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Abstract

This works aims to address the significance of Tennenbaum’s Theorem for the phi-
losophy of model theory, from the perspective of non-classical inconsistent models of
arithmetic. Several authors have recently argued that Tennenbaum’s Theorem, when
coupled with the claim that intended addition is computable, is capable of isolating
the intended models of Peano Arithmetic up to a single isomorphism type. Such ar-
gument, which we will call the argument from Tennenbaum’s Theorem, is particularly
welcoming for a class of views in the foundations of mathematics that reject great
epistemic access to mathematical objects. By focusing on a specific class of paracon-
sistent models of pa, as well as their features regarding cardinality and computability
issues, we will argue that when pursued to its last consequences the argument from
Tennenbaum’s Theorem leads to very unintuitive results. In fact, we will show that
the insistence on the computability of the intended addition function leads to placing
inconsistent models in the class of intended ones. We discuss how this is an unwanted
result for the advocate of the argument from Tennenbaum’s Theorem and possible
ways to block it. As we will see, the unexpected consequences are not so easily dis-
missed. We conclude that the argument from Tennenbaum’s Theorem is too weak to
establish its conclusion.
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[H]uman practice, actual and potential, extends only finitely far. Even if
we say we can, we cannot ‘go on counting forever’. If there are possible
divergent extensions of our practice, then there are possible divergent
interpretations of even the natural number sequence – our practice, our
mental representations, etc., do not single out a unique ‘standard model’
of the natural number sequence. We are tempted to think they do
because we easily shift from ‘we could go on counting’ to ‘an ideal
machine could go on counting’ (or, ‘an ideal mind could go on counting’);
but talk of ideal machines (or minds) is very different from talk of actual
machines and persons. Talk of what an ideal machine could do is talk
within mathematics, it cannot fix the interpretation of mathematics.

Hilary Putnam, Reason, Truth and History.

[N]ot only my actual performance, but also the totality of my
dispositions, is finite. It is not true, for example, that if queried about
the sum of any two numbers, no matter how large, I will reply with their
actual sum, for some pairs of numbers are simply too large for my mind
– or my brain – to grasp. When given such sums, I may shrug my
shoulders for lack of comprehension; I may even, if the numbers involved
are large enough, die of old age before the questioner completes his
question.

Saul Kripke, Wittgenstein on Rules and Private Language.
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Chapter 1

Introduction

Model is a notion that is easy to define. Intended model not so much. When at-
tempting at a definition we might stress that a model M is intended of a theory Γ
if it adequately captures our ‘intuitions’ about Γ. This much seems uncontentious.
Focusing on the case of the natural numbers, we wish to say that the structure 0, 1, 2,
..., omnipresent in our everyday practices involving counting and computing, is indeed
intended of arithmetic. That the standard model of classical Peano Arithmetic N or,
perhaps more loosely, any structure isomorphic to N reflects our intuitions about the
natural numbers. As a consequence, any non-standard model is unintended; the ex-
tra non-standard numbers are not constitutive of our normal understanding of natural
number. Hence, we have the following thesis:

Thesis: The intended model of arithmetic (pa) is just the standard model
N , up to isomorphism.

Even though intuitive, we see that when pressed for elaboration the claim is very hard
to justify. Worse, prima facie, the Thesis is not able of mathematical proof. The
reason why is indeed quite simply. Terms such as ‘intuition’, inevitably constitutive
of the meaning of intended model, belong to vague ordinary language rather than
to the language of mathematics. Of course this does not mean that there can be
no (almost) conclusive evidence that decides the Thesis. For instance, many would
state that the Church-Turing Thesis is equally informal (in the sense that notions
as ‘effective computability’ do not belong to the language of mathematics), and yet
also many mathematicians and philosophers of mathematics would agree that it is
true. Not only ‘intuition’ is an informal notion, but, as we will see, it is very hard to
accommodate the Thesis holding at the same time some very commonsensical views
regarding realism and epistemology.

Despite the extensive philosophical scope and interpretative issues facing the set of
papers nowadays included under the term Putnam’s Model-Theoretic Arguments, one
rather natural way to read Putnam’s Arguments is arguing precisely against the ability
of determining the intended model of arithmetic within a (epistemicaly) moderate and
realist view. What Putnam shows is that a moderate realist is not able to explain why
should the standard model (up to isomorphism) be considered intended, rendering the
view highly unattractive. Chapter 2 will cover these issues setting the stage for the
discussion to follow. We will carefully analyse the earliest versions of Putnam’s Model-
Theoretic Arguments (as they are presented in Putnam(1977) and Putnam(1980)),
highlighting first the historical connections with earlier work already developed by
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Skolem, and second the challenge that Skolem-Putnam’s work presents to set theory
and specially arithmetic. Here, we will also see how a shift to categorical theories of
arithmetic and a focus on categoricity in general can help the moderate realist address
the Skolem-Putnam’s challenge.

Chapter 3 starts with the proof of Tennenbaum’s Theorem. The result will be of cen-
tral importance in that chapter and echoed throughout the work. Essentially what we
will call the argument from Tennenbaum’s Theorem assumes that in intended models
of arithmetic the addition (and multiplication) function should be computable; this
latter fact together with Tennenbaum’s Theorem isolates the intended models up to
isomorphism. According to the argument the intended model is just the isomorphism
class that contains the standard model. However, and even though the literature on
the topic is still very small, many have already criticised the argument due to the use
of purportedly vague and circular notions like ‘recursivity’. The argument makes use
of concepts interdefinable with the ‘natural numbers’, bearing the charge of circular-
ity; i.e. of assuming a determinate understanding of the natural numbers when trying
to define what the natural numbers actually are.

In Chapter 4 we will present a new critique built from the point of view of paracon-
sistent arithmetic, using the logic LP . We will cover the main techniques behind the
construction of finite inconsistent LP -models of pa. After covering the difficult topic
of how to exactly define isomorphism between LP -models, we will motivate two main
results: first, that there are finite LP -models without the same structure as (and,
therefore, not isomorphic to) the standard model; second, that the addition func-
tion defined on these finite LP -models is effectively computable. Such results will be
used to put forth what we will call the LP -argument leading to the claim that there
are inconsistent but nevertheless intended models of arithmetic. The conclusions to
take from the LP -argument are multiple and varied: two possible conclusions reintro-
duce the Skolem-Putnam challenge for the moderate realist, whereas the third option,
called Supplementation, tries to save Tennenbaum’s Argument by placing extra con-
straints on the class of intended models so to rule out the inconsistent ones. It is this
third conclusion that will solely occupy us in Chapter 6 – there we analyse several
ways in which Supplementation may be pursued and argue why they are not forth-
coming. Before this, in Chapter 5 we quickly consider the notion of ‘paraconsistent
computation’; that is, a computational procedure not recognisable as such by non-
paraconsistent logics. We will motivate the existence of these computable functions
and explain away the strangeness of such a procedure by showing that this odd con-
cept is actually a natural by-product stemming from paraconsistent arithmetic.

We will end this work with Chapter 7 where we repeat the main conclusions from our
discussion and present some questions hopefully for future research.
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Chapter 2

Skolem-Putnam’s
Model-Theoretic Arguments

2.1 Putnam’s Model-Theoretic Arguments

Putnam’s Model-Theoretic Arguments are essentially an embarrassment of riches
problem against realist views: for any modelM0 of a theory T that a realist might be
thought as intended (of sets, natural numbers, cats, ...), Putnam employs fairly stan-
dard model-theoretic constructions to build a modelM1 of T apparently unintended
and yet satisfying those same relevant sentences or constraints. His is not a single ar-
gument but a collection of different techniques yielding non-standard interpretations.
Following Bays(2001 : 335) verbatim, we stress that there is an underlying common
structure shared by all the different model-theoretic arguments, captured by:

1. Premise: Theoretical and operational constraints do not fix a unique ‘intended
interpretation’ for the language.

2. Premise: Nothing other than theoretical and operational constraints could fix a
unique ‘intended interpretation’ for the language.

3. Conclusion: There is no unique ‘intended interpretation’ for the language.

It will be the aim of this chapter to explain the role of Putnam’s arguments in set
theory and arithmetic, what the targeted views are and how categorical theories may
help address them. The loci classici and basis of our discussion will be Putnam(1977)
and Putnam(1980).

We will pay most attention to Putnam’s Skolemization Technique: pedagogically we
find that Skolemization best illustrates the general structure of the model-theoretic
arguments, having a long history whose details serve to shed light on Putnam’s overall
dialectic; further, even though its original target is the language of set theory, the
techniques can be easily applied in arithmetic which will be the main focus of our
work.1

1Even though we will try to maintain the technical terminology as standard as possible, the reader
is invited to consult the Appendix for details on definitions and symbolism.
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2.1.1 Skolemization

Putnam(1980 : 464) opens with a telling indication of the main inspiration for the
model-theoretic arguments. There we can read ‘In 1922 Skolem delivered an address
before the Fifth Congress of Scandinavian Mathematicians in which he pointed out
what he called a “relativity of set-theoretic notions”.’ The quote refers to Skolem(1922)
where Skolem’s Paradox is first presented together with the implication that ‘[...] set-
theoretic notions are relative.’ (Skolem, 1922 : 300)

Skolem’s Paradox makes essential use of the Löwenheim-Skolem Theorem:

Löwenheim-Skolem Theorem: Consider an infinite L-structure M.
Then:

1. For any A ⊆M , there is an L-structure H ≺M, and A ⊆ H with

| H | ≤ max(| A |, | L |,ℵ0);

2. For any cardinal k ≥ max(| M |, | L |), there is an L-structure N
such that M≺ N and | N |= k.

The paradox is given by the fact that a standard first-order axiomatization of set
theory, say, zfc, on the assumption that it is consistent (and, therefore, that it has
a (infinite) model), admits by the Löwenheim-Skolem Theorem a countable model
B. Since B is a model of zfc it follows by Cantor’s Theorem: B |= ∃x ‘x is un-
countable’. Then there is a b ∈ B for which B |= ‘b is uncountable’.2 But since B is
countable we also have that there are only countably-many a ∈ B with B |= a ∈ b;
this leads us to expect that ‘¬ (b is uncountable)’ also holds. The appearance of
contradiction quickly fades by noting that b is really countable, though the relevant
surjective function lies outside the domain of B and so outside what ∃B can ‘see’.
That is, the ‘paradox’ confuses two different levels of interpretation: on one inter-
pretation of ‘∃x ‘x is uncountable” the quantifier ranges over the small domain B
of B such that within the model ∃B does not ‘see’ any surjection f from ω onto b;
on another interpretation where the quantifiers are allowed to range over the entire
set-theoretic universe, the quantifiers range over the relevant surjection. ‘In a slogan:
to be uncountable-according-to-B is not to be uncountable simpliciter. Paradox dis-
solved.’ (Button & Walsh, 2018 : 177). Skolem’s paradox hinges then on ambiguity:
on the one hand, the claim that ‘∃x ‘x is uncountable” is made within the model
where no such surjection is available, and ‘¬∃x ‘x is uncountable” outside.3

Though the appearance of paradox is normally taken to be merely mathematically
ill-founded,4 Skolem proposes weighty consequences claiming:

2By ‘x is uncountable’ we mean a suitable formalization φ(x) in the language of set theory
capturing the fact that there is no surjective function f from ω onto x. So φ(x) is an open formula
with a free variable, and φ(b) the result of interpreting the formula in B and replacing x with b.

3We note that with the respect to Skolem’s paradox obtained only through the Downward
Löwenheim-Skolem Theorem, the ambiguity may also hinge on a deviant understanding of the mem-
bership relation interpreted within B. A more subtle derivation of the paradox that locates the
problem solely in the interpretation of the quantifiers involved, as explained in the main text, may
be obtained by a strengthened version of the Downward Löwenheim-Skolem Theorem, the Transitive
Submodel Theorem. See Bays, 2014 : § 1 for details.

4And Skolem is aware of this point: ‘[...] there is no contradiction at all if a set M of the domain
B is nondenumerable in the sense of the axiomatization; for this means merely that within B there
occurs no one-to-one mapping Φ of M onto Z0 (Zermelo’s number sequence). Nevertheless there
exists the possibility of numbering all objects in B, and therefore also the elements of M , by means
of the positive integers; of course, such an enumeration too is a collection of certain pairs, but this
collection is not a “set” (that is, it does not occur in the domain B).’ (Skolem, 1922 : 295)
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[...] axiomatizing set theory leads to a relativity of set-theoretic notions,
and this relativity is inseparably bound up with every thoroughgoing ax-
iomatization. (Skolem, 1922 : 296).

It is important to be clear on Skolem’s understanding of ‘axiomatization’. From
Skolem’s critique of Zermelo’s own (conception of) axiomatization (see Skolem, 1922
: 295-296), something as an algebraic conception must be what he has in mind. This
reading is further supported by the influence exerted on Skolem by the Schröder’s
algebraic school of logic5 and, second, the overall intellectual milieu found in the 20s
when an algebraic understanding of a theory’s axioms was common-place (see Bays,
2014 : § 3.1). On the algebraic conception, set-theoretic notions are captured model-
theoretically through the structures satisfying the axiomatization; the axioms serve
to characterize (or even define) the notions they include: for example, a ‘set’ is just an
element of the domain of a model and ‘membership’ a relation defined on the model.
As a consequence, the axioms of set theory do not aim at pinning down a previously
given ‘intended’ model; on the contrary, all those structures that satisfy the axioms
can, in a sense, be counted as intended.

The crucial point is that, on the algebraic conception, basic notions are captured
by the model theory of the axiomatization: if a formula has a fixed interpretation
then it has an absolute meaning; relative otherwise. We should be careful in spelling
out what we mean by fixing the interpretation of a formula or notion, on pain of
triviality. For, in a sense, algebraic axiomatizations do make all set-theoretic notions
relative: the membership relation in one model may be different than the membership
relation in another; some object may stand for the empty-set in one model and for
a singleton in another. Now, if by fixing the interpretation we just mean that a
notion or formula must have the same denotation or value across different models,
then (almost) every notion will turn out to be relative. Skolem’s understanding of
‘relativity’ is more fine-grained than this. Granted that in a way ‘empty-set’ is relative:
in the formula ‘x is the empty-set’, the denotation of x may change across models.
However, if x is really the empty-set, then x will have to satisfy ∀y(y 6∈ x) across all
models. This gives us a sense in which we may fix and capture absolutely, within an
algebraic axiomatization, what is for something to be the empty-set: x is the empty-
set iff x satisfies ∀y(y 6∈ x). What Skolem demonstrates is then that, even with this
more fine-grained understanding of ‘relativity’, ‘uncountability’ is (still) relative: no
matter the first-order axiomatization we use to capture the set-theoretic notion of
‘uncountability’ or the meaning of ‘x is uncountable’, the Löwenheim Theorem will
always yield a countable structure. If, as the algebraic conception has it, what an
element is is captured by its role within the model, there is a sense in which that x is
really countable. As long as set-theoretic notions are characterized by looking at the
model theory of first-order axioms, some notions like ‘uncountability’ will turn out to
be relative. And Skolem repeats this conclusion almost ad nauseam:

[...] on an axiomatic basis higher infinities exist only in a relative sense.
(Skolem, 1922 : 296)

Tous les concepts de la théorie des ensembles et par conséquent de la
mathématique tout entière se trouvent ainsi relativisés. Le sens de ces
concepts n’est pas absolu; il se rapporte au champ axiomatique basique.
(Skolem, 1942 : 467-468)6

5For a quick introduction to Schröder’s ‘algebra of logic’ see Peckhaus, 2009 : § 3.
6Every concept of set theory and as a consequence of mathematics as a whole are in this way
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More than 30 years ago I proved by use of a theorem of Löwenheim that a
theory based on axioms formulated in the lower predicate calculus could
always be satisfied in a denumerable infinite domain of objects. [...] As I
emphasized this leads to a relativisation of set theoretic notions. (Skolem,
1955 : 587)

But even if set-theoretic notions are relative modulo the algebraic conception, Skolem
leaves open the question if they are relative tout court, modulo every conception of
‘axiomatization’. And here we may distinguish three readings of what Skolem is trying
to do when presenting his paradox (see Bays, 2014 : § 3.1 for details and references
therein):

1. On one traditional reading Skolem(1922) is a critique of set theory and set-
theoretic notions in general. Skolem argues that the best way to define and un-
derstand basic set-theoretic notions is axiomatically, given that a mere ‘naive’
insight is not feasible due to Russell-like paradoxes. It is assumed that the only
legitimate axiomatization is algebraic. Löwenheim-reasoning shows the relativ-
ity of set-theoretic notions. Conclusion: set theory is relative. This reading
emphasizes Skolem’s attitude towards set theory as an improper foundation for
mathematics:

The most important result above is that set-theoretic notions are
relative. [...] I believe that it was so clear that axiomatization in terms
of sets was not a satisfactory ultimate foundation of mathematics [...]
(Skolem, 1922 : 300-301)

Further, in a remarkable passage worth quoting in full in the original french,
Skolem even equates ‘sets’ more to fictions than to concrete or absolute notions:

Comme les raisonnements d’après toute axiomatique des ensembles ou
d’après un système logico-formel se font de manière que l’ absolu non-
dénombrable n’existe pas, l’affirmation de l’existence des ensembles
non-dénombrable ne doit être considérée que comme un jeu de mots,
cet absolu non-dénombrable n’est donc qu’une fiction. La véritable
portée du théorème de Löwenheim est justement cette critique du
non-dénombrable absolu. Bref : cette critique ne réduit pas les infinis
supérieurs de la théorie simple des ensembles ad absurdum, elle les
réduit à des non-objects. (Skolem, 1942 : 468)7

2. A more toned down reading sees Skolem’s Paradox has playing a modest role in
the overall argument against set theory as a foundation. Skolem’s Paradox does
show the problems of the algebraic conception, but is silent on the role played
by the Löwenheim Theorem regarding other conceptions of ‘axiomatization’.

rendered relative. The sense of these concepts is not absolute; they are related with the basic
axiomatique field. (Our translation)

7Since every reasoning concerning every axiomatic of set theory or one logical-formal system is
made in a way such that the absolute nondenumerable does not exist, the affirmation of the existence
of nondenumerable sets should only be considered as a play-on-words, this absolute nondenumerable
is nothing but a fiction. The real consequence/meaning of Löwenheim’s Theorem is precisely this
critique of the absolute nondenumerable. In brief : this critique does not reduce the higher infinities
of elementary set theory to ad absurdum, it reduces them to non-objects. (Our translation) Recall
that by ‘absolute’ Skolem means a non-relative notion so that ‘l’ absolu non-dénombrable n’existe
pas’ is meant as saying that uncountability is essentially relative.
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3. A third way to understand the role of Skolem’s Paradox is seeing it as high-
lighting the particular character of the notion of ‘uncountable set’. Like the
first option, it places the paradox in the larger project of attacking set theory
as a foundation; and, like the second, it gives it only modest importance within
Skolem’s wide goals. Accordingly, the Paradox does not lead to the conclusion
that set theory is completely relative but, on the contrary, only that there is
no legitimate (i.e. non-relative) way to introduce the notion of ‘uncountability’
in mathematics. Skolem’s Paradox is taken to establish that, in an algebraic
understanding of the set-theoretic axioms, we do not need to accept uncount-
able sets since we may always choose to interpret the axioms within a countable
model.

The main aim of Putnam(1980) is to extend the overall consequences of Skolem’s
Paradox by producing a genuine antinomy within philosophy of language (or of math-
ematics or of model theory), even though the Paradox itself might not be a genuine
antinomy in mathematical logic. Putnam’s Skolemization Argument defends that a
theory whose prima facie intended interpretation is uncountable has by the Downward
Löwenheim-Skolem Theorem a countable unintended interpretation. First, he shares
the commonly acknowledged conclusion of Skolem’s Paradox: that non-standard mod-
els highlight the fact that an ‘intended’ interpretation or ‘intuitive notion of set’ is
not captured by the formal system of set theory, i.e. its axiomatization. Second,
he argues that, by the same token, the collection of all our ‘theoretical constraints’
– understood as a collection of sentences which constitute our best theory of the
physical world plus our best theory of set theory, cannot rule out unintended inter-
pretations. Quite simply, on the assumption that the class of theoretical constraints
can be first-order regimented, it will by the Downward Löwenheim-Skolem Theorem
have a countable model. And given that we wish to say that the intended interpreta-
tion of the theoretical constraints must be uncountable (for they include the language
of set theory whose intended model is, by assumption, uncountable), the countable
interpretation is unintended:

[...] even a formalization of total science (if one could construct such a
thing) [...] could not rule out unintended interpretations, and, a fortiori,
such a formalization could not rule out unintended interpretations. (Put-
nam, 1980 : 466).

Such a collection of sentences has a countable unintended model (assuming again
that the intended interpretation is uncountable). By parity of reasoning, neither can
‘operational constraints’ – understood as the collection of all physical measurements
we might come to make, fix the intended interpretation: ‘we can find a countable
submodel of the ‘standard’ model (if there is such a thing) [...] of our entire body of
belief which meets all operational constraints.’ (Putnam, 1980 : 466).

This gives us the first premise of the model-theoretic arguments:

Premise: Theoretical and operational constraints do not fix a unique
‘intended interpretation’ for the language.

Now, Putnam argues that even the addition of extra-theoretical-cum-operational con-
straints cannot fix the intended model. Here, Bays(2001 : 341) remarks ‘The heart
of Putnam’s defense [...] is the observation that the phrase “theoretical constraints”
is broad enough to encompass philosophy as well as mathematics and natural sci-
ence.’ That is, any constraint on how set theory gets its intended interpretation can
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be seen as a new theoretical constraint up for reinterpretation through non-standard
models. This means that no new attempts can fix the interpretation for, by the same
techniques, we can find models that satisfy the original constraints together with the
new requirement. Hence, any attempt to fix the reference of our mathematical vo-
cabulary through the addition of extra-mathematical or empirical constraints on our
mathematical language is bounded to form a broader characterization of our math-
ematical practices and, consequently, admits a (first-order) formalization interpreted
with non-standard models. In the literature, this widely criticized strategy (for ex-
ample, Bays(2008)) is known as the ‘just-more-theory manoeuvre’: attempts to fix
the intended interpretation of our language by the addition of new requirements are
seen as ‘just-more-theory’, i.e. just more first-order regimented sentences addable to
the language and capable of being interpreted in a non-standard fashion.

This gives us the second premise of the model-theoretic arguments:

Premise: Nothing other than theoretical and operational constraints could
fix a unique ‘intended interpretation’ for the language.

The above strategy has motivated a form of model-theoretic scepticism that threatens
our supposed ability to determine the intended models of our theories and whose
original debt to Skolem is recognized with terms as ‘Skolemite’ or imaginary sceptical
scenarios proposed by a certain ‘Thoralf’. Normally, given a suitable mathematical
notion, say, set, defined through a formal system T , the sceptic is fond of pointing
out the existence of deviant non-standard interpretations of T that yield incompatible
(i.e. non-isomorphic) extensions of set. If this relativity is unavoidable, germane to
the axiomatization, then there is no principled way to discern one particular model
as intended of the relevant notion. That is, if the theory which defines set does not
determine a particular structure, no particular structure satisfying the theory can be
counted as best capturing what is for something to be a set. We then obtain Putnam’s
desired conclusion:

Conclusion: There is no unique ‘intended interpretation’ for the language.

Hamkins and the Skolemite

The set-theoretic relativity defended by Skolem and Putnam has attracted contem-
porary supporters. They illustrate how the consequences of the model-theoretic argu-
ments affect matters of ontology, truth-value and the question of adding ‘new axioms’
in set theory capable of deciding independent statements.

Set-theoretically, skolemite scepticism is problematic for a universe view. The uni-
verse view admits a unique background conception of set whose intended extension
corresponds to a single universe V with sets accumulating transfinitely, and where
all statements (including ch) have a determinate truth-value. In this sense, indepen-
dence phenomena are taken to be just a curious feature about provability – about
the weakness of the specific theories in finding the truths holding in the universe –
rather than the truths themselves that hold there. In a single universe, for good or
for worse, ch will be either true or false, and independence results are seen, if not
as a distraction, then at most as a hint of the needed supplementation of zfc with
stronger axioms capable of deciding the independent statements.8 Forcing extensions
of the universe or V -generic filters are considered merely illusory, a façon de parler

8An example of such a position would be Gödel(1947).
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somehow paraphrased away, since V is already everything there exists. Skolemite rea-
soning however breaks with the pretension of characterizing V (up to isomorphism)
as the intended model or the determinate extension of set: different models of set
define, prima facie, equally legitimate extensions of the concept so that V is not to be
prefered from a countable model B. Recently, Hamkins(2012) has developed a view
that noticeably respects the skolemite spirit. For Hamkins and his multiverse view
there are distinct concepts of set9, each instantiated in a corresponding set-theoretic
universe within which there are different set-theoretic truths. He argues that the use
of forcing extensions, inner models and other model-theoretic techniques made the
models of set theory the principal objects studied in the discipline, in such a way that
set-theorists have gained a ‘robust experience’ (Hamkins, 2012 : 418) of the alter-
native universes rendering difficult (if not completely ad hoc) to explain away these
constructions as the universe view intends. The multiverse is a a view of (what is
dubbed) higher-order realism: each universe exists in the very same Platonic sense
that proponents of the universe view take V to exist.

Shapiro introduces a very helpful distinction between algebraic and non-algebraic
theories (see Shapiro, 1997 : chap. 2). We say that a theory is non-algebraic if it
aims at describing a particular structure or class of structures; a theory is algebraic if
it is not non-algebraic. Model-theoretically, the distinction can be better sharpened
thus:

The model-theoretic framework allows a relatively neat distinction be-
tween algebraic and nonalgebraic branches of mathematics. A field is
nonalgebraic if it has a single “intended” interpretation among its possi-
ble models or, more precisely, if all of its “intended” models are isomorphic
(or at least equivalent). [...] A field is algebraic if it has a broad class of
(nonequivalent) models. (Shapiro, 1997 : 50)

Examples of algebraic theories would then be, for example, group theory, or graph
theory, not aiming at picking out a particular structure but rather at being applied to
many different theories. The traditional view would classify arithmetic or set theory
has non-algebraic in spirit; after all, talk of ‘the natural numbers’ or ‘the model of
set theory’ carries the implicit commitment in one intended structure that really or
correctly characterizes the natural numbers.10

Hamkins(2012) is normally taken to show that set theory is algebraic, in the above
sense of the term. There is no intended model of the theory, but rather a collection
of structures that stand on equal ground in terms of being the model of set theory.
If Hamkins is here correct in inferring an algebraic view of set theory might be a
controversial matter. However it is not our interest to critically address the burgeoning
literature on the multiverse conception (for a comprehensive critique see Koellner,
2013), but only to illustrate how it can be seen to be an extension of Skolem’s own
aims and methods. With this latter goal then in mind, we note that the multiverse
takes forcing extensions at face value (Hamkins, 2012 : 425): V -generic filters G do
exist as well as well as the corresponding universes V [G]. The multiverse is a natural

9Hamkins notion of conception of set is too algebraic, seeing the notion has captured by the model
theory of the relevant axiomatization: ‘I shall simply identify a set concept with the model theory
of set theory to which it gives rise.’ Hamkins, 2012 : 417.

10Before we have also used the term ‘algebraic’ when referring to Skolem’s conception of axiomati-
zation. The two are easily associated – a theory with an algebraic axiomatization (in Skolem’s sense)
and an algebraic theory (in Shapiro’s sense) are both a theory without an intended interpretation.
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counterpart to the philosophical consequences of Skolem’s Paradox: imagine M to
be a model living somewhere in the multiverse and a some set in M ; then, M has a
forcing extension M[G] where a is countable. This gives substance to the idea that
from a certain perspective or conception of set (recall, that a conception of set is
equated with a model or class of isomorphic models of the theory) every set can be
seen as countable, similar to Skolem’s original idea that ‘uncountability’ is relative
and model-dependent. When providing a set of principles for the multiverse, Hamkins
then proposes:

Countability Principle: Every universe V is countable from the per-
spective of another universe W .

Also, like Skolem, within Hamkin’s proposal set-theoretic questions are rendered rel-
ative to the concept or universe one chooses to work with. The truth-value of set-
theoretic questions – is ch true/false? – is parametrized to the background model.
As a result it is not expected for set-theoretic statements to have a determinate truth-
value either. In some models ch will be true and in others false. ‘[...] the answer
to ch consists of the expansive, detailed knowledge set theorists have gained about
the extent to which it holds and fails in the multiverse [...]’ (Hamkins, 2012 : 429)
Finally, Hamkins also agrees that set-theoretic relativity spreads up to other notions
defined set-theoretically, in particular, arithmetic and arithmetical concepts. There
is no prior reason as to why different set conceptions should agree on the concept of
natural number. (Hamkins, 2012 : 427 - 428) Further, an observation to which we
will return to below at some length, Hamkins recalls the familiar fact that Dedekind’s
Categoricity Proof for arithmetic is a full second-order claim dependent on a fixed
concept of arbitrary subsets of N (in the meta-theory) and that for this reason any
claim regarding a unique structure or determinacy of the natural number sequence
should be made with respect to this more relative and dubious grasp of ℘(N).

Despite all the similarities, Hamkins motivates his multiverse (and consequent set-
theoretic relativity) not from paradoxical reasoning, but from actual mathematical
practice. First, there is a sense in which the multiverse respects or makes justice
to the set-theorist’s ‘robust experience’ or belief in those other universes. Second, a
universe view worried about ‘simulating’ universe extensions within V ‘may miss out
on insights that could arise from the simpler philosophical attitude taking them as
fully real’ (Hamkins, 2012 : 426) – forcing techniques are no longer served only for
relative consistency proofs, but to study objects which are interesting by themselves;
a universe view that dismisses them tout court may loose important mathematical
insight. Third, a universe view imposes (arbitrary) constraints on the mathemati-
cian’s work placing limitations on which kinds of universes might there exist. As
Bays sees it, ‘Hamkins does not argue that, because forcing extensions are possible,
we are stuck with set-theoretic relativity; rather, he argues that, because forcing ex-
tensions are natural, we should embrace set-theoretic relativity.’ (Bays, 2014 : § 3.3)
Hamkins(2012) can then be seen as a natural development and illustration of Skolem’s
set-theoretic relativity.

Arithmetic and the Skolemite

It is an easy task to transfer Skolem’s or Putnam’s traditional model-theoretic scep-
ticism about sets to natural numbers. Arguably, the most common axiomatization of
the natural numbers is the axiomatics of first-order Peano Arithmetic (pa) being the
one that we will be mostly interested throughout the rest of this work. Within the
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signature Lpa = {0, S,<,+,×}, pa describes the basic algebraic properties of addition
and multiplication with an axiom schema for the validity of (first-order) induction:

Definition (Robinson’s Arithmetic) Robinson’s Arithmetic Q is the the-
ory obtained by deductive closure of the axioms:

¬∃y(S(y) = 0)

∀x(x 6= 0→ ∃y(x = S(y))

∀x∀y(S(x) = S(y)→ x = y)

∀x(x+ 0 = x)

∀x∀y(x+ S(y) = S(x+ y))

∀x(x× 0 = 0)

∀x∀y(x× S(y) = (x× y) + x)

∀x∀y(x ≤ y ↔ ∃z(x+ z = y))

Definiton (Peano’s Arithmetic) Peano’s Arithmetic pa is the theory ob-
tained by deductive closure of Q and the Induction Schema:

Ind(ϕ) := (ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x))))→ ∀yϕ(y)

where ϕ is an Lpa-sentence.

N = 〈N, 0, S,<,+,×〉 is the standard model of pa. It is an elementary result that pa
admits models non-isomorphic to the standard model. The existence of non-standard
models is proven with the Compactness Property for first-order logic.

Definition (Non-Standard Model) A non-standard model M of pa is a
model of pa such that M 6∼= N .

Definition (Categoricity) A theory T is k-categorical iff for any two mod-
els A and B of cardinality k, A ∼= B.

Now, we quickly recall some classical theorems for first-order logic:

Completeness Theorem (Gödel 1930): Let T be an L-theory (a the-
ory in the language of classical first-order logic) and ϕ an L-sentence.
Then T |= ϕ iff T ` ϕ.

From Gödel’s Completeness it is easy to derive:

Lemma: T is consistent iff it is satisfiable.

Compactness Theorem: An L-theory T is satisfiable iff every finite
subset of T is satisfiable.

With this little background in place we are able to show that pa admits non-standard
models and, as a consequence, that it is not categorical.

Theorem (Skolem 1934): There exist non-standard models of pa.

Proof. We want to show that there is a model of pa non-isomorphic to
the standard model N . Augment the signature of pa, Lpa, by recursively
defining a collection of terms n ∈ Lpa such that 0 = 0 and n+ 1 = n + 1
(for n ∈ N), and let c be a fresh constant symbol. Now, consider in the
language of Lpa ∪ {c} the theory
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T = {Axioms of pa} ∪ {¬(n = c) | n ∈ N}

It is clear that every finite subset T0 ⊂ T is satisfiable. For since T0 is
finite it contains finitely many sentences of the form ¬(n = c). So, by
letting m be the largest n such that ¬(n = c) ∈ T0, we can consider a

signature-expansion N+ of N with cN
+

= m+1. It follows that N+ |= T0.
Since T0 was arbitrary, every finite subtheory of T is satisfiable, and by
the Compactness Theorem T itself is satisfiable. Hence, there is a model
M of T . Hence, M |= pa.

Now, it is left to show that N is non-isomorphic to M. This is easily
seen because in M the interpretation of c differs from the interpretation
of each n. So this element cM must be a non-standard number since it is
larger than any number picked out by a (standard) numeral. We conclude
that N 6∼=M, and M is non-standard.

Countable models of pa have exactly two order types, since:

Theorem: If M is a non-standard model of pa, then, as an ordered set,
M∼= N + Z× η, where η 6= 0 is a dense linear order without end-points.

Proof. See Kaye, 1991 : 6.2.

From Cantor’s back-forth construction we know that (Q, <) is the unique countable
linear order without end-points. Hence, in the countable case, there are only two
possibilities for η: either η = 0 andM has order type N as in the case of the standard
model or η = Q and M has order type N + Z×Q as in the case of the non-standard
models. This is sometimes expressed by saying that pa has two countable models.
Of course, by a theorem from Vaught no first-order theory can have exactly two
isomorphism types, for a given cardinality. What is true is rather that the theory has
exactly two countable order types. In fact, we can show that there are 2ℵ0 -many such
countable models.

Theorem (Gödel-Rosser Theorem) Let T be a recursively axiomatizable
L-theory extending Q. Then, there is a Π1-sentence ϕ such that T 6` ϕ
and T 6` ¬ϕ.

With the Gödel-Rosser Theorem we can prove our desired statement.

Theorem: There are 2ℵ0 -many countable models of pa.

Proof. Let ϕ be the Gödel-Rosser sentence of pa. pa leaves ϕ undecided:
pa 6` ϕ and pa 6` ¬ϕ. Then, both pa + ϕ and pa + ¬ϕ are consistent
and, by the Completness Theorem, they both have a model. So consider
M0 |= pa+ϕ andM1 |= pa+¬ϕ. By the Downward Löwenheim-Skolem
Theorem we can consider both models countable. We note thatM0 6≡ M1

and, therefore,M0 6∼=M1. We repeat this process and consider the Gödel-
Rosser sentences of the theories pa+ϕ and pa+¬ϕ. Call them ϕ0 and ϕ1,
respectively. Again, there exist (countable) models M0,0 |= pa + ϕ + ϕ0

and M0,1 |= pa + ϕ+¬ϕ0. Similarly, M1,0 |= pa +¬ϕ+ ϕ1 and M1,1 |=
pa + ¬ϕ+ ¬ϕ1.
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We have N |= pa and, therefore, N ≺ M0 and N ≺ M1. Similarly,
M0 ≺ M0,0 and M0 ≺ M0,1, and M1 ≺ M1,0 and M1 ≺ M1,1. We
continue this process by letting x equal 0 inMa,....,b,x whenMa,....,b |= Γ
is an elementary substructure of Ma,....,b,x |= Γ + ϕ, and x equal 1 when
Ma,....,b |= Γ is an elementary substructure Ma,....,b,x |= Γ + ¬ϕ.

Now, the cardinality of the set of functions from N to {0, 1} is 2ℵ0 . Then,
given that we can associate each function f ∈ {0, 1}N to the index of a
model Mn whose n is a sequence of 0’s and 1’s, it is clear that there are
2ℵ0 extensions of pa.

Consider a model A for which A ≺ ... ≺ Mi and A ≺ ... ≺ Mj . Then,
since i 6= j, there is a formula for which Mi and Mj disagree. Then,
Mi 6≡ Mj andMi 6∼=Mj . Hence,Mk 6∼= N , for eachMk that extends N .
Since, for any k, Mk |= pa, there are 2ℵ0 -many countable non-standard
models of pa.

The existence of non-standard models provides the necessary resources for a full-blown
model-theoretic scepticism. Intuitively, we wish to say that N (perhaps even up to
isomorphism) is the intended model of pa and to rule out other structures from being
constitutive of our concept of natural number. But this is precisely what the skolemite
sceptic prevents us to do. IfM |= pa for non-standardM, then the model is as good
a candidate to determine the interpretation of natural number. The challenge is then
to explain which, if any, is the intended model of arithmetic.

A point seems uncontentious. Skolem takes the relativity of set-theoretic concepts
as the infectious root of the relativity of mathematical concepts defined through the
former, including arithmetic. And similarly the construction of non-standard models
also leads Putnam to embrace the relativity of the natural number sequence.

[...] if one desires to develop arithmetic as a part of set theory, a definition
of the natural number series is needed and can be set up as for example
done by Zermelo. However, this definition cannot be conceived as having
an absolute meaning, because the notion set and particularly the notion
subset in the case of infinite sets can only be asserted to exist in a relative
sense. (Skolem, 1955 : 587)

[...] le caractère vague de la notion d’ensemble. [...] Il est évident que ce
caractère douteux de la notion d’ensemble rend aussi d’autres notions dou-
teuses. Par exemple, la définition sémantique de la vérité mathématique
proposée par A. Tarski et d’autres logiciens présuppose la notion générale
d’ensemble. (Skolem, 1958 : 633)11

If there are possible divergent extensions of our practice, then there are
possible divergent interpretations of even the natural number sequence –
our practice, or our mental representations, etc, do not single out a unique
‘standard model’ of the natural number sequence. (Putnam 1981 : 67)

2.1.2 Constructivization

By Skolem’s Paradox the meaning of basic notions as ‘x is uncountable’ or ‘x is finite’
is not fixed by the model theory of first-order set theory, so that those expressions

11[...] the vague character of the notion of set. [...] It is evident that this dubious character
of the notion of set also renders other notions dubious. For example, the semantic definition of
mathematical truth proposed by A. Tarski and other logicians presupposes the general notion of set.
(Our translation)
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are rendered (semantically) ‘relative’ in the sense which we have been elaborating.
If the theory cannot rule out non-standard interpretations then it cannot by itself
fix or pin down the intended interpretation of its first-order language. From these
by now over-repeated comments, Putnam infers the indeterminacy of truth-value of
set-theoretic statements, focusing on the case of independent sentences. He writes:
‘[...] sentences which are independent of the axioms which we will arrive at in the
limit of set-theoretic inquiry really have no determinate truth-value; they are just
true in some intended models and false in others.’ (Putnam, 1980 : 467)

For a given theory or domain of discourse T we wish to say that a statement ϕ is
really true if the statement is satisfied by the intended model of the theory. On this
view, unintended models where ϕ is falsified can be easily dismissed since they do not
capture the theory itself correctly. However, if there is no principled way to determine
which model is intended, then it seems that given two models of T that disagree on
the truth-value of ϕ there is no principled way to decide if ϕ is true or false. This
gives us the indeterminacy of truth-value in relation with ϕ.

Putnam’s Constructivisation Argument attacks the determinacy of truth-value re-
garding set-theoretic statements. Gödel’s 1938 result shows that V = L is indepen-
dent of the axioms of zfc: on the assumption that zfc is consistent, zfc+V = L and
zfc+V 6= L are equally consistent. Now, if what is needed to be the intended model
is just to satisfy the axioms of the theory, then there is an intended model where
V = L is true and another where it is false, so that V = L comes out indeterminate.
This illustrates how non-standard models pose challenges to the determinacy of truth-
value. Curiously, Putnam is (very) generous to the advocate of, what we can call,
‘truth-value determinacy’ and entertains the thought that empirical measurements
might decide on V = L. For example, suppose we define a set s ⊆ N of an infinite
sequence of tosses of a (idealized) random coin; to this end we say that n ∈ s iff at
the nth toss the coin lands heads. Given that s is ‘built’ by a random process, there
is no reason to suppose that s is a definable subset of N, in which case s would be
a non-constructible set yielding the falsehood of V = L. ‘In this case, it might seem
like nature itself manages to falsify the hypothesis that V = L.’ (Bays, 2001 : 333)
Now for a small theorem:

Theorem: zf+V = L has an ω-model which contains any given countable
set of real numbers.

Proof. See Putnam, 1980 : 468.12

Let OP be a countable collection of real numbers which codes up all the measurements
human beings will ever make, including s (it is sensible to assume that human beings
will make at most countably-many measurements). By the above theorem there
is a model which contains OP (or, at least, a formal analogue of it). The model
satisfies both zfc + V = L and our measurement s. This means that even if s is

12However, as noted by Bays(2001), Putnam’s proof contains a mistake. There is a step where
Putnam needs to apply the Downward Löwenheim-Skolem Theorem to L producing a countable
structure elementary equivalent to L and containing the respective set of real numbers. But this is
an illegitimate move for the Theorem only applies to structures with sets for their domains, which is
not the case for L. There are easy ways to fix the prove by moving to stronger theories; for instance,
if Putnam admits the existence of inaccessible cardinals k, he can go on to say that Lk is a model of
zf+V = L and apply the Downward Löwenheim-Skolem Theorem to Lk instead and prove his claim.
For philosophical and mathematical elaborations on this issue see Bays(2001) and, more recently,
Button(2011).
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nonconstructible ‘in reality’, there can be a model accounting for s which satisfies at
the same time the claim that ‘everything is constructible’.

[...] suppose we formalize the entire language of science within the set
theory ZF plus V = L. Any model for ZF which contains an abstract
set isomorphism to OP can be extended to a model for this formalized
language of science which is standard with respect to OP – hence, even if
OP is nonconstructible in “reality”, we can find a model for the entire lan-
guage of science which satisfies everything is constructible [...] (Putnam,
1980 : 468)

Again, the conclusion is similar as before. If only theoretical-cum-operational con-
straints fix the ‘intended interpretation’, there will be intended models with V = L.
On the other hand, Putnam also assumes that there are interpretations of set theory
(also compatible with any empirical measurements we may ever come to make) with
V 6= L. Putnam concludes that the original skolemite relativity of set-theoretic no-
tions extends to the relativity of truth-value of V = L (and he also admits by similar
arguments the truth-value relativity of the axiom of choice and ch).

The Constructivization Argument can also be applied in arithmetic. Recall that
Constructivization consists in extending Skolem’s relativity of mathematical notions
to the relativity of truth-value of mathematical statements. Now, by Gödel’s Second
Incompleteness and Completeness Theorems, there are models M1 |= pa + Con(pa)
andM2 |= pa+¬Con(pa). If there is no intended model, model-theoretic scepticism
will entail that the truth-value of Con(pa) is indeterminate: both M1 and M2 are
two equally good descriptions of the natural numbers that decide on the question of
consistency differently. A second comment, perhaps not related with truth-value but
still worth making, remarked by Dean(2002 : 4), concerns the Lpa-terms SentLpa(x)
and ProofLpa

(x, y) expressing, respectively, ‘x is the Gödel number of an Lpa-sentence’
and ‘x is the Gödel code of an Lpa-sentence with Gödel number y’. They are satisfied
by arbitrary large standard numbers. Appealing to the Overspill Principle:

Overspill Principle: Let ϕ(x) be an Lpa formula. Let M be a non-
standard model. If M |= ϕ(n) for all n ∈ N, then there is a non-standard
number a such that M |= ϕ(a)

Proof. Assume M |= ϕ(n) for all n ∈ N and let a be a non-standard
number. If M |= ϕ(a) it’s done. Otherwise we have M 6|= ϕ(a). Since
M is a model of pa it satisfies the least-number-principle, so there is
a least b that satisfies ¬ϕ(x). By assumption b must be non-standard.
Since b 6= 0 we have that there is a c such that M |= (S(c) = b). Then
c is also non-standard. Since c < b and b is the least ¬ϕ(x), we have
M |= ϕ(c).

The terms SentLpa
(x) and ProofLpa

(x, y) will also apply to non-standard numbers in
a non-standard model of pa and in this way they will have a non-standard interpre-
tation. As a consequence, the model-theoretic sceptic leads us to conclude that the
interpretation of these terms is equally indeterminate.

2.1.3 Permutation

Putnam(1977)’s Permutation Argument is based on the fact that isomorphic struc-
tures are very simple to come by. Given any structure that assumes the role of, say,
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the natural numbers and any bijection whose underlying domain is the domain of that
structure, we may build an isomorphic copy of that initial structure:

Push-Through Construction: Let L be a signature and M an L-
structure with domain M . Consider a bijection π : M → N . The function
π induces an L-structure N with domain N by ‘pushing’ the assignments
in M through π. That is, for every symbol s in the signature, we define
sN = π(sM). More precisely:

• For L-constant symbol c, cN = π(cM)

• For n-ary L-function symbol f , fN (π(tM1 ), ..., π(tMn )) = π(fM(tM1 , ..., tMn ))

• For n-ary L-relation symbolR, RN = {(π(tM1 ), ..., π(tMn ) | (tM1 , ..., tMn ) ∈
RM}

By construction π defines an isomorphism between M and N , so that
M∼= N .

The Push-Through Construction then shows that, given a suitable bijection, isomor-
phic structures are easy to build. Perhaps more interesting, it gives us the following
theorem:

Permutation Theorem: Let L be a signature and M a non-trivial L-
structure with domain M . That is, M is such that:

• |M |≥ 1; and

– there is an object denoted by a constant in the signature; or

– there is a non-empty non-universal relation defined on the model:
that is, for a1, ..., an, b1, ..., bn ∈M (with ai = aj iff bi = bj) it is
the case that (a1, ..., an) ∈ RM and (b1, ..., bn) 6∈ RM; or

– there is a non-empty non-universal function defined on the model:
that is, for a1, ..., an, b1, ..., bn ∈M (with ai = aj iff bi = bj) it is
the case that an = fM(a1, ..., an−1) and bn 6= fM(b1, ..., bn−1).

Then, there is an L-structure N with domain N such that M ∼= N and
M = N but M 6= N .

Proof. Consider a non-trivial L-structureM. Define a bijection π : M →
M such that either (a) for some constant c denoting an object in M ,
π(cM) 6= cM, or (b) for some non-empty non-universal relation R as
defined above, π(ai) = bi (for 1 ≤ i ≤ n), or (c) for some non-empty
non-universal relation f as defined above, π(ai) = bi. Let π induce an L-
structure N by a Push-Through Construction. By construction,M∼= N .
Further, since the bijection is a permutation, the domain of N is just
M . Finally, by the constraint imposed on π, N disagrees with M with
respect to the interpretation of (at least) a constant or relation or function
symbol. So M 6= N .

The Permutation Theorem assures that a (first-order) theory with a non-trivial model
has many different isomorphic models sharing the same domain. It is then easy to
see how given a model of arithmetic, many isomorphic copies can be produced. Since
the copies are isomorphic, they will be elementarily equivalent and satisfy the same
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arithmetical formulas, making it harder to isolate one particular model as the correct
one. Now, since the models are distinct they will disagree on the interpretation, i.e.
the reference of some symbol. This raises the philosophical challenge of deciding which
model better explains or describes the reference relation between word-numbers and
actual numbers. We can take the word-number ‘3’ to refer to the third successor of the
natural number sequence or, by a permutation argument, to the seventh. So when we
consider the term ‘3’ there is no single object to which the term (necessarily) refers;
‘3’ can be made to refer to any natural number. So what can ever fix the (intended)
referential relations?

Benacerraf and Push-Through

Benacerraf uses the Push-Through Construction and, more generally, the various
isomorphic or elementarily equivalent models of arithmetic to show that we should be
wary in identifying natural numbers with particular (set-theoretic) constructs rather
than isomorphism types. His analyses is the first cornerstone in a possible response
to the model-theoretic arguments.

Benacerraf(1965)’s main aim is to attack an ‘object-reductionism’ view from natural
numbers to sets. Without aiming at exhaustiveness, object-reductionism from a do-
main of objects A to B consists in successful translation of talk about A-objects –
a formula ϕA(xa1 , ..., xan), to talk about B-objects – ϕB(xb1 , ..., xbn), showing that
reference over the first kind can be seen as, or reduced to, reference over the sec-
ond. In the case of set theory, the canonical view would reduce natural numbers to
set-theoretic entities. So, if numbers just are von Neumann ordinals, a numerical
expression exhibiting explicit reference to numbers as in the case of ‘0<1’ is para-
phrased away through its set-theoretic counterpart ‘∅ ∈ {∅}’; or ‘S(0) = 1’ through
‘∅ ∪ {∅} = {∅}’. Now, Benacerraf focuses on two prominent reductions of the natural
number sequence: sure, numbers may be identified with von Neumann ordinals with
0, 1, 2, ... being translated by ∅, {∅}, {∅, {∅}}; still, the reduction to Zermelo ordinals
∅, {∅}, {{∅}} is equally justified.13 It is hard to discern that which may make the first
translation better that the second, for once + and × are defined recursively in the
usual way, both reductions will agree on which arithmetical sentences are true. It is
only in contrast with extra-arithmetical questions like 2 ∈ 4 that the two definitions
stop being co-extensional: in the von Neumann reduction 2 ∈ 4, in the Zermelo 2 6∈ 4.
Now, it cannot be the case that both reductions are correct. Assuming, classically,
that identity is transitive, if we identify 2 with an object a it cannot be the case that
2 is also equal to an object b different from a. But it is also true that both reductions
seem equally legitimate in such a way that no identification is to be preferred. ‘So
we are left without an answer to the question of whether 2 is really a member of 4 or
not. Will the real 2 please stand up?’ (Shapiro, 1997 : 5)

At this point, one position that the ‘object-reductionist’ might take is to claim that
there is indeed a correct reduction – natural numbers really are this kind of set, say,
von Neumann ordinals, but no argument can establish that natural numbers are von
Neumann ordinals rather than Zermelo’s. But it is argued that this move just pushes
the notion of correctness too far: ‘The notion of “correct account” is breaking loose
from its moorings if we admit of the possible existence of unjustifiable but correct
answers to questions such as this [i.e. the reduction of numbers].’ (Benacerraf, 1965 :

13For finite von Neumann ordinals the successor function maps each object to the union of itself
and its singleton: s(n) 7→ n ∪ {n}; for finite Zermelo ordinals the function maps each object to its
singleton: s(n) 7→ {n}.

22



58) If the notion of ‘correctness’ of an identity statement is to make sense, there has
to be some ground on which to judge that pretension to correctness; there must be
arguments that support it, otherwise, if has Benacerraf shows nothing can pick out
the correct account from other candidates satisfying the relevant correctness criteria
then talk of a ‘correct’ interpretation stops making sense.14

To repeat, if the reduction from numbers to sets is to be successful, or even intelligible,
then (a) numbers must be identified with only one particular kind of set (again, we
cannot have 3 = {{{∅}}} and at the same time 3 = {∅, {∅}, {∅, {∅}}} on pain of
violating transitivity of identity), and (b) it must be possible to provide a reason
as to why numbers must be identified with that particular kind of set. The latter
requirement follows from the idea that talk of unprovable or unknowable ‘correct’
equalities is just unsatisfactory. But there are different possible reductions of the
natural numbers satisfying our criteria for correctness. As a consequence, there is no
cogent reason to prefer one reduction over another and, hence, requirement (b) comes
out unsatisfied. If the above follows, we have that the identification between 3 and
a von Neumann ordinal is bound to be merely arbitrary, and, more generally, any
identification or reduction between 3 and a particular set misguided.

Benacerraf’s solution consists in maintaining that numbers are not sets15; in fact, by
the same token, numbers are not objects for there does not seem to be any reason
to identify a number with a particular object rather than with another isomorphic
copy. On the contrary, what is particular to the number 3 is its role in the natural
number sequence, i.e. that of being the third element of the sequence. So there is no
particular object that can be thought of as 3. In fact we saw by the Push-Through
Construction that any object can be the third element of a model of arithmetic and
therefore can be made to refer to ‘3’. This all suggests that what is important about
natural numbers is their general role in the natural number sequence. As Benacerraf
argues, arithmetic is not about a particular collection of objects, but rather about a
particular collection of system of relations determining a class of structures:

Arithmetic is therefore the science that elaborates the abstract structure
that all progressions have in common merely in virtue of being progres-
sions. It is not a science concerned with particular objects – the num-
bers. The search for which independently identifiable particular objects
the numbers really are [...] is a misguided one. (Benacerraf, 1965 : 70)

Against this background and recovering Shapiro(1991)’s terminology, Benacerraf(1965)
can be read as pushing the transition from a non-algebraic view of arithmetic to an
algebraic one – to insist on the obvious, Benacerraf shows that arithmetic is not about
a single structure but a class of isomorphic adequate structures.

14On this precise point, Paseau has recently argued pace Benacerraf that it is preferable to ar-
bitrarily choose one between two (or more) equally good possible set-theoretic reductions than to
refuse to perform the reduction at all. His claim is due, among several reasons, to the economy that
such a reduction from numbers to sets would afford: ontological economy – reductionism is a less
ontologically committing view of mathematical entities; ideological economy – reductionism reduces
the amount of primitive terms presupposed by a theory; axiomatic economy – reductionism reduces
the amount of basic principles. See Paseau(2009).

15[...] there is little to conclude except that any feature of an account that identifies 3 with a set is
a superfluous one and that therefore 3, and its fellow numbers, could not be sets at all. (Benacerraf,
1965 : 62)
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2.2 Categoricity and the Skolemite

2.2.1 The Moderate Realist and Categoricity

According to Putnam, the model-theoretic arguments are not, by themselves, meant
to be problematic for every view on the foundations of set theory/arithmetic. Put-
nam(1980) provides a special classification of foundational positions based on different
views regarding reference and truth: first, the extreme Platonist position ‘posits non-
natural mental powers of directly “grasping” forms (it is characteristic of this position
that “understanding” or “grasping” is itself an irreducible and unexplicated notion)’;
second, ‘the verificationist position which replaces the classical notion of truth with
the notion of verification or proof’; third, ‘the moderate realist position which seeks
to preserve the centrality of the classical notions of truth and reference without pos-
tulating nonnatural mental powers’. (Putnam, 1980 : 464)

Suppose we run through the model-theoretic arguments to a philosopher of mathe-
matics. If she is what we called an extreme Platonist, she might appeal to a magical
nonnatural inherent “grasp” of the natural numbers to determine which model is
intended. Problem solved! If she is prone to some sort of verificationism (i.e. in
identifying truth with verifiability, broadly construed) then she will just say that our
understanding of ‘The real numbers are nondenumerable’ consists in our knowing
what does constitute a proof of the claim, and not in the ‘grasp’ of a ‘model’. Prob-
lem solved! In the rest of the paper, however, we will be interested in analysing the
model-theoretic arguments through the eyes of the moderate realist since it is for her
that the arguments pose a greater challenge.

The moderate realist is first of all two things: moderate and realist. As a realist, she
believes in genuine abstract mathematical objects, independent of the mathematician,
taking mathematical statements at face-value. She does not wish to paraphrase away
the implicit existential commitment present in mathematical vocabulary. When she
hears ‘There are infinitely many reals between 0 and 1’ she understands that there
really are infinitely many reals between 0 and 1. Further, she is epistemically mod-
erate: she rejects any notion of faculty of mathematical intuition or intuitive grasp of
mathematical objects.16 It is easy to see why, at first sight, the moderate realist view
is attractive. First, unlike the verificationist, it takes mathematical statements at
face-value preserving the classical accounts of truth. Second, unlike the extreme Pla-
tonist, it fully dispenses with appeal to mysterious faculties that seem ‘both unhelpful
as epistemology and unpersuasive as science. What neural process, after all, could be
described as the perception of a mathematical object?’. (Putnam, 1980 : 471) Still it
is she who falls prey to Putnam’s challenge for she faces the following dilemma: on
the one hand, she believes that mathematical entities are real abstract entities and
‘since they are abstract, she accepts we cannot fix reference to mathematical entities
by seeing them, pointing to them [...]’ (Button & Walsh 2018 : 43); on the other
hand, non-standard models are prima facie not intended models and, therefore, she
will need a principle capable of ruling out these structures, without incurring on talk
about (causal) epistemic access to the natural numbers. The moderate realist may
insist that, say, the standard model is preferable in our formalization of pa; but given
precisely her moderation she cannot justify such preference as the extreme Platonist

16Though this may be a very general characterization of the view it is doubtful that a more sharp
definition is available, for moderate realism is not a position ever actually elaborated or defended
in full detail but the general basis of a framework in contemporary philosophy of mathematics that
may be pursued or fine-grained in various ways.

24



does by postulating an ‘intuitive grasp’ of the natural number sequence, being very
hard to see how ‘preferability’ could be spelled-out otherwise.

Now, we saw how Putnam’s challenge and Benacerraf’s arguments may push a change
from a non-algebraic to an algebraic view of arithmetic. This suggested that the true
objects of arithmetic are the structures satisfying our preferred axiomatization of the
natural numbers. Of course not all structures are intended and it is hard to defend
the addition of extra-constraints capable of fixing the interpretation from a moderate
realist perspective. Yet, if we let the mathematical theory itself to fix the meaning and
truth-value of its own mathematical vocabulary and statements, Putnam’s challenge
may be addressed in a way that respects moderation. And we can give substance to
this idea through the notion of a categorical theory.

A theory is categorical iff all of its models are isomorphic. If we think of a theory as
picking out its models, then a categorical theory will pick out a single isomorphism
type.17 Now, if the theory is categorical, its intended class of models will be deter-
mined by the theory itself: to the extent that the theory only has an isomorphism
type, there is only one single class of structures that can be counted as intended of
the theory. Given the natural identification between mathematical objects and iso-
morphism types from an algebraic perspective of arithmetic, the moderate realist will
then be able to defend that the intended models of the theory, what those mathemat-
ical objects really are, is captured by the structure up to isomorphism satisfying it.
Hence, in the case of a categorical theory of arithmetic, she will be able to discover or
identify the true natural numbers without great assumptions on our epistemic access
to numbers: as long as we are able to understand the theory itself (its axiomatiza-
tion) and the fact that it is categorical, we know what really counts as an intended
natural number sequence. As a consequence, there will be no alien non-standard
models since every model will have the same structure – this takes care of Skolemiza-
tion. We will see in a moment how sameness of truth-value is also achieved, tackling
Constructivization. For now we note that this view does not completely address the
Permutation Argument: assume that we think that there is an isomorphism type that
corresponds to the natural numbers. Regardless, no object can be thought as, say,
the element 27 of the sequence – by a push-through construction every object can
be the 27th element of some (standard) model of arithmetic, such that the term ‘27’
does not pick out a single object. ‘Indeed, on this view, if ‘27’ refers at all, then it
surely refers to all of ‘the 27s’ of all of the isomorphic models equally, i.e. it refers
to every object equally. And this is just to say that our arithmetical vocabulary is
radically referentially indeterminate.’ (Button & Walsh, 2018 : 39) Hence, we still
have referential indeterminacy. Still, following Horsten, perhaps this is just the best
we can do: ‘Many philosophers of mathematics believe nowadays that this remaining
indeterminacy resulting from the fact that for logical and mathematical purposes, any
two isomorphic structures serve equally well, is simply a fact of life that we have to
learn to live with. Mathematical structures just are not determined sharper than up
to isomorphism. In the sequel, I will assume that this is essentially correct.’ (Horsten,
2001 : § 4.2.1) And so will we.

An important fact is that a categorical theory is also semantically complete:

Theorem (Vaught’s Test) Let T be a consistent L-theory with no finite
models, that is also k-categorical for some infinite cardinal k ≥| L |. Then
T is complete.

17This of course on the assumption that the theory has a model.
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Proof. By contraposition. Suppose T is not complete. Then there is an
L-formula ϕ such that T 6|= ϕ and T 6|= ¬ϕ. Then there are models M
and N of T such thatM |= ϕ and N |= ¬ϕ. Since k ≥| L | we can use the
Upward and Downward Löwenheim-Skolem Theorem to takeM and N to
be of the same cardinality k. This means that T is not k-categorical.

Now, say that a formula ϕ is determinately true or false if it is respectively true or
false in all the models of the theory:

• ϕ is determinately true iff every model of T satisfies ϕ

• ϕ is determinately false iff every model of T falsifies ϕ

• ϕ is indeterminate otherwise.

This means that, assuming bivalence, a semantically complete theory assures that
every sentence has a determinate truth-value. Hence, categoricity provides a way
to challenge Putnam’s Constructivization from a moderate realist perspective; the
categoricity of a theory also explains how truth-value comes out determined:

[...] we learn the theory, and the theory singles out a particular class of
models having the same structure – an isomorphism class. As a result,
every sentence in the language of the theory must have a determinate
truth-value. (Incurvati, 2016 : 369)

2.2.2 Benacerraf’s Way Out: ω-models and recursivity

An example of a shift to categoricity in order to determine the intended model of
arithmetic is Benacerraf himself. We argued that Benacerraf(1965) can be read as
insisting that arithmetic should not be seen as concerning a single structure but a
class of isomorphic adequate structures. The crucial point is what adequate means
here. Even though admitting that arithmetic is about structures (broadly construed)
there is a sense in which some of these are more ‘adequate’ than others to fill the role
of the natural numbers. There is a sense in which non-standard numbers should be
seen more as a by-product of the model-theoretic apparatus than as genuine (though
sui generis) natural numbers. In order to rule them out Benacerraf(1965) proposes
two main constraints on the class of intended models of pa yielding a categorical
theory:

1. be an ω-sequence;

2. ‘the “<” relation over the numbers must be recursive’. (Benacerraf, 1965 : 53.)

Let us start by the second requirement – the ‘less-than’ relation (<), should be re-
cursive. It is important that we are clear on Benacerraf’s motivations for recursivity
given that they will play a special role in the subsequent chapters to follow. His
original stress on the recursivity of < is mainly due to the fact ‘that we expect that
if we know which numbers two expressions designate, we are able to calculate in a
finite number of steps which is the “greater” [...] I am just making explicit what
almost everyone takes for granted.’ (Benacerraf, 1965 : 52-53). Besides insisting on
the strong way in which <-recursivity is entrenched in our normal number-theoretic
practice and intuitive understanding of natural number, it is further argued that a
non-recursive <-relation is useless in counting tasks, which is one of the main uses
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of the natural numbers. This is illustrated in the following way. Consider a progres-
sion A = a1, a2, a3, ... built as follows. First, we generate two sequences: we take a
sequence B = b1, b2, b3, ... of integers that are the Gödel-codes of valid formulas of
classical first-order logic, and C = c1, c2, c3, ... of integers that are not the Gödel-codes
of valid formulas. Second, we let a2n+1 = bn and a2n = cn. Now, is A a good can-
didate for the natural numbers? Since first-order consequence is only semi-decidable,
there is no recursive procedure to enumerate all the members of A. As a consequence,
we could not list its elements in order of magnitude for, not being a recursive set, we
could not know what those magnitudes should be.18 Then we could not even have
a ready means to tell which of the elements of the progression is the nth-successor
nor could we know, starting from a given number, which number comes after. But if,
when determining the size of a finite n-membered set, one needs to actually be able
to build a suitable correspondence between the elements of the set and the collection
of numbers smaller than n, it seems that A does not serve well our counting needs.
In a more recent paper, Benacerraf(1996) recanted the above argument and the de-
mand that the intended natural numbers should form a recursive progression, since
any computable or non-computable progression can be enumerated with a recursive
set of entities. Further, since the standard model clearly is of order-type ω, the first-
requirement suffices to place N in the class of intended models: ‘any old ω-sequence
would do after all.’ (Benacerraf 1996 : 189)

Benacerraf’s first requirement – ‘be an ω-sequence’, faces a greater challenge however.
No particular motivation or justification is given for its postulation, and in a way it
clearly begs the question. The requirement seems to demand that an intended model
should be isomorphic to the standard-model; but wasn’t precisely the privileged role
given to the standard model that was challenged by the model-theoretic arguments?
Another worry is that we may well doubt if the notion of ω-sequence can be pin
down in a non-circular way. For instance, Benacerraf cannot say that an ω-sequence
is an order with the same order as the natural numbers, on pain of assuming what
it tries to prove. But also the notion of ω-sequence is defined set-theoretically: an
ω-sequence is something isomorphic to the von Neumann ordinals. However, the von
Neumann ordinals are also defined in set theory; and there are non-standard models
of set theory that give non-standard interpretations of the von Neumann ordinals. For
example, there are models where the finite ordinals are not well-ordered ‘from outside
the model’ but are well-ordered ‘from inside’. This means that to make sure that
the notion of ω-sequence captures a well-ordering, the model of set theory employed
should be intended. But as we saw skolemite scepticism applies equally well to set
theory and the problem of deciding what the intended numbers are reappears at the
level of set theory. In this sense it is in no way obvious that Benacerraf’s account is
feasible and does not beg the question against the sceptic.

2.2.3 Shapiro’s Way Out: PA2

Shapiro(1991) maintains that the categoricity of pa2 makes it more adequate for our
formalization of natural number. pa2 is the theory obtained by deductive closure of

¬∃y(S(y) = 0)

∀x(x 6= 0→ ∃y(x = S(y))

∀x∀y(S(x) = S(y)→ x = y)

18This, of course, on the assumption that human computation powers are at best those of a Turing
machine.

27



together with the second-order Induction Axiom. Where X is an Lpa2 -sentence:

Ind2(ϕ) := ∀X(X(0) ∧ ∀x(X(x)→ X(S(x))))→ ∀yX(y))

together with second-order Comprehension Schema. Where ϕ(x1, ..., xn) is a formula
not containing Xn:

∃Xn∀x1, ...,∀xn(ϕ(x1, ..., xn)↔ Xn(x1, ..., xn))

Notice that Lpa2 = {0, S} whereas Lpa = {0, S,<,+,×}. This is because order,
addition and multiplication are definable in the signature of pa2. For example, the
graph of the addition function is the ternary relation obtained by the union of all
ternary relations satisfying the condition:

Add(B) := ∀xB(x, 0, x) ∧ ∀x∀y∀w(B(x, S(y), w)→ ∃z(w = S(z) ∧B(x, y, z)))

By second-Order Comprehension there is a relationA such thatA(x, y, w) iff ∃B(Add(B)∧
B(x, y, w)). So by letting x + y = w be abbreviated by A(x, y, w) we can show, by
induction, that the theory satisfies ∀x(x + 0 = x) and ∀x∀y(x + S(y) = S(x + y))
(analogous results for multiplication and order).

The interesting property about pa2 is that, in full semantics, the theory is categorical.
Full second-order semantics allows the second-order variables to range over what is
essentially the full-power set of the domain of the structure; if X is an n-ary relation
variable then the relevant domain of quantification in ∀Xϕ will be ℘(Mn) (for a
model with domain M). Now, for the important theorem:

Dedekind’s Categoricity Theorem: The theory of full second-order
pa is categorical:

Proof. Let M be an arbitrary full model of pa2. Define the set

X := {m ∈M | ∃n ∈ N,M |= m = Sn(0)}

Where S0(a) = a and Sn+1(a) = S(Sn(a)). Informally, X is the set of
all elements in M finitely far from 0. Since M is a full model of pa and
since, as a consequence, it satisfies the second-order Induction Axiom, X
falls within the range of the Axiom’s second-order quantifier so that:

M |= (X(0) ∧ ∀x(X(x)→ X(S(x))))→ ∀yX(y)

Clearly, M |= X(0). Also, if M |= a = Sn(0), then M |= S(a) = Sn+1(0)
– this means that M |= ∀x(X(x) → X(S(x))). Hence, the antecedent of
the above instance of the Induction Axiom is satisfied. From this fact we
inferM |= ∀yX(y). This means that M ⊆ X. From this latter result and
from the fact that X ⊆M , we obtain M = X.

We now want to show that M is isomorphic to N . For this we define an
isomorphism π : N →M in the following way:

π(n) = a iff M |= a = Sn(0)
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We are left to check that π is a bijective function that preserves the suc-
cessor operation. Surjectivity follows from the fact that M = X. For
injectivity we suppose that π(n) = π(m); then, M |= Sn(0) = Sm(0).
Since in pa2 the successor operation is injective, it follows n = m. Now,
by definition π(0) = 0M because M |= 0 = S0(0). Finally, we note that
the function preserves succession: if π(n) = a then M |= a = Sn(0)
from where we obtain M |= S(a) = Sn+1(0); this means that π(n+ 1) =
SM(a) = SM(π(n)). Hence φ defines an isomorphism.

We then have that M ∼= N . Since M was arbitrary, every full model of
pa2 is isomorphic to N .

Dedekind’s Theorem provides a way for the moderate realist to pin down the natural
number sequence. If the correct formalization of the natural numbers is pa2, she may
appeal to Dedekid’s Proof and identify the natural numbers with the only isomorphism
type satisfying the theory. This is then yet another example of how a change to a
higher-logic capable of giving categorical theories, may help to determine the theory’s
intended model.

The change to a second-order setting is not without its critics. By far the most
noticeable objection is that full second-order semantics presupposes quantification
over the full power-set of the domain’s structure. As a consequence, worries about
the determinacy and grasp of the natural number sequence will be transferred to
the notion of ‘power-set’ employed in the meta-theory. If the meta-theory is indeed
standard zfc, complications arise. First, it is know that the notion of power-set is
not absolute; there are countable transitive models B |= zfc where ℘(N)B defines a
countable set. In this case, by Skolem-like reasoning we would be lead to the claim
that ℘(N) does not fix a particular notion, similar to ‘uncountability’. Second, some
authors such as Feferman have argued that ‘the continuum itself, or equivalently the
power set of the natural numbers, is not a definite mathematical object.’ (Feferman,
2000 : 405): it is argued that the working set-theorists does not have any sharp
conception of ℘(N), but merely a vague intuition of what is the totality of arbitrary
subsets of the natural numbers; further, even though this intuition is sharp enough
to allow giving many evident properties to that object, it may never be sharpened
completely as to determine that object itself. To be sure, Feferman admits that
we may come to make sense of ℘(N) given that the notion may be geometrically
represented as the sets of infinite branches of a tree of height 2<ω. Regardless, this
same geometrical aid is not available for ℘(R) and so the notion of arbitrary subsets
of the real numbers remains vague (see Feferman, 2000 : 410 - 411). In fact, it is not
easy to see how a non-circular sharpening of ℘(R) may look like: on one hand, if we
require that all the subsets of the reals must be found in L or L(R), then Feferman
claims we violate the spirit of arbitrariness in ‘arbitrary sets of reals’; on the other,
it is not clear how to specify how large must ℘(R) be.19 This shows that there may
be doubts about the determinacy of ‘power-set’ in such a way that the change to a
higher-order setting just succeeds in extending our concerns regarding arithmetical
indeterminacy to the language of set theory.

19Feferman quite famously defends that ‘the Continuum Hypothesis is what I have called an
“inherently vague” statement [...]’. And this relativity or vagueness spreads quickly: ‘[...] it follows
that the conception of the whole cumulative hierarchy [...] is even more so inherently vague, and
that one cannot in general speak of what is a fact of the matter under that conception.’ (Feferman,
2000 : 405).
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Another way in which pa2 can be seen to go wrong is with regards to the second-order
semantics used. Sure, we may formalize pa2 with a second-order semantic, but there
are other options available. To see this we introduce the notion of Henkin-structure:

Definition (Henkin-structure) For a signature L, an L-Henkin-structure
M consists of:

1. a non-empty set of elements M called the domain of M;

2. a set Mrel
n ⊆ ℘(Mn), for each n<ω;

3. a set Mfun
n ⊆ {g ∈ ℘(Mn+1) | g is a function Mn → M}, for each

n<ω;20

4. for each constant symbol c in the signature, an object cM ∈M .

5. for each n-ary function symbol f in the signature, a function fM :
Mn →M ;

6. for each n-ary relation symbol R in the signature, an ordered tuple
RM ⊆Mn.

In Henkin-semantics Mrel
n and Mfun

n serve as the domain of quantification of the
relation and function symbols. So, for example, if X is an n-ary relation variable
then the relevant domain of quantification in ∀Xϕ will be Mrel

n (for a model with
domain M) instead of ℘(Mn). It can be shown (see Shapiro, 1991 : 88-96) that in
faithful Henkin semantics21 we can prove a Löwenheim-Skolem Theorem, meaning
that in faithful Henkin semantics pa2 is not categorical. Hence, if Shapiro’s argument
is supposed to work it must be shown why full semantics is a better formalization of
the natural number sequence than Henkin semantics, and it is not obvious how this
can be done in a way that respects the moderate realist’s moderation. The problem
of grasping the intended natural numbers just shifts to the problem of grasping the
intended semantics. Putnam is particularly clear here:

Some have proposed that second-order formalizations are the solution, at
least for mathematics; but the “intended” interpretation of the second-
order formalism is not fixed by the use of the formalism (the formalism
itself admits so-called “Henkin models”, i.e., models in which second-order
variables fail to range over the full power set of the universe of individu-
als), and it becomes necessary to attribute to the mind special powers of
“grasping second-order notions”. (Putnam, 1980 : 481).

2.3 Summary

In this chapter we covered the main techniques from Putnam’s Model-Theoretic Ar-
guments, with a special focus on Skolemization. From here we have motivated a
(skolemite) sceptical problem that challenges our supposed knowledge of the intended
interpretations of both set theory and arithmetic. The moderate realist is by far the
most affected by such a problem. Still, by shifting to an algebraic conception of arith-
metic, focused more on structures rather than particular set-like objects, we saw how

20A function g : Mn → M is defined through its set-theoretical graph. That is, g ∈ ℘(Mn+1)
such that if (m1, ...,mn, a) ∈ g and (m1, ...,mn, b) ∈ g then a = b, and for every (m1, ...,mn) ∈Mn

there is an n ∈M such that (m1, ...,mn, n) ∈ g.
21A faithful Henkin structure is a Henkin structure where the Comprehension Schema and Choice

Schema hold. See for example Button & Walsh, 2018 : 24f.
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the moderate realist may address the sceptical challenge: find suitable constraints
that yield categorical theories and isolate the intended models as an isomorphism
type. However, such logical constraints are hard to come by without begging the
question against the sceptic. In what follows we will see a recent strategy which we
will call the Argument from Tennenbaum’s Theorem addressing these issues.
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Chapter 3

The Argument From
Tennenbaum’s Theorem

3.1 Introduction

In the last chapter we covered the main results from Skolem(1922) and Putnam(1980).
It was argued that the elementary exploration of basic limitative results from first-
order logic raise concerns regarding our grasp of arithmetic’s intended models. More-
over, we explained how this problem is particularly pressing for a cluster of views in
the philosophy of mathematics, both realist about mathematical entities and modest
as to their epistemic powers towards numbers. The moderate realist may hope to ad-
dress Skolem-Putnam’s sceptical challenge by focusing on logical constraints capable
of yielding categorical theories of arithmetic, or by isolating the intended interpreta-
tions up to a single isomorphism type. This, in turn, is dependent on an algebraic
view of arithmetic à la Benacerraf(1965) that equates numbers more with structures
(broadly construed) rather than set-theoretic objects. However, it is rather hard to
see how such isomorphism types may be isolated or the constraints on categorical
theories warranted without begging the question against the sceptic.

In this chapter we will discuss one of the most recent (and most technically interesting)
approaches in answering the sceptic, stemming originally from Horsten(2001). This
argument – which we will call the argument from Tennenbaum’s Theorem, tries to
determine an intended isomorphism type by focusing on the computational properties
of the functions defined on intended models. A strong case can yet be made for the
circular character of the argument; as we will see, it can be shown that the argument
itself depends on a determinate grasp of notions whose determinacy attempts to
establish, bearing the charge of assuming what it tries to prove. Nonetheless, such
considerations are dependent on the way the argument is used, there being some
disagreement on what the argument from Tennenbaum’s Theorem is an argument for.
By clarifying its several uses we aim also to explain how different authors think the
argument might be more or less successfully pursued in each case. We will conclude
with some general reflections on the overall viability of the skolemite challenge itself
and how it relates with the work in the chapters to follow.
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3.2 Tennenbaum’s Theorem

The result known as Tennenbaum’s Theorem was given by Stanley Tennenbaum in
1959 and appeared as a one-page abstract under Tennenbaum(1959). The result
sharply contrasts the computational properties of arithmetical operations defined in
standard and non-standard models of pa:

Theorem: (Tennenbaum, 1959) If M is a countable model of pa such
that M 6∼= N , then M is not recursive.

The standard model N where order, addition and multiplication are interpreted stan-
dardly is recursive. Tennenbaum shows that it is the only recursive model, up to
isomorphism. The proof of the above statement will mostly follow Kaye(2011). The
strategy is normally to assume that there is a recursive non-standard model of pa
and show this leads to contradiction; we do this by building a non-recursive set and
prove, under the assumption that such recursive non-standard model exists, that the
set is recursive. First, we define:

Definition: We call an Lpa-structure M recursive iff there are recursive
functions S : N → N, + : N2 → N and × : N2 → N, a binary recursive
relation < ⊆ N2 and 0 ∈ N such that M∼= 〈M, 0, S,+,×〉.

The proof of the Theorem may be separated into two subproblems: first, define when
a set A ⊆ N is coded in a model, and, second, the implications of non-recursive coded
sets. The coding of a non-recursive set in the domain of a model can be done by a
prime number technique where a set of numbers n is defined by an element c ∈ M
and a two-place formula ϕ such that M |= ϕ(n, c)↔ ∃k(c = k × pn) where pn is the
nth prime number. Then we can define the standard system of sets coded in a model
as the set of all sets coded by an element c in the model.

Definition: (SSy(M)) Given a non-standard modelM of pa we call the
standard systems of sets in M, SSy(M), the set defined as:

SSy(M) = {A ⊆ N | ∃c ∈M : A = {n ∈ N | M |= ϕ(n, c)}}

The Theorem is also related with the following classical results from recursion theory:

Definition: (Recursively Inseparable) We say that two disjoint setsA,B ⊆
N are recursively inseparable iff there is no recursive set C ⊆ N such that
A ⊆ C and C ∩B = ∅.
Lemma: There exist recursively enumerable recursively inseparable sets.

The traditional approach to Tennenbaum’s Theorem now proves the existence of a
non-recursive set coded in a non-standard model. For this, we recall the principle:

(Overspill Principle) Let ϕ(x) be a LPA formula. Let M be a non-
standard model. If M |= ϕ(n) for all n ∈ N, then there is a non-standard
number a such that M |= ϕ(a).

Now, we have:

Theorem: LetM be a non-standard model of pa. Then SSy(M) contains
a non-recursive set.
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Proof. Consider A,B ⊆ N recursively enumerable recursively insepara-
ble sets, as given by the above Lemma. Consider a, b the µ-recursive
functions that enumerate them. Given that every µ-recursive function
is Σ1-representable in pa, there are Σ1-formulas ∃yα(x, y) and ∃zβ(x, z)
that define A and B, respectively, where α and β are ∆0. We regard N
as an initial segment of any non-standard model. Since N ≺ M, there
is an embedding π : N → M that preserves the Σ1 formulas. That is,
since the interpretations of a and b are preserved upwards from N to its
extension (i.e. a(π(x)) = π(a(x)) and b(π(x)) = π(b(x))), the same Σ1

formulas express A and B inM. Then, from this latter fact and from the
disjointness of A,B it follows that for any k ∈ N:

M |= ∀x<k, ∀y<k, ∀z<k ¬(α(x, y) ∧ β(x, z))

By applying the Overspill Principle, there is a non-standard c ∈ M such
that:

M |= ∀x<c,∀y<c,∀z<c ¬(α(x, y) ∧ β(x, z))

Define the set C ⊆ N with C = {n ∈ N | M |= ∃y<c (α(n, y))}. Then,
by preservation of Σ1-fromulas and since c is non-standard, we have that
A ⊆ C and that C ∩ B = ∅. Hence, since A and B are recursively
inseparable, C is a non-recursive set.

From the above we can prove:

Tennenbaum’s Theorem:

Proof. Let M be a non-standard model of pa. By the above Theorem
there is a set C ∈ SSy(M) such that C is non-recursive. Now, there is a
c ∈M such that

C = {n ∈ N | M |= ϕ(n, c)}
where ϕ(n, c) = ∃k(c = k×pn) uniquely codes C with c. We want to show
that if +M is recursive, then C is recursive, against assumption. Assume
then, for contradiction, that +M : N2 → N is recursive. Define:

ψ(n, c) = (c = k + ...+ k︸ ︷︷ ︸
pn times

)∨(c = k + ...+ k︸ ︷︷ ︸
pn times

+1)∨(c = k + ...+ k︸ ︷︷ ︸
pn times

+ 1 + ...+ 1︸ ︷︷ ︸
pn−1 times

)

We now note that pa ` Euclidean Division. Then, sinceM |= pa, we have
that M also proves Euclidean Division. Hence, ∃!pMn ∃!r such that c =
(k×pn)+r for 0 ≤ r < pn. Now, for any input n, we may compute pn and
search for a k ∈M and r < pn such that (k + ...+ k︸ ︷︷ ︸

pn times

) + r = ϕ(n, c). This

search is bounded to terminate since Euclidean division is computable.
Now, if r = 0, then c = k + ...+ k︸ ︷︷ ︸

pn times

is the case and ψ(n, c) is true; in this

case ϕ(n, c) is true and n ∈ C. If r 6= 0, then one of the other disjuncts
of ψ(n, c) is true; in which case ϕ(n, c) is false and n 6∈ C. This shows
that it is decidable inM if n ∈ C or n 6∈ C. Hence, C is recursive against
assumption. Since we derive a contradiction, we conclude that +M is not
recursive.
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An interesting question is how far can the argument be extended to theories weaker
than pa. The proof above only requires overspill for ∆0-relations and I∆0 is strong
enough to prove enough properties concerning Euclidean Divison and primes for the
above argument to go through. In fact, McAlloon(1982) showed that if we replace
pa with the weaker subsystem I∆0, with induction restricted to bounded quantifiers,
an analogue to Tennenbaum’s Theorem also holds: addition and multiplication will
be non-recursive in any non-standard model of I∆0. Also, from Wilmers(1985) we
know the same result holds for the subtheory IE1 of I∆0, with induction restricted
to bounded existential quantifiers.

3.3 Halbach & Horsten’s Argument

The argument from Tennenbaum’s Theorem tries to determine which model of pa
should be counted as the intended interpretation of our arithmetical vocabulary, by
appealing to the notion of ‘recursivity’ and by making essential use of Tennenbaum’s
Theorem. At least to the knowledge of the present author, Horsten(2001) seems to
have been the first to put the argument forward. To appreciate the original motiva-
tions of the argument, crucial in the evaluation of its strength when facing the sceptic,
it is worth recalling the full power of Putnam’s just-more-theory manoeuvre. For this
we will use Shapiro(1991) as illustration.

As explained in the previous chapter, Shapiro(1991) pushes for a formalization of
natural number within a higher-order logic capable of yielding categoricity. In doing
so it is argued, not without controversy, that Shapiro makes himself vulnerable to
Putnam’s manoeuvre. By trying to determine the correct model of pa through the
addition of constraints that go beyond what can be reasonably found in arithmetical
practice, Shapiro shifts the problem of the relativity of the original arithmetical vo-
cabulary to that of the relativity of the supplementary vocabulary that is supposed
to fix the interpretation of the former. The addition of new constraints is subject to
first-order regimentation and, consequently, reinterpretation in a non-standard fash-
ion. That is,

These constraints succeed in determining the structure of the natural num-
bers only modulo the determinacy of the language of the constraints by
which they propose to supplement pa. And it should be clear [...] that
Putnam’s model theoretic argument may be iterated against the individual
proposals [Shapiro’s proposal] to construct models of supplemented theo-
ries in which the extension of the term “natural number” is non-standard.
(Dean 2002 : 6)

What this suggests is that new constraints should come from reasons already found
within the actual ordinary arithmetical practice instead from extraordinary (mathe-
matical) considerations such as the expressibility of continuum-many relations over
the natural numbers as in the (full) second-order case1, on pain of Putnam’s ma-

1This is not a totally uncontroversial matter, however. For instance, Kreisel(1967) argued, quite
famously, that the acceptance of the second-order induction axiom is prior to the acceptance of the
first-order schema:

A moment’s reflection shows that the evidence of the first order axiom schema derives
from the second order schema: the difference is that when one puts down the first order
schema one is supposed to have convinced oneself that the specific formulae used (in
particular, the logical operations) are well defined in any structure that one considers
[...]. (Kreisel, 1967 : 148)
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noeuvre. And Benacerraf(1965) respects this credo entirely. We stressed that his
insistence on the recursivity of the < - relation is mainly because, as he sees it, this
is a property which naturally springs out from our intuitive understanding of natural
number and from our normal operations with numbers. To repeat, ‘we expect that if
we know which numbers two expressions designate, we are able to calculate in a finite
number of steps which is the “greater” [...] I am just making explicit what almost
everyone takes for granted’ (op. cit.). It then seems natural, if not necessary, to
demand for the intended model of arithmetic to have a recursive < - relation. To the
sceptical charge that there might be non-intended reinterpretations of our practice –
for instance, where < is not recursive but yet the sentence ‘< is recursive’ is satisfied
within a non-standard model, we might well reply that the reinterpretation is indeed
a misinterpretation; i.e. the non-standard model does not respect nor capture the
way we use (i.e. compute with) numbers. By itself, the recursivity of < is not enough
to fix the standard model as the intended model of pa, up to isomorphism: there are
countable non-standard models M (where addition is not recursive) with a recursive
< ⊆ N2 such that M � < ∼= (N, <N ).2 Nonetheless, the insistence on the ‘well-
entrenchment’ of the additional constraints in regards to our ordinary arithmetical
practice provides a possible avenue to face the skolemite challenge.

Halbach & Horsten(2005) propose to take up Benacerraf’s recursivity requirement;
their goal is to (within a structuralist approach)3 pin down the interpretation of
arithmetic by restraining the computational properties of the functions defined on the
domains of intended models. The first step of their argument is to extend Benacerraf’s
requirement: in the same way as Benacerraf argued that the intended interpretation
of < should be recursive, now it is claimed the same for + and ×. When learning
primary-school arithmetic, we notice the fundamental role of numbers in addition
and multiplication: given two numbers we expect to be able to compute their sum
and product. This much seems uncontentious. If the argument for the recursivity
of the < - relation is valid, then, by the same token, it also seems sensible to insist
on the recursivity of + and ×. Hence, Halbach & Horsten demand for the intended
interpretation of + and × to be decidable. If + and × are taken to represent the
functions we actually compute with in practice, then non-computable denotations
cannot be a faithful representation of our everyday use of numbers.4 ‘Numbers are
something we can calculate with; if we cannot calculate with objects, then they are
not numbers.’ (Halbach & Horsten, 2005 : 177) This gives us their first restriction
on intended models:

REC1: In an intended model the relation < and the operations of addi-
tion and multiplication are recursive. (Halbach & Horsten, 2012 : 177)

The above restriction coupled with Tennenbaum’s Theorem shrinks the class of in-
tended models to the isomorphism type containing the standard model of pa. We
recall the essential theorem (stated in the contrapositive):

Tennenbaum’s Theorem: If M is a countable model of pa where +M

(and ×M) is recursive, then M∼= N .

2See Kaye, 1991 : 157; exercise 11.10.
3This is made in the spirit of what we have been calling an algebraic view of arithmetic: arithmetic

is about a collection of (intended) structures and not a collection of (intended) objects that would
form the domain of a certain structure.

4In fact, for their project to go through it is enough for them to focus on the recursivity of
addition. Hence, we will omit the case for ×, bearing in mind that whatever holds for addition is
also meant to hold for multiplication. On this point see Halbach & Horsten, 2005 : 177.
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Tennenbaum’s Theorem guarantees that only the standard model, up to isomorphism,
has recursive addition, and together with REC1 suffices to rule out non-standard
models. What this shows is that only the standard model, again up to isomorphism,
is able to correctly represent our computational practices involving addition (and
multiplication), and is intended of the natural number sequence.5 A curious result
is that now Benacerraf’s ω-requirement appears as conclusion and not as premise: ω
order type is not a requirement to be an intended model, but a result of the argument
from Tennenbaum’s Theorem.

We should pause here. The careful reader might have already noticed some ambi-
guity in our talk of recursive operations, that we should better clarify. When talk-
ing about the recursivity of < or + we have reflected on our (i.e. human) effective
computational powers. Hence, we talked about computable functions in a rather
informal non-mathematically defined sense. But the two, recursive functions and
‘effectively-computable’ functions need not necessarily coincide. So, unless argued
for, the passage from one (this function if effectively-computable) to the other (this
function is recursive) is unwarranted. What is implicit in Halbach & Horsten(2005)’s
project is a commitment to the Church-Turing Thesis. To clarify some terminology,
by ‘effectively-computable’ (or informally computable) we refer to a class of functions
defined on some fixed space that take a finite amount of input and whose output can
be algorithmically determined in a finite number of steps. The notion of ‘recursivity’
is defined in terms of some mathematical model of computation; we will say that a
function is recursive (or formally computable) if it is computable by, say, a Turing
machine. Now, by assuming the Church-Turing Thesis:

Church-Turing Thesis A function is effectively-computable iff it is re-
cursive.

The move from effective computability to recursivity is now justified. By reflect-
ing on our practice we see that intended addition is effectively-computable. By the
Church-Turing Thesis, the intended interpretation of + is recursive. And now by
Tennenbaum’s Theorem the intended interpretation of arithmetic, pa, is only the
standard model up to isomorphism.

Halbach & Horsten’s main argument (REC1) can be properly called the argument
from Tennenbaum’s Theorem. In one way or another it is this argument that is
addressed in the current literature as such. Different authors use the argument in
different ways. If we assume that arithmetic is about a single (intended) structure,
three questions immediately come to mind:

1. How do we know that arithmetic is about a single intended structure? And how
do we know how that intended structure is like?

2. How is that structure like?

3. How do we manage to refer to that structure?

(1) is a question about epistemology; (2) is (in lack of a better name) ‘metaphysical’
and (3) linguistic. We do not wish to say that the argument may satisfactorily address
all the different problems above; different questions may demand different answers.
Here, we are only interested in seeing how the argument plays out as an answer

5As noted above, Tennenbaum’s Theorem holds for weaker subsystems of pa. Thus, prima facie,
the above strategy may still be pursued with a weaker induction schema.
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to (1). That is, we take the argument from Tennenbaum’s Theorem as a possible
solution to the epistemic problem of determining the intended model of arithmetic.
This must be carefully distinguished from the reference-fixing project of using the
argument to explain how we refer to the intended model. In the literature, we find
these question often conflated. For instance, as Horsten(2012 : 275) himself notes,
Halbach & Horsten(2005) do not properly distinguish which of the questions (1) and
(3) they are addressing. We find the same problem in Button & Smith(2012). Now,
Horsten(2012), Dean(2002) and Dean(2013) are clear that they use the argument to
tackle (3), not (1). It is our view that both questions can be closely associated, and
seeing how the argument plays out when answering one sheds light on the other.6

But, to be sure, we will for the rest of this work be mainly interested in the argument
when applied to (1).

With these desiderata in place we can continue with Halbach & Horsten(2005). They
propose important minute modifications to their original argument and to REC1
that will be helpful in understanding the discussion to follow. We said that their
proposal is put forward in the same spirit as that shared by an algebraic conception
of arithmetic. However, the notion of recursivity is normally defined for functions on
natural numbers there being no general notion of recursivity that applies to functions
on arbitrary objects whether mathematical, or concrete, or ... But, within an algebraic
spirit, we would like REC1 to apply to models that do not necessarily have as domains
subsets of sets of the natural numbers. To solve this issue they consider the notion of
coding. Given a model of pa we may try to code the domain of the model by standard
natural numbers and check if the relevant operations are indeed recursive.7 Hence, a
slight adjustment to REC1:

REC2: For every intended model there is a coding of the set of its ele-
ments such that the relation < and the operations of addition and multi-
plication on the codes, as they are induced by the relations on the intended
model, are recursive. (Halbach & Horsten, 2012 : 179)

REC2 also determines the standard models as the intended model up to isomorphism.
First, for uncountable models obviously there is no such coding, excluding them au-
tomatically. Second, if a countable model is not isomorphic to N , by Tennenbaum’s
Theorem, addition will not be recursive violating the requirement. However, how
should we understand the notion of recursive procedure present in the requirement?
Well, normally, the notion of recursivity is defined for functions over the natural num-
bers; we say that a Turing machine completes a task in a finite number of steps, or
that a µ-recursive function takes finite tuples of natural numbers and returns a single
natural number. But this makes clear that when giving REC2 we explicitly intro-
duce the problematic notion that we were trying to define with the requirement itself
(i.e. the notion of natural number). A similar problem arises when talking about

6The association is natural. In fact, though we have opted to prefer the epistemic-side of Putnam’s
model-theoretic arguments (‘Among many non-isomorphic models of pa, how do we know which is
the right one?), another important aspect of his arguments relates to language and reference (‘Among
many non-isomorphic models of pa, how do we manage to refer to the right one?). In fact, one could
argue, it is this latter variant the most important part of his challenge: ‘[...] I want to take up
Skolem’s arguments, not with the aim of refuting them but with the aim of extending them [...] It
is not my claim that the “Löwenheim-Skolem Paradox” is an antinomy in formal logic; but I shall
argue that it is an antinomy, or something close to it, in philosophy of language. (Putnam, 1980 :
464)

7In fact, this is how Tennenbeaum’s Theorem is normally presented: if a model can be coded
in the natural numbers so that the induced operation of addition is recursive, then the model is
isomorphic to the standard model.
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‘finite number of steps’ or ‘finite tuples’. Given that the notion of finite cardinal is
often defined via the notion of natural number – a set is finite if it can be put in a
one-to-one correspondence with an initial segment of the naturals, it appears equally
circular to define natural number via finite cardinal.8,9 This opens the possibility for
the skolemite sceptic to claim that the argument does assume that which it tries to
prove (i.e. a (determinate) grasp of the natural numbers). To avoid this difficulty,
Halbach & Horsten(2005), following some intuitions of Dean(2002) (see below), pro-
pose to take as primitive not the notion of theoretical recursivity (mathematically
defined through some computational model like Turing machines or µ-recursivity),
but rather the notion of practical recursivity. They identify the practical notion with
the idea of an ‘effective procedure’ and, as we saw, justify the shift from this notion
to the formal notion used in Tennenbaum’s Theorem with the Church-Turing Thesis.
As they see it:

[...] the notion of an effective procedure and thus of computability in the
informal sense does not presuppose number theory or even set theory. Ef-
fective procedures do not apply to numbers, but also to other objects. [...]
This practical notion of computability is distinguished from the theoreti-
cal notion of computability (and recursiveness). The theoretical notions
of recursiveness is a purely mathematical notion [...] The practical notion,
in contrast, is not defined in set theory and does not completely belong to
theoretical mathematics. [...] In order to apply Tennenbaum’s Theorem
for ruling out nonstandard models, we have to assume that a practically
recursive operation is also recursive in the formal sense. That is, we are
appealing to Church’s thesis. (Halbach & Horsten, 2005 : 180)

Now, we might be rather suspicious of the advantages brought with this shift. After
all, the notion of effective procedure seems to equally presuposse the notion of (finite)
natural number, for an algorithm also completes a task in a finite number of steps.
We will qualify this judgement at great length in the next section, and for now it
interests us only to see how this shift alters their REC2 requirement.

Their idea is that even though it is the formal definition of recursivity that we rely
on when applying Tennenbaum’s Theorem, in practice, we ‘see’ that a function is
recursive by informally demonstrating the existence of an algorithmic procedure. For
example, we come to the idea that addition is recursive by first coming to terms with
the primitive recursive addition algorithm:

PRaddition:

On inputs Sn(0) and Sm(0) use the rules

∀x(x+ 0 = x) ∀x∀y(x+ S(y) = S(x+ y))

to compute the equalities Sn(0) + Sm(0) = S(Sn(0) + Sm−1(0)) = ... =
Sn+m(0) and output Sn+m(0)

8Further, the notion of finiteness is then relative to a model of set theory; but different models
may have different (non-isomorphic) definitions of natural numbers, meaning that they may disagree
on their notions of finiteness. To amend this issue the definition of finiteness may be restricted to
the intended model of set theory. However, this introduces the perhaps more challenging question
of determining the intended model of set theory.

9Similarly with coding in the sense that it is just a function from a collection of objects to the
set of the natural numbers.
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Now, it would be on the basis of the apprehension of an efficient procedure like
PRaddition, that we would be justified in the claim that:

The function denoted by + is computable.

To better explain what is meant by practical recursivity, or effective procedure, they
propose then to define the former through the idea of employing an algorithm. They
note that an important aspect is that algorithms compute on symbols – they are
instructions on how to manipulate symbols, regardless if those symbols stand for
numbers or not. It seems essential that symbols are intentional notations: if something
is a symbol depends on whether it is used to convey some meaning. Further, symbols,
unlike numbers qualified from a structuralist-cum-algebraic perspective, do have an
internal structure. They are not just distinguished from their place in the structure.
For example, when computing division the symbol ‘1’ must be distinguished from ‘2’,
otherwise we may not follow the instructions of the algorithm. In this sense, standard
numerals as symbols belonging to a notation system do have an internal structure,
and this notation system is itself a structure of some kind. Hence, numerals differ
from numbers when structurally conceived, for numbers do not have this internal
structure. These quick considerations let us see that practical algorithms do not
manipulate (compute) on natural numbers, but on objects (symbols) possessing an
internal structure. When understood in this way, the ‘recursiveness’ present in REC2
does not presuppose numbers any more, but only symbols of some sort. Similarly, a
coding is now defined as a function from a collection of objects to symbols, instead to
natural numbers. It should be noted that we still rely on the Church-Turing thesis
to make the passage from the informal effective procedure to formal recursiveness.
The intended model of arithmetic will be one where we have notations (symbols) for
the elements of the model such that the operations of addition and multiplication are
computable on the notations. (Halbach & Horsten : 182).10

In this sense, they see a coding as an assignment of standard numerals (which are
symbols of some sort) to all and only the objects in the domain of a model. However,
for REC2 to work, we need to be able to determine when a certain assignment of
symbols to objects is indeed a coding. That is, we need to be able to determine if
every object in the domain of the model receives a symbol, and, therefore, to decide
whether all objects are named by a standard numeral. But to do this we must be
able to distinguish between standard and non-standard numerals, begging again the
question against the sceptic. The sceptic is asked to already understand the notion
of standard natural number to define it. This challenge leads Horsten & Halbach to
their final requirement:

REC3: Intended models are notation systems with recursive operations
on them satisfying the Peano axioms. (Halbach & Horsten, 2005 : 183)

REC3 dispenses appeal to codings and to natural numbers in fixing intended mod-
els: ‘There no longer is any need to see that all objects are named, for the objects
in intended models all are names. Our proposal entails that in a fundamental sense,
arithmetic is exclusively about notations.’ (Halbach & Horsten, 2005 : 183) Tennen-
baum’s theorem will still ensure that the intended notation systems are isomorphic to
the standard-model. REC3 has as consequence that the elements of the natural num-
ber sequence do not have, in a algebraic-cum-structuralist spirit, any internal content.
But the structure of arithmetic is obtained by abstraction on notation systems.

10Of course, for this, we need to assume we have infinitely many symbols, which they are disposed
to.
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We finish the section as we started. Using Shapiro(1991)’s proposal. Halbach &
Horsten note that their proposal, what they call Computational Structuralism, scores
better than a move to second-order logic since the former requires less of our math-
ematical knowledge and abilities. Even though, in a way, second-order structuralism
may be thought as more basic by avoiding the long detour through Tennenbaum’s
Theorem, that detour is mathematical and not philosophical. When properly seen,
computational structuralism only assumes that agents willing to engage on arithmeti-
cal practice are able to perform sums; in sharp contrast, the second-order structuralist
must endow their agents with the power of (somehow) grasp second-order quantifi-
cation which, they argue, is more demanding on the abilities of the agent doing
arithmetic.

3.4 On Theoretical and Practical Recursivity

3.4.1 Theoretical Recusivity

We have now fully discussed Halbach & Horsten(2005)’s proposal, stemming from
Tennenbaum’s Theorem, addressing the worries on how we go about to determine
the intended model of arithmetic. Button & Smith(2012) are themselves sceptical
of the viability of the above solutions.11 If there truly is a genuine problem about
intended models12 exposed by the model-theoretic results, then, they argue, it is not
to be solved with more model-theory and, in particular, with Tennenbaum’s Theorem.
Their discussion starts from a fictional character, a certain ‘Thoralf’, rather concerned
about our grasp of the intended model in the aftermath of the construction of non-
standard structures. To be sure, it is assumed that Thoralf is happy in accepting
abstracta and allowing some knowledge about them; still, he is rather abashed in
the light of non-isomorphic models, asking himself what sense can there be of talk
of a ‘right’ or ‘intended’ interpretation if our practice does not single out a unique
pa-model. We see then that Thoralf’s case is (humour aside) the same of what we
have been calling the moderate realist position and the challenge is then how to ease
Thoralf’s (and, by association, the moderate realist’s) doubts.

To illustrate how Tennenbaum’s Theorem doesn’t work in attending to Thoralf’s
predicament it is helpful to consider an argument with a similar structure as the one
of Halbach & Horsten. It starts with the easy result:

Initial Segment Theorem: IfM is a model of pa and if for all m ∈M
it is the case that M |= m = Sn(0) (for some n ∈ N), then M∼= N .

Now the argument would go something like this: in learning primary-school arithmetic
we learn to count backwards. Reflecting on our practice we realize that (under the
standard order relation) any natural number is finitely far from zero or, what is
equivalent, it has finitely many predecessors. Conclusion: by the Initial Segment
Theorem, the intended model of pa (where each number is finitely far from zero) is
just the standard model up to isomorphism. Still, it would be surprising if Thoralf was
convinced by the above argument. Afterall, the argument makes essential use of the

11We vacillate in our reading of Button & Smith’s paper. Throughout this section we will inter-
pret the paper as addressing the epistemological problem of knowing the intended interpretation of
arithmetic (and how Tennenbaum’s Theorem plays out here) rather than as addressing the linguistic
problem of explaining how we manage to refer to the intended structure.

12As we will see below, the assumption that skolemite cogitations pose a genuine problem for the
determinacy of mathematical concepts is not uncontentious.
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Initial Segment Theorem whose meaningfulness is dependent on a prior understanding
of what is for something ‘to be finitely far from zero’. But to understand the former
we need to understand what counts has a finite cardinal number, and it is this precise
notion which Thoralf thinks is open to multiple interpretations.

By way of analogy, Button & Smith(2012) argue that Tennenbaum’s Theorem is
subject to essentially the same problem as in the above case. Tennenbaum’s Theorem
contains expressions of the form ‘+M is recursive’, making indispensable use of the
notion of recursive function. The skolemite sceptic, irritatingly sceptical as usual,
will ask for an elaboration of the notion of ‘recursive function’. We give a definition:
a function is recursive just means that there is a Turing machine that can compute
the output of the function (given a certain input). Suppose he urges for further
elaboration. We reply: a function is computable by a Turing machine if (given this
model of computation) the output of the function may be computed in a finite number
of steps (given a certain input). But now the circularity is plainly evident for in our
explanation of ‘recursive function’ we (explicitly) used the notion of ‘finite number
of steps’ and, consequently, of ‘finite number’. It then seems that to understand
Tennenbaum’s Theorem we have first to understand what is for something to be
a finite (natural) number. And again this is precisely the disputed notion which
Thoralf thinks is opened to multiple interpretations. ‘So, if Thoralf genuinely doesn’t
understand how we grasp the standard model, the argument from Tennenbaum’s
Theorem plainly can’t help him.’ (Button & Smith, 2012 : 117)

Dean(2013) pushes the point even further. It is not only the case that, as Button &
Smith(2012) want to argue, there are divergent non-intended interpretations of our
computational practices. Worse, every non-intended interpretation (i.e. every non-
standard model of pa) will satisfy the formal requirement defining the (theoretical)
recursivity of addition:

[...] our computational practices are sufficiently elementary that state-
ments [...] by which computationalists hope to rule out such [divergent] in-
terpretations will typically be provable mathematically. There thus seems
to be little room for the truth values of sentences by which we report pos-
itive attributions of computability to vary among the interpretations in
question. (Dean, 2013 : 152, our italic)

Recall that Halbach & Horsten(2005) wish to constrain the intended interpretation
of pa by adding a requirement of the form:

(1) The function denoted by + is recursive.

As we saw, recursivity is a formal notion definable with µ-recursivity, for example.
Call a function f(~x) (with ~x of arity k) µ-recursive iff it is extensionally equivalent
to a φi(x) µ-recursive function, for a certain i in an enumeration φ1(x), φ2(x), ... of
µ-recursive functions. Then, (1) is equivalent to

(2) The function denoted by + is extensionally equivalent to φi(x).

By Kleene’s Normal Form Theorem, there exists a primitively recursive function u,
such that if φe is recursive, then

φe(~n) = u(µxTk(e, ~n, x))
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where µ is the minimization operator and T the Kleene-predicate defined by ‘Tk(e, ~n, x)
iff x encodes the steps of a halting computation φe on input ~n ’. Since Tk and u
are primitively recursive they are representable in pa by Σ1-formulas tk(i, ~w, x) and
v(w, x) such that

φe(~n) = y iff N |= ∃q((∀r<q)¬tk(e, ~n, r) ∧ tk(e, ~n, q) ∧ v(q, y))

Using the above biconditional, (1) and (2) are now equivalent to:

(3) ∃e∀x∀y∀z(x+ y = z ↔ ∃q(t2(e, x, y, q) ∧ v(q, z)))

Dean(2013 : 149) now notes that we may, by formalizing the algorithm PRaddition,
explicitly construct a µ-recursive definition corresponding to the index e and show
that (3) is provable in pa. But since (3) is provable, it is also satisfiable in all models
of pa (including non-standard models). This means that if we take (3) to express
the recursivity of addition, then all models will satisfy the arithmetical definition for
recursivity. Hence, formally, those models will have an operation of addition which
(the model thinks) is recursive. The appeal to theoretical recursivity in ruling out
non-standard models will drastically fail.

3.4.2 Practical Recursivity

It is then circular or, at least, problematic to fix the intended models and explain
what the natural numbers are through a notion that presupposes the natural num-
bers. Dean(2002) is aware of the general problem and moves from a ‘theoretical’ to a
‘practical’ notion of recursivity. As he eloquently explains:

[...] Tennenbaum’s Theorem is merely the tip of the iceberg with re-
spect to illuminating the anomalies which would arise were the reference
of computational terms to be tied down no more firmly than the class of
extensions which their first-order definitions allow. [...] If the meanings of
complexity theoretic concepts were only fixed relative to these definitions,
they too would inherit the indeterminacy of finiteness. Complexity theo-
retic terms, however, are intended to express real world limitations on our
abilities [...] As a consequence, the plausibility of iterating the sceptical
argument that our practices and intentions are insufficient to determine
the reference of certain complexity theoretic terms becomes strained to
the point of collapse. (Dean, 2002 : 11-12; our italic)

What is proposed here is to understand ‘recursivity’ in a practical way, i.e. not as a
‘theoretical’ notion focused on functions and relations over numbers, but as a notion
that in fact precedes that of natural number.13 Practical recursivity is then informally
defined by considering what we could compute given our real (practical) limitations;
by entreating Thoralf to reflect on what he could actually decide in polynomial time,
it is expected that he may come to form a sense of what is for a function to be recursive
in a way that does not presuppose numbers. Still, even with this amendment, the
argument is subject to the same dialectic. To see why consider again, first, the
argument from the Initial Segment Theorem. We saw how the problem here was the

13Also, Horsten(2012 : 278) talks about a ‘pre-theoretical sense of computability’ (though within
a slightly different project, see below). In fact, it is a consequence of Putnam’s just-more-theory
that adding to the axioms of pa a first-order claim stating that addition is recursive, will admit non-
standard models. What Horsten(2012 : 287) takes this to show is that the notion of computability
cannot be fully formalized.
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implicit circularity in demanding a prior understanding of what ‘being finitely far
from zero’ means. Suppose we explain it by pointing to the real world limitations on
our abilities. For this let us represent numbers as Hilbert-strokes and the notion of
predecessor of a given number via substrings; then, ‘numbers finitely far from zero’
could be translated as ‘strings that, given our real world limitations, can be written
down’. But, again, given our world limitations, we will only be able to to write
a maximum amount of such numbers.14 It follows that what counts as a number
finitely far from zero is somehow dependent on, say, what we can write down before
the heat death of the universe – for certainly, given the real world limitations on our
abilities, we will never be able to actually write down strings which take more time
to write than the time remaining until the heat death of the universe. Of course,
this is an absurd conclusion. And charity in interpretation requires us to assume that
this cannot be what the author intends by practical recursivity. The problem is clear:
what is missing is the possibility of talking about what we can write down without
an upper limit, that is, what we can write down in principle. Now, Thoralf will ask
what in principle means, and the only sensible response we may give is that it means
given time and world enough, i.e. given an arbitrary finite number of stages to write
down strokes. And now circularity is clear.

Similar in Tennenbaum’s case. Our everyday computational practice shows that we
are proficient with sums, or multiplication for tractably small numbers. But the real
world limitations on our abilities reveals only that we are good at computing sums
for only tractable small numbers. If we wish to talk about what we can compute
without upper limit, we have to talk about what we can compute in principle, given
an arbitrary finite number of stages in a computation. And we are back with assuming
what it was asked of us to prove. (Button & Smith, 2012 : 117 -119)

Button & Smith(2012) then conclude that if there is a genuine problem regarding
model-theoretic scepticism, it is not to be solved with Tennenbaum’s Theorem. The
Theorem itself makes use of purportedly vague or circular notions, shifting the prob-
lem of the indeterminacy of the natural number sequence to the problem of the indeter-
minacy of those notions instead. Further, a practical rendering of those mathematical
notions is only successful through great amount of idealization. What the argument
from Tennenbaum’s Theorem is in the end taken to show is just a special case of
a more general failed dialectic strategy: mathematical indeterminacy is not to be
solved with more model-theory; Thoralf’s problem about how we determine the in-
tended interpretation of, say, pa, will reappear as a problem about how we determine
the intended interpretation of the richer theory by which we intend to supplement
the former.

3.5 Tennenbaum’s Theorem as Reference-Fixing

In our presentation of Button & Smith(2012) we stressed the similarities between the
argument from Tennenbaum’s Theorem and the argument from the Initial Segment
Theorem. In a paper of the same year, Horsten too discusses both arguments reaching
yet different conclusions.

14We will ignore complications introduced by the possibility of performing an infinitely long com-
putation within finite time (supertask), such as the hypercomputational scenario of agents or Turing
machines travelling a region with an infinite time-long trajectory, in a Malament-Hogarth spacetime.
For more on this point see Manchak & Roberts(2016) and the references therein.
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According to Horsten(2012 : 275), Halbach & Horsten(2005)’s main weakness is hav-
ing wrongly conflated two different questions – the epistemic and linguistic problems
of intended models specified above. Our presentation of that paper was primarily
done in an epistemic way: we read the paper as claiming ‘how do we know which
model of arithmetic is the right one? Well, just use Tennenbaum’s Theorem.’ How-
ever, Horsten(2012) sees the argument from Tennenbaum’s Theorem not as solving
an epistemic problem, but instead as a solution to the reference-fixing problem: ‘how
do we manage to single out (refer to) the right isomorphism type of arithmetic? Well,
just use Tennenbaum’s Theorem’. In fact, this much is clear from the way he chooses
to start his paper; Horsten is well-aware of the problem of singling out the structure
of the natural numbers given non-standard models built by compactness and the like;
but, he says:

Now we could, with Skolem or Putnam perhaps, acquiesce in this con-
clusion, and deny that arithmetic has an intended interpretation that is
unique up to isomorphism. But I will do the opposite. I will presume that
we can isolate the natural-number structure in our referential practice.
The question addressed in this article is how we have managed to refer
to the natural-number structure: how has our reference to the natural-
number structure come about? (Horsten, 2012 : 278)

The rest of the story is by now a familiar one: the reference of our arithmetical
vocabulary is determined by arithmetical practice, together with the essential fact
that numbers are things that we can calculate it. By Tennenbaum’s Theorem the
candidates for the reference of our vocabulary that respect the practice is just the
standard model, up to isomorphism. This reference-fixing role given to the argument
from Tennenbaum’s Theorem is best illustrated in its relation with the argument
from the Initial Segment Theorem. (Recall, we are now interested in determining
how we manage to refer to the intended model, and not how we know that the model
is intended.) Horsten considers the following thesis:

Thesis: The reference of our arithmetical vocabulary is determined by
our principles of arithmetic together with our ability to count up to every
natural number. (Horsten, 2012 : 282)

A quick moments reflection makes it clear that the above Thesis shares the same
strategy as the one in the argument from the Initial Segment Theorem. First, we
plausibly assume that there is a finite amount of time required to count each number.
As a consequence, by reflecting on our practice, we realize that only numbers finitely
far from zero can (in principle) be counted. If the practice is to determine the intended
interpretations, then only models whose elements have finitely many predecessors will
be warranted. The thesis singles out the standard model, up to isomorphism, as the
intended referent of our arithmetical vocabulary.

But to what extent does arithmetical practice motivate the Thesis? Suppose we are
teaching a child what the natural numbers are. It is true that, when learning primary-
school arithmetic, we learn how to effectively count arbitrarily many numbers. We
learn that the natural numbers are 0, 1, 2, ..., and so on. And of course the question
is how to understand the ‘and so on’. For the Thesis to work, for practice to secure
the intended reference, the ‘and so on’ must not include non-standard numbers. But
how are we sure that the practice of arithmetic excludes non-intended interpretations?
Well, after teaching the child to count arbitrarily many natural numbers, we may add
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‘All the natural numbers may be counted in this way’. And, after surveying Button
& Smith’s discussion, it is clear why this will just not do. As Horsten explains, for the
child to understand our claim he has to understand its content; and this just means
that he has already to understand what is a standard natural number and that for
every standard natural number there is a finite ordered sequence of moments such
that at the last of these that number is counted out. Nonetheless, given that the
child still doesn’t know what the natural numbers are, the child does not yet have
the conceptual machinery to understand this. Hence, ‘Mastery of the enumeration
procedure for counting out the natural numbers is not sufficient in the context of
Peano arithmetic to single out the natural-number structure. It does not guarantee
that the domain of discourse exhausts the standard natural numbers.’ (Horsten, 2012
: 284)

Nonetheless, he thinks that, unlike the above case, arithmetical practice concerning
computability is able to successfully single out the intended interpretation. Unlike
the counting procedure, the mastery of the addition algorithm is both total and com-
putable. If it is not total, the child has not mastered the algorithm completely. If it is
not computable, the child has not mastered the algorithm at all. More importantly:

The child need not have any reflective knowledge about her algorithmic
addition powers. She just has to know what to do in response to the
teacher’s instruction (such as ‘28, 23:add!’). When the child as acquired
the right disposition, the admissible interpretations of her natural-number
talk are restricted to an isomorphism type. [...] the child has to master
the algorithm [...] the child can do this without first having to come
to understand somewhat sophisticated concepts (such as the concept of
finiteness). (Horsten, 2012 : 284-285)

In order for the child to master the counting algorithm and, more precisely, for her
enumeration not to contain any non-standard numbers, the child must know that the
counting procedure cannot contain non-standard numbers. And this presupposes the
circular knowledge that all the numbers she can (correctly) count must be finitely far
away from zero. On the other hand, Horsten thinks that we may come to master
the algorithm to compute addition without any big number-theoretic pre-requisites,
including that of finiteness. In fact, there is no need of reflexive knowledge of the
practice for it to constrain the reference of our vocabulary. To elaborate, besides
our use of an algorithm for computing sums, we may come to know we are using an
effective procedure. But ‘Knowing that we have an algorithm for computing sums is
not needed to fix on the structure of the natural numbers: it suffices to simply adopt
the algorithm.’ (Horsten, 2012 : 281) Knowing the algorithm presupposes the notion
of finiteness; but using the algorithm does not. And if we use the algorithm correctly,
Tennenbaum’s Theorem will guarantee (even if we are not aware of it) that we only
compute with standard numbers.

Of course, as a response to the sceptic the argument leaves much to desire. After
all, when explaining how we manage to determine the intended model we need to use
notions as algorithm and, consequently, finiteness. We need to state some recursive
procedure when explaining that we compute sums and this just seems to add more
number-theoretic theory falling in circularity. What this shows is that the argument
from Tennenmaum’s Theorem may not be the best approach when dealing with the
epistemic challenge of explaining how we know which model is intended. By itself,
this does not affect Horsten(2012) for his goal is not to address the epistemic problem,
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but rather the reference-fixing problem.15 And his point is just that Tennenbaum’s
Theorem allows us to refer to the intended model.

To be sure, Carrara, et al.(2016) disagree. They think that the use of the addi-
tion algorithm to fix the reference of our mathematical vocabulary is again circular,
since to understand the notion of algorithm we presuppose the notion of a procedure
computable in finitely many steps, and the same dialectic reappears. However, we
should note that we think that Carrara, et al.(2016)’s critique is misguided, since
Horsten(2012) does not assume that we need to have knowledge on how we perform
with the addition algorithm, but only that we perform according to it. So nothing
as ‘understanding the addition algorithm’ is presupposed when explaining how the
intended reference gets fixed. See Horsten(2012 : 284-285).16 Since our interest is in
the epistemic challenge posed by the sceptic, and not on the reference-fixing problem,
we have nothing much to add to this discussion.

3.6 (Dis)solving Skolemite Scepticism

3.6.1 Solving

The common thread throughout the critique of Tennenbaum’s Theorem is the insis-
tence on circularity brought by the dependence or interdefinability between the nat-
ural number sequence and the notion of finiteness. Carrara et. al(2016) propose an
absolute or primitive notion of finiteness, not captured by any axiomatic system (not
even in a model of set theory) nor reducible to other mathematical notions (like nat-
ural number). Their goal is obvious: if such a case for a primitive notion of finiteness
can be made, it would then be possible to determine the natural number sequence.17

They note that to recognize the existence of non-standard models of arithmetic we
must first recognize or understand the language of (first-order) arithmetic and what
would count as a structure satisfying its axioms. But, a point to which we will return
to below, to understand the syntax of a first-order logical language we must under-
stand the notion of a finite strings of symbols. Carrara et al. propose to account for
this notion of a finite string in a way inspired by similar reflections made by Hilbert
and Parsons on the matter. In an often quoted passage, Hilbert writes:

As a condition for the use of logical inferences and the performance of logi-
cal operations, something must already be given to our faculty of represen-
tation, certain extra-logical concrete objects that are intuitively present
as immediate experience prior to all thought. If logical inference is to be
reliable, it must be possible to survey these objects completely in all their
parts, and the fact that they occur, that they differ from one another, and
that they follow each other, or are concatenated, is immediately given
intuitively, together with the objects, as something that neither can be re-
duced to anything else nor requires reduction. This is the basic philosoph-
ical position that I consider requisite for mathematics and, in general, for
all scientific thinking, understanding and communication. (Hilbert, 1926
: 376)

15‘[...] the reference-fixing question is what I set out to address, not sceptical challenges. The
question was: given that most of what we think to know about the natural numbers is correct, how
have we managed to fix the reference of our arithmetical vocabulary? To assume that this requires
us to answer sceptical challenges would be a mistake.’ (Horsten, 2012 : 287)

16Thanks to Leon Horsten here in helping to clarify his view.
17For example, by the argument from the Initial Segment Theorem.

47



Here, the intuition of such objects, extra-logical in nature, is for Hilbert a precondition
for logical reasoning itself. Parsons(1990) adds that these objects are ‘quasi-concrete’
in the sense of being instantiated and intuited from their spatial representations.
This kind of intuition is immediate, that is, not mediated by any other object, akin to
ordinary perception. It is Carrara et al.’s claim that mathematics relies on intuition
and that mathematical knowledge is knowledge that relies on appropriate intuitions
of some sort. For example, the induction schema of pa must be grounded in a similar
primitive notion of finiteness. The intuition that any number is reachable from finitely
many steps from 0 is essential for the evidence that if the antecedent of any instance
of the axiom schema is true then all the numbers inherit the relevant property.18 In
this sense they stipulate a primitive understanding of finiteness, prior to the grasp
of the induction axiom, obtained by some sort of intuition. It is this intuited notion
that allows them to pin down the intended model, without circularity. They then
conclude:

Our claim is that the standard model is characterized by the fact that
every natural number has finitely many predecessors, where the notion
of finiteness here involved is absolute and primitive. This means that it
cannot be defined in terms of more elementary notions. (Carrara et al.,
2016 : 316)

Now, is this intuition again ‘unhelpful as epistemology and unpersuasive as science.’?,
(op. cit.) as Putnam(1980) said. We are not sure. For once, it seems that that such
intuition is presupposed in understanding pa itself. Further, if it is quasi-concrete, it
is abstracted from ordinary experience – which is a far cry than other much more mys-
terious kinds of mathematical intuition such as the Gödelian kind (see Gödel(1947)).
Perhaps then a case can be made to accommodate this intuition within a moderate
view. We do not wish to elaborate this matter further, but only point out the pos-
sibility of further improvement. If so, this strategy illustrates a further way to resist
the sceptic. But is there a sceptical challenge to resist at all?

3.6.2 Dissolving

We made reference above to the fact that Button & Smith(2012) are themselves
sceptical regarding the viability of model-theoretic scepticism. They ‘do not suppose
that Thoralf’s problem is a genuine problem’. (Button & Smith, 2012 : 119). This
because in order for the sceptic to argue for the indeterminacy of mathematical notions
she has to suppose their own determinacy. To clarify what is meant here, first, it is
worth recalling that first-order logic lacks expressive power to capture the notion of
finiteness or recursive procedure. Still, technically we do need to assume a notion of
finiteness in order to define the syntax of first-order logic: we say that a first-order
formula has an arbitrary but finite length, that it is a finite sequence of symbols
arranged with certain rules. Similarly, well-formed formulas or a satisfaction relation
are defined first by a base-clause for atomic formulas and then by recursive conditions
for the others. Hence, it is clear that the use of first-order logic and first-order
model theory presuppose a firm understanding of the relevant notions – finiteness
and recursive procedure. As a consequence, in order for the skolemite sceptic to put
forward his model-theoretic scepticism, he must make obvious use of first-order model
theory and assume a grasp of the notions for which he argues there can be no such
grasp. More generally, in using some model theory to argue for the indeterminacy of

18Of course this relies on the assumption that we do have a thorough understanding of the induction
schema, which the sceptic may reject.
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the concept of natural number, the sceptic must make use of conceptual tools that
allow her (and us) to determine the natural numbers.19

To illustrate the latter point, consider again the argument from the Initial Segment
Theorem. The argument pins down the standard model, up to isomorphism, as
intended of our practice. But the sceptic is keen on pointing out that when using
the Initial Segment Theorem we make implicit use of the (determinacy of the) notion
of finiteness, interdefinable with natural number. Therefore she will argue that even
when stating the argument we already assume what we wanted to prove: that natural
number is already a determinate concept. Yet, in order for the sceptic to argue
for the indeterminacy of the natural number sequence, she herself must implicitly
assume the (determinacy of the) notion of finiteness when employing her model-
theoretic paraphernalia. And this leads to the following dilemma: either (a) finiteness
is not determinate, in which case the sceptical problem cannot even be posed; or (b)
finiteness is determinate, in which case the sceptical problem can be easily solved20.

The point of all this is the following. In order to understand why model
theory is supposed to push us towards sceptical concerns, we must possess
certain model-theoretic concepts. However, possession of those model-
theoretic concepts enables us to brush aside the sceptical concerns. Ac-
cordingly: insofar as we can understand the sceptical challenge, we can
dismiss it. (Button & Walsh, 2018 : 208)

By itself, this does not mean that everything is fine with the moderate realist view. As
we saw, Skolem-Putnam’s challenge is a very natural problem to pose to this position:
if we have only modest epistemic access to numbers, how can we know how they are
like? What the above considerations show is rather that moderate realism is led to
a deeply incoherent sceptical position, highlighting that something must be wrong
not only with skolemite scepticism but with moderate realism itself too.21 Further,
this considerations still do not suffice to show how we come to acquire determinate
mathematical beliefs or that we can acquire them; only that the sceptical challenge
does not stand.

Hence, the dissolution claims that the model-theoretic challenges cannot even be
posed in a non-self-refuting way; in contrast, the solution assumes that the model-
theoretic challenges can be meaningfully posed, but also that they can be meaningfully
answered given that we already possess a primitive notion of finiteness.

3.7 Summary

In this chapter we have presented the argument from Tennenbaum’s Theorem and how
it can be put to work against the sceptical challenge. After surveying its different uses

19See Bays, 2001 : § IV. ‘This, then, is what I like to call the stability objection to Putnam’s
argument. The argument rests on the assumption that we cannot use semantically indeterminate
language to describe “intended interpretation”. But, by Putnam’s own standards, the notions needed
to formulate first-order model theory turn out to be semantically indeterminate. So, since Putnam’s
own techniques for obtaining intended interpretations involve first-order model theory, his position
is logically unstable.’ (Bays, 2001 : 346)

20For example, again, by the argument from the Initial Segment Theorem.
21The proper assessment of this issue is heavily dependent on the exegetics of Putnam’s own work.

Therefore we do not have much to add here except directing the reader to Button(2013) for an
elaborate exposition.
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and foibles, we concluded that perhaps the sceptical challenge is by itself incoherent
there being no need for an argument from Tennenbaum’s Theorem at all.

In what follows we wish to give new life to the sceptical challenge, showing that neither
the solution nor the dissolution are enough to resist it. Further, we want to present
a new argument (what we will call the LP -argument) against the argument from
Tennenbaum’s Theorem. We will see the unexpected consequences of our argument;
if they can motivate skolemite scepticism depends on minute philosophical details
that we postpone until the next chapter.
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Chapter 4

Non-Classical Skolemite
Scepticism

4.1 Introduction

We have just covered two main results: first, the argument from Tennenbaum’s The-
orem and, second, the sceptical solution/disolution. Let us quickly recap the former:
the argument starts by assuming that in intended models the operation denoted by +
is a recursive function. In fact, putting it in this way is already assuming too much.
When properly seen, the basic claim here is that in intended models the operation
denoted by + is an ‘informally-computable’ function. (Below we elaborate on this
point, but for now it suffices to keep the above in mind.) Given this assumption,
coupled with the Church-Turing Thesis and with Tennenbaum’s Theorem, it follows
that the intended model of arithmetic is restricted to a single isomorphism type, the
class of models isomorphic to N . Yet things are not so simple: the argument pre-
supposes more than what makes explicit, being the purpose of this chapter to show
exactly what the hidden assumptions amount to. As we will argue, for the argument
to work as expected a ‘classicality-constraint’ must be assumed. We will show this
by considering the non-classical (paraconsistent) semantics LP (see Priest, 1979) and
the models of pa obtained with this logic. A by-product of our presentation will be
the reintroduction of the sceptical challenge against the solution/dissolution propos-
als. In arguing against the argument from Tennenbaum’s Theorem we will see how
the sceptic is happy to embrace a determinate notion of finiteness without leading
to a full-blown determinacy of arithmetic’s interpretation nor contradicting his own
sceptical qualms. It is the goal of this chapter to see how neither the strength of
the argument from Tennenbaum’s Theorem nor of the sceptical (dis)solution remain
unaffected by considering non-classical models of arithmetic.

4.2 Inconsistent LP -Models of Arithmetic

4.2.1 LP -Language and Semantics

The logic LP is a strong-Kleene semantics proposed originally in Priest(1979) (and
hinted before by Ansejo(1966)) in order to model contradictions (and logical para-
doxes, in particular) without explosion. The language LP is the language of first-order
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logic, including function symbols and identity (with terms and formulae defined in-
ductively in the usual way).

Definition (LP -Structure) For a signature L, an LP -L-structureM con-
sists of:

1. a non-empty set of elements M called the domain of M;

2. for each constant symbol c in the signature, an object cM ∈M .

3. for each n-ary function symbol f in the signature, a function fM :
Mn →M ;

4. for each n-ary relation symbol R in the signature, an ordered tuple

RM = 〈R+M , R−
M〉 ⊆Mn ×Mn

A denotation function defined for an LP -structure is very much like the classical first-

order structure with the exception of the relation symbols. Intuitively, R+M is the
extension of the relation in the structure, that is, the set of objects or tuples true

of R, and R−
M

its anti-extension. Clearly, in a classical structure we may associate

a relation with its anti-extension by R−
M

= Mn\R+M ; i.e. classically, the anti-
extension of a relation is the complement of its extension. In LP this does not need

to hold: though we stipulate R+M ∪ R−M = Mn (and so we have excluded middle),

it is not assumed R+M ∩ R−M 6= ∅. This is why we have to explicitly define the
anti-extension of a relation.

Definition (LP -model) For a theory T in the signature of L, the LP -L-
structure M is a model of T iff, for every formula ϕ ∈ T , M |=LP ϕ.

Since we are working with a non-classical semantics, logical consequence |=LP does
not behave classically. For convenience, we first define a valuation v, relative to a
structure M’s interpretation function, as a function taking formulas to truth values
such that v(ϕ) ∈ ℘({1, 0})−∅, where {1} and {0, 1} are designated values.1 Now, if ϕ

is atomic and t1 .., tn are terms, then 1[0] ∈ v(R(t1, ..., tn)) iff 〈tM1 , ...tMn 〉 ∈ R+[−]M .2

The other cases are as follows:

• 1[0] ∈ v(¬ϕ) iff 0[1] ∈ v(ϕ);

• 1[0] ∈ v(ϕ ∧ ψ) iff 1[0] ∈ v(ϕ) and[or] 1[0] ∈ v(ψ);

• 1[0] ∈ v(∀xϕ) iff 1[0] ∈ v(ϕ(x/d))) for all[some] d ∈ D, with v(ϕ(x/d))) being
the valuation that results in assigning to the variable x the element d.3

Disjunction, implication and existential quantification have their normal definitions
through the dual of the other logical connectives, such that:

1Intuitively, ‘v(ϕ) = {1}’ can be read as ‘ϕ is only true, ‘v(ϕ) = {0}’ as ‘ϕ is only false’, and
‘v(ϕ) = {1, 0}’ as ‘ϕ is both true and false’. Despite intuitive this need not be the case. As Barrio
& Da Ré(2018, 161-162) persuasively argue ‘There is no intrinsically dialetheic value for LP . [...]
[T]he intermediate value might be interpreted in a non-dialetheic fashion. In other words, to admit
three-valued semantics does not compel us to interpret the intermediate semantic value, this pure
value, in any particular way.’

2This is to be read 1 ∈ v(R(t1, ..., tn)) iff 〈tM1 , ...tMn 〉 ∈ R+M , and 0 ∈ v(R(t1, ..., tn)) iff

〈tM1 , ...tMn 〉 ∈ R−
M

. Throughout we will adopt this convention where ‘x[y] iff z[w]’ is to be read as
the two clauses: ‘x iff z’ and ‘y iff w’.

3For simplicity, we take the names of the elements of the domain as being the elements themselves,
so that: if d ∈M , then dM = d.
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• v(ϕ ∨ ψ) = v(¬(¬ϕ ∧ ¬ψ));

• v(ϕ→ ψ) = v(¬ϕ ∨ ψ);

• v(∃xϕ) = v(¬∀x¬ϕ).

We then say that a model satisfies a formula if it comes out at least true under the
model (though it may be both true and false):

Definition (LP -Satisfaction) Given an LP -structure M and formula ϕ,
we say that ϕ is satisfiable in M and write M |=LP ϕ iff the valuation
function under the model’s interpretation is such that 1 ∈ v(ϕ).

It is easy to see that every classical model is isomorphic to an LP -model in which all
atoms (and, therefore, all formulas) take either the value {1} or {0}. Hence,

Definition (Classical/Consistent LP -Model) An LP -model M is a clas-
sical or consistent LP -model iff, for every atomic ϕ, v(ϕ) ∈ {{1}, {0}}.
Definition (LP -Validity) Given a formula ϕ, we say that ϕ is valid and
write |=LP ϕ iff 1 ∈ v(ϕ) for every model M and associated valuation v.

Theorem For arbitrary ϕ, |=LP ϕ iff |=L ϕ
4

Proof. We first show a small Lemma:

Lemma Let v be an arbitrary LP -valuation. For arbitrary n-
ary relation R, we define

v∗(R(t1, ..., tn)) =

{
v(R(t1, ..., tn)) iff v(R(t1, ..., tn)) ∈ {{1}, {0}}
{1} otherwise

Then, for arbitrary ϕ, v∗(ϕ) ⊆ v(ϕ).

Proof. The proof is by induction on the complexity of ϕ.

(⇒) Suppose |=LP ϕ. Then ϕ is (at least) true under every LP -valuation
v. Since every classical valuation (that is, without formulas both true and
false) is an LP -valuation, it follows that ϕ is true under every classical
valuation. Hence, |=L ϕ.

(⇐) By contraposition. Suppose 6|=LP ϕ. There is an LP -valuation v
under which ϕ is only false. This means that 1 6∈ v(ϕ).

By the above Lemma, there is a valuation v∗ such that v∗(ϕ) ⊆ v(ϕ).
From this latter fact and from 1 6∈ v(ϕ), it follows 1 6∈ v∗(ϕ). Since by
construction v∗ is a classical valuation that falsifies ϕ, we have 6|=L ϕ.

Now, for semantic consequence:

4Recall that an L-theory is a classical theory in the language of first-order logic.
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Definition (LP -Consequence) Given a formula ϕ and set of formulas Γ,
we say that ϕ is a (semantic) consequence of Γ and write Γ |=LP ϕ iff
for every model M such that M |=LP γ for all γ ∈ Γ it is the case that
M |=LP ϕ.

Theorem If Γ |=LP ϕ, then Γ |=L ϕ. The converse of the implication is
false.

Proof. If Γ |=LP ϕ then all valuations are truth preserving. Hence, all
classical valuations are truth-preserving. Therefore, Γ |=L ϕ.

To see why the converse does not hold it suffices to give a counterexample.
Consider an LP -valuation v with v(α) = {1, 0} and v(β) = {0}. Then,
v(α→ β) = {1, 0}, from where it follows: α, α→ β 6|=LP β.

We end this section with some notable classical validities that do not hold in LP . It
is easy to show that the there are LP -models where the following fail (Priest, 1979, §
III.14.)5:

ϕ,ϕ→ ψ |= ψ
ϕ→ ψ,¬ψ |= ¬ϕ

ϕ→ ψ,ψ → χ |= ϕ→ χ

4.2.2 Collapsed models

Paraconsistent collapsed models of arithmetic are essentially structures obtained by
quotienting classical models of arithmetic such that their elements are collapsed
through an equivalence relation that is also a congruence relation on the operations of
successor, addition and multiplication. The main difference here is that, unlike clas-
sical quotient algebras of N, the elements in a collapsed model gain the non-identity
of its members: if [x] = {x, y} and x 6= y, then [x] 6= [x]. Though the techniques stem
originally from the work of Meyer(1976), by far the most well-studied constructions
have been elaborated by Priest(1997) and Priest(2000) using the logic LP .

For ease of symbolism, we let I denote the interpretation of the non-logical vocab-
ulary in a model. Let ∼ be an equivalence relation on the domain M of a con-
sistent LP -model M of pa, such that it is also a congruence relation on the in-
terpretation of the function symbols; that is, for n-ary function symbol f and ele-
ments d1, ..., dn, e1, ..., en ∈ M , if di ∼ ei (for 1 ≤ i ≤ n) then I(f)(d1, ..., dn) ∼
I(f)(e1, ..., en). Given M and ∼, we call M/ ∼ the collapsed model of M under
∼. In order to construe a collapsed model, we will then have to define the domain
of the new model and the denotation of the vocabulary through I∼.6 For this, we
let the domain M/ ∼ of M/ ∼ to be the set of equivalence classes obtained by the
partition defined on M under ∼. That is, M/ ∼ = {[m] | m ∈M}.7 We can define
a collapsed interpretation I∼ as:

• For every constant c, I∼(c) = [I(c)]

• For every n-place function f , I∼(f)([d1], ..., [dn]) = [I(f)(d1, ..., dn)]

5Throughout we will mostly write |= for |=LP letting context disambiguate.
6I∼ corresponds to the interpretation in the collapsed model.
7As usual, [i] = {x | x ∼ i}.
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• For every n-ary predicate P , 〈[d1], ..., [dn]〉 ∈ I∼+[−](R) iff
for some e1 ∼ d1, ..., en ∼ dn it follows 〈e1, ..., en〉 ∈ I+[−](R)

• I∼([x] = [y]) = I∼(x ∼ y)

• I∼([x] 6= [y]) = I(x 6= y)

As a consequence:

• I∼(0) = [I(0)]

• I∼(S([x])) = [I(S(x))]

• I∼([x] + [y]) = [I(x+ y)]

• I∼([x]× [y]) = [I(x× y)]

We quickly note that the collapsed interpretation for function symbols is well-defined
since ∼ is by assumption a congruence relation. Otherwise, there would be no natural
way to define the collapsed interpretation; for instance, without congruence, we could
not let I∼(f)([d]) = [I(f)([d])] (for u-nary f) since d ∼ e and [d] = [e] need not imply
[I(f)([d])] = [I(f)([e])]. Now, the important point is that I∼ identifies all members in
the same equivalence class, producing a composite element (that is, the equivalence
class itself) inheriting all the properties of its members (even if these properties are
inconsistent). From the way the collapsed model is defined, the crucial Lemma follows:

Collapsing Lemma: For any LP -interpretation I and arbitrary ϕ:

vI(ϕ) ⊆ vI∼(ϕ)

vI , vI∼ are valuation functions under their respective interpretations.

Proof. The proof is by induction on the complexity of ϕ. See Priest(1991).

The Lemma guarantees that in collapsing a model no truths are lost. If in the original
interpretation 1 ∈ vI(ϕ) then 1 ∈ vI∼(ϕ) (and similarly with 0), though there may
be formulas ψ such that {1, 0} ∈ vI∼(ψ).

Linear Models

In order to better understand the significance of the above result we want to introduce
a special class of collapsed models called linear models. The following Definition and
Lemma from classical pa will prove themselves very useful.

Definition For a classical model M of pa, we call S ⊆M a slice iff S is
an initial section ofM (i.e. if x < y and y ∈ S, then x ∈ S) closed under
successor, addition and multiplication. We say S is proper iff S 6= N and
S 6= M .

Lemma For every non-standard classical model M and slice S ⊂ M ,
there is a proper slice that extends S.
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Proof. Consider a non-standard model M and let S be a slice such that
S ⊂M . We want to show there is a proper slice that extends S. First, we
note that N is the smallest slice of M and so N ⊆ S. Take a 6∈ S; then, a
is non-standard. Define

aN = {m ∈M | ∃n ∈ N :M |= m < an}

It is easy to see that aN is closed under successor, addition and multipli-
cation. For the successor case consider x ∈ aN; then, there is an n ∈ N
such that x < an. Then, either (a) x+ 1 < an in which case x+ 1 ∈ aN,
or (b) x+ 1 = an in which case x+ 1 < an+1 and x+ 1 ∈ aN.8 Similar,
for the other cases. So that aN is a slice.

Define ϕ(x, a) = ∃x(x < a). It is clear that for every n ∈ N : M |=
ϕ(n, a). From this latter fact and from Overspill, we know that there is a
non-standard c ∈M withM |= ϕ(c, a) so that c ∈ aN. Hence, since c 6∈ N
we have N 6= aN.

Also, it is clear that aN ⊆ M . But, since for every n ∈ N we have
an < aa it follows that aa 6∈ aN and aN 6= M . Hence, aN is a proper slice
that extends S.

Consider a classical modelM |= pa, standard or non-standard. Define forM a chain
{Si | i ≤ µ with 0 ≤ µ ≤ ω} of strictly initial segments of M such that: Sµ = M
and Sj a slice (for 0 < j ≤ µ). It is important to note that given the way it is
defined S0 is not necessarily a slice, but only an initial segment of the model. Now,
for 0 < j ≤ µ, define Cj = Sj − Sj−1. Also, for 0 < j ≤ µ, we let p1 be a non-zero
(possibly non-standard) number with p1 ∈ S1 and if j < k, then pj is a multiple of
pk. We define a relation ∼ such that:

Definition We say that ∼ is a linear relation if it is of the form:

x ∼ y iff
(x, y ∈ S0 ∧ x = y) ∨ (for some i > 0 and x, y ∈ Ci : x = y (mod pi))

Lemma ∼ is an equivalence relation and a congruence relation with re-
spect to successor, addition and multiplication.

Proof. That ∼ is an equivalence relation follows easily from inspection of
cases together with the fact that equality and congruence modulo n are
themselves equivalence relations. For congruence:

• Successor: Assume x ∼ y. Then, either (a) x, y ∈ S0 or (b) for some
i > 0, x, y ∈ Ci. Suppose (a). Then, x = y. Hence, S(x) = S(y). If
S(x), S(y) ∈ S0, then S(x) ∼ S(y). If for some i > 0, S(x), S(y) ∈
Ci, then S(x) = S(y) (mod pi), and S(x) ∼ S(y). Suppose (b).
Then, x = y (mod pi), from where it follows S(x) = S(y) (mod pi).
Also, from the fact that Ci is closed under successor, it follows that
S(x), S(y) ∈ Ci. Hence, S(x) ∼ S(y).

• Addition: Assume x1 ∼ y1 and x2 ∼ y2. Then, either (a) x1, x2 ∈
S0 ∨ y1, y2 ∈ S0, or (b) for some i, j > 0 (not necessarily distinct),

8A better notion here for the successor of x would be S(x). We choose it to write it as x + 1 to
avoid ambiguity with the slice S.
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x1, x2 ∈ Ci ∧ y1, y2 ∈ Cj . Suppose (a). Assume, without loss of
generality that the first disjunct holds; that is, x1, x2 ∈ S0. Then,
x1 = x2. Now, if y1, y2 ∈ C0 then y1 = y2, and then x1+y1 = x2+y2,
from where it follows, x1 + y1 ∼ x2 + y2, irrespectively of the Ci
or S0 that has them as elements. If, for some i > 0, y1, y2 ∈ Ci,
then x1 + y1, x2 + y2 ∈ Ci, for Ci is closed under addition. Then,
since modulo operation is congruent on addition, it follows x1 +y1 =
x2 + y2 (mod pi) and, therefore, x1 + y1 ∼ x2 + y2. Suppose (b).
Then x1 = x2 (mod pi) and y1 = y2 (mod pj). Assume, without
loss of generality, i < j. Then, pi is by construction a multiple of
pj . Hence, x1 = x2 (mod pj). Hence, x1 + y1 = x2 + y2 (mod pj).
Also, since Cj is closed under addition, x1 + y1, x2 + y2 ∈ Cj . Hence,
x1 + y1 ∼ x2 + y2.

• Multiplication: (Same as Addition).

Definition We call an LP -model linear if it is obtained by collapsing a
classical model under a linear relation.

Linear models have a tail comprising an initial segment of the original model followed
by µ-many cycles such that for each cycle Ci (where i>0) the period is pi. For
instance, consider M a classical non-standard model of pa and a chain of strictly
initial segments S0 ⊆ S1 ⊆ S2 with S0 = {m | m < n} (for some finite n), S1 = N
and S2 = M . Letting p1, p2 stand for the (finite) period of the cycles (with p1 multiple
of p2) and c non-standard, we consider the linear relation:

x ∼ y iff

• (x, y < n ∧ x = y) or

• (n ≤ x, y < ω ∧ x = y (mod p1)) or

• (x, y > ω ∧ x = y (mod p2))

The relation produces a collapsed model M/ ∼ with a tail isomorphic to an initial
segment of N of length n, followed by two cycles of period p1 and p2. Letting the
arrows represent the successor operation, the successor graph of the collapsed model
is then9:

[0] [1] [2] [...] [n] [n+ 1]

[...][n+ p1 − 1]

[c] [c+ 1]

[...][c+ p2 − 1]

Since the model has finitely many elements it is obviously finite and with a different
order type than the standard model. Since by assumptionM |= pa by the Collapsing
Lemma we have that M/ ∼ |= pa. We then have an example of a finite model of
arithmetic.

9We assume, for illustration, that n is greater than 2. Of course, if n = 2 or n = 1, the tail would
be shortened.
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For the rest of the paper we will be mostly interested in linear structures obtained
by collapsing the standard model N . In building collapsed models of N , µ must
either be 0 or 1, for the standard model only has one slice (i.e. N itself). If µ = 0 we
consider a single strict initial segment of the model, corresponding to its entire domain
N and build N/ ∼ by collapsing the initial structure with x ∼ y iff x, y ∈ N : x = y.
The resulting structure will produce an isomorphic copy of N, where each integer is
raised to its type lift (that is, if n ∈ N, then [n] = {n} ∈ N/ ∼). A more interesting
construction is letting µ = 1. Here, there are two possibilities. If S0 6= ∅, the collapsed
model consists of a tail of finite length followed by a cycle also of finite period. The
linear relation will be:

x ∼ y iff (x, y < n ∧ x = y) ∨ (x, y > n ∧ x = y (mod p1))

And the successor graph will be:

[0] [1] [...] [n] [n+ 1]

[...][n+ p1 − 1]

The relation puts each integer up to n in its own equivalence class, producing a cycle
of period p1. It is easy to see that the model is inconsistent for

N/ ∼ |= [n] = [n+ p1] ∧ [n] 6= [n+ p1]

The first conjunct follows from n ∼ n+p1, whereas the second from n 6=N n+p1. The
collapsed model is non-trivial since it can be easily checked that N/ ∼ 6|= [0] = [1].
But again by the Collapsing Lemma, N/ ∼ |= pa. We will call such models with
finite tail followed by a cycle, a heap model.

If S0 = ∅, the collapsed model will only be formed by a cycle also of finite period.
Again as an example, we consider collapsing N under:

x ∼ y iff (x = y (mod p1))

The successor graph of N/ ∼ may be depicted as:

[0] [1]

[...][p1 − 1]

It is also straightforward to see how this new N/ ∼ is inconsistent but non-trivial.
Further, again, N/ ∼ |= pa. We will call such models with a single cycle, a cyclic
model.10 In fact, heap and cyclic models are the only ‘interesting’ collapses of the
standard model11 – any interesting equivalence relation must identify two different
numbers; supposing j to be the least inconsistent number (i.e. the least number
identified with another number) and k the least number greater than j that is identical

10Interestingly, these were the first kind of inconsistent models studied in Meyer(1976).
11By ‘interesting’ we mean a model not-isomorphic to the standard model.
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with it, we then have that S0 = {m | m < j} and p1 = k − j. This means that the
collapse produces a linear model.

We then have the following structure for finite linear LP -models. The general struc-
ture is a finite tail, followed by a cycle of standard numbers (or, better, their type lift)
and a finite collection of cycles of non-standard numbers. Having surveyed some im-
portant kinds of inconsistent models and the underlying logic, we move to a problem
in comparing them.

Isomorphic LP -Models

We think that there might be a small complication for the argument we will want to
put forward later that we should better tackle with now. Recall that when defining
an LP -structure we must associate not only an extension but also an anti-extension
to each relation symbol R. However, when presenting a classical first-order structure
we only associate an extension to R, for the anti-extension may be easily obtained
by taking the complement. But then, if an LP -structure imposes different conditions
on the interpretation of the relation symbols, how should we capture the notion of
‘isomorphism’ when paraconsistent structures are involved? To see why this question
is not at all trivial let us consider the classical case for a bit.

Classicaly, for a function to establish an isomorphism between two modelsM and N
it must be the case that12

• For n-ary L-relation symbol R, (m1, ...,mn) ∈ RM ⇔ (π(m1), ..., π(mn)) ∈ RN
(for m1, ...,mn ∈M)

The clause only concerns the extension of R so a better formulation would be:

• For n-ary L-relation symbol R, (m1, ...,mn) ∈ R+M ⇔ (π(m1), ..., π(mn)) ∈
R+N (for m1, ...,mn ∈M)

Since the biconditional is equivalent to (m1, ...,mn) 6∈ R+M ⇔ (π(m1), ..., π(mn)) 6∈
R+N and since (assuming consistency) a ∈ R+M ⇔ a 6∈ R−

M
, the anti-extensions

will also agree. That is, in the classical case, an isomorphism also guarantees that

(m1, ...,mn) ∈ R−M ⇔ (π(m1), ..., π(mn)) ∈ R−N . But this doesn’t need to happen
in the LP -case. Now, a classical consequence of there being isomorphic models is
elementary equivalence: M ∼= N ⇒ M ≡ N . But we find that with the classical
notion of isomorphism in place, we are not guaranteed that two isomorphic models
will satisfy the same formulas when we consider supposedly isomorphic inconsistent
LP -structures.

To see why this is the case we propose a simple example. Consider the two-element
models A and B with no function symbols: A = {a1, a2} and B = {b1, b2} such that
〈a1, a2〉 ∈ R+A, R−A = ∅ but 〈b1, b2〉 ∈ R+B = R−B. Define a bijection π : A → B,
with π(a1) = b1 and π(a2) = b2. It is easy to note that the function defines an
isomorphism in the classical case. Note that the condition:

• (m1, ...,mn) ∈ R+A ⇔ (π(m1), ..., π(mn)) ∈ R+B

(for m1, ...,mn ∈ A)

12The reader may want to consult the Appendix.
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It is also satisfied. Of course, we do not have

• (m1, ...,mn) ∈ R−A ⇔ (π(m1), ..., π(mn)) ∈ R−B

(for m1, ...,mn ∈ A)

But since the classical definition of isomorphism only (explicitly) requires the agree-
ment of the extension of the relation symbols, we do not need for this latter clause to
come out true. So the function is indeed an elementary embedding. However, both
models are not elementary equivalent. For:

A |= R(a1, a2)

A 6|= ¬R(a1, a2)

B |= R(b1, b2)

B |= ¬R(b1, b2)

The philosophical problem that we found is the following. We want to make compar-
isons between LP -models and to be able to say when two models are the same up to
isomorphism. In fact, as noted before, the goal of this chapter is to show that the
argument from Tennenbaum’s Theorem does not isolate a single isomorphism type.
And this because, as we will argue, there are inconsistent LP -models that are not
isomorphic to the standard model. However, what is the notion of isomorphism here?
We may think that one necessary condition for two models to be isomorphic is ele-
mentary equivalence. Hence, if we use a notion like that of ‘classical isomorphism’,
that allows for not elementary equivalent albeit isomorphic models in the LP -case,
it might be suggested that the notion is not suitable to capture that which we want
to capture when establishing isomorphic relations between inconsistent models. And
if the above follows, we must provide a new definition to establish when these mod-
els are isomorphic – one that also captures that which we want to capture with the
classical notion of ‘isomorphism’. Otherwise, when claiming, as we will below, that
there are inconsistent intended LP -models not isomorphic to the standard intended
models, it might be counter-argued that we are using ‘isomorphism’ with a different
meaning; and in this way it might not be established that those inconsistent models
are ‘really’ non-isomorphic to the standard model.

A bit of further elaboration on the topic of isomorphic LP -structures is required for a
better understanding of these constructions and their differences or similarities with
more common classical constructions. As it will be seen below, we will go around
such problems, bearing in mind that there is more to be said on exactly how two
LP -models can be isomorphic.

4.3 Changing the Logic for Tennenbaum’s Theorem

It is more than fair to ask how the long digression on paraconsistent models relates
with our main problem at hand. In fact, nowhere in the literature do we find reference
to non-classical theories of pa as being of technical and philosophical significance for
the intendedness of arithmetical models and for Putnam’s model-theoretic arguments.
This is evident in the classicality constraints with which the debate on Tennenbaum’s
Theorem has been conducted. For instance, Halbach & Horsten(2005)’s argument
aims to show that any model of pa where addition is computable is intended of our
practice. However, what they leave implicit is the classical background of their thesis;
when properly seen, Halbach & Horsten must rather state that ‘any classical model
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of pa where addition is computable is intended of our practice’. And this because, as
we will show, their argument does not work without a ‘classicality constraint’; that is,
insisting on the recursivity of addition without the associated claim that the models
must be classical (or consistent) does not single out a unique isomorphism type as
intended of arithmetic.

4.3.1 Sameness of Structure in LP -Models

Consider now the non-trivial heap model N ∗/ ∼ obtained by collapsing the standard
model N under:

x ∼ y iff (x, y < 3 ∧ x = y) ∨ (x, y > 3 ∧ x = y (mod 4))

The successor graph of N ∗/ ∼ may be depicted as:

[0] [1] [2] [3] [4]

[5][6]

N ∗/ ∼ puts each number up to 2 in their own equivalence class and, from 3 on,
produces a cycle of period 4. We know, from the Collapsing Lemma, that N ∗/ ∼ |=
pa since N |= pa. We want to argue that N ∗/ ∼ is a model of pa not isomorphic to
the standard model N . Of course, as we just saw, defining isomorphism between LP -
models is a big task being difficult to see in what sense the notion of ‘isomorphism’
when specified for LP -structures is equivalent to that specified for classical first-order
structures. Be that as it may, we find uncontentious that the notion of ‘sameness of
structure’ is prior to that of ‘isomorphism’: it is through this latter mathematically
formalized concept that we try to define the informal former one. And the following
also seems to hold without great deal of argumentation required:

If two models (broadly construed) have the same structure then:

1. both models have the same cardinality;

2. if the first model is of order type α then the second model is also of
order type α.13

13It is very important here to note that our intuitions about what is sameness of structure are moti-
vated by the background thought that isomorphism is really meant to capture sameness of structure.
Now, when giving an approximate rendering of what it is for two models to be the same, we think of
those conditions that are necessarily captured by an isomorphism: an isomorphism guarantees that
the models are of the same size and same order type. To better clarify, suppose that one thinks that
bissimulation instead is what captures sameness of structure. Then, the definition of sameness of
structure may change. For instance, consider two bisimular Kripke models M = 〈W,R, V 〉 where
one is a single reflexive point and the second an infinite chain. In a way, if bissimulation is supposed
to capture sameness of structure then both models will have the same structure – but we could
hardly say they have the same cardinality, or order-type. So our working hypothesis will be that
sameness of structure is captured (more or less) by the notion of isomorphism. Hence, since any two
isomorphic models must satisfy the above clauses, any two models with the same structure should
also satisfy the above clauses. However, elementary equivalence is more of a by-product of the fact
that two (classical) models are isomorphic rather than a really constitutive feature of the meaning
of isomorphism. Hence, we do not include a clause for elementary equivalence in our definition.
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Note that the conditional above is not a biconditional. This because we wish to
allow the possibility of there being a more fine-grained understanding of ‘sameness
of structure’ requiring more conditions to be fulfilled. In this sense, the two clauses
need not be exhaustive of the relevant concept, being merely a set of necessary though
perhaps not sufficient conditions for sameness of structure. We will not argue further
for this point; we find the clauses to be constitutive of the ordinary and technical
meaning of the notion to the extent that if someone maintains that two models can
have the same structure without fulfilling one (or both) of the required clauses, then
either (a) she is plainly wrong, or (b) she is using a different notion than what we
normally mean by ‘sameness of structure’. Given the intuitive character of the two
clauses above, the burden of proof for the unnecessity of either one or both, when
defining sameness of structure, must rest on our opponent.

Under this understanding do the models N ∗/ ∼ and N have the same structure?
First, is clause (1) satisfied? Well, N is infinitely countable and, therefore, by defini-
tion has ℵ0 as cardinal number. On the other hand, N ∗/ ∼ is finite:

• | N ∗/ ∼| = 7, for | N∗/ ∼| = | {[0], [1], [2], [3], [4], [5], [6]} | = 7.

Since both models have different cardinalities, they do not have the same structure.
But we should be careful here since in a way N ∗/ ∼ may be seen to be infinite too! To
see why this might be the case it is worth recalling a fun thought-experiment remarked
in Denyer(1995 : 572) to the extent that no two inconsistent models have the same
cardinality.14 Consider two classical isomorphic copies of the standard model N1 and
N2 and produce their respective collapsed models under our familiar relation:

x ∼ y iff (x, y < 3 ∧ x = y) ∨ (x, y > 3 ∧ x = y (mod 4))15

We will have two collapsed models with a tail up to [21] or [22] and a cycle of period
4. Both models will have size 7. However, curiously enough, the second model will
have size 8; to see this just note that regarding the domain of the second model:

• | N2/ ∼| = | {[02], [12], [22], [32], [42], [52], [62], [72]} | = 8.

Now, it might be objected that the model only has 7 elements because [32] = [72];
however, it is also the case that [32] 6= [72]. Hence, by the latter fact, when counting
the number of elements not identical with other ones in N2/ ∼ we reach the total
of 8 elements. Hence, the models do not have the same cardinality. Of course by
assumption they also have the same cardinality! By iterating this process infinitely
many times we will have that the cardinality of N2/ ∼ is (countably) infinite.

What the example shows is that from the moment we identify [x] = [x + p], with
x 6= x + p in the original model, we may follow a reason like the above reaching
the conclusion that the model is infinite after all; even though it is also finite. In
reality, there is an easier way to reach the same point, as noted in Priest(1996). Even
though ‘finiteness’ cannot be defined in the language of first-order logic, there is a
sense in which a finite inconsistent model is indeed finite, for it satisfies a formula for
finiteness:

• N/ ∼ |= ∀x(x = 0 ∨ x = 1 ∨ ... ∨m = 1)

14His original argument concerns categoricity; we adapt it here for our purposes.
15‘3’ and ‘4’ is just a sloppy notation for the objects in each model that are isomorphic to the

standard numbers 3 and 4 in the standard model; call those objects 31 and 41 in the model N1 and
32 and 42 in the model N2.
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The model then ‘says of itself’ that it has at most finitely-many m+ 1 elements. But
it is also true that a collapsed model will satisfy an expression of infinitude (or, at
least, non-finitude):

• N/ ∼ |= ∀x∃y∀z ≤ x(y 6= z)

Hence, ‘As regards the content of M [a finite inconsistent heap model], there is a
sense in which it is true that it claims that there are finitely many numbers, and a
sense in which it denies this.’ (Priest, 1996: 650) So, is clause (1) satisfied for N and
N ∗/ ∼? Well, ... on one hand No! because both models have different cardinality,
... on the other hand Yes! because both models have the same cardinality (they
are both countably infinite). But can we sensibly think this is what we mean by
sameness of structure? The intuitive appeal of clause (1) is due to our experience
with cardinalities only in the classical case: clause (1) works in the classical case
for it is implicitly excluded the possibility of a model with different cardinalities.
But when working with LP -models this intuition breaks down. What is needed is
a refinement of the first clause in order to account for the inconsistent case. Prima
facie, it would appear that sameness of structure does not put any upper bound on
the amount of sizes models may come to have: when we say that ‘if two models are
the same, then they agree on the size’ we just mean they agree on the size for every
possible size the models may have. The fact that this assumption is only implicit is
that when reasoning in the classical case a model with two different sizes is absurd;
but we can make sense of this in the paraconsistent case and the idea of requiring
of two models to have the same structure only if they agree on all their cardinalities
seems to respect the spirit encoded in the same structure, same size motto. Hence,
we refine our original formulation of ‘sameness of structure’ such that:

If two models (broadly construed) have the same structure then:

1. if the first model is of cardinalities k0, ..., kn then the second model
is also of cardinalities k0, ..., kn (for n ∈ N);

2. if the first model is of order type α then the second model is also of
order type α.

Note that the new clause (1) allows for the possibility of a model to have different
sizes; all it requires is that if it has two (or more) different sizes (at the same time),
then a model with a same structure must also have those two (or more) different sizes.
Under the new definition, our models will not have the same structure for the clause
is immediately violated:

• | N ∗/ ∼| = 7 6⇒| N | = 7.

Hence, N and N ∗/ ∼ do not have the same structure. To push the point further,
we now focus on clause (2). Obviously, the order type of the standard model is ω.
But N ∗/ ∼ does not define a linear order ([6] ≤ [7] = [3] ≤ [6]), so that clause (2) is
unsatisfied; the collapsed model is not a linear order and then cannot be isomorphic
to an ordinal. With this our claim is strengthened: the structure of the models is not
the same.

4.3.2 The LP -Argument

We have now established a sensible case for the distinct structural character of our
models. Given that sameness of structure is a necessary condition for isomorphism,
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the models are not isomorphic, regardless the details on how this latter notion is
specified. Now, the main point of our discussion is that N ∗/ ∼ is also a model with a
recursive addition! The denotation of the addition function in collapsed models was
defined as:

I∼([x] + [y]) = [I(x+ y)]

This means that +N
∗/∼ can be defined in terms of +N which, in its turn, is expressed

by a finite number of applications of the primitively recursive successor function.
As a consequence, N ∗/ ∼ is a model non-isomorphic to the standard model with
recursive addition. It might be suggested that to call +N

∗/∼ recursive is an abuse
of terminology for, after all, we expect Turing machines to be consistent. We will
discuss this point at great length in the next chapter. For now it suffices to note that
+N

∗/∼ is (at least) clearly informally computable. Here is an algorithm to determine
the output of [x] +N

∗/∼ [y]:

1. Compute x +N y instead, which is computable since +N is computable too
(for example, by PRaddition);

2. Lift the result (say z) to its type-lift [z].

Collapsed addition is therefore informally computable. And this has, we will now
argue, important consequences for the argument from Tennenbaum’s Theorem. The
argument states that in intended models addition must be computable. Since the
requirement is supposed to be justified from within our actual arithmetical prac-
tice, this notion of computability must be informally construed; i.e. we argue for the
computability of intended addition by reflecting on what we (humans) can actually
compute, as opposed to what an abstract model of computation can perform. In
this sense, the expectation that operations defined on numbers should be computable
must mean that we actually have an algorithm to perform the relevant computations.
Again, we do not require from the start that intended addition is recursive, but instead
reach this claim from the Church-Turing Thesis and the more basic assumption that
addition is informally-computable. Of course, the move from an informal to a formal
notion of recursivity is needed to make use of Tennenbaum’s Theorem; still recursivity
of addition is not the basic assumption. On the contrary, informal-computability of
addition is. Suppose in fact that the Psychological Church-Turing Thesis holds but
the Ontological Church-Turing Thesis does not.16 This means that there are recursive
functions not informally computable. In this case, what sense would then make to
claim that arithmetical practice shows that intended addition is recursive (in a formal
sense)? For all we may now, even if addition is recursive, it may not be effectively-
humanly computable; but if this is the case, how can arithmetical practice and our
insistence that we can always compute with numbers (regardless if an idealized model
of computation can) justify the claim that addition is recursive but not necessarily
effectively-humanly computable? The absurdity of such reasoning makes clear that
the informal effective-human computability of addition must be the basic assumption

16Sometimes a distinction between an ontological and psychological Church-Turing Thesis can be
made:

Ontological Church-Turing Thesis: A function is effectively-computable iff it is
recursive.

Psychological Church-Turing Thesis: Any effectively-computable function that
humans can compute is a recursive function.
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of Tennenbaum’s argument. We first stipulate, justified from arithmetical practice,
that addition is computable by us, and then change to the formal notion of recursivity.
Hence, we stress that the argument’s basic requirement must be:

Requirement: In an intended model the operation of addition is infor-
mally (effectively-humanly) computable.

But we just showed the informal computability of +N
∗/∼. Then what this means

is that there are non-classical models of arithmetic non-isomorphic to the standard
model and yet respecting our intuitions on computability and our ordinary computa-
tional practice with natural numbers. Therefore, if computability of addition (and,
perhaps, also multiplication and <-relation) is all there is when determining the in-
tended model of arithmetic, then it seems that a finite paraconsistent LP -model as
the kind proposed above must count as intended.17 Since N ∗/ ∼ is intended and is
not isomorphic to the standard model, Halbach & Horsten’s constraint is insufficient
to determine the intended model up to isomorphism.

Since we have covered a lot of material since our introduction of the aims of the
moderate realist, it is worth quickly recapturing the main idea: the moderate realist
wants to be able to say which model is intended of our practice without heavy as-
sumptions on our epistemic grasp of mathematical objects, in a way that respects her
moderate attitude. For this, a promising solution is to determine the intended model
up to isomorphism by finding suitable logical constraints, motivated by our ordinary
number-theoretic practice, capable of yielding categorical theories or singling out one
intended isomorphism type. It is here where we find the argument from Tennen-
baum’s Theorem. In the last chapter we have covered several objections pertaining
to establish the circular character of the argument by focusing on a ‘theoretical’ and
‘practical’ notion of recursivity. Now we have just shown that, besides the above
counter-arguments, if no requirement besides computability is added, the argument
from Tennenbaum’s Theorem will not describe the intended models as an isomorphism
type. In this way we reintroduce the skolemite challenge for the moderate realist. For
the purpose of brevity, we will call this line of reasoning the LP -argument.

What The LP -argument Is

The LP -argument is a study of how the assumptions behind the argument from
Tennenbaum’s Theorem play out when placed in a non-classical setting. It shows
that its conclusions should be extended to account for the paraconsistent phenomena.
But what exactly this extension is can be a matter of dispute. Without aiming
at exhaustiveness, we think there are at least three possible reactions to the LP -
argument:

1. Conclusion1: Bite the bullet: accept that the argument from Tennenbaum’s
Theorem is able to single out the classical / consistent intended models18 up
to isomorphism, but that there also are many other intended LP -structures
non-isomorphic to the standard model. Despite this, the argument is successful

17In fact, there are at least countable-infinitely many such models. Too see this take the the
standard model and produce, for each n ∈ N, a finite collapsed model through the relation: x ∼ y iff
(x, y < n ∧ x = y) ∨ (x, y > n ∧ x = y (mod 4)).

18Recall that by classical models we mean models without contradictions; not models whose un-
derlying logic is classical.
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in both (a) isolating the intended models as the models with an effectively-
computable addition (regardless if they are consistent or inconsistent), and (b)
isolating classical intended models as the class of isomorphic copies of the stan-
dard model;

2. Conclusion2: Reductio: reject from the outset intended paraconsistent mod-
els on the charge of inconsistency. As a consequence, if the argument from
Tennenbaum’s Theorem contradicts that initial assumption, this only shows
that there must be something very wrong with the initial argument;

3. Conclusion3: Supplementation: accept that the argument from Tennen-
baum’s Theorem is on the right track. Nonetheless, the intended alien LP -
constructions are indicative that supplementation of the computability require-
ment with stronger constraints is needed to fully determine the intended models.
This position can be seen as a way to save the argument from reductio at the
same time that refuses to introduce LP -models in the class of intended ones.

Regarding Conclusion1 there is not much to be discussed; the position can be seen as
a soft reintroduction of skolemite scepticism. Placing finite LP -models in the class of
intended models disallows the possibility of isolating the intended model up to isomor-
phism, making Skolem-Putnam’s challenge of determining the intended models enter
through the back door. About Conclusion2 we will merely point out three small re-
marks. First, this conclusion also reintroduces skolemite scepticism in the sense that
refutes the argument that was supposed to solve the sceptical challenge in the first
place – this does not mean that there are no other ways to argue against the sceptic,
but Tennenbaum’s Theorem is not one of those. Second, the initial assumption that
inconsistent models are not intended cannot be introduced willy-nilly and must rather
be argued for; and it is not obvious how the moderate realist can justify her claim
from an epistemically moderate position. Third, and related with the previous point,
the conclusion is dependent on the polemic status of paraconsistent logic for which
there is already a great amount of literature. Obviously, the advocate of reductio
must spell out exactly what is so great about consistency. We only note en passant
that by Gödel’s Second Incompleteness Theorem pa 6` Con(pa) not being at all clear
that arithmetic is consistent from the start; of course, pa+Con(pa) `Con(pa), but
then pa+Con(pa) 6` Con(pa+Con(pa)) and the problem of proving the consistency
of pa+Con(pa) reappears. A further point is that the (dis)advantages of paracon-
sistent logics have been thoroughly studied as well as the status of consistency and
the Law of Non-Contradiction (LNC); since it would be impossible to review here all
the literature presented in favour of inconsistent mathematics, we limit ourselves to
point the reader for further readings (see Priest(1998) and Priest(2016) as well as the
references therein), indicating only that it is not clear why consistency should have
such a privileged status. And even if it is agreed that LNC should be a theorem, para-
consistent logics are no less preferable since, for instance, |=LP LNC. And, perhaps,
paraconsistency is motivated by mathematical practice; after all:

[It] is at least plausible that scientists, when working with inconsistent
theories, implicitly invoke a paraconsistent logic. Of course, most working
scientists (even mathematicians) don’t explicitly invoke a particular logic
at all. The usual story that they all use classical logic is a rational (and
heavily theory-laden) reconstruction of the practice. (Colyvan 2009 : 162)

Even though these comments are not decisive they illustrate the difficulties in advo-
cating a privileged statues to classicality in detriment of intended finite inconsistent
models and of inconsistent mathematics or paraconsistency in general.
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Conclusion3 is by far the most interesting and the one that will occupy us in the
chapters to follow. An important point to bear in mind is that all the possible
conclusions address only the LP -argument and are silent about the other counter-
arguments we covered in the last chapter.

What The LP -argument Is Not

In the literature on paraconsistent logic there is the unfortunate tendency, perhaps
more common among critics, to confuse paraconsistency with dialetheism, the view
that there are true contradictions. As we see it, this is an instance of when a math-
ematical result is inflated with non-neutral philosophical import. Nonetheless, as
Priest et al.(2018, § 1.1) make clear ‘The view that a consequence relation should be
paraconsistent does not entail the view that there are true contradictions. Paracon-
sistency is a property of a consequence relation whereas dialetheism is a view about
truth.’19 Hence, the fact that it is possible to model logical consequence without ex
contradictione quodlibet does not, by itself, imply that there are true contradictions.
As a consequence, the LP -argument is not an argument for dialetheism; in fact, our
goal here is more didactic and overall neutral – we are simply interested in pursuing
the argument from Tennenbaum’s Theorem to its last consequences. Our detachment
from any philosophically committing view is assumed in the different conclusions that
we find to justifiably follow from the LP -argument; we stress that, for example, by
Conclusion2, we allow the possibility of there being extra reasons that go against
intended inconsistent models of arithmetic immediately entailing prima facie the ab-
sence of any true arithmetical contradictions. It should then be clear that ours is
not a dialetheistic view – by itself, the argument should not simply be taken as an
endorsement of true contradictions in arithmetic. A similar remark is that the ar-
gument is neither a defence of paraconsistent logic in general; only that these yield
interesting arithmetical structures philosophically weighty for the views we have been
addressing.

Having said this it is also important to remark that the LP -argument easily lends itself
to a defence of inconsistent mathematics and paraconsistent logic. This is evident in
our Conclusion1: the project of inconsistent mathematics is boosted by there being
intended inconsistent LP -models of arithmetic and, consequently, if these models are
to be coherent (i.e. without triviality) a paraconsistent logic must be preferred. This
is a natural argument, but one that we will not make. As we said, we will only
discuss Conclusion3. It will be our goal to show that it is a rather difficult task
that of specifying new constraints capable of both (a) being justified from within
mathematical practice and (b) dismissing inconsistent LP -models. In this sense, we
will show how the other strategies (or another position different than these remaining
two conclusions) should be preferable, highlighting the complex ramifications of the
argument from Tennenbaum’s Theorem.

However, these conclusions need not follow if there is no argument from Tennenbaum’s
Theorem. And the only interest in the argument was due to the sceptical challenge
that we argued to be self-refuting. If the solution or dissolution of the sceptical

19It should be noted that dialetheism is rather liberal regarding what ‘truth’ amounts too: ‘In
talking of true contradictions, no particular notion of truth is presupposed. Interpreters of the term
‘dialetheia’ may interpret the notion of truth concerned in their own preferred fashion. Perhaps
surprisingly, debates over the nature of truth make relatively little difference to debates about di-
aletheism.’ (Priest, 2007 : 131) For a comprehensive introduction to the differences and intersections,
both technical and historical, between paraconsistency and dialetheism, see Priest, 2007.
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case are right all along, there is no need to introduce Halbach & Horsten’s argument
responsible for generating intended inconsistent models.

4.4 Saving Skolemite Scepticism from the (dis)solution

We saw two possible ways to reintroduce skolemite scepticism: Conclusion1 and
Conclusion2. However, in the previous chapter we mentioned two ways to immedi-
ately block the skolemite sceptic independently of the argument from Tennenbaum’s
Theorem: (a) mathematical knowledge makes evident the possession of a primitive
notion of finiteness irreducible to other mathematical concepts and capable of deter-
mining the intended model up to isomorphism, or (b) the possibility of formulating
the sceptical challenge presupposes resources, again a grasp of finiteness, which leads
to its self-refutation. The idea being that if one has a determinate notion of finiteness,
then by, say, invoking the argument from the Initial Segment Theorem the intended
model is singled out up to isomorphism. It should be stressed that the Initial Seg-
ment Theorem is but one of many ways in which finiteness may be employed to solve
the sceptical challenge, and we will discuss other options later. But for now let us
concede that we have a determinate notion of finiteness. Does this immediately solve
(or dissolve) the sceptical problem? Well, it need not to. Just check that every ele-
ment of N ∗/ ∼ is finitely far from 0 (or [0]) – in fact, any [x] ∈ N∗/ ∼ is such that
[x] = [0] + [y], for 0 ≤ y ≤ 6.

Again we just need to repeat the early dialectic. First, we have the requirement that
intended models of arithmetic are models in which every element is finitely far from
zero. We concede that the notion of finiteness in the argument is somehow fixed and
does not presuppose a grasp of that which tries to determine. Second, we know that
every element of N ∗/ ∼ is finitely far from [0]. From these two facts we conclude
that N ∗/ ∼ is intended of arithmetic. Now, since N ∗/ ∼ is an intended model not
isomorphic to the standard model we reintroduce the doubt regarding which types of
structures are intended of arithmetic and in this sense we recover skolemite scepticism.
And hence the requirement is insufficient to single out one intended isomorphism type.
Again, we have similar conclusions forthcoming:

4. Conclusion4: Bite the bullet: accept that the grasp of a determinate notion
of finiteness is not able to single out the intended models up to isomorphism. If
anything this view just reinforces skolemite scepticism;

5. Conclusion5: Reductio: reject intended paraconsistent models on the charge
of inconsistency. As a consequence, if the grasp of a determinate notion of
finiteness contradicts our initial assumption, this only shows that there must be
something very wrong with the initial argument. Of course, again, the initial
assumption that inconsistent models are not intended cannot be introduced
willy-nilly and must rather be argued for;

6. Conclusion6: Supplementation: accept that the grasp of a determinate
notion of finiteness is on the right track. Nonetheless, the intended alien LP -
constructions are indicative that supplementation of the finiteness requirement
with stronger constraints is needed to fully determine the intended models.

And similar comments apply as before.

68



4.5 Summary

We want to use this section to repeat some main points so to better clarify what we
covered in this chapter and how it relates with the point from where we started our
discussion. To repeat, Putnam’s model-theoretic arguments show, or try to show,
that a moderate realist position is not tenable. There are many models of arithmetic
and the moderate realist is in no position to tell us which of them are intended,
rendering the view highly unattractive. A possible way out, so to save the moderate
realist, is to make use of the argument from Tennenbaum’s Theorem. So far this is
nothing new. Now, what we did in this chapter was to present the LP -argument.
This stated that there are finite inconsistent LP -models whose intendedness is a
by-product of Tennenbaum’s argument; that is, if you buy the assumptions of the
argument from Tennenbaum’s Theorem, then these alien models are really intended.
Simply put, by the argument from Tennenbaum’s Theorem computable models are
intended, and by the LP -argument there is a case to be made for computable finite
inconsistent LP -models. At first sight the argument serves to reintroduce the sceptical
problem: there are several non-isomorphic models (consistent and inconsistent) that
could conceivably be counted as intended, so the moderate realist better give us an
answer specifying which of these is really intended.

What to make of the above? The moderate realist can expectedly react in one of
three different ways. One possible way out is for the moderate realist to add more
constraints that rule out LP -models and preserve the standard intended model. Later
on we will try to argue that this option cannot be suitably pursued without at the
same time breaking with her epistemic moderate assumptions. Hence, let us for now
suppose that this option is a no-go. From this latter fact we expect the moderate
realist to fall back on one of the other two remaining options. She can say that LP -
models are obviously non-intended (though we stress again that from our part we
cannot imagine how she could justify this pretension without again breaking with her
moderation). As a consequence, since Tennenbaum’s Theorem leads us to the intend-
edness of the inconsistent LP -models, by reductio, the argument from Tennenbaum’s
Theorem is wrong. But sadly, this eliminates the moderate realist line of defence
against Putnam’s arguments, reintroducing Skolem-Putnam’s challenge. Another op-
tion is simply to bite the bullet: accept that indeed the argument from Tennenbaum’s
Theorem makes us count LP -models as intended. But then this also means that the
moderate realist cannot isolate intended models up to isomorphism, and so she hasn’t
addressed Skolem-Putnam’s challenge to a suitable degree so as to make her position
attractive. Bottom line, the argument from Tennenbaum’s Theorem cannot help the
moderate realist solve Skolem-Putnam’s challenge.

More, the above is particularly problematic for the moderate realist since, by parity
of reasoning, neither the solution nor dissolution of the sceptic problem fully work, as
also shown by the finite LP -models. Before we address the Supplementation strategy
and see why and how it is not a viable option, we would like to (quickly) address the
peculiar nature of inconsistent effective procedures or functions and see exactly what
sense can be made of them.
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Chapter 5

Paraconsistent Computations

5.1 Introduction

This chapter aims to cover some aspects of inconsistent computations. By this we
mean a procedure that verifies ϕ and verifies ¬ϕ, or a procedure that outputs a single
solution x and a single solution y, with x 6= y. It will be divided in two goals: first,
we aim to present some motivations for inconsistent procedures and how a function
behaves in inconsistent arithmetic; second, we want to quickly think about the relation
between finiteness and decidability in LP -models.

We should note the following. A quick survey of the literature on (the philosophy
of) paraconsistent computations shows that the subject is still in its infancy. Though
there is a growing case in favour of effective procedures which cannot be recognisable
as such by non-paraconsistent logics, important comparisons between classical and
non-classical computational terms are yet lacking. The purpose of this chapter then
is not to motivate a thorough analysis of the computational aspects of inconsistent
arithmetic substantiated by established results in the literature, but rather to make
a collection of intuitive remarks that hopefully help to demystify the problematic
notions.

5.2 Logic-Relative Computations

5.2.1 Motivation

In the elegant Copeland & Sylvan(2000) it is argued that the first recursion theorists
made a mistake after the limitative results ‘rising from the ashes of the first Hilbert
program [...] [T]hat of assuming that they had built their unsolvability and limitation
results on an entirely absolute foundation.’ (Copeland & Sylvan, 2000 : 189-190, our
italic) They go on to explain that such a pretension is now orthodox in the literature,
found in the writings of Gödel, Church and Post. Here we give only the example of
Gödel:

[...] the great importance of the concept of general recursiveness (or Tur-
ing’s computability) [...] is largely due to the fact that with this concept
one has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on the formal-
ism chosen. (Gödel, Remarks before the Princeton bicentennial conference
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of problems in mathematics quoted in Copeland & Sylvan, 2000 : 191, our
italic)

Part of this absoluteness consists in the defence of a unique model of computation (to
be safe we should add, ‘up to convergence theorems’) whose conceptual and logical
foundations are situated in a classical logic. The insistence on classical mathematics is
strikingly evident in the consistency-requirement of a Turing-machine. For instance,
call an i-quadruple (instruction-quadruple), an ordered set 〈q1, S,A, q2〉 where:

• q1 is a numeral other than ‘0’;

• S is one of the symbols ‘0’, ‘1’ or ‘B’ (for Blank);

• A is one of the symbols ‘0’, ‘1’, ‘B’, ‘R’ (for Right) or ‘L’ (for Left);

• q2 is a numeral, possibly ‘0’.

Now Smith goes on to define a Turing programme as follows:

Our first shot at characterising a Turing program therefore comes to this:
it is a set of i-quadruples. But we plainly don’t want inconsistent sets
which contain i-quadruples with the same label issue inconsistent instruc-
tions. So let’s say more formally:

A set Π of i-quadruples is consistent if there’s no pair of i-
quadruples 〈q1, S,A, q2〉, 〈q1, S,A′, q′2〉 in Π such that A 6= A
or q2 6= q′2.

Which leads to the following sharpened official definition:

A Turing program is a finite consistent set of i-quadruples. (Smith,
2007 : 290)

It is then clear that a default to a classical logic immediately ends with the possibility
of non-classical, say, inconsistent computational procedures.1 However, the purpose
of Copeland & Sylvan’s paper is, as their title indicates, to motivate the opposite case:
as they claim computability is logic-relative. And our purpose here is using (some of)
their insights to make the case for paraconsistent computable functions; i.e. effective
procedures not recognisable as such by a non-paraconsistent logic. Before this we
make some general remarks to illustrate that logical-relative computable functions
are very easy to come by. First, there are logical systems weaker than classical logic
where less functions are computable: for instance, classical systems weaker than Q
where not all the classical primitively recursive functions are definable. Also, for f
defined on the set of natural numbers, the following function is classically computable
but not constructively computable2:

f(n) =

{
1 ch is true

0 ch is false

The example comes from Bridges(1994). He explains that since ‘most mathemati-
cians are formalists on weekdays and Platonists on Sundays’ (Bridges, 1004 : viii)3,

1Thence, our warning in the last chapter about calling +N
∗/∼ recursive.

2By constructively computable we mean computable in constructive logics/systems.
3Funny enough, sometimes the saying appears inverted as ‘most mathematicians are Platonists

on weekdays and formalists on Sundays’.
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(at least) on Sundays most mathematicians would accept that f is a well-defined
function. That is, mathematicians qua Platonists would tend to accept that ch has a
determinate truth-value (either true or false) regardless whether we know it or not.4

Therefore, on a Platonist reading, the mapping will have an image for every argument.
Now, classically, there will be an algorithm that computes the function: this algo-
rithm is either one that when applied to every n outputs 1 or one that when applied
to every n outputs 0. However, given the independence of ch from zfc, we are not
able to decide which of these two possible algorithms actually computes f . Bridges
gives the following conclusion: ‘With classical logic there seems to be no way to dis-
tinguish between functions that are computed by programs which we can pin down
and those that are computable but for which there is no hope of our telling which
of a range of programs actually performs the desired computation.’ (Bridges, 1994 :
ix). With a constructive (intuitionistic) logic behind the function is not computable
simply because it is not well-defined: since we cannot decide the truth or falsehood of
ch, constructively we would say that so far the question of the truth-value of ch is
ill-posed; constructively it is not the case that ch is true nor the case that it is false,
so that the mapping f is not properly defined.

Similar considerations happen when computability is defined with an underlying para-
consistent logic, where more rather than less functions are computable. One of the
motivations for paraconsistent computations arises in the presence of diagonal func-
tions leading to inconsistent results; similar to other cases where a paraconsistent
logic is motivated by paradoxical reasoning regarding Truth or sets. Here we present
the paradox of algorithmic functions. Consider functions that take natural numbers
as inputs and map them to natural numbers. We say that a function is an algorithmic
function if there is some algorithm that effectively computes it. Now, an algorith-
mic function can be formalized by a finite string of symbols containing finitely-many
function symbols, variables, brackets, .... This means that any (finite) algorithmic
function can be represented with a finite string of such symbols. Hence, it is decid-
able if a finite string of symbols does constitute an algorithmic function: an agent
lists the algorithmic functions by first examining all strings of length 1, then 2, and
so on ... Even though the list is infinite every member is reached after finitely many
steps. Consider then the list/set S of algorithmic functions with just one argument.
Define Px as the (x + 1)th element of S and px the corresponding function. Now,
define the diagonal d by:

d(x) = px(x) + 1

d(x) is effectively computable: the agent uses the list S to find Px, computes px(x)
and adds 1. Hence, d(x) is an algorithmic function and is a member of S. Therefore
there is a z just that d is the Pz

th element on the list such that pz = d. Now consider:

pz(z) = d(z) = pz(z) + 1

By standard arithmetic we have n = n+ 1, for some n. The also standard solution is
incompleteness: consistency is secured by assuming that some functions are incom-
plete, i.e. undefined on some values (such as z). But there is a risk of ad hocness for
this solution: ‘[A]s with dialetheic reaction to the other logical paradoxes, it looks like
there is nothing to explain why some functions cannot take all inputs from the very
domain they are meant to draw on – nothing except the inconsistency that results.’

4Granted that this is a very elementary take on the relation between Platonism and independent
statements, but for our purposes it will suffice.
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(Weber, 2016 : 208). Worse, retreating to partial functions does not end the problem;
a consequence of incompleteness is that no algorithmic procedure can select those
sets of instructions that yield total functions. This being the case, the distinction
between total and partial functions, central in recursion theory, cannot be effectively
drawn at the risk of contradiction. One possible way to introduce such a procedure
to effectively select total functions is by allowing computations that yield inconsistent
outputs by adopting an underlying paraconsistent logic. Again, following Copeland
& Sylvan here:

Effectively the claim is that diagonal functions cannot be computed (are
not total computable functions), because the contrary assumption leads
to contradiction. But now that we have more experience in working with
inconsistent totalities, we may well be inclined to push on, rather than
retreating (for example to partial functions) [...] For in fact we may know
perfectly well how to compute certain diagonal functions. For example, if
the instruction is to increase the diagonal by 1, well then add 1! Pushing
on, a diagonal element is encountered such that d = d+1 : d = d & d 6= d.
This gives pause neither to the contradiction-tolerating theorist nor to a
D-machine of type 1 [i.e. a machine programmed with a paraconsistent
logic] that is computing the function. (Copeland & Sylvan, 2000 : 197-
198)

5.2.2 LP -Addition Revisited

Even though there may be some motivations for inconsistent computations, one of
the apparent main difficulties in making sense of inconsistent (models of) arithmetic
is specifying what is for a procedure such as addition to be inconsistent; that is,
to have elements x, y, z, w such that +M/∼(x, y) = z and +M/∼(x, y) = w with
z 6=M/∼ w. Such a reluctance is often presented under the form of an ‘incredulous
stare’ when faced with inconsistent procedures; for instance, take Shapiro(2002)’s
remark concerning provable and non-provable statements in an inconsistent theory:

On all accounts [...] we have that g is a code of a pa∗-derivation of G∗.
This can be verified with a painstaking, but completely effective check.
How can the dialetheist go on to maintain that, in addition, g is not the
code of a pa∗-derivation of G∗? What does it mean to say this? [...] I
must admit that I cannot make anything of this supposedly possibility.
(Shapiro, 2002 : 828)

Shapiro’s claim is made in the context of a recursively axiomatizable theory pa∗

containing a truth-predicate and capable of proving its own Gödel setence G∗. Since
the details of the theory are somewhat under-specified and since the point of Shapiro’s
critique applies equally well to axiomatizable inconsistent arithmetics such as the
ones we have been addressing, we follow Priest(2006 : 239)’s suggestion and concern
ourselves with the LP -models we have sketched. Now, take a finite inconsistent
theory of arithmetic (pa) closed under LP -consequence; call it Γ. Let us assume, for
the purpose of argument, that finiteness implies decidability.5 Then, Γ is trivially
recursively axiomatizable. We know that since it is recursively axiomatizable, every
set of formulas is recursive and, therefore, strongly representable in Th(N ); for ϕ ∈ Γ
and Prov(y, x) the proof relation of Γ:

5Even though this implication is not obvious. See the next section.
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• ϕ ∈ Γ⇒ ∃yProv(y, pϕq) ∈ Th(N )

• ϕ 6∈ Γ⇒ ¬∃yProv(y, pϕq) ∈ Th(N )

By the Collapsing Lemma, it follows that every decidable set is representable by the
same formula in every collapsed model. This means that since Th(N ) ⊆ Γ, we have

• ϕ ∈ Γ⇒ ∃yProv(y, pϕq) ∈ Γ

• ϕ 6∈ Γ⇒ ¬∃yProv(y, pϕq) ∈ Γ

By standard fixed-point techniques, we build:

G↔ ∀y¬Proof(y, pGq)

It is now straightforward to check G∧¬G ∈ Γ, so that G and ¬G are both provable in
Γ. First, either G ∈ Γ or G 6∈ Γ. If G ∈ Γ, then ∃yProof(y, pGq) ∈ Γ (by the above
clause), which means ¬G ∈ Γ. If G 6∈ Γ we obtain, by completeness, ¬G ∈ Γ and
(by the above clause) ∀y¬Proof(y, pGq) ∈ Γ and G ∈ Γ. In both cases G ∧ ¬G ∈ Γ.
Hence:

(∗) ∃yProof(y, pGq) ∧ ¬∃yProof(y, pGq)

Now, consider the following biconditionals:

1. Proof+: y is the code of a proof of a formula with code x iff Proof(y, x) ∈ Γ

2. Proof−: y is not the code of a proof of a formula with code x iff Proof(y, x) 6∈ Γ

If the above holds, then given (∗) we are lead to accept that there is a number g that
both is and is not a code of a proof and, equivalently, that something is and is not
provable. The challenge is now to make sense of this. It is important to note that
this is a different problem than what the paraconsistent (or dialetheist) has normally
accustomed us to – it is standard to defend paraconsistency on the grounds that there
are true contradictions; but these contradictions normally concern cases like the Liar
where self-reference or some semantic notion akin to Truth is involved. What Shapiro
seems to find particularly problematic is that Proof(y, x) is a statement in the pure
language of arithmetic (without semantic notions) so that contradictions even appear
at this very basic level:

Even if we concede, for the sake of argument, that contradictions are ac-
ceptable when dealing with semantic notions like truth, we see that pa∗

[and, in our case, the theory of finite LP -models of pa] entails contradic-
tions concerning the natural numbers alone [...] (Shapiro, 2002 : 823)

One possible solution would be to reject (∗) on the grounds that statements in the
language of pure arithmetic are consistent. If arithmetic truth is to be consistent,
we cannot accept Proof(g, pGq) and ¬Proof(g, pGq) as both true. One way out is
to reject the soundness of Γ; in this way, we may accept that, if g is indeed a code
of a derivation of G, then we have Proof(g, pGq) but, by consistency, we may deny
¬Proof(g, pGq). But this goes against the spirit and the letter of paraconsistent
arithmetic; if we want to take seriously the idea that paraconsistent models are in-
tended models, then we must inevitably recognize inconsistencies at the basic level of
pure arithmetic; and that even primitively recursive relations are inconsistent. Deny-
ing that primitively recursive functions are not inconsistent just because otherwise
they would be inconsistent does not seem that becoming.
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Another option, that maintains the soundness, is to reject the equivalences between
‘being the code of a derivation’ and the extension of the predicate Proof(y, x), and,
similarly, ‘not being the code of a derivation’ and the extension of the predicate
¬Proof(y, x) expressed in the clauses (1) and (2). The idea being that Proof(g, pGq)
and ¬Proof(g, pGq) are true of the natural numbers, but deny that, say, g is not the
code of a derivation of G. However this would break the extensional equivalence be-
tween non-derivations and ¬Proof(g, pGq) and the accustomed isomorphism between
natural numbers and strings of characters.

The final option Shapiro surveys is to accept (∗) and the consequential inconsistency
of the theory at this basic level of pure arithmetic. But if this is the case, then Shapiro
wonders, as we saw, what can it mean to verify that g is a code of the proof of G and
it is not a code of the proof of G. To explain a bit more: the relations Proof(g, pGq)
and ¬Proof(g, pGq) yield similar verification procedures. In the first case, we unpack
g to see what sequence it codes and write down such sequence; then we only need
to verify if each instance of the sequence is either an axiom or a derivation obtained
by previous steps in the sequence. If all goes well, and if the last line is G, we may
conclude that g is the code of G. Otherwise, we may conclude that g is not the
code of G. But if both cases obtain there must be a line in the derivation where
a contradiction obtains; that line both is and is not an axiom, or is and is not a
legitimate derivation. And Shapiro’s (rhetorical) qualms concern the absurdity of
such an hypothesis:

She claims that we do indeed successfully and accurately verify that g is
the code of a derivation of G∗ and we also successfully and accurately
verify that g is not the code of a derivation of G∗, presumably by using
the same procedure at the same time. It is not a matter of vagueness.
Some one step in the procedure must yield contradictory results. [...] in
the present case we seem to have no idea what it would be like to discover
a contradiction concerning derivation – there is no analogue of the Escher
drawings. (Shapiro, 2002 : 829)

A general point made by Weber worth recalling is that incredulous stares do not work
with those of us a bit more credulous. Regarding truth, we say that all contradictions
are false, but some like the Liar are also true. Regarding vagueness, we say all
possible thresholds of the predicate ‘heap’ are arbitrary or nonsensical; even though
one of those points must be correct. In set theory, the Mirimanoff collection of all
well-ordered sets is and is not well-ordered. ‘So qua dialetheism, there is nothing
immediately special to say about Shapiro’s objection.’ (Weber, 2016 : 212). What
might need some clarification is how a proof can in some sense be contradictory; how
can we verify a sentence that expresses a recursive relation and at the same time its
negation? And the answer is in fact quite straightforward. A proof of G is a collection
of statements 〈A1, ..., An, G〉 where A1, ..., An are axioms or legitimate derivations. To
say that G is provable and not provable is to say that it follows and does not follow
from A1, ..., An. That there is a step in the proof which is a step from truth to falsity
that is also a step from truth to truth. Sure, but Shapiro may still ask how such a
proof looks like.

Now, here, we are unintentionally starting to get ourselves into the shaky waters of
conceivability and inconsistency. We will have just some general remarks to point.
First we should note that, in the quote above, Shapiro’s reference to the inconceiv-
ability of a provable/unprovable statement is made in relation with an ‘analogue of
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Escher drawings’. It seems as if Shapiro equates conceivability with mental pictorial
imagery similar to actual pictorial perception. However, not all kinds of conceivability
need to be like this; mainstream cognitive psychology distinguishes two kinds of men-
tal representations: pictorial representation akin to visual perception, and linguistic
representation that is disconnected from the sensory modalities normally present in
pictorial representation (i.e. mereological and quasi-spatial features).6 Whereas pic-
torial representations are more common when conceiving situations that presuppose
the imagining of spatial and temporal features, linguistic representations appear in
abstract scenarios that do not involve those perceptual components.7

Given that provable sentences involve non-perceptual abstract concepts, it is reason-
able to assume that the type of conceivability involved must be linguistic. At this
moment let us assume the ‘Parity Assumption: whatever content is representable by
a natural language sentence, is also representable by some linguistic mental repre-
sentation.’ (Berto & Schoonen, 2018 : 2703) The motivation for the Assumption is
mainly due to the fact that every content represented in a natural language should
be mentally representable for ex hypothesi it is the latter, cognition, that grounds
the learnability of natural language. If this is correct then the claim that we cannot
conceive of a proof that is also not a proof essentially implies that the ordinary english
sentence ‘ϕ is provable and unprovable’ or ‘in a proof the step α both leads from truth
to truth and from truth to falsity’ is essentially meaningless.8 But such a proposal
seems plainly absurd. We offer two reasons for our claim: first, if P is meaningful
and ¬P is meaningful, then P ∧ ¬P must be meaningful too – surely ‘P ∧ ¬P ’ is a
far cry from Chomsky’s ‘colourless green ideas sleep furiously’. Second, if the above
sentences were indeed meaningless, we couldn’t possibly disagree with them: if we
cannot in principle understand the content they express we cannot judge that content
to be false. But Shapiro’s seems, at least, to disagree with them.

Of course, to an extent we empathise with Shapiro’s view – it indeed seems easier
to concede the contradictory character of the Liar, when compared to the notion of
proof. We ignore the reasons behind this folk intuition. However, to admit that there
is no way to conceive or make sense of a provable and unprovable statement or of
a proof that is not a proof seems to be just as ill-founded as the claim that talk of
the Russell set is meaningless. And the implicit thought here is that we can indeed
make some sense of the Russell set – at least to the extent that we find meaningful
principles that restrict the construction of Russell-like sets.

We will not discuss this issue further. The topic is far to wide to attempt any level of
detail in a few words. Moving on, to better clarify the notion of inconsistent proof in
general, recall that in LP verifying α does not, by itself, determine ¬α: α and ¬α are
verified by different procedures. For example, R(a, b) is true iff 〈I(a), I(b)〉 ∈ I+(R);
now, this not excludes the possibility of ¬R(a, b) being true; to determine this we
also need to check 〈I(a), I(b)〉 ∈ I−(R). Recalling the last chapter, [3] 6= [7] is true in
N ∗/ ∼ ; but there is the further question if [3] = [7] is also true. A similar case applies
to g: what does it mean to say that g is the code of a proof of G? It means that, let
us suppose, g = 200. What does it mean to say that g is not the code of a proof of

6The data here is taken from Berto & Schoonen(2018). References to the literature can be found
therein.

7If there is a substantial distinction or if all representations can be reduced to the linguistic type
is currently a matter of dispute.

8Berto & Schoonen(2018)’s argument is more complex than the one we propose, but here we don’t
need to go into the details of their presentation.
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G? It means that g 6= 200. And this may happen in LP , when 200 = 200∧200 6= 200
(which in fact happens about [200] in N ∗/ ∼).

Similar comments apply to the provability of G. What does it mean to say that G
is provable? Well, it means that ∃y(y is the code of a proof of G) which means that
∃y(y = 200 ∧ y is the code of a proof of G). What does it mean to say that G is not
provable? Well, it means that ∀y¬(y is the code of a proof of G) which means that
‘(1 is not the code of a proof of G) ∧ ... ∧ (200 is not the code of a proof of G) ∧ ...’.
In particular, this implies that 200 6= 200 which, again, can be the case.

[...] to say that γ is not provable is to say that every number is distinct
from a code of the proof of γ. This does not rule out there being a proof
of γ. (In general, the truth of ¬α in a paraconsistent setting does not rule
out the truth of α). In particular, it will hold if the proof is distinct from
itself. And how can a proof be distinct from itself? In the same way that
a number can. (Priest, 2006 : 242)

This gives us an easy way to understand the inconsistent addition function. In the
previous chapter we gave an effective procedure to determine x +N

∗/∼ y.9 Given
the way addition is defined, we may have cases where the function gives inconsistent
outputs; for instance, we have:

1. N ∗/ ∼ |= [3] + [1] = [4]

2. N ∗/ ∼ |= [3] + [1] = [8]

3. N ∗/ ∼ |= [4] 6= [8]

The problem is now what to make of this case where all formulas are satisfied; or,
more generally, when

x+ y = z ∧ x+ y = w ∧ z 6= w

The inconsistency of the underlying elements of the domain helps to explain the in-
consistency of the functions defined on them. (1) just means that there is a procedure
computed on [3] and [1] that yields [4]. Of course, paraconsistently, this does not rule
out there being a procedure that yields a different value for the computation; and this
is precisely stated by (2). Finally, (3) tells the trivial fact that there are two numbers
that are different: [4] 6= [8]. All this conditions may happen in a model that satisfies
[4] = [8]∧ [4] 6= [8] like the case of N ∗/ ∼. Inconsistent procedures add no additional
strangeness, besides the already strange character of the numbers (or elements) in the
domain. It is in this sense, that ‘the facts about computability and provability are
simply read off from the arithmetic’. (Priest, 2006 : 243).

5.3 Computability on the cheap?

In the previous chapter we have argued for the effective computability of the addition
function in (some) heap collapsed models. We argued for this by noting that +M/∼

is defined in terms of +M; based on this fact, we may specify an easy algorithm to
compute the collapsed addition in terms of the addition function defined in the original
models (provided the original addition function is indeed computable). However, is
this really surprising? Couldn’t we have reached the same conclusion already through

9The procedure obviously generalizes to other models.
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a much easier route. It is tempting to think so; after all prima facie it is easily seen
that a theory Th(M/ ∼) (closed under LP -consequence) is decidable: the values
of atomic formulas may be computed using LP -matrices, and given that the model
is finite, the truth-value of quantified formulas are computed using the following
equivalences (where n is the numeral for n, and m is the greatest number in the
model):

• v(∃xϕ) = v(ϕ(x/0) ∨ ... ∨ ϕ(x/m))

• v(∀xϕ) = v(ϕ(x/0) ∧ ... ∧ ϕ(x/m))

Hence, a fortiori, collapsed addition is computable. But things are not so simple.
Normal intuitions break down in the inconsistent case, urging great cautiousness with
swift conclusions.

Denyer(1995 : § 2) is rather wary of the strength of the argument. The decision
procedure for a finite collapsed model works essentially by quantifier elimination:
LP -matrices will give an effective procedure to calculate the value of any formula
prefixed by any arbitrary finite number of quantifiers that can be eliminated through
the above equivalences. But now let us suppose that we apply the procedure to a
statement preceded by m many quantifiers. So, for definiteness, consider a statement:
∀x1, ...,∀xmϕ (with x1, ..., xm free in ϕ). Suppose further that m is an inconsistent
number in the model; that is, m = m+ p (with p 6= 0). Say p = 1 so that m = m+ 1.
By this latter equality, the original statement preceded by m-many quantifiers is, after
all, preceded my m + 1-many quantifiers so that the original statement is equal to
∀x1, ...,∀xm+1ϕ. Now, we may apply the decision procedure to the latter statement
and produce a new statement (an arbitrarily finitely long conjunction) preceded my
m-many quantifiers. But then it is clear that the decision procedure didn’t get us any
far for there are still m (and m+ 1) quantifiers to eliminate! A similar worry occurs
when the statement is preceded even by only one quantifier. We reduce the statement
to, suppose, a finite disjunction with l+ 1 disjuncts: ϕ(x/0)∨ ...∨ϕ(x/l). Now, since
l is the greatest number of the finite model, it will be inconsistent and therefore, say,
l = l+ 1; so that ϕ(x/0)∨ ...∨ϕ(x/l + 1). But then even when we decide the first of
these disjuncts (i.e. ϕ(x/0)) we still have l+ 1 disjuncts to decide. Again, we haven’t
really advanced in our decision procedure. Such considerations lead Denyer to claim:

Algorithms that require us to take a magic number of steps are, in short,
no more use as decision procedures than algorithms that require us to
take infinitely many. [...] But that simply means that the decidability [...]
attache[d] to [...] paraconsistent arithmetic [i.e. LP -models] is not quite
the decidability which, before the limitative results came along, people
had hoped would attach to classical arithmetic. (Denyer, 1995 : 570)

The following arguments are not the final word on the matter. And this because,
properly speaking, they are not arguments but mainly argument sketches. The prob-
lem is that Denyer’s arguments merely gesture at the negation of the decidability of
paraconsistent models. But for example, if the underlying logic is paraconsistent, it
is not clear that Denyer’s arguments follow: the idea that subtracting 1 from m + 1
equals m only holds for the classical material conditional; LP -conditionals appear
only in a non-detachable form. And if we are dealing with non-classical paraconsis-
tent models, we may doubt if our reasoning regarding meta-theoretical properties such
as the computability of LP -consequence should be guided by classical logic. Either
way, these comments should give us pause when entailing decidability from finiteness.
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5.4 Summary

As we pointed out before there can be an initial strangeness about an inconsistent
effective procedure. This small chapter aimed to show that there is nothing strange
about it; or better, that an inconsistent computation is as strange as its underlying
inconsistent arithmetic – if the underlying arithmetic admits inconsistent elements,
then it is a natural consequence that the computational operations are inconsistent
too. In fact, what is problematic is to try to keep a classical computational theory or
meta-theory for provability in inconsistent arithmetical settings. Another independent
but related problem that we addressed concerned decidability in finite paraconsistent
models. If a model is finite, it would then seem that consequence-relation is trivially
decidable. However, things are not so simple in the paraconsistent case, and there
must be a wider story to be told about such an entailment.
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Chapter 6

On Supplementation and
Categoricity

6.1 Introduction

This chapter concerns Conclusion3, what we dubbed ‘Supplementation’, as a possible
answer to the LP -argument. To recall, the conclusion was:

Conclusion3: Supplementation: accept that the argument from Ten-
nenbaum’s Theorem is on the right track. Nonetheless, the intended alien
LP -constructions are indicative that supplementation of the computabil-
ity requirement with stronger constraints is needed to fully determine the
intended models.

Our chapter will be divided in an inductive and deductive part. Regarding the induc-
tive part, we will analyse four ways to supplement the computability requirement and
see that they are not sufficient to rule out inconsistent LP -models from the class of
intended models. Regarding the deductive part we will offer a sketch of a reasoning
based mostly on the work of Dummett and McGee, to the extent that no possible
criteria can fully rule out inconsistent (intended) numbers.

6.2 The Inductive Argument

The purpose of the inductive argument is to cover four possible strategies on how
supplementation might be pursued and show why they fail with respect to their goal.
Without aiming at exhaustiveness we have chosen these four options mainly due to
their overall intuitiveness or due to the fact that they are commonly found in the
literature on categoricity.

6.2.1 Counting and Infinity

The first option starts with the trivial fact that finite LP -models are finite. And
even though we can make a sensible case for they being infinite too, they are finite.
But ordinary classical models are countably infinite. In this sense a possible way to
rule out the alien LP -constructions would be by adding the further requirement that
the intended model of pa is (only) countably infinite. To show why this strategy is
unsatisfactory we offer two arguments:
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1. The intended natural numbers don’t need to be infinite. Despite being a sui
generis claim (to say the least!), we think we can reasonably argue for this.
Throughout the text we have argued that, from a moderate realist perspective,
the constraints imposed on the class of intended models should be determined
by actual number theoretic practice. In this sense, let us imagine two different
counting practices: person A starts to count from 0, adds 1, then 2, 3, and so
on – A will not have any greatest number where the counting stops; in fact,
if we stepped into a time machine and went to the future an arbitrarily large
numbers of years from now, in principle, we would discover that A hasn’t stop
counting. Now, B will start very much like A: B starts with 0 then, 1, 2, 3,
... – however, for B there will be a certain greatest number n where she will
stop the counting. For sake of argument ‘Let us, henceforth, fix n as some in-
credibly large number, say, a number larger than the number of combinations
of fundamental particles in the cosmos, larger than any number that could be
sensible specified in a lifetime, so large that it has no physical meaning or psy-
chological reality.’ (Priest 1994a : 338) As a consequence, we are not to expect
that even with 100 life-times B can reach this magic number n. We have now
the following question: is it the case that we actually count like A; or is it the
case that we actually count more like B? Prima facie, we would say that we
count like A. The important thing to note is that in actual situations A and B
seem to be counting according with the same rule. Recall that n is a number so
great that is humanly impossible to reach (or even imagine). So, what makes
us say that we count more like A is only the intuitions that we have about our
counting practices in mere hypothetical (i.e. non-actual!) scenarios like those
about reaching and counting after n; however our intuitions about what we
would do or can do in hypothetical (non-actual) situations can be incredibly
vague and unreliable and, more importantly, as Kripkenstein’s ‘quus’ function
has shown us1, any rule-following ascriptions which are based in intuitions re-
garding non-actual situations are extremely underdetermined. Any determinacy
in rule-following ascriptions can only be grounded in actual practices. A sim-
ilar point is that A and B’s behaviour starts to diverge only after reaching n;
but since n is ex hypothesis ‘humanly-unreachable’ our intuitions about human
rule-following dispositions after counting n concern intuitions about what is
humanly-impossible – and there does not seem to make much sense in talking
about what we are disposed to do in situations impossible to perform. Though
not decisive, these considerations at least undermine the certainty in thinking
that we count more like A rather than B.

2. Can we even state the requirement in a non-question-begging way? The familiar
dialectic that we have been exploring for finiteness or computability reappears
here. Let us recall the case for computability. We wanted to say that for a model
to be intended it needed to be computable; however, the notion of computable
model seems to presuppose, we could argue, a prior understanding of basic
number-theoretic concepts. This implies that in order to determine what the
natural numbers are we would already have to have a clear conception of what
the natural numbers are, making circularity evident. Now, the same happens
with infinity. For what can an infinite set be?; well, we would say that a set is
infinite if it has no bijection with a finite set. But what can a finite set be?; well,
a set is finite if it has a bijection with an initial segment of the natural numbers.

1As it is well-known ‘Kripkenstein’ is the colourful amalgamation denoting ‘Wittgenstein’s [rule-
following] argument as it struck Kripke’. (Kripke, 1982 : 5) For the equally well-known ‘quus’
function see also Kripke, 1982 : 7f.
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Hence, similarly as in the computability case, the requirement presupposes what
it tries to prove.

6.2.2 Practical Matters

Another option is given by the impression that finite inconsistent models do not
accommodate our everyday use of natural numbers. Denyer is quite clear in this
point so we will be excused if we quote him at length:

If the magic number for your paraconsistent arithmetic is low enough,
then there are simple ways to show that you mean what you say. If for
example the magic number is ten, we can see if you are happy to accept
a cheque for £10 in complete discharge of a debt of £20; we can see if,
when it comes to this sort of crunch, you are still ready to accept that
10 = 20. And such a readiness would persuade me at least of your bona
fides [...] Priest however has made his magic number big enough for him
to be insulated from financial tests of this or any other kind. His magic
number is larger than any number that could be sensibly specified in a
lifetime [...] and no financial implications either. We may wonder how
Priest can be so sure that the magic number is so large. For certainly the
fact that we all have conclusive reason for accepting that 10 6= 20 is not,
by Priest’s lights, conclusive reason against accepting also that 10 = 20.
(Denyer 1995 : 574)

There is an easy way out of the financial qualms: suppose again that we locate
this magic number in a point with no physical or psychological reality such that it
would never show up in our actual practice; then all our ordinary use of numbers
would concern only the consistent tail of our finite inconsistent models – these kind
of extensions for natural number would respect our practice, as in when we go to
the Bank. The second point of Denyer’s argument – that 10 6= 20 does not by itself
(paraconsistently) preclude 10 = 20, is rather weak. Even though something might
be logically possible, it does mean it is actually true.2 Mere logical possibility does
not force us to consider models with 10 = 20 as intended, for simply put there is no
reason to do so; these models with 10 = 20 would not respect the practice.

6.2.3 Induction

Argue that finite inconsistent models do not account for bona fide induction. We note
that, as a matter of definition, any finite model of pa satisfies induction. But Quinon
& Zdanowski claim:

It seems that simply by definition there cannot be a model for arithmetic
which do not satisfy induction. Nevertheless, [...] What is basic for us
are the natural numbers and our computational experience with them.
On this ground the principle of induction should be supported by some
argument. [...] the algorithmic definition of the natural numbers is a basis
for a justification of induction. Indeed, if natural numbers are exactly the
following objects:

— 0 is a natural number,

– if a is a natural number then a+ 1 is also,

2See Priest, 1996 : 657-658; Priest 1998 : 422.
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then to show that a given property P is true about all natural numbers
it suffices to show the premises of the induction axiom for P . (Quinon &
Zdanowsi, 2007 : 315-316)

Now, it can be claimed that under finite models, what the natural numbers turn out
to be is somehow independent of the induction principle. Consider our toy model
N ∗/ ∼: since this is a model of arithmetic with only seven distinct elements, it
is very easy to determine if, for a given (first-order definable) property P , P holds
for all the natural numbers (in the model) – since there are only seven numbers we
may just directly check if for each number n it is the case that P (n). However, this
seems to render the Induction Schema rather dispensable, contradicting our intuitions
regarding the indispensability of induction. Again, the solution is more of the same:
by fixing the least inconsistent number in a point with no physical or psychological
reality, the Axiom of Induction could be restored: since, in these models, we would
never be able to actually test case-by-case if P holds for all the natural numbers, the
only way to prove the claim would then have to be by induction.

6.2.4 (Again) Finiteness

We present two ways to characterize the intended models up to isomorphism via
finiteness.

• Case Study 1

Consider augmenting the signature of pa with the two-place Rescher’s quantifer
QR semantically defined by

M |= QR(x, y)(φ(x), ψ(y)) iff | {d ∈ D : φ(d)} | < | {d ∈ D : ψ(d)} |

Informally, Rescher’s quantifier states that the cardinal number of φ’s is strictly
less than the cardinal number of ψ’s. Härtig’s quantifier QH – specifying that
the cardinal number of φ’s is equal to that of ψ’s, can then (with Choice) be
defined as3:

M |= QH(x, y)(φ(x), ψ(y)) iff

M |= ¬(QR(x, y)(φ(x), ψ(y)) ∨QR(y, x)(ψ(y), φ(x)))

We can then express that if x equals y then they have the same (cardinal)
number of predecessors

(∗) ∀x∀y(x = y ↔ QH(u, v)(u<x, v<y))

Theorem: The theory of Classical pa + (∗) characterizes N categorically.4

3QH is definable from QR but not vice-versa. So a language with QH but not QR has a strictly
weaker expressive power – because of this, we may want just to add QH directly to the signature of
PA instead of defining it via QR.

4By Classical pa we mean pa with underlying first-order classical logic. This requirement is
important for in the proof we make use of the fact that classical models have order-type N + Z× η,
which is not the case for many paraconsistent models.
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Proof. Clearly N |= pa. It can also be checked that N |= (∗) so that N |=
pa+(∗). Now, we know that every classical model of pa has order-type N+Z×η.
We wish to show that ifM is an arbitrary model of pa and ifM |= (∗), thenM
has order-type N – this means that only models with order-type N satisfy (∗).
Suppose for contradiction that there is a modelM of pa + (∗) with order-type
such that η 6= 0. Then, there are non-standard elements a, b ∈ M such that
a = b+n for a natural number n 6= 0. Consider the set of predecessors of both a
and b. Since the sets must have the same cardinal number and since M |= (∗),
it follows that a = b. Contradiction. Hence, η = 0. We conclude that every
model M |= pa + (∗) is of order-type N. As a consequence, M∼= N .

• Case Study 2

Consider now moving to an infinitary logic Lω1ω that allows for infinitely-long
disjunctions, in the signature of pa. That is,

–
∧
ϕ and

∨
ϕ are Lω1ω-formulas, for any set of Lω1ω-formulas ϕ of size <ω1

– ∃V ϕ and ∀V ϕ are Lω1ω-formulas, for any sets of variables V of size <ω,
and any Lω1ω-formula ϕ such that if ∃X or ∀X occurs in ϕ then X∩V = ∅

We obtain categoricity by requiring for a model of pa to form a discretely ordered
semi-ring (i.e. without additive inverse) such that every element is some nth

successor of the additive identity. We can express the fact that every number is
found after finitely many iterations of the successor function:

(∗∗) ∀x
∨
n<ω x = Sn(0)

Similar to before, the theory of Classical pa + (∗∗) characterizesN categorically.
Another way to achieve the same result without sentences of infinite length is
to formalize pa in a weak second-order logic instead. Weak second-order logic
allows for quantification over second-order variables only over finite sets without
the total power of full second-order. When evaluating a second-order formula
∀Xϕ(X) or ∃Xϕ(X), it can only be considered relations over the domain that
hold of finitely many elements. It is straightforward to express that there are
only finitely many predecessors for each element, characterizing N categorically:

(∗ ∗ ∗) ∃X∀x∀y(y<x→ X(y))

All these strategies have at some time been proposed to characterize intended models
of classical pa up to isomorphism.5 However, and again, they are based on pur-
portedly circular notions. Case 1 requires understanding the semantics of Härtig’s
quantifer. But to understand its intended semantics we have to understand the as
we saw problematic notion of infinite cardinality. Similarly, Case 2 requires either (a)
previous understanding of infinitary disjunction (and therefore the again problematic
infinite cardinality) in (∗∗) or (b) of quantification over arbitrary finite sets (i.e. of
finite cardinalities) in (∗ ∗ ∗). In order to fix what the natural numbers are, we con-
tinue to appeal to an already fixed notion of the natural number sequence. Discussing
similar examples, Read observes:

5For a short survey see Button & Walsh, 2018 : Chap. 7. For elaboration see Read, 1997.
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A similar objection can be levelled at Lω2 [weak second-order logic]. [...]
It simply forces finiteness [...] by a metatheoretical constraint in the se-
mantics that only finite sets belong to the range of the predicate variables
of quantification. This does not provide the necessary insight to the char-
acter of N and of ‘finite number’. (Read, 1997 : 92)

Not only that but all this cases amount no more to the claim that ‘intended numbers
in an intended model should be obtained by iterating the successor operation finitely
many times’. And a finite LP -model will intuitively satisfy this claim and so be
intended.

6.2.5 Conclusion of the Inductive Argument

The cornerstone of the above arguments essentially comes down to an insight already
noted by Putnam and that serves as the epigraph to this work: ‘[H]uman practice,
actual and potential, extends only finitely far. Even if we say we can, we cannot
‘go on counting forever’.’ (Putnam, 1981 : 67) Our number-theoretic practice is
essentially finite; that is, it will at most only actually involve finitely-many numbers
and finitely-many operations defined on them.6 In this sense we may stipulate a
certain number such that itself and all its successors will never appear in or be relevant
to our practice. This is precisely what we did when supposing the least inconsistent
number to be so large that it has no physical meaning or psychological reality, larger
than the number of combinations of fundamental particles and larger than any number
that could be specified in a lifetime. When we do this we are able to have inconsistent
models where the inconsistencies start to appear at such a large point that all our
actual computations will concern only the consistent tail of the model, where numbers
behave ‘normally’. That the inconsistencies must start at a very large point is already
a significant requirement that rules out some (but not all!) of the finite inconsistent
LP -models from the class of intended models. The requirement immediately dismisses
cyclic models. We recall that these are models obtained by quotiening a (standard
and consistent) model under the following relation:

x ∼ y iff x = y (mod m)

where m is a small, ‘easily reachable’ number. For instance, consider again the stan-
dard model N and the quotient N/ ∼ where

x ∼ y iff x = y (mod 4)

Then the successor graph is:

[0] [1]

[2][3]

Cycle models as the above cannot be intended since they don’t accommodate actual
practice: if the reader owes 40 to the Bank, they will not cancel your debt with the
excuse that 40 = 0 (or more precisely, [40] = [0]). Now, are all finite cyclic models
unintended? We hesitate here. For suppose N/ ∼ is built from x ∼ y iff x =

6Again, we exclude considerations involving hypercomputations inside black holes.
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y (mod n), where n is that ‘very very large’ number. This will have as a consequence
that the natural number 1 (or [1]) will be inconsistent, because [1] = [1 + n] given
1 = 1 + n (mod n). And again this model cannot be intended since it goes against
the practice. However, n is our ‘very very large’ number; therefore, it would seem
that scenarios where the equality [1] = [1 + n] would be noticeable in the practice
would never appear, because, by construction, n is so large that actual situations that
involve n do not exist. Still we think this argument may need further elaboration.
Moving on, collapsed models can have a (consistent) tail before entering into a cycle;
we called these heap models. We build a finite heap model quotiening a (standard
and consistent) model under:

x ∼ y iff (x, y < m ∧ x = y) ∨ (x, y > m ∧ x = y (mod p))

In the same way as before, if the element m is very small, an ‘easily reachable’
number, the resulting model cannot be intended – the same financial worries can be
easily imagined. However, if

x ∼ y iff (x, y < n ∧ x = y) ∨ (x, y > n ∧ x = y (mod p))

where, again, n is our ‘very very large’ number, all our actual arithmetical operations
would involve numbers that would belong only to the consistent tail of the model.
This means that no problem would arise regarding our actual practice with natural
numbers if we take these models as intended.

Hence, we have our inductive argument. By considering a couple of constraints and
how they still allow intended finite inconsistent LP -models, we have offered inductive
support to the negation of the supplementation strategy. From this discussion, how-
ever, we were also able to reduce a bit more the class of intended finite LP -models –
for these models to be intended and to respect our practices, they must (at least) be
heap models where the cycle (and, therefore, the inconsistencies) start at a very very
large number.

We end this section by noting that one option we have not covered is requiring for the
underlying logic to be classical; but this is part of a much more general and longer
discussion on the status of paraconsistent logic that here we could not possibly engage
with.

6.3 The Deductive Argument

The purpose of this section is to better understand the assumptions behind the in-
ductive argument(s). We will first consider a reply to intended finite LP -models
presented by Tim Button and use it to present our own take on the viability of the
supplementation strategy. Before we do this we introduce an argument proposed by
Bays against Putnam’s just-more-theory manoeuvre.

6.3.1 The Supermodel Argument

Bays(2008) notes that the key idea behind the ‘just-more-theory’ manoeuvre consists
in the fact that any additional requirement imposed on a language’s referential re-
lations can be viewed as just a new sentential theoretical or operational constraint
addable to the language itself and up for reinterpretation. Realist attempts to fix the
intended interpretation of the language have been met with a first-order regimentation
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of their proposal later reinterpreted with Putnam’s favourite model theory. Against
this too liberal use of the just-more-theory manoeuvre, Bays(2008) gives a trivial se-
mantics accountable by just-more-theory-like reasoning – his Supermodel Argument.
The argument is used as a dismissal of Putnam’s manoeuvre: either the supermodel
is accounted by the manoeuvre working as a reductio, or the supermodel and the
just-more-theory are refuted on the same grounds.

We first build Bays’ supermodel G:

• Define a satisfaction relation for |=g that agrees with the classical first-order
recursive clauses for all the logical operators except for negation, i.e. for any
model M and variable assignment v, the clause for ¬ is defined as M, v |=g

¬ϕ⇔M, v |=g ϕ.

• Define a model G = 〈D, I〉 such that D = {d} and all relation symbols are inter-
preted maximally; i.e. for every n-ary relation R and n-tuples 〈I(t1), ...I(tn)〉 ∈
Dn : 〈I(t1), ...I(tn)〉 ∈ I(R).

Claim: Under the satisfaction relation |=g, G is a trivial model: for all ϕ, G |=g ϕ.

Proof. The proof is by induction on the complexity of ϕ. Every atom is satisfiable
since relation symbols have a maximal interpretation. For the negation case, we have
by induction hypothesis G |=g ϕ which by the redundant negation clause implies
G |=g ¬ϕ. For conjunction, the truth of the conjuncts implies the truth of the
conjunction. Finally, for quantifiers, since the domain of G has only one element,
G |=g ∀xϕ⇔ G |=g ∃xϕ⇔ G |=g ϕ(x/d).

If ‘satisfaction’ is understood as |=g, then G will trivially satisfy every sentence.
Consequently, it will satisfy all the theoretical-cum-operational constraints imposed on
the language’s referential relations. It then follows that theoretical-cum-operational
constraints do not seem to commit to the existence of more than one object; the
supermodel G is such an example of an interpretation satisfying our constraints in
a one-element model. Of course we may add additional requirements relative to,
say, cardinality or imposing a more ‘natural’ semantic clause for negation. But by
the ‘just-more-theory’ manoeuvre the extra requirements may, after being first-order
regimented, be added to the total collection of sentences in the language and, after,
subject to multiple reinterpretations. Since G satisfies everything, it will also satisfy
those new requirements. For example, we may add a Multiplicity Constraint of the
form:

Multiplicity Constraint: An intended interpretation must have more
than one element.

Obviously, we may formalize the above claim by ∃x∃y(x 6= y), and, indeed, G will
satisfy the requirement – after all, G |=g ∃x∃y(x 6= y). Similar arguments may be
rehearsed for other cases. In the end, Bays(2008) concludes that the new constraints
do not dismissG as unintended and, quite on the contrary, show that every theoretical-
cum-operation constraint is trivially satisfiable in G .

The Supermodel Argument is meant as a reductio of Putnam’s manoeuvre. But to
appreciate exactly what the argument is supposed to be a reductio of we need to look
more closely at Putnam’s way to reinterpret additional theoretical constraints. Put-
nam’s argument is dependent on the privileged semantics within which non-intended
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interpretations are to be formed – for exploring the basic limitative meta-properties
of first-order logic, classical standard model theory is required. Still, to model a lan-
guage’s referential relations we may prefer to work with a stronger semantics, say,
first-order model theory plus a Causality Constraint:

Causality Constraint: An intended interpretation must respect all the
intended causal relations between words and referents.

Since, presumably, we sometimes wish to use different names for different objects,
the interpretation G that assigns to all names the same denotation dG will fail to
respect the causal links embedded in a speaker’s referential practice. When specifying
the semantic clauses for a satisfaction relation we must account for these relevant
causal links. Such a requirement can then be seen as specifying which kind of model
theory should be used when interpreting our theoretical constraints, which can be
immediately recognized as a substantially different project than that of merely adding
to the language new theoretical constraints reinterpreted in the standard classical
model theory that Putnam chooses to use. Putnam’s manoeuvre tends to confuse
these distinct tasks, taking the Causality Constraint as an example of the latter and
not of the former:

[...] we can view Putnam’s just-more-theory defence as an attempt to close
the gap between the kinds of strong background semantics preferred by
realists [e.g. classical first-order semantics plus a causality constraint] and
the substantially weaker background semantics for the model-theoretic
argument [...] by reducing the realist’s strong semantics to the first-order
semantics needed for Putnam’s model theory. (Bays, 2008 : 202-203)

After Putnam has formalised the relevant constraints in first-order logic, there will
be many possible interpretations of ‘Causality fixes reference’ (as there will be many
interpretations of what ‘Causality’, ‘fixes’ and ‘reference’ denote), such that multiple
deviant models will satisfy the requirement. The Supermodel Argument then shows
that there is nothing unique about Putnam’s reduction: just as we may reduce real-
ist’s strong semantics to Putnam’s preferred first-order semantics, so we may reduce
Putnam’s semantics to |=g, the satisfiability relation with redundant negation.

For the model-theoretic sceptic the challenge is then to provide a way to refute G
that does not refute Putnam’s manoeuvre at the same time. More precisely, to justify
the reduction from the realist’s strong semantics to standard first-order semantics
without at the same time accounting for the supermodel semantics, or any other kind
of reduction.

Tim Button(private correspondence) locates the problem with the Supermodel G
in its redundant negation operator. For let truthGg be the property relation that
is formed by considering what G satisfiesg (where satisfiabilityg is satisfiability |=g).
Now, Button claims7 that ‘Whatever truth is, it’s not truthGg ’ After all: every sentence

is trueGg , but we accept some sentences and reject others’. If truth was truthGg then
the assertion of ϕ would imply the assertion of ¬ϕ. However, asserting ϕ implies
(though not always) the rejection of ¬ϕ. Essentially, truthGg just does not conform

with our normal assertion and rejection practice. Hence, truth is not truthGg .

7Thanks to Tim here for permission to quote his comments.
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6.3.2 Button’s Argument

The Supermodel Argument provides important insight regarding LP -models of pa.
First, consider truthNL (where L is first-order classical logic). Ideally, the moderate
realist will want to characterize only the standard model, up to isomorphism, as the
intended model of pa. This will in part require identifying arithmetical truth with
truthNL . However, the constraints defined on the class of intended models allow, prima
facie, for the inclusion of LP -models. In this sense, arithmetical truth can just be

interpreted as truth
N/∼1

LP , where ∼1 is an equivalence relation that produces a suit-

able non-trivial inconsistent collapsed model, and truth
N/∼1

LP the property relation
formed by considering what N/ ∼1 satisfiesLP (where satisfiabilityLP is satisfiabil-

ity |=LP ). truth
N/∼1

LP will equally conform with our ordinary mathematical practice.
However, we may just like in the Supermodel Argument give a different interpreta-
tions of arithmetical truth. Collapsing N by a relation ∼2 that places all the original
numbers in one single equivalence class will produce a model much like Bays’ G. And
if N/ ∼2 is to be intended, then the collapsing strategy will just seem plainly im-

plausible. The challenge is then to justify the reduction from truthNL to truth
N/∼1

LP

in such a way as to not also account for truth
N/∼2

LP . In fact this is easily achieved:

as we noted truth
N/∼2

LP does not conform with our ordinary mathematical practice;

but truth
N/∼1

LP may. However, if ordinary mathematical practice is to include asser-
tion/rejection practice, we find a challenge. For, as Button wants to argue, ‘I suggest
that our behaviour (concerning assertion and rejection) also allows us to rule out LP
models’. After all, if we build an inconsistent LP -model, the equivalence relation
will relate two numbers x ∼ y such that x 6=N y. As a consequence, we will have
[x] =N/∼ [y] and [x] 6=N/∼ [y]. It is then easy to see that N/ ∼ will satisfyLP the
following formulas:

(1) ¬∃x∃y(x = y ∧ x 6= y)

(2) ∃x∃y(x = y ∧ x 6= y)

Normally, we would assert (1) and reject (2). But if truth were truth
N/∼1

LP we would

both assert (1) and (2). Whatever truth is, it’s not truth
N/∼1

LP .

This is then Button’s argument against intended LP -models. We think however that
this counter-argument is different than the G case: it raises different challenges in
such a way that without a proper analysis of the relevant structural differences we
risk mischaracterization of the assumptions involved. Button’s argument against G,
to repeat, that redundant negation contradicts everyday assertion/rejection practice,
just seems an iteration of the old exclusion problem. The exclusion problem states that
the obtaining of the negation of a statement should allow for the incompatibility of the
obtaining of that statement: when we assert ¬ϕ we may wish to express that ϕ does
not obtain, that ϕ is excluded on logical grounds. Now, if negation is interpreted
redundantly, the assertion of ¬ϕ cannot exclude the assertion of ϕ: in this sense,
redundant negation is unable to express genuine exclusion or incompatibility between
different facts. This cannot be the same argument Button has in mind against LP -
models. Firstly, the argument against G concerns a general account of how negation
is or should be defined; when against LP , we are only concerned about negation in a
unique case involving arithmetical identities and non-identities. Secondly, unlike G,
there are non-trivial LP -models where the assertion of a formula is compatible with
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the rejection of its negation. Thirdly, and more importantly, if Button’s argument
against LP -models was just another case of the exclusion problem, then it would have
little force. There is already a way to handle it in the paraconsistent case. Here, the
crucial idea would be that negating a statement should be distinguished from the
speech acts of acceptance/denial and an agent’s cognitive state of assertion/rejection,
wrongly conflated in the Frege-Geach Thesis:

aa ϕ⇔ `a ¬ϕ8

Instead, we may take the rejection of a statement as, first, a primitive act not reducible
to the assertion of its negation (against the Frege-Geach Thesis) and as, second, the
expression of the refusal in believing it. It follows that if an LP -theorist wishes to
express incompatibility or exclusion, she only needs to incur in the pragmatic act of
denying (rejecting) the statement (which may be done by uttering ‘not’ – context and
pragmatics disambiguates if ‘not’ is a rejection or an assertion of negation).9 Now,
if Button’s argument consists only in noting that LP does not allow for exclusion –
that the assertion of (1) does not exclude the assertion of (2) and that nothing else
can, then the argument is just confusing two distinct non-interdefinable speech acts.
Of course the Frege-Geach Thesis is a polemic matter and the minute details of the
debate do not need to concern us here; we aim only at noting that there are more
interesting ways to look at Button’s objection.

A more promising approach to Button’s argument against LP -models consists in
taking the argument as stating something particular about the arithmetical sentences
involved. Button’s argument just seems to be defending that we have an expectation
about the natural numbers, actually present in our normal number-theoretic practice,
yielding the truth of (1) and falsity of (2). If numbers do not satisfy (1) they are
not numbers. If numbers satisfy (2) then (stamp the foot, bang the table) they are
not numbers! Button’s point is just that in any interesting LP -model, that is not
isomorphic to the standard or other consistent models, we will have to identify two
different numbers, and we are unwilling to do that. At this point the argument starts
to look awfully like an incredulous stare.

6.3.3 Against Button’s Argument

Still, it may strike us as rather odd how quickly the above argument solves the problem
of the indeterminacy of the natural number sequence (regarding LP -models). The
rebuttal just seems too easy! When giving the inductive argument we saw many cases
where, pace Button, neither assertion/rejection practice nor expectations about the
natural numbers should be taken at face value – for instance, we would assert that
‘every number should be finitely far from zero’ but its rather hard for a moderate
realist to justify this. Not all assertions/rejections can be taken to be true without
begging the question against the model-theoretic sceptic. Of course, the situation
here is not entirely analogous with the examples we covered in the inductive argument
(for example, in the Härtig’s Quantifier case). When rejecting that ‘no two different
numbers are identical’, we are not (so it seems) assuming, in the semantics, concepts
that we were already trying to pin down; rather we are simply rejecting some sentences
in the object-language. Yet, one could argue that denying inconsistent features (like
identity) to all the natural numbers seems still to presuppose a lot of information
about the natural numbers that is not available to the moderate realist. Before we

8‘ aa ϕ’ is read as ‘Agent a denies/rejects ϕ’ and ‘ `a ϕ’ as ‘Agent a accepts/asserts ϕ’.
9For details see Berto(2012).

90



elaborate on this point, let us just stress again that not any intuition can decide
the correctness of a model. But are there intuitions that may decide on correctness?
Well, those that are very well-entrenched in the practice can. That is, for instance, we
would require that the ‘true’ number 1 should be finitely far from zero; a model that
would require somehow infinitely many iterations of the successor function to reach
the first element of the sequence (if such absurd scenario can even be envisioned)
would not count as intended. However, there will be a point (numbers after the very
very large n never present in our practice) for which these intuitions will not apply;
simply because, the numbers do not appear in and therefore are not justified by the
practice. Hence, it seems that the constraints that work are not quantified claims
ranging over all the natural numbers, but rather those that concern very specific
elements.

Generalizing, what the above suggests is that variable-free arithmetic formulas grounded
in actual numerical practice impose legitimate justifiable constraints on the intended
model. We can see a dim glimpse of such a proposal in Priest(1996), though, at least
to the knowledge of the present author, such a proposal has yet to be elaborated with
any sufficient detail:

Doubtless, for example, most people are not disposed to assert the exis-
tence of a number greater than or equal to all numbers. But this simply
reflects a belief that they have acquired during their education. To be con-
stitutive of the truths of arithmetic, the dispositions must be of a more
fundamental kind. [...] a natural position is that it is those dispositions
that should count here. It is, after all, the practices of counting, adding,
etc., that constitute learning arithmetic. Dispositions concerning gener-
alised claims (i.e. those employing variables) are part of a theory about
numbers that people come to acquire later. (Priest, 1996 : 657)

So there are intuitions that constitute justifiable constraints on the class of intended
models: quantifier-variable-free formulas accounted for within actual arithmetical
practice. But Button’s argument, though concerns arithmetical practice, involves
existentially quantified claims. Further, as we noted, besides assertions and intu-
itions, Button’s claim is also equated with mathematical truth. That we know that
(1) is (only) true and (2) is (only) false. Benacerraf’s problem shows, however, that it
is a rather difficult task that for the realist, or better, the moderate realist in our case
to explain how exactly she is able to know that an arithmetical statement is true:

[O]n a realist (i.e. standard) account of mathematical truth our expla-
nation of how we know the basic postulates must be suitably connected
with how we interpret the referential apparatus of the theory. [...] [But]
what is missing is precisely [. . . ] an account of the link between our cog-
nitive faculties and the objects known. [. . . ] We accept as knowledge only
those beliefs which we can appropriately relate to our cognitive faculties.
[S]omething must be said to bridge the chasm, created by [...] [a] realis-
tic [...] interpretation of mathematical propositions [...] and the human
knower. (Benacerraf, 1973 : 674)

Normally Benacerraf’s problem is read in an epistemic way: the realist must account
for her mathematical knowledge while recognizing the acausal character of mathemat-
ical entities. McGee(1993) gives a more fundamental account of the problem:
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[Benacerraf’s] problem is sometimes posed as a problem in mathematical
epistemology: How can we know anything about mathematical objects,
since we don’t have any causal contact with them? But to put it as a
problem in epistemology is misleading. The problem is really a puzzle in
mathematical doxology: Never mind knowledge, how can we even have
mathematical beliefs? Mathematical beliefs are beliefs about mathemati-
cal objects. To have beliefs about mathematical objects, we have to refer
to them; to refer to them, we have to pick them out; and there doesn’t
appear to be anything we can do to pick out referents of mathematical
terms. (Mcgee, 1993 : 103)

What McGee’s remark provides is a more complex challenge for the realist. From
Benacerraf’s original reading we noted that to the assertion of the truth of an arith-
metical expression (regarding some (acausal) mathematical objects), we are entitled
to demand a suitable epistemic account of the grasp of such truth; now, more, to a
suitable epistemic account of the grasp of such truth, we are entitled to demand a
suitable doxological10 account of such objects. An arithmetical universally quantified
formula ϕ := ∀xφ(x) (where x occurs free in φ) would then state that all the natural
numbers are such that φ. Let us suppose, for the purposes of the argument, that ϕ
is claimed to be true of the natural numbers. How should we understand this? Fol-
lowing Mcgee, knowledge of ϕ implies ability to refer to the natural numbers. Hence,
Button’s claim that (1) is true and (2) is false must be made relative to some back-
ground ‘conception’ of natural number. Now, here, we are purposely introducing the
rather vague notion of ‘concept’. The introduction is motivated on very dummettian
grounds:

[...] each domain for the individual variables will constitute the extension
of some substantival general term (or at least the union of the extensions
of a number of such substantival terms) [...] (Dummett, Frege: Philosophy
of Language quoted in Rayo & Uzquiano, 2006 : 11)11

First, excluding particular matters of taste, it is common to associate ‘concepts’ with
criteria of identity and of application: a concept C encodes criteria to decide what
objects it applies to, and under what conditions two objects falling under it are
identical. Secondly, there is a natural association between (mathematical) concepts
and isomorphism types – the notion of, say, ‘ω-sequence’ provides a set of properties
(those invariant under isomorphism) that determine which objects are an ω-sequence
(those objects with a particular structure). This insight leads to the idea that (some)12

mathematical concepts are as fine-grained as isomorphism types so that the former
are explained via the latter. Since natural numbers are thought, at least in the wide
context where our discussion is placed, as the intended isomorphism type of pa and
since the intended isomorphism type provides criteria to determine what structures
are the natural numbers, the isomorphism type just works as ersatz for the concept.
It is in this sense that the concept of natural number is captured by the isomorphism
type corresponding to the intended models.

Mcgee then shows that epistemological concerns are always second to doxological ones.
Further, a suitable account of our capacity to refer to the objects to which we ascribe

10The term comes from (Button & Walsh, 2018 : chapter 6).
11Here, ‘substantival term’ can be though along side a concept.
12Note that not all isomorphism types need to determine a mathematical concept. For example,

if we believe that concepts presuppose our understanding of them, we will ever be able to articulate
only finitely many. So there will be infinitely many structures that do not correspond to concepts.
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a certain property involves an understanding of the concept under which those objects
fall, that is, a capacity to identify them. This much seems uncontentious – any theory
of reference must acknowledge a prior possession of minimal identity criteria: for how
would we ever be able to refer to cats and not cherries, unless we had a way to pick
out (i.e. identify) the cats instead of the cherries? Continuing with the ω-sequence
example: ‘[...] consider the epistemological question of how we could know that there
actually are any ω-sequences. The very attempt to ask this epistemological question
presupposes that we possess the concept ω-sequence: if we lacked that concept, then
we could not even pose the question.’ (Button & Walsh, 2018 : 149) It should be
noted that even though a necessary condition, identity criteria is not sufficient for
reference. Funny enough, the reasons why are again dummettian. Orthodoxy has it
that ‘The fact revealed by the set-theoretic paradoxes was the existence of indefinitely
extensible concepts [...]’ (Dummett, 1994 : 26). For suppose we are able to quantify
over all sets; to place them in some (set-like) domain over which our variables are
allowed to widely range. The domain, call it E, will correspond to the extension of the
concept ‘set’. Then by standard russellian reasoning we consider the set R of members
of E that are not members of themselves and contradiction. Since, from the attempt
to supply an extension for set we derive paradox, set is indefinitely extensible. Still,
the Axiom of Extensionality provides clear identity criteria to determine when two
objects falling under the concept set are identical. Hence, identity criteria is not a
sufficient condition to refer to all elements/determine the extension of a concept.

One important distinction is in place. Classical quantification maps objects in a
domain to truth values; for it to be justified it must be clear which mapping is being
used, which demands clear understanding of which objects do belong to the domain.
For Dummett this just consists in having identity and application criteria. As he
writes:

In order to confer upon a general term applying to concrete objects –
the term “star,” for example – a sense adequate for its use in existential
statements and universal generalizations, we consider it enough that we
have a sharp criterion of whether it applies to a given object, and a sharp
criterion for what is to count as one such object – one star, say – and what
as two distinct ones: a criterion of application and a criterion of identity.
(Dummett, 1994 : 24 – 25)

However, such an example considers non-mathematical objects such as stars. For the
mathematical case he immediately adds an extra proviso:

It is otherwise, however, for such a mathematical term as “natural num-
ber” or “real number” which determines a domain of quantification. For
a term of this sort we make a further demand: namely, that we should
“grasp” the domain, that is, the totality of objects to which the term ap-
plies, in the sense, of being able to circumscribe it by saying what objects,
in general, it comprises – what natural numbers, or what real numbers,
there are. (Dummett, 1994 : 25)

It is not clear how to understand ‘grasp’ here. From Dummett’s remark, we see that
‘grasp’ of an object is somehow equated with the epistemic claim of knowing that
there is such an object and how it is like. Further, quantification over a mathematical
domain (a domain comprised of mathematical objects) would demand a grasp of all
the objects that comprise it – let us call this Dummett’s Thesis. Let us assume this
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working hypothesis for the moment: quantification over the extension of a mathemat-
ical concept does require grasp of all the objects falling under it. How does this relate
with Button’s objection? Well, we need a slight small detour before we can join all
the pieces.

Strict finitists defend that there is no infinity of natural numbers: the natural number
sequence must end somewhere with a greatest number, call it, L. Now, how is L like?
Is L prime? divisible by 3? does L+ 1 exist? does L2 exist?

The key of dealing with objections like these, it seems to me, is given
by wondering what are the presuppositions of one of the above questions,
viz. “Is L different from L + 1?” One of the presuppositions is that I
can rightfully speak of L and L + 1. But surely that is the problem to
start with! To the extent that one can speak about a number L + 1,
I should be able to make a representation of it, immediately implying
that L is no longer the greatest number. As a consequence, to reply to the
above question “I am sorry, but I cannot answer this question” is perfectly
defensible. [...] with respect to the greatest number L, one can very well
answer: it is that number about which no question whatsoever can be
asked. (van Bendegem, 2012 : 144)

Essentially, the closer the strict finitist comes to a characterization of L the easier
it is for critics to imagine numbers greater than L or questions that make L seem
very arbitrary. The best approach is to secure L from our normal mathematical
expectations regarding, say, the ‘closeness of addition’ or ‘primality’, by refusing to
offer a characterization of L at all. We can see the similarities between L and the (by
now well-known) requirement ‘n has to be so large that it has no physical meaning or
psychological reality ’. Consequently, statements of the form ‘for all numbers up to L’
must be meaningless:

As the greatest number itself is indeterminate, there is no sense in making
statements about all numbers. A universal quantifier such as “For all
n up to L” must be meaningless, for, [...] from the moment we make a
representation of all numbers up to L [including L itself], L ceases to be
the greatest number. (van Bendegem, 2012 : 145)

For suppose we have a grasp of L – then L ceases to be L. So we cannot have a grasp
of L. But if we don’t grasp it how can we know how L is like? How can quantification
of the form “For all n up to (and including) L, n is φ” be ever justified if we do not
(and cannot) know that L is φ?

Now, if we subscribe to Dummett’s Thesis, Button’s argument for (2) being false
presupposes a conception of the natural numbers. Recall also that we have located
(in the intended LP -models) the inconsistencies at a very large number n. If Button
says that models, where 1 or 2 or other very small numbers are inconsistent, are not
intended because those numbers are not inconsistent we will happily agree. But what
happens with models where the inconsistencies start at a very large n? Those are
the cases that should interest us the most because those were the models that we
argued are intended. Well, again following Dummett’s Thesis, if Button wishes to
say those models are wrong because the very large n is not identical with a different
number, then he has to have a clear grasp of how n is like. But, like van Bendegem’s
L, from the moment Button grasps n, n ceases to be n, for that object starts to
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have a physical meaning or psychological reality. In a word (or two), quantification
over n is indefinitely extensible. Hence, Button cannot have a clear grasp of all the
natural numbers for he cannot have a clear grasp of how n is like. And if he cannot
grasp it, he cannot ascribe properties to it of the form ‘n is so and so’ or ‘n is not
identical with a number different from n’. Conclusion: Button cannot know that n is
not inconsistent; more generally, Button’s claim is unwarranted.

The above reasoning is not definite. And it is clear why. The argument is dependent
on what we called Dummett’s Thesis, which is polemic at best. We cannot elaborate
much further on this point. The relations between quantifying and grasping the
objects over which we are quantifying are complex enough to write a full book. We just
note a problem with this view. The pa axioms also comprise universal quantifications
over the natural numbers; and a similar reasoning as before might show that, say, the
axiom ∀x(x+ 0 = x) seems equally illegitimate for very large numbers like our n. We
can bite the bullet here and concede that we cannot know that natural numbers are
such that they satisfy the pa-axioms but this seems very unappealing.

Either way, let us quickly try another strategy that does not use Dummett’ Thesis.
The point now is that to say that n is not inconsistent just seems to require a great
deal of epistemic power not available to a moderate realist: how can she know that n
is so and so if (by definition) we can not make any sense of n. Debates can sometimes
be paralysed by the second-order debate about which side bears the burden of proof.
And we find this to possibly be one of those cases. On one hand, given that we are
trying to defend the very weird possibility that n might be inconsistent, it would
seem that it is our side that has to justify this pretension – breaking common-sense
can be seen as constitutive for bearing the burden. On the other hand, given the
moderation of the moderate realist, it seems that her claim that ‘n is so and so’ is not
that easily available to her knowledge. Let us focus on other properties rather than
consistency so we might get a more clear picture. What we said about the consistency
or inconsistency of n works for any other property. Arithmetical practice does not
give much direction about the structure of the natural numbers after a large enough
n. For example, let n be a number so large that it would take more time to say or
write it than the time left until the heat death of the universe. Now, is such number
prime? divisible by 3? multiple of 28? There does not seem to be any principled way
for not God-like creatures such as us to ever determine that, say, n is prime – one
wonders how Eratosthenes Sieve could ever be applied here! From a moderate realist
view, it seems that the only thing which can justify her knowledge about numbers is
arithmetical practice; but the examples in the inductive argument show that practice
is silent on how the numbers behave after an inconceivably large point. This can lead
us to think that, as it stands, the burden of proof lies on the side of the moderate
realist: it just seems to require an extra amount of epistemic exertion prima facie
not available to the moderate realist to determine if n has the properties that would
make it consistent. And in fact, by definition of n, such level of epistemic exertion is
not achievable. We can’t know that n is or is not a consistent or inconsistent natural
number without making n cease to be n.

The above considerations only have relative force and leave many important aspects
open. Still, until they are sorted out, the deductive argument bears some initial
strength against the Supplementation strategy. Coupled with the inductive argument
we think we are entitled to assume that until moderate realists come up with a non-
question-begging constraint or are able to explain how they know how n is like, the
Supplementation strategy does not work.
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6.4 Summary

We then end with the result that from a moderate realist perspective, the supple-
mentation strategy is not at all appealing. Hence if the argument from Tennen-
baum’s Theorem is to be pursued, the moderate realist must go with Conclusion1 or
Conclusion2. Either way the problems raised by Skolem and Putnam reappear.
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Chapter 7

Conclusion

This work has been an exploration of the argument from Tennenbaum’s Theorem
and its relation with the philosophy of model theory and non-classical arithmetic.
Regarding the philosophy of model theory we discussed how some authors have put
the Theorem to good work in the foundations of mathematics using it when pinning
down (the structure of) the natural numbers. This is of particular importance given
that basic limitative logical results, such as the Löwenheim-Skolem Theorem and the
construction of non-standard models of pa, have exposed, so its has been argued
(Putnam, 1980), the inability to determine the intended models within a moderate
realist view in mathematics. In this sense, it was thought that the moderate realist
could find a safe haven, shielded from the protests of the skolemite sceptic, by following
a two-step plan: first, point to our number-theoretic practice and stress that our
everyday use of numbers justifies the idea that intended addition must be computable;
second, employ the Theorem by Tennnenbaum and characterise the intended models
categorically. As we saw, critics were fast to point that adding more model theory is
unlikely to solve a problem already related with model-theoretic indeterminacy (i.e.
indeterminacy of the intended interpretation of a theory). The argument presupposes
computational terms such as ‘recursivity’ whose mathematical formalization is done
by employing great chunks of arithmetic. Therefore, using computational notions
interdefinable with the natural numbers in order to explain what the natural numbers
are just plainly assumes that which it tries to prove; i.e. a firm understanding of the
natural numbers. Further, a practical pre-theoretical rendering of ‘recursivity’ equally
presupposes the same understanding of the relevant arithmetical notions.

This is then the present stage where we find the literature on the subject. Our goal
was to make a new critique of the argument through the study of some computational
properties of the functions defined over non-classical inconsistent models of pa. The
counter-argument we gave was based on the fact that the same appeal to ‘recursivity’,
found behind the original argument, equally justifies the inclusion of a subclass of
finite inconsistent models of pa in the class of intended models. As a consequence
the intended models do not define a single isomorphism type against the hopes of
those that were expecting to solve skolemite scepticism by characterizing the intended
structures categorically.

As we saw, three possible conclusions are taken from our LP -argument: Bite the
Bullet, Reductio and Supplementation. Through a detailed analyses on how the Sup-
plementation strategy could be pursued, we argued that the possibility of a legitimate
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and intuitive constraint, or set of constraints, capable of dismissing intended inconsis-
tent models is not that promising. This means that, if the LP -argument is successful,
the only viable conclusion must rest on one of the two remaining options. Regard-
less of the option chosen, both conclusions will reintroduce the epistemic challenge
proposed by Skolem and Putnam which adepts of the argument from Tennenbaum’s
Theorem were hopeful to have solved. In this way our work has shown that Tennen-
baum’s Theorem does not help the moderate realist explain how we know that the
intended model of arithmetic is the standard model, up to isomorphism.

There have been several points in our work where we have (perhaps without making
it explicit) thought that the ideas discussed needed more elaboration. However since
their proper development would take us too far from the main goals and arguments
we wanted to present, for the purpose of rigour we couldn’t possibly have discussed
them in full. In this sense, we now list a set of future questions worth pursuing:

1. Our discussion revolved around finite LP -models. It remains to be seen if there
is any prospect of having intended infinite inconsistent models and if these
square better against the finite ones when it comes to our intuitions about the
natural numbers. If this were to be the case, then it would seem that our
argument would be reinforced adding more non-isomorphic models to the class
of intended models.

2. We addressed the problem of formalizing sameness of structure between LP -
models and found that their might be some complications when using the clas-
sical notion of isomorphism here. An interesting question would be to search
for better more fine-grained methods to capture and compare the structure of
LP -models so to be able to say when two models are structurally the same. A
related matter would be to explore how those possible methods decide on the
issue of comparing the structure between the standard model and an inconsis-
tent one (like N ∗/ ∼). In fact this is an important issue given that the success
of the LP -argument is dependent on the argued assumption that N ∗/ ∼ does
not have the same structure of the standard model.

3. When giving the three possible conclusions to the LP -argument we stressed
that we didn’t aim at exhaustiveness. A possible question is if there are other
reasonable reactions to the argument that we have not explored and how do they
play out with the refutation of the argument from Tennenbaum’s Theorem.

4. We stressed that we were interested in the argument from Tennenbaum’s The-
orem as used in the epistemic problem of explaining how we know what the
intended model is. But we also noted that there is the parallel use of the ar-
gument with regards to the linguistic problem of explaining how we manage
to refer to the intended interpretation of arithmetic. It remains to see what
consequences our discussion can bear to this latter view.

5. Finally, van Bendegem(2012 : 142) sees the collapsed finite LP -models of pa
as a way to develop a strict finitist view of arithmetic. It remains to see if
the existence of intended finite models, that follows from accepting the Bite the
Bullet-conclusion from the LP -argument, can boost the strict finitist project.
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Appendix

The purpose of this Appendix is to quickly recall some basic technical preliminaries
and notations pervasive in our main discussion. Otherwise indicated, the notion of
semantic entailment used and the models defined will be those for first-order classical
logic. We first define the notion of language:

Definition (L-signature) A signature L is a collection of constant sym-
bols, and function and relation symbols for any given arity.

Definition (L-structure) For a signature L, an L-structure M consists
of:

1. a non-empty set of elements M called the domain of M;

2. for each constant symbol c in the signature, an object cM ∈M .

3. for each n-ary function symbol f in the signature, a function fM :
Mn →M ;

4. for each n-ary relation symbol R in the signature, an ordered tuple
RM ⊆Mn.

Definition (L-reduct) Consider two signatures L and L+ with L ⊆ L+,
and an L+-structureM. We say that N is the L-reduct ofM iff N is the
unique L-structure with domain M and sN = sM for all symbols s ∈ L.
We say that M is a signature expansion of N .

Now, given a theory T , understood as a collection of sentences in the language closed
under the rules of some deductive system, we introduce a model for the theory:

Definition (L-model) For a theory T in the signature of L, the L-structure
M is a model of T iff, for every formula ϕ ∈ T , M |= ϕ.

In order to understand the distinction between intended and unintended models we
need, partly, to understand when do two different models capture a theory ‘in the
same way’. This can be given a precise formulation through the notion of a mapping
preserving structure:

Definition (Homomorphism) Let M and N be two L structures. An
homomorphism π :M→N is a function π : M → N with:

1. For L-constant symbol c, cN = π(cM);

2. For n-ary L-function symbol f , fN (π(m1), ..., π(mn)) = π(fM(m1, ...,mn))
(for m1, ...,mn ∈M);

3. For n-ary L-relation symbolR, (m1, ...,mn) ∈ RM ⇒ (π(m1), ..., π(mn)) ∈
RN (for m1, ...,mn ∈M).
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Definition (Embedding) An embedding of M into N is an homomor-
phism π :M→N such that:

1. π is injective;

2. For n-ary L-relation symbolR, (π(m1), ..., π(mn)) ∈ RN ⇒ (m1, ...,mn) ∈
RM (for m1, ...,mn ∈M).

Definition We say two L-structuresM and N are isomorphic iff there is
a surjective embedding π :M→N . We write M∼= N .

Finally, the following theorem captures the relation between a model’s structure and
satisfiabilty:

Theorem LetM and N be two L structures and π : M → N a bijection.
Then the following are equivalent:

1. π is a an isomorphism between M and N ;

2. M |= ϕ(m1, ...mn)⇔ N |= ϕ(π(m1), ..., π(mn)), for m1, ...,mn ∈ M
and atomic L-formula ϕ;

3. M |= ϕ(m1, ...mn)⇔ N |= ϕ(π(m1), ..., π(mn)), for m1, ...,mn ∈ M
and first-order L-formula ϕ;

4. M |= ϕ(m1, ...mn)⇔ N |= ϕ(π(m1), ..., π(mn)), for m1, ...,mn ∈ M
and second-order L-formula ϕ with semantic consequence defined via
either full or Henkin second-order semantics.

Definition (Elementary Equivalence) We say two L-structuresM and N
are elementarily equivalent iff they satisfy the same L-formulas. We write
M≡ N .

Definition (Elementary Extension) For two L-structuresM and N with
N ⊆ M we say that M is an elementary extension of N , and write N ≺
M, iff for any elements n1, ..., nn ∈ N and formula ϕ(x1, ..., xn), N |=
ϕ(n1, ..., nn) iff M |= ϕ(n1, ..., nn). In this case we also say that N is an
elementary substructure of M.

Theorem M∼= N ⇒M ≡ N
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History and Philosophy of Logic (18): 79-93.
Reid, S. 2018. On Standard Models of Peano Arithmetic and Tennenbaum’s Theorem.

Accessed from: https://arxiv.org/abs/1311.6375.
Shapiro, S. 1991. Foundations Without Foundationalism: A Case for Second-Order

Logic. Oxford: Oxford University Press.
Shapiro, S. 1997. Philosophy of Mathematics: Structure and Ontology. Oxford Uni-

versity Press.
Shapiro, S. 2002. Incompleteness and inconsistency. Mind 111(444): 817-832.
Shapiro. S. 2006. Computability, Proof, and Open-Texture. In Church’s Thesis After

70 Years’ ed. by Adam Olszewski & Jan Wolenski & Robert Janusz. Ontos
Verlag: 420-455.

Skolem, T. 1922. Some Remarks on Axiomatized Set Theory. In From Frege to Gödel.
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