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Abstract

The present thesis explores Kant’s transcendental philosophy, focusing on the cognitive
processes that bring to the formation of the concept of space. In light of the interpreta-
tion proposed by Pinosio and van Lambalgen [27], we provide an in-depth analysis of the
fundamental passages of the Critique of Pure Reason expounding the synthetic activity
that produces the consciousness of space as a formal intuition. We investigate Kant’s
constructive continuum and we compare it to the Aristotelian continuum, emphasising
their similarities, in particular with respect to the notion of contact between regions.
We then compare Kant’s perspective to Poincaré’s philosophy of space, suggesting some
possible interactions between the two perspectives. We propose a parallel between the
work of the figurative synthesis in Kant and the gradual process of abstraction that
leads, in Poincaré’s philosophy, to the formation of a mathematical continuum from a
physical continuum. Finally, we produce a formal model for Kant’s spatial continuum,
adopting a mereological approach. Starting from a set of finite structures (Boolean
algebras and their dual Stone spaces), which represent the spatial extent of possible
experiences, we build a direct system and an inverse system. The limit of the inverse
system, together with a relation of proximity, is the formal correlate to space as the for-
mal intuition. The proximity relation (dual to a contact relation on Boolean algebras),
is the key to obtain a continuum of points that are the emerging boundaries of regions.
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Chapter 1

Philosophy of space from Kant to
Poincaré

1.1 Introduction

The concept of space is a fundamental component of our experience of the world, and in
everyday life we use terms and expressions coming from the semantic area of “space” so
frequently that we tend to assume it as an established, unproblematic concept. The word
“space” is taken to be so primitive that many disciplines, like physics and engineering
often use it unproblematically to mean a generic concept of “physical space” without
providing a formal definition of it. This approach works until one starts asking about
the nature of such space. As of the beginning of the 20th century, the physical theories
of space seek to apply to “the real structure” of the world in itself. But this has not
always been the case and the issues with this conception are apparent as soon as one
starts thinking of what we mean with “things in themselves”. Even if we could come to
an explicit and uncontroversial definition of this latter concept, many questions remain
unanswered about the nature of space: is it a property of things - definable as spatial
extension? Is it an external “container” with respect to which we can determinate the
position of objects? Is it an actual object or does it depend on the constitution of
our mind? What is its relation to the other fundamental component of our conscious
experience, time? All these questions have generated a great deal of philosophical
debates, dating back to antiquity (Greek philosophers like Plato and Aristotle already
wondered about the nature and properties of space), and embracing a wide range of
topics, from ontology to semantics, from epistemology to phenomenology. The physical
theories describing the properties of space and objects moving in it have also developed
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considerably from the classical Aristotelian model, to Galilean and Newtonian physics,
to the modern theory of relativity. For more than two thousands years, Euclidean
geometry has been the solid mathematical base on which any physical theory of space
could firmly rest, but the discovery, in the early 19th century, of many others self-
consistent non-Euclidean geometries shook the foundations of centuries worth of physics
to prepare the ground for a revolutionary approach to space that led Einstein, at the
beginning of the 20th century, to his theory of relativity.

The present work is intended as an overview of the positions of two eminent philosophers
in the debate about the nature and properties of space. Starting from an in-depth anal-
ysis of Kant’s transcendental philosophy of space, based on the interpretation proposed
by Pinosio in his recent work on Kant’s temporal continuum ([27]), we move to the
theory proposed by Henri Poincaré. There is, however, an apparent asymmetry in our
treatment of the two positions, due to the fact that our work started as an investigation
of Kant’s theory of space aimed at the construction of a mathematical model of cogni-
tive space. While building the formal model, we found similarities with some features
of Poincaré’s construction of the physical continuum, and we saw the opportunity for
an interesting combination of the two perspectives. Although in the end we did not
manage to incorporate the features of Poincaré’s continuum into our model, we found
that the observations produced during our comparison of the two points of view could
motivate future research. Hence we included a synopsis of the work of the French math-
ematician on perceptual space, integrating it with some thoughts that proved relevant
to our investigation.

Our research started from the study of the philosophical theory of space (and time)
developed by the great German philosopher Immanuel Kant (1724-1804), who took a
radical position in the philosophical debate originated by the Newton-Leibniz argument
on the absolute or relational nature of space, refusing both solutions to propose a cogni-
tive approach on the matter. In his most influential work, the Critique of Pure Reason,
Kant argues that space and time are the “forms” of our sensibility, i.e. conditions of
possibility of experience in general. His transcendental approach, however, cannot be
comprised in the frame of classical idealism, as a prima facie interpretation of his so-
lution could suggest. In truth, Kant engages in a long investigation on the cognitive
processes that lead to the formation of the concepts of space and time where both
a priori knowledge and experience play a decisive role. The result is that space and
time depend on the structure of the human mind but we could never become conscious
of them without a preliminary contact with the external world. The distinctive fea-
ture of Pinosio’s interpretation is a clear analysis of the difference between space and
time as forms of intuition and as formal intuitions. While the former is introduced in
the Transcendental Aesthetic as the a priori condition to make empirical experience
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possible, before any elaboration of the understanding, the latter is described in the
Transcendental Deduction1 as the result of a process of synthesis which must involve
the understanding. The tension between the two is solved by Pinosio in a clarifying
exegesis that reveals how the two are complementary aspects of the same thing: the
form of intuition is the passive form of receptivity that does not contain any determi-
nate intuition (not even that of space and time), while the formal intuition is a unitary
representation, accompanied by consciousness, produced by a process of synthesis. This
distinction plays a key role in the formal model of cognitive space we propose.

The model seeks to capture the main features of space as expounded by Kant in (mainly
the second edition of) the CPR, in particular in the TA and in the TD, and in his Meta-
physical Foundations of Natural Science2. Moving from the observations and model of
Kant’s temporal continuum proposed by Pinosio, we provide an algebraic and topologi-
cal formalization of space using a mereological approach. This perspective, which takes
extended regions as primitives, is an alternative to the more classical point-based theo-
ries (as standard Cartesian geometries). This allows for an analysis which is more tied
to perception of the world as we experience and process it. Alfred North Whitehead,
who was one of the initiators of the region-based theories of space in the first decades of
the twentieth century, argued, in his book Concept of Nature [40], that points are less
basic than regions since they cannot be perceived directly, but they are the result of an
abstraction. Kant’s constructive treatment of the spatial continuum, in which points
are only boundaries or limitations of regions, is close to the Whiteheadian construction
of the continuum. Starting from a series of finite algebraic structures, representing the
spatial form of possible experiences, we build an inverse system of topological spaces
(dual to the algebras) as a formal correlate to the process of synthesis brought forth
by the activity of the figurative synthesis. In our setting points are derived entities,
representing the boundaries of regions in the inverse system, and can be constructed
positing a natural relation of contact between regions. The topological counterpart of
these relations on algebras are proximity relations. The final step in our formalization
is to take the limit of the inverse system, together with a proximity relation inherited
by the finite structures in the system. This is the formal correlate to space “as an ob-
ject”, i.e. the formal intuition obtained through the activity of the figurative synthesis.
The quotient of the limit of the inverse system by the proximity relation gives us a
continuum, in which we can recognize points defined as boundaries of regions.

During the construction of our model, we considered the notion of proximity relation
and got struck by the similarity it bore with tolerance relations, introduced, over one

1Henceforth we will use the following abbreviations: CPR for the Critique of Pure Reason, TA for
the Transcendental Aesthetic, TD for the Transcendental Deduction.

2Henceforth: MFNS.
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hundred years after Kant’s publication of the CPR, by the mathematician, physicist
and philosopher Henri Poincaré. Starting from a completely different perspective, he
sought a solution to the problem of determining the properties of perceptual space.
His distinction between a sensible and a mathematical continuum (where the latter
serves as a way of reasoning about the confused perceptions making up the former) is
analogous, in spirit, to the activity of the figurative synthesis progressively structuring
the manifold given in sensibility. Poincaré, however, well-aware of the existence of
multiple possible mathematical descriptions of space (indeed, non-Euclidean geometries
had been discovered at the beginning of the 19th century) maintains that there is no
such thing as a “true” geometry of space , a point of view that became known as
conventionalism. This position seems to be in strong contrast with the necessary a
priori status of Euclidean geometry in Kant’s system. Yet, we notice that Poincaré’s
conventionalism applies to theories of physical space, intended as the world of “things
in themselves” to which Kant’s transcendental idealism never sought to apply. We
suggest that a form of reconciliation between the two philosophers can be attained,
despite Kant’s refusal of the possibility of conceiving non-Euclidean geometries and
despite Poincarè’s insistence in rejecting Kantian apriorism, especially in light of the
interpretation suggested by Pinosio-van Lambalgen.

The present work is divided into two chapters. In the first chapter we introduce the
philosophical groundwork, first trying to fathom the complex architecture of the mind
expounded in the CPR, then presenting our analysis of Poincaré’s philosophy of space.
In the second chapter we produce the formal system, together with an account of the
motivations and correlations between the cognitive system of the CPR and their math-
ematical counterparts.

1.2 Kant’s philosophy of space

In the CPR Kant aims to explore the foundations and characterize the limits of human
knowledge, establishing to which extent human reason can act independently from ex-
perience. He tackles the problem with a revolutionary approach, engaging in what he
calls “transcendental idealism”. The multitude of commentaries and exegetical works
produced on Kant’s First Critique prove how controversial his writings are and how
hard it is to agree on an unambiguous interpretation of his philosophy. We are not
going to dig into the vast literature surrounding his works (the interested reader can
refer to [14] for an overview of the main interpretations and commentaries); instead we
will focus on some passages of the TA and the TD that frame and motivate the current
work.
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One of the most prominent and controversial topics of the CPR is the discussion on space
and time. Our analysis is based on the interpretation adopted by Pinosio [27], which is
an extension and a refining of the work initiated by Achourioti and van Lambalgen in
[1], where a first attempt to formalise Kant’s transcendental logic is accomplished.

The innovative idea advanced by the above mentioned authors is that the semantics
of Kant’s logic does not pertain to classical logic, idea that led many commentators to
claim Kantian logic is exceedingly reductive. This idea, first suggested by Longuenesse
in her Kant and the Capacity to Judge [23] is made formal in [1], where a rigorous proof
of the completeness of Kant’s Table of Judgements for the semantics of geometric logic
can be found. In the recent work by Pinosio [27] a detailed analysis of the distinction
between formal intuition and form of intuition is provided to attain a clear interpretation
which allows for a systematic account of the supposedly contradicting passages of the
TA and the TD. The result is a surprisingly coherent reading, that clarifies the central
role of the figurative synthesis as the fundamental process linking the way space and
time are presented in the TA, as forms of outer and inner sense, to the full-fledged
notions of space and time as objects, found in the TD.

Essential to the understanding of Kant’s perspective is the context in which the First
Critique was written, in particular the debate between Lebnizians’ and Newtonians’
conceptions of space and time, which motivated Kant to take a stand and conceive
his very own approach to the matter, devising his famous theory of transcendental
idealism. At the beginning of the TA Kant himself contrasts his own approach with the
“absolutist” view, attributed to Newton, and the “relativist” view upheld by Leibniz’
school. He asks:

Now what are space and time? Are they actual entities? Are they only
determinations or relations of things, yet ones that would pertain to them
even if they were not intuited, or are they relations that only attach to the
form of intuition alone, and thus to the subjective constitution of our mind,
without which these predicates could not be ascribed to any thing at all?
([16] A23/B37-8).

In the above passage Kant introduces the dispute, but he refers to it throughout the
Critique3, and he claims that the clash between the two interpretations exposes a false
dilemma: if, on the one hand, space and time cannot be the “eternal and infinite self-
subsisting non-entities” needed by Newton “in order to contain all actuality within
themselves”, on the other hand they cannot merely be “relations between appearances”

3The following quotations refer to [16] A39-40/B56-7
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that are completely “abstracted from experience” as the Leibnizians maintain. These
accounts are too metaphysically involved, in that both of them assume the “absolute
reality” of space and time, in the former case asserting they are “actual beings”, in the
latter taking them to be “determinations or even relations of things” 4. In Kantian
terms, the first point of view fails to capture the essence of space and time by assigning
them the role of “conditions of all existence in general” 5 so that they would persist
even without any object to be perceived in them, while Leibniz’s account is confusing
since it takes relations to be prior and detached from reality, missing the fact that, to
be ordered, objects need first to be intuited.6 A third way is not only possible, but
necessary, following Kant: space and time are the pure forms of, respectively, outer and
inner sense and are therefore subjective, in that they are “possible only insofar as the
representational capacity of the subject is affected through [the existence of the object]”.
It is by means of sensibility (the faculty that gives us access to the manifold of appear-
ances) that we can first acquire representations of the outer world, but these would be
lacking any order if there were not a priori conditions structuring it spatiotemporally.
It may seem contradictory to say that space and time are both dependent on experience
and a priori conditions of its possibility, and it is here that Pinosio’s analysis offers
a truly insightful and coherent reading of some of the most controversial passages of
the TD. As Pinosio correctly points out the notions of space and time appear in the
CPR in different degrees of “formality”, depending on the gradual involvement of the
synthesis of the unity of apperception. In the following paragraphs I will summarize
only the main passages of the interpretation: the interested reader is recommended a
careful examination of chapter 3 of [27].

Unfolding the cognitive process making the manifold of appearances, passively acquired
through the faculty of sensibility, into a proper cognition requires a careful handling of
the language used by Kant. Indeed, his vocabulary has been the subject of a wide range
of interpretations and discussions over the course of the past centuries (in particular
after the development of contemporary cognitive science and logic) since the terms he
uses are easily confused with their modern counterparts, despite, clearly, Kant could
not have the background we now tend to accept as granted. So, let us start by clarifying
some terminology, following the taxonomy given by Kant himself in the Transcendental
Dialectic.7

A representation is a determinatio mentis referring to something external to the per-
4[16] A23/B37-8
5[16] B71
6For an extensive treatment of the contrast between Kant’s view and the two mentioned positions

see [10].
7[16] A320/B376-7
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ceiving subject 8, and it is the root from which any possible cognition stems. Note that
Kant never speaks of cognizing objects “in themselves” and he makes clear that we can
have no cognition about the noumenon9: the passive manifold given to us through sensi-
bility is that of appearances, which are mere representations, with no order to them, nor
properties specific to objects in themselves. A perception is a representation with con-
sciousness and if it affects the state of the subject it is a sensation. Finally, a cognition
is an objective perception and as such it belongs to the faculty of the understanding. It
is expedient here to make a quick detour on the different roles of the two faculties just
mentioned. While sensibility is a passive faculty of receptivity, which acquires appear-
ances as representations without consciousness, immediately related to the objects; the
understanding is a faculty of thought and of rules (particular ones being concepts and
judgements). This latter faculty relates to all objects by means of a synthesis in intu-
ition and it can make connections among appearances even without objects. The link
between the two faculties, the key making the understanding determining sensibility, to
order the manifold of appearances in a way that it can be subsumed by concepts, is the
imagination, a faculty whose activity is rooted in sensibility, but demands a spontaneous
act of the understanding. It is by means of the imagination that our cognition proceeds
from merely subjective impressions to objective knowledge, the source of which resides
necessary in the understanding.

The dichotomy between understanding and sensibility, brings us to the fundamental
distinction between concepts and intuitions. Both are forms of cognitions, but the
former are universal and can be predicated of other representations, while the latter are
singular and immediately related to the objects they represent. This is not the place to
dig further in the formation of concepts: let just be said that they refer to objects only
through the mediation of a synthesis which combines a multiplicity of representations
into one cognition. Concepts, in turn, work as rules by means of which the understanding
bestows a synthetic unity on a manifold of representations. Intuitions, on the other
hand, refer immediately to the objects they represent and are spatio-temporally located.
They may or may not be subsumed by concepts: we shall soon see more details about
this process.
Time and space are here referred to as forms of, respectively, inner and outer sense. This,
for the moment, simply means that intuitions are temporally organized as successions
of data and that they are located in space. We will later see how we become aware of
the properties of these forms of intuition (unity, infinity, continuity, and so forth).

8[19] R1676, (16:76)
9As he wrote some years later in response to Eberhard, the Critique “posits this ground of the

matter of sensory representations not once again in things, as objects of the senses, but in something
super-sensible, which grounds the latter, and of which we can have no cognition.” ([2] On a Discovery,
8:205)
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The process that makes the merely passive manifold of representations into a perception
is due to the activity of the empirical synthesis, whose function is to bring together
different representations combining them into a whole. This synthesis, that Kant calls
the synthesis of apprehension in the second edition of the CPR, comprises what in the
first edition were treated as logically separated, but otherwise inseparable, aspects of it:
the action of “scanning” the manifold, and what he previously named the “reproduction
in imagination” which is a productive activity subject to the categories. While the first
moment of this synthesis is subjective and depends on shifts of attentional focus (so it
is also always successive, and needs to be temporally extended), the second moment,
i.e. the moment of comprehension (containing the reproduction) is what guarantees
objectivity to apprehension itself. An example will help elucidating this process: to get
the representation of a house, for instance, one needs to put together the representations
of windows, walls, roof, and so on (which, in turn, are complex representations we
assume, for now, as already elaborated through the process we are going to illustrate
below) and order them in a particular order, reproducing them as a unity in imagination.
To do so, the synthesis of apprehension must act in accordance to some objective rules
which cannot belong to passive receptivity alone. The ground for this objectivity resides
in the he a priori counterpart to this synthesis: the figurative synthesis or synthesis
speciosa. Since this is a most delicate passage, we need to slow a bit this introduction
to reflect upon the motivation and questions at stake here.

Up to now, it is not clear why and how the categories (the “pure concepts of the
understanding”) can apply to appearances by the mere fact that they are given in
space and time, which, as forms of intuition, constrain sensibility forcing appearances
to be spatio-temporally determined. Moreover, up to now we have been dealing only
with empirically given manifolds of appearances, not really making clear how space
and time, which are supposed to be a priori intuitions, are originally acquired and
come to be formal intuitions (i.e. conscious representations). One may think that, for
Kant, space and time are just given as a priori conditions of all experience, but this
is a recurrent misunderstanding that have led too many commentators to misinterpret
the CPR to the point that many passages become blatantly contradictory. Pinosio-van
Lambalgen interpretation seems to us the only reading that brings back coherence to
the ground-breaking theory of cognition expounded in the CPR.

The purpose of the TD is to justify the necessary application of the concepts of un-
derstanding (the categories) to any possible manifold of representations, to achieve
objective knowledge that can be shared by any understanding. Indeed, without a solid
a priori ground no combination of appearances could ever take place and “we could
never have a priori neither the representations of space nor time” ([16] A100). Kant
argues that, without a “unity of consciousness” accompanying them, representations
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would be juxtaposed to one another in a chaotic plurality of consciousness: it would be
contingent to find any regularity in the appearances as they are given to us, and even if
we could make associations, they would be subjective and not necessarily applicable to
all possible appearances of the same kind. This analytic unity, to be objective, needs to
be grounded on an a priori principle: the synthetic unity of apperception, under which
any manifold can be brought thanks to the synthesis intellectualis 10. It is by means
of this synthesis that two instances of consciousness can be identified and recognized to
belong to a single consciousness. As Kant makes explicit:

The possibility of experience is therefore that which gives all of our cog-
nitions a priori objective reality. Now experience rests on the synthetic unity
of appearances, i.e., on a synthesis according to concepts of the object of ap-
pearances in general, without which it would not fit together in any context
in accordance with rules of a thoroughly connected (possible) consciousness,
thus not into the transcendental and necessary unity of apperception.([16]
A156/B195-6)

The objective rules mentioned in the passage are the categories, which, as logical func-
tions of judgements, make the combination of the manifold in one consciousness possible,
through the activity of the intellectual synthesis. There are some differences between
the A and the B edition of the CPR regarding the faculties assigned to carry out this
synthesis (in the first edition the role of the imagination is emphasised over that of
the understanding, while in the second edition it seems that this latter faculty is the
only one capable of combining appearances into a whole), but since the imagination is
strongly tied both to understanding and to sensibility, the argument is essentially the
same. We will stick to the B edition version: for a critical treatment of these issues,
see, again, [27] Chapter 3.

The problem remains as to how the categories do apply to the manifold of appearances.
A key role here is played by the above mentioned figurative synthesis, which brings the
manifold of representations provided by sensibility under the rule of the categories. To
achieve this, it is necessary to determine the sensibility a priori so that any possible
manifold of appearances is given already in the right “shape” for our understanding
to bring it under the categories. This is to say that any manifold is given as spatio-
temporally determined. This is a critical passage where Pinosio - van Lambalgen’s
interpretation - in the wake of Longuenesse’s [23] insight - enlightens some of the most
difficult passages of the TD. Space and time as forms of intuition are not, by themselves,
related to the categories, since they are forms of the purely passive receptivity of our

10[16] B151
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sensibility. The fact that we are conscious of their properties, however, indicates that
the understanding must affect the sensibility in agreement with the forms of inner and
outer sense and with the categories. To do so, the understanding needs to first provide
sensibility with a priori sensory impressions. As Kant puts it,

[...]inner sense contains the mere form of intuition, but without combina-
tion of the manifold in it, and thus it does not yet contain any determinate
intuition at all, which is possible through the consciousness of the determi-
nation of the manifold through the transcendental action of the imagination
(synthetic influence of the understanding on the inner sense), which I have
named the figurative synthesis. ([16] B154)

The use of bold characters here is decisive to distinguish between the two notions of space
and time as forms of intuition, purely passive and not yet containing any combination
of appearances (not even unitary representations of space and time), from the formal
intuitions of space and time, which are determined and accompanied by consciousness
of their properties of unity, infinity, continuity, and so forth. This consciousness is
produced by the actions of the figurative synthesis, which determines sensibility a priori
and thus also assures homogeneity between the pure concepts of the understanding -
the categories - and space and time as formal intuitions - “a priori consciousness of the
necessary form of any act of apprehension”11.

But how exactly do we become conscious of the properties of space and time in the first
place? If they “precede all concepts” 12, how can they be even synthesised by the under-
standing? And if they “cannot be perceived in themselves” 13, how can they be originally
intuited? This is probably where the interpretation we are following comes to its most
fruitful insights. The activity of the figurative synthesis, as we have seen, grounds the
synthesis of apprehension, which is the way we combine and become conscious of the
manifold of appearances. It is thorough this synthesis that our first experiences of the
world must have been processed and combined to produce consciousness in the first
place. Thus it is only by making ourselves the first object of apprehension that we
originally become aware of our sensible self. It is important here to distinguish the
transcendental I think - the intellectual self, the apprehending subject - from the em-
pirical, spatiotemporally structured, self - the object of apprehension 14. It is by means
of the former that we can acquire consciousness of the latter: by means of “acts of
self-affection” we “construct” time as the form of representation of our inner state, and

11[27] p. 41)
12[16] B161n
13Ibidem B207
14Ibidem B155
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we “institute” space as the form of representation of our outer state 15. To guarantee
objectivity, these acts of self-affection must be a priori movements; the TD reads:

We cannot think of a line without drawing it in thought, we cannot think
of a circle without describing it, we cannot represent the three dimensions
of space at all without placing three lines perpendicular to each other at
the same point, and we cannot even represent time without, in drawing a
straight line (which is to be the external figurative representation of time),
attending merely to the action of the synthesis of the manifold through which
we successively determine the inner sense [...]. The understanding therefore
does not does not find some sort of combination of the manifold already in
inner sense, but produces it, by affecting inner sense.

Here Kant refers to the a priori motion of the subject positing itself as the original object
of apprehension. To become conscious of the properties of space and time, we need to
draw trajectories, thus affecting both inner and outer sense: the modifications produced
by this original act of description of a space determine inner and outer sense. Shifting the
focus of our attention from the former to the latter and comprehending the manifold so
produced, we become aware of the properties of our forms of intuition, which must hold
for any manifold given in sensibility. It is crucial to notice that the figurative synthesis
does not produce the formal intuitions of space and time by composing particular times
and spaces, but it is in the act of describing particular spaces that consciousness of the
properties of the forms of intuition arises. In his 1790 letter to Kiesewetter 16, Kant
writes

The consciousness of space, however, is actually a consciousness of the syn-
thesis by means of which we construct it, or, if you like, whereby we construct
or draw the concept of something that has been synthesized in conformity
with this form of outer sense

Finally, it is through motion, and in particular by constructing shapes in pure intuition
and comprehending them, that the figurative synthesis makes possible the production of
the schemata - transcendental rules - of pure sensible concepts. These are the concepts
used in geometry, like the concept of a line or the concept of triangle, and they need
to be objective - thus grounded on a priori intuitions, since geometry itself, as all
mathematics, is a synthetic a priori discipline. This means that the principles and

15[27] p. 45
16[17] p.335-6
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theorems of geometry are non-contingent, non-empirical truths that are necessarily true
for any understanding (in contrast with analytical judgements, which have to be true
in any logically possible world)17. Clearly the task of drawing shapes and figures even
without the presence of the object in intuition cannot be carried out by anything else
than the transcendental synthesis of the imagination, and, in particular, the productive
imagination is responsible for the construction of such pure sensible concepts in pure
intuition.

Now that the fundamental role of the figurative synthesis has been clarified, we can
focus on the origin of our synthetic a priori knowledge of the principles and theorems
of geometry, i.e., construction of objects in pure intuition. Since the concepts corre-
sponding to the objects of geometry are pure a priori, the only thing the productive
imagination needs to draw them is a rule, in the form of a constructive procedure,
which - importantly - does not need to be actually realized: the mere existence of a
possible procedure to construct an object makes it suitable to be thought as a pure
sensible concept and, as such, subject to synthetic a priori judgements. In this way the
understanding abstracts from the particular object - individual schema - represented in
imagination, forgetting about all the properties that are not derived from the construc-
tion itself, to reason about it and base on it judgements that are valid for any possible
intuition falling under the same concept (A713/B741).

As we pointed out above, our consciousness of the properties of unity, infinity and
continuity of space as an ‘object’ (the formal intuition) derives from the aforementioned
construction of objects in pure intuition18: the possibility of iterating the procedure of
bisection of a line is the ground for infinity and continuity (we will see this better in the
section on the continuum) and unity of space as a representation is based on the unity
of apprehension, which, in the case of a priori concepts, is the unity of the act of the
figurative synthesis. We will soon explore these properties in more detail, let us first
make a quick detour to the debate mentioned at the beginning of this section.

17It must be noted that Kant leaves open the possibility that there may exist sentient beings with
different forms of space and time (and so with a different understanding) from ours. This observation
will prove crucial later on, when we consider the discovery of non-Euclidean geometries and Poincaré’s
philosophy of space. Euclidean geometry, in Kant’s system, is the set of necessary principles ruling the
construction in intuition, given the particular constitution of our understanding.

18Here Pinosio makes an important remark on the fundamental role played by the categories in
constraining the action of the figurative synthesis, which already contains in itself the agreement of the
manifold brought under the unity of apperception with the pure concepts of the understanding (see [27]
p. 42). In particular the category of quantity and the category of community are involved, respectively,
in the formation of a totality out of a series of homogeneous elements and in the coordination of parts
through relations of reciprocal causality.
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1.2.1 Kant’s position in the Newton/Leibniz debate

To go back to the initial dispute between Newtonians and Leibnizians, we can now
understand what Kant means when he claims that

Space is merely the form of outer intuition (formal intuition), but not a real
object that can be outwardly intuited. Space, prior to all things determining
(filling or bounding) it, or which, rather, give an empirical intuition as
to its form, is, under the name of absolute space, nothing more than the
mere possibility of external appearances. Thus empirical intuition is not
put together out of appearances and space (out of perception and empty
intuition). The one is not to the other a correlate of its synthesis, but rather
it is only bound up with it in one and the same empirical intuition, as matter
and its form. If one would posit one of these two elements outside the other
(space outside all appearances), then from this there would arise all sort of
empty determinations. E.g., the world’s movement or rest in infinite empty
space is a determination of the relation of the two to one another that can
never be perceived, and is therefore the predicate of a mere thought-entity.
([16] A429/B457n)

From this passage, we get a glimpse of how Newton’s idea has been, to a certain extent,
absorbed in Kant’s theory of space and time. Indeed, Kant’s conception of space shifted
from a rejection in toto of absolute space, in his early writings19, to a reconsideration,
which has some interesting consequences on his works in the critical period.

Albeit failing altogether to capture the metaphysical nature of space, both the Newto-
nians’ and the Leibnizians’ positions partially capture the status of space and time, the
former as “conditions of possibility” (of appearances, not of objects in the outer world
- so tied to our sensibility, not to the world itself), the latter as relations (again, among
appearances) subject to rules that order the manifold in an objective way. A further
analysis of Kant’s reception of these two conceptions of space and time will prove useful
to understand better some details about his own conception of space.

As for Newtonian absolute space20, Kant does, in many occasions, underline that
19See, in particular, Kant’s position in the debate in the New Elucidation (1755)and in his Physical

Monadology (1756), where he seems to embrace Leibniz’s idea of relational space, albeit grounding it
on the mutual causal dependence of substances and taking monads to be space-filling without being
divisible (an idea borrowed from Crusius - see [12] for a review of these positions).

20Following Friedman’s analysis in [9] we will refer, throughout the following paragraph, to “Newtonian
absolute space” without problematizing the fact that our modern interpretation of Newtonian physics
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space taken absolutely (simply by itself) alone cannot occur as something
determining the existence of things, because it is not an object at all, but
only the form of possible objects. ([16], A431/B459)

but he does not discard absolute space as a regulative idea “which is to serve as a rule
for considering all motion therein merely as relative” 21. To properly address this topic,
it is crucial to observe that Kant’s view of space is deeply tied to the conception of
space born after the Copernican revolution, which unsettled the keystones of previous
theories of space. If the earth is not the centre of the universe and a privileged frame
of reference for all motion, we are left with an infinite and homogeneous space with
no distinguished points. The only possible ground of differentiation that makes us
able to orient in space must, as Kant maintains in his essay “What does it mean to
orient oneself in thinking”22, be subjective. The fact that we feel a difference between
our left and right sides, for instance, makes us able to locate objects in a familiar
dark room even without outer benchmarks. Kant contends that the same holds for
orientation in thinking: when we reason about pure concepts, without a reference to
real objects, we need to apply a principle given by pure reason - “a subjective ground for
presupposing and assuming something which reason may not presume to know through
objective grounds”. In the case of space, this subjective ground is our own body, which,
generating three perpendicular lines as directions, gives us the means to determine the
position of any other object, relatively to ourselves, proceeding outward along those
lines (see also [20]2:379). It is through motion in this arbitrary, self-centred frame of
reference that we become conscious of the properties of space. Now, it is apparent that,
from this standpoint, space and motion cannot be absolute, since the frame of reference
can always be broadened to one with respect to which the subject and all the objects
at rest are in a different state of motion. Still, in his treatment of motion - but also
in many other loci of the MFNS - Kant makes use of a privileged frame of reference,
defined at the limit as the “common center of gravity of all matter”, which functions as
a surrogate of Newtonian absolute space. Friedman analyses these issues in great detail
in his exegesis of the MFNS ([9]) and it would be impossible here to dig further into his
work without losing track: let just be noticed that absolute space can still play a role
in Kantian philosophy as a limiting idea of reason, to model relative motion without
drawing upon Galilean relativity.

differs from Kant’s in that we have the concept of classes of inertial frames, while Kant - who never
explicitly acknowledged Galilean relativity - sought to construct a single frame of reference to which
every relative motion could be referred (see [9], note 28 p.21 for an overview of the issue, which is then
discussed in detail throughout the book). We will stick to the Kantian interpretation, to get an idea of
the motivation that led him not to banish absolute space entirely.

21[18] 4:560. For a masterful treatment of these issues, see [9], in particular Chapter 1.
22[41], 8:135
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With regard to Leibnizians, Kant seems more determined to contrast their fallacies,
and he criticises their views in many passages of his vast oeuvre, possibly to detach
his transcendental idealism from the idealism attributed to the monadist school. While
Leibniz (the “great man” cited at [18] 4: 507) is appreciated by Kant for rejecting the
“metaphysical” view and holding that “space belongs only to the appearance of outer
things”, the same does not apply to his advocates, who, on Kant’s account, lack the
ground of an a priori rule to warrant the validity of geometry and mathematics with
respect to the outer world. A major misconception uphold by the “monadists” (term
used by Kant to refer to Leibniz’s disciples), concerns the nature of the continuum:
while for Kant continuity of space follows from infinite divisibility of the construction
of space in pure intuition, the disciples of Leibniz hold that space is filled by physical
indivisible points (monads), and in this

[...] they would not allow even the clearest mathematical proofs to count
as insights into the constitution of space, insofar as it is in fact the formal
condition of the possibility of all matter, but would rather regard these
proofs only as inferences from abstract but arbitrary concepts which could
not be related to real things. ([16] A439/B467)

If the physical points of which space is composed were not extended, they could never
make up an extended space when combined. So points must be tiny extended regions,
but since Leibinizians claim that points are indivisible, they run contrary to the infinite
divisibility of physical space (otherwise a finite body would be composed by infinitely
many extended regions, contradiction), thereby challenging the a priori validity of the
principles of mathematics, and geometry in particular, in relation to the outer world.

1.2.2 Kant’s spatial continuum

The above considerations lead us to a better understanding of the properties Kant as-
cribes to space “as an object” (the formal intuition). The original intuition grounding
all spatial representations must, in fact, be an infinite, three-dimensional, continuous
magnitude, such that every part of it can be constructed as the sum of homogeneous
parts. Unity of space - or, better, its unicity - as we have seen, is grounded in the nec-
essary unity of apperception and obtained through the transcendental synthesis of the
imagination. In the following paragraphs we are going to examine the other properties
more closely.

The problem of the ultimate composition of matter drew some attention in the philo-
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sophical debate between the seventeenth and the eighteenth centuries. Leibniz, in his
relationalist, ideal account of space, posited an infinity of simple substances (“monads”)
making up spatially extended composite bodies. His idea was commented and revised
by his followers. Wolff, for instance, held that space is relational and that extended
bodies must be made up of simple, unexteded parts, but he thought that they must be
finite in number. He was aware of the problem of obtaining an extended continuum from
the composition of unextended simples, and he concluded that our perception must be
confused. Newton, in his “substantivalist” perspective on space, had been an atomist
too, maintaining that matter is made up of homogeneous simple parts, running counter
to Decartes’ claim that space, equated with matter, is infinitely divisible, as geometry
(the science of extension, and so of matter) proves.23. Kant’s early position24 on the
matter was that space must be composed of simple, indivisible monads filling it through
their mutual causal interaction. He claimed to have solved the problem of obtaining
a continuum from the finite composition of simple substances by asserting that these
relations of reciprocal determination among simples are real external relations on which
the continuous divisibility of the space of appearance is grounded.

In the critical period, however, as we have seen above, Kant abandoned a purely re-
lational view of space to embrace the idea that space is mind-dependent and it is the
“necessary representation” which “is the ground of all outer intuitions”25, and so it
cannot be constituted by relations among real substances, nor it can be constructed by
the composition of simples. As Kant puts it:

[...] one can only represent a single space, and if one speaks of many spaces,
one understands by that only parts of one and the same space. And these
parts cannot as it were precede the single all-encompassing space as its
components [...], but rather are only thought in it.[...]
Space is represented as a given infinite magnitude. [...] if there were not
boundlessness in the progress of intuition, no concept of relations could bring
with it a principle of their infinity. ([16] A25)

This given infinite magnitude is what Kant glosses, in his comments on essays by the
mathematician Abraham Kästner in 179026 as metaphysical space, which grounds the

23Refer to Hatfield’s essay ([12] pp.61-69) for an introduction to the debate
24In particular in his Physical Monadology (1756).
25[16], A24/B39
26The comments to Kästner’s work are clarifying on the two types of infinity, potential and actual.

See, for instance:

[...] the geometrician expressly grounds the possibility of this task of infinitely increasing
space (of which there are many) on the original representation of a single, infinite space, as
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potential infinity of geometric spaces. This metaphysical space is none other than our
space as an object, but in the TA, where space is defined as a “given infinite magnitude”,
Kant is referring to the form of intuition and the formal intuition has not yet been
introduced. The fact that Kant feels the need to specify this property of metaphysical
space reflects his urgency to remark that space is a necessary a priori representation that
precedes all empirical perceptions and that it cannot be obtained by a mere abstraction
from particular experiences. By acquiring the consciousness of the unboundedness of
the progress of construction in intuition we become aware of this property of space, but
it is only by virtue of this property that we can conceive of this infinite iteration of
constructions in the first place. It is apparent now why space as the formal intuition
cannot be the mere sum of its parts, since it is actually infinite, while the process of
extending a line in intuition is only potentially so.

The potential unboundedness of the process of construction in intuition, as an iterated
division of a given space, is also fundamental to understand Kant’s conception of conti-
nuity. His approach is inherently different from the modern Dedekind-Cantor theory of
the continuum, which has been called a “point-set” account since it takes unextended
points as primitives and relies on set theory and first-order logic to be rigorously for-
mulated. Kant obviously lacked these tools and his treatment of space is region-based,
while points emerge only as derived entities. The very idea that a magnitude is infinite
insofar every magnitude of the same kind is only a part of it is mereological in nature,
and it is at the basis of Kant’s conception of continuum. A magnitude is continuous if it
does not have simple parts. This, to be sure, does not coincide with infinite divisibility
(which is a property shared with the Dedekind-Cantor continuum), but establishes an
epistemological subordination of points to regions, as they can only be defined as lim-
itations of the spaces they bound. Indeed, points supervene on regions in the process
of successive division of a given space, which cannot be a mere multitude, composed by
discrete parts, but is instead a quantum continuum, that can only be obtained as an
abstraction from homogeneous parts:

a singular representation, in which alone the possibility of all spaces, proceeding to infinity,
is given. [...] it is just here that the Critique proves that space is not at all something
objective, existing apart from us, but rather consists merely in the pure form of the mode
of sensible representation of the subject as an a priori intuition. This is also in perfect
agreement with [the fact] that mathematicians have to do only with an infinito potentiali,
and that an actu infinitum (the metaphysical given) non datur a parte rei, sed a parte
cogitantis. This latter mode of representation, however, is not for this reason invented and
false. On the contrary, it absolutely underlies the infinitely progressing construction of
geometrical concepts, and leads metaphysics to the subjective ground of the possibility of
space, i.e., to its ideality ([3] p. 176)
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Spatium est quantum, sed non compositum. For space does not arise through
the positing of its parts, but the parts are only possible through space;
likewise with time. The parts may well be considered abstrahendo a caeteris,
but cannot be conceived removendo caetera.([19], R4425, 17:541)

This conception of the continuum comes on the heels of a long tradition commencing
with Aristotle. The Greek philosopher rejected the atomistic hypothesis that there
exist extended simples from which space is composed. A continuum, for him, must
be composed of extended regions and for two of them to be continuous it means that
between them there is nothing of the same kind. The key notion is that of contact
between adjacent things. Until two objects retain their own boundaries, they are not
in contact. Only when the two boundaries are “fused” together, and they become
a single entity, they can be called contiguous (or in contact). This strict condition
bestows a strong form of indecomposability on the Aristotelian continuum: every time
a continuous object is cut, two new entities are created - the boundaries of the two
parts obtained. Another fundamental distinction between the contemporary conception
of continua and Aristotle’s view is about the notion of actual infinity, which he rejected
in favour of a potential infinity achievable through iterated procedures. Continuity
is, in this frame, obtained by a potential procedure of division of an extended whole,
coming before its parts, which are themselves continua that can be further divided ad
infinitum. The process is reversed from the one applied by Dedekind and Cantor: while
the latter start from dimensionless points and derive an extended continua as a result, in
Aristotle’s approach the continuum is given and points supervene as (potential) limits
of line segments.27 This “top-down” approach to the continuum - which refutes the
idea of starting from an actual infinity of points and instead takes regions as primitive,
recovering points as defined as boundaries of subcontinua or, in other formulations, as
sequences of nested regions - had a long trail of successors, including Russell, Whitehead,
Brouwer and, of course, Kant.

Kant’s conception of the continuum bears remarkable resemblance to Aristotle’s theory.
The following passage contains several points in common with it:

The property of magnitudes on account of which no part of them is the
smallest (no part is simple) is called their continuity. Space and time are
quanta continua, because no part of them can be given except as enclosed
between boundaries (points and instants), thus only in such a way that
this part is again a space or time. Space therefore consists only of spaces,
time of times. Points and instants are only boundaries, i.e. mere places of

27See [13] for a detailed comparison between the two approaches.
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their limitation; but places always presuppose those intuitions that limit or
determine them, and from mere places, as components that could be given
prior to space and time, neither space nor time can be composed. ([16]
A169-70/B211)

The only difference with Aristotle’s construction is that the Kantian boundaries are,
although infinitely small, somehow extended and contact between two regions of space
is not defined as a point belonging to both. Instead, the point of contact is external to
both regions, in that it belongs to their common boundary, as Kant’s example makes
clear:

If earth and moon were to be in contact with one another, the point of
contact would still be a place where neither the earth nor the moon is, for
the two are distanced from one another by the sum of their radii. Moreover,
no part of either the earth or the moon would be found at the point of
contact, for this point lies at the boundary of the two filled spaces, which
constitutes no part of either the one or the other.([18] [4:513])

In this sense, the relation of contact and the concept of boundary are essential to “glue”
together regions in a continuous fashion.

Objectivity of continuity, i.e. its pertinence to the outer world, has not been made
explicit yet. To do so, of course, we need to look back at the activity of the figurative
synthesis, and in particular to the process of construction in intuition. In fact, only
the existence of a constructive procedure guarantees objectivity to an a priori apodictic
geometrical truth, for it permits to exhibit it in intuition, making it a real property. As
we mentioned above, continuity is obtained in virtue of the infinite divisibility of space.
It is by dividing, by means of a constructive procedure (of bisection, for instance) a
given region in intuition that we become conscious of the infinite iterability of such
process. Our mind being finite, we will never be able to obtain an actual continuity
(i.e. a process actually showing that there are no smallest parts of space), but we can
become conscious of the potential continuity of the construction.

Note that the epistemological heterogeneity of points and regions, as the latter are only
derived as limitations of the former, is often addressed by Kant as a fundamental factor
of continuity. Consider, for example, his note: “All parts of space are in turn parts.
The point is not a part, but a boundary. Continuity.”28 The fact that points do not
have independent reality is a mereological concept that will be of primary importance

284756 (17:699)
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in our construction, where continuity is achieved only after synthesising the boundaries
emerging, through the activity of the figurative synthesis, as limitations of the parts of
space.

One final remark must be made on the properties of space. We said Kant is convinced
that space is three dimensional, but this property has a different kind of a priori neces-
sity than the above properties29. Indeed, to become aware of this property, we need to
refer to experience, as Kant himself makes clear:

What is borrowed from experience always has only comparative universality,
namely through induction. One would therefore only be able to say that as
far as has been observed to date, no space has been found that has more
than three dimensions.

This, however, does not preclude that space is necessarily three dimensional. Euclidean
constructions of pure geometry, as Friedman argues extensively in his book Kant and the
Exact Sciences [7] are necessary for us to be able to think and represent geometrical ideas
and they secure objective reality to spatial concepts, providing objects corresponding to
them and the constructive procedures to obtain them, and so being of crucial importance
for the activity of the productive synthesis. Thus, the principles of Euclidean geometry
have to be synthetic a priori and Euclidean space is the necessary and unique model
of our sensible intuition. We shall address this issue again later on, when comparing
Kant’s point of view with the theory of space of another sharp thinker, who explored
the nature of space a century later: Henri Poincaré.

29On this topic, see the detailed account offered by Kitcher in his essay A priori ([21]), in which he
distinguishes two types of a priori knowledge, one based on tacit knowledge, and one already explicit.
The former is absolutely independent from experience and it is not articulated to begin with. The
subject is not conscious of its properties unless he performs a process of “disclosure”. The latter is
dependent on experience, in the sense that it “commences with experience, yet it does not on that
account all arise from experience” ([16], B1) . While the properties of unity, infinity and continuity of
space derive from the necessary processes underlying our cognition, and so can be deemed to belong to
the class of tacit knowledge, the principles of geometry, which can be proved by construction in intuition
are a priori knowledge of the second type.
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1.3 Space in Poincaré’s philosophy

Little more than 100 years after the publication of the CPR, the brilliant scientist and
philosopher Henri Poincaré found himself reflecting upon space and time, addressing
some of the issues that bothered Kant from a totally new point of view. A century’s
worth of research in the fields of mathematics, physics and philosophy brought about
many new discoveries, and time was mature for preparing the ground for the famous
foundational crisis that shook the pillars of mathematics. Discovered at the beginning
of the 19th century, non-Euclidean geometries had been developed by mathematicians
the likes of Gauss, Bolyai, Lobachevski and Riemann to prove that Euclid’s postulates
were not the only set of axioms from which a coherent theory of space could be deduced.
We refer to the critical review offered by Torretti ([38], in particular chapter 4) for the
exposition below.

Poincaré’s epistemology was based on the presupposition that science has bare facts and
their mutual relationships as object, and that there is no unique way to describe them.
Therefore, he held that scientists must agree on conventions to decide which system
could better capture different aspects of physical behaviours: his school of thought came
to be known as conventionalism. Poincaré believed that the only possible criterion to
choose a geometry modelling physical space is convenience, since experience could not
give us precise instructions on which the “true” geometry of physical space should be.

He agreed with Kant in maintaining that Newton’s absolute space could not exist as
an independent “container” coming prior to material objects. Thanks to the discussion
that flourished in the last decades of the 19th century, concerning the issues raised by
Newton’s definition of motion as change of position in absolute space, critical positions
about the existence of such a container were proliferating at Poincaré’s time, after having
rested in a state of limbo for nearly 200 years. Carl Neumann raised the problem in
1870,30 and the question was taken up by scientists of the calibre of Mach and Lange:31

since absolute space cannot be directly perceived, how can we be sure of which bodies
really move given that their relative motions are the same whether the space that
contains them is at rest or in uniform linear motion? The introduction of inertial
systems offered an elegant way to tackle the problem and include Newton’s laws of
motion in the new framework in a satisfactory way, although the problem of how to
tell a circular motion from a uniform one still created some concern. Poincaré was
well aware that absolute positions and movements of bodies cannot be observed and
he was convinced that absolute space could not have a place in scientific observation.

30[25]
31See [38] (pp. 322-325) for an exposition of the debate.
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Since we cannot be sure about the choice of a geometry for the description of physical
space, discerning a straight trajectory from a curved one depended on the geometry
adopted. In his book Science and Hypothesis he extensively argues for the impossibility
of observing absolute movements and positions. For instance, he contends that

Experiments only teach us the relations of bodies to one another. They do
not and cannot give us the relations of bodies and space, nor the mutual
relations of the different parts of space.32

Now, if experience is incapable of teaching us anything but these relations, why would
their geometrical description need to put them in connection to an immaterial absolute
space? Experience does not suggest this necessity and so we should get rid of the spook
of such an elusive, artificial entity.

The above quote is linked to the discussion on the “law of relativity”, which he presents
as follows:

the state of the bodies and their mutual distances at any moment will solely
depend on the state of the same bodies and on their mutual distances at the
initial moment, but will in no way depend on the absolute initial position of
the system and of its absolute initial orientation33

This law, he claims, must be applied to the entire universe, but our experiments cannot
say anything about the position and absolute orientation of such a system. Thus he
revises the law, enunciating it as:

The readings that we can make with our instruments at any given moment
will depend only on the readings that we were able to make on the same
instruments at the initial moment34

This statement, he holds, is “independent of all interpretation by experiments” and it is
verifiable by systems described both by Euclidean and non-Euclidean geometries. This
makes us incapable of picking one of them as the true description of reality.

Indeed, the spatial features of any object or event could be satisfactorily described by
different systems of geometry, and he contends, against Kant, that

32[32], p.79
33Ibidem, p.76
34Ibidem, p. 77
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The geometrical axioms are therefore neither synthetic a priori intuitions
nor experimental facts. They are conventions. Our choice among all possible
conventions is guided by experimental facts; but it remains free35

Poincaré’s argument that a priori geometry is not possible rests on the fact that, oth-
erwise, one could not conceive a (still consistent) system, where one of the axioms of
the original geometry is negated, and non-Euclidean geometries could not exist. Since
they actually do, Euclid’s system (or any other consistent system) cannot describe the
necessary structure of physical space36. But this argument hinges on a misconception of
Kantian apriorism. Poincaré rejects the logical necessity of a unique possible description
of the actual geometrical structure of the physical world (this is clear when he says that
we could not decide if the world was not Euclidean, since our instruments would not be
sensitive to the curvature of a hyperbolic geometry). However, in Kant’s system, the
necessity of geometry is not a logical necessity in the modern sense and geometry is not
supposed to capture the structure of the world of things in themselves as the argument
would suggest; instead, Euclidean geometry gives us the synthetic a priori principles to
apply our concept of space to our sensible experience, as conditions under which alone
a concept of extended magnitude is possible. One could well conceive of a different,
consistent set of axioms, but lacking the original intuition “it would be a thought as
far as its form is concerned, but without any object, and by its means no cognition of
anything at all would be possible”.37

To be sure, the failure of this argument does not imply that Poincaré would have em-
braced the Kantian a priori intuition of space as the form of outer sense. He actually
denies, later on, that we have an immediate, non-empirical intuition of space, claiming
that while geometry is a pure, exact science, our sense perceptions are imprecise and
cannot be more than an “inspiration” for the construction of mathematically coher-
ent theories, which can be then used to model experience. Thus there is no unique
transcendental condition of our spatial intuition, depending on the necessary structure
of our understanding, but only a series of mathematically consistent theories, which
are equally apt to describe phenomena, provided they’re rich enough for the purpose.
These issues are connected to Poincaré’s distinction between geometrical space and sen-
sible space (“espace représentatif ”). While the former is our description of the space
by mathematical models, the latter is the “sensible space” of phenomena, which can
function as a guide for our mathematical constructions, but is totally independent from
the theories themselves. This “sensible space”, in Kantian terms, can be seen as the
manifold given in sensibility without constraints, but it is not, in Poincaré’s perspec-

35Ibidem, p.50
36[32], p.48
37[16], B146)
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tive, subject to a necessary process of synthesis under universal conditions valid for any
understanding. Instead, convention and education are the basis for the way we classify
phenomena, as he remarks by way of examples - recurrent in his writings - of possible
alternative worlds, where the inhabitants have different education from ours and receive
external impressions that lead them to develop “a geometry different from ours, and
better adapted to their impressions”38. This would not prevent us from representing
their world as Euclidean:

As for us, whose education has been made by our actual world, if we were
suddenly transported into this new world, we should have no difficulty in
referring phenomena to our Euclidean space. Perhaps somebody may appear
on the scene some day who will devote his life to it, and be able to represent
to himself the fourth dimension. ([32], p. 51)

A suggestive example of such an Euclidean representation of an hyperbolic world is
Poincaré’s disk model. We present it briefly to give an idea of how an interaction of
two different geometrical perspectives can look like. Poincare’s disk is a model of two-
dimensional hyperbolic geometry in which all the points of the hyperbolic plane are
mapped to points in the open Euclidean unit disk. Recall that the hyperbolic geometry
(or Bolyai-Lobachevskian geometry) is obtained from Euclidean geometry by replacing
the fifth postulate (the famous Parallel Postulate, asserting that given any line l and
any point P not on l, there exists exactly one line through P that is parallel to l) with
the following statement: given any line l and any point P not in l, there are at least
two distinct lines through P that are parallel to l. The points of the model are all the
points inside the open disk. Lines (called geodesics) are arcs obtained by intersecting
the unit disk with (Euclidean) circles that are perpendicular to the unit circle (included
the limit case of straight lines passing through the centre of the circle). Recall that circle
inversion is a simple (Euclidean) straightedge and compass construction that maps a
point A to the point A′, laying on the line through A and the centre of the circle, such
that the distance from A′ to the centre is the reciprocal of the distance from A to the
centre. Given two points A and B, the circle passing through A,B and A′, where A′

is the inverse of A through the unit circle, is a geodesic. Thereby the first postulate of
Euclidean geometry is satisfied. It can be proved that also the other three are valid.
Distance between points of the model is defined in such a way that the shortest path
from A to B is a geodesic.
Now, an Euclidean observer looking at an inhabitant of the disk moving, with constant
velocity, toward the edge of the disk, would notice that her speed decreases the closer
she get to the edge. In fact, from a viewpoint inside the disk distances get longer and

38[32], p.71
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longer the closer one gets to the edge, since the whole hyperbolic plane is mapped to the
disk, which, from the inside, is then unbounded and limitless, with the edge infinitely
far away from the centre. All triangles inside the disk have angles that sum to less than
180 degrees. It must be noticed that the larger a triangle is, the closer the sum of its
internal angles approximates 0 degrees (limit “triangle” with vertices ideal points on
the edge of the disk), the smaller the triangle is, approaching a single point, the closer
the sum of its internal angles approximates 180 degrees. Hyperbolic circles in the disk
are Euclidean circles observed from the outside, but their centre, in general, does not
coincide with the Euclidean centre.

This example shows what Poincaré meant when he said that we could never be sure of the
“true” geometry of physical space. The disk, locally, behaves like an Euclidean space. So,
it could well be that we live in a Lobachevskian space, but the triangles we deal with are
too small for our instruments to perceive the curvature. Kant, actually, leaves open the
possibility of thinking beings having different forms of space and time from ours39, but
he says that we cannot know whether their intuitions “are bound to the same conditions
that limit our intuition and that are universally valid for us”40. Hence, we can think of
a being that has a non Euclidean faculty of imagination, but we cannot intuit it, since,
as far as our sensibility is concerned, there would be no possible object instantiating
this merely logical possibility41 One might wonder what Kant would have thought of
Poincaré’s example of the disk. There, a straightedge and compass construction made
a non-Euclidean world accessible to our representative capacity. Would Kant have
weakened the claim that we cannot know anything about non-Euclidean beings and
instead contend that, as far as a possible representation in intuition of their movements
and geometric constructions is possible, we can know something about them? We think
so. We would still lack a proper intuition of a non-Euclidean perspective of the world,
but we would at least be able to produce an ostensive construction of some geometrical
properties in our intuition. This is the case of all Euclidean models of non-Euclidean
geometries. Indeed, the only way to imagine a non-Euclidean geometry is either a purely
logical axiomatization, or the construction of an Euclidean model for it, to picture it in

39See, for instance, A286/B342-3.
40[16], A27/B43
41Indeed, Kant remarks that:

To think of an object and to cognize an object are thus not the same. For two components
belong to cognition: first, the concept, through which an object is thought at all (the
category), and second, the intuition, through which it is given; for if an intuition corre-
sponding to the concept could not be given at all, then it would be a thought as far as its
form is concerned, but without any object, and by its means no cognition of anything at
all would be possible, since, as far as I would know, nothing would be given nor could be
given to which my thought could be applied. ([16], B146)
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an intuitive way. Poincaré seems aware of this fact. In fact, even if he forcefully remarks
that the choice of a geometry to describe our sensible space is a matter of conventions,
he maintains that, in practice, it is more convenient to choose Euclidean geometry
over non-Euclidean axiom systems, and in the last years of his life he even comes to
affirm that there exists a sort of “geometrical intuition” grounding our conception of
the continuum and which is the origin of Hilbert’s axioms of order. In his essay Why
space has three dimensions, he claims that these axioms are “true intuitive propositions,
relating to analysis situs”42, the discipline later known as topology that focuses only on
qualitative properties of figures. Poincaré, who was one of the founding fathers of this
discipline, contends that analysis situs is the source of all truly geometrical properties.
He writes :

[...] it is to facilitate this [geometric] intuition that the geometer needs to
draw figures or at least form a mental image of them. Now, if he minimizes
the importance of the metric or projective properties of these figures, if he
concentrates only on their purely qualitative properties, it is because herein
only does geometric intuition truly play a role. ([31], p.26)

The echoes of the Kantian notion of geometric intuition, based on the exhibition of
concepts in pure intuition, is clear. However, two observations must be made. The
first is that, as Pinosio suggested in his master thesis, the universal properties that are
derivable by construction in intuition, for Kant, are not only topological, but also some
metric properties that follow from the definition or from the established topological
properties of the figure(see [26], pp.34-35, for a description of such properties). The
second consideration concerns the role of sensible experience, which, in Kant, is the
trigger that enables us to unfold our a priori forms of intuition43. The kind of a priori
described by Poincaré is completely innate and he claims that the intuition of Hilbert’s
axioms would be sufficient to build “a geometry in which figures will not be needed,
and which could be understood by a man who possesses neither sight, nor touch, nor
muscular senses, and which would be reduced to pure understanding”. This directly
contradicts the Kantian dictum that “all our cognition begins with experience” 44, since
without the original motion of the subject in space, positing himself as the object of
apprehension, no notion of space, time and geometry would be possible. Not to mention
that a geometry without figures, is impossible for Kant. Poincaré, actually, adds that
the man above mentioned would not understand why one would prefer Hilbert’s axioms

42[31], p. 43
43According to Kitcher’s analysis ([21], p.41), before we have sensory experience, we do not have any

explicit knowledge. The principles of geometry are a priori in this very sense and cannot be cognized
if the subject is not previously spatiotemporally structured, acquiring empirical consciousness of itself.

44[16], B1
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to any other possible collection of axioms, and that they retain a special status to
us because they are “true intuitive propositions” relating to the qualitative properties
of space. In this, and in his conclusion about the necessity of the intuition of the
continuum to ground the possibility of experience, he has almost Kantian views, and
his (late) perspective can thus be reconciled, at least partially, with Kant’s point of view.
We now turn to Poincaré’s treatment of the continuum, which has a great importance
in his philosophy, but a completely different structure from the Kantian continuum.

1.3.1 Poincaré’s spatial continuum

We mentioned above the distinction between sensible (or representative) space and ge-
ometrical space in Poincaré’s philosophy. The tension between the two is crucial to
understand his conception of the continuum. The spatial properties of sensible ex-
perience are, for him, completely detached from the properties of the mathematical
structures we use to model it, although our representation is motivated by our actual
experience of the sensible space. The constructions of pure geometry, however, can be
refined to suit multiple different contexts, different from the one to which we are accus-
tomed. In Science and Hypothesis Poincaré lists the properties of geometrical space: it
is continuous, infinite, of three dimensions, homogeneous and isotropic (i.e., all points
in it and all directions are geometrically equivalent). On the other hand, representative
space is given to us by many sensible impression, of three different characters: visual,
tactile and motor. The features of this space are disappointingly weak: it is not ho-
mogeneous, nor isotropic, and we are not sure about its three-dimensionality (Poincaré
holds that it has, in principle, as many dimensions as we have nerve fibres). Indeed,
our sensations are multiple and partial: every point of sensible space is an aggregate of
simultaneous sensations and we need to disregard some of their differences if we want
to isolate certain stimuli and be able to make some sense of it. Poincaré assumes that
muscular sensations can be clearly separated from the rest. The aim of this analysis
of sensible sensations, is to obtain a mathematical structure that can somehow capture
the essential spatial properties of our experience. To do so, we must be able to ignore
all the stimuli that do not carry a geometric character. Analysis situs provides a set of
pertinent properties that can be identified even in perceptual space. Poincaré is strongly
convinced that if, on the one hand, we cannot identify geometrical space with sensible
space, we can still reason about it as if it had the properties ascribed to geometrical
space.

In his construction of a continuum45, Poincaré is guided by the above idea: he dis-
45In the following exposition we will refer to Poincaré’s formulation of his theory in his 1912 essay
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tinguishes between a mathematical continuum, characterised by the individuality and
indivisibility of its ultimate components (the points), and a physical continuum, which
depends on our senses and is subject to Fechner’s law. According to this principle there
is a “threshold of consciousness” under which two stimuli cannot be differentiated. Fech-
ner’s law applies to the elements of a physical continuum (which are sets of sensations)
in the following sense:

There can be two sets of sensations which we can tell apart without being
able to tell either one set or the other from a third set. ([31], p. 30)

That is, we can experience situations in which three sets of sensations A,B,C are such
that

A = B,B = C,A < C

where the symbol “=” stands for a certain relation of indiscernibility, which is symmetric
and reflexive, but not transitive. We will call this type of relation a tolerance relation.
To provide an example, he takes three weights A = 10 grams, B = 11 grams, and C = 12

grams, and assumes our senses cannot perceive a difference less than 2 grams. A and B
are indistinguishable up to tolerance, and the same holds of B and C, while A is distinct
from C. Analogous examples can be found in vision or touch, where, for instance, two
pin-points moved across our skin remain distinguishable until they come to affect the
same neighbourhood of nerves. Through the combination of visual and tactile stimuli
with motion (represented by sets of muscular sensations) Poincaré sought to construct
a physical continuum and study its properties.

It would be out of the scope of this thesis to describe in similar detail the process through
which Poincaré constructs the physical continuum and, through successive idealizations,
makes it suitable to be subsumed by a mathematical continuum.46 Nonetheless, there
are some interesting aspects that should be taken into consideration. An important ob-
servation about the motivation that led Poincaré to his definition of physical continuum
is contained in another of his late essays, Space and time:

[Our intuitive idea of space] is reduced to a constant association between
certain sensations and certain movements. This is the same as saying that
the members with which we make these movements also play the role, so to
speak, of measuring instruments. These instruments, which are less precise
than those of the scientist, are sufficient for everyday life, and it is with

([31]), but his theory was formulated and expounded in several previous works, in particular see [28]
and [29].

46A thorough analysis of these issues can be found in [38], pp. 340-352

28



these that the child, like primitive man, had measured space or, to be more
correct, has constructed a space which fulfils the needs of his daily life. ([30]
p.17)

Here Poincaré echoes the Kantian notion of original motion through which the subject,
affecting its inner and outer sense, becomes conscious of the properties its forms of
sensibility. The crucial role played by motion is of utmost significance for our analy-
sis. Indeed, even if Poincaré repeatedly claims that he could have chosen a different
abstraction (and thus generated a different type of continuum), the most natural way
he found to make the physical continuum into a mathematical object, given the the way
our senses perceive space, was to generate an Euclidean group of motions (representing
a continuous group of displacements). These transformations are precisely the ones
generating any possible construction in intuition in Kant’s system.

A second, brief, observation that needs to be done is about the nature of Poincaré’s
continuum. Although the properties of the mathematical continuum are precisely the
ones Kant ascribes to his spatial continuum, there is an important difference in the con-
struction. As we have seen, Kant’s conception of the continuum is part of the tradition
initiated by Aristotle, Poincaré’s continuum is instead part of a modern conception of
continuum, depending on the new mathematical tools that permitted, at the end of the
19th century, to deal with actual infinities. The primitive entities in this Cantorean
continuum are dimensionless points and the construction is “bottom-up”, starting from
an actually infinite set of points to obtain an extended whole. Thus, in this case, the
emergent property is extendedness. This already impairs the possibility that our model
could capture the idea of spatial continuum Poincaré had in mind. Still, since we proved
continuity of our model by providing an homeomorphism with the real line, there was a
hope that the relation of proximity we introduced could be a formal correlate to toler-
ance, making a possible sensible continuum into the mathematical continuum Poincaré
devised. Indeed, the ordered field R with the standard topology is the prototype of the
mathematical continuum. As for the number of dimensions, Poincaré claimed that we
have the intuition of a continuum of n dimensions, and repeatedly held that the choice of
a three-dimensional space was purely conventional. The sensible continuum, as we have
mentioned, has as many dimensions as we possess nerve-fibres. However, he believed
that experience suggest us to choose a three-dimensional continuum. To support this
idea he devised a convoluted proof relying on the combination of motion with visual and
tactile stimuli, whose core intuition was the fact that we can always distinguish points
in one, two and three dimensional spaces, but every time we try to add a source of
additional dimensionality, the space generated is isomorphic to the 3-dimensional case.
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This result has been proved in 198647 in one of the very few studies about tolerance
relations. The theorem states that spaces with dimension number higher than three
are locally “isomorphic” up to tolerance with the three-dimensional space, while this
result does not hold for spaces of lower dimension. The reach of this result is great, if
one considers that tolerance relations are defined to capture the concept of “perceptual
indiscernibility” and that they may really represent a formal correlate to human sensory
perception.

Poincaré was the first to talk about dimension as a topological property as opposed to
a geometrical one. The key difference is that a topological space has no projective or
metric properties (it is “amorphous”), which means that figures are not classified by
their magnitude or form, but only by those properties that are “inherently spatial”,
as Poincaré would have said. By this, intuitively, we mean that however stretched or
twisted, a figure will be recognized as equivalent to the starting one. All deformations
are allowed that can preserve properties such as the presence (or absence) of holes inside
the figure, the closedness (or openness) of lines and surfaces, the intersection of lines.
These deformations are called “continuous functions”. The notion of dimension rests
upon the idea of cut. Poincaré was motivated in his definition by the fact that to divide
a line into two separated parts it is enough to “cut” it in one point; to obtain two
parts of a plane it is sufficient to “cut” it with a line; and a space is “cut” in two by a
surface. An analogous notion was suggested by Euclid when he said that the boundaries
of lines are points, the boundaries of surfaces are lines and the boundaries of bodies are
surfaces. Cuts are seen as points (lines, surfaces) “through which we shall not pass”: in
topological terms a cut disconnects a connected continuum obtaining two subcontinua.
Reasoning along these lines, Poincaré defines the topological notion of dimension of a
continuum. A continuum has dimension number n if “it is possible to divide it into
many regions by means of one or more cuts which are themselves continua of n − 1

dimensions”48. This definition corresponds to the analytic idea that a continuum of n
dimensions must have n coordinates, i.e. n independently variable quantities satisfying
certain inequalities.

As we mentioned above, at the end of his essay, he admitted that there exists a kind of
spatial intuition, but that it is not through it that we first come to the conclusion that
space has three dimensions. The fundamental, truly a priori intuition, he believes, is
that of a continuum of n dimensions and the fact that we reason better with a three-
dimensional continuum depends on the habit we have to deal with the world provided

47See Sossinsky’s paper for the definition of “toleomorphism” and for the proof that the 3-cube is
toleomorphic to the n-cube for n ⩾ 3, and is not toleomorphic to the point, the line segment and the
square ([36] p.152).

48[31], p.29
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by our senses. His conclusion is strikingly Kantian:

I shall conclude that there is in all of us an intuitive notion of the continuum
of any number of dimensions whatever because we possess the capacity to
construct a physical and mathematical continuum; and that this capacity
exists in us before any experience because, without it experience properly
speaking would be impossible and would be reduced to brute sensations,
unsuitable for any organization; and because this intuition is merely the
awareness that we possess this faculty. And yet this faculty could be used
in different ways; it could enable us to construct a space of four just as well
as a space of three dimensions. It is the exterior world, it is experience which
induces us to make use of it in one sense rather than in the other. 49

Here we can certainly draw a parallel: the intuition of the continuum (although con-
structed differently) is, for Poincaré as for Kant, a fundamental presupposition for the
possibility of experience. The awareness of the intuition of the continuum is analogous
to the consciousness raised by the activity of the figurative synthesis. The main differ-
ence lies in the fact that the intuition of the continuum, for Poincaré, is n-dimensional,
while this would be plainly impossible for Kant. However, Poincarè claims that we have
a purely “mathematical” intuition of the n-dimensional continuum, while experience
(contingently) teaches us to reason in three dimensions. Recalling that the motivation
that led Kant to declare that space is three-dimensional was “borrowed from experi-
ence”, we can see how the two positions only diverge in the way they refer to experience,
which, for Kant, was necessarily bounded by the structure of our mind.

In conclusion, looking at the development of Poincaré’s philosophy of space, we can
see how decisive a role Kant’s theory of cognitive space played in shaping it. Despite
his initial refusal to ascribe any determined geometrical structure to space, Poincaré
admitted that, when it comes to sensory experience, Euclidean geometry is unexcelled
in its descriptive power. This does not make it the necessary set of rules our imagination
uses to construct space, but even when he describes possible beings with a different
“education”, Poincaré refers to an Euclidean model to picture the reality of an hyperbolic
universe. True, he does not accept that there is a unique possible geometry to describe
physical space, but Kant never argued we could know anything about the true structure
of the world of things in themselves. Poincaré’s conventionalism, in our opinion, has
a different scope from Kant’s theory of space. When Poincaré says that we reason
about space in terms of a three-dimensional mathematical continuum, a possible parallel
with the work of the figurative synthesis can be drawn. Noticeably, the fact that for

49[31], p. 44, emphases added
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Poincaré this is a contingent fact, while for Kant space is necessarily Euclidean makes
the two approaches clearly diverge. But the process of subsequent abstraction that lead
us to the formation of a mathematical continuum in Poincaré’s philosophy are very
much akin, in essence, to the activity of the synthesis of the unity of apperception that
gradually structures the passive manifold given in sensibility. The project of the CPR
is not diminished in light of the new discoveries of the 19th century, rather it laid a
solid base on which Poincaré’s considerations could build to prepare the ground for the
revolutionary developments brought forth by Einstein a few years later50.

50A compelling theory of the role of the (“relativized”) Kantian a priori through the successive stages
of the evolution of physics in the 19th and 20th centuries can be found in [8]
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Chapter 2

A formal model of Kant’s spatial
continuum

In the present chapter we propose a model for Kant’s spatial continuum. In the first
section we introduce the mathematical tools used, then we proceed to the construction
of the model. Finally we provide a philosophical justification, linking the formal aspects
to the cognitive processes expounded in the previous chapter.

2.1 Mathematical Preliminaries

In this section we present some definitions and results that will be of use to build the
formal system. These have been separated from the body of the construction to simplify
the reading. We assume the reader to be familiar with basic notions from order theory
and topology.

2.1.1 Order theory and Boolean algebras

A partially ordered set or poset is a structure (P,⩽), where P is a set and ⩽ is a partial
order, i.e. a reflexive, transitive and antisymmetric relation. Given A ⊆ P , supA and
infA denote, respectively, the supremum of A and the infimum of A, if they exists. We
call, respectively, join and meet of a, b ∈ P , a ∨ b :=sup{a, b} and a ∧ b :=inf{a, b} (if
they exist).
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A poset (P,⩽) is called a lattice if, for all a, b ∈ P , their meet and join exist.

To the above order-theoretic presentation of a lattice corresponds an equivalent algebraic
definition:

Definition 2.1.1 (Lattice). A lattice L = (L,∧,∨) is a structure where L is a
nonempty set and ∨,∧ : L2 → L are binary operations satisfying, for all a, b, c ∈ L:

· Commutativity laws: a ∨ b = b ∨ a and a ∧ b = b ∧ a;

· Associativity laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c;

· Idempotence laws: a ∨ a = a and a ∧ a = a

· Absorption laws: a = a ∨ (a ∧ b) and a = a ∧ (a ∨ b)

A lattice L = (L,∧,∨) can be made into a poset defining a partial order on it as follows:
a ⩽ b if a = a ∧ b, or equivalently, if b = a ∨ b, for all a, b ∈ L.

A bounded lattice is a lattice which has a greatest element (or top, denoted by ⊤ or 1)
and a least element (or bottom, denoted by ⊥ or 0).

A bounded lattice is said to be distributive if, for all a, b, c ∈ L: a∧(b∨c) = (a∧b)∨(a∧c).

Definition 2.1.2 (Boolean algebra). A Boolean algebra1 is a structure B = (B,∨,∧,¬, 0, 1),
where B is a set equipped with two binary operations ∨,∧ : B2 → B, one unary opera-
tion ¬ : B → B and two distinguished elements 0, 1 ∈ B such that:

· (B,∨,∧) is a distributive lattice;

· for all a ∈ B, a ∧ 1 = a and a ∨ 0 = a;

· for all a ∈ B, a ∨ ¬a = 1 and a ∧ ¬a = 0.

We denote by B+ the set of nonzero elements of B equipped with the Boolean structure,
i.e. with ∨,∧,¬, 1 defined as above.

An atom of a BA B is an element a ∈ B which is different from 0 and, for every b ∈ B,
b ⩽ a implies b = a or b = 0.

The following characterisations of an atom a ∈ B are equivalent:

1. for all b ∈ B, either a ⩽ b or a ∧ b = 0, but not both;
1Henceforth BA will stand for Boolean algebra
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2. for all b ∈ B, either a ⩽ b or a ⩽ ¬b, but not both;

3. a ̸= 0 and if a ⩽ b ∨ c, then a ⩽ b or a ⩽ c.

A BA B is said to be atomic if for every non-zero element b ∈ B there is at least one
atom a s.t. a ⩽ b. It can be shown that every finite BA is atomic. In an atomic algebra
every element is the supremum of the atoms below it.

A BA-homomorphism is a map f : A → B between two BAs A and B preserving the
Boolean structure, i.e., for every elements a, b ∈ A f(a ∨ b) = f(a) ∨ f(b), f(a ∧ b) =
f(a)∧ f(b), f(¬a) = ¬f(a), f(0A) = 0B, f(1A) = 1B. When it is clear from the context
we will drop the subscripts distinguishing elements of different algebras (e.g. we will
write 0 for 0B).

A particular kind of BA, which will be used throughout our construction, is the following:

Definition 2.1.3 (Free Boolean algebra). The free Boolean algebra B generated by
E is a Boolean algebra B with a distinguished subset of elements E = {pi|i ∈ I} ⊆ B
such that

∧
i∈I ±pi ̸= 0 and every other element of B is a finite Boolean combination of

the generators.

A central notion in the theory of BAs, that will play an important role in the next
sections, is the following:

Definition 2.1.4 (Ultrafilter). An ultrafilter is a proper subset U of a Boolean algebra
B s.t.

(U1) a ∈ U & a ⩽ b⇒ b ∈ U ;

(U2) a ∈ U & b ∈ U ⇒ a ∧ b ∈ U ;

(U3) for every a ∈ B, a ∈ U or ¬a ∈ B.

A subset F ̸= 0 of B satisfying (U1) and (U2) (with F in place of U) is called a filter.

Note that, under (U1) and (U2), (U3) is equivalent to:

(U3’) a ∨ b ∈ U ⇒ a ∈ U or b ∈ U (i.e. U is a prime filter).

(U3”) for any other proper filter F (i.e. F ⊊ B satisfying (U1) and (U2)), U ⊆ F ⇒
U = F (i.e. U is a maximal filter)

Given an element a ∈ B the set {b ∈ B|a ⩽ b} is a filter and is called the principal filter
generated by a.
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We have already noticed the central importance of a relation of contact for our model.
We recall here the notion of closure and present the formal definition of a contact relation
on BAs, following the approach of Düntsch and Winter ([5]).

A P closure R′ of a binary relation R on a set X is the smallest extension of R satisfying
property P . Formally:

1. R ⊆ R′;

2. R′ satisfies P ;

3. for all R′′ for which 1. and 2. hold, R′ ⊆ R′′.

The reflexive and symmetric closure of a relation always exist. We will make use of
one more closure which we will call the upward closure of R, where the property of
being upward closed, for an arbitrary binary relation S, is defined as: ((x, y) ∈ S ∧x′ ⩾
x ∧ y′ ⩾ y)→ (x′, y′) ∈ S.

Definition 2.1.5 (Contact relation). A binary relation C on a Boolean algebra B is
called a contact relation if it satisfies:

(C0) (∀a)0��Ca;

(C1) (∀a)[a ̸= 0⇒ aCa]

(C2) (∀a)(∀b)[aCb⇒ bCa]

(C3) (∀a)(∀b)(∀c)[(aCb and b ⩽ c)⇒ aCc]

(C4) (∀a)(∀b)(∀c)[(aC(b ∨ c)⇒ (aCb or aCc)]

where a��Cb means it is not true that aCb, i.e. aCb⇒ ⊥.

2.1.2 Category Theory

Some basic notions from category theory will be helpful to understand the constructions
we are going to use and their mutual relations. The following account is only aimed
at introducing the concepts which are strictly necessary to our purposes.The interested
reader can start from [4] to get a gentle introduction to the field, or refer to [24] for a
complete overview.

A category is a structure consisting of objects and arrows (or morphisms) between
them. Every arrow f has two associated objects, the domain dom(f) and the codomain
cod(f); for every two arrows f : A → B and g : B → C there exists an arrow (called
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their composite) g ◦ f : A → C; and each object A has an identity arrow 1A : A → A.
For all arrows f : A→ B, g : B → C, h : C → D the following identities hold:

· h ◦ (g ◦ f) = (h ◦ g) ◦ f

· f ◦ 1A = f = 1B ◦ f

The opposite (or dual) category Cop of the category C is a category with the same objects
as C and reversed arrows: for every arrow f : B → A in C we have the corresponding
arrow f∗ : A→ B in Cop.

An important advantage of the categorical approach is that every statement in the
language of category theory has a dual which is equivalent to it. The dual is obtained
replacing dom for cod, cod for dom and f ◦ g for g ◦ f . If we have a statement holding
in a category C, the dual statement holds automatically in the category Cop.

Definition 2.1.6 (Mono- and epimorphisms). Given a category C, an arrow f :

A → B is a monomorphism if, given any g, h : C → A, f ◦ g = f ◦ h implies g = h,
where A,B,C are any objects in C. f : A→ B is an epimorphism if given i, j : B → D,
i ◦ f = j ◦ f implies i = j for any object A,B,C in C.

A functor between two categories C and D is an arrow in the category of all categories,
i.e. a mapping associating objects of D to objects of C and arrows of D to arrows of C,
preserving composition and identities.

A contravariant functor from C to D is a functor of the form F : Cop → D. This
kind of functor reverses arrows, i.e. it takes f : A → B to F (f) : F (B) → F (A) and
F (g ◦ f) = F (f) ◦ F (g).

Boolean algebras form a category together with Boolean homomorphisms, which we
will denote BA. We will soon see that its dual category is a special class of topological
spaces: the category Stone of Stone spaces and continuous maps between them.

Direct and inverse systems

A directed poset I = (I,⩽) is a set I together with a binary relation ⩽, such that:

· ⩽ is a partial order;

· ⩽ is directed, i.e. for any i, j ∈ I, there exists some k ∈ I such that i, j ⩽ k.
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Definition 2.1.7 (Direct system). Let C be a category. A direct system in C consists
of an indexed family {Ai|i ∈ I} of objects in C whose index set is a directed poset I,
together with a set of morphisms {fij : Ai → Aj} for any i, j ∈ I with i ⩽ j, satisfying
the following properties:

· fii : Ai → Ai is the identity map;

· For any i, j, k ∈ I such that i ⩽ j ⩽ k we have fjk ◦ fij = fik.

We will use the notation {Ai, fij} to denote a direct system.

The dual structure is then obtained reversing the arrows, as follows:

Definition 2.1.8 (Inverse system). Let C be a category. An inverse system in C
consists of an indexed family {Ai|i ∈ I} of objects in C whose index set is a directed
poset I, together with a set of morphisms {hji : Aj → Ai} for any i, j ∈ I with i ⩽ j,
satisfying the following properties:

· hii : Ai → Ai is the identity map;

· For any i, j, k ∈ I such that i ⩽ j ⩽ k we have hji ◦ hkj = hki.

We will use the notation {Ai, hji} to denote such an inverse system.

We now introduce the notion, central to our construction, of inverse limit of an inverse
system:

Definition 2.1.9 (Inverse limit). Let {Ai, hji} be an inverse system, indexed by I,
in a category C. The inverse limit of {Ai, hji} consists of an object L in C together with
morphisms pi : L→ Ai, for every i ∈ I, such that the following conditions are satisfied:

· hji ◦ pj = pi, for all i, j ∈ I with i ⩽ j;

· If there exists any object X equipped with morphisms gi : X → Ai for any i ∈ I
and such that hji ◦ gj = gi, for all i, j ∈ I with i ⩽ j, then there must exist a
unique morphism f : X → L such that pi ◦ f = gi for all i ∈ I.

We will write lim←−Ai = {L, pi} to indicate the limit just defined. The arrows pi are called
projections.

The second property listed in the definition is called universality (or universal mapping
property , UMP) of the limit and is a fundamental way to characterise objects in category
theory as unique up to isomorphism.
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A picture will help figure out the situation. The dashed lines represent arrows that are
unique.

Figure 2.1: Inverse limit of an inverse system and colimit of a direct system

We are also interested in the dual notion of limit, to represent what happens in the dual
category:

Definition 2.1.10 (Colimit of a direct system). Let {Ai, fij} be a direct system,
indexed by I, in a category C. The colimit of {Ai, fij} consists of an object C in C
together with morphisms ιi : Ai → C, for every i ∈ I, such that the following conditions
are satisfied:

· ιj ◦ fij = ιi, for all i, j ∈ I with i ⩽ j;

· If there exists any object X equipped with morphisms gi : Ai → X, for any i ∈ I,
such that gj ◦ fij = gi, for all i, j ∈ I with i ⩽ j, then there must exist a unique
morphism u : C → X such that u ◦ ιi = gi for all i ∈ I.

We will write lim−→Ai = {C, ιi} to indicate the colimit just defined. The arrows ιi are
called immersions in the colimit.

2.1.3 Topology

In this section we provide the topological groundwork necessary to define the dual cate-
gory to Boolean algebras (the category of Stone spaces), in addition to some properties
and results useful for our construction.

A topological space X = (X, τ) is a set X together with a collection of subsets τ ⊆ P(X)

such that ∅, X ∈ τ and τ is closed under finite intersections and arbitrary unions.
A subspace Y of a space topological space X is a subset Y of X equipped with the
topology τY = {Y ∩ U | U ∈ τ}. Y is itself a topological space and its topology is called
the subspace topology induced by Y .
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The sets in τ are called open in (X, τ), and the subsets of X which have an open
complement are called closed in (X, τ). A set can be neither closed nor open; moreover
there can be clopen sets, that is subsets of X that are both closed and open in τ .

The interior Int(U) of a set U ⊆ X is the union of all the open sets contained in U ,
which is again an open set, its closure Cl(U) is the intersection of all the closed sets
containing U .

Definition 2.1.11 (Regular open set). A set U ∈ X that is the interior of its own
closure, i.e.U = Int(Cl(U)), is called a regular open set.

A basis B for a topology τ is a set of open subsets of X such that every open set in τ is
a union of elements of B. A subbasis S ⊆ τ is such that every open in τ can be written
as a union of finite intersections of elements of S (i.e. finite intersections of elements in
S form a basis for τ).

A map f : X→ Y between two topological spaces (X, τ) and (Y, τ ′) is called continuous
if the preimage f−1(U) of any open set U ∈ τ ′ is open in τ .

In our construction we will be interested in topologies induced on sets by spaces mapped
to them. The notion of final topology, in particular, will recur.

Definition 2.1.12 (Final topology). Given a set X and a family of topological spaces
{Yi, τi}i∈I such that for each i ∈ I there is a map fi : Yi → X, the final topology τf

on X with respect to the family {fi}i∈I is the finest topology on X that makes these
maps continuous, i.e. for every other topology τ making all the maps in the family
continuous, τ ⊆ τf .

It can be shown that U ∈ τf iff f−1
i (U) ∈ τi for each i ∈ I.

Topological spaces can be characterised by the way two distinct points or subsets of the
space are distinguishable in terms of disjoint sets separating them. In particular, we are
interested in the following separation condition:

A topological space X = (X, τ) is said to be T2, or Hausdorff if for any two distinct
points x, y ∈ X there exist two disjoint open sets U ,V such that x ∈ U and y ∈ V.

Another way to characterise topological spaces is to distinguish them on the basis of how
connected they are, where a topological space X is connected if it cannot be obtained as
the union of two disjoint open sets. This is the case of R with the Euclidean topology.

The spaces we are going to consider are, on the other hand, not only disconnected (not
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connected), but totally disconnected (they have no non-trivial connected subsets) or
even extremally disconnected, i.e. spaces in which the closure of every open set is open.

The last important topological property we are going to use is compactness. There are
many ways to characterise this property, which is, intuitively, a generalisation of the
notion of closed and bounded region in an Euclidean space. The most typical definition,
however, is the following: a space X is compact if every open cover has a finite subcover.
That is, if F is a family of open subsets of X and X =

∪
U∈F U , then there exists a finite

G ⊆ F such that X =
∪

U∈G U .

Since the limit of an inverse system of topological spaces is a subspace of the product
of such spaces, we are going to need one last definition:

Definition 2.1.13 (Product space). The Cartesian product X =
∏

i∈I Xi of the
underlying sets of a family of spaces Xi indexed by I, together with the product topology,
defined as the coarsest topology such that all the canonical projections πi : X→ Xi are
continuous, is called the product space of the spaces Xi. A basis for this topology is{∏

i∈I
U i | U i ∈ τi and U i ̸= Xi for finitely many i

}

As anticipated in the previous section, to obtain a continuum of boundaries, we will
quotient the limit of our inverse system. To define a quotient, we first need the notion
of equivalence relation on a set S, which is a reflexive, symmetric and transitive binary
relation on elements of S. We call equivalence class of an element a with respect to
the equivalence relation ≡ the set {x ∈ S|x ≡ a}. The quotient set X/ ≡ is the set of
equivalence classes of elements of X, i.e. (X/ ≡) = {[x] : x ∈ X}.

Definition 2.1.14 (Quotient space). Let X = (X, τ) be a topological space, and let
≡ be an equivalence relation on X. The quotient space X / ≡ consists of the quotient
set X/ ≡ equipped with the topology τ≡ where the open sets are the sets of equivalence
classes whose unions are open sets in X, i.e.

U ∈ τ≡ iff
∪

[x]∈U

∈ τ

Given the quotient map q : X → X / ≡ s.t. q(x) = [x] we can give an equivalent
definition of τ≡ as the final topology on X/ ≡ with respect to q.

A subset Y of a set X is said to be saturated with respect to an equivalence relation ≡
if it is a union of equivalence classes, i.e. if ∃T ⊂ X : Y =

∪
t∈T [t], or, equivalently, if it

is the preimage of some set under q, i.e. ∃V ⊂ X/ ≡: Y = q−1(V ).
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A topological space can be endowed with a binary relation between its subsets which
resembles the contact relation on BAs:

Definition 2.1.15 (Proximity relation). A binary relation δ ⊆ X×X is called a
proximity relation if it satisfies the following axioms:

(P0) AδB ⇒ A,B ̸= ∅

(P1) A ∩B ̸= ∅ ⇒ AδB

(P2) AδB ⇒ BδA

(P3) Aδ(B ∪ C) iff AδB or AδC

(P4) A�δB ⇒ there is a C ⊆ X s.t. A�δC and B�δ(X C)

where A�δB stands for (A,B) /∈ δ.

This definition is the most used in many region-based theories of space, and is called
Efremovič proximity ([6]). A weaker notion of proximity has been studied by Lodato
([22]). This weaker formulation only satisfies the first four axioms (P0-P3) and has
been characterised to widen the range of topological spaces interested by relations of
“nearness”. Even if our context should be in the scope of the stronger formulation (being
all our spaces compact Hausdorff), we will see in the construction that the particular
finite spaces we use are not well suited to the standard definition of proximity as non-
empty intersection of closures. Only the proximity defined on the limit is a full Efremovič
proximity, while the proximity defined on the spaces in the inverse system only satisfies
(P0-P3) (we will add a remark about this in due course).

Construction of the real numbers as Cauchy sequences of rational numbers

To link our structure to a known continuum, we will map elements of our limit to the
real line, making a substantial use of the following construction. For the details of the
following passages see [35], chapter 3.

The set R of real numbers can be defined as a completion of the set of rational numbers
Q, defined using Cauchy sequences in Q, where:

Definition 2.1.16 (Cauchy sequence). A Cauchy sequence (of rational numbers) is
a sequence (x1, x2, x3, ...) such that for every ϵ ∈ Q>0 there exists Nϵ ∈ N>0 such that,
for all m,n > Nϵ, |xn − xm| < ϵ.
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It can be shown that every Cauchy sequence is bounded and that if (xn) and (yn) are
Cauchy sequences, then also (xn+yn) and (xn ·yn) are Cauchy sequences. Thus we can
define sums and products of Cauchy sequences componentwise:

(xn) + (yn) = (xn + yn)

(xn) · (yn) = (xn · yn)

The constant sequences 0 = (0, 0, ...) and 1 = (1, 1, ...) are the additive and multiplicative
identities. Every Cauchy sequence (xn) has an additive inverse (−xn), but not every
nonzero Cauchy sequence has a multiplicative inverse (consider any sequence containing
at least one occurrence of 0).

Now, we can impose an equivalence relation between Cauchy sequences by:

(xn) ∼ (yn) iff lim
n→∞

|xn − yn| = 0

This equivalence relation is compatible with the operations defined above, moreover
every nonzero equivalence class of Cauchy sequences has a multiplicative inverse.

So we get that the set of equivalence classes of Cauchy sequences forms a field, namely
what we will call the field of real numbers R.

We can embed Q into R via the map which assigns to x ∈ Q the class [(x, x, x, ..)] ∈ R.
Moreover, we can define the standard order on R: given s, t ∈ R we say that s > t if
s − t ̸= 0 and s − t = [(xn)] for some Cauchy sequence s.t. for some N , xn > 0 for all
n > N . We obtain that R is an ordered field whose order extends that of Q. Also, Q is
dense in R, i.e. for all x ∈ R and ϵ ∈ Q there exists r ∈ Q s.t. |x− r| < ϵ.

Definition 2.1.17. A sequence (xn) converges to the limit l if for every ϵ ∈ Q>0 there
is an Nϵ ∈ N>0 for which |xn − l| < ϵ for all n ⩾ Nϵ.

The limit of a convergent sequence is unique in R

Lemma 2.1.1. A Cauchy sequence of rational numbers (xn) converges to [(xn)].

Finally, R is complete in the sense that every Cauchy sequence of real numbers converges
to a real number.

Another useful theorem which will be used in our construction is the following:

Theorem 1 (Nested intervals Thm.). Let ([ln, rn])n∈N be a sequence of closed
bounded nested intervals in R, i.e. [ln+1, rn+1] ⊆ [ln, rn] where [ln, rn] ⊂ R for all
n ∈ N . Then there exists a real number r such that r =

∩
n∈N[ln, rn].
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2.1.4 Stone duality

Algebras and topological spaces are deeply connected in a compelling way: the renowned
representation theorems establish isomorphisms between such structures, which in some
cases result in full dualities between categories. In particular, we are interested in the
duality between Boolean algebras and Stone spaces. We present here only the key
passages of Stone’s representation theorem. For a complete treatment of these topics
and for the proofs of the main theorems see [15].

Definition 2.1.18. A Stone space is a compact totally disconnected Hausdorff space,
or, equivalently, a compact Hausdorff space with a basis of clopen sets.

Let B be a BA and call XB the set of all ultrafilters of B. The mapping

ϕ : B→ P(XB)

b 7→ {U ∈ XB|b ∈ U}

is an embedding of B into P(XB).

If we endow XB with the topology generated by the basis {ϕ(b)|b ∈ B}, we get a
Stone space XB called the Stone space dual to B. Every clopen set in this space is of
the form ϕ(b) for some b ∈ B, thus ϕ is surjective onto Clop(XB). It turns out that
(Clop(XB),∪,∩, , ∅, X) is a BA. Thus we obtained the first part of the duality.

Theorem 2 (Stone). Every Boolean algebra B is isomorphic to the Boolean algebra of
clopen subsets Clop(XB) of its dual space.

On the other hand, given any Stone space X, we can define its dual algebra of clopens,
with the Boolean operations listed above and show that X is isomorphic to the dual
space of this BA.

In fact, this is a full categorical duality:

Theorem 3. There are two contravariant functors Spec : BA → Stone and Clop :

Stone→ BA, the composite of which is is naturally isomorphic to the identity functor
respectively on the category BA of Boolean algebras and Boolean homomorphisms and
on the category Stone of Stone spaces and continuous maps between them.

In particular, given a BA-homomorphism f : A → B, the associated Spec(f) : XB →
XA, defined as Spec(f)(x) = {a ∈ A|f(a) ∈ x} = f−1(x) is a continuous function.
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Conversely, given a continuous function h : X→ Y, the associated morphism Clop(h) :

Clop(X) → Clop(Y), defined by Clop(h)(Q) = h−1(Q) for all Q ∈ Clop(Y) Is a BA-
homomorphism.

2.2 The construction

Direct system of Boolean algebras

To make the formal representation more compact, we separated the justification of the
model from the formalisation. In what follows we will only add cursory comments about
the connections with Kant’s cognitive theory. The reader can refer to the next section
for a complete overview of the construction.
The starting point of our model are finite Boolean algebras whose elements represent
regions in space - the spatial extent of possible experiences. Indeed, following Kant’s
analysis, a finite subject can only have finite experiences, hence beginning with a given
infinite set of regions would contravene Kant’s insistence that we can never have the
intuition of an actual infinity. As we will soon show, the elements of these algebras
can be seen as regular open subsets of the real line: we will be guided by this intuition
throughout our construction. From the merely passive form of outer sense, embodied
in these finite BAs, we will move to the construction of a direct system, representing
the action of the figurative synthesis, and we will see how the manifold gets gradually
structured to finally yield a continuum.

Consider the family of Boolean algebras {Bn}n∈N, where Bn is the BA freely generated
by n propositional letters. Note that these algebras are atomic. To look at this in
a formal way, let us first introduce some notation. Let Bn be a free Boolean algebra
generated by the set En = {pi|i ∈ {1, ..., n}}, and let At(Bn) be the set of its atoms.
By a well-known theorem (see, for instance, Theorem 11.2 of [11], p. 81), we have, for
each pi ∈ En:

a ∈ At(Bn) iff a =
∧
i⩽n

±pi

where pi ∈ En, and ±pi indicates either pi or ¬pi. Note that each pi appears either
positively (pi) or negatively (¬pi), but not both, in each atom. Moreover, the represen-
tation is unique. Defining a literal to be an (either positive or negative) occurrence of
±pi, we have that atoms are given precisely by maximal conjunctions of literals.

To obtain a direct system, we equip this family of BAs with Boolean homomorphism

hnm = hm−1 ◦ ... ◦ hn : Bn → Bm
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given by composing the canonical embeddings

hn : Bn ↪→ Bn+1

b 7→ b

where we are identifying the generators p1, ..., pn ∈ En with their correspondents in
En+1. So the hn’s are injective BA-homomorphisms, and hence monomorphisms in the
category BA.

Remark. Notice that given b ∈ Bn, hnm(b) = b ∈ Bm, where we are giving the same
name to the elements of different Boolean algebras, since they correspond to the same
Boolean combination of generators. Now, for every n ∈ N, given a BA-homomorphism
f : Bn → A, where A is any BA, commuting via g : Bn+1 → A with hn, we have that
f commutes also with hnm. This can be obtained defining an extension of g to Bm,
which restricted to Bn (as subalgebra of Bm) gives f , since the codomain of f and g

must coincide.

The following observation is essential to construct the dual spaces of the Bn’s:

Proposition 2.2.1. The ultrafilters of Bn are all and only the principal filters generated
by atoms of Bn, i.e.

Ult(Bn) = {↑ ai|ai ∈ At(Bn)}

Proof.

(⇒) Let ai ∈ At(Bn). (U1) and (U2) are satisfied since ↑ ai is a filter. Moreover,
since for every element b of Bn we have b =

∨
i∈I ai and ¬b =

∨
j∈J aj , with

{ai}i∈I ∩ {aj}j∈J = ∅ and {ai}i∈I ∪ {aj}j∈J = At(Bn), we have that (U3) is
satisfied: if a ̸∈↑ ai, then ¬a ∈↑ ai and vice versa.

(⇐) Let U ∈ Ult(Bn). Then ↑ ai ⊆ U for some ai ∈ At(Bn). In fact, for all a ∈ Bn, by
(U3), either a or ¬a is in U ; wlog, say a ∈ U . Then, being a =

∨
j∈J aj for some

finite set of atoms J , by (U3’), at least one of the aj is in U , say ai, so, by (U1),
↑ ai ⊆ U .
Now suppose ↑ ai ⊊ U Then there is at least one a ∈ U s.t. a ̸∈↑ ai. So, by (U2),
a∧ ai ∈ U . But, since ai ∈ At(Bn) and ai ̸⩽ a, we must have a∧ ai = 0. By (U1),
this means that U = Bn. But we assumed U to be proper. Contradiction. Thus,
U =↑ ai.

□

The family {Bn}n∈N together with the morphisms hnm form a direct system of finite
BAs.
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Let us now inspect a construction that will be useful to study the diagram in the category
of Stone spaces dual to the ongoing construction. A picture of this direct system of BAs
together with its colimit in BA will help the reader following our explanation.

Figure 2.2: Colimit of the direct system of Boolean algebras

Claim. The colimit of the diagram formed by the finite free Boolean algebras Bn is the
free Boolean algebra Bω generated by ω generators.

Proof. First, there are evident embeddings en of each BA Bn into Bω. Indeed, let the
set of generators of Bω be Eω = {q1, ..., qn, ...}; then, given any finite BA Bn, we can
map its generators to Bω by: en(p1) = q1, ..., en(pn) = qn. These injections make the
wanted triangles commute: en = em ◦ hnm by the above remark. So the first property
of the colimit is satisfied.
To check that it has the UMP of the colimit, take any BA A and injections gn : Bn → A
such that the triangles commute with the hnm’s. This means that gn(b) = gm(b) for all
b ∈ Bn and all m ⩾ n. Following the diagram above, there is only one possible choice
of a homomorphism f from Bω to A s.t. gn = f ◦ en, for all n ∈ N. f is defined by
f(a) = gn(b), for an arbitrary n such that a ∈ en(Bn) and where b = e−1

n (a). Notice
that b does not depend on n. Given that en and gn are BA-homomorphisms, it is easy
to show that f is a BA-homomorphism too.

□

Inverse system of Stone spaces

The dual structures of the finite BAs in the category of Stone spaces form an inverse
system, which represents the action of the figurative synthesis “running thorugh” and
“holding together” the manifold of intuition. The limit of this system is an object
encoding the structure of all these finite Stone spaces and retracting to all of them
in a way that is consistent with the mappings between them. This limit represents
the intuition produced by the consciousness of the activity of the figurative synthesis,
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through which we become aware of the necessary spatial properties of any possible
experience.

Consider the family {Xn}n∈N, where Xn is the Stone space dual to Bn. We recall that
Xn is the space of ultrafilters of Bn, equipped with the topology with basis {ϕ(b)|b ∈ B},
where ϕ(b) = {U ∈ Xn | b ∈ U}.

Note that, being Xn finite, for each n ∈ N, for every x ∈ Xn, the singleton {x} is closed,
every set is closed and so every set is open, i.e. every set is clopen. Thus, in our case,

Bn
∼= Clop(Xn) = P(Xn)

so the topology on Xn is the discrete topology. Each Xn is easily seen to be a compact,
Hausdorff, extremally disconnected space.

From now on, we will identify each Bn with the dual algebra of Xn, namely the powerset
algebra Clop(Xn). The morphisms will be identified as well: the map Clop(Xn) →
Clop(Xn+1) will be called hn as the correspondent map between Bn and Bn+1. The
following observation illustrates the central role of atoms and their duals - isolated
points (which in our case are all the points in Xn).

Claim. Atoms of Bn correspond to singletons of Xn.

Proof. Recall that an atom in the dual algebra of Xn is defined to be a non-empty
U ∈ Clop(Xn) such that, for all non-empty V ∈ Clop(Xn), V ⊆ U ⇒ V = U . Suppose,
for reductio, there exist two distinct x, y ∈ U , and take V to be a clopen of Xn such
that x ∈ V, y ̸∈ V. V exists since Clop(Xn) = P(Xn). Then U ∩ V is a clopen, it is
non-empty, and it is a proper subset of U , contradiction. On the other hand, given a
singleton {x} in Xn, for any non-empty V ∈ Clop(Xn) s.t. V ⊆ {x} we have V = {x}
and so {x} is an atom of Clop(Xn) = Bn.

□

Note that this means that each atom a =
∧

i⩽n±pi in Bn has a dual x ∈ X which is
the only point lying in the intersection of all clopens of the form ϕ(±pi). Indeed, for
each ±pi there must be an ultrafilter U of Bn containing both ±pi and a. Since every
ultrafilter is a principal filter, this must be the principal filter generated by a and so it
is in the intersection of ϕ(±pi). It is also the only one since if there was another one, it
would contain another atom (being principal) and so also all ±pj ’s above it. But since
atoms are uniquely determined by the generators above them, one of these would be
the complement of one of the ±pi’s. Contradiction.
Conversely, each point x ∈ Xn is dual to an atom, being x an ultrafilter of Bn and being
each ultrafilter generated by an atom.
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It should be clear now that each Xn has cardinality 2n and that the point x ∈ Xn

corresponding to the atom a =
∧

i⩽n±pi, belongs to all the clopens (i.e. all the subsets
of Xn) of the form ϕ(pi), and is the only point belonging to the intersection of all such
clopens. Now, to obtain duals to the morphisms hnm’s in BA, we would like to map
x to the only y ∈ Xn−1 belonging to the intersection of the clopens of the form ϕ(pi),
i ⩽ (n − 1) . This way each x ∈ Xn is the image of exactly two points: the ones
corresponding to the two atoms a′ = a ∧ pn+1 and a′′ = a± pi ∧ ¬pn+1 of Bn+1. Since
Spec is a contravariant functor, we know that a morphism dual to hn : Bn → Bn+1 in
the category Stone is a continuous function

ψn : Xn+1 → Xn

Also, being hn a monomorphism, its dual ψn is an epimorphism. By duality on homo-
morphisms (see [11], p. 348), for every hn : Bn → Bn+1, we have that ψn : Xn+1 → Xn

is uniquely determined by:

ψn(x) ∈ Q iff x ∈ h−1
n (Q)

for all clopen sets Q of Xn, and all x ∈ Xn+1.
It follows that ψn defined by

ψn(x) ∈ Q iff x ∈ Q ∩ Clop(Xn+1)

for all Q ∈ Clop(Xn), will do.
These are trivially continuous maps (the domain is a discrete space); well-defined (imag-
ine x had two images, then they must coincide); and surjective (every point in Xn is the
image of exactly two points, as noticed above).

Composing such morphisms we obtain, for every n < m,

ψnm = ψn ◦ ... ◦ ψm−1 : Xm → Xn

Thus we finally have our inverse system of Stone spaces representing finite spatial ex-
periences.

The inverse limit in Stone of such an inverse system exists, it is non empty, and is a
closed subspace of the product of the Xn’s ([34], p. 4).

It is well known (see, for instance, [11], p.432) that the product P =
∏

n∈NXn with
the product topology τπ and the canonical projections πn : P → Xn is the categorical
product of the Stone spaces.

49



Now, the limit X̂ in Stone of the spaces Xn’s is the subspace of P which has as underlying
set

X = {x̂ = (x1, x2, ..., xn, ...) ∈ P|xn = ψnm(xm)}

endowed with canonical projections χn : X̂ → Xn, defined by χn(x̂) = xn, and the
subspace topology τ ⊂ τπ. x̂ = (x1, x2, ..., xn, ...) is called a thread in the limit, to
indicate that the xi in it “behave well” with respect to the morphisms of the inverse
system.
The situation is represented in the following diagram:

Figure 2.3: Inverse limit of the inverse system of Stone spaces

Clearly X̂ is a subset of the product of the Xn’s, and the embedding e : X̂ → P makes
the triangles formed with the projections from the limit and the projections from the
product commute: πn ◦ e = χn for all n ∈ N.

Let us take a closer look at the topology τ . Recall that τπ is the topology on the product
P generated by the subbasis {π−1

n (Un)| Un ∈ τn}, i.e. every open set in P is a union of
finite intersections of sets of the form π−1

n (Un), for Un open in Xn. Note that, in our
specific case, a basis for τπ is the set {χ−1

n ({x})|x ∈ Xn}, since each finite intersection
of preimages of subsets of Xn’s is a union of preimages of singletons in Xn’s.
The subspace topology on X̂ is τ = {X̂ ∩ U | U ∈ τπ}, and, again, we have a basis of
preimages of singletons: {χ−1

n ({x})|x ∈ Xn, n ∈ N}.

Remark. Note that the form of a basic open is then determined by the the singleton
of which it is the preimage. A basic open U = χ−1

n ({xn}) contains all the threads that
have a fixed initial segment (determined by xn and its images via ψi for i ⩽ n), and any
final segment compatible with the morphisms ψi, for i > n.
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So the general form of an open set in X̂ is∪
j∈J

( ∩
i∈nj

χ−1
i (x)

)
, x ∈ Xi

The last thing we need to check to see that X̂ is indeed our limit is that it has the UMP
of the limit. Recall the UMP of the product P of the Xn’s:

for every Stone space Y with projections ϕn : Y → Xn for each Xn, there
exists a unique arrow (continuous mapping) f from Y to P such that πn◦f =

ϕn.

So, to prove the UMP of the limit, it is sufficient to show that:

Proposition 2.2.2. Given a Stone space Y equipped with projections ϕn : Y → Xn to
each Xn, such that ψn ◦ ϕn+1 = ϕn, the image of f : Y → P, the unique function given
by the UMP of the product, is contained in X̂.

Proof. We know, by the UMP of the product, that f exists and that it is unique. We
want to show that f(Y) ⊆ X̂. So, let x = f(y) for some y ∈ Y and suppose,that x ̸∈ X̂.
Then, there exists n ∈ N such that ψn(xn+1) ̸= xn, i.e. ψn(πn+1(x)) ̸= πn(x). Hence
ψn(πn+1(f(y)) ̸= πn(f(y)). But, by the UMP of the product, ϕm = πm ◦ fm for all
m ∈ N, so we get ψn(ϕn+1(y)) ̸= ϕn.

□

We are now in the condition to prove that the clopen sets of the limit are exactly the
preimages of clopen sets in Xn along the projections χn : X̂→ Xn:

Proposition 2.2.3. U ∈ Clop(X̂) iff (∃U ∈ Xn)(χ
−1
n (Un)) = U

Proof. (⇐) Let Un be a clopen subset of Xn (i.e. any subset of Xn). Then, its preimage
along χn is the set χ−1

n (Un) = {(x1, ..., xn, ...)|xn ∈ U i}, which is open in τ . Now, the
complement of this set is X̂ χ−1

n (Un) = χ−1
n (Xn) χ−1

n (Un) = χ−1
n (Xn Un). This is an

open set in τ , since it is the preimage of an open set in Xn. Thus, χ−1
n (Un) is clopen in

X̂.
(⇒) Let U be a clopen set in X̂. Since it is open, it must be the union of clopen sets
in the basis: U =

∪
i∈I χ

−1
i ({x}) for some x ∈ Xi, I ⊆ N. If this union is finite, we are

done, since there must be a n ∈ N such that xi ∈ Xn for all i ∈ I and so {xi|i ∈ I} ⊆ Xn

is the image of U along χn. If I is infinite, U is a closed subset of a compact space,
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covered by an infinite union of clopen subsets of X̂. Then there must be a finite set of
opens in the basis of τ covering it, i.e. it is the union of finitely many clopen sets and
we are back to the finite case.

□
Finally, note that the projections are trivially open and closed maps (the image of an
open set is open and the image of a closed set is closed).

2.2.1 Representation in the unit interval

To picture how the clopen sets in the limit of this inverse system capture the idea of
regions in space, we show how how to put it in correspondence with th unit cube. To
simplify the process, we establish a mapping from X̂ to the unit interval [0, 1] with
the standard topology, to be then extended to the unit cube. Note that, at the current
stage, the two topologies prevent us from building a homeomorphisms, since X̂ is totally
disconnected, while [0, 1] with the subspace topology inherited from R is connected.

We will see later that adding a contact relation to the finite Boolean algebras Bn’s (then
extended to a proximity on the discrete Stone spaces Xn’s) will allow us to give more
structure to the limit and to define a quotient homeomorphic to [0, 1]. It is convenient
to first have a look at the correspondence we would like to trace between threads in
the limit and points on the unit interval, to fix some ideas and give a flavor of the
geometrical intuition behind our construction.

We introduced earlier the construction of the line of real numbers using classes of Cauchy
sequences. What we want to show is that every thread in the inverse limit is in corre-
spondence with a class of Cauchy sequences converging on a real in [0, 1].

Recall that a thread is a tuple x̂ = (x1, ..., xn, ...) such that xi ∈ Xi for all i ∈ N and
xn = ψ(xn+1). Every xn ∈ Xn is an isolated point, so it corresponds univocally to an
atom in the dual algebra an =

∧
i⩽n±pi of Bn. In the following we will always refer to

an, an+1, ... to denote the atoms corresponding to xn, xn+1, ... in the way just described,
and bn, bn+1, ... to denote the atoms corresponding to yn, yn+1, ..., if necessary.

We would like to assign to every regular open (or clopen, since they coincide) set in Xn

a region in space (or an interval in [0, 1], in our simplified example). To do so we start
from singletons of points in Xn, i.e. basic clopens of Xn, and the region assigned to
every other clopen subset of Xn can be computed from this assignment. Each xn in a
thread x̂ is sent, through this assignment to the smallest region in Clop(Xn) containing
xn. To do so we partition the unit interval into subsets that correspond to atoms of
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Bn, i.e to maximal conjunctions of literals thereof. We will then map each thread in the
limit to a real number, defined as the limit of a Cauchy sequence. Clearly, the more we
climb the hierarchy of structures in the inverse system, following a thread x̂, the smaller
the area corresponding to the singleton {xn} becomes.

It must be noted that the construction of the reals via Cauchy sequences needs a much
stronger notion of infinity that the one Kant had in mind, requiring first an actual
infinity of points to be given. Therefore we use this method only as a useful tool to map
our construction to the real line, keeping in mind that this cannot be a way to capture
the Kantian continuum, but just a way to represent it in the modern topological setting.

So, let us define a map assigning to each clopen in Xn a regular open set in [0, 1] with
the Euclidean topology. Defining it on singletons will suffice for our purposes, but we
must keep in mind that the regular open subsets of [0, 1] are open intervals and interiors
of closures of unions of open intervals. So, if we assign open intervals to our singleton
sets, when we take subsets of Xn that are unions of singletons we must map them to
the interior of the closure of the union of the images of the singletons composing them.

en : P(Xn)→ RegOp([0, 1])

{x} 7→ (lxn, r
x
n)

where (lxn, r
x
n) is recursively defined by (lx0 , r

x
0 ) = (0, 1) and

(lxk+1, r
x
k+1) =


(
lxk ,

lxk+rxk
2

)
if pk+1 ⩾ a( lxk+rxk

2 , rxk
)

if ¬pk+1 ⩾ a

where a is the atom of Bn corresponding to x. A subset {x1, ..., xm} ∈ P(Xn) is mapped
to Int

(
Cl

(∪
i⩽m(lxm, r

x
n)
))

.

From this point forward we will drop the superscripts when no confusion can arise about
the element of Xn to which a certain interval corresponds.

Notice that, for each n, we are dividing the unit interval into 2n pieces, so that each of
them corresponds univocally to an atom, and so to a singleton in P(Xn): if a =

∧
i⩽n±pi

contains a positive occurrence of p1, en({x}) is a region in (0, 1/2), while if the sign of
p1 is negative en({x}) ⊆ (1/2, 1); if p2 occurs positively, then en({x}) is going to be in
the left half of the interval previously chosen, while if p2 occurs negatively, en({x}) is
going to be in the right half, and so on.

Since each atom is univocally determined as a maximal conjunction of literals, and since
en partitions [0, 1] into intervals corresponding to these maximal conjunctions, we have
that en is injective for all n ∈ N.
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Figure 2.4: Representation of the Xn’s in the unit interval

Consider now a thread x̂ = (x1, ...xn, ...) in the limit. We want to assign to it a Cauchy
sequence of rational numbers. To do so we can map each xn in the thread to some
representative of the interval en(xn). The two natural choices are the boundaries of
our interval, ln and rn. Call l and r respectively, the two functions assigning to each
interval its left and its right boundary, i.e. l((lxn

n , rxn
n )) = lxn

n and r((lxn
n , rxn

n )xn) = rxn
n .

Consider, then, for each component of the thread l(en({xn})) and r(en({xn})) and
obtain two sequences (ln) and (rn). In this way we can associate each thread x̂ with
the class [(ln)] = [(rn)].

What we need to show to get the desired correspondence between threads and real
numbers is that the sequences of left and right boundaries of such intervals are Cauchy
sequences of rational numbers converging to the same real number.
To see this, recall that our threads are sequences of points xn ∈ Xn such that xn =

ψn(xn+1). Thus we have that if an and an+1 are the atoms corresponding to xn and
xn+1 respectively, then ±pi ⩾ an, implies ±pi ⩾ an+1, for any i ⩽ n. This implies that
the intervals corresponding to {xn} and {xn+1} are nested, i.e. ln ⩽ ln+1 and rn+1 ⩽ rn.
To show that (ln) and (rn) are Cauchy sequences, it is sufficient to take, for any arbi-
trarily small ϵ, as Nϵ the first positive integer larger than −log2ϵ and both |ln− lm| ⩽ ϵ

and |rn − rm| ⩽ ϵ for all n,m ⩾ Nϵ.
Being Cauchy, these two sequences are convergent in R (and thus in [0, 1], since, for all
n, ln and rn are both in [0, 1], which is closed and so contains all its limit points). So,
consider the limit of (ln), say l, and suppose, for reductio, that (rn) converges to r ̸= l.
But then |r − l| > 0, so take ϵ = |r−l|

4 . By definition of limit, we have that there exists
an M such that for all n ⩾M , |ln− l| ⩽ ϵ. Now, since |rn− ln| = |rm+1−ln+1|

2 = 1
2n , and

given that 1
2n <

|l−r|
4 iff n > log2

( |l−r|
4

)
, we have that for any n > max{M, log2

( |l−r|
4

)
},
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rn = ln + |rn − ln| ⩽ l + 2ϵ = l+r
2 < r, i.e. taken ϵ′ > 2ϵ there is no Nϵ′ such that from

that index on |r − rn| < ϵ. Contradiction.
□

Thus we have shown that each thread can be mapped to a class of Cauchy sequences.
In our proof we have used the classes of (ln) and (rn), but keep in mind that any other
choice of representative would have been fine since at least one of the boundaries is the
furthest point on the interval chosen from the limit point, which will be contained in
the interval itself (since the intervals are nested). To obtain our mapping to the real
numbers, we assign to each thread in X̂ the limit lim

n→∞ ln = lim
n→∞ rn:

θ : X̂→ [0, 1]

x̂ 7→ θ(x̂)

where θ(x̂) = lim
n→∞ ln = lim

n→∞ rn.

This function, despite not being an isomorphism, as we will soon see, gives an insight
on how open sets in X̂ are mapped to [0, 1], according to the en’s. It is easy to see
that a basic open χ−1

n ({xn}) in X̂ is mapped by θ to the open interval en({xn}), since
it contains all the threads with fixed initial segment up to xn and any final segment
compatible with ψi for i > n. By definition of en, these threads are all the possible
threads converging to points inside the interval [lxn

n , rxn
n ]. This fact is a consequence of

the nested closed intervals theorem, closing all the intervals that are images of xn. We
don’t need the limit to be inside the regions assigned to each xn; on the contrary, we
are especially interested in these limit points that emerge only in the limit, as we shall
see soon.

So θ is an open map, and it is continuous. In fact, consider any basic open in [0, 1],
say (l, r). This is the image of an infinite union of basic open subsets of X̂, namely all
the sets of the form χ−1

n ({xn}) with lxn
n ⩾ l and rxn

n ⩽ r. The same holds for arbitrary
open sets in [0, 1]. Note that the regular open subsets of the limit must be mapped to
regular open subsets of the reals.

Note that θ maps some threads to the same real number. Think, for instance, to the
threads x̂ = (x1, ..., xn, ...) and ŷ = (y1, ..., yn, ...), such that

a1 = p1 and, for n>1, an = an−1 ∧ ¬pn

b1 = ¬p1 and, for n>1, bn = bn−1 ∧ pn

In this case, xn and yn are both assigned sequences converging to 1/2 “from the left
side” and “from the right side”.
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This can be generalised to any pair of sequences for which there is an index m ∈ N such
that ai = bi for i < m and

am = am−1 ∧ pm and ai = ai−1 ∧ ¬pi for i > m

bm = bm−1 ∧ ¬pm and bi = bi−1 ∧ pi for i > m

Therefore θ is not injective.

At this point, having fixed our intuitions about the shape of open sets in X̂, we can
make some remarks on the structure of the limit. One interesting characteristic of the
limit is that it contains some regular open subsets that are not “lifted” from any discrete
Stone space, meaning that there is no finite space containing a region that has the same
extension (the same image on the reals) as these new ones. Think, for instance, to the
set V whose image is

θ(V) =
∪
i∈N

(
1− 1

2n
, 1− 1

2n
+

1

2n+2

)
V contains all the threads of the form (¬p1, ...,¬pm−1, pm, pm+1,±pm+2...,±pn, ...) for
m ⩾ 1. So, we get that θ(V) ̸= en(χn(V)) . This is an open set, generated by the basis
of preimages of clopen sets in the finite spaces, which is not the preimage of a clopen
in any of the Xn’s.

This fact is the formal correlate to Kant’s claim that “though all the parts are contained
in the intuition of the whole, the whole division is not contained in it”, since “parts of
space” (the clopen subsets of our finite spaces) do not exhaust the whole represented
by the limit.

Our construction, however, is not complete yet, since we now have a space of regions
that are totally disconnected and they do not form a continuum, as the intuition of
space should be. These regions of space are therefore a model of the spatial extent of
possible experiences when they are “separated” and the contact is “destroyed”. But
what is this contact that has been “broken”? As we have noticed in the representation
of the limit on the real line, there are points, emerging from our construction, that are
not contained in the regions assigned to the clopen subsets of the Xn’s, points that can
represent their boundaries in the Aristotelian sense. To obtain a continuum, we need to
“melt” them together (for instance, in the example above, the boundary of the region
on the left and the boundary of that on the right). In the next section we are going
to tackle the problem and study the last, fundamental, feature of space as the formal
intuition.
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2.2.2 Contact

The considerations above suggest a natural way to impose a contact relation on the
inverse limit: two regions of space (two regular open sets of [0, 1] in our simplified
model) are in contact if and only if their closures have nonempty intersection. This
clearly cannot reflect what happens in the discrete Stone spaces of our system, assigning
open intervals of [0, 1] to clopen sets in Xn. Think, for instance, to the singletons of
the two points x, y ∈ X1, corresponding respectively to the two atoms p1 and ¬p1 in
B1. They are represented, respectively, by the two intervals (0, 1/2) and (1/2, 1). We
would obviously like these two regions to be in contact, so we cannot impose a standard
proximity on Xn, requiring the closures of the two sets to have nonempty intersection
to be proximal. Still, it makes sense to say that the two regions represented by the
singletons (a particular “slice” of the universe and its complement) are in contact, and
we are going to present an alternative contact relation that captures this intuition.

To do so, we can start from atoms in the algebras Bn’s, by imposing a contact rela-
tion, which will be mirrored by a proximity on the Stone spaces. This establishes the
conditions for two minimal regions in the discrete system to be proximal.

Consider two atoms a, b in Bn and the following relation between them:

aC∗b iff a =
( ∧

i⩽k−1

qi

)
∧ pk ∧

( ∧
k<i⩽n

¬pi
)

and b =
( ∧

i⩽k−1

qi

)
∧ ¬pk ∧

( ∧
k<i⩽n

pi

)
where qi = ±pi, for pi ∈ En, and and k is any k ∈ N>0 s.t. k ⩽ n (in the case of k = 1

the first conjunct is removed, while in the case of k = n the third conjunct is removed).
Note that each atom is in relation with at most two other atoms, represented by the
two regions (one region if a =

∧
i⩽n pi or a =

∧
i⩽n ¬pi) adjacent to it in [0, 1].

Figure 2.5: Two cases of contact between atoms in B5
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Proposition 2.2.4. The reflexive, symmetric and upward closure C on B+
n of this

relation is a contact relation on Bn.

Proof. (C0)-(C3) follow immediately from the definition of C.
As for (C4): let aC(b ∨ c). We know that every element of Bn can be written in a
unique way as a finite join of atoms, say a =

∨
i∈I ai, b ∨ c =

∨
j∈J aj , b =

∨
k∈K ak

and c =
∨

l∈L al, and that {aj |j ∈ J} = {ak|k ∈ K} ∪ {al|l ∈ L}. By our definition, if
a is in contact with b ∨ c, then there must be i ∈ I, j ∈ J such that aiCaj . But then
there must be either a k ∈ K or an l ∈ L such that aiCak or aiCal. By symmetry and
upward closure we get the desired result.

□

On the dual inverse system of Stone spaces, we would like to have a relation mirroring
this contact. Note that we are looking for some contact between regions, represented by
clopen sets, not between points. However, there is a natural way to induce a “closeness”
relation between points in the discrete Stone spaces from the contact relation on the
finite BAs :

xδ∗ny iff aCb

where a, b are the atoms of Bn corresponding, respectively, to the points x, y in Xn.
From this we can derive a relation between clopen sets of Xn in the following way:

PδnQ iff (∃x ∈ P )(∃y ∈ Q)(xδ∗ny)

Claim. This is a Lodato proximity relation on Xn.

Proof. This fact is easily verified, but we provide the proof for the sake of completeness.
Recall that a Lodato proximity is a relation satisfying (P0-P3) of Definition 2.1.15.
Suppose PδnQ. Then (∃x ∈ P )(∃y ∈ Q)(xδ∗ny), thus (P0) is immediately satisfied.
Now suppose P ∩Q ̸= ∅. Then there exist x ∈ P,Q and by (C1) we have xδ∗nx, so (P1)
is satisfied. (P2) descend immediately from the definition and from (C2). Now suppose
Pδ(Q ∪ R) then (∃x ∈ P )(∃y ∈ (Q ∪ R))(xδ∗ny). Then y ∈ Q or y ∈ P , i.e. PδQ or
PδR. The other way around is equally easy, since if there is y ∈ Q or y ∈ P such that
(∃x ∈ P )(xδ∗ny), then y ∈ (Q ∪R) and so Pδ(Q ∪R). Hence, (P3) is satisfied.

□

This definition of proximity clarifies why we can’t use an Efremovič proximity on the
finite spaces. This depends on the fact that the spaces Xn are not dense. In fact, the
Xn are constructed to represent regular open subsets of the reals, and we can see how
the additional axiom (A�δB ⇒ there is a C ⊆ X s.t. A�δC and B�δ(X C)) is already
ruled out in the simple case of X2, taking A to be the singleton whose only element
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corresponds to p1 ∧ p2 and B to be the singleton whose only element corresponds to
¬p1 ∧ p2. The only regions whose complements are not proximal to B must contain the
element corresponding to p1 ∧ ¬p2, which is “close” to the only element in A.

Remark. Note that if two threads x̂, ŷ ∈ X̂ are such that xnδ∗nyn for some n ∈ N, it
follows that, for all m ⩽ n, xmδ∗mym, since for all atoms am ∈ At(Bm): hm(am) =

am ∧ ±pm+1 and so, by our definition of contact, if am = am−1 ∧ ±pm is in contact
with bm, also am−1 (corresponding to xm−1) is in contact with bm−1 (corresponding to
ym−1).
On the other hand, if two threads x̂, ŷ ∈ X̂ are such that xn��δ

∗
nyn for some n ∈ N, we have

that for all m ⩾ n, xm��δ
∗
mym, since if am is not in contact with bm, am+1 = am ∧±pm+1

cannot be in contact with bm+1 = bm ∧ ±pm+1.

We have completed all the necessary groundwork to define the resulting proximity re-
lation between clopen sets P,Q in the limit X̂:

Pδ Q iff (∀n ∈ N)(χn(P ) δn χn(Q)) (2.1)

iff (∀n ∈ N)[(∃xn ∈ χn(P ))(∃yn ∈ χn(Q))(xnδ
∗
nyn)] (2.2)

iff (∃x̂ ∈ P )(∃ŷ ∈ Q)[(∀n ∈ N)(xnδ∗nyn)] (2.3)

The only non-trivial equivalence above is the last one. The direction (3) ⇒ (2) is
obvious, while for (2) ⇒ (3) we need to examine the clopen sets in the limit topology.
Consider first two sets in the basis, P = χ−1

n (Pn) and Q = χ−1
m (Qm), where Pn and Qm

are singletons in Xn and Xm respectively. Assume (2) holds and suppose wlog m ⩾ n.
By the fact that, for every n, there exist two points respectively in χn(P ) and χn(Q)

s.t. xnδ
∗
nyn, there must be two threads, in P and Q respectively, to whom xn and

yn belong, so we can pick x̂ ∈ P and ŷ ∈ Q such that xmδ∗mym. Now, either x̂ = ŷ

(in which case we are done), or, by definition of δ∗n and of C, there exists a j ∈ N s.t.
am =

(∧
i<j qi

)
∧pj∧

(∧
j<i⩽m ¬pi

)
and bm =

(∧
i<j qi

)
∧¬pj∧

(∧
j<i⩽m pi

)
or vice versa.

By the above remark, for all k ⩽ m, xkδ∗kyk. This holds for all the threads with the
same initial segment as x̂ and ŷ, up to m. Now, since m ⩾ n, all the possible threads in
X̂ with such initial segments are elements respectively of P and Q (which are preimages
of singletons in Xn and Xm respectively, and so they contain all threads with initial
segment fixed by the element in Pn and Qn respectively, and any possible final segment)
and they must include the two threads, say x̂′ and ŷ′ with corresponding sequences of
atoms a′r =

(∧
i<j qi

)
∧ pj ∧

(∧
j<i⩽r ¬pi

)
and b′r =

(∧
i<j qi

)
and¬pj ∧

(∧
<i⩽r pi

)
, for

all r ⩾ m. These are the two threads that satisfy (3). Finally, since this holds for sets
in the basis we can extend the result to every clopen in X̂.

□
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Claim. The relation δ on Clop(X̂)× Clop(X̂), defined by

PδQ iff (∃x̂ ∈ P )(∃ŷ ∈ Q)[(∀n ∈ N)(xnδ∗nyn)]

is an Efremovič proximity relation.

Sketch of the proof. The axioms (P0)-(P3) are easily verified. As for (P4), it can be
shown that δ satisfies it, but the proof is tedious and it involves awkward notation.
However, looking at the behaviour of δ with respect to the finite Xn we can get an
intuitive idea of how the proof should proceed. A picture will help fixing our intuitions:

We want to show that, given two clopen sets P,Q ∈ X̂ s.t. P �δQ, there exists a clopen
set R ∈ X̂ s.t. P �δR and Q�δ(X̂ R). In the picture we abuse the notation to have a neat
image of how P and Q get mapped to en(P(Xn)) by en ◦χn. By equivalence (2) above,
we have that P �δQ implies that (∃n ∈ N)[(∀xn ∈ χn(P ))(∀yn ∈ χn(Q)(xn�δ∗nyn)]. The
intuitive meaning of this fact is that there is an n ∈ N such that the projections of P
and Q are assigned intervals of [0, 1] that are disjoint, and there is a “gap” separating
them (they are not proximal in Xn). Now, if we look at Xn+1, we see that this “gap”
gets bisected into two smaller intervals. Thus, we can “enlarge” P of one such interval
and obtain the image in Xn+1 of the desired R. This can be done to every “piece” of
P , as the figure shows. The preimage along en and χn of this interval is a clopen of X̂
that contains P and is not proximal to Q.
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It is useful to define a closeness relation for threads, too:

x̂δ∗ŷ iff (∀n ∈ N)(xnδ∗nyn)

Thus, we get, for P,Q clopen subsets of X̂:

Pδ Q iff (∃x̂ ∈ P )(∃ŷ ∈ Q)[x̂δ∗ŷ]

Two threads in relation δ∗ are “points of contact” between two regions and will be the
key to make the totally disconnected limit into a connected continuum. The following
lemma is decisive to show that these are exactly the points that need to be “fused
together” to obtain the real line:

Lemma 2.2.1. Given two threads x̂, ŷ ∈ X̂, we have

x̂δ∗ŷ iff θ(x̂) = θ(ŷ)

Proof.
(⇒) Assume x̂, ŷ ∈ X̂ are close to each other, i.e. anCbn for all n ∈ N. Then either x̂ = ŷ

(in which case we are done); or, for all n ∈ N, there exists a m ⩽ n such that ak = bk for
all k < m and, wlog, aj =

∧
i<m qi∧pm∧

∧
m<i⩽j ¬pi and bj =

∧
i<m qi∧¬pm∧

∧
m<i⩽j pi

for all j ⩾ m. This means that the intervals assigned to xn and yn are the same up to the
index m − 1; that

[
lxm
m , rxm

m

]
=

[
lm−1,

lm−1+rm−1

2

]
and

[
lymm , rymm

]
=

[ lm−1+rm−1

2 , rm−1

]
;

and that for all indexes from xm+1 onward, the right boundary of the interval assigned
to xn is fixed and the left boundary of the interval assigned to yn is fixed. Considering
the limit of the left boundaries, we get:

θ(x̂) = lim
n→∞

(lxn
n ) = lm−1 + lim

q→∞
(

1

2m+1
+

1

2m+2
+ ...+

1

2m+q
+ ...)

= lm−1 + lim
q→∞

(
1

2m
− 1

2q
) = lm−1 +

1

2m

θ(ŷ) = lim
n→∞

(lynn ) = lymm = lm−1 +
1

2m

Thus, θ(x̂) = θ(ŷ).
(⇐) Suppose θ(x̂) = θ(ŷ), then

∩
n∈N[l

xn
n , rxn

n ] =
∩

n∈N[l
yn
n , rynn ], i.e. for all n ∈ N there

is a z which belongs both to [lxn
n , rxn

n ] and to [lynn , rynn ]. By the nested interval theorem,
we have that both

∩
n∈N[l

xn
n , rxn

n ] and
∩

n∈N[l
yn
n , rynn ] contain exactly one point and so

there are two cases: either they are equal, i.e. x̂ = ŷ, in which case we are done; or there
is an m ∈ N such that [lxi

i , r
xi
i ] = [lyii , r

yi
i ] for all i < m, [lj , rj ]xj ̸= [lj , rj ]yj for all j ⩾ m,

and either rxj

j = l
yj
j for all j ⩾ m, or ryjj = l

xj

j for all j ⩾ m. Wlog, suppose rxj

j = l
yj
j

for all j ⩾ m. Then the only possibility is rxm
m = lm−1+rm−1

2 = lymm (i.e. pm ⩾ am and
¬pm ⩾ bm) and, for all j > m, rxj

j = r
xj−1

j−1 and l
yj
j = l

yj−1

j−1 (i.e. ¬pj ⩾ aj and pj ⩾ bj).
□
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Claim. The relation δ∗ is an equivalence relation on X̂.

Proof. Reflexivity and symmetry follow immediately from reflexivity and symmetry of
C. As for transitivity, let x̂δ∗ŷ and ŷδ∗ẑ. Let an, bn and cn be, respectively, the atoms
associated to xn, yn and zn. By our assumption we have that for all n ∈ N, anCbn and
bnCcn. Recall that each atom a =

∧
i⩽n±pi is in contact with at most two other atoms,

namely the one having the same initial segment and differing only in the sign of pn, and,
if it exists, the one having the same initial segment up to the j-th conjunct, and s.t. ,
from ±pj on, all the other conjuncts have opposite sign to pj . It should be clear that,
for each thread ŷ, there can be only one other thread such that bnCan for all n ∈ N,
since ŷ is an infinite sequence of yn. So, an = cn for all n, i.e. x̂δ∗ẑ.

□

Finally, “glueing” together the points of contact of our regions in the limit, we obtain the
desired continuum. This operation is done, formally, by quotienting X̂ by the relation
δ∗

The quotient space X̂/δ∗ has the final topology τq with respect to the standard inclusion:

q : X̂→ X̂/δ∗

x̂ 7→ [x̂]

So, U ∈ τq iff q−1(U) ∈ τ .

Homeomorphism with the unit interval

We are now ready to see that this final operation of synthesis yields a continuum. To
show this, we trace a homeomorphism between the quotient X̂/δ∗ and [0, 1].

Define the map:
ι : X̂/δ∗ → [0, 1]

[x̂] 7→ θ(x̂) = lim
n→∞ ln = lim

n→∞ rn

where x̂ = (x1, ..., xn, ...) and ln, rn are as defined above.

Define the map inverse to ι:
κ : [0, 1]→ X̂/δ∗

r 7→ [(xn)]
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where xn =↑
∧

i⩽n qi and

qi =

pi if r ∈
[
li−1,

li−1+ri−1

2

)
¬pi if r ∈

[ li−1+ri−1

2 , ri−1

]
with [l0, r0] = [0, 1].
Proof. By lemma 2.2.1 ι is well-defined and injective. As for κ, it assigns to each r

the only sequence of xn s.t. r ∈ e({xn}). Note that if r is a “border point”, to get a
well-defined function, we need to choose to assign it to one of the two sequences con-
verging to it (which belong to the same class modulo δ∗). It is clear by construction
that κ ◦ ι = idX̂/δ∗ and ι ◦ κ = id[0,1], thus κ is indeed the map inverse to ι.
Note that we also have that ι◦ q = θ and κ◦θ = q. So, to prove that ι and κ are contin-
uous let us first examine θ. Note that the preimage of a basic open set U = (l, r) ∈ [0, 1]

is saturated in X̂ with respect to δ∗. Indeed, as we already noted, this preimage is the
infinite union of all the basic opens of the form χ−1

n ({xn}) with lxn
n > l and rxn

n < r.
This means that all the threads that converge to reals between l and r are in θ−1(U),
and since the class [x̂] is given by all the threads converging to the same real as x̂,
θ−1(U) is saturated with respect to δ∗. This result can immediately be extended to any
open in [0, 1].
Now, since θ is continuous and since a set is open in the quotient X̂/δ∗ iff its preimage
via the standard embedding q : X̂→ X̂/δ∗ is open, we have that ι is continuous.
To prove continuity of κ, consider an open U ∈ τq. We want to prove that for every
y ∈ U there is an open O in [0, 1] s.t. κ−1(y) ∈ O and O ⊆ κ−1(U). To see that it is al-
ways possible to find such an O, recall that q−1(U) =

∪
{Ai|i ∈ I} where Ai = χ−1

i ({x})
for some x ∈ Xn, n ∈ N. This means, in our representation on the unit interval, that
each Ai contains all the threads that are mapped by θ to real numbers inside the inter-
val en({x}), included the ones assigned to Cauchy sequences converging to the borders
“from the inside” of the interval (i.e., given the interval θ(Ai) = [a, b] = en({x}), the
two threads (yj)j∈N and (zj)j∈N such that, for all m > n, em({ym}) = [a, km] and
em({zm}) = [lm, b], where a < km < b and a < lm < b). Now, given any y ∈ U , it must
be the case that its preimage via q is contained in q−1(U), i.e. if y is the class contain-
ing the two distinct threads y′, y′′ ∈ X̂, both y′ and y′′ must be in q−1(U). So, if y′ is
one of the two threads “converging from the inside” to one of the borders of Ai, there
must exist Aj ⊆ q−1(U) that contains y′′. This way we can rule out any “bad case”,
by iterating this process of “fattening” the Ai’s so to include every κ−1(y) ∈ κ−1(U)
in an open O of the desired form. It is possible to iterate this process ω times, since
q−1(U) =

∪
{Ai|i ∈ I} is open, bounded, and does not contain its borders.

□
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2.2.3 Boundaries

Now that we have defined the last salient relation between regions, obtained the quotient
of the limit and proved continuity of the quotient, one might ask what do the elements of
this quotient represent. It is time to introduce the notion of boundary between regions,
emerging as a result of the activity of the figurative synthesis as limitations of regions
in space.

The intuition behind the definition below is that the boundary of a region in space
is nothing more than what is left if we take away from the whole of space the two
spaces that are uniquely determined as the “inside” and the “outside” of the region. In
Kantian terms, we are considering “the differences between things only as limitations
arising through the negations attaching to them”.2 In our model regions are clopen
subsets of the Xn’s and their boundaries can be retrieved in the quotient of the limit.
In this passage from Xn to X̂/δ∗ we must be careful since, in Xn, P and its complement
are open regions, corresponding, via en, to regular open subsets of the reals. Hence, to
find the boundary of P , we need to take the interior of the projection of Xn P on the
quotient to obtain what is “outside” P .

Before giving the formal definition of boundary, it is convenient to adopt some abbrevi-
ations. For the sake of simplicity, we will denote the complement X P of a set P ∈ X
as P and, given a clopen P ⊆ Xn, its image on the quotient obtained by “lifting” it to
the limit and then projecting it on the quotient q(χ−1(P )) will be denoted by P ∗.

Definition 2.2.1 (Boundary). The boundary of a clopen P ∈ Clop(Xn), or the bound-
ary between P and its complement P , is the triplet (P, P , βP ), where βP is defined as
βP = P ∗ ∪ Int(P ∗).

This definition of boundary can be extended to clopen subsets of the limit: given P ∈
Clop(X), its boundary is (P, P , βP ), where βP = q(P ) ∪ Int(q(P ))

Note that βP contains two elements of X̂/δ∗ (represented, on [0, 1], by the left and
right boundaries of an interval). The two elements of X̂ mapped by ι to 0 an 1 are
considered as “formal boundaries” 3 and function as formal correlates to the infinity
of space. Indeed, recall that [0, 1] is homeomorphic to the extended real line, which is
obtained by adding to R two elements −∞ and +∞ making it a compact Hausdorff
space.

This definition captures the idea of “common boundary of two spaces, which is therefore
2[41] 8:138n
3Where the term and role in the construction are borrowed from [27] (pp.70,117-118)
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within neither the one nor the other space”4. Indeed, if we look at the images through
en of a clopen and its complement on RegOp(R), we have that the third element of the
triplet is the intersection of their closures, which does not belong to either region. We
will soon see that this definition applies, unchanged, to the three dimensional case, but
the boundary of a region will not be a set of point, but a set of surfaces.

2.2.4 Representation in the unit cube

We are now ready to generalise the above example to the three dimensional case.
Consider the unit cube [0, 1]3 ⊆ R3. To split the space in a way that is analogous to the
above construction, we need to apply the bisection method to each edge and obtain 23n

atoms at the n-th step. Hence we are not going to consider all the algebras Bn’s, but a
subset of them, namely the ones with index a multiple of 3. For instance, the first cut
will split the space in 8 mini-cubes, corresponding to all the possible combinations of
the free generators p1, p2, p3, assigned respectively to the the first halves of the x, y, z
edges, and their negations, assigned to the second halves of such segments; the second
cut will split each half in two, giving rise to 64 mini cubes, each corresponding to an
atom in the algebra B6, and so on.

Fixing the three axes x, y, z as in figure 2.2.4, a cuboid in [0, 1]3 is completely determined
by the coordinates of its projection on the axes. In the following we will refer to a cuboid
C by giving such coordinates as intervals on the axes, indicated as (lC , rC) (projection
on the x axis), (dC , uC) (projection on the y axis) and (fC , bC) (projection on the z

axis).
4([18] [4:512])
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Our functions en’s can be generalised to:

ϵn : P(Xn)→ RegOp[0, 1]3

{x} 7→ Cx
n

where (lCx
n
, rCx

n
, (dCx

n
, uCx

n
) and (fCx

n
, bCx

n
) will be denoted, respectively, (lxn, rxn), (dxn, uxn)

and (fxn , b
x
n); and are computed analogously to the en({x})’s above, but modulo 3, in

the following way:

· (lxn, rxn) is defined, for m = max{k ⩽ n|k mod 3 = 1}, as (lxm, rxm) where (lx1 , r
x
1 ) =

[0, 1] and

(lxk+3, r
x
k+3) =


(
lxk ,

lxk+rxk
2

)
if pk+3 ⩾ a( lxk+rxk

2 , rxk
)

if ¬pk+3 ⩾ a

· (dxn, uxn) is defined, for m = max{k ⩽ n|k mod 3 = 2}, as (dxm, u
x
m) where

(dx2 , u
x
2) = [0, 1] and

(dxk+3, u
x
k+3) =


(
dxk,

dxk+ux
k

2

)
if pk+3 ⩾ a(dxk+ux

k
2 , uxk

)
if ¬pk+3 ⩾ a

· (fxn , bxn) is defined, for m = max{k ⩽ n|k mod 3 = 0}, as (fxm, b
x
m) where

(fx0 , b
x
0) = [0, 1] and

(fxk+3, b
x
k+3) =


(
fxk ,

fx
k+bxk
2

)
if pk+3 ⩾ a(fx

k+bxk
2 , bxk

)
if ¬pk+3 ⩾ a

Now, as it can be seen comparing the construction on the real line, we have that a thread
in mapped, according to the ϵn’s of the singletons of its components, to the intersection
of ω nested closed cubes, namely the closures of the open intervals assigned by the ϵn’s.
Define an analogous function to θ by:

Θ : X̂→ [0, 1]3

x̂ 7→
∩
n

ϵ({xn})

Θ(x̂) is well-defined since the ϵ({xn}’s are nested cubes with vertices corresponding to
Cauchy sequences of reals.
Again, we have that this function is not injective, since there are now at most six threads
corresponding to the same point in [0, 1]3

So, we are going to define a contact relation on the Bn’s such that the final quotient will
give us the wanted result. The new C∗ relation will be defined on Bn in the following
way:
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Definition 2.2.2. Let a, b ∈ Bn, then aC∗b iff there exists a j such that:

· for all k < j, if pk ⩾ a, then pk ⩾ b;

· pj ⩾ a and ¬pj ⩾ b

· for all k > j

¬pk ⩾ a and pk ⩾ b if k ∈ [j]3

pk ⩾ a⇒ pk ⩾ b if k /∈ [j]3

The new contact relation C on Bn is the reflexive, symmetric and upward closure of C∗

on B+
n . The proof of this fact is the same as the one in the one dimensional case.

The dual on the inverse system of Stone spaces is the same as before: let us briefly
summarise the main passages.

Closeness between two points x, y ∈ Xn, with corresponding atoms a, b ∈ Bn is defined
as:

xδ∗ny iff aCb

Proximity between two clopen sets P,Q ∈ Xn is then:

PδnQ iff (∃x ∈ P )(∃y ∈ Q)(xδ∗ny)

The remark holds for the same reasons to the one dimensional case, so if xnδ∗nyn for
some threads x̂, ŷ ∈ X̂, we have xmδ∗mxm for all m ⩽ n.

This, together with the fact that any clopen set in X̂ contains all the threads beginning
with a particular initial segment, up to a n index m and continuing with any sequence
of combinations of pk, k ⩾ m, gives us, with a proof analogous to the one above, the
equivalence between the component-wise definition of proximity on the limit and the
more handy:

PδQ iff (∃x̂ ∈ P )(∃ŷ ∈ Q)(x̂δ∗ŷ)

where (x̂δ∗ŷ) iff (∀n ∈ N)(xnδ∗nyn). The proof of Lemma 2.2.1 is totally analogous to
the one in the one dimensional case, except that it needs to make use of the three-parted
definition of ϵn, therefore requiring more involved calculations. The result still holds:
x̂δ∗ŷ iff Θ(x̂) = Θ(ŷ).

The relation x̂δ∗ŷ is an equivalence relation. The proof is analogous to the one for δ∗,
except that we now have that x̂ is close to at most six other threads (the ones converging
to lim

n→∞

∩
ϵn({xn})).
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Finally, the homeomorphism between X̂/δ∗ with the final topology wrt the standard
inclusion and [0, 1]3 is:

η : X̂/δ∗ → [0, 1]3

[x̂] 7→
∩
n∈N

ϵn({xn})

with inverse:
ζ : [0, 1]3 → X̂/δ∗

r 7→ [(xn)]

where xn =↑
∧

0<i⩽n qi and qi is defined as follows:

· if i mod 3 = 1, qi =

pi if rx ∈
[
li−1,

li−1+ri−1

2

)
¬pi if rx ∈

[ li−1+ri−1

2 , ri−1

]
· if i mod 3 = 2, qi =

pi if ry ∈
[
di−1,

di−1+ui−1

2

)
¬pi if ry ∈

[di−1+ui−1

2 , ui−1

]
· if i mod 3 = 0, qi =

pi if rz ∈
[
fi−1,

fi−1+bi−1

2

)
¬pi if rz ∈

[fi−1+bi−1

2 , bi−1

]
where rx, ry, rz are, respectively the x, y, z coordinates of r and [l0, r0] = [d0, u0] =

[f0, b0] = [0, 1].

Proof. The proof that this is a homeomorphism is analogous to the one on the unit
interval, with a few observations on the specifics of this case. Well-definedness and
bijectivity are easy as before.
For continuity let us examine Θ. Note that the preimage of a basic open C in [0, 1]3,
with edges [lC , rC ], [dC , uC ], [fC , bC ], is again saturated in X̂ wrt δ∗, since it is the in-
finite union of all the basic opens of the form χ−1({xn}) such that ϵ({xn}) ⊂ C. By
continuity of Θ and the definition of topology on the quotient, we get, as before, that η
is continuous.The proof for continuity of ζ is totally analogous to the one for κ above,
again considering each edge as an interval on the real line.

□

It is now clear why the definition of boundaries needs not be changed in the case of
three dimensions, since nothing relevant changes in the relationships between the clopen
subsets of Xn and the quotient. The representation on the unit interval is again, that of
a triplet, consisting of a regular open set, together with the interior of its complement
and the set obtained subtracting these two regions from the totality of space (i.e. [0, 1]3,
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in our example). Note that, in this case, boundaries are surfaces, according to Euclid’s
dictum and to Poincaré’s definition of dimension number. Orientation of the three axes
is dependent on the subject (as remarked by Kant in the Orientation essay([41]) and
−∞,+∞ on each axis are formal boundaries representing infinity of space in every
direction.

2.3 Justification of the construction

Region-based theories of space have been developed in the last century starting from the
seminal works of Whitehead ([39]) and Tarski ([37]) in 1929. The fact that reasoning and
speaking of spatial relations among regions is more natural than referring to points and
relations among them, attracted researches that wanted to model cognitive processes
and the mereological approach to theories of spatial representation flourished as an
alternative to the standard point-based approaches. To have the same expressive power
as other theories of space, the region-based models needed to be able to recover points
as definable entities. In a very Kantian way, points were derived as “limitations” of
regions, through the definition of a contact relation between regions. Whitehead named
this relation “connection”, echoing the Aristotelian notion of boundaries serving to
“link” regions in a continuum.

Despite Kant’s eminently constructive approach to geometry, trying to formalize Kant’s
spatial continuum in a constructive algebraic setting from the beginning seemed to us
less appealing than using much more manageable objects such as the classical free
Boolean algebras. The reason behind this choice was initially one of convenience - for,
as we will soon see, Boolean algebras of regular open sets are an ideal frame for our
purposes - and the idea was to be able to then see if the whole construction could be
adapted to the context of Heyting algebras. Moreover, a notion of contact on Boolean
algebras has been studied far more extensively than a similar notion on Heyting algebras,
so we decided to start there. Unfortunately, it turned out that the type of contact
resulting from our construction (the only possible one, given the space we obtained)
was shaped to capture the specific way regions are related in our Boolean model, and
it is certainly not extensible to a properly constructive setting. Still, the construction
bore some significance, and after trials and errors led to some interesting observations,
so we present it both as an exercise to study the matter of the spatial continuum more
closely, and as a warning about the limits of our method.

The very first step in building a formal model of space is to make a choice about the
collection of basic entities which make up our interpretation. Several mathematical
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settings have been devised to provide mereological models of space; in particular, the
topological interpretation based on regular open sets has the benefit of providing a
natural setting for the definition of a proximity relation (the topological counterpart of
the contact relation defined on algebras). There are many good reasons to choose regular
open sets as models for regions in space 5; many intuitions come from considerations on
the real space R3 and we can reason easily on R2 to fix some basic ideas. We would like
a region to be somewhat “uniform” - in the sense that it does not have points or lines
“breaking” it - and we would like points to supervene to regions, as their boundaries or
limitations. A regular open set in R2 is indeed a region with no “pin-holes” or “cracks”6,
in the form of lines, since they are the interior of their own closure. Moreover, taking
the open unit square as our model of space and dividing it into two regions, say the left
and right rectangles with base, respectively, (0, 1/2) and (1/2, 1), their boundary can
be defined as the intersection of their closures. This boundary is a line, which comes
into being only as a limit of regions. The same happens, of course, in the case of a
one dimensional continuum, where a point is obtained as the boundary of two adjacent
regions (regular open subsets of R), or in R3, where a surface is the boundary of two
three-dimensional regions. Every point is a boundary (but not every boundary is a
point, in particular in the models with more than one dimension). The Euclidean idea
of dimension number, successively formalised by Poincaré, guided us in our intuitions
about the possible extension of the model from the real line to the Euclidean three-
dimensional space.

These considerations bear remarkable similarities with the observations Kant makes in
the second chapter of the MFNS about contact:

Contact in the mathematical sense is the common boundary of two spaces,
which is therefore within neither the one nor the other space. [...] A circle
and a straight line, or two circles, are in contact at a point, surfaces at a
line, and bodies at surfaces[...] ([18] [4:512])

Regular open sets represent precisely this fact: the two regions we considered in the
above example are in contact and the line corresponding to their common boundary is
not contained in either of them. Now that we have an idea of the result we want to
obtain, let us turn to the relations captured by our formalization.

Our model is constructed starting from finite sets of regions, representing the spatial ex-
tent of possible experiences. The formal correlate to the form of intuition is represented

5For a detailed account of why these are good candidates for representing regions see [33].
6See, again, [33], p. 15, where these concepts are illustrated with clarifying pictures.
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by the finite Boolean algebras and their dual topological spaces. The successive action
of the figurative synthesis determines the manifold, ordering it according to the cate-
gories. Since Kant’s writings lack a clear list of primitive relations, our model is built
to capture only the most general aspects we could ascribe to the Kantian conception of
spatial experience. The main relevant relations are, of course, parthood relations, which
are at the core of the mereological approach. The procedure adopted is one of bisec-
tion7, carried out in agreement with the category of community, which is the concept
of mutual determination of substances. It is by means of this category that two parts
of space are coordinated in partitioning a whole, being cause of the determinations of
each other, insofar as their existence is concerned8. The dual process that permits to
obtain a whole from the composition of two regions, derives from the application of
the category of quantity, which guarantees that a whole (totality) can result from the
combination of a multitude (multiplicity) of given homogeneous elements (unities).

The natural algebraic structures representing complementary regions in space generated
by a process of bisection are free Boolean algebras. The elements of these algebras can
be easily visualised as regular open subsets of the real line (only in the end we will
generalize our system to be isomorphic to the real three-dimensional space, with due
care).

To provide a formal correlate to the activity of the figurative synthesis “running through
and holding together” the manifold of intuition, we constructed, as first proposed in
[1], an inverse system of finite structures mapped to each other via retractions. This
construction has proved successful in modelling time in Pinosio’s work ([27]) and, since
the action of the figurative synthesis is analogous in the case of space, we adopted the

7Hellman and Shapiro proposed a formalization of Aristotle’s notion of continuum through a con-
struction which bears clear resemblance to ours, in the adoption of Cauchy sequences of regions obtained
by successive operations of bisection. We came up with our model independently, having discovered
Hellman-Shapiro’s solution only in the final phase of the present work. This can be taken as a sign
that our approach is among the most natural ones to the matter. Incidentally, note that our construc-
tion solves the problem of capturing Aristotle’s notion of boundaries, which is recognised by the two
academics as a flaw of their theory.

8Thus Kant:

Now a similar connection is thought of in an entirety of things, since one is not subor-
dinated, as effect, under another, as the cause of its existence, but is rather coordinated
with the other simultaneously and reciprocally as cause with regard to its determination
[...]. The understanding follows the same procedure when it represents the divided sphere
of a concept as when it thinks of a thing as divisible, and just as in the first case the
members of the division exclude each other and yet are connected in one sphere, so in the
latter case the parts are represented as ones to which existence (as substances) pertains to
each exclusively of the others, and which are yet connected in one whole. ([16], B112-113)
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same approach, adapting it to our context of finite Boolean algebras (and their dual
topological spaces). This setting has been shown to be convenient for several reasons.
As we have seen in the previous chapter, a precondition for the possibility of cognition
is for our diverse experiences to be recognized to belong to the same consciousness.
Thus, our model should be able to relate any two distinct representations, as parts, to
an encompassing whole representation. This principle of the unity of apperception is
embodied in the directedness condition imposed on the set indexing the finite Boolean
algebras. The index set itself represents the fact that the figurative synthesis is a
process that takes place in time, where each index can be viewed as an interval of
time necessary for the synthesis to produce an ordered manifold out of the multiplicity
without constraints given by sensibility. In fact, what each Boolean algebra really
represents is a set of acts of self-affection, produced by the figurative synthesis and thus
spatiotemporally structured, since they are the result of the synthesis of a space in time.

The link between the figurative synthesis and the formal intuition of space is attained
by the use of retraction maps. An observation on the duality between Boolean algebras
and Stone spaces is due here, to prevent confusion. The use of two different perspectives
(the order-theoretic one, on the one side, and the topological one, on the other) allows
for a much richer analysis of the structures taken into consideration, not to mention the
benefits this approach produces on the visualisation of this abstract setting on the real
line. The key result that links the algebraic setting to the topological side of the model
is the Stone representation theorem, which, in layman’s terms, asserts the equivalence
between Boolean algebras and Stone spaces, with “reversed arrows” (i.e. upon switching
domain and codomains of the morphisms involved). This is an extremely convenient
framework for our purposes, since, thanks to the finiteness of our Boolean algebras, we
get that their atoms (representing minimal regions) correspond exactly to the elements
of the dual Stone spaces, and so we can shift freely between the two, taking care only
of the reversed morphisms between structures. Up to this point, we could consider
the Stone space dual to each finite Boolean algebra in our system as behaving in the
exact same way as the algebra, given the duality just mentioned. When the retraction
maps come into play, however, we need to be careful to remember that, to obtain an
inverse system of Stone spaces (which is our ultimate goal, since we are concerned with
the topological properties of its inverse limit), the corresponding mappings between
Boolean algebras have to be reversed. The retractions are particular continuous maps
between Stone spaces, constructed to relate the two parts of a bisected region to the
whole region combining them, and they impose a requirement of consistency throughout
the system. On the side of Boolean algebras, the construction obtained is called a direct
system.

If, on the one hand, the activity of the figurative synthesis finds its formal correlate
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in the inverse system of Stone spaces, capturing the “boundlessness in the progress
of intuition”(A25); the dual system, on the other hand, models the potential infinite
divisibility of space. The clopen sets in each finite space correspond to elements of the
algebras, and represent “parts of space”, synthesised through acts of self-affection, which
can be iterated progressively ad infinitum (note the use of the modal formulation). The
consciousness of this synthetic activity - space as the formal intuition, or “space as an
object” - is an intuition produced by this process, but it is also the ground for it: in fact,
it is through it that the subject becomes aware of the necessary form of any possible
spatial experience. Hence, the model should comprise a structure that is both generated
by the inverse system, and that encapsulates all the information contained in the system.
This is the inverse limit of the system, which is the smallest structure that retracts to
every Stone space consistently with the morphisms. The limit is itself a Stone space,
with the crucial property of being infinite, capturing the potential unboundedness of
the process of construction in intuition, but still not resulting from the composition of
its parts. Indeed, we shall see that the projections of this limit on the inverse system
are such that each clopen in the finite Stone spaces is the image of a clopen in the limit,
but there are open subsets of the limit that are not the preimage of any open in the
finite spaces. This property is the formal correlate to the idea that space as a whole
is not the sum of its parts, as remarked by Kant in the last section dedicated to the
Antinomies of Pure Reason:

[...] it is by no means permitted to say of such a whole, which is divisible
to infinity, that it consists of infinitely many parts. For though all the
parts are contained in the intuition of the whole, the whole division is not
contained in it; this division consists only in the progressive decomposition,
or in the regress itself, which first makes the series actual. Now since this
regress is infinite, all its members (parts) to which it has attained are of
course contained in the whole as an aggregate, but the whole series of the
division is not, since it is infinite successively and never is as a whole; con-
sequently, the regress cannot exhibit any infinite multiplicity or the taking
together of this multiplicity into one whole. (A524/B552)

The properties of space as the formal intuition are embodied in the limit in a very
pleasant way (as shown in [27], p. 136-153). As we have just seen, infinity corresponds to
the notion used by Kant. Unity of space descends from the fact that every “part of space”
can be embedded in the “whole” represented by the limit through standard embeddings
of the finite Stone spaces in it. Uniqueness of the limit up to isomorphism enforces this
notion of unity. Finally, continuity is obtained in the succession of boundaries, as we
will soon clarify.
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The clopen sets of the limit correspond to regular open sets on the real line. We found
convenient to define a relation of contact (which in topology is called a proximity)
between regions that are adjacent in the representation on the real line (this relation is
then generalized to the three-dimensional case). Since contact is several times glossed
by Kant as “an infinitely small distance”9 and since “Parts, and thus also matters, are
separated, when the contact is [...] destroyed or reduced in quantity”10 it becomes clear
why our Stone spaces, without taking into account contact, only represent separated
regions, and so are totally (or even extremally, in the finite case) disconnected. It is only
by quotienting the limit by this proximity relation that we obtain, finally, the desired
continuum, homeomorphic to the real line (or to the Euclidean three-dimensional space
in the generalisation).

The elements of this continuum are the desired boundary points, which emerge as the
infinitely small limitations of regions “glueing” them together to form a whole. They will
be defined as triplets consisting of two regions complementary to each other and a set in
the quotient obtained by intersecting the closures of their images on the continuum. The
union of the three gives the whole space. This definition is in agreement with the idea
that points are derived entities; in particular, the use of complementary regions seems
appropriate in light of the following observation found in Kant’s 1786 essay “What does
it mean to orient oneself in thinking?” :

[...]reason needs to presuppose reality as given for the possibility of all
things, and considers the differences between things only as limitations aris-
ing through the negations attaching to them ([41] 8:138n)

The quotient obtained is then the last, fundamental, component of our model of space
“as an object”. Completing the inverse limit with boundaries, we obtain a continuum
such that its parts “can be distinguished, but not separated, and the divisio non est
realis, sed logica”.

The following table provides a summary of the interpretation of the philosophical notions
in our formalization.

9[18] 4:505, but also, for instance 4:521-2, where we find:

[...] since the adjacent parts of a continuous matter are in contact with one another, [...]
one then thinks these distances as infinitely small [...]. But the infinitely small intervening
space is not at all different from contact.

10[18] 4:527]
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Philosophical notion Formal correlate
Form of intuition Finite Stone spaces and finite Boolean algebras

Part of space
Clopen sets in the Xn’s
and atoms in the BAs

Figurative synthesis
Inverse system of Stone spaces
and direct system of BAs

Synthesis of the unity of
apperception

Directedness of the inverse system of Stone
spaces under retractions and directedness of
the direct system of BAs under homomorphisms

Space as an object
(formal intuition)

Limit X̂ of the inverse system equipped
with the proximity relation δ on clopen sets

Unity of space as an object
Inverse limit X̂ and its universality up to
isomorphism

Kantian-Aristotelian boundaries Points in the quotient X̂/δ∗

Common boundary of two regions
Triplet (P, P , βP ) where P and P

are complementary regions in Xn

Infinity of space
Infinity of the limit (capturing the potential
infinity of the inverse system) and “formal
boundaries” representing −∞ and +∞

Infinite divisibility of space
Infinite process of bisection, embodied in the
direct system of BAs

The spatial continuum
Quotient X̂/δ∗ of the limit by the proximity
relation

2.3.1 Conclusions and ideas for further research

The present work provides an account of Kant’s peculiar solution to the problem of
the nature of space, focusing on the cognitive processes that enable us to acquire the
concepts of space and time. Our analysis tries to unfold the passages of the CPR that
expound the philosophical foundations of his transcendental theory, tracing back the
synthetic processes underlying the formation of the concept of space. We believe that
Kant’s theory of space (and time) can be of interest not only for the philosopher, but,
in general, for anyone who seeks to investigate the cognitive basis of our perception
of space-time. As Pinosio points out11, the importance of Kant’s contributions for
contemporary debates in cognitive science, philosophy of physics and mathematics is of

11See [27], pp. 50-54, for an exposition of the illuminating perspectives of Kant’s architecture of the
mind for contemporary cognitive science.
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no small import. Our formal model captures the idea of a continuum generated by finite
structures in a potential infinite succession, which can be elaborated to support different
axiomatisations. A key role is reserved to the relation of contact, and the emergence of
points as boundaries of regions through this relation is the distinctive feature that makes
our model object of interest for future developments. As for every model, this formal
representation does not presume to be an exhaustive description of our perception of
space, instead, we hope it can suggest some insights which can turn out to be useful in
future developments of cognitive models. An interesting suggestion for further research
would be to connect our representation of space to Pinosio’s model of time, to get a
full-fledged formalization of cognitive space-time and capture the mutual dependence of
the two.

The suggestive idea that brought us to analyse Poincaré’s conception of space was to
connect our construction with his concept of the continuum through the relation of
proximity, which can be seen as the 20th century heir of tolerance. However the way
we defined contact (and thus proximity) on the limit did not permit such a rendition.
We tried, unsuccessfully, to define a different tolerance relation on the limit that could
capture the passage from a physical continuum to a mathematical continuum, but due
to time restrictions we could not produce any significant result. However, we believe
that a development of our formal system in this direction could be object of further
investigation, especially in light of the possible determination of a notion of spatial
dimension connected to the result obtained by Sossinsky ([36]).

Although our formal attempts to capture Poincaré’s point of view failed, we produced
a set of interesting observations about the connection between Kant’s and Poincaré’s
philosophies of space. Notwithstanding the clear divergences in their ideas of the neces-
sity or contingency of our spatial representation, we found some elements of continuity
in their conceptions of phenomenal space. On the one hand, we hypothesised that
Kant would have revised his idea of the absolute inconceivability of a non-Euclidean
being, if an Euclidean model of its reasoning could be provided. On the other hand, we
claimed that Poincaré’s conventionalism applied to theories of physical space, but when
it comes to phenomenal space he relied on Euclidean spaces to represent space in a way
that everyone would understand. The mathematical interchangeability of Euclidean
and non-Euclidean geometries does not imply that they are equally good models of our
sensory experience. Moreover, we saw how the late Poincaré renounced his strong belief
in the impossibility of a priori spatial intuitions. His conception of the intuition of a
continuum as condition of possibility of experience has impressive Kantian resonances,
although he never accepted any form of transcendental idealism.

In sum, we think our work provided an interesting account of the possibilities Kant’s
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transcendental philosophy has offered and could offer in the future, through the devel-
opment of logical and cognitive models of space. Our analysis brought to light some
aspects of Kant’s influence on the philosophy of one of the most brilliant mathematicians
of the 19th century, and several studies are being published to prove the significance
of his theory of cognition to the contemporary philosophical and scientific debates. We
believe that any contribution to the subject can be helpful to generate new, stimulating
ideas . With this work, we hope to have offered some useful observations and comments
to be added to the increasingly evolving literature on Kant.
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