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Abstract

This thesis explores a newly-defined polyhedral semantics for intuitionistic and modal
logics. Formulas are interpreted inside the Heyting algebra of open subpolyhedra of a
polyhedron, and the modal algebra of arbitrary subpolyhedra with the topological interior
operator. This semantics enjoys a Tarski-style completeness result: IPC and S4.Grz are
complete with respect to the class of all polyhedra. In this thesis I explore the general
phenomenon of completeness with respect to some class of polyhedra.

I present a criterion for the polyhedral completeness of a logic based on Alexandrov’s
nerve construction. I then use this criterion to exhibit an infinite class of polyhedrally-
complete logics of each finite height, as well as demonstrating the polyhedral completeness
of Scott’s logic SL. Taking a different approach, I provide an axiomatisation for the logic
of all convex polyhedra of each dimension n.

The main conceptual contribution of this thesis is the development of a combinatorial
approach to the interaction between logic and geometry via polyhedral semantics.
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Chapter 0

Introduction

Let no one ignorant of geometry enter here

According to legend, inscribed above the door
to Plato’s Academy

Geometry and logic share a long friendship. Mathematical logic in the West probably
first found its feet in connection with the emergence of geometry as an a priori discipline
[KK62]. The Ancient Greeks inherited a collection of empirically-verified geometric
observations from the Egyptians and Babylonians, and it was their great achievement
to systematise the study and place it on a solid logical basis, culminating in Euclid’s
celebrated Elements.

It is only relatively recently, however, that a deeper connection between geometry and
logic has started to emerge. Multiple lines of research have explored links with diverse
areas, from type theory to model theory. In this thesis I contribute to a line of research
which seeks to traverse another fibre of this connection, by relating intuitionistic and
modal logic with algebras of polyhedra. In order to warm up, and to provide some context
for the present investigation, let us take a brief tour of a selection of already-established
logic-geometry links. This is by no means a comprehensive overview, but I hope that
these examples serve to give a flavour of the situation as it stands today. Numerous other
examples can be found in the Handbook of Spatial Logics [APB07], which provides an
excellent survey of some of the recent developments in this area.

Perhaps the most direct link between logic and geometry can be found in Alfred
Tarski’s seminal work investigating the logical foundations of geometry, following David
Hilbert’s programme of rigorously founding Euclid’s work [Hil50]. In [Tar59], Tarski
shows how all of elementary geometry — “that part of Euclidean geometry which can be
formulated and established without the help of any set-theoretical devices” — can be
formalised in first-order logic using only the notions of betweenness and equidistance as
non-logical concepts. He demonstrates that such a system is decidable, but not finitely
axiomatisable. This work was further developed by Tarski and his followers, looking for
instance at non-Euclidean geometries. More recently, fragments of elementary geometry
have been formalised using modal logic, by interpreting the modal � and◇ in interesting
ways. For instance, taking lines in the plane as the domain of valuation, one may consider
the modalities [‖]— interpreted as “holds in all parallel lines” — and [×]— interpreted
as “holds in all intersecting lines” [BG02] (see also [BGKV07] for an overview of this kind
of modal formalism).
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Another fibre of the logic-geometry link is topos theory. Alexander Grothendieck
invented toposes as a generalisation of topological spaces, to deal with the numerous
situations occurring in mathematics which involve topology-like and continuity-like
arguments, but where a genuine topological space is absent [Vic07]. Grothendieck’s
toposes play an important role in algebraic geometry, but topos theory also has close
connections to logic via the more general notion of an elementary topos. The situation is
summed up succinctly by Saunders MacLane and Ieke Moerdijk, who begin their prologue
to [MM94] as follows.

A startling aspect of topos theory is that it unifies two seemingly wholly
distinct mathematical subjects: on the one hand, topology and algebraic
geometry, and on the other hand, logic and set theory. Indeed, a topos can
be considered both as a “generalized space” and as a “generalized universe
of sets”.

As a somewhat related example, consider the relation, discovered around the turn of
the 21st century, between Martin-Löf type theory and homotopy theory. The former is a
theory of types originally intended for use as a foundation for constructive mathematics.
Its pertinent feature is that it accommodates two kinds of equality: the usual definitional
equality, and a (new) propositional equality. Propositional equality between objects a and
b amounts to the identity type, Id(a, b), being inhabited. Objects of type Id(a, b) can be
thought of both as proofs of the equality of a and b, and as ‘paths’ from a to b. But for any
two such p, q in Id(a, b), one may form their identity type Id(p, q). If p and q are thought
of as paths from a to b, then the objects of Id(p, q) should be thought of as homotopies
between p and q. And this scheme continues to higher levels. This culminates in an
elegant relationship between type theory and (higher) homotopy theory, which allows
the two-way transfer of ideas. Indeed, Steve Awodey begins his [Awo10] on the subject
as follows.

The purpose of this informal survey article is to introduce the reader to a new
and surprising connection between Geometry, Algebra, and Logic, which has
recently come to light in the form of an interpretation of the constructive type
theory of Per Martin-Löf into homotopy theory, resulting in new examples of
certain algebraic structures which are important in topology.

In a rather different vein, another branch of logic, namely model theory, is a source of
numerous connections. The area of geometric stability theory seeks to classify the models
of first-order theories in terms of general dimension-like properties stemming from notions
of independence [Pil96]. The key examples of this are linear independence in vector
spaces and algebraic independence in algebraically closed fields. Geometric stability
theory has found applications in diophantine geometry, beginning with Ehud Hrushovski’s
proof of the Mordell-Lang conjecture [Hru96] (see also Anand Pillay’s exposition [Pil97]).

From topological to polyhedral semantics. The genesis of many connections be-
tween logic and geometry was the discovery of topological semantics for intuitionistic
and modal logic, as pioneered by Marshall Stone [Sto38], Tang Tsao-Chen [Tsa38], Alfred
Tarski [Tar39] and John C. C. McKinsey [McK41]. This semantics is now well-known. In
short, one starts with a topological space X , and interprets intuitionistic formulas inside
the Heyting algebra of open sets of X , and modal formulas inside the modal algebra of
subsets of X with � interpreted as the topological interior operator. A celebrated result
due to Tarski [Tar39] states that this provides a complete semantics for intuitionistic
propositional logic (IPC) on the one hand, and the modal logic S4 on the other. Moreover,
one can even obtain completeness with respect to certain individual spaces. Specifically,
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McKinsey and Tarski showed [MT44] that for any separable metric space X without
isolated points, if IPC 0 φ, then φ has a countermodel based on X , and similarly with S4
in place of IPC. Later, this result was refined still further by Helena Rasiowa and Roman
Sikorski, who showed that one can do without the assumption of separability [RS63].

This result traces out an elegant interplay between topology and logic; however, it
simultaneously establishes limits on the power of this kind of interpretation. Indeed,
examples of separable metric spaces without isolated points are the n-dimensional Eu-
clidean space Rn and the Cantor space 2ω. What McKinsey and Tarski’s result shows is
that — topologically speaking — the logics of these spaces are the same, namely IPC or
S4. The upshot is that topological semantics does not allow logic to capture much of the
geometric content of a space.

A natural idea is that, if we want to remedy the situation and allow for the capture
of more information about a space, then we need a more fine-grained algebra than
the Heyting algebra of open sets, or the modal algebra of arbitrary subsets with the
interior operator. This idea was developed by Marco Aiello, Johan van Benthem, Guram
Bezhanishvili and Mai Gehrke. They consider the modal logic of chequered subsets of
Rn: finite unions of sets of the form

∏n
i=1 Ci , where each Ci ⊆ R is convex ([ABB03] and

[BBG03]; see also [BB07]).
In this thesis, I pick up a line of research, initiated by [BMMP18] and further inves-

tigated in [Gab+18], which takes this algebra-refinement idea one step further. Since
our aim is to be able to capture some of the geometric content of a space, it is natural
to restrict attention to topological spaces and subsets which are polyhedra (of arbitrary
dimension). It turns out that this works: after making this restriction, one finds oneself in
an environment which is still logic-friendly. That is, the set Subo(P) of open subpolyhedra
of P is a Heyting algebra under ⊆ (and a similar result holds in the modal case). The
main result of [BMMP18] is that more is true. A polyhedral analogue of Tarski’s theorem
holds: these polyhedral semantics are complete for IPC and S4.Grz. Furthermore, this
approach delivers at least some of what we wanted: logic can capture the dimension of
the polyhedron in which it is interpreted, via the bounded depth schema.

Two lines of approach. The Main Question driving the investigation in this thesis
is the following. Which other geometric properties of polyhedra can be captured under
these polyhedral semantics? Another way of putting this is: which logics are complete
with respect to some class of polyhedra? In fact, these two dual expressions exemplify the
two ways in which we will approach the problem. Starting with a class C of polyhedra
(say, specified by a certain geometric property), one can ask: what is the logic of C? This
is the approach taken in Chapter 4, where we consider the logic of the class of convex
polyhedra in each dimension.

Going in the other direction, one starts with a logic L , and asks whether it is the
logic of some class of polyhedra. This is the theme of Chapter 3, in which we investigate
a class of logics axiomatised by certain Jankov-Fine formulas — formulas which encode
the intuition of ‘forbidding configurations in Kripke frames’. The key piece of theory here,
and what ultimately forms a bridge between the two approaches, is a connection between
the fundamental notion of polyhedral triangulation and the construction of the nerve of a
poset. This connection will furnish us in Chapter 2 with a criterion for the polyhedral
completeness of a logic expressed purely in terms of finite posets. Using this criterion,
the logic approach transforms into a combinatorial problem on finite posets.
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Outline and main results. In Chapter 1, I remind the reader of the key logical
machinery which will be active in this thesis, and cover the basic parts of polyhedral
geometry which we will need. I then unite these two areas by showing that the set
Subo(P) of open subpolyhedra of a polyhedron P forms a locally-finite Heyting algebra,
following [BMMP18].

This unison is deepened in Chapter 2. I define the nerve N (F) of a poset F , and
give two ways in which it is used to relate logic with polyhedral geometry. (1) The
nerve enables the geometric realisation of F : there is a polyhedron P which maps in
an appropriate way onto F . This then yields the final piece in the proof, following
[BMMP18], that polyhedral semantics is complete for IPC. (2) The nerve construction is
closely related to the operation of barycentric subdivision on a triangulation. Exploiting
this relation I present a proof — from joint work with Nick Bezhanishvili, David Gabelaia
and Vincenzo Marra — of the Nerve Criterion for polyhedral completeness: a logic L is
complete with respect to some class of polyhedra if and only if it is the logic of a class of
finite frames closed under taking nerves. Viewing this result in terms of Kripke frames,
we can say that “the logic of a polyhedron is the logic of the iterated nerves of any one
of its triangulations”. The criterion yields many negative results, showing in particular
that there are continuum-many non-polyhedrally-complete logics with the finite model
property.

At this point, the only logics known to be polyhedrally-complete are, speaking in-
tuitionistically, IPC and the logic BDn of bounded depth n, for each n. In Chapter 3, I
expand the known domain of polyhedrally-complete logics, following the logical approach
mentioned above. I consider logics defined using starlike trees as forbidden configurations
— i.e. logics defined by the Jankov-Fine formulas of a collection of trees with a special
property: trees which only branch at the root. Exploiting the Nerve Criterion, I prove that
every such logic is polyhedrally-complete if and only if it has the finite model property.
This yields an infinite class of polyhedrally-complete logics of each finite height, as well as
one of infinite height: Scott’s logic SL. As forbidden configurations, starlike trees turn out
to have a clear geometric meaning, expressing connectedness properties of polyhedral
spaces, and this provides one answer to the Main Question. One might wonder if a
generalisation is possible to arbitrary trees, or even to a wider class of frames. As to
the latter, some negative results are known; see Corollary 4.12. For the former, the
situation is rather obscure, and it is not clear whether it is possible to account for the
additional complexity introduced by allowing branching at higher points of the tree; see
the discussion on ‘general trees’ in Section 3.4.

Chapter 4 takes the other approach, and considers a very geometrically-motivated
question: what is the logic of the class of n-dimensional convex polyhedra? This turns
out to be axiomatised by the Jankov-Fine formulas of three simple starlike trees, and
Chapter 4 is devoted to a proof of this fact. For soundness, the proof follows using the
results in Chapter 3 (however, a direct geometric proof is possible). As to completeness,
the proof proceeds in two stages. The first stage is combinatorial, and involves showing
that the logic axiomatised by these Jankov-Fine formulas is complete with respect to a
certain class of finite posets called saw-topped trees. To conclude, I show that each of
these finite posets can be realised geometrically in an n-dimensional convex polyhedron.

A triad of fields. This thesis develops the interplay of a triad of fields (Figure 1).
Geometric methods are combined with techniques from the logical combinatorics of finite
frames, as well as combinatorial geometry, in order to deepen the exciting new link
recently established between logic and polyhedra. This area is still in its infancy, and
there are many interesting open problems and directions for future research. The natural
ultimate goal would be a full classification of all polyhedrally-complete logics, which
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Geometry Combinatorics

Logic

Figure 1: The triad of fields

would provide a comprehensive answer to the Main Question of this thesis. But other
directions present themselves, such as questions of decidability, or the intriguing prospect
of using logical methods to prove classical theorems in geometry. I briefly explore these
ideas and others in the conclusion.
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Chapter 1

Background and Set-up

In this chapter, I go over the needed background from logic and geometry, and set up the
first link between them. Throughout, I will assume familiarity with basic topology and
linear algebra. I will also assume knowledge of elementary notions from category theory,
such as functor, equivalence and duality. For a clear introduction to these concepts I refer
the reader to [Awo06], but this knowledge is not essential for most of the thesis.

1.1 Logical Machinery

The main kind of logic considered in this thesis is intuitionistic logic. In this section I
remind the reader of the main definitions and results which we will need later on, and
also set up some notation, primarily following [CZ97]. Another kind of logic, namely
modal logic, is also important. However, as we shall see, results in the present setting
transfer freely between intuitionistic logic and modal logic, and it suffices to consider
only one of the two. I opt for the former, in line with [BMMP18].

Intermediate logics. We begin with a set Prop of propositional variables, and
generate the set Form of formulas in the usual way, using the connectives ⊥, ∧, ∨ and→.
A logic L is a deductively-closed set of formulas. Write L ` φ for φ ∈ L . The logic IPC
is the standard intuitionistic propositional logic. An intermediate logic is a consistent logic
extending IPC. Classical propositional logic, CPC, is the largest intermediate logic. I will
usually use the term ‘logic’ as a shorthand for ‘intermediate logic’. The actual gory syntax
of the logics plays a rather ancillary role in this thesis, and we will mainly be concerned
with its semantic aspects. I will outline here two standard types of structure in which
intermediate logics are interpreted.

Posets as Kripke frames. A Kripke frame for intuitionistic logic is simply a poset
(F,¶). For technical reasons, let us allow ∅ as a frame. The relation � is defined in the
usual way. Given a class of frames C, its logic is:

Logic(C) := {φ ∈ Form | ∀F ∈ C: F � φ}

Conversely, given a logic L , define:

Frames(L ) := {F Kripke frame | F �L}
Framesfin(L ) := {F finite Kripke frame | F �L}

9



A logic L has the finite model property (f.m.p.) if it is the logic of a class of finite frames.
Equivalently, if L = Logic(Framesfin(L )).

PROPOSITION 1.1. (1) IPC is the logic of the class of all frames.

(2) IPC has the finite model property, so that IPC is the logic of the class of all finite
frames.

Proof. See [CZ97, Theorem 2.43, p. 45 and Theorem 2.57, p. 49].

The structure of Kripke frames. Let us carve out some additional vocabulary and
notation. Fix posets F and G. A subframe of F is a subset H ⊆ F regarded as a subposet.
For any x ∈ F , its upset, downset, strict upset and strict downset are defined, respectively,
as follows.

↑(x) := {y ∈ F | y ¾ x}
↓(x) := {y ∈ F | y ¶ x}
⇑(x) := {y ∈ F | y > x}
⇓(x) := {y ∈ F | y < x}

For any set S ⊆ F , its upset and downset are defined, respectively, as follows.

↑U :=
⋃

x∈U

↑(x)

↓U :=
⋃

x∈U

↓(x)

A subframe U ⊆ F is upwards-closed or a generated subframe if U = ↑U . It is downwards-
closed if ↓U = U . The Alexandrov topology on F is the set of its upwards-closed subsets.
This constitutes a topology on F . In the sequel, we will freely switch between thinking
of F as a poset and as a topological space. Note that the closed sets in this topology
correspond to downwards-closed sets.

A top element of F is t ∈ F such that depth(t) = 0. The set of top elements in F is
denoted by Top(F); let Trunk(F) := F \Top(F). The top width of F is |Top(F)|. For any
x , y ∈ F , say that x is an immediate predecessor of y and that y is an immediate successor
of x if x < y and there is no z ∈ F such that x < z < y . Write Succ(x) for the collection
of immediate successors of x .

A chain in F is X ⊆ F which as a subposet is linearly-ordered. The length of the chain
X is |X |. The chain X is strict if there are no x < y < z such that x , z ∈ X but y /∈ X . Take
any subframe H ⊆ F . A chain X ⊆ H is maximal (in H) if there is no chain Y ⊆ H such
that X ⊂ Y (i.e. such that X is a proper subset of Y ). The height of H is the element of
N∪ {∞} defined by:

height(H) := sup{|X | − 1 | X ⊆ H is a chain}

For notational uniformity, say that this value is also the depth of H, depth(H). Let
height(∅) = depth(∅) = −1. Note that these definitions apply when H = F . For any
x ∈ F , define its height and depth as follows.

height(x) := height(↓(x))
depth(x) := depth(↑(x))

The height of a logic L is the element of N∪ {∞} given by:

height(L ) := sup{height(F) | F ∈ Frames(L )}
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A frame F has uniform height n if every top element has height n.
The poset F is rooted if it has a minimum element, which is called the root, and is

usually denoted by ⊥. Define:

Frames⊥(L ) := {F ∈ Frames(L ) | F is rooted}
Frames⊥,fin(L ) := {F ∈ Framesfin(L ) | F is rooted}

PROPOSITION 1.2. Frames⊥(CPC) = {•}, the singleton of the 1-element poset.

Proof. Note that if F � p ∨¬p and F is rooted then F = •.

The comparability relation ./ on F is defined:

x ./ y ⇔ (x < y or y < x)

Say that x and y are comparable if x ./ y. The comparability graph of F is the graph
(F,./). A path in F is a path in its comparability graph — in other words, a sequence
p = x0 · · · xk of elements of F such that for each i we have x i ./ x i+1. Write p : x0  xk.
The path p is closed if x0 = xk. The poset F is path-connected if between any two points
there is a path.

PROPOSITION 1.3. When F is finite, it is path-connected if and only if it is connected as
a topological space.

Proof. See [BG11, Lemma 3.4].

A connected component of F is a subframe U ⊆ F which is connected as a topological
subspace and is such that there is no connected V with U ⊂ V .

PROPOSITION 1.4. (1) The connected components partition F .

(2) Connected components are downwards-closed.

(3) When F is finite, each connected component is upwards-closed.

Proof. These are standard results in topology. See e.g. [Mun00, §25, p. 159].

An antichain in F is a subset Z ⊆ F in which no two elements are comparable (i.e. a
so-called independent set in the comparability graph of F). The width width(F) of F is the
cardinality of the largest antichain in F .

P-morphisms. A function f : F → G is a p-morphism if it satisfies the following two
conditions.

∀x , y ∈ F : (x ¶ y ⇒ f (x)¶ f (y)) (forth)

∀x ∈ F : ∀z ∈ G : ( f (x)¶ z⇒∃y : (x ¶ y ∧ f (y) = z)) (back)

REMARK 1.5. The (forth) condition expresses that f is monotonic, and is equivalent to
requiring that f be continuous. The (back) condition is equivalent to requiring that f be
open.

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed set
U ⊆ F to G. Write f : F ◦→ G.

PROPOSITION 1.6. If there is an up-reduction F ◦→ G then Logic(F) ⊆ Logic(G). In
other words, if G 2 φ then F 2 φ.
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Proof. See [CZ97, Corollary 2.8, p. 30 and Corollary 2.17, p. 32].

COROLLARY 1.7. If C is any collection of frames and L = Logic(C), then:

L = Logic(Frames⊥(L ))

Proof. First, L ⊆ Logic(Frames⊥(L )). Conversely, suppose L 0 φ. Then there exists
F ∈ C such that F 2 φ, hence there is x ∈ F such that x 2 φ (for some valuation on
F), meaning that ↑(x) 2 φ. Now, ↑(x) is upwards-closed in F , hence id↑(x) is an up-
reduction F ◦→ ↑(x). Then by Proposition 1.6, we get that ↑(x) � L , so that ↑(x) ∈
Frames⊥(L ).

Trees. A finite poset T is a tree if it has a root ⊥, and every other x ∈ T \ {⊥} has
exactly one immediate predecessor. A branch in T is a maximal chain. Given any finite,
rooted poset F , its tree unravelling T (F) is the set of its strict chains which contain the
root. Define the function last: T (F)→ F by:

X 7→max(X )

PROPOSITION 1.8. T (F) is a tree and last is a p-morphism.

Proof. See [CZ97, Theorem 2.19, p. 32].

Heyting algebras. A Heyting algebra is a set A equipped with operations ∧, ∨ and
→ together with distinguished elements 0 and 1, such that (A,∧,∨, 0, 1) is a bounded
lattice and→, called the Heyting implication, satisfies:

c ¶ a→ b ⇔ c ∧ a ¶ b

A map h: A→ B between Heyting algebras is a homomorphism if it preserves ∧, ∨,→,
0 and 1. A Heyting subalgebra is a subset B ⊆ A such that B is a Heyting algebra under ∧,
∨,→, 0 and 1. Given S ⊆ A, the Heyting subalgebra generated by S is defined:

〈S〉 :=
⋂

{B ⊆ A | B is a subalgebra and S ⊆ B}

It is straightforward to see that 〈S〉 is a subalgebra, and the smallest subalgebra containing
S. The Heyting algebra A is locally-finite if for every finite S ⊆ A the subalgebra 〈S〉 is also
finite.

An assignment on A is a function I : Prop → A. The value ¹φºI of any formula φ
under this assignment is defined inductively as follows.

¹⊥ºI = 0

¹ψ∧χºI = ¹ψºI ∧ ¹χºI

¹ψ∨χºI = ¹ψºI ∨ ¹χºI

¹ψ→ χºI = ¹ψºI → ¹χºI

A formula φ is valid on A, notation A� φ, if ¹φºI = 1 for every assignment I . Extend the
Logic(C) notation to classes of Heyting algebras. Let us record some basic facts about the
interaction between logic and Heyting algebras.

PROPOSITION 1.9. Let A and B be Heyting algebras with B a subalgebra of A. Then
Logic(A) ⊆ Logic(B).

Proof. See [CZ97, Proposition 7.59, p. 220].
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PROPOSITION 1.10. The logic of a Heyting algebra is the logic of its finitely-generated
subalgebras. That is, for any Heyting algebra A, we have:

Logic(A) = Logic(B | B finitely-generated subalgebra of A)

Proof. The left-to-right inclusion is by Proposition 1.9. For the right-to-left, assume that
A2 φ for some formula φ. Then there is an assignment I on A such that ¹φºI 6= 1. Let
p1, . . . , pm be the propositional variables occurring in φ. Without loss of generality, we
may assume that the domain of I is {p1, . . . , pm}. Let B := 〈I(p1), . . . , I(pm)〉. Then I is
also an assignment on B, and ¹φºI ∈ B. Thus B 2 φ.

Co-Heyting algebras. Perhaps less well known than their cousins, co-Heyting alge-
bras are structures dual with Heyting algebras. A co-Heyting algebra is a set C equipped
with operations ∧, ∨ and ← together with distinguished elements 0 and 1, such that
(C ,∧,∨, 0, 1) is a bounded lattice, and←, called the co-Heyting implication, satisfies:

a← b ¶ c ⇔ a ¶ b ∨ c

Co-Heyting algebras are intimately related with Heyting algebras. In fact, every
co-Heyting algebra can be regarded as a Heyting algebra in the following way. As lattices,
co-Heyting and Heyting algebras can be seen as categories; then given any co-Heyting
algebra A, its opposite category Aop is a Heyting algebra, and vice versa. This schema of
dualities allows us to transfer definitions and results between Heyting and co-Heyting
algebras.

For more information on co-Heyting algebras I refer the reader to [MT46, §1] and
[Rau74], where they are called ‘Brouwerian algebras’. I mention these dual algebras be-
cause, as we will see, the logical structure of a polyhedron is more immediately approached
from the co-Heyting perspective. However, since we are interested in connections with
intuitionistic logic, it is most natural to flip to Heyting algebras.

Topological semantics. In advance of our upcoming encounter with polyhedral
semantics, let us see how, as mentioned in the introduction, we can interpret formulas
inside a topological space X . The collection of open sets O (X ) of X forms a Heyting
algebra. We take ∅, X , ∩ and ∪ for 0, 1, ∧ and ∨, respectively, and define the Heyting
implication→ by:

U → V := Int(UC ∪ V )

where Int is the topological interior operator, and −C is the complement operator.

PROPOSITION 1.11. With these assignments, O (X ) is a Heyting algebra.

Proof. See [CZ97, Proposition 8.31, p. 247].

This means that we can interpret formulas inside topological spaces. Write X � φ for
O (X ) � φ, and extend the other Heyting algebra notation to X . The completeness result
mentioned in the introduction can now be written down explicitly.

THEOREM 1.12 (McKinsey-Tarski Theorem). Let X be any separable metrisable space
without isolated points. Then IPC= Logic(X ).

Proof. The original proof is in [MT44]. Helena Rasiowa and Roman Sikorski proved
this result without the separability requirement [RS63]. For a newer, more topological
proof, see [BBLM18]. For some modern proofs of specific cases, see [BB07, §2.5, pp. 241–
250].
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The topological space X also comes with a co-Heyting algebra, namely its collection
of closed sets C (X ). Co-Heyting implication on C (X ) is defined:

C ← D := Cl(C \ D)

where Cl denotes the topological closure operator. Now, the present topological setting
provides concrete realisation of the schema of dualities between Heyting and co-Heyting
algebras. Indeed, the complement operator −C gives an isomorphism O (X )op ∼=C (X ).

Finite Esakia duality. The Alexandrov topology means that every Kripke frame F
can be thought of as a topological space. The collection of open sets of this space then
forms a Heyting algebra, as above. Denote this Heyting algebra by Up F — the algebra of
upwards-closed sets in F — and let us call it the dual Heyting algebra of F .

Can this process be reversed? It turns out that if we want to associate a dual structure
to each Heyting algebra, in general we need something richer than a Kripke frame. The
Esakia duality establishes a duality between the category of Heyting algebras and the
category of so-called Esakia spaces. (Note that this duality occurs on a different level to
the schema of dualities between Heyting algebras and co-Heyting algebras, where the
duality occurred when we considered those algebras themselves as categories.) We won’t
need the full result here, but it turns out that when one restricts to the finite case, what
results is a duality between finite Heyting algebras and finite Kripke frames.

Let A be a Heyting algebra. A filter on A is a subset W ⊆ A such that the following
conditions hold.

(a) W is non-empty.

(b) W is upwards-closed.

(c) For every a, b ∈W we have a ∧ b ∈W .

The filter W is prime if in addition it satisfies the following.

(d) W is proper.

(e) Whenever a ∨ b ∈W we have a ∈W or b ∈W .

The spectrum Spec A of A is the set of all prime filters in A. It forms a poset under ⊆. When
A is finite, call Spec A the dual poset of A; note that Spec A is again finite.

So, to every (finite) poset, we associate a (finite) Heyting algebra, and to every finite
Heyting algebra, we associate a finite poset. In order to extend this to an equivalence of
categories, we need to see how maps between structures are transformed. The natural
maps in the category of Kripke frames are p-morphisms. Given a p-morphism f : F → G,
define:

Up( f ): Up G→ Up F

U 7→ f −1[U]

Going the other direction, given a homomorphism h: A→ B between Heyting algebras,
define:

Spec(h): Spec B→ Spec A

W 7→ h−1[W ]

THEOREM 1.13. Thus defined, Up and Spec form an equivalence of categories between
the category of finite Kripke frames with p-morphisms and the category of finite Heyting
algebras with homomorphisms.
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Proof. See [DT66]. The original proof in Russian of the general Esakia duality is found
in [Esa85]. An English translation is forthcoming [Esa19]. English proofs are also given
in [CJ14] and [Mor05, §5]. In the finite case, we have isomorphisms A∼= Up SpecA and
F ∼= SpecUp F for any finite Heyting algebra A and finite poset F . The former is part of
Brikhoff’s Representation Theorem [Bir37]. Both isomorphisms may be found in [DP90,
pp. 171-172].

Importantly, this duality is logic-preserving.

PROPOSITION 1.14. Let F be a frame and A be a finite Heyting algebra. Then:

Logic(F) = Logic(Up F)
Logic(A) = Logic(Spec A)

Proof. For the first equality, see [CZ97, Corollary 8.5, p. 238], noting that our Kripke
frames are special cases of what are there called ‘intuitionistic general frames’. The second
equality follows from the first using the finite Esakia duality.

COROLLARY 1.15. If C is a class of locally-finite Heyting algebras, then Logic(C) has the
finite model property.

Proof. Take A∈ C. Since it is locally-finite, by Proposition 1.10 we have:

Logic(A) = Logic({B | B finite subalgebra of A})

Therefore, by Proposition 1.14, we get:

Logic(C) =
⋂

A∈C

Logic(A)

= Logic(Spec B | A∈ C and B finite subalgebra of A)

Thus C has the finite model property.

Jankov-Fine formulas as forbidden configurations. A very important class of for-
mulas which will reoccur throughout the thesis is the class of Jankov-Fine formulas. These
formulas allow logic to capture quite precisely the notion of up-reduction. To every finite
rooted frame Q, we associate a formula χ(Q), the Jankov-Fine formula of Q (also called
the Jankov-De Jongh formula of Q). The precise definition of χ(Q) is somewhat involved,
but the exact details of this syntactical form are not relevant for our considerations. What
matters to us is its notable semantic property.

THEOREM 1.16. For any frame F , we have that F � χ(Q) if and only if F does not
up-reduce to Q.

Proof. See [CZ97, §9.4, p. 310], for a treatment in which Jankov-Fine formulas are
considered as specific instances of more general ‘canonical formulas’. A more direct proof
is found in [Bez06, §3.3, p. 56], which gives a complete definition of χ(Q). See also
[BB09] for an algebraic version of this result.

Jankov-Fine formulas formalise the intuition of ‘forbidden configurations’. The formula
χ(Q) ‘forbids’ the configuration Q from its frames. Later, we will use these formulas as
definitional devices, but for now note the following handy corollary.

COROLLARY 1.17. Let L = Logic(C) where C is a class of frames. Then:

Frames⊥,fin(L ) = {F finite rooted frame | ∃G ∈ C: G ◦→ F}
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Proof. First, if F is a finite rooted frame such that there is G ∈ C and an up-reduction
G ◦→ F , then by Proposition 1.6 we have that F ∈ Frames⊥,fin(L ). Conversely take F
finite and rooted, and assume that there is no G ∈ C with G ◦→ F . Then by Theorem 1.16,
G � χ(F) for every G ∈ C; whence L ` χ(F). This means that F 2 L , so that F /∈
Frames⊥,fin(L ).

The logics of bounded depth. We now meet a well-known schema of logics which
will pop up at various points throughout the thesis. For n ∈ N, define the axiom of bounded
depth n inductively as follows, where p0, p1, . . . is an infinite set of distinct propositional
variables.

bd0 := p0 ∨¬p0

bdn+1 := (pn+1 ∨ (pn+1→ bdn))

Then let the logic of bounded depth n be BDn := IPC+ bdn. Note that CPC= BD0.

PROPOSITION 1.18. A frame F validates BDn if and only if height(F)¶ n.

Proof. See [CZ97, Proposition 2.38, p. 43].

Let Chk be the chain (linear order) on k+ 1 elements.

PROPOSITION 1.19. A frame F validates BDn if and only if there is no p-morphism
F → Chn+1.

Proof. See [CZ97, Table 9.2, p. 291 and §9.1].

An important property of each logic BDn is that any extension automatically has the f.m.p.

THEOREM 1.20 (Segerberg’s Theorem). Let L be a logic extending BDn. Then L has
the finite model property. Hence BDn = Logic(F frame | height(F)¶ n).

Proof. See [CZ97, Theorem 8.85, p. 272].

The modal story. Modal formulas are built up in the usual way from Prop using the
connectives ⊥, �, ∧, ∨ and→. The following standard modal logics are relevant here.

• Propositional modal logic K.

• S4 := K+ (�p→ p) + (�p→ ��p).

• S4.Grz := S4+ grz, where grz := �(�(p→ �p)→ p)→ p.

A modal algebra is a set M equipped with operations �, ∧, ∨ together with distinguished
elements 0 and 1 such that (M ,∧,∨, 0, 1) is a Boolean algebra and � satisfies �1 = 1 and
�(a ∧ b) = (�a ∧�b). An assignment is a function I : Prop→ M . The value ¹φºI of any
modal formula φ under I is computed inductively just as in the case of Heyting algebras,
with:

¹ψ→ χºI = ¬¹ψºI ∨ ¹χºI

The formula φ is valid on M if ¹φºI = 1 for every assignment I on M . Let us extend
our logical notation to modal algebras. A modal algebra M is an S4-algebra (also called
interior algebra or closure algebra) if M � S4, and a Grzegorczyk algebra if M � S4.Grz.
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Modal logic enjoys an intimate connection with intuitionistic logic. The Gödel trans-
lation, Tr, mapping intuitionistic formulas to modal formulas, is defined inductively as
follows.

Tr(⊥) =⊥
Tr(p) := �p

Tr(ψ∧χ) := Tr(ψ)∧ Tr(χ)
Tr(ψ∨χ) := Tr(ψ)∨ Tr(χ)

Tr(ψ→ χ) := �(Tr(ψ)→ Tr(χ))

PROPOSITION 1.21. Let M be a S4-algebra, and let M� be the subset of M consisting of
all those a such that �a = a. Then M� is a Heyting algebra, with ∧, ∨, 0 and 1 inherited
from M , and→ defined:

a→ b := �(¬a ∨ b)

Moreover, for any intuitionistic formula φ, we have:

M� � φ ⇔ M � Tr(φ)

Proof. See [CZ97, Lemma 8.28 and Proposition 8.31, pp. 246–247].

Note the link with the topological semantics above. Indeed, when X is a topological
space, the setP (X ) is a S4-algebra with � interpreted as the topological interior operator.
We saw above that O (X ) was a Heyting algebra, with the Heyting implication→ defined
as U → V := Int(UC ∪ V ).

THEOREM 1.22. Let A be a Heyting algebra. Then there is a S4-algebra M such that
A∼= M� .

Proof. See [CZ97, Corollary 8.35, p. 249].

REMARK 1.23. This S4-algebra M is not in general unique up to isomorphism.

The pinnacle of the connection between modal and intuitionistic logic is the Blok-
Esakia Theorem. Taking logics to be sets of formulas, we can view the class of intermediate
logics as a lattice; denote this by ExtIPC. Similarly, denote the lattice of (normal) modal
logics extending S4.Grz by NExtGrz.

THEOREM 1.24 (Blok-Esakia Theorem). There is an isomorphism σ : ExtIPC→ NExtGrz
such that for any L ∈ ExtIPC:

L = {Tr(φ) | φ ∈ σL}

Proof. This theorem was proved independently by Willem Blok [Blo76] and Leo Esakia
[Esa76]. For alternative proofs, see [CZ97, §9.6] and [Jeř09].

1.2 Polyhedra

In this section, I will describe those parts of polyhedral geometry which will be necessary
for establishing and strengthening the link between logic and polyhedra. I will mainly be
following [Sta67] and [Mun84], along with the exposition given in [BMMP18].
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Figure 1.1: Some examples of the convex hull operation in R2

Figure 1.2: A medley of different polyhedra in R3. Each connected region is a polyhedron,
as is the union of any number of those regions.

Polytopes and polyhedra. Every polyhedron considered here lives in some Euclidean
space Rn. Take x0, . . . , xd ∈ Rn. An affine combination of x0, . . . , xd is a point r0 x0 + · · ·+
rd xd , specified by some r0, . . . , rd ∈ R such that r0 + · · ·+ rd = 1. A convex combination is
an affine combination in which additionally each ri ¾ 0. Given a set S ⊆ Rn, its convex
hull Conv S is the collection of convex combinations of its elements. See Figure 1.1 for
a couple of examples of the convex hull operation in R2. A subspace S ⊆ Rn is convex
if Conv S = S. A polytope is the convex hull of a finite set. A polyhedron in Rn is a set
which can be expressed as the finite union of polytopes. To get an idea of the variety
of subspaces which fall under the term ‘polyhedron’, see Figure 1.2. Note that every
polyhedron is closed and bounded, hence compact.

Simplices. A set of points x0, . . . , xd is affinely independent if whenever:

r0 x0 + · · ·+ rd xd = 0 and r0 + · · ·+ rd = 0

we must have that r0, . . . , rd = 0. This is equivalent to saying that the vectors:

x1 − x0, . . . , xd − x0

are linearly independent. A d-simplex is the convex hull σ of d + 1 affinely independent
points x0, . . . , xd , which we call its vertices. Write σ = x0 · · · xd ; its dimension is Dimσ :=
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Figure 1.3: A quintessential 0-,1-,2- and 3-simplex

d. The idea is that a d-simplex is the simplest kind of polyhedron of dimension d. See
Figure 1.3 for representations of some simplices of dimensions 0 to 3 (of course, not
all simplices are so regular). In fact, as we shall soon see, every polyhedron can be
decomposed into these basic building blocks.

PROPOSITION 1.25. Every simplex determines its vertex set: two simplices coincide if
and only if they share the same vertex set.

Proof. See [Mau80, Proposition 2.3.3, p. 32].

A face of σ is the convex hull τ of some non-empty subset of {x0, . . . , xd} (note that τ is
then a simplex too). Write τ´ σ, and τ≺ σ if τ 6= σ.

Since x0, . . . , xd are affinely independent, every point x ∈ σ can be expressed uniquely
as a convex combination x = r0 x0 + · · ·+ rd xd . Call the tuple (r0, . . . , rd) the barycentric
coordinates of x in σ. The barycentre bσ of σ is the special point whose barycentric
coordinates are ( 1

d+1 , . . . , 1
d+1 ). The relative interior of σ is defined:

Relintσ := {r0 x0 + · · ·+ rd xd ∈ σ | r0, . . . , rd > 0}

The relative interior of σ is ‘σ without its boundary’ in the following sense. The affine
subspace spanned by σ is the set of all affine combinations of x0, . . . , xd . Then the relative
interior of σ coincides with the topological interior of σ inside this affine subspace. Note
that Cl Relintσ = σ, the closure being taken in the ambient space Rn.

Triangulations. A simplicial complex in Rn is a finite set Σ of simplices satisfying the
following conditions.

(a) Σ is ≺-downwards-closed: whenever σ ∈ Σ and τ≺ σ we have τ ∈ Σ.

(b) If σ,τ ∈ Σ, then σ∩τ is either empty or a common face of σ and τ.

The support of Σ is the set |Σ| :=
⋃

Σ. Note that by definition this set is automatically a
polyhedron. We say that Σ is a triangulation of the polyhedron |Σ|. See Figure 1.4 for
examples of triangulations of the polyhedra in Figure 1.2. Notice that Σ is a poset under
≺, called the face poset. Here we see the first suggestion of a connection with logic via
Kripke frames. A subcomplex of Σ is subset which is itself a simplicial complex. Note that
a subcomplex, as a poset, is precisely a downwards-closed set. Given σ ∈ Σ, its open star
is defined:

o(σ) :=
⋃

{Relint(τ) | τ ∈ Σ and σ ⊆ τ}

PROPOSITION 1.26. The relative interiors of the simplices in a simplicial complex Σ
partition |Σ|. That is, for every x ∈ |Σ|, there is exactly one σ ∈ Σ such that x ∈ Relintσ.

Proof. See [Mau80, Proposition 2.3.6, p. 33].
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Figure 1.4: Triangulations of the medley of polyhedra given in Figure 1.2

In light of Proposition 1.26, for any x ∈ |Σ| let us write σx for the unique σ ∈ Σ such
that x ∈ Relintσ.

PROPOSITION 1.27. Let Σ be a simplicial complex, take τ ∈ Σ and x ∈ Relintτ. Then
no proper face σ ≺ τ contains x . This means that σx is the inclusion-smallest simplex
containing x .

Proof. See [BMMP18, Lemma 3.1].

The next result is a basic fact of polyhedral geometry, and will play a fundamental role
in connecting it with logic throughout this thesis. For Σ a triangulation and S a subspace
of the ambient Euclidean space Rn, define:

ΣS := {σ ∈ Σ | σ ⊆ S}

This, being a downwards-closed subset of Σ, is a subcomplex of Σ.

LEMMA 1.28 (Triangulation Lemma). Any polyhedron admits a triangulation which
simultaneously triangulates each of any fixed finite set of subpolyhedra. That is, for a
collection of polyhedra P,Q1, . . . ,Qm such that each Q i ⊆ P, there is a triangulation Σ of
P such that ΣQ i

triangulates Q i for each i.

Proof. See [RS72, Theorem 2.11 and Addendum 2.12, p. 16].

A note on terminology. The term ‘polyhedron’ is ancient, and over the years it has
acquired a variety of meanings. A remark on the present terminology is in order. I will
partly be following [BMMP18, Remark 2.11]. In one very traditional usage (though still
present in some fields today), ‘polyhedron’ is reserved for convex sets. Another possible
restriction, in line with historical terminology, is that ‘polyhedron’ applies only to three-
dimensional solids. As is standard in the field of piecewise-linear topology however, the
usage in the present thesis is not subject to these restrictions (c.f. classic textbooks [Sta67;
RS72]).
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I should note however that the standard usage of ‘polyhedron’ is in fact more general
than the present one. In PL topology, a ‘polyhedron’ is the union of a locally-finite simplicial
complex. The latter is defined as a (possibly infinite) set Σ of simplices satisfying (a) and
(b) in our definition of ‘simplicial complex’ above, subject to the condition that every point
x ∈

⋃

Σ has an open neighbourhood which intersects only finitely-many simplices. Now,
it is a standard fact that ‘compact polyhedra’ (in the more general sense) coincide with
what we are referring to here as ‘polyhedra’ (see [RS72, Theorem 2.2, p. 12]). Hence we
are effectively using the term ‘polyhedron’ as a shorthand for ‘compact polyhedron’; such
usage is common in the literature (see, e.g. [Mau80]).

The dimension of a polyhedron. I said above that the dimension of a d-simplex
σ = x0 · · · xd is exactly d. Since the vertices x0, . . . , xd are affinely independent, this is the
same as the linear-space dimension of the affine subspace spanned by σ. The dimension
of simplicial complex Σ is:

DimΣ :=max{Dimσ | σ ∈ Σ}

REMARK 1.29. Note that DimΣ= height(Σ) as a poset.

PROPOSITION 1.30. Let Σ,∆ be simplicial complexes. If |Σ| = |∆| then DimΣ = Dim∆.

Proof. See [Sta67, Proposition 1.6.12, p. 30].

With this in mind, we define the dimension Dim P of a polyhedron P to be the dimension
of its triangulations. When P =∅, let Dim P := −1.

Barycentric subdivision. Triangulations allow us in some ways to approximate the
structure of a polyhedron. The finer the triangulation, the better the approximation.
Barycentric subdivisions afford us a systematic way of generating finer and finer trian-
gulations, starting from a base. This process allows us to extract, in the limit, all the
relevant information about a polyhedron, in a way made precise by the Nerve Criterion,
which we will meet in Chapter 2.

Let Σ, ∆ be simplicial complexes. ∆ is a subdivision or refinement of Σ, notation
∆Ã Σ, if |Σ|= |∆| and every simplex of ∆ is contained in a simplex of Σ.

LEMMA 1.31. If ∆Ã Σ then for every σ ∈ Σ we have:

σ =
⋃

{τ ∈∆ | τ ⊆ σ}

Proof. Let S := {τ ∈∆ | τ ⊆ σ}. Clearly
⋃

S ⊆ σ. Conversely, for x ∈ σ, let τx ∈∆ be
such that x ∈ Relintτx . Since ∆ refines Σ, there is some ρ ∈ Σ such that τx ⊆ ρ; assume
that ρ is inclusion-minimal with this property. It follows from [Spa66, §3, Lemma 3,
p. 121] that Relintτx ⊆ Relintρ, meaning that x ∈ σ∩Relintρ. By condition (b) on Σ,
we have that σ ∩ρ is face of ρ. But then by Proposition 1.27, ρ ´ σ, since otherwise
σ∩ρ would be a proper face of ρ containing x ∈ Relintρ. Therefore τx ⊆ ρ ⊆ σ so that
x ∈

⋃

S.

The barycentric subdivision SdΣ of Σ is particularly important kind of subdivision. The
idea is that we put a new vertex at the barycentre of each simplex in Σ, then build up the
rest of the simplicial complex around this. Spelling this in detail is somewhat involved,
and the technical details will not be needed in this thesis. Hopefully the examples in
Figure 1.5 should provide the intuition behind the construction, but for a full definition I
refer the reader to [Mun84, §15, p. 83].
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Figure 1.5: Examples of barycentric subdivision (the right-most tetrahedron is drawn
without filled-in faces to aid clarity)

1.3 Logic and Polyhedra in Concert

Now that the background in logic and geometry has been established, we are in a position
to connect the two. As indicated above, the initial contact is made between polyhedra and
co-Heyting algebras. By exploiting duality, we then attain our connection with Heyting
algebras and intuitionistic logic.

The co-Heyting algebra of sub-polyhedra. Fix throughout a polyhedron P. Let
SubcP denote the set of subpolyhedra of P. We will see that SubcP is a co-Heyting algebra.

PROPOSITION 1.32. SubcP is a distributive lattice under ∩ and ∪.

Proof. I follow [BMMP18, Corollary 2.12]; see also [Mau80, Proposition 2.3.6, p. 33].
First note that ∅ and P are minimal and maximal elements in SubcP. Also, by definition,
the union of two polyhedra is again a polyhedron. So take Q, R ∈ SubcP and consider
Q ∩ R. By the Triangulation Lemma 1.28, there is a triangulation Σ of P such that ΣQ
and ΣR triangulate Q and R respectively. Since ΣQ and ΣR are subcomplexes of Σ, so is
ΣQ ∩ΣR. I will show that |ΣQ ∩ΣR| = Q ∩ R, which will complete the proof. First, by
definition |ΣQ ∩ΣR| ⊆ Q ∩ R. Conversely, take x ∈ Q ∩ R. Since |ΣQ| = Q and |ΣR| = R,
there are σQ ∈ ΣQ and σR ∈ ΣR such that x ∈ σQ ∩σR. Then, by condition (b) in the
definition of simplicial complex, σQ ∩σR must be a common face of σQ and σR. But then
by condition (a), we must have σQ ∩σR ∈ ΣQ ∩ΣR, so that x ∈ |ΣQ ∩ΣR|.

THEOREM 1.33. SubcP is a co-Heyting algebra, and a subalgebra of C (P).
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Proof. I follow [BMMP18, Lemma 3.1]; see also [Mau80, Proposition 2.3.7, p. 34]. Take
Q, R subpolyhedra of P; I will show that C := Cl(Q \ R) is a polyhedron. First note that,
by taking R∩Q, we may assume that R ⊆Q. Using the Triangulation Lemma 1.28, let Σ
be a triangulation of Q such that ΣR triangulates R. Define:

∆ := {σ ∈ Σ | ∃τ ∈ Σ \ΣR : σ ´ τ}

Note that ∆ is a subtriangulation of Σ. I will show that |∆|= C , which will give us the
result. For the left-to-right inclusion, take σ ∈∆ and let τ ∈ Σ \ΣR be such that σ ´ τ.
Since τ = Cl Relintτ, it suffices to show that Relintτ ⊆ Q \ R. So take x ∈ Relintτ, and
note already that x ∈ Q. By Proposition 1.27, x is not contained in any proper face of
τ. Hence, by condition (b) on simplicial complexes, for any ρ ∈ Σ, if x ∈ ρ then τ´ ρ.
Therefore, by choice of τ and condition (a) on ΣR, x is not contained in any simplex of
ΣR, whence x /∈ R.

For the right-to-left inclusion, take x ∈ C . Since C = Cl(Q \ R) in Rn, there is a
sequence (xk)k∈N in Q \ R which converges to x . For each xk, the simplex σxk lies in
Σ \ΣR. Since the latter is finite, there is a simplex τ ∈ Σ \ΣR which contains infinitely-
many xk ’s. By restricting to these xk ’s, we obtain a subsequence (xki

)i∈N which lies in τ
and converges to x . But, τ is closed, whence x ∈ τ ⊆ |∆|.

Triangulation subalgebras and local-finiteness. Triangulations have an important
algebraic correspondent, which will be used to show that SubcP is locally-finite. Take a
triangulation Σ of P. Its elements are themselves polyhedra, and in fact subpolyhedra
of P; therefore Σ ⊆ SubcP. Let Pc(Σ) be the sublattice of C (P) generated by Σ. The
following is Lemma 3.6 in [BMMP18].

PROPOSITION 1.34. Pc(Σ) is a co-Heyting subalgebra of SubcP.

Proof. Note that any non-empty Q, R ∈ Pc(Σ) are by definition triangulated by ΣQ and ΣR,
respectively. But then it follows from the proof of Theorem 1.33 that Q← R = Cl(Q \R) =
|∆|=

⋃

∆, where:
∆ := {σ ∈ Σ | ∃τ ∈ Σ \ΣR : σ ´ τ}

Therefore Q← R ∈ Pc(Σ).

Call a subalgebra A⊆ SubcP a triangulation subalgebra if A= Pc(Σ) for some Σ. The
following two results are Lemma 3.2 and Corollary 3.7 in [BMMP18].

PROPOSITION 1.35. Every finitely-generated subalgebra of SubcP is contained in some
triangulation algebra.

Proof. Take Q1, . . . ,Qm ∈ SubcP. Let Σ, by the Triangulation Lemma 1.28, be a triangula-
tion of P which also triangulates Q1, . . . ,Qm. Note that the distributive lattice D generated
by Q1, . . . ,Qm is contained in Pc(Σ) by definition. Further, if R, S ∈ D then R← S ∈ Pc(Σ)
just as in the proof of Proposition 1.34. Therefore the subalgebra generated by Q1, . . . ,Qm
is contained in Pc(Σ).

COROLLARY 1.36. SubcP is locally-finite.

Proof. This follows from Proposition 1.35 since every triangulation subalgebra Pc(Σ) is
finite.

We also have the following properties of triangulation subalgebras, which will be
useful in the sequel.
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PROPOSITION 1.37. (1) Triangulation algebras determine their corresponding trian-
gulations. That is, for any two triangulations Σ and ∆, if Pc(Σ) = Pc(∆) then
Σ=∆.

(2) If Σ and ∆ are triangulations which are isomorphic as posets then Pc(Σ)∼= Pc(∆).

(3) If ∆ refines Σ, then Pc(Σ) is a subalgebra of Pc(∆).

Proof. (1) It follows from conditions (a) and (b) on simplicial complexes that Pc(Σ)
consists exactly of the unions of elements of Σ, and similarly for ∆. Assume
Pc(Σ) = Pc(∆) and take σ ∈ Σ. Then σ ∈ Pc(∆), so σ =

⋃

S for some S ⊆∆, and
similarly each τ ∈ S is τ=

⋃

Tτ for some Tτ ⊆ Σ. Hence:

σ =
⋃⋃

τ∈S

Tτ

But then by condition (b) on Σ, every ρ ∈
⋃

τ∈S Tτ must either be equal to σ or
be a proper face of σ. Since Relintσ contains no proper face of σ, we must have
σ ∈ Tτ for some τ ∈ S. But then σ ⊆ τ ⊆ σ, and so σ ∈∆. Applying this argument
also in the other direction, we get that Σ=∆.

(2) This is immediate from the definition of Pc.

(3) By Lemma 1.31, every σ ∈ Σ is the union of simplices in ∆. Whence Σ ⊆ Pc(∆).
Therefore, by definition Pc(Σ) ⊆ Pc(∆).

The other side of the coin: the Heyting algebra SuboP. Now that we have es-
tablished the locally-finite co-Heyting algebra SubcP, it is time to recast it as a Heyting
algebra. To obtain a concrete representation, let us take inspiration from the topological
case above, and apply the complement operator −C. Following [BMMP18], an open
subpolyhedron of P is the set-theoretic complement of a (closed) subpolyhedron in P.
Let SuboP be the set of open subpolyhedra in P. By the duals of Proposition 1.32, Theo-
rem 1.33, and Corollary 1.36, this is a locally-finite Heyting algebra, and a subalgebra
of O (P). Given any triangulation Σ of P, let Po(Σ) be the Heyting subalgebra generated
by the complements of the simplices in Σ— i.e. the dual to the co-Heyting subalgebra
Pc(Σ).

Note that ‘open subpolyhedra’ are not ‘polyhedra’ in the sense used here. They are
however ‘polyhedra’ in the more general sense of PL topology. Indeed, one might think
to use this more general notion as an alternative way of constructing an algebra of open
polyhedra. But in fact, the open PL-polyhedra are too general for our purposes: the open
PL-polyhedra in Rn are exactly the arbitrary open sets of Rn (see [FP90, Corollary 3.2.22,
p. 109]). Thus, the consideration here of open subpolyhedra, though not standard, paves
the way to a new semantics for intuitionistic logic by reinstating the duality between
open and closed sets.

DEFINITION 1.38 (Polyhedral completeness). A logic L is polyhedrally-complete if it is
the logic of a class of polyhedra.

This is the key definition. The quest of the present thesis is to investigate polyhedral
completeness. Our results so far allow us to make a first, important observation.

PROPOSITION 1.39. If L is polyhedrally-complete, then it has the finite model property.

Proof. Assume that L = Logic(C), where C is a class of polyhedra. Then by the dual
of Corollary 1.36, it is the logic of a class of locally-finite Heyting algebras; whence by
Corollary 1.15 it has the f.m.p.
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And the modal case. By Theorem 1.22, there is an S4-algebra M such that M� =
SuboP. In fact, there is such an algebra with a rather natural form, as considered in
[Gab+18]. An open half-space in Rn is the set of points (x1, . . . , xn) satisfying, for some
a1, . . . , an, b ∈ R:

a1 x1 + · · ·+ an xn < b

The corresponding closed half-space is the set of points satisfying:

a1 x1 + · · ·+ an xn ¶ b

Define a polytopal set in Rn to be a subspace which is the intersection of finitely-many open
and closed half-spaces. More compactly, we can say that a polytopal set is the solution
set of a system of linear inequalities. A polyhedral set is then the union of finitely-many
polytopal sets.

Given any polyhedral set P, let SubP denote the collection of polyhedral subsets. This
is a modal algebra when � is interpreted as the topological interior operator. Moreover,
we have the following.

PROPOSITION 1.40. SubP is a Grzegorczyk algebra.

Proof. This follows from [Fon18, Theorem 3.8.3, p. 105].

PROPOSITION 1.41. When P is a polyhedron (in our sense), we have (SubP)� = SuboP.

Proof. See [Fon18, Theorem 3.5.1, p. 86].

Using this modal algebra, one can proceed to investigate the modal logic of polyhedra.
However, the Blok-Esakia Theorem tells us that this investigation is essentially the same
as that of the intuitionistic logic of polyhedra. Indeed, the isomorphism σ allows us to
move freely between the resulting logics. Since it is thus redundant to keep track of both
kinds of logic, from now on I will focus solely on the intuitionistic side.

Posets dual to triangulation subalgebras. Fix a triangulationΣ of P. We investigate
the triangulation subalgebra Po(Σ) a little more. First, recall the definition (page 19) of
the open star o(σ) of a simplex σ ∈ Σ.

PROPOSITION 1.42. The open star of a simplex is an open subpolyhedron. That is,
o(σ) ∈ Po(Σ).

Proof. See [Mau80, Proposition 2.4.3, p. 43] and [BMMP18, p. 12].

Define:

γ↑ : UpΣ→ Po(Σ)

U 7→
⋃

σ∈U

Relintσ

To see that U ∈ UpΣ really lands in Po(Σ), note that:

γ↑(U) =
⋃

σ∈U

γ↑(↑(σ))

=
⋃

σ∈U

⋃

{Relint(τ) | τ ∈ Σ and σ ⊆ τ}

=
⋃

σ∈U

o(σ)
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(a)

x0

x1

x3

x4

x2

(b) (c)

x0 x1 x2 x3 x4

Figure 1.6: Computation of the face poset: (a) a 2-dimensional polyhedron, (b) a
triangulation of this polyhedron, and (c) the face poset of this triangulation.

Since U is finite, by Proposition 1.42 we get that γ↑(U) ∈ Po(Σ).

PROPOSITION 1.43. γ↑ gives an isomorphism of Heyting algebras UpΣ∼= Po(Σ).

Proof. See [BMMP18, Lemma 4.3].

This proposition gives a concrete description of Po(Σ) and means that Σ, as a face poset,
is its dual. The characterisation is very handy, since the simplicial complex Σ tends to
be much easier to visualise than the algebra Po(Σ). See Figure 1.6 for an example of
the computation of this poset. For any polyhedron P, we have the following chain of
equalities.

Logic(P) = Logic(SuboP)
= Logic(B | B finitely-generated subalgebra of SuboP) (Proposition 1.10)

= Logic(Po(Σ) | Σ triangulation of P) (Proposition 1.35)

= Logic(UpΣ | Σ triangulation of P) (Proposition 1.43)

= Logic(Σ | Σ triangulation of P) (Proposition 1.14)

This leads us to our first maxim.

MAXIM I. The logic of a polyhedron is the logic of its triangulations.

Thus we obtain a purely combinatorial description of Logic(P) in terms finite objects: its
triangulations.

Using the isomorphism in Proposition 1.43, we can also define the dimension of an
open polyhedron Q ∈ Po(Σ) to be Dim(Q) := height(↓(U)), where U = (γ↑)−1(Q).

PROPOSITION 1.44. ClQ is a polyhedron and Dim(Q) = Dim(ClQ). Hence the dimension
of Q is independent of the triangulation Σ.

Proof. We have, by Proposition 1.43, that:

Q = γ↑(U) =
⋃

σ∈U

Relintσ

Hence, as U is finite:

ClQ =
⋃

σ∈U

ClRelintσ =
⋃

σ∈U

σ = |↓U |
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noting that, since ↓U is closed it is a subcomplex of Σ. But now:

Dim(|↓U |) = height(↓U) = Dim(Q)

Polyhedral maps. Here I will present some basic interactions between logic and
polyhedra at the level of morphisms. These results come from joint work with Nick
Bezhanishvili, David Gabelaia and Vincenzo Marra. Let P be a polyhedron and F be a
poset. A function f : P → F is a polyhedral map if the preimage of any open set in F is an
open subpolyhedron of P. Note that such a function is continuous.

PROPOSITION 1.45. Let f : P → F be a function from a polyhedron P to a finite poset F ,
and write f ∗ := f −1[−]: P (F)→P (P) for the inverse image function.

(1) The function f is polyhedral if and only if f ∗ descends to a lattice homomorphism
f ∗ : Up F → SuboP.

(2) The function f is polyhedral and open if and only if f ∗ descends to a homomorphism
of Heyting algebras f ∗ : Up F → SuboP.

Proof. Clearly f ∗ is a homomorphism of Boolean algebras, so (1) follows from the defini-
tions. As for (2), let us first assume that f is polyhedral and open, and take U , V ∈ Up F
with the aim of showing that f ∗(U → V ) = f ∗(U)→ f ∗(V ). The left-to-right inclusion
follows from the fact that f ∗ is a lattice homomorphism. For the right-to-left, writing XC

for the complement of X , we have the following chain of inclusions.

f [ f ∗(U)→ f ∗(V )] = f
�

Int
�

f −1[U]C ∪ f −1[V ]
��

⊆ Int
�

f
�

f −1[U]C ∪ f −1[V ]
��

( f is open)

= Int
�

f
�

f −1[UC ∪ V ]
��

⊆ Int(UC ∪ V )
= U → V

Applying f ∗ = f −1 to both sides, we get that f ∗(U)→ f ∗(V ) ⊆ f ∗(U → V ).
For the converse implication, assume that f ∗ is a Heyting algebra homomorphism.

By (1), f is polyhedral, so take W ⊆ F with the aim of showing that f −1[Int W ] =
Int( f −1[W ]). First let A := Int((↑W )C ∪ W ) ∪ Int(WC) and B := Int W . A routine
calculation verifies that AC ∪ B =W , and moreover that A, B ∈ Up F . Then:

f −1[Int W ] = f ∗[A→ B]
= f ∗[A]→ f ∗[B] ( f ∗ is a homomorphism)

= Int( f ∗[A]C ∪ f ∗[B])

= Int( f ∗[AC ∪ B])

= Int( f −1[W ])

Let Σ be a simplicial complex and F be a poset. Given any function f : Σ→ F , define
the map bf : |Σ| → F by:

bf (x) := f (σx)

PROPOSITION 1.46. When f : Σ→ F is a p-morphism, bf : |Σ| → F is an open polyhedral
map.
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Proof. For any U ∈ Up F , we have that:

bf −1[U] =
⋃

{Relintσ | σ ∈ Σ and σ ∈ f −1[U]}= γ↑( f −1[U])

Since f is monotonic, f −1[U] is upwards-closed in Σ, whence as above bf −1[U] is an
open sub-polyhedron of |Σ|. Now take an open set W ⊆ |Σ|, with the aim of showing that
bf [W ] is open. Define:

Σ#W := {σ ∈ Σ | Relint(σ)∩W 6=∅}

Then:
bf [W ] = { f (σx) | x ∈W}= f [Σ#W ]

If σ ∈ Σ#W and σ ´ τ, then as σ ⊆ τ= Cl Relintτ and W is open, we have τ ∈ Σ#W ;
i.e. Σ#W is upwards-closed. But now, f is open and so bf [W ] is also upwards-closed.

Another important class of maps is that of PL homeomorphisms. First, for any X , Y ⊆
Rn, a function X → Y is an affine map if it is of the form x 7→ M x + b, where M is a linear
transformation and b ∈ Rn. Now let P,Q be polyhedra. A homeomorphism f : P →Q is
piecewise-linear if there is a triangulation Σ of P such that for each σ ∈ Σ the restriction
f |σ is affine. Call such maps PL homeomorphisms for short.

PROPOSITION 1.47. The inverse of a PL homeomorphism is a PL homeomorphism.

Proof. See [RS72, p. 6].

PROPOSITION 1.48. Any PL homeomorphism f : P → Q between polyhedra, along
with its inverse g : Q → P, induce mutually inverse isomorphisms of Heyting algebras
f ∗ : SuboQ→ SuboP and g∗ : SuboP → SuboQ.

Proof. The inverse image of a subpolyhedron under a PL homeomorphism is again a
subpolyhedron [RS72, Corollary 2.5, p. 13], meaning the inverse image of an open
subpolyhedron is an open subpolyhedron. Furthermore, homeomorphisms are open
maps. Hence f ∗ : P (Q)→P (P) and g∗ : P (P)→P (Q) descend to functions as in the
statement. These are mutually inverse isomorphisms of lattices by definition. The fact that
they also preserve Heyting implication follows just as in the proof of Proposition 1.45.
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Chapter 2

Nerves and Triangulations

In this chapter, I introduce the notion of the nerve of a poset. This is a classical construction
originally due to Pavel Alexandrov [Ale98], which has found numerous applications in
geometry, topology and combinatorics (see e.g. [Bjö95]). The nerve has an important
place in the present thesis, and it will be used to deepen the logic-geometry connection
established in Chapter 1.

2.1 Nerves for Geometric Realisation

DEFINITION 2.1 (Nerve of a poset). The nerve N (F) of a poset F is the collection of
non-empty finite chains in F ordered by inclusion.

See Figure 2.1 for an example of the nerve construction, and compare to Figure 1.6.
A key fact about the nerve and its relation to logic is that there is always a p-morphism

N (F)→ F .

DEFINITION 2.2. Let max: N (F)→ F be the map which sends a chain X to its maximal
element.

PROPOSITION 2.3. max: N (F)→ F is a p-morphism.

x2

x1

x0 x3

x4

F

{x0} {x1} {x2} {x3} {x4}

N (F)

Figure 2.1: An example of the construction of the nerve of a poset
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Proof. First, max is clearly monotonic. Second, for the back condition, take X ∈ N (F)
and y >max X . Since y is greater than the maximal element of X , it is greater than every
element of X ; whence X ∪ {y} is a chain. Then X ⊆ X ∪ {y} and max(X ∪ {y}) = y .

We will also need the following basic observation.

PROPOSITION 2.4. height(N (F)) = height(F).

Proof. Let X = {x0, . . . , xk} be a chain in F , then the following is a chain in N (F) of the
same length.

{{x0}} ⊂ {{x0}, {x0, x1}} ⊂ {{x0}, {x0, x1}, {x0, x1, x2}} ⊂ · · · ⊂ {{x0}, . . . , X }

Conversely, let X be a chain of length k+ 1 in N (F). Write X = {X0, . . . , Xk}, such that
X0 ⊂ · · · ⊂ Xk. Then, for each i we have |X i+1|> |X i |, so that Xk is a chain in F of length
at least k+ 1.

Geometric Realisation. The first use to which we put the nerve is in generating
realisations of finite posets as polyhedra, following [BMMP18]. For any Euclidean space
Rn let e1, . . . , en be the elements of its standard basis.

DEFINITION 2.5 (Induced simplicial complex). Let F be a finite poset, and enumerate it
as F = {x1, . . . , xn}. The simplicial complex induced by F is the set of simplices:

∇F := {Conv{ei1 , . . . , eik} | {x i1 , . . . , x ik} ∈ N (F)}

PROPOSITION 2.6. ∇F is a simplicial complex.

Proof. (a) Take X = {x i1 , . . . , x ik} ∈ N (F). Faces of Conv{ei1 , . . . , eik} correspond to
subsets {x j1 , . . . , x jm} ⊆ X . Any such subset is also a chain in F , meaning that we have
Conv{e j1 , . . . , e jm} ∈ ∇F . (b) Clearly, the intersection of any two simplices in ∇F is either
empty or a common face of both of them.

REMARK 2.7. Note that, as posets, ∇F ∼=N (F).

DEFINITION 2.8 (Geometric realisation). The geometric realisation of F is the polyhedron
|∇F |.

REMARK 2.9. Of course, the definition of ∇F and the resulting realisation |∇F | depends
on the enumeration of F . But the different possible realisations are, logically speaking,
indistinguishable, and for our purposes we don’t need to worry about this subtlety.

PROPOSITION 2.10. For any finite poset F , we have that Logic(|∇F |) ⊆ Logic(F).

Proof. First, the p-morphism max: N (F) → F induces a p-morphism ∇F → F . This
in turn, via Proposition 1.46, induces an open polyhedral map |∇F | → F . Then, by
Proposition 1.45 (2), we get a homomorphism Up F → Subo|∇F |. Finally, Proposition 1.9
means that Logic(|∇F |) = Logic(Subo|∇F |) ⊆ Logic(F).

Polyhedral completeness. Using this last piece, we are now in a position to prove
the main result of [BMMP18], that IPC is the logic of the class of all polyhedra.

THEOREM 2.11. IPC= Logic(P | P is a polyhedron).
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Proof. Since every SuboP is a Heyting algebra, we get that:

IPC ⊆ Logic(P | P is a polyhedron)

For the converse inclusion, assume that IPC 0 φ. By Proposition 1.1, there is a finite
poset F such that F 2 φ. But then, by Proposition 2.10, we get that |∇F | 2 φ.

2.2 The Nerve Criterion for Polyhedral Completeness

The second use of the nerve is essentially a strengthening of Maxim I. We will see that
in order to understand the logic of a polyhedron, it suffices to take any triangulation
and consider only its iterated nerves. The foundation of this result is the classical link
between nerves and barycentric subdivision, but the complete proof will be somewhat
involved, and we will need to import several results from polyhedral geometry. The proof
is joint work with Nick Bezhanishvili, David Gabelaia and Vincenzo Marra.

The main theorem. The main theorem of this chapter is first stated algebraically.
The all-important Nerve Criterion concerning polyhedral completeness will be extracted
from this later.

DEFINITION 2.12 (kth derived subdivision). Let Σ be a simplicial complex. The kth de-
rived subdivision of Σ, denoted by Σ(k), is the result of applying the barycentric subdivision
operation k-times on Σ. I.e. Σ(k) = SdkΣ.

DEFINITION 2.13 (kth derived triangulation subalgebra). Let A be a triangulation subal-
gebra of SuboP for some polyhedron P. By the dual of Proposition 1.37 (1), there is a
unique triangulation Σ of P such that A= Po(Σ). For any k ∈ N, let A(k) := Po(Σ(k)).

THEOREM 2.14. Let P be a polyhedron and let A be any triangulation subalgebra of
SuboP. For any finitely-generated subalgebra B of SuboP, there is k ∈ N such that B is
isomorphic to a subalgebra of A(k).

Let us see how to prove this theorem.

Rational polyhedra and unimodular triangulations. The intuition behind Theo-
rem 2.14 is that any triangulation can be approximated from any other by taking iterated
barycentric subdivisions. The difficulty one might face with spelling out such an intuition
is dealing with the ‘continuum nature’ of Rn. It might be imagined that, if we start
with a triangulation Σ on irrational vertices and try to approximate it using the iterated
barycentric subdivisions of a triangulation on rational vertices, the approximations would
never quite capture all of Σ. The approach taken here is effectively to show that it suffices
to restrict attention to the rational case. In order to make this idea precise, we need some
definitions. I will mainly be following [Mun11].

A polytope in Rn is rational if it may be written as the convex hull of finitely many
points in Qn ⊆ Rn. A polyhedron in Rn is rational if it may be written as a union of a
finite collection of rational polytopes. A simplicial complex Σ is rational if it consists of
rational simplices. Note that when this is the case, |Σ| is a rational polyhedron.

For any x ∈ Qn ⊆ Rn, there is a unique way to write out x in coordinates as x =
( p1

q1
, . . . , pn

qn
) such that for each i, we have pi , qi ∈ Z coprime. The denominator of x is

defined:
Den(x) := lcm{q1, . . . , qn}
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Note that Den(x) = 1 if and only if x has integer coordinates. Letting q = Den(x), the
homogeneous correspondent of x is defined to be the integer vector:

ex :=
�

qp1

q1
, . . . ,

qpn

qn
, q
�

A rational d-simplex σ = x0 · · · xd is unimodular if there is an (n+ 1)× (n+ 1) matrix
with integer entries whose first d columns are fx0, . . . ,fxd , and whose determinant is ±1.
This is equivalent to requiring that the set {fx0, . . . ,fxd} can be completed to a Z-module
basis of Zd+1. A simplicial complex is unimodular if each one of its simplices is unimodular.

Farey subdivisions. In order to obtain the main result concerning barycentric sub-
divisions, we go via another kind of subdivision which is more amenable to the rational
case.

PROPOSITION 2.15. For any x , y ∈ Qn, there is a unique m ∈ Qn such that em = ex + ey,
and this lies in the relative interior of the 1-simplex Conv {x , y}.

Proof. Let Hn+1 ⊆ Rn+1 be the hyperplane specified by:

Hn+1 := {(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = 1}

Identify Qn with the set of rational points of Hn+1. Under this identification, em= ex + ey
lies in the affine cone:

{aex + bey | a, b > 0}

A routine computation then proves the geometrically evident fact that m is the point of
intersection of the line spanned in Rn+1 by the vector m̃, with the hyperplane Hn+1; from
which the result follows.

For x , y ∈ Qn, let this m ∈ Qn be their Farey mediant. The Farey mediant behaves in a
similar way to the barycentre of x and y .

Using the notion of Farey mediant, one can define the notion of a Farey subdivision.
Just as in the case of barycentric subdivision, the precise formulation is somewhat involved,
while the technical details are not so important for the present thesis. Thus, as before, I
will present the idea, coupled with some diagrams, in order to give the essential intuition.
For a complete definition, I refer the reader to [Mun11, §5.1, p. 55].

Let Σ1,Σ2 be rational simplicial complexes in Rn. Then Σ2 is an elementary Farey
subdivision of Σ1 if it is obtained from Σ1 by subdividing exactly one of its 1-simplices
Conv {x , y} through the introduction of the Farey mediant m of x and y as the single new
vertex of Σ2. If Σ2 can be obtained from Σ1 through finitely many successive elementary
Farey subdivisions, then we sayΣ2 is a Farey subdivision ofΣ1. See Figure 2.2 for examples
of this operation.

To relate Farey subdivisions with barycentric subdivisions, note that one may define
an elementary barycentric subdivision analogously to the Farey case, by taking a single
1-simplex and adding a new vertex at its barycentre. The following technical lemma will
be useful below; its proof uses the details of the full definition of elementary Farey and
barycentric subdivision.

LEMMA 2.16. Let Σ,∆ be simplicial complexes with Σ rational, assume that γ: Σ→∆ is
an isomorphism of Σ and ∆ as posets, and take a 1-simplex σ ∈ Σ. Then the elementary
Farey subdivision of Σ along σ and the elementary barycentric subdivision of ∆ along
γ(σ) are isomorphic as posets.
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Figure 2.2: Examples of elementary Farey subdivisions

Proof. Indeed, at the level of posets, elementary Farey subdivision and elementary bary-
centric subdivision are the same operation: we take a 1-simplex and add a new vertex
somewhere in its interior, then construct the rest of the complex around this. For more
details see [Ale30, §III].

The following is a fundamental fact of rational polyhedral geometry, and captures the
idea of ‘rational approximation’.

LEMMA 2.17 (The De Concini-Procesi Lemma). Let P be a rational polyhedron, and let
Σ be a unimodular triangulation of P. There exists a sequence (Σi)i∈N of unimodular
triangulations of P with Σ0 = Σ such that:

(a) For each i ∈ N, Σi+1 is an elementary Farey subdivision of Σi , and

(b) For any rational polyhedron Q ⊆ P, there is i ∈ N such that Σi triangulates Q.

Proof. See [Mun11, Theorem 5.3, p. 57].

From R to Q. We will now see how to relate general polyhedra to rational polyhedra,
and general simplicial complexes to unimodular simplicial complexes.

LEMMA 2.18. Let P be a polyhedron, and let Σ be a triangulation of P. There exist an
integer n ∈ N, a rational polyhedron Q ⊆ Rn, and a unimodular triangulation ∆ of Q such
that P and Q are PL-homeomorphic via a map that induces an isomorphism of Σ and ∆
as posets.

Proof. This is a standard argument. Fix a bijection β from the vertices of Σ to the
standard basis of Rn, where n is the number of vertices in Σ. Take a simplex σ = x0 · · · xd

33



in Σ. Note that the points β(x0), . . . ,β(xd) are affinely independent; let α(σ) be the
d-simplex spanned by their convex hull: α(σ) := Conv{β(x0), . . . ,β(xd)}. Since the
vertices of α(σ) are standard basis elements, α(σ) is a unimodular simplex by definition.
Let fσ : σ→ α(σ) be the linear map determined by fσ(x i) = β(x i) for each i, and let
gσ : α(σ)→ σ be its inverse, determined by gσ(β(x i)) = x i .

Now, let Q :=
⋃

σ∈Σα(σ). For any simplices σ ´ τ, the map fσ agrees with fτ on
σ. Hence we may glue these maps together to form a map f : P →Q, i.e. f (x) = fσ(x),
where σ is any simplex of Σ containing x . Similarly, we may glue together the maps
gσ for σ ∈ Σ to form an inverse to f . By definition f is a PL homeomorphism. Finally,
note that ∆ := {α(σ) | σ ∈ Σ} is a triangulation of Q, and that f induces the poset
isomorphism σ 7→ α(σ) between Σ and ∆.

LEMMA 2.19. Let Σ be a unimodular triangulation of the rational polyhedron P, and
suppose Σ′ is a Farey subdivision of Σ. There is a triangulation∆ of P which is isomorphic
as a poset to Σ′, and k ∈ N such that Σ(k) refines ∆.

Proof. The proof works by replacing each elementary Farey subdivision by an elemen-
tary barycentric subdivision. We induct on the number m ∈ N>0 of elementary Farey
subdivisions needed to obtain Σ′ from Σ. If m = 1, let Conv {x , y} be the 1-simplex of
Σ being subdivided through its Farey mediant. Then the first barycentric subdivision
Σ(1) of Σ refines the elementary barycentric subdivision Σ∗ of Σ along Conv {x , y}. By
Lemma 2.16, Σ∗ and Σ′ are isomorphic.

For the induction step, suppose m > 1, and write (Σi)mi=0 for the finite sequence of
triangulations connecting Σ = Σ0 to Σ′ = Σm through elementary Farey subdivisions.
By the induction hypothesis, there is k ∈ N such that Σ(k) refines a triangulation ∆
isomorphic to Σm−1; let us fix one such isomorphism γ. Let Conv {x , y} be the 1-simplex
of Σm−1 that must be subdivided through its Farey mediant in order to obtain Σm. Let
further σ be the simplex of∆ that corresponds to Conv {x , y} through the isomorphism γ.
Since the 1-simplices are exactly the height-1 elements of ∆, we get that σ is a 1-simplex.
Then Σ(k+1) refines ∆∗, the latter denoting the elementary barycentric subdivision of ∆
along σ. But ∆ is isomorphic to Σm−1, and therefore by Lemma 2.16, ∆∗ is isomorphic
to Σm.

LEMMA 2.20 (Beynon’s Lemma). Let P be a rational polyhedron, and let Σ be a triangu-
lation of P. There exists a rational triangulation of P which is isomorphic as a poset to
Σ.

Proof. This is the main result of [Bey77].

Putting it all together. It is time to combine all our ingredients and prove the main
theorem of the chapter.

Proof of Theorem 2.14. Let Σ be the triangulation of P such that A = Po(Σ). Using
Lemma 2.18, Proposition 1.37 (2) and Proposition 1.48 we may assume without loss
of generality that P is rational and Σ is unimodular. By Proposition 1.35, there is a
triangulation ∆ of P such that B is isomorphic to a subalgebra of Po(∆). By Beynon’s
Lemma 2.20 and Proposition 1.37 (2), we may assume that ∆ is rational (and hence each
member of B is, too). By the De Concini-Procesi Lemma 2.17, there is a Farey subdivision
Σ′ of Σ that refines ∆. Therefore by Proposition 1.37 (3), B is isomorphic to a subalgebra
of Po(Σ′). By Lemma 2.19, there is k ∈ N such that Σ(k) refines Σ′ up to isomorphism.
Hence by Proposition 1.37 (3) again, A(k) contains a subalgebra isomorphic to Po(Σ′),
and therefore also a subalgebra isomorphic to B.
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Bringing nerves back onto the stage. Now that we have proved the main theorem
as stated, it will be fruitful to examine it from another perspective. The reader may have
noticed that the statement of Theorem 2.14 doesn’t mention nerves. The reason that
these latter constructions are relevant here is the following.

PROPOSITION 2.21. Let Σ be a simplicial complex. The barycentric subdivision of Σ is
isomorphic as a poset to the nerve of Σ:

SdΣ∼=N (Σ)

Proof. Let me give an intuitive proof as to why this is the case. For more detail, I refer
the reader to [Mau80, Proposition 2.5.10, p. 51] and [RW12, §3].

In our informal definition, the construction of the barycentric subdivision of a simplicial
complex Σ involved putting a new vertex at the barycentre of each simplex of Σ, and
constructing the rest of SdΣ around this. Let us consider in a little more detail what this
involves. For each simplex σ ∈ Σ, we have a new 0-simplex, which we will label {σ}.
The first step in ‘building up the rest of SdΣ’ would be to add in some 1-simplices. A
little reflection and diagram staring (consider again Figure 1.5) indicates that we should
put a 1-simplex between {σ} and {τ} exactly when σ ≺ τ or τ≺ σ, i.e. when {σ,τ} is
a chain in Σ. Let us label such a new 1-simplex {σ,τ}. The next stage would be to add
in some 2-simplices. Some further reflection and diagram staring should indicate that
we should add a 2-simplex connecting σ, τ and ρ exactly when {σ,τ,ρ} is a chain in Σ.
Label such a 2-simplex by {σ,τ,ρ}. Continuing in this fashion, we eventually arrive at
an isomorphism SdΣ∼=N (Σ).

COROLLARY 2.22. For P a polyhedron and Σ a triangulation of P we have:

Logic(P) = Logic(N k(Σ) | k ∈ N)

Proof. Indeed:

Logic(P) = Logic(SuboP)
= Logic(A | A finitely-generated subalgebra of SuboP) (Proposition 1.35)

= Logic(Po(Σ
(k)) | k ∈ N) (Theorem 2.14)

= Logic(Σ(k) | k ∈ N) (as above)

= Logic(N k(Σ) | k ∈ N) (Proposition 2.21)

This leads us to our second maxim, as well as the much-anticipated Nerve Criterion.

MAXIM II. The logic of a polyhedron is the logic of the iterated nerves of any one of its
triangulations.

COROLLARY 2.23 (The Nerve Criterion). A logic L is polyhedrally-complete if and only
if it is the logic of a class of finite frames closed under the nerve construction N .

Proof. Assume that L is the logic of a class C of polyhedra. For each P ∈ C fix a
triangulation ΣP , and let:

C∗ := {N k(ΣP) | P ∈ C and k ∈ N}
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Then:

Logic(C∗) =
⋂

P∈C

Logic(N k(ΣP) | k ∈ N)

=
⋂

p∈C

Logic(P) (Corollary 2.22)

= Logic(C) =L

Conversely, assume that L = Logic(D), where D is a class of finite frames closed under
N . Let:

D∗ := {|∇(F)|: F ∈ D}

I will show that L = Logic(D∗). First suppose that L 0 φ, so that F 2 φ for some F ∈ D.
Then by Proposition 2.10 we have that |∇(F)| 2 φ, so that Logic(D∗) 0 φ. Conversely,
suppose that Logic(D∗) 0 φ, so that |∇(F)| 2 φ for some F ∈ D. By definition ∇(F) is a
triangulation of |∇(F)|, hence by Corollary 2.22 there is k ∈ N such that ∇(F)(k) 2 φ.
But ∇(F)∼=N (F) by definition, and so by Proposition 2.21 we get N k+1(F)∼=∇(F)(k).
Thus, as D is closed under N , we get that L 0 φ.

Some first consequences of the Nerve Criterion. Let us see how the Nerve Crite-
rion can be applied to provide some negative answers to the question which logics are
polyhedrally-complete? We begin with a definition which encompasses a wide class of
logics (see [BB17]).

DEFINITION 2.24 (Stable logic). A logic L is stable if Frames⊥(L ) is closed under
monotone images.

PROPOSITION 2.25. The following well-known logics are all stable (for more information
on these logics see [CZ97, Table 4.1, p. 112]).

(i) The logic of weak excluded middle, KC= IPC+ (¬p ∨¬¬p).

(ii) Gödel-Dummett logic, LC= IPC+ (p→ q)∨ (q→ p).

(iii) LCn = LC+BDn.

(iv) The logic of bounded width n, BWn = IPC+
∨n

i=0(pi →
∨

j 6=i p j).

(v) The logic of bounded top width n, defined:

BTWn :=
∧

0¶i< j¶n

¬(¬pi ∧¬p j)→
n
∨

i=0

(¬pi →
∨

j 6=i

¬p j)

(vi) The logic of bounded cardinality n, defined:

BCn := p0 ∨ (p0→ p1)∨ ((p0 ∧ p1)→ p2)∨ · · · ∨ ((p0 ∧ · · · ∧ pn−1)→ pn)

Proof. See [BB17, Theorem 7.3].

In fact:

THEOREM 2.26. There are continuum-many stable logics.

Proof. See [BB17, Theorem 6.13].
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THEOREM 2.27. Every stable logic has the finite model property.

Proof. See [BB17, Theorem 6.8].

Hence, stable logics are good candidates for polyhedrally-complete logics (c.f. Propo-
sition 1.39). However:

THEOREM 2.28. If L is a stable logic other than IPC, and Frames(L ) contains a frame
of height at least 2, then L is not polyhedrally-complete.

Proof. Suppose not. SinceL is polyhedrally-complete, by the Nerve Criterion 2.23, there
is a class C of finite frames closed under N such that L = Logic(C). Since Frames(L )
contains a frame of height at least 2, by Proposition 1.18 we must have L 0 BD1. Since
L = Logic(C), there is therefore F ∈ C such that height(F) ¾ 2. This means there are
x0, x1, x2 ∈ F with x0 < x1 < x2. Without loss of generality, we may assume that x2
is a top element and that x1 is an immediate predecessor of x2 and x0 an immediate
predecessor of x1. Now, by assumption N k(F) ∈ C for every k ∈ N. Let us examine the
structure of these frames a little. Note that {x0, x1, x2} is a chain. Let X be a maximal
chain in ⇓(x0). We have the following relations occurring in N (F).

X ∪ {x0}

X ∪ {x0, x1} X ∪ {x0, x2}

X ∪ {x0, x1, x2}

Moreover, by assumptions on x0, x1, x2 and X , we have that X∪{x0, x1, x2} is a top element
of N (F), with X ∪ {x0, x1} and X ∪ {x0, x2} immediate predecessors, and X ∪ {x0} an
immediate predecessor of those. So, we may apply this argument once more, to obtain
the following structure sitting at the top of N 2(F).

Iterating, we see that at the top of N k(F) we have the following structure.

z

· · ·
· · ·

2k−1 top nodes

Let z be the base element of this structure, as indicated. Now, take k ∈ N and let
{t1, . . . , tm} be the top nodes of N k(F) produced by this construction, where m= 2k−1.
By Proposition 1.6, ↑(z) ∈ Frames⊥(L ). Let G be any arbitrary poset with up to m
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elements {y1, . . . , ym} (possibly with duplicates) plus a root ⊥. Define f : ↑(z)→ G as
follows.

x 7→
§

yi if x = t i ,
⊥ otherwise.

Then f is monotonic. Since L is stable, this means that G ∈ Frames⊥(L ). Thus (since,
by Proposition 1.1 and Corollary 1.7, IPC is the logic of finite rooted frames) we get that
L = IPC.

We can get one positive result relatively cheaply however.

THEOREM 2.29. BDn is polyhedrally-complete for each n ∈ N. In fact, BDn is the logic
of the class of polyhedra of dimension at most n.

Proof. By Proposition 2.4, for any poset F we have height(F) = height(N (F)). Since by
Theorem 1.20, BDn is the logic of frames of height at most n, it is polyhedrally-complete by
the Nerve Criterion. The fact that BDn is the logic of the class of polyhedra of dimension
at most n follows from the proof of Theorem 2.11, and the fact that the dimension of a
simplicial complex is the same as its height as a poset.

REMARK 2.30. Note that the first part of this result follows from the second and so can
be obtained without the use of the Nerve Criterion, as is done in [BMMP18]. I include
it only in order to give a first indication of the utility of the Criterion, and to warm up
before examining its more involved applications in the next chapter.
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Chapter 3

Starlike Polyhedral Completeness

Up to this point, the following is a complete list of the logics known to be polyhedrally-
complete.

IPC,BD0,BD1,BD2, . . .

In other words, we know of one polyhedrally-complete logic of each finite height. On
the other hand, Theorem 2.28 provides a continuum of polyhedrally incomplete logics
which have the finite model property, including many well-known examples. What does
the rest of the landscape look like? In this chapter, I exploit the Nerve Criterion to fill
out parts of this map. I will show that on a certain infinite class of intermediate logics
— called ‘starlike logics’ — polyhedral completeness coincides with the finite model
property. This will yield an infinite class of polyhedrally-complete logics of each finite
height. Furthermore, it will show us that Scott’s logic, defined (see [CZ97, p. 40]):

SL := IPC+ ((¬¬p→ p)→ p ∨¬p)→¬p ∨¬¬p

is polyhedrally-complete.

3.1 The Logical Approach

Exploiting the Nerve Criterion, the proofs in this chapter involve combinatorial manipula-
tions of frames (following the ‘logic approach’ mentioned in the introduction). In this
section, I collect a miscellany of definitions and tools which play an important part in the
techniques of this chapter.

Nerve-validation. It will be convenient to reformulate the Nerve Criterion in terms
of a new validity concept.

DEFINITION 3.1 (Nerve-validation). Let F be a poset and φ be a formula. F nerve-
validates φ, notation F �N φ, if for every k ∈ N we have N k(F) � φ.

REMARK 3.2. Note that, since we have a p-morphism N (G) → G for every G, by
Proposition 1.6 this is equivalent to requiring that N k(F) � φ for infinitely-many k ∈ N.

LEMMA 3.3. A logic L is polyhedrally-complete if and only if it has the finite model
property and every rooted finite frame of L is the up-reduction of a poset which nerve-
validates L .
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Proof. Assume that L is polyhedrally-complete. Then by the Nerve Criterion 2.23 it is
the logic of a class C of finite frames which is closed under N , and so in particular has
the f.m.p. Then by Corollary 1.17, every finite rooted frame F of L is the up-reduction
of some F ′ ∈ C. Since C ⊆ Frames(L ) and is closed under N , such an F ′ nerve-validates
L .

Conversely, let C be the class of all finite rooted frames which nerve-validate L . Note
that C is closed under N . Further, clearly L ⊆ Logic(C). To see the reverse inclusion,
suppose thatL 0 φ. SinceL has the f.m.p., there is F ∈ Frames⊥,fin(L ) such that F 2 φ.
By assumption, F is the up-reduction of F ′ ∈ C. Then by Proposition 1.6, F ′ 2 φ, meaning
that Logic(C) 0 φ.

Pointed up-reductions. The following tiny technical lemma, showing that we can
always assume that up-reductions are of a particular form, will be valuable to us in the
sequel, since it will simplify the treatment of certain forbidden configurations.

DEFINITION 3.4 (Pointed up-reductions). Let F and Q be finite posets, and let Q have
root ⊥. An up-reduction f : F → Q is pointed with apex x ∈ F if dom( f ) = ↑(x) and
f −1{⊥}= {x}.

LEMMA 3.5. If there is an up-reduction F ◦→ Q then there is a pointed up-reduction
F ◦→Q.

Proof. Take f : F ◦→ Q, and choose x ∈ f −1{⊥} maximal. Then f |↑(x) is still a p-
morphism, and is moreover a pointed up-reduction F ◦→Q.

COROLLARY 3.6. Let F,Q be finite posets, with Q rooted. Then F � χ(Q) if and only if
there is no pointed up-reduction F ◦→Q.

P-congruences. An alternative way of viewing a p-morphism f : F → G is as a kind
of congruence relation on F (see [CZ97, p. 262]). This way of thinking will enable a
convenient method of constructing p-morphisms.

DEFINITION 3.7 (P-congruence). A p-congruence on a frame F is an equivalence relation
∼ such that whenever x ¶ y we have [x] ⊆ ↓[y].

DEFINITION 3.8 (Quotient frame). Let ∼ be a p-congruence on F . The quotient frame
F/∼ has as elements the equivalence classes of ∼, and its relation is given by:

[x]¶ [y] ⇔ [x] ⊆ ↓[y]

The quotient map is q : F → F/∼, given by x 7→ [x].

PROPOSITION 3.9. The quotient map is a p-morphism.

Proof. See [CZ97, Theorem 8.68(i), p. 263].

THEOREM 3.10 (First Isomorphism Theorem). Let f : F → G be a surjective p-morphism.
Then relation ∼ on F defined by:

x ∼ y ⇔ f (x) = f (y)

is a p-congruence, and moreover F/∼∼= G via the map [x] 7→ f (x).

Proof. See [CZ97, Theorem 8.68(ii), p. 263].
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PROPOSITION 3.11. Let F be a frame and W be a set of pair-wise disjoint subsets of
Top(F). The relation ∼W , defined as follows, is a p-congruence.

x ∼W y ⇔ x = y or ∃W ∈W : x , y ∈W

Proof. This is immediate from the definition.

DEFINITION 3.12. Define F/W := F/∼W . Relabel the element [x] ∈ F/W as x when-
ever x ∈ F \

⋃

W . Let qW be the quotient map on ∼W .

3.2 Starlike Polyhedral Completeness

Starlike trees. Let us meet the main actors of this chapter.

DEFINITION 3.13 (Starlike trees). A tree T is a starlike tree if every x ∈ T \ {⊥} has at
most one immediate successor.

The terminology ‘starlike’ comes from graph theory [WS79]. If we were to place the
root of a starlike tree at the centre of a diagram and arrange its branches radially outward,
it would look like a star. It will be useful to carve out some notation with which we can
conveniently point to each starlike tree (up to isomorphism). Note that a starlike tree is
determined by the multiset of its branch heights. The following notation is inspired by
that used in the theory of multisets.

DEFINITION 3.14. Let n1, . . . , nk, m1, . . . , mk ∈ N>0, with n1, . . . , nk distinct. Then T =
〈nm1

1 · · ·n
mk
k 〉 is the starlike tree such that if we remove the root ⊥ we are left with exactly,

for each i, mi chains of length ni . Let 〈ε〉 = •, the singleton poset. Call α = nm1
1 · · ·n

mk
k

(or ε) the signature of T . We will always assume that n1 > n2 > · · ·> nk.

In other words, T = 〈nm1
1 · · ·n

mk
k 〉 is composed of, for each i, mi branches of length ni + 1.

See Figure 3.1 for some examples of starlike trees together with their signatures. I will
sometimes write 10 for ε.

DEFINITION 3.15. Let α = nm1
1 · · ·n

mk
k be a signature. The length of α is defined as

|α| := m1 + · · ·+mk. Let |ε| := 0. For j ¶ |α|, the jth height, α( j), is ni , where:

m1 + · · ·+mi−1 ¶ j < m1 + · · ·+mi

DEFINITION 3.16. Let α and β be signatures. Say that α¶ β if |α|¶ |β | and for every
j ¶ |α| we have α( j)¶ β( j).

〈2〉 〈13〉 〈3 · 12〉 〈32 · 2 · 1〉

Figure 3.1: Some examples of starlike trees
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Visually, this means that if we represent α = nm1
1 · · ·n

mk
k on a grid as a block n1-tall

and m1-wide, followed by a block n2-tall and m2-wide, and so on, and similarly for β ,
that β covers α. Considering the examples in Figure 3.1, we have the following relations:

13 < 3 · 12 < 32 · 2 · 1, 2< 3 · 12

REMARK 3.17. When α = nm1
1 · · ·n

mk
k and β are signatures, we have α¶ β if and only if

|α|¶ |β | and for every i ¶ k, we have:

β(m1 + · · ·+mi)¾ ni

PROPOSITION 3.18. If α¶ β then there is a p-morphism 〈β〉 → 〈α〉.

Proof. Let us first fix labellings on 〈α〉 and 〈β〉. Label the root of 〈α〉 with ⊥. We may
arrange the branches of 〈α〉 in a sequence so that the jth branch has height α( j). Let us
label the non-root elements of the jth branch in ascending order as a( j, 1), . . . , a( j,α( j)),
and similarly for 〈β〉, with b( j, i) for j ¶ |β | and i ¶ β( j).

Now, define f : 〈β〉 → 〈α〉 as follows. Note, for j ¶ |α|, we have α( j) ¶ β( j). For
i ¶ β( j) let:

f (b( j, i)) := a( j, min(i,α( j)))

For j > |α| and i ¶ β( j), let:

f (b( j, i)) := a(1,α(1))

A routine calculation shows that f is a p-morphism.

REMARK 3.19. Note that the starlike tree 〈k〉 is the chain on k+ 1 elements, Chk. I will
use this former notation for chains from now on.

DEFINITION 3.20 (k-fork). For k ∈ N>0, the k-fork is the starlike tree 〈1k〉.

Starlike trees as forbidden configurations. We are interested in Jankov-Fine for-
mulas χ(T), where T is a starlike tree. On both posets and polyhedra, such formulas
will turn out to express a class of connectedness properties. Let us first see some new
terminology.

DEFINITION 3.21. Let F be a finite poset. Define C(F) to be the set of connected
components of F . The connectedness type c(F) of F is the signature nm1

1 · · ·n
mk
k such that

C(F) contains for each i exactly mi sets of height ni − 1, and nothing else. Let c(∅) := ε.

REMARK 3.22. Note that when F is connected, c(F) = n+ 1, where n= height(F).

DEFINITION 3.23 (α-partition). Let α > ε be a signature. An α-partition of F is a
partition:

F = C1 t · · · t C|α|

into open sets such that C j has height at least α( j)−1. For notational uniformity, say that
F has an ε-partition if F =∅.

REMARK 3.24. So an α-partition is an open partition in which the number and heights
of the connected components are specified by α.

LEMMA 3.25. A finite poset F has an α-partition if and only if α¶ c(F).
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Proof. Let β := c(F), and write α = nm1
1 · · ·n

mk
k . We may assume β > ε. Then we can

partition F into its connected components:

F = Ĉ1 t · · · t Ĉ|β |

such that Ĉ j has height β( j)−1. Take α¶ β . We construct an α-partition (C j | j ¶ |α|) in
blocks. First, since α¶ β , we have that β(m1)¾ n1. This means that each of Ĉ1, . . . , Ĉm1

has height at least n1. Let C1, . . . , Cm1
be these components Ĉ1, . . . , Ĉm1

. Next, we have
that β(m1 + m2) ¾ n2, meaning that each of Ĉm1+1, . . . , Ĉm1+m2

has height at least n2.
Let Cm1+1, . . . , Cm1+m2

be these components. Continue constructing (C j | j ¶ |α|) in this
fashion. Note that we don’t run out, since |α|¶ |β |. Finally, take the remaining |β | − |α|
components and add them to C1.

Conversely, assume that (C j | j ¶ |α|) is an α-partition of F . First note that since this
is an open partition, we must have that |α|¶ |C(F)|= |β |. Now consider C1. Let:

Γ := {l ¶ |β |: Ĉl ⊆ C1}

Since C1 is open and closed, for each Ĉl , either Ĉl ⊆ C1 or Ĉl ∩ C1 =∅. Hence:

C1 =
⋃

l∈Γ
Ĉl

Because each Ĉl is upwards- and downwards-closed, this means that:

height(C1) =max
�

height(Ĉl)
�

� l ∈ Γ
	

Therefore, as β(1) is maximal in {β( j) | j ¶ |β |}, we get that α(1)¶ β(1).
Applying this argument inductively on F \ C1, we get that α¶ β = c(F).

COROLLARY 3.26. When F is connected, F has an α-partition if and only if α = k, where
k ¶ height(F) + 1.

DEFINITION 3.27 (α-connectedness). Let F be a poset and α be a signature. F is α-
connected if there is no x ∈ F such that there is an α-partition of ⇑(x).

REMARK 3.28. By Lemma 3.25, this is equivalent to requiring that α 6¶ c(⇑(x)) for each
x ∈ F .

We can now express the meaning of χ(〈α〉) on frames.

PROPOSITION 3.29. For F a finite poset and α any signature, F � χ(〈α〉) if and only if
F is α-connected.

Proof. First label the elements of 〈α〉 as in the proof of Proposition 3.18. Assume that
F 2 χ(〈α〉). Then by Corollary 3.6 there is a pointed up-reduction f : F → 〈α〉 with apex
x . This means that f −1[〈α〉 \ {⊥}] = ⇑(x). For each j ¶ |α|, let:

C j := f −1{a( j, 1), . . . , a( j,α( j))}

Since {a( j, 1), . . . , a( j,α( j))} is upwards-closed, so is C j . Note that the C j ’s are disjoint.
Hence (C j | j ¶ k) is an open partition of ⇑(x). Now, pick x1 ∈ f −1{a( j, 1)}. Since f is a
p-morphism, there is x2 ∈ f −1{a( j, 2)} with x1 < x2. Continuing in this fashion, we find
a chain of length α( j) in C j , whence height(C j) ¾ α( j)− 1. But then (C j | j ¶ k) is an
α-partition of ⇑(x), meaning that F is not α-connected.
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⊥

a

b

c

Figure 3.2: Scott’s tree

Conversely, assume that F is not α-connected, so that there is x ∈ F and an α-partition
(C j | j ¶ k) of ⇑(x). For each C j , we have, by definition, that height(C j)¾ α( j)−1. Hence
by Proposition 1.19 there is a p-morphism f j : C j → 〈α( j)− 1〉. Define f : ↑(x)→ 〈α〉 as
follows.

y 7→
§

⊥ if y = x ,
f j(y) if y ∈ C j

Then f is a p-morphism, so an up-reduction F ◦→ 〈α〉.

REMARK 3.30. Note in particular it follows that BDn = IPC+ χ(〈n+ 1〉). This is just
Proposition 1.19 of course.

Starlike logics. We are now in a position to define the principle class of logics that
will be investigated in this chapter.

DEFINITION 3.31. Let S := {α signature | α 6= 12}.

DEFINITION 3.32 (Starlike logics). Take Λ ⊆ S (possibly infinite). The starlike logic
SFL(Λ) based on Λ is the logic axiomatised by IPC plus χ(〈α〉) for each α ∈ Λ. Write
SFL(α1, . . . ,αk) for SFL({α1, . . . ,αk}).

As made precise by Proposition 3.29, on frames starlike logics express connectedness
properties. Let us meet a well-known infinite-height starlike logic.

PROPOSITION 3.33. SL= SFL(2 · 1). So Scott’s logic is a starlike logic.

Proof. See [CZ97, §9 and Table 9.7, p. 317].

This is our first sighting of the starlike tree 〈2 · 1〉, which will reappear at various
points throughout the rest of the thesis. Let us give it a name: Scott’s tree. Observe its
image and labelling in Figure 3.2.

The main theorem and its fruits. Here is the main theorem of the chapter.

THEOREM 3.34. A starlike logic is polyhedrally-complete if and only if it has the finite
model property.

Most of the rest of the chapter will be devoted to a proof of this theorem. But first let
us see some of its nice consequences for the programme of classifying the polyhedrally-
complete logics.

COROLLARY 3.35. For each n ∈ N, there are infinitely-many polyhedrally-complete logics
of height n.
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Figure 3.3: Framesfin(SL) is not closed under N

Proof. Take Λ ⊆ S \ {n+ 1}. Then by Remark 3.30:

SFL({n+ 1} ∪Λ) = BDn + SFL(Λ)

By Segerberg’s Theorem 1.20, SFL({n+1}∪Λ) has the f.m.p. Then by the Main Theorem
3.34, SFL({n+ 1} ∪Λ) is polyhedrally-complete.

To see that this covers infinitely-many logics of height n, consider SFL(n+ 1, 1k) for
each k > 0. Note that the starlike tree 〈n ·1i〉 is a frame of SFL(n+1, 1k) for i < k−1, but
not for any i ¾ k− 1. Therefore, (Frames(SFL(n+ 1,1k)) | k ∈ N>0) are all distinct.

COROLLARY 3.36. Scott’s Logic SL is polyhedrally-complete.

Proof. This follows from Proposition 3.33, the Main Theorem 3.34 and the fact that
Scott’s logic has the f.m.p. (see [CZ97, Example 11.50, p. 405]).

REMARK 3.37. It follows from Corollary 3.36 that we cannot simplify the Nerve Criterion
to “a logic is polyhedrally-complete if and only if its class of finite frames is closed under
the nerve N ”. Indeed, consider the frame F given in Figure 3.3. By Proposition 3.33
and Proposition 3.29, F is a finite frame of SL. But the frame U in Figure 3.3 occurs as a
generated subframe of N (F), which maps p-morphically onto Scott’s tree 〈2 · 1〉. Hence
N (F) /∈ Framesfin(SL).

The difork case. The reader will have noticed that the difork 〈12〉 is omitted from
the definition of a starlike logic, and consequently from the Main Theorem 3.34. In
fact, polyhedral semantics is quite fond of this tree: when we take it as a forbidden
configuration, the resulting landscape of polyhedrally-complete logics is as sparse as
possible.

PROPOSITION 3.38. Let L be a polyhedrally-complete logic containing SFL(12). Then
L = CPC, the maximum logic.

Proof. Suppose for a contradiction that L is a polyhedrally-complete logic containing
SFL(12) other than CPC. By the Nerve Criterion 2.23, L = Logic(C) where C is a class
of finite posets closed under N . Since L 6= CPC, by Proposition 1.2 there must be
F ∈ C with height(F) ¾ 1. This means that F has a chain x0 < x1. As in the proof of
Theorem 2.28, we may assume that x1 is a top element of F and that x0 is an immediate
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predecessor of x1. Take X a maximal chain in ⇓(x0). Then, as in that proof, we obtain
the following structure lying at the top of N (F).

X ∪ {x0}

X ∪ {x0, x1}

X ∪ {x1}

Applying the nerve once more, we obtain the following structure at the top of N 2(F).

Z

Since C is closed under N , we get that N 2(F) ∈ Frames(L ). But ⇑(Z) maps p-morph-
ically onto 〈12〉, contradicting that L ` χ(〈12〉).

3.3 The Proof of the Starlike Completeness Theorem

The proof uses Lemma 3.3. Given a finite rooted frame of a starlike logic SFL(Λ), we will
find a frame F ′ which nerve-validates SFL(Λ) and which maps p-morphically onto F . To
do so we proceed in three steps.

(1) We examine what it means for a frame to nerve-validate χ(〈α〉).

(2) We see that we may assume that F is graded: this is a useful structural property of
posets.

(3) Using this additional structure, the final frame F ′ and the p-morphism F ′→ F are
constructed.

Nerve-validation. Let us first see what it means for F to nerve-validate χ(〈α〉).

DEFINITION 3.39. Let F be a poset and x < y in F . The diamond and strict diamond of
x and y are defined, respectively:

l(x , y) := ↑(x)∩ ↓(y)
m(x , y) := l(x , y) \ {x , y}

DEFINITION 3.40. A poset F is α-diamond-connected if there are no x < y in F such that
there is an α-partition of m(x , y). The poset F is α-nerve-connected if it is α-connected
and α-diamond-connected.

With a slight conceptual change, α-connectedness and α-diamond-connectedness can
be harmonised.

DEFINITION 3.41. For any poset F , we take a new element∞, and let F̌ := F ∪ {∞},
where∞ lies above every element of F .

Then F is α-nerve-connected if and only if there are no x < y in F̌ for which there is an
α-partition of m(x , y).

THEOREM 3.42. Let F be a finite poset and take α ∈ S . Then F �N χ(〈α〉) if and only if
F is α-nerve-connected.
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Proof. Assume that F is not α-nerve-connected with the aim of showing F 2N χ(〈α〉).
Choose x < y in F̌ such that m(x , y) has an α-partition. That is, there is an open partition
(C j | j ¶ |α|) of m(x , y) such that height(C j) = α( j). Choose a chain X ⊆ F which is
maximal with respect to (i) x , y ∈ X (ignoring the case y =∞), and (ii) X ∩m(x , y) =∅.
I will show that ⇑(X )N (F) has an α-partition. Note that by maximality of X , elements
Y ∈ ⇑(X )N (F) are determined by their intersection Y ∩m(x , y). For j ¶ |α|, let:

bC j := {Y ∈ ⇑(X )N (F) | Y ∩ C j 6=∅}

Take j, l ¶ |α| distinct. Since (by Proposition 1.4) both C j and Cl are upwards- and
downwards-closed in m(x , y), there is no chain Y ∈ ⇑(X )N (F) such that Y ∩ C j 6=∅ and
Y ∩ Cl 6=∅. This means that:

(1) bC j and bCl are disjoint.

(2) For any Y ∈ ⇑(X )N (F) we have Y ∈ bC j if and only if Y ∩m(x , y) ⊆ C j . Hence each
bC j is upwards- and downwards-closed in ⇑(X )N (F).

Furthermore, since (C j | j ¶ |α|) covers m(x , y), we get that (bC j | j ¶ |α|) covers
⇑(X )N (F). Finally, any maximal chain in bC j is a sequence of chains Y0 ⊂ · · · ⊂ Yl such that
|Yi+1 \ Yi |= 1; this then corresponds to a maximal chain in C j . Therefore:

height(bC j) = height(C j)

Ergo (bC j | j ¶ |α|) is an α-partition of ⇑(X )N (F), meaning that N (F) is not α-connected.
Then, by Proposition 3.29, N (F) 2 χ(〈α〉), hence by definition F 2N χ(〈α〉).

For the converse direction, I will show that if F is α-nerve-connected, then so isN (F),
which will give the result by induction (note that α-nerve-connectedness is stronger
than α-connectedness, and hence by Proposition 3.29 if N k(F) is α-nerve-connected
then N k(F) � χ(〈α〉)). So assume that F is α-nerve-connected. I will first prove α-
connectedness. Take X ∈ N (F) with the aim of showing that ⇑(X )N (F) has no α-partition.

Firstly, assume that X has more than one ‘gap’; that is, there are distinct w1, w2 ∈ F \X
such that X ∪ {w1} and X ∪ {w2} are still chains, but such that there exists z ∈ X with
w1 < z < w2. For i ∈ {1,2}, let ui ∈ X ∩ ⇓(wi) be greatest and vi ∈ X ∩ ⇑(wi) be least.
See Figure 3.4 for a representation of the situation. Take Y, Z ∈ ⇑(X )N (F); I will give
a path Y   Z . First, for i ∈ {1,2}, by adding in wi if necessary, we may assume that
Y ∩m(ui , vi) 6=∅, and similarly for Z . We then have the following path in ⇑(X )N (F) (note
that we need to be careful that none of the elements on the path equal X ):

Y

Y \ m(u1, v1)

(Y \ m(u1, v1))∪ {w1}

X ∪ {w1}

(Z \ m(u1, v1))∪ {w1}

Z \ m(u1, v1)

Z

Hence, ⇑(X )N (F) is path-connected, so by Proposition 1.3, it is connected. Therefore, by
Corollary 3.26, it suffices to show that height(⇑(X )N (F)) < height(F). But this follows
from Proposition 2.4.

Hence we may assume that X has exactly one gap (when X has no gaps, ⇑(X )N (F) =∅).
This means that there are x , y ∈ X with x < y such that X ∩ m(x , y) = ∅ and X is
maximal outside of m(x , y). As before then, elements Y ∈ ⇑(X )N (F) are determined by
their intersection Y ∩ m(x , y). Suppose that ⇑(X )N (F) has an α-partition (bC j | j ¶ |α|).
For each j ¶ |α|, let:

C j :=
⋃

bC j ∩m(x , y)
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Figure 3.4: The set-up when X has more than one gap

Note that
⋃

j¶|α| C j = m(x , y). For each j ¶ |α|, since bC j is downwards-closed (by
Proposition 1.4), we have that, for z ∈ m(x , y):

z ∈ C j ⇔ ∃Y ∈ bC j : z ∈ Y ⇔ X ∪ {z} ∈ bC j

This means in particular that the C j ’s are pairwise disjoint. Further, if z ∈ C j and
w ∈ m(x , y) with w < z, then X ∪ {w, z} is a chain, and so as bC j is upwards-closed, we
have X ∪ {w, z} ∈ bC j , meaning that w ∈ C j; similarly when w > z. Whence each C j is
upwards- and downwards-closed. Finally, as above, maximal chains in bC j correspond to
maximal chains in C j of the same length, whence:

height(bC j) = height(C j)

But then (C j | j ¶ |α|) is an α-partition of m(x , y), contradicting the fact that F is
α-nerve-connected.

This shows that N (F) is α-connected. What about α-diamond-connectedness? In
fact we can show this without using any assumptions on F . Take X , Y ∈ N (F) with
X ⊂ Y . I will show that m(X , Y )N (F) has no α-partition. We may assume that |Y \ X |¾ 2,
otherwise m(X , Y )N (F) = ∅. Note that this means in particular that α > 1, since F is
α-connected. If |Y \ X | = 2, then m(X , Y )N (F) is the antichain on two elements, which,
since α 6= 12 by assumption, has no α-partition. So assume that |Y \ X |¾ 3; I will show
that in fact m(X , Y )N (F) is connected. Take distinct Z , W ∈ m(X , Y )N (F). Choose z ∈ Z \X
and w ∈ W \ X . Since |Y \ X | ¾ 3, we have that X ∪ {z, w} ∈ m(X , Y )N (F). Hence the
following is a path in m(X , Y )N (F):

Z

X ∪ {z}

X ∪ {z, w}

X ∪ {w}

W

Therefore, m(X , Y )N (F) is connected. Finally, note that:

height(m(X , Y )N (F))¶ height(N (F)) = height(F)
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(a) (b) (c)

Figure 3.5: Graded posets: (a) and (b) are examples of graded posets, while (c) is a
non-example.

REMARK 3.43. Note that the proof shows an interesting property of the formulas χ(〈α〉):
we have F �N χ(〈α〉) if and only if N (F) � χ(〈α〉). This is not true in general. For
example, formulas expressing bounded width can take many iterations of the nerve
construction to become falsified.

Graded posets. The next step is to show that we can put F ∈ Frames⊥,fin(SFL(Λ))
into a special form. The following definition comes from combinatorics (see e.g. [Sta97,
p. 99]).

DEFINITION 3.44 (Graded poset). A rank function on a poset F is a map ρ : F → N such
that:

(i) whenever x is minimal in F , we have ρ(x) = 0,

(ii) whenever y is the immediate successor of x , we have ρ(y) = ρ(x) + 1.

If F is non-empty and has a rank function, then it is graded.

The notion of gradedness has a strong visual connection. When a poset is graded,
we can draw it out in well-defined layers such that any element’s immediate successors
lie entirely in the next layer up. See Figure 3.5 for some examples and non-examples of
graded posets.

PROPOSITION 3.45. Let F be a finite poset.

(1) F is graded if and only if for every x ∈ F , all maximal chains in ↓(x) have the same
length.

(2) When F is graded, ρ(x) = height(x) for every x ∈ F , and height(F) =maxρ[F].

(3) Rank functions, when they exist, are unique.

Proof. (1) See [Sta97, p. 99]. Assume that F is graded, and take X a maximal chain
in ↓(x) for some x ∈ F . Let k = ρ(x). I will show that |X | = k + 1. Since X is a
chain, the ranks of each of its elements are distinct. Since X is maximal, x ∈ X .
Suppose for a contradiction that there is j < k such that there is no x ∈ X of rank
j. We may assume that j is minimal with this property. We can’t have j = 0, since
otherwise X wouldn’t contain any minimal element, so wouldn’t be a maximal
chain. Hence, there is y ∈ X with ρ(y) = j − 1. Let z be next in X after y . Then y
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has an immediate successor w such that w¶ z. By definition, ρ(w) = j, so w /∈ X .
But X ∪ {w} is a chain, contradicting the maximality of X . Therefore, |X | = k+ 1.

Conversely, define ρ : F → N by:

x 7→ height(x)

Let us check that ρ is a rank function. (i) Clearly, when x is minimal, ρ(x) = 0.
(ii) Suppose for a contradiction that there are x , y ∈ F , with y an immediate
successor of x , such that ρ(y) 6= ρ(x) + 1. First, by definition, ρ(y) > ρ(x), so
we must have ρ(y)> ρ(x) + 1. Choose maximal chains X ⊆ ↓(x), Y ⊆ ↓(y). Note
that by assumption:

|Y |> |X |+ 1

But now, since y is an immediate successor of x , both X ∪ {y} and Y are maximal
chains in ↓(y) of different heights.

(2) This follows from the proof of (1).

(3) This follows from (3).

COROLLARY 3.46. (1) Every tree is graded.

(2) For any finite poset F , its nerve N (F) is graded, with rank function given by
ρ(X ) = |X | − 1.

Proof. For (2), note that for any X ∈ N (F) we have height(X ) = |X | − 1.

Gradification in the presence of Scott’s tree. The task now is, given a finite rooted
frame F of SFL(Λ), to find a finite graded rooted frame F ′ of SFL(Λ) and a p-morphism
f : F ′→ F . We will do this using two different methods, depending on whether or not
we have Scott’s tree 〈2 · 1〉 present. Let us first consider the case 2 · 1 ∈ Λ. The following
lemmas show us that this case is not too complicated.

LEMMA 3.47. Take Λ ⊆ S such that 2 · 1 ∈ Λ but n /∈ Λ for any n ∈ N.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(2 · 1).

(2) Otherwise, let k ∈ N>0 be minimal such that 1k ∈ Λ. Then SFL(Λ) = SFL(2 · 1, 1k).

Proof. (1) Take α ∈ Λ. Then by assumption α(1) ¾ 2, hence, as α 6= 2, we have
2 · 1 ¶ α. Then by Proposition 3.18 there is a p-morphism 〈α〉 → 〈2 · 1〉. Hence
by the semantic meaning of Jankov-Fine formulas, Theorem 1.16, we have that
χ(〈α〉)→ χ(〈2 · 1〉) is valid. This means that SFL(Λ) ⊆ SFL(2 · 1). The converse
direction is immediate.

(2) Take α ∈ Λ. If α(1)¾ 2 then by the proof of (1) we have χ(〈α〉)→ χ(〈2 · 1〉). So
assume that α(1) < 2. Since α 6= ε, we have α(1) = 1, meaning that α = 1l for
some l ∈ N>0. By assumption k ¶ l. But then 1k ¶ α, giving that χ(〈α〉)→ χ(〈1k〉)
as before.

COROLLARY 3.48. Take Λ ⊆ S such that 2 ·1 ∈ Λ and there is n ∈ N with n ∈ Λ; assume
that n is the minimal such natural number.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(n, 2 · 1).

(2) Otherwise, let k ∈ N>0 be minimal with 1k ∈ Λ. Then SFL(Λ) = SFL(n, 2 · 1, 1k).
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Proof. This follows from Lemma 3.47 and the fact that when n1 < n2 we have χ(〈n1〉)→
χ(〈n2〉).

Using this, the ‘meaning’ of SFL(Λ) can be expressed relatively simply. Note that this
meaning is expressed in terms of the depth of elements x ∈ F . Up until this point we
have mainly been concerned with the height of elements.

LEMMA 3.49. Take Λ ⊆ S such that 2 · 1 ∈ Λ, and let F be a finite poset. Let n ∈ N be
minimal such that n ∈ Λ, or∞ if no such signature is present. Similarly, let k ∈ N>0

be minimal with 1k ∈ Λ, or ∞. Then F � SFL(Λ) if and only if the following three
conditions are satisfied for every x ∈ F .

(i) We have height(F)¶ n− 1.

(ii) Whenever depth(x) = 1, we have |⇑(x)|< k.

(iii) Whenever depth(x)> 1, the set ⇑(x) is connected.

Proof. By Corollary 3.48 and the fact that F � χ(〈n〉) if and only if height(F) ¶ n− 1,
it suffices to treat the case n=∞. Now by Lemma 3.47, SFL(Λ) = SFL(2 · 1,1k) when
k <∞, and SFL(Λ) = SFL(2 · 1) otherwise.

Assume that F � SFL(Λ). (ii) In the case k <∞, take x ∈ F with depth(x) = 1.
Note that ⇑(x) is an antichain, so ({y} | y ∈ ⇑(x)) is an open partition of ⇑(x). Since
x � χ(〈1k〉), by Lemma 3.25 and Proposition 3.29 we must have |⇑(x)| < k. (iii) Now
take x ∈ F with depth(x)> 1, and suppose for a contradiction that ⇑(x) is disconnected.
Then we can partition ⇑(x) into disjoint upwards-closed sets U , V . Since depth(x)> 1,
one of U and V (say U) must have height at least 1. But then (U , V ) is a (2 · 1)-partition
of ⇑(x), contradicting that F � χ(〈2 · 1〉) by Proposition 3.29.

Conversely, assume that F 2 SFL(Λ). I will show that one of (ii) and (iii) is violated.
If F 2 χ(〈2 · 1〉), then by Proposition 3.29 there is x ∈ F and a (2 · 1)-partition (U , V )
of ⇑(x). But then height(U) ¾ 1, meaning that depth(x) > 1, and furthermore ⇑(x) is
disconnected, violating (iii). So let us assume that k <∞, that F � χ(〈2 · 1〉) but that
F 2 χ(〈1k〉). Again, we get x ∈ F and a 1k-partition (C1, . . . , Ck) of ⇑(x). We must have
that height(C1) = 0, otherwise (C1, C2 ∪ · · · ∪ Ck) is a (2 · 1)-partition of ⇑(x). Similarly
height(Ci) = 0 for every i ¶ k. This means that depth(x) = 1, and that |⇑(x)| ¾ k,
violating (ii).

THEOREM 3.50. Let Λ ⊆ S be such that 2 ·1 ∈ Λ. Let F be a finite rooted poset such that
F � SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′→ F
such that F ′ � SFL(Λ).

This is the the ‘gradification’ theorem. Let me outline the construction before coming to
the full proof.

• We first split F up into its tree unravelling T (F).

• We then lengthen branches so that the tree has a uniform height.

• Lastly, we join top nodes of this tree in order to recover any α-connectedness that
we lost.

See Figure 3.6 for an example of this process.

Proof. Let n := height(F). We may assume ε /∈ Λ. If 2 ∈ Λ, then by Remark 3.30, n¶ 1,
so F is already graded. So assume that 2 /∈ Λ.
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F T (F) T0 F ′

Figure 3.6: An example of gradification in the presence of Scott’s tree

Start with the tree unravelling T = T (F) of F . Form a new tree T0 by replacing
each top node t ∈ Top(T) with a chain of new elements t∗(0), . . . , t∗(mt), where mt =
n− height(t). The relations between these new elements and the rest of T is as follows:

t∗(0)< · · ·< t∗(mt),
x < t∗(0) ⇔ x < t ∀x ∈ T

Note that in T0 all branches have the same length n+1. Define the p-morphism g : T0→ T
by:

x 7→
§

x if x ∈ Trunk(T ),
last(t) if x = t∗(i) for some t ∈ Top(T ) and i ¶ mt

Form F ′ from T0 by identifying, for top nodes t, s ∈ Top(T), the elements t∗(mt) and
s∗(ms) whenever last(t) = last(s). That is, let F ′ := T0/W , where:

W := {{t∗(mt) | last(t) = u} | u ∈ Top(F)}

Note that we have a p-morphism f = last ◦ g ◦ qW : F ′→ F . Furthermore, F is clearly
finite and rooted. As to gradedness, take x ∈ F ′ with the aim of showing that all maximal
chains in ↓(x) are of the same length, utilising Proposition 3.45. If x ∈ Trunk(F ′), then
↓(x)F

′
is a linear order. So assume that x ∈ Top(F ′). Then any maximal chain X in ↓(x)

corresponds to a branch of T0, and therefore has length n+ 1.
Let us now use Lemma 3.49 to verify that our construction preserves α-connectedness

for α ∈ Λ and complete the proof. Let k ∈ N>0 be minimal such that 1k ∈ Λ, or ∞
if no such signature is present. For u ∈ Top(F) let bu be the equivalence class of those
elements t∗(mt) such that last(t) = u. Note that by construction, for x ∈ Trunk(T ) and
u ∈ Top(F):

x < bu ⇔ last(x)< u (?)

We need to check the three conditions of Lemma 3.49.

(i) Note that height(F ′) = height(F).

(ii) For any x ∈ F ′ with depth(x) = 1, either x ∈ Trunk(T ) or x = t∗(nt − 1) for some
top node t ∈ T . In the former case, the fact that |⇑(x)| ¶ k follows from (?) and

the fact that |⇑(last(x))F |¶ k. In the latter case we have ⇑(x) =
¦

Ùlast(t)
©

.
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Figure 3.7: The form of the paths in ⇑(last(x))F and ⇑(x)F
′

x

F

x

T (F)

x

T0

x

F ′

Figure 3.8: The technique in the proof of Theorem 3.50 doesn’t work in general

(iii) Similarly, for any x ∈ F ′ with depth(x) > 1, either x ∈ Trunk(T) or x = t∗(r)
for some top node t ∈ T and r < nt − 1. In the latter case, ⇑(x) is a chain, so
connected. For the former case, it suffices to show that any two top elements
bu,bv ∈ ⇑(x) are connected by a path in ⇑(x). Note that depth(last(x))F > 1. Now,
since F � χ(〈2 · 1〉), by Lemma 3.49 there is a path u  v in ⇑(last(x))F . We may
assume that this path is of form given in Figure 3.7 (a), where w0, . . . , wk are top
nodes in F . Using (?), this path then translates into a path bu  bv as in Figure 3.7
(b), where yi ∈ last

−1{ai} ∩ ⇑(x) for each i.

REMARK 3.51. In Chapter 4, it will be useful to note that the proof of Theorem 3.50
produces frames of a particular form: when we remove Top(F ′) from F ′, what is left is a
tree of uniform height n− 1, where n= height(F ′).

Gradification without Scott’s tree. Now that the situation 2 · 1 ∈ Λ has been dealt
with, let us turn to the case 2 · 1 /∈ Λ. Unfortunately, the proof of Theorem 3.50 crucially
relied on the fact that the original frame F was (2 · 1)-connected. Consider for instance
the frame F given in Figure 3.8, which at x is not (2 · 1)-connected. If we apply the
construction to F , we end up with a frame F ′ in which x sits below two connected
components of height 1, that is, c(⇑(x)F

′
) = 22. Hence F ′ is not 22-connected, while F

is. Taking 2 · 1 away from Λ is a double-edged sword however, since it allows for more
complex constructions in F ′.

The following reusable lemma will come in handy a couple of times.
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F T (F) F ′

Figure 3.9: An example of gradification in the absence of Scott’s tree.

LEMMA 3.52. Let f : F ′→ F be a surjective p-morphism between finite posets, and take
x ∈ F ′. Assume that for any y, z ∈ Succ(x) there is a path y   z in ⇑(x) whenever there
is a path f (y)  f (z) in ⇑( f (x)). Then:

C(⇑(x)) = { f −1[C] | C ∈ C(⇑( f (x)))}

In particular, if height( f −1[C]) = height(C) for any C ∈ C(⇑( f (x))) then:

c(⇑(x)) = c(⇑( f (x))

Proof. Note that, by Proposition 1.4, since f is a p-morphism and F and F ′ are finite,
{ f −1[C] | C ∈ C(⇑( f (x)))} is a partition of ⇑(x) into upwards- and downwards-closed sets.
So it suffices to show that f −1[C] is connected for every C ∈ C(⇑( f (x))). Take y0, z0 ∈
f −1[C]. Since f −1[C] is downwards-closed in ⇑(x), there are y, z ∈ Succ(x)∩ f −1[C]
such that y ¶ y0 and z ¶ z0. Then f (y), f (z) ∈ C , so by assumption there is a path
f (y)  f (z) in ⇑( f (x)). But then by assumption there is a path y   z in ⇑(x), which
lies in f −1[C] since the latter is upwards- and downwards-closed.

THEOREM 3.53. Let Λ ⊆ S be such that 2 ·1 /∈ Λ. Let F be a finite rooted poset such that
F � SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′→ F
such that F ′ � SFL(Λ).

The construction works in two steps as follows (see Figure 3.9 for an example).

• Again, we start by splitting F up into its tree unravelling T (F).

• Then, in order to connect the frame back up again while ensuring that it remains
graded, we construct ‘zigzag roller-coasters’ connecting top nodes of different
heights.

Proof of Theorem 3.53. As in the proof of Theorem 3.50, we may assume that ε, 1, 2 /∈ Λ.
Start with T = T (F). For every two distinct p, q ∈ Top(T) such that last(p) =

last(q) = t, we will build a ‘roller-coaster’ structure Z(p, q), which will furnish a bridge
between p and q. Every such structure Z(p, q) is independent, so that they can all be
added to T at the same time. First note that by Corollary 3.46, T is graded; let ρ : T → N
be its rank function.

Now, take distinct p, q ∈ Top(T ) such that last(p) = last(q) = t. Let l := ρ(q)−ρ(p).
By swapping p and q, we may assume that l ¾ 0. I will join p and q with a zigzagging
path, which consists of lower points a0, . . . , al , upper points b0, . . . , bl−1 and intermediate
points c0, . . . , cl−1. The relations between these points are as follows (see Figure 3.10).

ai < ci < bi , ai+1 < bi
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a0
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Figure 3.10: The relations between the zigzag points in case l = 3.

p

q

p ∧ q

Figure 3.11: The zigzag path and the ladder structure in place.

Consider p∧q (i.e. the intersection of p and q, regarded as strict chains containing the
root), and let k := ρ(p)−ρ(p ∧ q)− 1. Note that k ¾ 0 since p and q are incomparable.
Moreover, k ¾ 1. Indeed, suppose for a contradiction that k = 0, so that p is an
immediate successor of p ∧ q. Then last(p) is an immediate successor of last(p ∧ q). But
last(q) = last(p), so we have, as strict chains:

p = (p ∧ q)∪ {last(p)}= (p ∧ q)∪ {last(q)}= q

contradicting that p and q are distinct.
To ensure that the new poset F ′ is still graded, we need to dangle some scaffolding

down from the zigzag path to p ∧ q. Below each lower point ai we will dangle a chain of
k+ i − 1 points d(i, 1), . . . , d(i, k+ i − 1). The relations are as follows:

d(i, 1)< d(i, 2)< · · ·< d(i, k+ i − 1)< ai

Finally, let Z(p, q) denote the whole structure of the zigzag path plus the dangling
scaffolding. Attach Z(p, q) to T by adding the following relations and closing under
transitivity (see Figure 3.11).

a0 < p, al < q, ∀i : p ∧ q < d(i, 1)

Let F ′ be the result of adding Z(p, q) to T for every pair p, q, and define the function
f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T
last(p) if x ∈ Z(p, q) for some p, q

First, let us see that f is a p-morphism. The forth condition follows from the fact that
last is monotonic, and that:
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• if x ¶ y with x ∈ T and y ∈ Z(p, q), then by construction x ¶ p ∧ q, meaning that
f (x) = last(x)¶ last(p ∧ q)¶ last(p) = f (y), and

• if x ¶ y with x ∈ Z(p, q) and y ∈ T , then by construction y ∈ {p, q}, so that
f (x) = last(p) = f (y).

The back condition follows from the fact that last is open, and that each Z(p, q) maps to
a top node.

Second, for any pair p, q, we can extend the rank function ρ to the new structure
Z(p, q) as follows (as indicated by the heights of the nodes in Figure 3.11):

ρ(ai) = ρ(p) + i − 1

ρ(bi) = ρ(p) + i + 1

ρ(ci) = ρ(p) + i

ρ(d(i, j)) = ρ(p ∧ q) + j

To see that, thus extended, ρ is still a rank function, it suffices to check that the newly-
ranked Z(p, q) fits into T as a ranked structure. That is, we need to check the following
equations.

ρ(p) = ρ(a0) + 1

ρ(q) = ρ(al) + 1

ρ(d(i, 1)) = ρ(p ∧ q) + 1

But these follow by definition. In this way we see that F ′ is graded.
Finally, it remains to be shown that F � SFL(Λ). So take x ∈ F . First, whenever

x ∈ Z(p, q) for some p, q, by construction ⇑(x) is α-connected for every signature other
than ε, 12, 2 ·1 and k where k ¾ height(F)+1. Hence we may assume that x ∈ T . Let us
use Lemma 3.52. Take y, z ∈ Succ(x) such that there is a path f (y)  f (z) in ⇑(last(x)),
with the aim of finding a path y   z in ⇑(x).

Assume that y ∈ Z(p, q) for some p, q. Then since y ∈ Succ(x) and x ∈ T , by
construction x = p ∧ q. All of Z(p, q) is connected in ⇑(x), hence there is a path y   p.
Let p′ ∈ T be the immediate successor of x which lies below p (this exists since T is a
tree). Then we have a path y   p′ in ⇑(x). Therefore, we may assume that y ∈ T , and
similarly that z ∈ T .

So, we have a path last(y)  last(z). We now proceed in a similar fashion to the
proof of Theorem 3.50. We may assume that the path last(y)  last(z) has the form in
Figure 3.12 (a), where t0, . . . , tk are top nodes in F . Let u0 := y and uk := z. For each
i ∈ {1, . . . , k − 1}, choose ui ∈ last−1{ai}. For i ∈ {0, . . . , k − 1}, take pi , qi ∈ last−1{t i}
such that ui ¶ pi and ui+1 ¶ qi . For each such i, since last(pi) = last(qi), there is a path
pi   qi which lies in Z(pi , qi), and hence lies in ⇑(x). Compose all these paths as in
Figure 3.12 to form a path y   z in ⇑(x) as required.

It now remains to show that if C ∈ C(⇑(last(x))), then height( f −1[C]) = height(C).
First, since f is a p-morphism, height( f −1[C])¾ height(C). Conversely, let X ⊆ f −1[C]
be a maximal chain. Assume X intersects with some Z(p, q). Then we can replace the
part X ∩ (Z(p, q)∪ {p, q}) with the unique maximal chain in ⇑(p ∧ q)T containing q (this
exists since T is a tree). Then by construction this does not decrease the length of X nor
does it move X outside of f −1[C] (since the latter is upwards- and downwards-closed).
Therefore, we may assume that X ⊆ T , so X corresponds to a chain last[X ] of the same
length in C .

Therefore, by Lemma 3.52 we get that c(⇑(x)) = c(⇑(last(x)). Applying Lemma 3.25,
we have that ⇑(x) has an α-partition if and only if ⇑(last(x)) has an α-partition.
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a0
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t1
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(b)
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p0 q0

u1

p1 q1

t0 t1

· · ·

pk−2 qk−2

uk−1

pk−1 qk−1

uk

tk−2 tk−1

Figure 3.12: The form of the paths in ⇑(last(x)) and ⇑(x)

F T (F) F ′

Figure 3.13: An example of nervification, using the graded structure of F

Nervification. We now find ourselves, having suitably prepared F , in a position to
make use of its additional graded structure. The general method of the final construction,
in which we transform F into a frame which nerve-validates SFL(Λ), is the same as in
Theorem 3.50 and Theorem 3.53. We begin with the tree unravelling T (F), perform
some alterations, then rejoin top nodes. A key difference here is that we won’t rejoin
every top node to every other top node whose ‘last’ value is the same. Instead, we line
up all the top nodes mapping to the same element and link each top node to at most two
other top nodes: its neighbours. See Figure 3.13 for an example of the construction.

DEFINITION 3.54. Let T be a finite tree. Then for each x ∈ T , we have that ↓(x) is a
chain. For k ¶ height(x), let x (k) be the element of this chain which has height k. Let
x (−k) be the element which has height height(x)− k.

DEFINITION 3.55. For n ∈ N, let Sn := S \ {1k | k < n}.
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T ′ +W (t)

Figure 3.14: The chevron structure in a case with two branches.

THEOREM 3.56. Take Λ ⊆ S and let F be a finite graded rooted poset of height n
such that F � SFL(Λ). Then there is a poset F ′ and a p-morphism f : F ′→ F such that
F � SFL(Λ) and such that F is α-diamond-connected for every α ∈ Sn.

Proof of Theorem 3.56. We may assume that ε, 1 /∈ Λ. Further, if 2 ∈ Λ, then height(F) =
1, so F is already α-diamond-connected for every α ∈ Sn. Hence we may assume that
2 /∈ Λ.

Once more, start with T = T (F). Chop off the top nodes: let T ′ := Trunk(T). For
each t ∈ Top(F), we will add a new structure W (t), which lies only above elements of T ′.
Let ρ : F → N be the rank function on F . Note that ρ ◦ last: T → N is the rank function
on T .

Take t ∈ Top(F). Enumerate last−1{t}= {p1, . . . , pm}. For each i ¶ m− 1, define:

ri := pi ∧ pi+1

li := ρ(last(ri))
ki := ρ(t)−ρ(last(ri))− 1

Note that ki ¾ 1 just as in the proof of Theorem 3.53. Since F is graded and T is a tree,
we have that:

|m(ri , pi)
T |= |m(ri , pi+1)

T |= ki

In other words, p(li)
i = p(li)

i+1 = ri . We will construct a ‘chevron’ structure which joins p(−1)
i

to p(−1)
i+1 . For each i ¶ m− 1, take new elements a(i, 1), . . . , a(i, ki), and add them to T ′

using the following relations.

a(i, 1)< · · ·< a(i, ki), ∀ j ¶ ki : p(l+ j)
i , p(l+ j)

i+1 < a(i, j)

Let W (t) be this new structure (i.e. the chain {a(i, 1) < · · · < a(i, ki)} in place). See
Figure 3.14 and Figure 3.15 for examples of this process of adding chevrons.

The process of adding W (t) is independent for each t ∈ Top(F). Let F ′ be the result
of adding every W (t) to T ′. Define f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T ′

t if x ∈W (t) for some t ∈ Top(F)
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F

p1 p2 p3 t

T T ′ +W (t)

Figure 3.15: The chevron structure in a more complex case involving three branches.

Since we have made sure that each W (t) contains, for each pi ∈ last
−1{t}, a node above

p(−1)
i which maps to t, and that all of the new structure maps to a top node, f is a

p-morphism.
Let us see that F ′ � SFL(Λ). Take x ∈ F ′. If x ∈W (t) for some t, then ⇑(x) is either

empty or a chain, hence ⇑(x) � SFL(Λ). So we assume that x ∈ T ′. The verification is
now very similar to that in Theorem 3.53, making use of Lemma 3.52. Take y, z ∈ Succ(x)
such that there is a path f (y)  f (z) in ⇑(last(x)). As in the proof of Theorem 3.53,
by construction of W (t) we may assume that y, z ∈ T ′. Just as in that proof, we can
construct a path y   z from the path f (y)   f (z), using the fact that whenever
t ∈ ⇑(last(x))∩Top(F), any w, v ∈ f −1{t} are connected by a path in ⇑(x)F

′
(this is how

we constructed F ′). It is straightforward then to check that if C ∈ C(⇑(last(x))) we have
height( f −1[C]) = height(C), giving that:

c(⇑(x)) = c(⇑(last(x)))

To complete the proof, let us see that F ′ is α-diamond-connected for every α ∈ Sn.
Take x , y ∈ F ′ with x < y and consider m(x , y). There are several cases.

(a) Case y ∈ T ′. We have that m(x , y)F
′
= m(x , y)T

′
, which is linearly-ordered since T ′

is a tree; hence it is connected and of height at most n− 2.

Hence y = a(i, j) for a(i, j) ∈W (t) a new element. Let pi , pi+1, ri , li be as above.

(b) Case x ∈W (t). Note that by construction m(x , y) is linearly-ordered.

(c) Case x = p(l+e)
i for some e. If we have height(m(x , y)) = 1, then e = i − 1 and

m(x , y) is the antichain on two elements, which is α-connected. Otherwise, by
construction, a(i, j − 1) ∈ m(x , y) which is connected to everything.

(d) Case x = p(l+e)
i+1 for some e. This is symmetric.

(e) Case x = ri . Again, if height(m(x , y))) = 1 then j = 1 and m(x , y) is the antichain
on two elements, otherwise a(i, 1) ∈ m(x , y) which is connected to everything.

(f) Otherwise, x < ri (since T ′ is a tree). Here ri ∈ m(x , y) which is connected to
everything.
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Putting it all together. After a fair bit of labour, we now have all the ingredients we
need for our proof. Let us put them together.

Proof of Theorem 3.34. By Lemma 3.3, we need to show that every finite rooted frame of
SFL(Λ) is the up-reduction of one which nerve-validates SFL(Λ); in fact this up-reduction
is just a p-morphism. So take such a frame F . We may assume that F is graded: when we
have 2·1 ∈ Λ, apply Theorem 3.50, otherwise apply Theorem 3.53. Then by Theorem 3.56,
there is a frame F ′ and a p-morphism f : F ′ → F such that F is α-nerve-connected for
every α ∈ Λ (note that by Remark 3.30 we must have Λ ⊆ Sn where n = height(F)).
Then, by Theorem 3.42, F nerve-validates SFL(Λ), which completes the proof.

3.4 Epilogue

What does it all mean? Geometric interpretation. For a while now, we have
been absorbed in some very combinatorial considerations, and the geometric part of the
theory has been rather left on the sidelines. Theorem 3.34 furnishes us with a number of
polyhedrally-complete logics, but the reader may very well wonder, for which classes of
polyhedra are these logics complete? It is now time to answer this question.

DEFINITION 3.57. Let α be a signature. A polyhedron P is α-connected if for every open
subpolyhedron Q of P there is no partition (B, C1, . . . , C|α|) of Q such that C1, . . . , C|α| are
open subpolyhedra of P with Dim(C j)¾ Dim(B)+α( j)−1, and B ⊆ Cl(C1)∩· · ·∩Cl(C|α|).

For example, a polyhedron P is 13-connected if there is no partition (B, C1, C2, C3)
of an open subpolyhedron Q of P with C1, C2, C3 open subpolyhedra and B ⊆ Cl(C1)∩
Cl(C2)∩Cl(C3).

PROPOSITION 3.58. P � χ(〈α〉) if and only if P is α-connected.

Proof. By Maxim I, P 2 χ(〈α〉) if and only if there is some triangulation Σ of P such that
Σ 2 χ(〈α〉). Assume this is the case. Then by Proposition 3.29 there is σ ∈ Σ and an
α-partition (C∗j | j ¶ |α|) of ⇑(σ). Let Q := o(σ), the open star of σ. By Proposition 1.42,
Q is an open subpolyhedron. Now, by Proposition 1.43, the open sets C∗j correspond to

open subpolyhedra of P contained in Q via the isomorphism γ↑. Let C j := γ↑(C∗j ), for
each j ¶ |α|. Finally let B := σ. Note that by definition (B, C1, . . . , C|α|) is a partition of
Q, and that:

Dim(C j) = height(↓C∗j ) (by definition)

= height(C∗j ) + height(σ) (Σ graded, C∗j ⊆ ⇑(σ) downwards-closed)

= height(C∗j ) +Dim(σ)

¾ α( j)− 1+Dim(B)

Furthermore, for any τ ∈ ⇑(σ) we have σ ≺ τ, so that σ ⊆ τ = ClRelintτ. Whence
B ⊆ Cl(C1)∩ · · · ∩Cl(C|α|).

Conversely, assume that Q ∈ Subo(P) and that (B, C1, . . . , C|α|) is a partition of Q as
in the definition. Note that B, being the complement of a union of open subpolyhedra,
is a polyhedron (by Proposition 1.32). Using the Triangulation Lemma 1.28, let Σ be a
triangulation of P such that:

|ΣQC |=QC, |ΣB|= B, ∀ j ¶ |α|: |ΣCC
j
|= CC

j
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For each j ¶ |α|, let C ′j := Σ \ ΣCC
j
. Note that this is upwards-closed, and that by

Proposition 1.26, C j = γ↑(C ′j).
Now, choose σ ∈ ΣB of maximum dimension Dim(B). For each j ¶ |α|, let C∗j :=

C ′j ∩ ↑(σ). We have that:

σ ⊆ |ΣB|= B ⊆ Cl C j = Clγ↑(C ′j) =
⋃

τ∈C ′j

ClRelintτ= |↓C ′j |

as in the proof of Proposition 1.44. This means thatσ ∈ ↓C ′j , so that C∗j is not empty (since
C ′j is upwards-closed). Furthermore, by maximality B∩⇑(σ) =∅, whence (C∗j | j ¶ |α|) is
an open partition of ⇑(σ). In particular, by Proposition 1.4, each C∗j is downwards-closed
in ⇑(σ). Then, using also that Σ is graded:

height(C∗j ) = height(↓C∗j )− height(σ)

= height(↓C ′j)− height(σ)

= Dim(C j)− height(σ) (by definition)

= Dim(C j)−Dim(B)

¾ α( j)− 1

Thus (C∗j | j ¶ |α|) is an α-partition of ⇑(σ), meaning that, by Proposition 3.29, Σ 2
χ(〈α〉), so that P 2 χ(〈α〉).
COROLLARY 3.59. Let Λ ⊆ S . If SFL(Λ) has the finite model property then:

SFL(Λ) = Logic(P polyhedron | ∀α ∈ Λ: P is α-connected)

Proof. By Theorem 3.34, SFL(Λ) = Logic(C) for some class C of polyhedra. By Proposi-
tion 3.58, we have:

C ⊆ {P polyhedron | ∀α ∈ Λ: P is α-connected}

and moreover if P is α-connected for every α ∈ Λ then P � SFL(Λ). So the result
follows.

General trees. A natural question to ask is, given the result in Theorem 3.34 on
starlike trees, what happens when we consider general trees? The situation turns out to
be rather more complex, and it is not clear how to proceed. Indeed, following Lemma 3.3,
the first part of determining whether χ(T ) is polyhedrally-complete is to examine what it
means to have F �N χ(T ), for F a finite frame. And the first steps in understanding this
situation, is to see what it means to have F � χ(T ) and N (F) � χ(T ). But when T has
some branching above the root, this classification becomes quite hard.

The key point is that Lemma 3.5 allows us to assume that any up-reduction to a
starlike tree is pointed, meaning that the only ‘branching in the p-morphism’ occurs at
the root, so that a p-morphism to 〈α〉 is the same as an α-partition. When we consider
up-reductions to a general tree T however, we no longer have this luxury. Of course, we
can always assume that such an up-reduction is pointed, and one might hope for the
possibility of a recursive argument ultimately reducing to the starlike case. Unfortunately,
the structure of a p-morphism to T doesn’t appear to be ‘local’ in this sense. Consider for
example, the posets F and T in Figure 3.16. Note that ↑(x i) for each i maps p-morphically
onto the 3-fork 〈13〉, however there is no up-reduction F ◦→ T . So, the investigation of
the polyhedral completeness of the Jankov-Fine formulas of starlike trees will require
some new techniques.
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Figure 3.16: An example of the ‘non-locality’ of p-morphisms to general trees
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Chapter 4

The Logic of Convex Polyhedra

It is now time to approach the Main Question from an alternative direction. Coming
from the geometrical side one might ask: given a class C of polyhedra, what is the logic
of C? In this chapter, I will provide an answer to this question when C is a particularly
natural class of polyhedra: the class CPn of convex polyhedra of dimension at most n. In
particular, I will show that the logic of CPn is axiomatised by the Jankov-Fine formulas of
three simple starlike trees as follows (see Figure 4.1).

SFL(n+ 1,2 · 1,13) = IPC+χ(〈n+ 1〉) +χ(〈2 · 1〉) +χ(〈13〉)

The importance of convex polyhedra in polyhedral geometry is mirrored on the logical
side: the logic of CPn is the largest polyhedrally-complete logic of height n. The problem
of finding an axiomatisation for the class of all convex polyhedra remains open.

4.1 The Logic PLn

The logic of the simplex. As a prelude to considering the logic of all convex polyhe-
dra of dimension at most n, it is prudent to examine the humble simplex once more, from
the perspective of the tight connection between logic and polyhedra uncovered in the
preceding chapters. Of course, for each d there are many d-simplices. It is handy to single
out one representative from this myriad. Let e0, . . . , ed be the standard basis vectors of
Rd+1. The standard d-simplex is ∆d := Conv{e0, . . . , ed}. We shall investigate Logic(∆d).
Using the notation from Chapter 3, recall that 〈k〉 is the chain on k+ 1 elements — as a
poset it has height k.

PROPOSITION 4.1. The logic of ∆d is the logic of {〈d〉,N (〈d〉),N 2(〈d〉), . . .}.

Proof. Label the elements of 〈d〉 in ascending order as a0, . . . , ad . Note that the following
is a triangulation of ∆d :

Σ := {Conv S | S ⊆ {e0, . . . , ed}}

Then Σ∼=N (〈d〉) as posets via the map:

Conv S 7→ {ai | ei ∈ S}
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Or, less explicitly, note that Σ∼=P ({0, . . . , d})∼=N (〈d〉). Hence by Corollary 2.22:

Logic(∆d) = Logic(N (〈d〉),N 2(〈d〉), . . .)

Moreover, since we have a p-morphism max: N (〈d〉)→ 〈d〉 (Proposition 2.3), we can
include 〈d〉 for free.

REMARK 4.2. Note that the same proof works for any d-simplex, showing that there is
only one ‘logic of the d-simplex’. However, this fact follows from the more general result
Corollary 4.5 below.

COROLLARY 4.3. When d1 < d2, we have Logic(∆d2
) ⊆ Logic(∆d1

).

Proof. I will show by induction that for each k ∈ N there is a chain X = {x1, . . . , xm} ⊆
N k(〈d2〉) of length m = d2 − d1 such that N k(〈d1〉) ∼= ⇑(xm). The result in particular
follows from this by Proposition 4.1 and Proposition 1.6.

The base case k = 0 is immediate. So assume that we have X ⊆N k(〈d2〉) as stated. For
i ¶ m, define X i := {x1, . . . , x i}, and letX := {X1, . . . , Xm} ⊆ N k+1(〈d2〉). Note thatX is
a chain of length m. I will show thatN k+1(〈d1〉)∼= ⇑(Xm). Define f : N (⇑(xm))→⇑(Xm)
by:

Y 7→ Xm ∪ Y

This is well-defined since if Y ∈ N (⇑(xm)) then Y lies above each element of Xm = X . It
is clearly order-preserving. Define g : ⇑(Xm)→N (⇑(xm)) by:

Z 7→ Z \ Xm

To see that this is well-defined, note that:

height(⇑(xm)) = height(N k(〈d1〉)) (induction hypothesis)

= height(〈d1〉) (Proposition 2.4)

= d1

and furthermore height(N k(〈d2〉)) = d2. Hence Xm, having length m = d2 − d1, is a
maximal chain in ↓(xm). This means that for any chain Z ⊆N k(〈d2〉)) containing Xm we
must have:

Z \ Xm = Z ∩⇑(xm) ⊆ ⇑(xm)

Furthermore g is also order-preserving, and f and g are mutual inverses. Therefore:

N k+1(〈d1〉) =N (N k(〈d1〉))∼=N (⇑(xm))∼= ⇑(Xm)

The logic of convex polyhedra. Recall that a polyhedron P is convex if it is equal
to its convex hull: P = Conv P. Let CPn be the class of convex polyhedra of dimension at
most n. We are interested in Logic(CPn). The first key step in understanding this logic is
the following observation, which makes the task significantly more manageable. Recall
that ∆n is the standard n-simplex.

PROPOSITION 4.4. Every n-dimensional convex polyhedron is PL-homeomorphic to ∆n.

Proof. See [RS72, Corollary 2.20, p. 21]. There it is shown that n-cells — which corre-
spond to our n-dimensional convex polyhedra — are n-balls — meaning that they are
PL-homeomorphic to the n-dimensional cube [0,1]n. Since ∆n is a convex polyhedron,
the result follows.

64



COROLLARY 4.5. Let P and Q be n-dimensional convex polyhedra. Then Logic(P) =
Logic(Q).

Proof. By Proposition 4.4, P and Q are PL-homeomorphic. Then by Proposition 1.48, we
have that SuboP ∼= SuboQ, whence Logic(P) = Logic(Q).

COROLLARY 4.6. The logic of convex polyhedra of dimension at most n is the logic of
the n-simplex. That is:

Logic(CPn) = Logic(∆n)

Proof. Indeed:

Logic(CPn) = Logic(∆0, · · · ,∆n) (Proposition 4.4)

= Logic(∆n) (Corollary 4.3)

REMARK 4.7. Corollary 4.6 in particular justifies calling Logic(CPn) ‘the logic of polyhedra
of dimension n’ (as opposed to ‘the logic of dimension at most n’).

The largest logic. Convex polyhedra are rather special. One of the ways in which
this specialness manifests itself logically is that Logic(CPn) is the largest polyhedrally-
complete logic of height n. The result itself is not needed for the main theorem of this
chapter, and I only present a proof sketch.

PROPOSITION 4.8. The logic of convex polyhedra of dimension n is the largest height-n
polyhedrally-complete logic. That is, if L is a polyhedrally-complete logic of height n,
then L ⊆ Logic(CPn).

Sketch Proof. Since L is the logic of a class of polyhedra, by Maxim I it is the logic of the
triangulations of those polyhedra. Since L has height n, there is such a triangulation Σ
of a polyhedron P in this class with Dim(Σ) = n. Then Σ contains an n-simplex σ. This
means that ∆n embeds into P via a map which is a PL-homeomorphism onto its image.
By a slightly more general result than Proposition 1.48, this entails that:

Logic(P) ⊆ Logic(∆n) = Logic(CPn)

from which the result follows.

The logic PLn. We now meet the candidate axiomatisation of Logic(CPn).

DEFINITION 4.9 (PLn). For n ∈ N, let PLn := BDn +χ(〈2 · 1〉) +χ(〈13〉).

So (using Remark 3.30) we have that:

PLn = SFL(n+ 1,2 · 1, 13) = IPC+χ(〈n+ 1〉) +χ(〈2 · 1〉) +χ(〈13〉)

That is, PLn is axiomatised by forbidding the (n+ 1)-chain, Scott’s tree, and the 3-fork.
See Figure 4.1 for representations of these starlike trees.

The aim of this chapter is to prove the following.

THEOREM 4.10. PLn = Logic(CPn).
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...

(n+ 1)-many

〈n+ 1〉 〈2 · 1〉 〈13〉

Figure 4.1: The three starlike trees whose Jankov-Fine formulas axiomatise PLn

By Theorem 3.42, and Segerberg’s Theorem 1.20, we already know that PLn is the logic
of some class of polyhedra. The task is now to show that PLn is the logic of the n-simplex,
so that we can make use of Corollary 4.6.

REMARK 4.11. Scott’s tree and the 3-fork are important starlike trees because they are
the minimal non-chain non-difork starlike trees. That is, for any signature α ∈ S which
is not (k) for some k ∈ N, we have that either 2 · 1 ¶ α or 12 ¶ α. The fact that they
play a principle role in axiomatising convexity is perhaps evidence for the importance of
starlike trees in polyhedral semantics.

Theorem 4.10 has the following important corollary which is relevant to the general
programme of the classification of polyhedrally-complete logics.

COROLLARY 4.12. Let L be a polyhedrally-complete logic of finite height n which is
axiomatised by IPC plus χ(Q) for each Q in a collection Q of finite rooted frames. Then
every Q ∈Q up-reduces to 〈n+ 1〉, 〈2 · 1〉 or 〈13〉.

Proof. Suppose not, meaning that there is Q which doesn’t up-reduce to 〈n+1〉, 〈2 ·1〉 or
〈13〉. By the characterisation of Jankov-Fine formulas (Theorem 1.16) this means that:

Q � χ(〈n+ 1〉) +χ(〈2 · 1〉) +χ(〈13〉)

Hence Q � PLn. But, of course, Q 2 χ(Q), meaning that PLn 0 χ(Q); hence:

L * PLn

But by Theorem 4.10 and Proposition 4.8 PLn is the largest polyhedrally-complete logic
of height n.

4.2 PLn is the Logic of n-Dimensional Convex Polyhedra

In order to prove Theorem 4.10, we need to prove both containments — i.e. soundness
and completeness.

66



Soundness. The first thing to prove is that PLn is valid on all convex polyhedra of
dimension n. By Corollary 4.6, it suffices to check that ∆n � PLn. The proof is short,
making use of the technology developed in the preceding chapters.

THEOREM 4.13 (Soundness). PLn is sound with respect to CPn.

Proof. I will show that ∆n � PLn. By Proposition 4.1, it suffices to show that PLn is valid
on:

C := {〈n〉,N (〈n〉),N 2(〈n〉), . . .}

By Proposition 2.4, every frame in C has height n. Hence, by Proposition 1.18, BDn is
valid on C. Further, note that 〈n〉 is (2 · 1)-nerve-connected and 13-nerve connected,
whence by Theorem 3.42:

〈n〉 �N χ(〈2 · 1〉) +χ(〈13〉)

i.e. χ(〈2 · 1〉) +χ(〈13〉) is valid on C.

REMARK 4.14. In addition to the combinatorial proof given below, a more direct geo-
metric proof can be given, making use of parts of classical dimension theory. The proofs
that χ(〈13〉) and χ(〈2 · 1〉) are valid on the simplex were communicated to me in private
correspondence by Vincenzo Marra and David Gabelaia.

Completeness. The proof that PLn is complete with respect to n-dimensional convex
polyhedra is a method, given a finite rooted frame F of PLn, of constructing a convex poly-
hedron P and an open polyhedral map P → F . This yields the result by Proposition 1.45.
The construction proceeds in two steps. The first is combinatorial in nature, and involves
showing that F can be assumed to be of a particular form, called a ‘saw-topped tree’. The
second is more geometrical, and involves the construction of the polyhedron P using the
structure of the saw-topped tree.

THEOREM 4.15 (Completeness). PLn is complete with respect to CPn.

The meaning of PLn on frames. First, it will be convenient to spell out what it
means, structurally, for a frame to satisfy PLn.

LEMMA 4.16. Let F be a poset. Then F � PLn if and only if the following are satisfied.

(i) F has height at most n.

(ii) Whenever depth(x) = 1, we have |⇑(x)|¶ 2.

(iii) Whenever depth(x)> 1, the set ⇑(x) is connected.

Proof. This follows immediately from Lemma 3.49.

Saw-topped trees. The type of poset that will be defined here has the important
property of being planar: its Hasse diagram can be drawn in the plane with no overlapping
lines. The notion of a planar poset has been studied somewhat in the literature (see
[BLS99, §6.8, p. 101] for a survey), but we won’t use any external results here.
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Saw

Tree

Figure 4.2: An example saw-topped tree

DEFINITION 4.17 (Plane ordering). Let T be a finite tree of uniform height. A linear
ordering ≺ on Top(T ) (or equivalently an enumeration t0, . . . , tk−1 of Top(T )) is a plane
ordering (c.f. [Sta97, p. 294]) if when we arrange Top(T ) in that order horizontally on
the plane, we can draw the Hasse diagram of the rest of the tree below it so that no lines
cross. Formally, for every x ∈ T we have that ↑(x)∩Top(T ) is an interval with respect to
≺.

DEFINITION 4.18 (Saw-topped tree). Let T be a tree of uniform height, and let ≺ be a
plane ordering on Top(T ) with corresponding enumeration t0, . . . , tk−1. The saw-topped
tree based on (T,≺) consists of T plus new elements s0, . . . , sk−2 with relations, for each i:

t i , t i+1 < si

See Figure 4.2 for an example of a saw-topped tree.

LEMMA 4.19. Let F be a saw-topped tree of height n. Then F � PLn.

Proof. Let F be based on (T,≺). Let us verify the conditions of Lemma 4.16. Conditions
(i) and (ii) are immediate. As for (iii), take x ∈ F with depth(x) > 1. By construction,
x ∈ T . Since ≺ is a plane ordering, we have that ↑(x)∩Top(T ) is an interval with respect
to ≺. Therefore, the top two layers of ⇑(x) are connected by the saw structure.

It will be convenient to work with saw-topped trees which are sufficiently uniformly
wide.

DEFINITION 4.20 (Uniform width). A graded rooted poset F is of width uniformly at
least m, for m ∈ N, if |ρk|¾ m for every k ∈ {1, . . . ,height(F)}.

LEMMA 4.21. Let F be a saw-topped tree and m ∈ N. Then F is the p-morphic image of
a saw-topped tree such that height(F ′) = height(F) and F ′ is of width uniformly at least
m.

Proof. Let s0, . . . , sk−2 be as in Definition 4.18. We can add a new chain to the right of F ,
as in Figure 4.3, mapping every new element to sk−2. Applying this operation repeatedly
yields the result.
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· · · · · ·

Figure 4.3: The widening of a saw-topped tree

The combinatorial step: preparation. In this step, we see that every rooted frame
F of PLn is the p-morphic image of a saw-topped tree. This saw-topped tree is constructed
in two stages. In this first one, the frame F is prepared a little before we come to an
inductive argument in the second stage.

DEFINITION 4.22 (kth layer). Let ρ be a rank function on F . The kth layer of F is the
set ρk := ρ−1{k}. Let F have height n. Define ρS := ρn−1 ∪ρn.

We will make use of the following technical lemma.

LEMMA 4.23. Let F be a finite rooted poset of height n with F � χ(〈2 · 1〉), and which is
graded with rank function ρ. Then ρS is connected in F .

Proof. We may assume that n¾ 2. Take t, s top nodes with ρ(s) = n. Since ⊥ � χ(〈2 ·1〉),
by Proposition 3.29 there is a path p : t   s in ⇑(⊥). Let p = a0 · · · ak. We may assume:

(i) that p steps in rank: |ρ(ai+1)−ρ(ai)|= 1,

(ii) that p is height-maximal: if i < j < k and a j < ai , ak, then there is no path ai   ak
in ⇑(a j).

Suppose for a contradiction that there is j such that ρ(a j)< n− 1. Since t, s is are top
nodes, we must have ρ(a1) = ρ(a0)− 1 and ρ(ak−1) = n− 1. Hence by (i), there must
be a sequence ai , ai+1, ai+2, ai+3 such that:

ρ(ai+1) = ρ(ai)− 1, ρ(ai+2) = ρ(ai), ρ(ai+3) = ρ(ai) + 1,

ai

ai+1

ai+2

ai+3

But now, by (ii), there is no path ai   ai+3 in ⇑(ai+1). Therefore ai+1 2 χ(〈2 · 1〉), a
contradiction. This shows that there is a path t   s in ρS (and also that F has uniform
height n).
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DEFINITION 4.24 (P-path). Let F be a graded poset with height n. A path p = x0 · · · xk
in F is a p-path, if it satisfies the following properties.

(a) p has no immediate repetitions: x i x i+1 with x i = x i+1.

(b) For any i ∈ {1, . . . , k− 1} such that x i ∈ ρn−1, we have that ⇑(x i) = {x i−1, x i+1}.

LEMMA 4.25 (Preparation). Take n¾ 2 and let F be a rooted poset such that F � PLn.
There is a rooted poset F ′ and a p-morphism f : F ′→ F with the following properties.

(I) F ′ � PLn.

(II) F ′ is graded, with rank function ρ.

(III) F ′ has uniform height n.

(IV) For every x ∈ ρn−1 we have |⇑(x)|= 2.

(V) Every pair x , y ∈ ρS is connected by a p-path.

Proof. First, we may assume that F has height n. Otherwise, we may add a chain of
n− height(F) elements below the root of F . The resulting frame still validates PLn by
Lemma 4.16, and we can map it p-morphically back to the original frame by collapsing
the new chain to the root.

Second, by the proof of Theorem 3.50, following Remark 3.51, we may assume that
F ′ is such that F ′ \Top(F ′) is a tree of uniform height n− 1. Hence F ′ is graded and of
uniform height n. Therefore, we have (I), (II) and (III).

To get (IV), we need to perform the small modification of adding some extra top
nodes to F . Obtain F ′ from F and a p-morphism f ′ : F ′→ F as follows. Note that every
x ∈ ρn−1 has |⇑(x)| ¶ 2 by Lemma 4.16. So take x ∈ ρn−1 such that |⇑(x)| < 2. First,
since F has uniform height n, we must have |⇑(x)|¾ 1; let ⇑(x) = {y}. Now add a new
immediate successor y∗ of x to F and define f ′(y∗) := y . Adding in all of these elements
to F , and completing f ′ by letting f ′|F = id, we obtain F ′ and f ′. Note that this operation
preserves (I), (II) and (III) (we extend ρ to a rank function on F ′), and secures (IV).

Finally, to verify condition (V), note that ρS is connected by Lemma 4.23. We can
then transform any path p = x0 · · · xk in ρS into a p-path p′ with the same end-points
using the following two steps.

• Remove all immediate repetitions.

• For any i ∈ {1, . . . , k− 1} such that x i ∈ ρn−1 and ⇑(x i) 6= {x i−1, x i+1}, there must
be a unique y ∈ ⇑(x i) \ {x i−1, x i+1}. Replace x i−1 x i x i+1 by x i−1 x i y x i x i+1.

Combinatorial step: inductive construction. With the frame suitably prepared,
we are now in a position to inductively construct the saw-topped tree.

THEOREM 4.26. PLn is the logic of the class of saw-topped trees of height n and of width
uniformly at least 2, for n¾ 2.

Proof. In light of Lemma 4.19 and Lemma 4.21, it suffices to show that any frame F of
PLn is the p-morphic image of a saw-topped tree of the same height. We may assume that
F satisfies the properties in Lemma 4.25. The proof now proceeds by induction on n. For
the base case n = 2, note that ρ0 = {⊥} (since F is rooted). Using (V) of Lemma 4.25
for F , let p = x0 · · · xk be a closed p-path in ρS (i.e. x0 = xk) which visits all of ρS and
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⊥

x∗−1

x∗0

x∗1

x∗2

x∗3 x∗k−3

x∗k−2

x∗k−1

x∗k

x∗k+1· · ·

· · ·

Figure 4.4: The relations in F ′ when n= 2

whose end-points lie in ρn. Construct the saw-topped tree F ′ by taking ⊥ together with
new elements x∗−1, x∗0, . . . , x∗k, x∗k−1 with the following relations (see Figure 4.4).

⊥< x∗i ∀i,

x∗−1 < x∗0, x∗k+1 < x∗k,

x∗i < x∗j ⇔ x i < x j ∀i, j ∈ {0, . . . , k}

Then define the map f : F ′→ F by:

⊥ 7→ ⊥,

x∗−1 7→ x0,

x∗k+1 7→ xk,

x∗i 7→ x i ∀i ∈ {0, . . . , k}

That f is a p-morphism amounts to the fact that p is a p-path.
Now for the induction step n > 2. Let Succ(⊥) = {a0, . . . , am−1} be the immediate

successors of ⊥. By induction hypothesis, for each ai ∈ Succ(⊥) there is a height-(n− 1)
saw-topped tree F ′i and a p-morphism fi : F ′i → ↑(ai). For each F ′i , its tree part Ti comes
with plane ordering ≺i; let si and t i be the least and greatest elements in this ordering,
respectively. Since |⇑(si)Ti |, |⇑(t i)Ti | = 1, then by (IV) for F and the fact that fi is a
p-morphism, we must have fi(si), fi(t i) ∈ ρn. For i < m − 1, let pi = x i,0 · · · x i,ki

be a
p-path in ρS from fi(t i) to fi+1(si+1) (using (V) for F).

Now, form F ′ by taking the following ingredients and combining them as in Figure 4.5.

• Each saw-topped tree F ′i .

• For each i < m− 1, new elements x∗i,0 · · · x
∗
i,ki

corresponding to x i,0 · · · x i,ki
.

• A chain of length n− 2 (a rope ladder) to hang below each x∗i, j , with j odd.

The result is evidently a saw-topped tree. Finally, construct the p-morphism f : F ′→ F as
follows.

(a) Inside each saw-topped tree F ′i , let f act as fi .

(b) For each x∗i, j , let f (x∗i, j) := x i, j .

(c) For each x∗i, j with j odd, send the rope ladder hanging below x∗i, j to x i, j .
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· · ·

F ′0

a0

· · ·

F ′1

a1

· · ·

F ′m−1

am−1

· · ·

...
...

...

· · ·

· · · ...

· · ·

· · · ...

· · ·

· · ·

⊥

s0 t0 x∗0,0 x∗0,1 x∗0,2 x∗0,k0
s1 t1 sm−1 tm−1

Figure 4.5: Construction of F ′ from F ′0, . . . , F ′m−1 and the paths p0, . . . pm−2.

To see that f is a p-morphism, the two important points are that ⇑( f (si))F and ⇑( f (t i))F

are empty for each i, and that for any x∗i, j with j odd, since pi is a p-path:

⇑
�

f (x∗i, j)
�F
=
�

x i, j−1, x i, j+1

	

=
¦

f (x∗i, j−1), f (x∗i, j+1)
©

Convex geometric realisation: intuition. In the second step of the proof, a saw-
topped tree is ‘realised’ as a convex polyhedron P, in the sense that there is an open
polyhedral map P → F . So as to give some visual intuition for how the construction
works, I will first work through a series of instructive examples, before coming to the full
proof.

It will be convenient to work with ‘tetrahedral-prism–based pyramids’, which are
examples of convex polyhedra. Let e0, . . . , en be the elements of the standard basis for
Rn+1. An n-dimensional tetrahedral-prism is the higher-dimensional prism which is made
from two translated (n− 1)-simplices.

DEFINITION 4.27 (Standard n-dimensional tetrahedral-prism). Let the standard n-dim-
ensional tetrahedral-prism Φn be the point {e0} when n = 0, and for n> 0 the convex hull
of the set:

{ei | i ¶ n− 1} ∪ {ei + en | i ¶ n− 1}

The first five standard tetrahedral-prisms are the point, the line segment, the square, the
triangular prism and the 4-dimensional tetrahedral prism. See Figure 4.6 for representa-
tions of these; note that the four-dimensional Φ4 is represented as the wireframe of its
projection into three-dimensional space.

An n-dimensional tetrahedral-prism–based pyramid is formed by taking an (n− 1)-
dimensional tetrahedral-prism as a base and adding an apex.

DEFINITION 4.28 (Standard n-dimensional tetrahedral-prism–based pyramid). Let the
standard n-dimensional tetrahedral-prism–based pyramid Ψn be the point {e0} when n = 0,
and for n> 0 the convex hull of Φn−1 ∪ {en}.
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Φ0 Φ1 Φ2 Φ3 Φ4

Figure 4.6: Representations of the first five standard tetrahedral-prisms

Ψ0 Ψ1 Ψ2 Ψ3 Φ4

Figure 4.7: Representations of the first five standard tetrahedral-prism–based pyramids

For n¾ 2, we have that Ψn = Conv S, where:

S = {ei | i ¶ n− 2} ∪ {ei + en−1 | i ¶ n− 2} ∪ {en}

Note that each Ψn is convex and of dimension n. The first five standard tetrahedral-
prism–based pyramids are the point, the line segment, the triangle, the tetrahedron
and the triangular-prism–based pyramid. See Figure 4.7 for representations of these.
Again, the four-dimensional Ψ4 is represented as the wireframe of its projection into
three-dimensional space.

Let us now begin with a height-2 example of the construction of the convex realisation
of a saw-topped tree. At height 2, saw-topped trees all look very similar: they consist of a
root below a saw structure. Consider Figure 4.8. The poset in the middle is an example
of a height-2 saw-topped tree; the 2-dimensional tetrahedral-prism–based pyramid on
the left is mapped onto this poset, where the preimages of the elements of the poset are
given on the right. It is straightforward to verify that this is an open polyhedral mapping
onto the saw-topped tree.

Our next two examples have height 3. Consider in Figure 4.9 an example of the
simplest case: in which the ‘tree part’ has branching only at the root (i.e. it is a starlike
tree). Note that by projecting downwards onto the base, it is possible to represent the
preimages in 2-dimensions; see Figure 4.10. Using this projection method, Figure 4.11
illustrates how we can deal with a more complex tree structure.

Finally, let us consider a relatively complex example of height 4. See Figure 4.12. For
simplicity and clarity, I omit the face-shading, and only label certain key points. Notice
how the structure of the tree wraps around the tetrahedral prism.
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Figure 4.8: A height-2 example of convex geometric realisation

⊥
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X
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Y
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⊥ x y z

X Y Z

B
A

Figure 4.9: A simple height-3 example of convex geometric realisation

x y z

A B

X Y Z

Figure 4.10: The projection onto the base of the simple height-3 example of convex
geometric realisation in Figure 4.9
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Figure 4.11: The projection onto the base of a more complex height-3 example of convex
geometric realisation

u

p q

u

p
q

Figure 4.12: The projection onto the base of a height-4 example of convex geometric
realisation
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(a) (b)

Figure 4.13: Two plane drawings of the same tree. The drawing in (a) is vertically-
distinguishing while the one in (b) is not.

Convex geometric realisation: full proof. With these examples in mind, let us turn
now to the formal proof of completeness. In order to spell out the construction, it will be
necessary to make somewhat more precise the notion of “drawing a tree in the plane”,
and in particular to see that such drawings can be assumed to be of a certain form.

DEFINITION 4.29 (Plane drawing). Let F be a poset and d : F → R2 be an injection,
such that d = (d1, d2). Draw an edge x y between f (x) and f (y) whenever y ∈ Succ(x).
Then d is a plane drawing (see [TM77]) of F if the following conditions hold.

(a) Whenever x < y we have d2(x)< d2(y).

(b) Two distinct edges x1 y1 and x2, y2 only ever intersect at their end-points.

When we draw the vertices f (x) and edges x y in the plane then we have a drawing of
the Hasse diagram in which no edges overlap.

DEFINITION 4.30 (Width of a drawing). Let F be a finite poset. The width of a plane
drawing d of F is:

width(d) :=max{d1(x) | x ∈ F} −min{d1(x) | x ∈ F}

DEFINITION 4.31 (Vertically-distinguishing drawing). Let d be a plane drawing of F .
Then d is vertically-distinguishing if for any x ∈ F and y, z ∈ Succ(x) either:

∀y0 ∈ ↑(y): ∀z0 ∈ ↑(z): d1(y0)< d1(z0)

or:
∀y0 ∈ ↑(y): ∀z0 ∈ ↑(z): d1(y0)> d1(z0)

See Figure 4.13 for an example and non-example of a vertically-distinguishing plane
drawing of a tree.
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LEMMA 4.32. Let ≺ be a plane ordering on a finite tree T of uniform height, and let
ρ be the rank function on T . Then T has a plane drawing d satisfying the following
conditions.

(i) T is vertically-distinguishing.

(ii) For every x ∈ T we have d2(x) = ρ(x).

(iii) The top nodes in the drawing are ordered left-to-right as per ≺.

Proof. We prove this by induction on the height of T . The base case is immediate. So
assume that n= height(T )> 0. By induction hypothesis, for every x ∈ Succ(⊥) there is
a plane drawing d x of ↑(x) satisfying the conditions. By translating, we may assume that
min{d x

2 (y) | y ∈ ↑(x)} = 0. Enumerate Succ(⊥) = {x1, . . . , xk} according to ≺. That is,
for each i, j ¶ k with i < j ensure that:

∀t i ∈ ↑(x i)∩Top(T ): ∀t j ∈ ↑(x j)∩Top(T ): t i ≺ t j

(this is possible since ↑(x)∩Top(T) is an interval for each x ∈ Succ(⊥)). Let us define
d : T → R2. Let d(⊥) := (0, 0). Then for y ∈ T \{⊥}, there is a unique x i ∈ Succ(⊥) such
that y ∈ ↑(x i). Define:

d(y) :=

 

d x i
1 (y) +

i−1
∑

j=1

width(d x j ) + i, d x i (y) + 1

!

In other words, we place ⊥ at the origin, then line up the drawings d x1 , . . . , d xk of its
successors side-by-side, shifted up by 1. It is straightforward to check that d is a plane
drawing satisfying the conditions.

We will also need the following technical criterion which will help to build up a
simplicial complex.

LEMMA 4.33. Let F be a poset and take any function α: F → Rn. The collection:

{Convα[X ] | X ∈ N (F)}

forms a simplicial complex if and only if Convα[X ] and Convα[Y ] are disjoint for any
distinct X , Y ∈ N (F).

Proof. This follows from [Men99, Theorem 2], noting that the nerveN (F) is in particular
an abstract simplicial complex, as defined there, with vertex set {{x} | x ∈ F}.

Proof of Theorem 4.15. The case n = 0 is immediate. For n = 1 note PL1 = Logic(〈12〉)
and that by Proposition 4.1 and Corollary 1.7:

Logic(∆1) = Logic(〈1〉,N (〈1〉), · · · ) = Logic(〈12〉)

Hence we may assume that n¾ 2.
By Theorem 4.26, and Proposition 1.45, it suffices to take a saw-topped tree F of height

n and of width uniformly at least 2, and construct an open polyhedral map f : Ψn→ F .
We do so by cutting up Ψn using a number of ‘thin slices’. Assume that F is the saw-topped
tree based on (T,≺), and let ρ be the rank function on F .

Let d be a plane drawing of T satisfying the conditions in Lemma 4.32. By scaling
and translating, we may assume that width(d) = 1 and that:

min{d1(x) | x ∈ F}= 0
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Furthermore, since T is of width uniformly at least 2, by shifting the first and last points
in each layer, we may assume that for each k ∈ {1, . . . , n− 1} there are uk, vk ∈ ρk such
that d1(uk) = 0 and d1(vk) = 1.

We will ‘wrap d around the prism’. We do so by associating to each x ∈ T \{⊥} a point
on the boundary of the (n−1)-dimensional tetrahedral-prism Φn−1, such that the elements
of the kth layer ρk, for k > 0, appear in order along the edge Conv{ek−1, ek−1 + en−1}.
Specifically, for each x ∈ T \ {⊥}, define:

α(x) := eρ(x)−1 + d1(x)en−1

We also put the root of T at the apex of the tetrahedral-prism–based pyramid: α(⊥) := en.
Note that α: T → Ψn.

With these points singled out, we can now define the ‘thin slices’ which partition Ψn
into regions. In Figure 4.8 for example, these are the lines labelled X , Y and Z . These
thin slices are constructed using the same technique as was used for general geometric
realisation (Definition 2.8), building up a simplicial complex using the nerve N (T ). To
each X ∈ N (T ), associate the (|X | − 1)-simplex:

σ(X ) := Convα[X ]

Now let:
Σ := {σ(X ) | X ∈ N (T )}

To see that Σ is a simplicial complex, we can use Lemma 4.33. Take disjoint X , Y ∈
N (T) with the aim of showing that σ(X )∩σ(Y ) = ∅. Note that it suffices to assume
that X is maximal in T and that Y is maximal in T \ X . Hence there is w ∈ X and
x , y ∈ Succ(w) such that:

X ∩⇑(w) ⊆ ↑(x), Y ⊆ ↑(y)

Let m := height(w). Now, d is vertically-distinguishing. Without loss of generality, assume
that:

∀x0 ∈ ↑(x): ∀y0 ∈ ↑(y): d1(x0)< d1(y0)

By construction this means that for any (a1, . . . , an) ∈ σ(X ∩↑(x)) and (b1, . . . , bn) ∈ σ(Y )
we have:

an−1 < bn−1 (∗)
Now, suppose for a contradiction that there is:

c = (c1, . . . , cn) ∈ σ(X )∩σ(Y )

Then, as c ∈ σ(Y ) and each point in α[Y ] has zero in its first m coordinates, we must have
that ci = 0 for i ¶ m, and moreover that cn = 0. But this means that c ∈ σ(X∩↑(x))∩σ(Y ),
contradicting (∗).

Hence Σ is a simplicial complex. Its realisation |Σ| consists of l-many (n−1)-simplices
with various faces identified (according to the structure of T); in particular they all meet
at the apex en of the pyramid Ψn. In more detail, to each t ∈ Top(T), we can associate
the (n− 1)-simplex τ(t) := σ(↓(t)); then:

|Σ|=
⋃

t∈Top(T )
τ(t), en ∈

⋂

t∈Top(T )
τ(t)

Now, take s ∈ ρn (i.e. a top point of the saw). Let s have immediate predecessors t1
and t2. Let τ(s) be the convex polyhedron bounded by τ(t1) and τ(t2) inside Ψn (i.e.
τ(s) := Conv(τ(t1)∪τ(t2))). Note that:

Ψn =
⋃

s∈ρn

τ(s)
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We are now ready to define f : Ψn→ F . We first define the preimages of elements of
T by upwards-induction on the tree structure.

• Let f −1{⊥} := σ(↓(⊥)) = {en}.

• For x ∈ T with immediate predecessor y , let f −1{x} := σ(↓(x)) \σ(↓(y)).

Then, for s ∈ ρn with immediate predecessors t1 and t2, let:

f −1{s} := τ(s) \ (τ(t1)∪τ(t2))

Note that f −1{s}= IntΨn(τ(s)) since τ(t1)∪τ(t2) is the boundary of τ(s).
Let us see that f so-defined is an open polyhedral map. First note that f −1{si} is an

open subpolyhedron of Ψn. Second, for any x ∈ T with immediate predecessor y we
have that:

f −1[↑(x)] = IntΨn
�
⋃

{τ(s) | s ∈ ↑(x)∩ρn}
�

\σ(↓(y))

This is an open subpolyhedron, since σ(↓(y)) is closed. Hence the preimage of an open
set in F is an open subpolyhedron of Ψn. As to openness of f , it suffices to show that if
y < x in F , then f −1{y} lies in the boundary of f −1{x}. But this is immediate from the
construction of f .

Conclusion. We can now prove Theorem 4.10 by combining the soundness and
completeness directions.

Proof of Theorem 4.10. By Theorem 4.13, we have that:

PLn ⊆ Logic(CPn)

Conversely, by Theorem 4.15:
Logic(CPn) ⊆ PLn

79



Chapter 5

Conclusion

The Heyting algebra SuboP opens up a rich connection between logic and polyhedral
geometry, which is given life by the sustained import of geometrical ideas. The Triangula-
tion Lemma is a potent ingredient of this connection, and is embedded in the techniques
of this thesis. Together with the link between triangulations and nerves, its first yield is a
Tarski-like completeness proof for IPC and S4.Grz in the class of all polyhedra. These
ideas are developed further, culminating in the powerful Nerve Criterion, a product of
the unison of logic with non-trivial arguments from rational polyhedral geometry.

It is at this point that the ‘Combinatorics’ leg of the triad of fields is extended (see
Figure 5.1). Geometry has long enjoyed a deep relationship with combinatorics, and
combinatorial methods are important in the logic of Kripke frames. In this thesis, I
develop an approach which brings these two connections together. The Nerve Criterion is
exploited to chart out a class of polyhedrally-complete logics axiomatised by the Jankov-
Fine formulas of starlike trees. The proof that a starlike logic is polyhedrally-complete if
and only if it has the finite model property, utilises a number of combinatorial techniques
on finite posets. Such logics have a clear geometric meaning and play an important
part in polyhedral semantics. Indeed, the largest starlike logic of height n is shown to
coincide with the logic of convex polyhedra of dimension n. The proof of this fact blends
combinatorial and geometric ideas, and serves as a fitting culmination of the various
strands of the present thesis.

Geometry Combinatorics

Logic

Figure 5.1: The triad of fields
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Figure 5.2: The landscape of polyhedrally-complete logics

Open Problems. Polyhedral semantics for logic is a very young area, and there are
many open problems and directions for future research.

One ultimate goal would be a complete classification of polyhedrally-complete logics.
The results in this thesis take several steps towards such a classification, and chart out
key features of the landscape. For each finite height n, there is a smallest polyhedrally-
complete logic: BDn (see Theorem 3.34), a largest: PLn (see Theorem 4.10 and Proposi-
tion 4.8), and infinitely-many polyhedrally-complete logics in between (Corollary 3.35).
Beyond these results, David Gabelaia, Mamuka Jibladze, Evgeny Kuznetsov, and Levan
Uridia recently investigated the lower-level structure of this landscape in more detail
[GJKU19]. First, they show that every height-1 logic is polyhedrally-complete: these are
BD1 plus the logic LFk of the k-fork 〈1k〉 for each k ¾ 2. Note that LFk = SFL(2,1k+1).
Second, turning to the height-2 case, they focus on logics of ‘flat polygons’: 2-dimensional
polyhedra which can be embedded in the plane R2. Any such logic turns out to be
axiomatised by a subframe formula (see [CZ97, p. 313]) plus the Jankov-Fine formulas of
certain starlike trees; moreover, there is a smallest such logic: Flat2. See Figure 5.2 for a
representation of the known landscape of polyhedrally-complete logics.

The two approaches listed in the introduction (logical and geometric) give rise to
two different directions from which to tackle the classification problem. First, following
on from Theorem 3.34, one way of obtaining some answers would be to determine
which infinite-height starlike logics have the finite model property. Then going beyond
the results in Chapter 3, it is natural to wonder (as already indicated) if polyhedral-
completeness extends to logics axiomatised by the Jankov-Fine formulas of general trees,
or even of arbitrary finite rooted posets. Corollary 4.12 provides a limit to this kind of
axiomatisation, but beyond this little is known.
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Taking the geometrical approach, the first question generated by Chapter 4 is: what is
the logic of all convex polyhedra? The candidate is of course the following logic.

PL := SFL(2 · 1,13) = IPC+χ(〈2 · 1〉) +χ(〈13〉)

Note that if this logic has the finite model property, then by Theorem 4.10 it is indeed
the logic of all convex polyhedra. Beyond convexity, the logic of other natural classes of
polyhedra can by studied (such as the higher-dimensional versions of flat polygons men-
tioned above). Note that Proposition 1.48 reduces this to the study of PL-homeomorphism
classes of polyhedra.

This last observation leads naturally to another question. Taking the modal perspective,
what is the natural notion of bisimulation for polyhedra? Such a direction is in keeping
with Felix Klein’s Erlangen programme [Kle72]— with its emphasis on doing geometry
by studying its morphisms — and may well help to provide bounds on the expressive
power of the polyhedral semantics considered here.

In this thesis, we have examined a link between logic and geometry. One criterion
for the success of such a link, beyond its naturalness, is its readiness to act as a conduit
between the two fields, so that results from one area can be profitably transferred to the
other. Here are two somewhat speculative ideas in this line — one in each direction. (1) Af-
ter combinatorially proving the soundness of PLn with respect to CPn (Theorem 4.13),
I remarked that the same result can be proved geometrically, using classical dimension
theory. Then we have two proofs of the same thing coming from different areas, so one
might hope for the possibility of supplying alternative logical-combinatorial proofs of
(polyhedral) parts of dimension theory. (2) Medvedev’s logic of finite problems (ML) is a
well-known intermediate logic (see [CZ97, p. 53]), which appears to have a polyhedral
character. If it can be placed within the framework of this thesis — or a similar framework
— then this may open the door to the application of methods from geometric decidability
theory to the question of the decidability of ML, which is a long-standing open problem.

On the subject of decidability, the notion of nerve-validity, introduced in Definition 3.1,
may also have some bearing. After proving Theorem 3.42, I remarked on an interesting
property of the formulas χ(〈α〉): a frame F nerve-validates χ(〈α〉) if and only if N (F) �
χ(〈α〉). This raises an intriguing question: is it the case that, for every formula φ, there
is k ∈ N such that F nerve-validates φ if and only if N k(F) � φ? This would entail, via
Corollary 2.22, the decidability of the logic of any finite collection of polyhedra.

Lastly, the possibility of moving to a richer logic is always available to us. One
motivation for this is that with the present semantics, logic cannot capture any of the
homology of the polyhedron in which it is interpreted. This is because formula satisfaction
is always local in a polyhedron (this fact is not so pronounced in the present thesis, where
satisfaction at points of a polyhedron is eschewed in favour of the more abstract notion
of triangulation). Homology seems a rather natural aspect for a logic to express; indeed,
its axiomatic method is a well-developed line of research (see [Hat02, §2.3, p. 160]).
Perhaps the addition of a universal modality will enable this expression.

Wrapping Up. Another fibre of the logic-geometry connection has been traced. I
hope that this exciting new area of research will continue to develop and blossom into a
beautiful interplay of ideas between these two fields.
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