99
9 Cq.li〈C′q〉 ‖ (νv)(νC′′

q)(

99
9

99
9

99
9 C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJGiKC{p 7→C′′p ,q 7→C′′q }

99
9

99
9)

99
9)

)i∈I
• MJp&GKC = Cp.someC̃part(G)\{p}

(C′p);

99
9

(νC′
q)q∈part(G)\{p}

(∏
q∈part(G)\{p} Cq.some〈C′q〉 ‖MJGKC{q 7→C′q}q∈part(G)

)
,

where
– (νCx)x∈{p,q,...,r} means (νCp)(νCq) . . . (νCr), and
–
∏
x∈{p,q,...,r} P means P{p/x} ‖ P{q/x} ‖ . . . ‖ P{r/x}.

With the medium process in place, we can hint at the characterization results obtained from
above conversion. The following definition gives a general notion of when a global type is useful
and correct, using the binary calculus.

Definition D.8 (Compositional typing)

The judgement MJGKnpart(G) ` ∆; Θ is a compositional typing if i) it is a valid typing according
to Chapter 2, and ii) npart(G) ⊆ Dom(∆).

In this definition, npart(G) is the initial map of participants to unique channel names. We formalize
this in Definition D.9.

84

Definition D.9 (Participant names)

Given a global type G, npart(G) maps participants of G to unique channel names. For any
participant r, this map is given by

• npart(G1 ‖G2)(r) =

{
npart(G1)(r) if r ∈ part(G1) and r /∈ part(G2)

npart(G2)(r) if r /∈ part(G1) and r ∈ part(G2)

• npart(p� q :{li〈Ui〉 : Gi}i∈I)(r) =

cp if r = p

cq if r = q

npart(
⊔
i∈I Gi)(r) otherwise

• npart(p&G)(r) =

{
cp if r = p

npart(G)(r) otherwise

D.3 Characterization results

In this section, we describe how well global and binary types are related through the definitions
from the previous section. We will show that the binary local views of a global protocol validly
type the respective medium process. We also show that a valid typing of a medium process induces
local types of the respective global protocol (albeit in a slightly weaker manner). These results are
versions of the results from [5] modified for our type systems.

D.3.1 Simple well-formedness

Definition D.4 describes the extraction of local types from global types using the merge operation
(in Definition D.3). The usage of this operation adds complexity to the proofs, which makes clear
presentation more difficult. Therefore, we first state and prove the results for a simpler version
of local projection (hence simple projection). This projection requires the simple projections of
global types to be the same across branches for any participants not involved in the transaction.
Then, we restate the results using the projection with merge, and explain how the simple proofs
can be modified for this more complex situation. This procedure follows the proof method for the
characterization results of [5].

Definition D.10 (Simple projection)

Given a global type G and participant r, the simple projection Gor is exactly as Definition D.4,
with the exception of the following case:

p� q :{li〈Ui〉 : Gi}i∈I o r =

p!{li〈Ui〉 : Gi o r}i∈I if r = p

p?{li〈Ui〉 : Gi o r}i∈I if r = q

G1 o r if r 6= p, r 6= q, and

Gi o r = Gj o r for every i, j ∈ I

85

This simple interpretation requires a modified notion of well-formedness.

Definition D.11 (Simply well-formed global types)

A global type G is simply well-formed (SWF) if the simple projection G o r is defined for all
participants r ∈ part(G).

The first simple characterization result states that the binary simple projections of a simply
well-formed global type validly type the respective medium process.

Theorem D.1

Let G be a global type with part(G) = {p1, . . . , pn} and let C = npart(G). If G is SWF, then

MJGKC ` Cp1 : 〈〈G o p1〉〉, . . . , Cpn : 〈〈G o pn〉〉; Θ

is a compositional typing for some persistent context Θ.

We need an auxiliary lemma to prove this theorem. It shows that if simple well-formedness holds
for a global type, then it also holds for all its subtypes.

Lemma D.2

i) If p� q :{li〈Ui〉 : Gi}i∈I is SWF, then for all i ∈ I, Gi is SWF too, ii) if (G1 ‖G2) is SWF,
then G1 and G2 are SWF too, and iii) if p&G is SWF, then G is SWF too.

Proof. This follows by construction from Definitions D.11 and D.10.

Now we are ready to prove Theorem D.1.

Proof. By induction on the structure of G.

• (G = end) We have MJendKC = 0. By the Empty Axiom,

0 ` ·; Θ

is a valid typing. Since the empty linear context coincides with the lack of participants
(part(G) = ∅), we can conclude that this is a compositional typing.

• (G = G1 ‖G2) As in [5], through Lemma D.2 and using the Mix Rule.

• (G = p � q : {li〈Ui〉 : Gi}i∈I) W.l.o.g. we assume p = p1 and q = p2. Since we assume G is
SWF, all local types G o p1, . . . , G o pn are defined. We have:

G o p = p!{li〈Ui〉 : Gi o p}i∈I (D.1)

G o q = p?{li〈Ui〉 : Gi o q}i∈I (D.2)

G o pj = G1 o pj for every j ∈ {3, . . . , n}

86

From (D.1) and (D.2) we find the duals of the binary types of p and q:

〈〈G o p〉〉 = ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o p〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o p〉〉}

= &{l1 : 〈〈U1〉〉

&

〈〈G1 o p〉〉, l2 : 〈〈U2〉〉

&

〈〈G2 o p〉〉} (D.3)

〈〈G o q〉〉 = &{l1 : 〈〈U1〉〉

&

〈〈G1 o q〉〉, l2 : 〈〈U2〉〉

&

〈〈G2 o q〉〉}

= ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉} (D.4)

W.l.o.g. we assume I = {1, 2}. Now, the medium process of G is

MJGKC =Cp.case(C′p)(l1 : L1, l2 : L2), (D.5)

where

L1 =C′p(u, C′′p); (νC′
q)(Cq.l1〈C′q〉‖

(νv)(νC′′
q)(C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJG1KC{p 7→C′′p ,q 7→C′′q })) (D.6)

and

L2 =C′p(u, C′′p); (νC′
q)(Cq.l2〈C′q〉‖

(νv)(νC′′
q)(C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJG2KC{p 7→C′′p ,q 7→C′′q })). (D.7)

Since we assume G is SWF, we know by Lemma D.2 that subtypes G1 and G2 are also SWF.
This means we can apply the induction hypothesis to infer that

MJG1KC′′ `C′′p : 〈〈G1 o p〉〉, C′′q : 〈〈G1 o q〉〉,
C′′p3 : 〈〈G1 o p3〉〉, . . . , C′′pn : 〈〈G1 o pn〉〉︸ ︷︷ ︸

∆1

; Θ

and

MJG2KC′′ `C′′p : 〈〈G2 o p〉〉, C′′q : 〈〈G2 o q〉〉,
C′′p3 : 〈〈G2 o p3〉〉, . . . , C′′pn : 〈〈G2 o pn〉〉︸ ︷︷ ︸

∆2

; Θ

are compositional typings for some Θ, where C′′ , C{p 7→ C′′p , q 7→ C′′q }.
Figure D.1 shows the typing inference of L1 (given in (D.6)). Analogously, we may derive the
typing of L2 (given in (D.7)). We find:

L1 `C′p : 〈〈U1〉〉

&

〈〈G1 o p〉〉,

Cq : ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉},∆1; Θ (D.8)

L2 `C′p : 〈〈U2〉〉

&

〈〈G2 o p〉〉,

Cq : ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉},∆2; Θ (D.9)

87

By Definition D.10, for all j ∈ {3, . . . , n}, G1 o pj = G2 o pj , so ∆1 = ∆2. Now we can apply
the n-ary Offer Rule with (D.8) and (D.9) as premises to obtain a compositional typing for
MJGKC (cf. (D.5)):

Cp.case(C′p)(l1 : L1, l2 : L2)

`Cp : &{l1 : 〈〈U1〉〉

&

〈〈G1 o p〉〉, l2 : 〈〈U2〉〉

&

〈〈G2 o p〉〉}︸ ︷︷ ︸
〈〈Gop〉〉 (cf. (D.3))

,

Cq : ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉}︸ ︷︷ ︸
〈〈Goq〉〉 (cf. (D.4))

,∆1 = ∆2; Θ

• (G = p&G′) W.l.o.g. we say p for p1. Since we assume G is SWF, all local types are defined:

G o p = &(G′ o p) (D.10)

G o pj = ⊕(G′ o pj) for every j ∈ {2, . . . , n} (D.11)

From (D.10) and (D.11) we find the dual binary types of G’s participants:

〈〈G o p〉〉 = &〈〈G′ o p〉〉

= ⊕〈〈G′ o p〉〉 (D.12)

〈〈G o pj〉〉 = ⊕〈〈G′ o pj〉〉

= &〈〈G′ o pj〉〉 for every j ∈ {2, . . . , n} (D.13)

The medium process of G is:

MJGKC = Cp.someC̃part(G′)\{p}
(C′p);S, (D.14)

where

S = (νC′
q)q∈part(G′)\{p}

(
‖
q∈part(G′)\{p}Cq.some〈C

′
q〉

‖MJG′KC{q 7→C′q}q∈part(G′)

)
. (D.15)

Since we assume G is SWF, by Lemma D.2, subtype G′ is also SWF. Therefore, by the
induction hypothesis,

MJG′KC′ `C′p : 〈〈G′ o p〉〉,
C′p2 : 〈〈G′ o p2〉〉, . . . , C′pn : 〈〈G′ o pn〉〉; Θ

is a compositional typing for some Θ, where C′ , C{q 7→ C′q}q∈partG′ .

W.l.o.g. we assume n = 3, i.e. part(G) = {p = p1, p2, p3}. Figure D.2 shows the typing
inference of S (given in (D.15)). Note that the result of this derivation is not exactly equal
to S, but they are structurally congruent, which is good enough. By applying the Non-
deterministic Select Rule with the derivation of S as premise, we obtain a compositional
typing for MJGKC (cf. (D.14)):

MJGKC ` Cp : ⊕〈〈G′ o p〉〉, Cp2 : &〈〈G′ o p2〉〉, Cp3 : &〈〈G′ o p3〉〉

88

(Tid)
[u↔ v] ` u : 〈〈U1〉〉, v : 〈〈U1〉〉; Θ

...

MJG1KC′′ ` C′′p : 〈〈G1 o p〉〉, C′′q : 〈〈G1 o q〉〉,∆1; Θ
(T⊗)

(νv)(νC′′
q)(C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJG1KC′′)

` u : 〈〈U1〉〉, C′′p : 〈〈G1 o p〉〉, C′q : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉,∆1; Θ
(T⊕1)

(νC′
q)(Cq.l1〈C′q〉 ‖ (νv)(νC′′

q)(C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJG1KC′′))

` u : 〈〈U1〉〉, C′′p : 〈〈G1 o p〉〉, Cq : ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉},∆1; Θ
(T

&

)
C′p(u, C′′p); (νC′

q)(Cq.l1〈C′q〉 ‖ (νv)(νC′′
q)(C′q〈v, C′′q 〉 ‖ [u↔ v] ‖MJG1KC′′))

` C′p : 〈〈U1〉〉

&

〈〈G1 o p〉〉, Cq : ⊕{l1 : 〈〈U1〉〉 ⊗ 〈〈G1 o q〉〉, l2 : 〈〈U2〉〉 ⊗ 〈〈G2 o q〉〉},∆1; Θ

Figure D.1: Type derivation of (D.6).

...

MJG′KC′ ` C′p : 〈〈G′ o p〉〉, C′p2 : 〈〈G′ o p2〉〉, C′p3 : 〈〈G′ o p3〉〉; Θ
(T&

Cp3
d)

(νC′
p3

)(Cp3 .some〈C′p3〉 ‖MJG′KC′) ` C′p : 〈〈G′ o p〉〉, C′p2 : 〈〈G′ o p2〉〉, Cp3 : &〈〈G′ o p3〉〉; Θ
(T&

Cp2
d)

(νC′
p2

)(Cp2 .some〈C′p2〉 ‖ (νC′
p3

)(Cp3 .some〈C′p3〉 ‖MJG′KC′))

` C′p : 〈〈G′ o p〉〉, Cp2 : &〈〈G′ o p2〉〉, Cp3 : &〈〈G′ o p3〉〉; Θ

Figure D.2: Type derivation of (D.15).

This shows that the medium process of a simply well-formed global type induces a valid typing
that coincides with the binary local types of all of the global types’ participants. Does the converse
hold as well? More specifically, given a valid typing of a global types’ medium process, do the
binary types of the participants coincide with the binary local types of the global type? It turns
out we can only prove a slightly weaker statement. Let us explore why.

Suppose we are given some global type G with part(G) = {p1, . . . , pn}. Also, we have the
following compositional typing (so it is valid and contains typings for all of G’s participants), where
C = npart(G):

MJGKC ` Cp1 : A1, . . . , Cpn : An; Θ

What we want is that
〈〈G o pj〉〉 = Aj for every j ∈ {1, . . . , n}.

However, consider the case when G = p� q :{li〈Ui〉 : Gi}i∈I (assuming w.l.o.g. that p = p1 and
q = p2). The medium process looks as follows:

MJGKC = Cp.case(C′p) (li : Li)i∈I ,

where each Li is as in (D.6) and (D.7). By reverse typing we find that Li must have been typed
using the n-ary Select Rule (T⊕i∈J). Hence, Aq = &{lj : Bj}j∈J and thus

Li ` Cq : ⊕{lj : Bj}j∈J , . . .

89

The problem is that this rule only requires the selected index to be present in the selection type
(i ∈ J). This means that it is not necessarily the case that I = J . Since the n-ary Offer Rule (used
to type MJGKC with the Li as premises) requires the linear context across premises to be equal,
and i ∈ J for every i ∈ I, we do know that I ⊆ J . Now what happens if I ⊂ J? Then our desired
result fails:

〈〈G o q〉〉 6= Aq

Now we are ready to prove a (slightly) weaker statement.

Theorem D.3

Let G be a global type with part(G) = {p1, . . . , pn} and let C = npart(G). Given binary types
A1, . . . , An, if

MJGKC ` Cp1 : A1, . . . , Cpn : An; Θ

is a compositional typing for some persistent context Θ, then there exist T1, . . . , Tn such that

〈〈G o pj t Tj〉〉 = Aj

for every pj ∈ part(G).

Proof. By induction on the structure of G. However, by looking at all possible reverse typings,
we find there is only one important case. For all the other cases, we can use Tj = G o pj , i.e.
〈〈G o pj tG o pj〉〉 = 〈〈G o pj〉〉 = Aj . The important case is G = p� q :{li〈Ui〉 : Gi}i∈I .

W.l.o.g. we assume p = p1 and q = p2. The only important participant is q, since they have a
reverse typing using the n-ary Select Rule. We restate the medium process and the typing of q’s
channel:

MJGKC = Cp.case(C′p) (li : Li)i∈I

Li ` Cq : ⊕{lj : Bj}j∈J , . . .

Hence, Aq = &{lj : Bj}j∈J . Also, as we established before, I ⊆ J .

By the induction hypothesis, we can find local type T ′i for every i ∈ I such that Bi = Ui

&

〈〈Gi o
q t T ′i 〉〉. For every j ∈ J \ I we can use an arbitrary binary type Uj and arbitrary local type T ′j
and let Bj = Uj

&

〈〈T ′j〉〉, since that type will never be reached by q’s channel anyway. This covers
all the labels in Aq (so every index of J = I ∪ (J \ I)).

Now we can define Tq:

Tq = p?{li〈Ui〉 : (Gi o q t T ′i), lj〈Uj〉 : T ′j}i∈I,j∈J\I (D.16)

It is easy to see that 〈〈Tq〉〉 = Aq. The simple projection of G under q is:

G o q = p?{li〈Ui〉 : (Gi o q)}i∈I (D.17)

We can see from (D.16) and (D.17) that our desired result holds:

〈〈G o q t Tq〉〉 = 〈〈Tq〉〉 = Aq

90

D.3.2 Merge well-formedness

Now that we have established our results for well-formedness based on the simple projection, we
can focus on the more general definition based on projection with merge operations. We restate
Lemma D.2 and Theorems D.1 and D.3 for merge well-formedness.

Lemma D.4

i) If p � q : {li〈Ui〉 : Gi}i∈I is MWF, then for all i ∈ I, Gi is MWF too, ii) if (G1 ‖ G2) is
MWF, then G1 and G2 are MWF too, and iii) if p&G is MWF, then G is MWF too.

Proof. Exactly as the proof of Lemma D.2.

Theorem D.5

Let G be a global type with part(G) = {p1, . . . , pn} and let C = npart(G). If G is MWF, then

MJGKC ` Cp1 : 〈〈G � p1〉〉, . . . , Cpn : 〈〈G � pn〉〉; Θ

is a compositional typing for some persistent context Θ.

Proof. By following the steps of the proof of [5, Thm. 11], but using Lemma D.4. The key is that
the n-ary Select Rule allows an arbitrary set of options.

Theorem D.6

Let G be a global type with part(G) = {p1, . . . , pn} and let C = npart(G). Given binary types
A1, . . . , An, if

MJGKC ` Cp1 : A1, . . . , Cpn : An; Θ

is a compositional typing for some persistent context Θ, then there exist T1, . . . , Tn such that

〈〈G � pj t Tj〉〉 = Aj

for every pj ∈ part(G).

Proof. By following the steps of the proof of [5, Thm. 12]. The intuition is that in the G = p �
q : {li〈Ui〉 : Gi}i∈I case, the different local types across branches Gi are already merged as per
Definition D.4.

91

	Introduction
	An asynchronous session calculus with non-determinism
	Inference rules and cut reductions as asynchronous communication
	Example 1: division by zero
	Example 2: exception handling

	Asynchrony through buffers

	Fault-tolerance through exception handling
	The fault-tolerant calculus CYH
	The fragment CYHCH
	Limitation 1: Parallelism
	Limitation 2: Requests in services
	Limitation 3: Recursion
	Limitation 4: Conditional statements

	The conversion from CYHCH to DCPTP
	Results
	Typing results
	Deadlock-freeness
	Discussion: operational correspondence

	Future and related work
	Multiparty session types
	Validity of the conversion
	Related work
	Extensions to the binary calculus

	Conclusion
	References
	Appendices
	The CYH type system
	Conversion example
	Synchronization diagrams
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	A multiparty calculus
	Global and local types
	Discussion: non-deterministic global type

	Mediums and binary local types
	Characterization results
	Simple well-formedness
	Merge well-formedness

