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Abstract

In this work we describe a variety of formal theories that try to capture some
of our pre-theoretical notions of collection, while being careful not to fall prey
to paradox. We also present some considerations that a satisfactory theory of
collections must take into account, focusing in self-instantiation and unrestricted
quantification. We then offer a historical account of Cantor’s notion of set as
a well asserting several differences between this notion and that of a Russellian
class. We will also defend the use of classes in addition to sets in our theories
of collections. Finally, we asses how the theories of collections surveyed fulfill
the different requirements laid out for a theory to be considered satisfactory.
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I do remember an apothecary [...]
and in his needy shop a tortoise
hung, an alligator stuff’d, and
other skins of ill-shap’d fishes;
and about his shelves a beggarly
account of empty boxes, green
earthen pots, bladders, and musty
seed remnants of packthread, and
old cakes of roses, were thinly
scatter’d, to make up a show.

Shakespeare, Romeo and Juliet

Filter
VERB
1 [with object ] (. . . )
1.1 Process or assess (items) in
order to reject those that are
unwanted.
‘you’ll be put through to a
secretary whose job it is to filter
calls’
‘the brain has the ability to filter
out information it considers
non-essential’

Oxford English Dictionary

I try all things, I achieve what I
can.

Herman Melville, Moby-Dick, or,
the Whale
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Chapter 1

An unexpected wake-up call

1.1 Introduction

In the first chapter of this work we will look at some pre-theoretic ideas we
might have about collections and at one of the first formalisations of them in
the work of Gottlob Frege. We will also learn how Frege’s proposal fails to be
satisfactory given its inconsistency and draw some lessons from this useful for
the further study of formal theories of collections in the remainder of this work.

The chapter starts by looking at the ideas regarding objects, properties and
groups of objects that we might have prior to a formalisation attempt and
that we would like our theories to capture in §1.2, we also look at the logic of
such description. In §1.3 we look at Frege’s pioneer formalisation of such ideas.
Putting particular emphasis on the principle known as Basic Law V. This will
be seen to play a key role in deriving the contradictions that undermine his
theory. Finally, we look at some potential diagnosis of the inconsistency which
will be informative when discussing other theories that avoid such pitfall.

1.2 What we want to capture

The structure of the world furnishes many objects and these are very dif-
ferent. Some are big like the stars and some small like the electrons. Some are
concrete like a pencil and others are abstract like the natural numbers. Another
feature of the fabric of reality are properties, or more generally relations. As in
the case of objects, there are many of these and of very different nature, from
the property of being a whale to that of being a number or being identical to
yourself. Although objects and properties seem like very different entities, they
stand nevertheless in a close relationship. Indeed, we can associate to an object
the properties which it instantiates and so for instance my pencil will be tied
to the property of being sharp or of being in Amsterdam. Similarly to every
property we can associate the objects of which this property is true, and so in
this case Moby Dick will be one of the objects associated to the property of
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12 CHAPTER 1. AN UNEXPECTED WAKE-UP CALL

being a whale. Note that in the same way as we can quantify over objects, for
instance by saying that some objects are big or that all of them are equal to
themselves, we can also talk about quantifying over properties by saying that
some property is instantiated by only one object or, again, that all properties
are identical to themselves.1

Note also that there seems to be a very close relationship between predicates
and some incomplete sentences of our languages, or open formulas in the logical
jargon. In a sense, the property of being a whale seems to arise from the formula
‘() is a whale’, and so for every open formula so there is a corresponding property.
There also seems to be a close tie between how objects behave when their names
are used to complete the gaps in open formulas and relations, namely that if
’Moby Dick’ is used to complete the sentence ‘() is a whale’ and this is true,
then the object named by ’Moby Dick’ does indeed instantiate the property of
being a whale.2

We can also look at the objects associated to some property in a new light if
we consider them not individually, but as a novel kind of object, a collection or
aggregate. It also seems that when we talk about collections we have an easy way
to determine whether two of these are the same. Namely, it suffices to look at
whether their components are the same. Such criteria is of course nonsensical
when dealing with objects which are not aggregates, what the mathematical
jargon calls atoms or urelemente. And so Moby Dick is a part, or in a less
mereological fashion, a member of the object associated in this way with the
property of being a whale.3 Note that these collections are peculiar objects since
to each property there seems to correspond a unique and distinctive such object,
that composed of those and only those objects that instantiate such property,
and so in line with this thought, it seems that to know whether two properties
are the same it suffices to know whether these associated collections coincide,
and conversely to know if the collections are the same it suffices to know that
their associated properties are instantiated by the same objects.

1.2.1 The logic of this picture

The logic of the picture we sketched above is that of the Second-order predicate
calculus. This section aims to be a quick introduction to such a system and can
be obviated by the familiar reader.4 We work with a language L that includes
the following simple terms:

• Object names: a, b, . . .

• Variable names: x, y, . . .
1These remarks are setting the stage for the use of second order predicate calculus, see

next section for more on such a system.
2As we will see below this is encoded in the comprehension principle of second order logic.
3Note however that we needn’t associate to each object which is a collection a property,

since for each arbitrary array of objects we can associate a new object namely that collecting
them. Here no mediating appeal to a property was made.

4Here we follow closely the presentation in (Zalta, 2019a, section 1). The reader seeking
a deeper treatment of the topic is referred to (Shapiro, 1991, §II.3).
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• n-place relation names: Pn, Qn, . . . (n ≥ 1)

• n-place relation variables: Fn, Gn, . . . (n ≥ 1)

The object names and variables denote elements in a domain of objects, and
n-place relation names and variables denote elements in a domain of n-place
relations. Moreover, the domains of objects and relations are disjoint. For ease
in notation, we will write P,Q, . . . instead of P 2, Q2, . . . for n-place relation
names or variables for n ≤ 2.

The formulas of L are built up from the simple terms as follows:

• If Π is an n-place relation term and v1, . . . , vn are any object terms, then
Πv1 . . . vn is an atomic formula.

• If v1 and v2 are any object terms, v1 = v2 is an atomic formula.

• If φ, ψ are formulas, then ∼φ and φ ⊃ ψ are molecular formulas.

• Where φ is any formula and α any variable, then ∀αφ is a quantified
formula.

Note that L is a second-order language since the last item in the above
definition allows quantified formulas of form both ∀xφ or ∀Fφ. We now provide
the usual definitions for the other connectives and quantifiers:

• φ& ψ := ∼(φ ⊃ ∼ψ)

• φ ∨ ψ := ∼φ ⊃ ψ

• φ ≡ ψ := (φ ⊃ ψ) & (ψ ⊃ φ))

• ∃αφ := ∼∀α∼φ

Let φ, ψ and χ be any formulas of L, and let α be any variable and τ any term
of the same type as α, then our logic has the following rules and axioms:

• Axioms of propositional logic, for instance:

– φ ⊃ (ψ ⊃ φ)

– (φ ⊃ (ψ ⊃ χ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ χ))

– (∼φ ⊃ ∼ψ) ⊃ ((∼φ ⊃ ψ) ⊃ φ)

• Universal instantiation: ∀αφ ⊃ φτα, where φτα is the result of uniformly
substituting τ for the free occurrences of α in φ, and τ is substitutable for
α, in the sense that no variable free in τ becomes bounded by a quantifier
in φτα. A consequence of this principle is existential introduction, this is
φτα ⊃ ∃αφ.

• Quantifier distribution: ∀α(φ ⊃ ψ) ⊃ (φ ⊃ ∀αψ), where α is a variable
not free in φ.
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• Laws of identity:

– x = x

– x = y ⊃ (φ ⊃ φ′), where φ′ is the result of substituting one or more
occurrences of y for x in φ.

• Modus ponens (MP): from φ and φ ⊃ ψ, derive ψ.

• Rule of generalisation (GEN): from φ, derive ∀αφ.

Our calculus also includes comprehension principles that guarantees the exis-
tence of an n-place relation corresponding to every open formula with n free
object variables:

Comprehension Principle for n-place relations
∃G∀x1 . . . ∀xn(Gx0 . . . xn ≡ φ),

where φ is any formula in whichG doesn’t occur free.
(1.1)

With regards to notation, if φ is a formula with free variables x1, . . . , xn, we will
name by [λx1 . . . xnφ] the corresponding n-place relation under the comprehen-
sion principle. In accordance, then, with this choice of notation, we have the
following syntactic rule, expressing that a collection of objects y0, . . . , yn will
satisfy the property [λx0 . . . xnφ] associated with a formula φ if and only if the
result of substituting y0, . . . , yn for x0, . . . , xn in φ yields a true sentence, as is
indeed required by comprehension.

λ-Conversion
∀y0 . . . ∀yn([λx0 . . . xnφ]y0 . . . yn ≡ φy0,...,ynx0,...,xn)

(1.2)

Note finally, that the system described above is consistent. Indeed, we can
consider a domain of objects with one element, say o, and the domain of n-place
relations containing two predicates Pn and Qn for each n, such that Po is the
case but Qo is not, this is a model for the theory. What we do require is that
the predicates are closed under the connectives.

1.3 Frege’s system

We can find an attempt to formalise the picture described in §1.2 regarding,
objects, properties and collections, in Gottlob Frege’s work at the turn of the
XXth century.5 For him, as we observed above there are two fundamental and
distinct entities in the world, objects and functions.6 Most interesting for us
will be what Frege called concepts. These are a specific type of function, in
particular, endomorphisms7 taking objects to two special objects namely truth

5For the exposition of Frege’s theory in this section we follow closely (Zalta, 2019a, §2)
6These functions correspond to what we have above called properties and relations and

this distinction is not all that relevant for our purposes.
7This is, a map where domain and range coincide.
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and falsity.8 Consider again the property of being a whale. Then, thought
as a function, this will take Moby Dick to the value truth, but Nemo to the
value false. However, note that if we see the statement Wa to mean that a
instantiates the property W 9, Frege would read this as saying that the image of
a under function W is the object truth, and would take Wa to be a name for
this special object.

For Frege, these concepts are unsaturated in the sense that, as mentioned
in §1.2 there is a corresponding sentence which is incomplete. Indeed, its cor-
responding name is of the form ‘() is a whale’ and has no place in the logical
syntax unless we have an indicator of an argument, which would in a sense un-
dermine its unsaturated character. Further, as opposed to objects, functions do
not exist on their own but only refer when an object is subject to it, then they
denote a concept, so while ‘() is a whale’ doesn’t refer the corresponding lambda
term, i.e. the name of its corresponding property, [λxWx] does. Although note
the indication of an argument in [λxWx]. Incidentally, this attitude can be seen
in Frege’s famous dictum ‘never try to define the meaning of a word in isolation,
but only as it is used in the context of a proposition’ (Frege, 1893, p. 116).10

Frege also observes the correspondence we noted before between open for-
mulas and predicates when it comes to instantiation and satisfaction. In his
writings, this takes the shape of a substitution rule that allows to replace any
free concept name with an open formula.11 Now, even though for Frege func-
tion names fail to refer unless an argument is indicated in the notation, we can
indeed talk about what he calls the course-of-values of a function. This is an
object that encodes the value associated to every object under a function, and
so in some way or another the information that Moby Dick gets mapped under
being a whale to truth but Nemo to false will be present in such object. Note
this is what we would actually call the function in set-theoretic parlance, in-
deed, the ordered pairs (MobyDick, T ), (Nemo, F ) belong to the set-theoretic
function Whale : Obj → {T, F}, similarly the pair (Nemo,Marlin) is encoded
in the function ’father of ()’.

1.3.1 Basic Law V or the original sin

In the case of concepts, Frege takes the course-of-values of such entities as only
encoding information about which objects are mapped to truth under it, this he
calls their extension. Even more economically we can just take as the extension
the collection of such objects, and so the extension of being a whale will include
in it Moby Dick. If f is a concept then Frege denotes the course of values of

f as
′

εf(ε), with
′

ε, when applied to a name for an object f(ε) a term-forming

8Indeed to further belabour the point of footnote 6 notice that when we think of concepts as
relations and not functions, these will nevertheless be functional relations defined everywhere.

9Hereafter we use the logical notation introduced in §1.2.1, i.e. a is an object name and
W is a 1-place relation, or property, name.

10See (Heck & May, 2013) for more on the notion of unsaturatedness in Frege.
11Put more precisely, for any free concept F we can replace it by an expression of form

[λxφ(x)], and then use the λ-conversion principle of our logic in the substituted instances.
Note also that this principle is equivalent to the comprehension principle in our logic.
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operator. Returning to the collection of things satisfying it associated to a
property, its extension, one question we can ask is how can we determine when
two properties have the same extension, or equivalently when two concepts have
the same range-of-values? Regarding this, Frege has the following criterion:

The course-of-values of the concept f is identical to the course-of-values of the concept g
if and only if f and g agree on the value of every argument (i.e., if and only if for every object
x, f(x) = g(x)). (Zalta, 2019b, §2.4.1)

And so to know whether two concepts have the same extension we just need
to know that when looked at as a function, their value agrees in all the objects
in their domain. The attentive reader will notice that this is exactly capturing
what we said in §1.2 regarding collections associated to properties and their
identity conditions. This is Frege’s infamous Basic Law Five, or put formally
and slightly modifying the notation from (Zalta, 2019a, §20):

′

εf(ε) =
′

εg(ε)↔ ∀x(f(x) = g(x)) (BLV)12

Note that Frege originally formulated the law with equality as opposed to
logical equivalence since, as said above, for him true sentences are just names
denoting the object truth. In line with our λ notation to name concepts and
slightly simplifying that of courses-of-value, we will take ε[λxφ] to name the
extension of this concept. So while the latter names a concept the other denotes
a very different thing according to Frege, namely an object. In any case, here
we do not take ε to be a term-forming operator but rather a function symbol
from concepts to objects. Note that if F is a concept variable, εF ranges over
extensions. Note too that above we characterised extensions as the collection
of objects satisfying a given concept, hence we can also employ set-theoretic
notation in a natural way and so instead of ε[λxφ] we could naturally write
{x|φ(x)}, or x̂(φ(x)). Here we are talking of the notion objects satisfying a
concept and this collection being the extension, and so we see in operation here
the notion of membership, Frege formalises this as follows:

x ∈ y13 := ∃G(y = εG&Gx) (∈)

And so x is a member of y if it is the extension of a concept under which
x falls. Above we remarked that it was natural to think that to each property
there correspond the collection of things satisfying it which in our acquired
terminology can be rephrased as saying that to every concept there corresponds
an extension. This is indeed a principle derivable in Frege’s system14:

Proposition 0.1 (Existence of extensions). ∀G∃x(x = εG)

12Note that in making this statement we are enriching our logical language with function
symbols, functional application and a term-forming operator.

13Or x ∩ y in Frege’s original use.
14Here we take this to be SOL with identity (see §1.2.1) supplemented by ε and BLV
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Proof.

1. x = x Axiom
2. ∀x(x = x) 1,GEN
3. εF = εF 2,Universal instantiation
4. ∃x(x = εF ) 3,Existential generalisation
5. ∀G∃x(x = εG) 4,GEN

q.e.d.

Using the notation introduced above we can now give a simpler formulation
of BLV for concepts:

Basic Law V (Concepts)
εF = εG ≡ ∀x(Fx ≡ Gx)15

(1.3)

And so the extension of the concept F , or collection of F s, is the same as
that of Gs if and only if the same objects fall under both.

Another natural property regarding extensions and objects that we men-
tioned before is that an object should be a member of the extension of a con-
cept if and only if this object satisfies the concept to which such extension
corresponds. This encodes the thought that extensions are a very special kind
of object. Namely, a collection of other objects. Precisely those objects instanti-
ating the associated property, this is what underpins that to each concept there
corresponds a unique extension. This property is indeed provable in Frege’s
system:

Proposition 0.2 (Law of extensions). ∀G∀x(x ∈ εG ≡ Gx)

Proof. Let c be an arbitrary object and F an arbitrary concept, we want to
show that c ∈ εF ≡ Fc.

(⇒) Suppose then that c ∈ εF , and so by def. of ∈ we get that ∃G(εG = εF&Gc),
let this concept be H, εH = εF&Hc so we have that but then by BLV we get
that ∀x(Hx ≡ Fx) since εH = εF , and so Hc implies that Fc.

(⇐) Suppose now that Fc, then by the existence of extension and identity
we have εF = εF and so by conjunction introduction that εF = εF&Fc and
by existential introduction that ∃G(εF = εG & Gc) and so by definition that
c ∈ εF . q.e.d.

Given the nature of extensions and the fact that these are characterised by
the objects falling under the property they arise from, and as observed above
these are exactly the objects that are members of the extension, one should only
need to know the members of two extensions to determine their equality. This
is the principle of extensionality and it is indeed derivable in Frege’s system.
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Proposition 0.3 (Principle of extensionality).

Extension(x) & Extension(y) ⊃ (∀z(z ∈ x ≡ z ∈ y) ⊃ x = y)

Proof. We have by definition that ∃G(x = εG) and ∃F (y = εF ), since we also
have that ∀z(z ∈ x ≡ z ∈ y) and so that ∀z(z ∈ εG ≡ z ∈ εF ), then from the
law of extensions it follows that ∀w(Fw ≡ Gw) and so by BLV we have that
εF = εG and so that x = y. q.e.d.

1.3.2 In contradiction

It turns out however, that Frege’s system is inconsistent. This was communi-
cated to him by Bertrand Russell, hence the name of the subsequent contra-
diction being known as Russell’s paradox. Frege added two derivations of the
contradiction to his Grundgesetze, we now look at these, the first is more direct,
the second might be more familiar us modern readers.

The first way to derive a contradiction Frege offers relates to the extension
associated to the concept being an x that is the extension of some concept under
which x doesn’t fall under. This concept exists by the comprehension principle.
Using our notation we denote this by [λx∃F (x = εF&∼Fx)]. We also know
by the extension principle that there is an extension associated to this concept,
namely ε[λx∃F (x = εF&∼Fx)], but then we can show that this extension falls
under its associated concept if and only if only it does not. Let us abbreviate
[λx∃F (x = εF&∼Fx)] by R, then

Proposition 0.4 (Russell’s paradox, first derivation).

R(εR) ≡ ∼R(εR)

Proof. (⇒) Suppose thatR(εR) which is shorthand for [λx∃F (x = εF&∼Fx)](εR),
then by λ-conversion ∃F (εR = εF&∼F (εR)), take this concept to be H, then
we have that εR = εH and ∼H(εR), then by BLV we conclude that ∼R(εR).

(⇐) Suppose that ∼R(εR), by λ-conversion ∼(∃F (εR = εF&∼F (εR))) and
so ∀F∼(εR = εF&∼F (εR))), this is ∀F (εR = εF ⊃ F (εR))), instantiating with
R, εR = εR ⊃ R(εR)), and since εR = εR we conclude that R(εR). q.e.d.

The second derivation of the contradiction makes use of membership and so
is more familiar to what today would appear as Russell’s paradox in, say, a set-
theory textbook. First note that in Frege’s system one can derive the following
result regarding the existence of an object, namely an extension, that has as
members those and only those elements instantiating a given concept.

Proposition 0.5 (Naive comprehension for extensions).

∀F∃y∀x(x ∈ y ≡ Fx)
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Proof. By an instantiation of the law of extensions for F , ∀x(x ∈ εF ≡ Fx), by
existential weakening, ∃y∀x(x ∈ εF ≡ Fx), and so by universal generalisation
∀F∃y∀x(x ∈ εF ≡ Fx). q.e.d.

Note that we can now consider the predicate [λzz /∈ x], abbreviated by R,
and show the following

Proposition 0.6 (Russell’s paradox, second derivation).

∃x(x ∈ x ≡ x /∈ x)

Proof. Apply naive comprehension to R to get ∃y∀x(x ∈ y ≡ [λzz /∈ z]x),
take this object to be r, then ∀x(x ∈ r ≡ [λzz /∈ z]x) and instantiate with r,
so r ∈ r ≡ [λzz /∈ z]r apply λ−conversion to get r ∈ r ≡ r /∈ r and apply
existential weakening. q.e.d.

1.3.3 Drawing conclusions

We now return to the title of this section. I have tried to indicate why we might
think of the system described above as formalising some innocent and fairly un-
controversial ideas about objects, concepts and their corresponding extensions.
It turns out, however, that Frege’s system is inconsistent. This is at least a
wake up call in the sense that it forces us to reevaluate our formalisation of our
ideas about collections, given that our first attempt at it has failed and so more
care than one might have expected is required. It is also unexpected in that
the principles used in the formalisation are the ones seemingly innocent of SOL
and the equally seemingly sensible BLV .

When it comes to an attempted diagnosis of the root of the problem it seems
there is a tension between the comprehension principle, ensuring that there
is a concept corresponding to each open formula, the existence of extensions
principle which ensures that to each concept there corresponds an extension,
and BLV which rules the relationship between extensions and concepts. More
explicitly the problem seems to be that this framework requires, on the one
hand to be the same number of concepts and extensions, but on the other it
requires more concepts than there are objects. Indeed, if we take, the seemingly
innocuous view of concepts in which these are exhausted by the objects that
instantiate them. Namely F = G ≡ ∀x(Fx = Gx), a so-called extensional
view. Then, by the principle of extensions, to each concept F there corresponds
an extension εF . It is now convenient to break up BLV into its two different
implications in order to evaluate the constraints it poses in this correspondence:

BLVa
∀x(Fx ≡ Gx) ⊃ εF = εG

(1.4)

BLVb
εF = εG ⊃ ∀x(Fx ≡ Gx)

(1.5)
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According to the contrapositive of BLV a, if two extensions differ there is
some object instantiating one of them that doesn’t instantiate the other, and
so given our extensional view of concepts these are different, and thus no same
concept will be assigned to two different extensions, and so this correspondence
is functional. More problematic seems the condition imposed by BLV b, namely
that this function be injective. Indeed, consider the contrapositive of this prin-
ciple, it states that if there is some object that falls under one concept but not
another, and so that under our extensional view this means that the concepts
are different, then the extensions associated with these will in turn differ. Thus,
there are cannot be more concepts than extensions.

Note however, that when we conjoin BLV with the comprehension principle
of SOL we need there to be more concepts than objects, and so in particular
than extensions. Recall that the comprehension principle for concepts states
that for any open formula in the language, or in other words for any expressible
condition on objects, there is a corresponding concept. Now, although it may
seem that this is enough to demand more concepts than, at least 2|objects|,
there are indeed non-standard models of the theory with the same number of
concepts and objects, that take advantage of the fact that the language can
only express countably infinite many conditions and so we can take a countable
infinite amount of objects to attain this feature. The problematic element is thus
the addition of BLV , and the indefinitely many new concepts that it generates
by reference to the extensions it creates.

In the next chapter we will provide a survey of different approaches taken by
several authors in order to attain an inconsistency-free theory of extensions, or
collections, sets, classes, and so on. There are several avenues open, from revi-
sions of the logic to the modification of the second-order comprehension principle
putting some constraints on the formulas that have a corresponding extension.
In any case, we can at this point note that there will be a trade-off between the
apparent compelling nature the tenets of Frege’s theory (SOL+BLV ) and its
simplicity, and the freedom from paradox of the axiomatic theories that try to
salvage Frege’s attempt at formalising our ideas when it comes to the notion
such as formula, property or collection of things satisfying it among others.

1.4 Summary

In this chapter we gave an account of what our informal ideas about col-
lections might be as well as introducing their formalisation by Frege, we also
highlighted the inconsistency of such a system and gave some reasons as to why
this is the case which consistent theories should take on board.

We began in §1.2 by looking at the ideas about objects, properties and
their associated collections of objects satisfying them that we might hold before
embarking on a theoretical trip to formalise them. In §1.2.1 we looked in some
detail at second order logic, the logical system that seems to encode some of the
thoughts expressed at the beginning of the section regarding properties.

In §1.3 we looked at the system formalising the ideas in the previous section
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by Frege, in §1.3.1 we placed especial emphasis on Frege’s Basic Law V, a princi-
ple giving the conditions for the equality of two extensions given the properties
they arise from. Although noting the plausibility of such a principle in §1.3.2
we gave two derivations of a contradiction that use such law. Finally, in §1.3.3
we made some remarks as to the reasons for such contradictions appearing in
Frege’s system regarding concepts and their associated extensions. As we also
mentioned these warnings will have to be taken on board by the theories of col-
lections that aim to capture our ideas about these entities without falling prey
to inconsistency as in the case of Frege.
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Chapter 2

A taxonomy of theories of
collections

2.1 Introduction

In §1 we saw how Frege’s attempt at formalising what we could think of as
our informal ideas about collections might failed due to inconsistency. In this
chapter we will present some theories of collections that avoid the paradoxes that
affected Frege’s system while still trying to stay faithful, as much as possible
at least given that the shadow of contradiction always lurks in the background,
to the ideas we want to capture with such a formalisation. Although evidently
not exhaustive, it is hoped that the systems here chosen serve as a good sample
space of the different approaches that might be taken in this respect, these
include typed theories, theories of just sets, sets and classes or just classes or
theories using non-classical logic.

The chapter starts by looking in §2.2 at the pioneering theory of collections
trying to preserve consistency after the discovery of the paradoxes, this is of
course Russell’s theory of types here problematic formulas such as the problem-
atic x /∈ x will be banned from the syntax since they do not respect some type
restrictions imposed in the language.

Next we will look at Quine’s New Foundations in §2.3, although still the type
theoretic flavour will be present when dealing with paradoxical properties, in
this theory variables are not typed and so we find entities such as the universal
collection, not existing in Russell’s type theory.

After that in §2.4 we examine the most popular theory of collections to-
day among mathematicians, that of Zermelo and supplemented by the axioms
of choice and regularity, we will see how here the paradoxes are avoided by
restricting comprehension to already existing sets, and so the Russell contradic-
tion informs us that there is no universal set in this theory, thus we will see that
this theory encodes a doctrine of limitation of size, namely that some things are

23
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too big to constitute sets.

After that in §2.5 we look at the standard way to introduce classes into
the picture of the theory of collections this is the system of von Neumann and
incorporates to Zermelo’s system proper classes which are objects that are not
members of other objects, this adds expressive power to the theory. Here, the
paradoxes are then taken to establish that some collections will fail to be sets,
they will be only classes.

In §2.6 we study the theory of Ackermann, in which unlike in that of von
Neumann one can not define the set predicate, this is because Ackermann takes
seriously the idea that sets are generated through an open ended process that
never concludes and so at no given point we can fix for good the extension of
the set predicate, here we will also discuss how this thoughts can be formalised
through Kripke semantics for set theory, we will also see how unlike in Zermelo’s
theory limitation of size principles will not play a main role here.

We then move to §2.7 where we look at a more recent theory of classes that
of Schindler, here we will have a class corresponding to every formula including
the paradoxical ones. Moreover, we will also have classical logic as our system in
this theory, however, although bivalence will hold, Schindler draws our attention
to the notion of range of significance. This informs us of which classes makes
sense to predicate of some property and which does not, hence the paradox here
is telling us that the Russell class is not in its range of significance of itself,
Schindler goes on to read off that the contradictions are due to some sort of
circularity as in the case just highlighted. We also look at a consistency proof
of the theory.

Finally, in §2.8 we look at Maddy’s theory of classes as in the case of
Schindler’s here we will have a class for every property, the difference is that
now we drop classical logic and adopt a paracomplete logic, Maddy then shows
how using an analogous solution as that produced by Kripke to the paradoxes of
truth one can construct a hierarchy of models that thinks that the paradoxical
Russell statement is neither true nor false but undecided. We also look into an
axiomatisation of the theory that turns out to be incomplete and unsound.

2.2 Russell: a different type of language

Chronologically, it seems fitting that since it was Russell who communicated
Frege the presence of an inconsistency in his system we start our survey of
alternative formulations of theories of collections with his proposal.1

Russell notes that as mentioned in our second derivation of the inconsistency
in §1.3.2, we the concept that lands us in trouble is that of being a member of
itself. For him, the trouble lies in that formulas such as x ∈ x or x /∈ x are
problematic, in the sense that they do not determine a concept, or the that the
concept they determine fails to have an extension. He takes issue with the naive

1Here we follow the textbook treatment in (Mendelson, 1997, pp. 289-293), for the original
from Russell consult (Russell, 1908).
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comprehension principle for extensions explained in §1.3.2. Note, however, that
these are not the only formulas that one must be careful about, but also more
generally any of the form x0 ∈ x1 & x1 ∈ x2 & . . . & xn−1 ∈ xn & xn ∈ x0 for
n ≥ 1 ought to be put in quarantine.

In order to achieve get rid of statements embodying these forms of circular-
ity, Russell proposes us to think of the universe of objects as being stratified
into countable infinitely many different domains called types. We start at the
bottom of this hierarchy with some collection of objects which are not collec-
tions themselves and so have no members2, these objects are of type 0. Then
we have the objects which are indeed collections and have as elements objects
with no members, i.e. objects of type 0, these are the objects of type 1. And so
in general, for any n > 1, objects of type n will be collections whose members
are of type n− 1.

Note that in the same way as in SOL we distinguish the variables ranging
over objects and those ranging over relations, in the language of the theory
of types, which is FOL with the membership relation ∈, we distinguish each
variable according to the type of the objects it ranges over. And so xn will
range over objects of type n and, importantly, all variables are typed. The
atomic formulas then will look like this xn ∈ yn+1, and the rest of the formulas
are built as usual with connectives and quantifiers. Note then that Russell’s
aim of blocking formulas such as x ∈ x is achieved, since both arguments in the
relation share the type which is not allowed by the syntax.

However, one should be careful when defining the equality, since this should
be relativised to each type. In particular, we will take two objects of the same
type to be equal if and only if they belong to exactly the same objects of the
subsequent type:

Typed definition of equality

xn = yn := ∀zn+1(xn ∈ zn+1 ≡ yn ∈ zn+1)
(2.1)

Moreover, we have the usual axiom of extensionality, but again relative to
our typed framework:

Typed axiom of extensionality

∀yn+1∀zn+1(∀xn(xn ∈ yn+1 ≡ xn ∈ yn+1) ⊃ yn+1 = zn+1)
(2.2)

We see that the axiom above is not informative enough for members of type
0, and so the preceding definition of equality is also required. Now we turn
to the comprehension axiom schema. This guarantees that for each formula
there is an associated collection of elements satisfying it, or in a more Fregean
parlance, that there is an extension associated to each concept associated to a

2These are called atoms or urelements in the set theoretic jargon.
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formula. The caveat is of course that attention should be paid to the types, and
so what we get is that for each open formula, there is an associated collection
of objects of a given type that satisfy the formula, this collection will be in turn
of the next higher type:

Typed schema of comprehension

∃yn+1∀xn(xn ∈ yn+1 ≡ φ(xn))

For any φ in the language in which yn+1 is not free.

(2.3)

Moreover, by extensionality, this collection is unique and we can denote it
by {xn|φ(xn)} using set-builder notation.

Now, note that when in this typed framework we define the usual set-
theoretic constructions we will get a distinct copy of each object corresponding
to each of the types. So, for instance, the comprehension schema provides an
empty set for each non-zero type by applying it to xn 6= xn, say ∅n+1, and so
there is no such thing as the empty set. Similar remarks apply to the natu-
ral numbers. This fact makes it cumbersome for mathematicians to work in
type theory, more worryingly for Russell, one cannot prove the existence of an
infinite set in this framework and this must be introduced as an axiom. This
is a concern for his logicist project. To formulate the axiom we will need the
usual Kuratowski definition of ordered pair (xn, yn) := {{xn}, {xn, yn}}, where
{xn, yn} = {un|un = xn ∨ un = yn}. Note then that (xn, yn) has type n + 2,
thus a binary relation on a set A, being a set of ordered pairs will have type
2+type(A), and so a relation on the universe of sets of type 0, V 1 := u0|u0 = u0

will have type 3. Now we are ready to formulate the axiom:

Typed axiom of infinity

∃x3((∃u0∃v0((u0, v0) ∈ x3)) & ∀u0∀v0∀w0((u0, u0) /∈ x3 & ((u0, v0) ∈ x3 &

(v0, w0) ∈ x3 ⊃ (u0, w0) ∈ x3) & ((u0, v0) ∈ x3 ⊃ ∃z0((v0, z0) ∈ x3))))

(2.4)

The axiom above states that there is a non-empty, irreflexive, transitive
binary relation on V 1, x3, then we can conclude that there are infinitely many
objects of type 0.

The theory with the three axioms above in the language we described is
known as Russell’s simple theory of types, or st. Russell presented a different
theory of types in his monumental work with Alfred North Whitehead Principia
Mathematica, the ramified theory of types. However, his concern when produc-
ing such a system were not the paradoxes arising from Frege’s framework but
the impredicativity of the definitions of set allowed by st.3 Although ubiqui-
tous in mathematics, some authors such as Russell, Whithehead or Poincaré

3Recall that we say a set impredicative if it is defined with a formula in which we can find
a quantified variable that ranges over a collection that contains the defined set
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doubted the legitimacy of such definitions. To avoid them, the theory of types
is supplemented by adding a hierarchy of orders for each type higher than 0, this
theory has a further axiom, that of reducibility which allows us to collapse the
hierarchy of orders to its lowest level in order that the mathematical challenges
of the approach be overcome. Moreover, st has been expanded with other ax-
ioms, for instance those of Peano Arithmetic at type 0 are used by Gödel to
prove incompleteness, and also by expanding the hierarchy of types to higher
infinities.

2.3 Quine: a new type of foundation

In the previous section we mentioned that although solving the paradoxes,st
is a cumbersome theory for doing mathematics. One of the philosophers that
tried to simplify the theory of types will still retaining a similar solutions to the
paradoxes tenets was Willard Van Orman Quine. Quine’s type theory is called
New Foundations,4 nf, crucially, this theory uses a single type of variable and
the predicate symbol ∈. The definition of equality is the same as for st, as well
as the extensionality axiom, although now there is no need to be careful with
types:

nf definition of equality
x = y := ∀z(x ∈ z ≡ y ∈ z)

(2.5)

nf axiom of extensionality
∀y∀z(∀x(x ∈ y ≡ x ∈ y) ⊃ y = z)

(2.6)

Now, in order to write an axiom of comprehension that avoids paradoxical
collections, in a theory like nf where we cannot make use of the resources that
the typed variables provide us in st, we will use the notion of a formula being
stratified.

Definition 1 (Stratified formula). We say that a formula φ in our language is
stratified if one can assign natural numbers to the variables of φ so that:

1. All occurrences of the same free variable are assigned the same number.

2. All occurrences of a variable bound by the same quantifier are assigned
the same number.

3. Any subformula of the form x ∈ y of φ, is such that the number assigned
to y is the successor of that assigned to x.

With this definition in place we can now formulate the comprehension axiom
as follows:

4Here we follow the textbook treatment in (Mendelson, 1997, pp. 293-297), for the original
from Quine see (Quine, 1937).
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nf schema of comprehension
∃y∀x(x ∈ y ≡ φ(x))

For any φ in the language which is stratified.
(2.7)

Note that even if the axiomatisation of the theory is infinite as presented
here it can be shown that one can give a finite axiomatisation of nf.5 It is now
obvious that the paradox of Russell does not arise, since the formula x ∈ x is
not stratified and so there is no extension corresponding to it given the compre-
hension principle just stated.

Regarding the mathematical power of the system, in the same way as in
Russell’s theory of types, on can construct here in a fashion way the usual set-
theoretic objects. The difference however is that here we will not have as before
a copy of each object in every type, and so there is for instance a unique empty
set ∅ and a unique universal set V as opposed to one for each type. Now by
considering V we can see a distinguishing feature of nf with respect to st,
namely that some collections are self-membered:

Proposition 0.7. V ∈ V

Proof. By def of V we have by comprehension that ∀x(x ∈ V ≡ x = x), but
since V = V , then V ∈ V . q.e.d.

The proposition above is not the only difference between nf and the more
usual theories of sets. In fact, in nf the proof of Cantor’s theorem that P(A) > A
does not go through since this uses a set arising from a non-stratified formula. As
a result, this undermines the proof of Cantor’s result to the effect that there is no
biggest cardinal. If nf proved P(A) > A, then since P(V ) = V , a contradiction
would arise. Indeed, in nf f : u 7→ {u} is not a stratified formula. A theory
with such a property is called not strongly Cantorian. What we can prove in
nf, is the peculiar property that S(A) := {x|∃u(u ∈ A & x = {u})} < V , and
so that V > S(V ), so V has the property that it is not equinumerous with the
set of singletons of its elements. Regarding the usual axioms, nf can disprove
the axiom of choice and prove the axiom of infinity, which is taken for some
mathematicians as too strong of a result, casting a shadow of inconsistency over
the system. However there is a recent paper claiming its consistency.6 This
system is also attractive as a basis for a foundation of category theory.7

Another system proposed by Quine is ml, this has a language with capi-
talised variables, X,Y, Z, . . ., called class variables, in this theory we distinguish
some special kind of class, called the sets. Sets are those classes that have other
classes as members, i.e. S(X) := ∃Y (X ∈ Y ), we introduce lower case variables
to range over sets. Equality, is defined as follows:

5The first such formalisation is that in (Hailperin, 1944).
6See (Holmes, 2015).
7See (Feferman, 1974)
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ml definition of equality
X = Y := ∀Z(Z ∈ X ≡ Z ∈ Y )

(2.8)

We then have the following axiom of equality:

ml axiom of equality
∀X∀Y ∀Z((X = Y & Z ∈ X) ⊃ Y ∈ Z)

(2.9)

We also have unrestricted comprehension for classes:

ml schema of class comprehension
∃Y ∀x(x ∈ Y ≡ φ(x))

For any φ in the language.
(2.10)

And a stratified comprehension principle for sets:

nf schema of comprehension
∀y1 . . . yn∃z∀x(x ∈ z ≡ φ(x, y1, . . . , yn))

For any φ in the language which is stratified and
has free variables x, y1, . . . , yn and whose quantifiers range over sets.

(2.11)

ml is a conservative extension of nf, its advantages include ease and power
of expression, as well as better behaved natural numbers and the ability to prove
the full generality of induction.

2.4 Zermelo: the mathematician’s theory of choice

Leaving theories of a more type theoretical flavour aside, we now look at
the first and the one which has become the most popular theory from which to
carry out mathematics, Ernst Zermelo’s axiomatic theory of sets, z8. The only
objects in this theory will be sets, the language of the theory is FOL with a
membership predicate ∈. The definition of equality is the same as in ml:

Z definition of equality
x = y := ∀z(z ∈ x ≡ z ∈ y)

(2.12)

The list of axioms are then as follows:9 10

8Here we follow the brief exposition in (Mendelson, 1997, pp. 288-9), for a more detailed
treatment the reader is referred to (Jech, 2003), for the original paper from Zermelo one might
consult (Zermelo, 1908).

9With u ⊂ x := ∀y(y ∈ u ⊃ y ∈ x)
10With u ∪ x the set resulting from applying union to the set resulting from applying

ordered pairs to u and x.
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Substitutivity of equality
x = y ⊃ (x ∈ z ≡ y ∈ z)
Pairing
∀x∀y∃z∀u(u ∈ z ≡ u = x ∨ u = y)

Emptyset
∃x∀y(y /∈ x)

Union
∃y∀u(u ∈ y ≡ ∃v(u ∈ v & v ∈ x))

Power set
∀x∃y∀u(u ∈ y ≡ u ⊆ x)

Separation
∀x∃y∀u(u ∈ y ≡ (u ∈ x& φ(x)))

For any φ in the language, with y not free in φ.
Infinity
∃x(∅ ∈ x& ∀z(z ∈ x ⊃ z ∪ {z} ∈ x))

Note here that Russell’s paradox is blocked by the fact that comprehension
is restricted to subsets of some given set. So given the nature of the Russell
property this informs us that the universal set does not exist in this theory.

The intention of the theory is, from an emptyset and an infinite set, build
using the axioms above all the sets required to equip mathematicians with the
tools required to carry out their investigations, what is called the iterative, or
von Neumann, hierarchy of sets. It turns out, however, that z is too weak of
a theory, even though we can show that for all n, the ordinal ω + n exists, we
can not show that the set of all such ordinals, and so its least upper bound,
ω + ω does exist. Abraham Frankel proposed a way out of this difficulty11 and
this was recast by Skolem in the language of z12, this is the axiom schema of
replacement:13

Replacement
Fun(φ) ⊃ ∀w∃z∀v(v ∈ z ≡ ∃u(u ∈ w & φ(u, v)))

For any φ(x, y) in the language.
(2.13)

This schema tells us that if we have a function whose domain is a set, also
its range will be a set. This theory is known as Zermelo-Frankel set theory, zf,
and it is usually understood as containing also an axiom of regularity banning
cycles of membership in sets:14

11See (Fraenkel, 1922)
12See (Skolem, 1922).
13With Fun(φ) := ∀x∀u∀v(φ(x, u) & φ(x, v) ⊃ u = v).
14With y ∩ x the set resulting from applying comprehension to y ∪ x under z ∈ x& z ∈ y.
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Regularity
x 6= ∅ ⊃ ∃y(y ∈ x& y ∩ x = ∅

(2.14)

If one also adds the axiom of choice one gets the theory known as zfc which
is the standard foundation for mathematics today. The axiom of choice states
that for any set there is a function, the choice function for the set, such that for
any non-empty subset of this set the image of the subset under the function is
a member of the subset, this statement is equivalent to saying that for any set
of pairwise disjoint non-empty sets there is a set, the choice set, containing one
member from each of the sets in the original sets and only these, or formally:

Choice
∀u(u ∈ x ⊃ u 6= ∅& ∀v(v ∈ x& v 6= u ⊃ v ∩ u = ∅)) ⊃
∃y∀u(u ∈ x ⊃ ∃!w(w ∈ u ∩ y))

(2.15)

Briefly returning to st, we can associate to it a first-order theory st∗ with
a predicate for membership ∈ and predicates Tn corresponding to each type,
such that ∀xnφ(xn) will be translated to ∀x(Tn(x) ⊃ φ(x)) and if xk1 , . . . , xkl
are free variables of φ, we prefix to the result Tki(x1) & , . . . , & Tkl(xl) ⊃ and
changing each xki to xi, the axioms of this new theory are the translations of
those of st, then zfc is stronger than st, in the sense that it can prove the
consistency of st∗.

2.5 von Neumann: the classical theory of classes

The standard way to enlarge the ontology of collections in an axiomatic
theory with the inclusion of classes is, by supplementing the sets present in
zfc following the theory laid out by von Neumann and revised and simplified
by mathematicians like Bernays and Gödel, from them it is that this theory
receives its name, nbg.15 The language of nbg is a FOL with equality and the
membership predicate ∈. Note that as we did previously here we use capitalised
variables to range over classes, then we also have two predicate symbols, C and
S to express when a collection is a class or a set, we then define when a collection
is a proper class, meaning that it is a class but not a set:

nbg definition of proper class
PC(X) := ∼S(X)

(2.16)

We then use lower case to denote variables ranging over sets, ∀xφ(x) abbre-
viates ∀X(S(X) ⊃ φ(X)) for instance. We now look at some axioms dealing

15Here we follow the exposition in (Mendelson, 1997, pp. 225-87), for a more primary source
one can consult the following monograph by Gödel (Gödel, 1940).
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with the relation between sets, classes and proper classes:

Everything is a class
∀XC(X)

Elements of classes are sets
∀X∀Y (X ∈ Y ⊃ S(X))

We also have the usual axiom of extensionality, stating that there is nothing
more to classes than the sets it contains:

Extensionality
∀X∀Y ∀u((u ∈ X ≡ u ∈ Y ) ⊃ X = Y )

We then have class existence axioms, some of them analogous to those of zfc:

∈ -reduction
∃X∀u∀v((u, v) ∈ X ≡ u ∈ v)

Set pairing
∀x∀y∃z∀u(u ∈ z ≡ u = x ∨ u = y)

Emptyset
∃x∀y(y /∈ x)

Set Union
∃y∀u(u ∈ y ≡ ∃v(u ∈ v & v ∈ x))

Set Power set
∀x∃y∀u(u ∈ y ≡ u ⊆ x)

Domain
∀X∃Z∀u(u ∈ Z ≡ ∃v((u, v) ∈ X))

Infinity
∃x(∅ ∈ x& ∀z(z ∈ x ⊃ z ∪ {z} ∈ x))

Class intersection
∀X∀Y ∃Z∀u(u ∈ Z ≡ u ∈ X & u ∈ Y )

Class complement
∀X∃Z∀u(u ∈ Z ≡ u /∈ X)

Ordered tuples
(1.)∀X∃Z∀u∀v((u, v) ∈ Z ≡ u ∈ X)

(2.)∀X∃Z∀u∀v∀w((u, v, w) ∈ Z ≡ (v, w, u) ∈ X)

(3.)∀X∃Z∀u∀v∀w((u, v, w) ∈ Z ≡ (u,w, v) ∈ X)

Replacement
∀x∀F (Fun(F ) ⊃ ∃z∀v(v ∈ z ≡ ∃u(u ∈ x& (u, v) ∈ F ))

Regularity
∀X(X 6= ∅ ⊃ ∃y(y ∈ X & y ∩X = ∅))
Choice
∀x∃X(Fun(X) & ∀y(y ⊆ x& y 6= ∅) ⊃ ∃z((y, z) ∈ F & z ∈ y))
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Note that in contrast with zfc, nbg is a finitely axiomatisable theory, since
the distinction between sets and classes allow us to formulate replacement with
a single axiom, for instance. Now, given our interest in avoiding paradoxes
and assessing at what cost different axiomatic theories do this, we are keen
on finding out to which extent is comprehension restricted in this theory. It
turns out that one can prove that there is a class corresponding to any formula
in which only set variables are bound by quantifiers. This we call, for these
purposes, a predicative formula.

Class existence theorem
∃Z∀X1 . . . Xn((x1, . . . , xn) ∈ Z ≡ φ(x1, . . . , xn, Y1, . . . , Yn))

For any predicative φ(X1, . . . , Xn, Y1, . . . , Yn) in the language.

Proof. The proof proceeds by induction on the number, say k, of connectives
and quantifiers. Note that we can assume formulas do not contain a subformula
of the form Yi ∈W since this can be replaced by ∃(x = Yi&x ∈W ). Further, we
can also assume no formula of form X ∈ X occurs. We now give a brief sketch
of the proof. The base case, when k = 0 has three different subcases, when
φ := xi, φ := xi ∈ xj and φ := xi ∈ Yi, the result then follows by applying the
axioms of ∈-reduction, intersection, complement, domain and ordered tuples and
domain. We also have three cases in the induction step φ := ∼ψ, φ := ψ ⊃ χ
and φ := ∀xψ, which can be proven again by using the axioms mentioned
before. q.e.d.

Note that instead of a finite axiomatisation of the theory we could have
chosen to substitute the axioms used in the proof of the class existence the-
orem by an axiom stating this result. Now, we have by the class existence
theorem, there is a class Y := {x|x /∈ x} s.t. ∀x(x ∈ Y ≡ x /∈ x), i.e.
∀X(S(X) ⊃ (X ∈ Y ≡ X /∈ X). Assume then that S(Y ), so Y ∈ Y ≡ Y /∈ Y so
Y ∈ Y & Y /∈ Y . So this contradiction informs us that the Russell collection is
not a set, but a proper class. One can similarly prove that the universal class,
the complement of the emptyset, is a proper class.

Similarly as with ml and nf, nbg is a conservative extension of zfc and
equiconsistent with it. Its advantages over it include ease and power of expres-
sion, or finite axiomatisation, they also differ with respect to the existence of
certain models.

We now look at the theory mk, which is an strengthening of nbg with a more
powerful class existence axiom schema, its name is due to mathematicians Morse
and Kelley.16. The theory appeared in an appendix to a general topology book
by Kelley and independently in writings of Morse, Mostowski and Quine. For-
mally, we replace the axioms of ∈-reduction, intersection, complement, domain
and ordered tuples by the following schema:

16Here we follow (Mendelson, 1997, p. 287), for Kelley’s formulation one should consult
(Kelley, 1955)
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mk comprehension schema
∃Y ∀x(x ∈ Y ≡ φ(x))

For any φ in the language, with Y not free in φ.
(2.17)

So note that here we have comprehension for any predicate and not only
predicative formulas, mk is also stronger than nbg in the sense that it can show
the consistency of the latter theory and also all its axioms, hence it is a proper
extension, in fact it is as strong as nbg plus an inaccessible cardinal.

2.6 Ackermann: Imagination and existence

In this section we look at the theory of sets and classes developed by Wil-
helm Ackermann17. This theory sits in stark contrast with the theories of zfc
and its extension to the universe of classes nbg. There the paradoxes where
avoided by the axioms encoding some doctrine of limitation of size, namely that
comprehension can only be applied within sets or to predicative formulas in
which case some times the associated object is a proper class and not a set.
As we will see, in a, the name of Ackermann’s theory, there are only very lax
limitation of size principles, namely that subsets and members of sets are sets,
and a seemingly strong comprehension principle.

The language of a is a FOL with equality and an binary predicate for
membership, ∈ as well as a predicate S denoting being a set. The key difference
between a and other theories of classes is that here we will see that being a
set is not definable in terms of membership. We will use capitalised variables
to range over classes and lower case variables to range through sets via the
usual abbreviations. As familiar by naow, we have that a defining feature of the
classes is that they are exhausted by their members:

Extensionality
∀X∀Y ∀Z((Z ∈ X ≡ Z ∈ Y ) ⊃ X = Y )

We then have the limitation of size axioms mentioned above:

Heridity
∀Y ∀x(Y ∈ x ⊃ S(Y ))

Subsets
∀X∀x(Y ⊆ x ⊃ S(Y ))

And we can also add the usual regularity axiom for sets:
17For the original source consult (Ackermann, 1956), here we follow (Goodstein, Fraenkel,

& Bar-Hill, 1958, pp. 148-53)
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Regularity
x 6= ∅ ⊃ ∃y(y ∈ x& y ∩ x = ∅

Note that, interestingly, what we do not have is that members of classes
are sets, which was the way we defined the set-predicate in nbg and ml. We
now look at the comprehension schemas of a, first there is an unrestricted
comprehension for classes but such that this class arising from comprehension
will have, as we saw in nbg and was used to block the paradoxes, sets as
members:

a class comprehension
∀x(φ(x) ⊃ S(x)) ⊃ ∃Y ∀u(u ∈ Y ≡ & φ(u)))

For any φ in the language.

Observe that as in nbg, the argument behind Russell’s paradox shows that
the Russell class is not a set. Also, like in nbg here the class of all sets V is not
a set, this is an application of the subset axiom once we know that the Russell
class is not a set.

We now look at the distinctive axiom of a, comprehension for sets, this
states that if the only classes satisfying some property are sets, then there is a
set of exactly these sets:

a set comprehension
∀x1 . . . xn(∀Y φ(Y, x1 . . . , xn) ⊃ S(Y )∃z∀Y (Y ∈ z ≡ φ(Y, x1 . . . , xn)))

For any φ in the language not involving S and whose all parameters are sets.

As noted above, this axiom does not have, as that of zfc or those of subset
and heredity of a, a flavour of limitation of size. Before looking at Ackermann’s
motivation for such schema, we look into the technical limitations of the prin-
ciple. These are two, first we require that the set predicate does not appear
in φ. Suppose then this was not the case, then we could apply the schema
to S(X) & φ(X), so that for any φ(X) we would conclude that {x|φ(x)} is a
set, and so in particular {x|x /∈ x} is a set and so this restriction is required
for the consistency of a. Now we look into the restriction barring proper class
parameters from appearing in φ. If this was not the case, we could have chosen
X ∈ Y as our φ(X,Y ) and so we would have that whenever Y is a class only
containing sets, {x|x ∈ Y } is a set, but then by class comprehension we can
substitute prarameter Y by any class {x|φ(x)} to obtain that any such class is
a set, which then produces Russell’s paradox.

We can now formalise what we expressed at the beginning of the section
regarding the impossibility, as opposed to the other theories of classes we men-
tioned before, of defining the set predicate by any condition which uses only set
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parameters and doesn’t contain the predicate itself. Indeed, suppose ψ(X) was
such a formula and equivalent to S(X), then take ψ(X) & X /∈ X as φ(X) in
the schema of set comprehension we get that the {x|x /∈ x} is a set, and so this
assumption is incompatible with the consistency of a.

We will now look into the motivations of Ackermann for the set comprehen-
sion axiom. For Ackermann, even though set theory deals both with sets and
proper classes, the former are the true subject of the theory. However, Acker-
mann takes what is usually considered to be a façon de parler to explain the
iterative conception of set embodied in theories such as zfc, namely that sets
are generated from the emptyset through the operations of union and powerset,
in a cumulative process seriously. Hence we can now understand why in his view
the extension of the predicate being a set cannot any given point be thought
as well-defined and so we cannot be certain of whether some class X will end
up being a set. This is precisely because this process of set formation has not
yet concluded at any given time for iteration can always be continued.18 Thus,
a predicate can only be considered as well-defined in the sense just explained
if it doesn’t use the set-predicate or class parameters, as required by the set
comprehension schema. Note that it seems that the conditions imposed by this
schema seem insufficient since although barring class parameters, it does allow
statements that quantify over all classes and it is not clear why the totality of
classes is less ill-defined than their individual instances.19 Be that as it may,
the following quote from Dana Scott summarises the situation:

A remarkably simple axiomatization of a system of set theory is presented which the
reviewer feels deserves serious consideration. The system is formalized in an applied first-order
calculus with identity using a binary predicate e (membership) and a singulary predicate M
(being a set). It is quite essential for the consistency of the system that M is not definable
in terms of E. The axiom of extensionality is assumed so that all the individuals can be
considered as collections of individuals, but it is easily proved from the axioms that there are
collections that are not sets and even contain non-sets. The necessity for the existence of such
improper collections in the theory makes comparison with the standard systems of set theory
somewhat difficult.(Zalta, 2019b, p. 10)

As Scott points out, the different principles present in each theory are moti-
vated by different views about the nature of sets and classes. Thus the thought
that a comparison of a with a more traditional theory such as zf will not be
easy bussiness. However, it turns out that a is a conservative extension of zf.
So any satement aboutzf provable in a was already provable inzf, and all the-
orems ofzf are provable in a. Hence, zf is equiconsistent with a. Related to
these points, we here show the following more modest result:

Theorem 1. All theorems of z are provable in a.

Proof. We proceed by establishing that the axioms of z are theorems of a.

18Note that even though this way of expressing the structure of the set-theoretic universe in
terms of iteration of some operations over time is quite informal this can be indeed formalised
through semantics for modal logic or intuitionistic logic, as we will see later in this section.

19Note that here the objector seems to be assuming the so-called All in One principle, more
on this in §3.3.3.
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• Extensionality: This follows directly from a extensionality.

• Pairing: Given sets a and b, consider the expression with these as para-
menters X = a∨X = b, this is only satisfied by sets and is allowed in the
set comprehension schema, and so there is a set containing only a and b.

• Union: Proven similarly to pairing using the expression ∃Y (X ∈ Y&Y ∈ b).

• Power set: Proven similarly to pairing using the expression X ⊆ b.

• Separation: Let b be a set and φ(x) any open formula, then by class
comprehension, the following class exists {x|x ∈ b & φ(x)} which is a set
by the subset axiom.

• Empty set: Apply set comprehension to the formula X 6= X.

• Infinity: Consider the following expression:

∀Y ((∅ ∈ Y & ∀Z(Z ∈ Y ⊃ Z ∪ {Z} ∈ Y )) ⊃ X ∈ Y )

I.e. X is contained in every inductive class. Note now that V , the class of
all sets, is such a class, since it contains the empty set and by the axioms
of union and ordered pairs, if b is a set so is b ∪ {b} and so every class
satisfying the formula above will be a member of V and hence a set, and
so we can apply this formula to the set comprehension schema, to obtain
a set:

ω := {x|∀Y ((∅ ∈ Y & ∀Z(Z ∈ Y ⊃ Z ∪ {Z} ∈ Y )) ⊃ x ∈ Y )}

Then clearly ∅ ∈ ω, also suppose that b ∈ ω, then b is contained in every
inductive class and so b ∪ {b} will also be contained in such a class and
so will also be a member of ω, thus ω is an inductive set, as the axiom of
infinity requires.

• Regularity: This follows directly from A regularity.

q.e.d.

Recall from the quote from Scott that there are some classes that contain
non-sets, however the axioms do not mention these entities directly. Neverthe-
less, we can prove their existence, even if establishing their presence through a
proof by contradiction might make be not very informative when assessing their
place in the theory.

Proposition 1.1. ∃X∃Y (Y ∈ X &∼S(Y ))

Proof. Suppose for the sake of contradiction that no such a class existed, then
no class X would be a member of any class B, unless X was a set, however
by pairing any set is a member of some class, then the property of being a set
would be equivalent to being a member of a class, i.e. S(X) ≡ ∃Y (X ∈ Y ),
but we showed above that this property is not definable in A in this way, a
contradiction.

q.e.d.
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This theory has also been proposed as a basis for category theory.20 We
now look at another theory that can be understood as sharing the same main
themes as Ackermann’s proposal, this theory was formalised by Reinhardt after
some notes from Shoenfield.21 The core principle of the theory is the following:

P If φ is a property of stages and one can imagine a situation in which all the stages
having φ have been built up, then there exists a stage s beyond all the stages which have φ.

This principle takes, as we pointed out before that also Ackermann did, the
idea that sets are build up in some cumulative and continuous process seriously.
Note that there is in this principle a distinction between stages that have ac-
tually been built or exist and stages and imagining a situation in which these
stages have been built, the principle tells us that that possibility or imagina-
tion is enough to guarantee the existence of a stage beyond this stages with the
property. We could illustrate the principle as follows, suppose that we are at
stage 0 of the set theoretic hierarchy, and we consider the property of being
a finite stage, then we could imagine a situation in which all the finite stages
have been built, indeed this is the situation in which the set-building procedure
has reached Vω, then there exists a stage beyond all these, for instance the one
we name Vω+1. The reference to imagination can be understood here in more
or less constructive terms, namely that this act of imagination brings the stage
into existence, or in a more platonic fashion, that the imaginative act allows us
to access epistemically the realm of mathematical objects.

More formally, the language of Reinhardt’s theory, called s after Shoenfield,
is FOL with equality and the membership relation. It will also have a predicate
S, to indicate something is a set, as well as a constant V , the imaginary set of
all sets. Here the imaginable sets are those in the range of quantification and
the existing ones are the ones falling under the predicate. Also note that the
existing properties in S are modelled as formulas in which all of its parameters
are existing sets. A stage x being built up in situation y, will be written as
x ∈ y as it will be the fact that y is beyond x. x exists and is a set will be
written as x ∈ V . As usual we adopt the axiom of extensionality:

Extensionality
∀x∀y∀z((z ∈ x ≡ z ∈ y) ⊃ x = y)

We also have the same limitation of size principles as in A:

Heridity
∀y∀x(y ∈ V & x ∈ y ⊃ x ∈ V )

Subsets
∀x∀y(y ∈ V & x ⊆ y ⊃ x ∈ V )

We now have a comprehension schema for imagined entities which takes the
form of Zermelo’s separation axiom, and so we see a classical treatment of these
imagined entities:

20See for instance (Muller, 2001).
21Here we follow the presentation in (Reinhardt, 1974b).
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Imagined comprehension
∀x∃y∀u(u ∈ y ≡ (u ∈ x& φ(u)))

For any φ in the language, with y not free in φ.

Finally we get to the axiom codifying principle S:

S schema
y1, . . . , yn ∈ V & ∃x∀u(φ(y1, . . . , yn, u) ⊃ u ∈ x) ⊃ ∃s(s ∈ V & ∀u(φ(y1, . . . , yn, u) ⊃ u ∈ s))
For any φ in the language, with x not free in φ.

Indeed, note that this is an adequate formalisation since principle S tells us
that if we can imagine some situation x, i.e. in our language ∃x, such that for
any stage u with property P , here coded by φ(y1, . . . , yn, u) with the parameters
existing, this u has been built in x, then there is a stage s such that this exists,
i.e. s ∈ V , and for any aforementioned u, s is beyond it, i.e. u ∈ s. One could
now add the usual axioms of regularity and choice.

Note that the distinction in Reinhardt’s theory is between entities imagined
and existing, but that this distinction could also be understood in the distinction
that Ackermann makes between sets and classes. Then the idea of an existing
property could be understood as a property of classes that do not depend on
their existence on V , Reinhardt calls such properties independent. Then S can
be rephrased as saying that if P is an independent property of classes such that
for some class x, P ⊆ x, then there is a set u, such that P ⊆ u. Comparing
a and s , one can immediately notice that the principle S is stronger than
Ackermann’s set comprehension, since the latter is obtained from the former by
existential weakening on V , and so while a requires everything satisfying the
property to be a set, for s it is enough that this entity is a class. The other
axioms of a follow immediately, from the class comprehension schema once we
take V as the class we are separating from.

Finally in this section we turn our attention to a theory of Powell,22 this the-
ory takes seriously the idea of classes as closely tied to properties by including in
the language a predication symbol 3, we also have the universe of sets V as a con-
stant. Here classes are defined as collections of sets and so if we take capitalised
variables to range over classes, we get that ∀Xφ(X) := ∀x(∀y(y ∈ x ⊃ y ∈ V ) ⊃ φ(x)),
note that we assume that classes only occur to the left of predication, then we
can read X 3 x as x instantiates X, or more similarly to set-membership talk,

22Here we follow (Reinhardt, 1974b, §6), for the original presentation see (Jech & Powell,
1971)
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that x belongs to the class X. We then have the following axioms:

Heredity
x ∈ y ∈ V ⊃ x ∈ V
Separation
∀x∃y∀u(u ∈ y ≡ (u ∈ x& φ(x)))

For any φ in the language, with y not free in φ.
Predication
∀x ∈ V (Y 3 x ≡ x ∈ Y )

Extensionality
∀x ∈ V ((x ∈ Y ≡ x ∈ Z) ⊃ Y = Z)

P Comprehension
∀x1 . . . xn ∈ V ∃Q∀u(Q 3 u ≡ φ(Z1, . . . , Zn, x1 . . . xn, u))

For any φ in the language, which doesn’t include V and where the Pi
only occur on the left of predication φ.

To these axioms we can then add regularity and choice. In this theory it is
not only the case that one can derive the axioms of zfc, but also large cardinal
axioms.

2.6.1 Intuitionistic semantics for set theory

The aim of this section is to offer a possible formalisation of what is taken as
the underlying narrative regarding the structure and construction of the set
theoretic universe for theories explored in this section such as a and s.23 The
story here is that this structure is built in stages according to some allowed set-
theoretic operations performed in previously existing sets in this way expanding
the domain of the quantifiers ranging over sets at some given stage. One of the
features of this formalisation is that we need to be able to have a global picture
of the development of set theory. This means that we need to know how the
different stages relate to each other in terms of their order of appearance in the
hierarchy of sets. A very useful construction when studying relational structures
are Kripke frames:

Definition 2 ((Kripke) Frame). A frame is a pair (W,R), where W is a non-
empty set and R is a reflexive and transitive relation.

For our purposes we take the set to be the collection of stages in the set-
theoretic hierarchy and the relation the order of the different stages in the
hierarchy.

Definition 3 ((Kripke) Model). A Kripke model is a tuple (W,R, f, g) which
consists of a frame (W,R) together with:

23Here we follow closely the formalisation in (Lear, 1977), further relevant references are
(Incurvati, 2008, §3) and (Paseau, 2001, §II)
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• a function f that maps each element of T to the domain of a classical
model of set theory, s.t. wRw′ ⇒ f(w) ⊆ f(w′), and

• a function g that takes a relation and a stage and gives a relation with
domain the given stage t, s.t. tRt′ ⇒ g(R, t) ⊆ g(R, t′).

These seem reasonable constraints to place since usually the only relation
we deal with is membership. This expresses the thought that once it is decided
that a set belongs to another set, this will not cease to be the case even if we
enrich the set theoretic universe with novel entities. Moreover f will inform us
of the sets conforming the universe at each stage. For instance, under the usual
von Neumann construction of the hierarchy: f(0) = ∅ and f(1) = {∅}, note
that since the hierarchy is understood to grow and not to shrink in the process
of development. After all, we are just enriching our notion of set, we take that
if some stage follows another the sets already present in the previous stage will
not get lost in the new one, hence the condition on f .

Note that we are not demanding for R to be a linear order, this is because
in this way we can accommodate the possibility that at some point from some
interpretation of the concept of set it develops two distinct and incompatible
set theoretic universes, for instance one in which V = L and another with
measurable cardinals.24

A key feature of this system is that the semantics of the sentences in the
language are different from those of classical logic. Indeed, these we will take
into account, not just the actual status of the concept of set at the current stage
but also at all subsequent stages in the future. The truth of the formulas is
defined inductively as follows:

Definition 4 (Intuitionistic semantics).

• g(φ(c1, . . . , cn), t) = 1 iff c1, . . . , cn ∈ g(φ, t), for φ an atomic formula.

• g(φ& ψ, t) = 1 iff g(φ, t) = 1 and g(ψ, t) = 1.

• g(φ ∨ ψ, t) = 1 iff g(φ, t) = 1 or g(ψ, t) = 1.

• g(∃φ(x), t) = 1 iff for some c ∈ f(t), g(φ(c), t) = 1.

• g(∼φ, t) = 1 iff for all t′Rt, g(φ, t′) = 0.

• g(φ ⊃ ψ, t) = 1 iff for all t′Rt, if g(φ, t′) = 1, then g(ψ, t′) = 1.

• g(∀xφ(x), t) = 1 iff for all t′Rt, for all c ∈ f(t), g(φ(c), t′) = 1.

As we just mentioned, note that the semantics for negated, conditional and
universally quantified sentences are different from the classical semantics in the
sense that we will look not only at the state in the system where the formula
is evaluated but also in the subsequent stages in the frame. Consider, as an
illustration the following frame:

24See again (Incurvati, 2008) and (Paseau, 2001) for further discussion regarding the con-
dition of linearity on R.
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Vκ

...

Vω

...

V0

Where we understand the domains of the of each stage as the usual steps
of the von Neumann hierarchy so that we have represented a model of zfc
with κ an inaccessible cardinal. We can thus see the differences with the usual
semantics if we consider the sentence All sets are finite, at stage Vω. Indeed,
at this stage there are no infinite sets, however that is not enough to make the
sentence true since in the subsequent world, Vω+1, there is ω, and so the new
semantics tell us that this sentence will be false even in Vω. According to the
intuitionistic outlook, when we utter a universally quantified statement we are
making a stronger assertion than the classical interpretation, not only saying
that this fact is true in all the sets of a given stage but that it will remain true
however we expand our notion of set, i.e. will be true in all subsequent stages
in the model.

Similarly, for the negation consider the sentence There is no infinite set at
Vω, note that although the sentence There is an infinite set is false at this stage,
its aforementioned negation is not since again, in the subsequent world, Vω+1,
there is ω, and so we need to look forward to learn about the truth of negation
under these semantics. Note that the law of excluded middle is not observed
here always, when it is regarding a given formula we say that this has a fixed
value. In fact, note that if we know that the negation of a sentence is true this
is enough to know that the the sentence’s truth-value is fixed at falsity. So we
see again that the interpretation of the negation is stronger than the classical
negation in which one looks only at the state in which the formula is evaluated.
Now we need the stronger condition that no matter how set theory shall develop
in the future, the negated sentence will never be true, which is definitely not
the case with our sentence regarding infinite collections.

Consider know the sentence If there are infinitely many sets, there is an
infinite set, and consider any Vα, such that α ∈ [0, ω), classically this sentence
would be trivially true in any such stage since the antecedent of the conditional
is false there. However, the intuitionistic semantics render it false since any of
this stages have a successor, Vω, in which there are infinitely many sets but there
is no infinite set, this is enough to render the sentence false in the finite stages
too. So again, we see how this is a stronger interpretation of the connective since
true conditionals due to trivialities like the above are avoided, so the hope here
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is that conditionals will come out true only for more significant mathematical
reasons, namely that the existence of infinitely many sets would be incompatible
with the lack of infinite sets in future extensions of the hierarchy. Nevertheless,
the sentence under consideration will be true in Vω+1 and successive stages. In
fact one can prove the following:

Theorem 2 (Monotonicity). If (W,R, f, g) is a Kripke model and w,w′ ∈ W
are two worlds such that wRw′, then g(φ,w) = 1 implies g(φ,w′) = 1.

Proof. By induction on complexity of formula.

Base case: Suppose that φ(c1, . . . , cn) is an atomic formula and that
g(φ(c1, . . . , cn), w) = 1, then by definition of the semantics this means that
c1, . . . , cn ∈ g(φ, t), but since wRw′, then g(φ,w) ⊆ g(φ,w′) by definition of g,
and so c1, . . . , cn ∈ g(φ,w′) hence g(φ(c1, . . . , cn), w′) = 1 as required.

Induction hypothesis: If (W,R, f, g) is a Kripke model and w,w′ ∈ W are
two worlds such that wRw′, then g(ψ,w) = 1 implies g(ψ,w′) = 1, with ψ of
lower complexity than φ.

Induction cases:

Suppose that φ is of the form ∼ψ, then g(∼ψ,w) = 1 entails by defini-
tion of the semantics that g(ψ,w′) = 0, and suppose that there was a w′′ s.t.
w′Rw′′ with g(ψ,w′′) = 1 then by transitivity we would have that wRw′′ and
so by hypothesis g(ψ,w) = 0, a contradiction so indeed g(∼ψ,w′) = 1 since all
successors of w′ falsify ψ.

Suppose that φ is of the form χ&ψ, then g(φ,w) = 1 entails by definition of
the semantics that g(χ,w) = 1 and g(ψ,w) = 1 and by i.h. if wRw′ g(χ,w′) = 1
and g(ψ,w′) = 1 this guarantees g(φ,w′) = 1 as required.

Suppose that φ is of the form χ∨ψ, then g(φ,w) = 1 entails by definition of
the semantics that either g(χ,w) = 1 or g(ψ,w) = 1 and by i.h. if wRw′ either
g(χ,w′) = 1 or g(ψ,w′) = 1 this guarantees g(φ,w′) = 1 as required.

Suppose that φ is of the form χ ⊃ ψ, then g(φ,w) = 1, then consider any w′′
s.t. w′Rw′′ with g(χ,w′′) = 1 then by transitivity we would have that wRw′′
and so by definition of the semantics of implication g(ψ,w′′) = 1, so indeed
g(φ,w′) = 1 as required.

Suppose that φ is of the form ∃xχ, then g(φ,w) = 1, by definition of the
semantics this means that there is a c ∈ f(w), g(φ(c), w) = 1. But since
wRw′, then f(φ,w) ⊆ f(φ,w′) by definition of f , and so there is a c ∈ f(w′),
g(φ(c), w′) = 1 since g(φ(c), w) = 1 and we apply the i.h. and so g(φ,w′) = 1
as required.

Suppose that φ is of the form ∀xψ, then g(φ,w) = 1, then consider any w′′
s.t. w′Rw′′ then by transitivity we would have that wRw′′ and so by definition
of the semantics of universal quantification g(ψ,w′′) = 1, so indeed g(φ,w′) = 1
as required. q.e.d.
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So we see that what we observed above with our conditional sentence is not a
coincidence, but that whenever a sentence is decided true by a model it remains
so in the subsequent stages of the model. Note also that classical semantics
do not necessarily make the monotonicity theorem true, indeed, consider the
sentence There is a biggest ordinal in our previous frame. This will be true at
successor stages of the hierarchy, false at the limit stage collecting these and true
again at the subsequent stage and so on, hence the truth value of the sentence
will flip indefinitely often.

Note that on a more metatheoretical level, although using intuitionistic se-
mantics, these are apt for either a platonistic or intutionistic interpretation, in
the platonistic view we will see the different stages of the frame as witnessing
the set-theoretic universe growing over time, in the sense that the extension of
the predicate being a set develops but always withing an independently well-
defined universe of objects, the intuitionistic interpretation will actually see the
new sets being, as opposed to the platonist’s view, constructed or brought into
existence over time.

Another point of departure will come in interpreting the semantics, through-
out this section we have assumed the platonistic interpretation classifying sen-
tences as true and false. In particular we noted that when a sentence is false
this can be coupled with its negation being true, In which case the sentence has
a fixed value, or its negation being false, in which case we can interpret this as
showing that the extension of the set-predicate is not yet developed enough to
settle the truth or falsity of the sentence for good. However, under the intuition-
isic approach what we described as true sentences will be taken to be assertible
and those false as not assertible at the given evaluation stage, in particular when
we have that neither a sentence nor its negation is assertible as with If there
are infinitely many sets, there is an infinite set. The intuitionist will maintain
it becomes at Vω+1 assertible for before we lacked the relevant amount of the
set-theoretic universe constructed in order to be able to utter the statement.

Finally note, that even though here we have used intuitionistic semantics
one, might think a better formalisation of the construction of the hierarchy of
set through stages could have been obtained by using the tools of modal logic.
Very roughly, in this case we could interpret universally quantified sentences as
boxed universals formulas, i.e. necessary and so true in all accessible states from
a given point in the Kripke frame and existential ones as diamond existentials,
i.e. such they must true in some accessible world. One might also want to go
a step further in the modal path and claim that one, not only interprets the
quantifiers modally in set theory, but also do set theory with a modal language.25

2.7 Schindler: the singularity of paradoxes

In this consider a more recent theory of classes due to Thomas Schindler.26
We consider FOL L with = and ∈ as nonlogical symbols and we add a relation
xRy. This new relation symbol denotes that x is in the range of significance of y.

25See for instance (Parsons, 1983).
26Here we follow closely the exposition from Schindler in (Schindler, 2019)
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L also contains a class term {x|φ} corresponding to predicate φ s.t. x ∈ FV (φ),
note in particular that φ might contain ∈, R, other class terms or other free
variables as parameters, and so we see that in this system we have a term for
every class, including the paradoxical ones. By total(x) we mean that x has
no singularities, i.e. ∀z(zRx). The idea behind the ranges of significance is
that although in this system classical logic is used, and so bivalence holds. In
particular for any class it either belongs or does not to any other class, in some
cases, specially the ones leading to paradox, it makes no sense to predicate the
property from which the class arises to some given object, this will be transcribed
in the system by saying that the object does not lie in the range of significance
of the class. In a sense we could say it is a category mistake to predicate the
property of the class, in the same way that we might find something wrong with
the sentence stating that the Higgs boson smells nice, we might agree this has a
truth value although doubting the felicity of such statement. More concretely,
the following are some conceptual axioms describing the general relation of a
class and its range of significance.

Axiom 1 (Class comprehension).

∀x(xR{u|φ} ⊃ (x ∈ {u|φ} ≡ φ(x/u)))

where φ is any formula and x is free for u in φ.

And so comprehension holds provided that the object in question is in the
range of significance of the class considered. And so even though the object
will either belong or fail to do so with respect to the class, if the object is
a singularity of the class, this fact prevents us from reaching any conclusion
regarding this from the satisfaction of the property associated to the formula,
or vice versa. Consider the Russell class, r := {u|u /∈ u}:

Proposition 2.1. ∼rRr

Proof. By 1 rRr ⊃ (r ∈ r ≡ r /∈ r), so we conclude that ∼rRr. q.e.d.

So as commented above, the paradox is transformed into the statement that
r does not lie in its own range of significance. The following axiom ensures that
no class contains objects alien to their range of significance.

Axiom 2 (Singularity).
∀x(∼xRy ⊃ x /∈ y)

We can now show that it is not possible that {u|φ} contains some objects
that are not φ’s.

Proposition 2.2 (No overspill theorem).

∀x(x ∈ {u|φ} ⊃ φ(x/u))

Proof. Suppose x ∈ {u|φ}, then by contraposition of 2 xR{u|φ} so by 1 x ∈ {u|φ} ≡ φ(x/u),
thus φ(x/u). q.e.d.
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We now have our usual axiom of extensionality although relativised to ranges
of significance to highlight that even if having the same members two classes
differing in range of significance will be distinct.

Axiom 3 (Extensionality).

∀x∀y(R(x) = R(y) & ∀z(z ∈ x ≡ z ∈ y) ⊃ x = y)27

The next axioms deal with the relationship between the range of significance
of a predicate and its logical form, ensuring they are well behaved under logical
operations.

Axiom 4 (Closure under connectives).

∀x(∼xR{u|φ} ⊃ xR{u|∼φ})

∀x(xR{u|φ}& xR{u|ψ} ⊃ xR{u|φ� ψ}), with � = {& ,∨,⊃}

Axiom 5 (Closure under atomic predicates).

∀x∀y(xRy ⊃ xR{u|u ∈ y})

∀x∀y(xRy ⊃ xR{u|u = y})

Axiom 6 (Self-identity).
total({u|u = u})

This axiom ensures that not all predicates have an empty range of signifi-
cance, at least the universal class has this property. {u|u = u}, the universal
class will be denoted by V . Now we can show that the empty class will also be
total:

Corollary 2.1. The empty class ∅ := {u|u 6= u} is total.

Proof. By 6 and 5. q.e.d.

Corollary 2.2. ∀x(x ∈ V )

Proof. By 6 and 1. q.e.d.

We can also show that the theory distinguishes between different collections
that are usually taken to be proper classes by other theories.

Proposition 2.3. V 6= r

Proof. Immediate since these classes have different ranges of significance. Al-
ternatively, since V ∈ V by 2.2, if V = r, then r ∈ r, which by 2 means rRr
contradicting 2.1. q.e.d.

27R(x) = R(y) := ∀z(zRx ≡ zRy).
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The following axiom expresses the diagnosis from Schindler that the para-
doxes are to be blamed on some form of circularity within the problematic
classes, this we trivially see in the case of r.

Axiom 7 (Circularity).

∀x(∃y∼xRy ⊃ ∃z∼zRx)

So if x is a singularity it itself has a singularity.

Note that 7 is equivalent to ∀x(∀zzRx ⊃ ∀yxRy) and so total classes are in
the range of significance of any class, and so total classes are never singularities.
And so as we see in the subsequent theorem these are well behaved objects with
respect to comprehension.

Theorem 3. For every predicate φ, ∃y∀x(total(x) ⊃ (x ∈ y ≡ φ(x/u))) where
x is free for u in φ.

Proof. By 7 ∀x(total(x) ⊃ xR{u|φ}) so by 1 ∀x(total(x) ⊃ (x ∈ {u|φ} ≡ φ)(x/u)))
so ∃y∀x(total(x) ⊃ (x ∈ y ≡ φ(x/u))) by existential weakening.

q.e.d.

So 3 allows us to collect total classes at will.

2.7.1 Consistency proof and urelements

We now turn to a consistency proof, we will work within zfca28 Let U be a
countably infinite set of urelements. Further, let t and p be two urelements not
in U . Put UT := {(u, t)|u ∈ U}. The objects in UT will be used to model mem-
bership between classes of equal rank. Let Vω[UT ] be the smallest set X such
that (α) UT ⊆ X and (β) whenever x1, . . . xn ∈ X then ({x1, . . . , xn}, t) ∈ X.
The collection of total classes T consists of all x such that 1.x ∈ Vω[UT ] or
2.∃y1, . . . , yn ∈ Vω[UT ] such that x = (Vω[UT ]\{y1, . . . , yn}, t) Note that objects
satisfying (1) have finite rank and those satisfying (2) have a first component
that is cofinite in Vω[UT ]. The collection of proper (non-total) classes, P , con-
sists of all x such that (3) x = (y, p) for some y ⊆ Vω[UT ]. The domain of the
model consists of T and P ; D := T ∪P . Consider x := (a, i) ∈ D with i ∈ {t, p},
we say that a is the set-component and i the index of x. If the set component
of x is an urelement we call x itself an urelement. Let σ1((a, i)) = a, we write
x ∈1 y if x ∈ σ1(y). Observe that x ∈1 y only obtains if x has finite rank. Note
also that P contains a ‘copy’ of each finite and cofinite set.

We now specify R as follows (i) if x ∈ T , then yRx if and only if y ∈ D, (ii)
if x ∈ P , then yRx if and only if y ∈ T .

28zfc with urelements. These is the usual system although some axioms are added to deal
with the atoms. These include one stating that urelements have no elements or that there is
something with no elements which is a set, extensionality is of course restricted to sets.
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Proposition 3.1 (Circularity).

∀x ∈ D(∃y ∈ D∼xRy ⊃ ∃z ∈ D∼zRx)

Proof. Let x ∈ D and assume there is some y such that ∼xRy. By definition,
x ∈ P , but if x ∈ P x is R−related to all and only the things in T , so ∃z ∈ P
∼zRx since P is non-empty. q.e.d.

Put D∗ := T \ Vω[UT ], i.e. the objects with first component cofinite in
Vω[UT ]. Let f be a bijection from D∗ to UT . We now define the relation to
interpret identity between classes. ∀x, y x ≡ y if and only if (i) x = y, or
(ii) f(x) = y, or (iii) x = f(y). Note that this is an equivalence relation and
that cases (ii) and (iii) only occur when both classes are total and one of them
is in D∗.

We now define the relation to interpret class membership: For all x, y ∈ D :

1. x, y ∈ P ⇒ ∼xEy

2. x ∈ P and y ∈ T \ (D∗ ∪ UT )⇒ ∼xEy

3. x ∈ P and y ∈ D∗ ⇒ xEy and xEf(y)

4. If x ∈ T , then xEy if and only if x ∈1 y∨f(x) ∈1 y∨x ∈1 f−1(y)∨f(x) ∈1 f−1(y)

So we can see that x ∈ x if and only if f(x) ∈1 x, this is, if and only if the set
component of x contains the urelement associated with x. Also note that the
model will be minimal in the sense that only total classes will be self-membered.

Proposition 3.2 (Singularity).

∀x ∈ D(∼xRy ⊃ ∼xEy)

Proof. Since ∼xRy, y, x ∈ P , so by definition of E, ∼xEy. q.e.d.

Proposition 3.3 (Extensionality).

∀x, y ∈ D (R(x) = R(y) & ∀z ∈ D (z ∈ x ≡ z ∈ y) ⊃ x ∼ y)

Proof. Either x, y ∈ T or x, y ∈ P . We proceed by cases. Suppose first that
x, y ∈ UT . It suffices to show ∀z(z ∈1 x ≡ z ∈1 y). Let z ∈1 x, then z has
finite rank, so z is total, so zEx and so zEy, but since y /∈ UT , either z ∈1 y or
f(z) ∈1 y, but since z ∈ Vω[UT ] then it follows that z ∈1 y. The other direction
is similar. If x ∈ UT but y /∈ UT one can proceed similarly to show x = f(y)
(or if y ∈ UT but x /∈ UT one can proceed similarly to show y = f(x)). If both
x and y are urelements we can show f−1(x) = f−1(y). q.e.d.

Proposition 3.4. ∀x, y, z ∈ D (x ∼ y & xEz ⊃ yEz)
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Proof. We proceed by cases, if x = y this is trivial. Suppose then without loss
of generality that x = f(y), then x ∈ UT so x is total, then xEz implies x ∈1 z
or f(x) ∈1 z or x ∈1 f−1(z) or f(x) ∈1 f−1(z), i.e. x ∈1 z or x ∈1 f−1(z) since
f(x) is not defined, now both f(y) ∈1 z or f(y) ∈ f−1(z) implies yEz. q.e.d.

This proposition tells us that objects that, in our model, are treated as equal
are E-contained in the same objects.

Let L be the language of our class theory, to distinguish the membership
symbol of L from that of zfca, we denote the former by ε. We denote by
φ∗ the relativisation of an L-formula not containing any class-abstract, i.e.
(x = y)∗ = x ∼ y, (xεy)∗ = xEy and (∀xψ)∗ = ∀x ∈ D ψ∗.

Proposition 3.5. If φ is an L-formula, then ∀x, y ∈ D (x ∼ y&φ∗(x) ⊃ φ∗(y))

Proof. We proceed by induction on the complexity of φ∗:

If φ∗(x) := x ∼ s, the result follows from ∼ being an equivalence relation.

If φ∗(x) := xEs, then yEs follows from 3.5.

If φ∗(x) := sEx, suppose to avoid triviality that, without loss of generality,
y = f(x), so y ∈ UT and x, y ∈ T , with x ∈ D∗. If s ∈ P , then the result
follows by definition of E. So suppose s ∈ T , sEx implies s ∈1 x or f(s) ∈1 x
or s ∈1 f−1(x) or f(s) ∈1 f−1(x), i.e. s ∈1 x or f(s) ∈1 x since x ∈ D∗, but
as f−1(y) = x we have that s ∈1 f−1(y) or f(s) ∈1 f−1(y) and so in any case
sEy.

If φ∗(x) is of the form xRs or sRx the result follows by definition of R.

The other clauses follow by induction. q.e.d.

We now interpret the class abstracts, for simplicity we take ∼ and & as the
only logical connectives of L. First we capture the set of class abstracts that
our theory proves to be total, which we will call Π-terms and are defined by the
following simultaneous recursion:

1. u = u ∈ Π and {u|u = u} ∈ Π

2. If s ∈ Π, then u = s ∈ Π and {u|u = s} ∈ Π

3. If s ∈ Π, then uεs ∈ Π and {u|uεs} ∈ Π

4. If φ ∈ Π, then ∼φ ∈ Π and {u|∼φ} ∈ Π

5. If φ, ψ ∈ Π, then φ& ψ ∈ Π and {u|φ& ψ} ∈ Π

6. Nothing else is a Π-term.

We now define an interpretation (−)+ from the set of Π-terms into D, in fact
into T .



50 CHAPTER 2. A TAXONOMY OF THEORIES OF COLLECTIONS

1. ({u|u = u})+ = (Vω[UT ], t)

2. ({u|u = s})+ = ({s+}, t)

3. ({u|uεs})+ = s+

4. ({u|∼φ})+ = (Vω[UT ] \ σ1(({u|φ})+), t)

5. ({u|φ& ψ})+ = (σ1(({u|φ})+) ∩ σ1(({u|ψ})+), t)

We now extend (−)+ to an interpretation that maps all class abstracts of L
into D. In order to cope with parameters we add to L a constant for each
object in D not in the range of (−)+. If a is such an object we write a for
the corresponding constant and put a = (a)+. Let φ(u, y1, . . . , yn) be an L-
formula containing no class abstracts or individual constants. Furthermore,
let s1, . . . , sn be a sequence of class terms or individual constants (of lower
complexity than φ) and assume s+1 , . . . , s

+
n ∈ D are already defined. We now

define ({u|φ(u, s1, . . . , sn)})+ as above if {u|φ(u, s1, . . . , sn)} ∈ Π, otherwise,
this will be ({u ∈ Vω[UT ]|φ∗(u, s+1 , . . . , s+n )}, p), which is well-defined since the
set component of this pair is a subset of Vω[UT ].

Proposition 3.6 (Comprehension). Let φ(u, y1, . . . , yn) ∈ L and s1, . . . , sn be a
sequence of class abstracts or individual constants. Let dR({u|φ(u, s1, . . . , sn)})+.
Then dE({u|φ(u, s1, . . . , sn)})+ ≡ φ∗(u, s+1 , . . . , s+n ).

Proof. Put c := {u|φ(u, s1, . . . , sn)}. Assume that c /∈ Π, and so
c+ = ({u ∈ Vω[UT ]|φ∗(u, s+1 , . . . , s+n )}, p). Suppose then that dEc+, since
c+ ∈ P , then d ∈ T by definition of E, and so d ∈1 c+ or f(d) ∈1 c+ or
d ∈1 f−1(c+) or f(d) ∈1 f−1(c+), i.e. since c+ ∈ P f(d) ∈1 c+ or d ∈1 c+.
Now, if d ∈1 c+, by definition of c+, φ∗(u, s+1 , . . . , s

+
n ). If f(d) ∈1 c+, then

φ∗(f(d), s+1 , . . . , s
+
n ), since d ∼ f(d), 3.5 implies φ∗(d, s+1 , . . . , s

+
n ). Assume now

that φ∗(d, s+1 , . . . , s
+
n ) and without loss of generality that d ∈ Vω[UT ] (if this

is not the case we can just work with f(d) and use 3.5). By definition of c+
d ∈1 c+ and so dEc+.

Assume now that c ∈ Π, thus c+ ∈ T . We proceed by induction on the
complexity of Π-terms. We show here two cases:

Assume φ := u = u so φ∗ = u ∼ u, this holds for any object in D. Moreover,
c+ = (Vω[UT ], t). Since σ1((c∗)+) is infinite, dEc+ holds for any d ∈ P by
definition of E. Moreover it is easy to see that dEc+ for any d ∈ T .

We want to show now that φ := sE({u|φ&ψ})+ if and only if φ∗(x)&ψ∗(x).
Now, {u|φ} and {u|ψ} must be Π-terms. Take x ∈ P , (the case where x ∈ T is
proven similarly). Assume xE({u|φ&ψ})+, then ({u|φ&ψ})+ must be co-finite
and so ({u|φ})+ and ({u|ψ})+ are co-finite so by definition of E, xE({u|φ})+
and xE({u|ψ})+, so by inductive hypothesis φ∗(x)&ψ∗(x). The other direction
is similar. q.e.d.

Proposition 3.7 (Negation). Let ∀x ∈ D (xR({u|φ})+ ⊃ xR({u|∼φ})+)
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Proof. If {u|φ} ∈ Π so is {u|∼φ}, and so ({u|φ})+ and ({u|∼φ})+ are in T
and have the same range of significance. If {u|φ} /∈ Π neither is {u|∼φ} and so
({u|φ})+, ({u|∼φ})+ ∈ P and so have the same range of significance. (So we
have actually proven a biconditional). q.e.d.

The other axioms of connectives are proven similarly as are those regarding
∈ and =.

Proposition 3.8 (Self-identity). Let ∀x ∈ D xR({u|u = u})+

Proof. Since ({u|u = u})+ = (vω[UT ]), t) it is in T so any object in D is in its
range. q.e.d.

This concludes the consistency proof. Before concluding the section we look
at how we might supplement this theory of classes with other entities. We
now consider a language that contains additional predicates applying to people,
numbers, sets, et. al., given that the motivation of the theory of classes is
its application to a given domain of course the theme throughout this chapter
being mathematics. Let us introduce a distinguished predicate, U for urelement,
applying to these objects and introduce the following axiom stating that every
urelement is in the range of significance of any class.

Axiom 8 (Urelements). ∀x(Ux ⊃ ∀xRy)

Now, if T is a first order theory without ∈, R, U or classes (if T is the language
of set theory we can work with two copies of ∈). Let TU be the relativisation
of this theory to U . If T contains schemata, we extend these to allow ∈, R, U
and class terms. We can show (by axioms 8 and 1) in TU conjoined with our
theory of classes that

∃y∀x(Ux ⊃ (x ∈ y ≡ φ))

so this theory interprets the second-order version of T . We can add new axioms
of this flavour to interpret higher-order versions of T , embedding the type hi-
erarchy over T into our theory, this is taken to be a minimal adequacy result
given the aim of Schindler of providing a type free theory of collections that
improves on the what its typed counterparts have to offer.

2.8 Maddy: a paracomplete solution

To motivate the approach of her theory of classes to solving the paradoxes
of set theory Penelope Maddy draws our attention to similar situations in the
theory of truth. In particular, the problems surrounding such statements as
Everything I have ever said is false. If it turns out that everything I have ever
said apart from this statement is false, then the assumption that this statement
has a truth value leads to paradox. Here we seem to have a statement without
a truth value, where in the case of the Russell class we had a property without
an extension. Saul Kripke has shown how the truth paradoxes can be solved
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by allowing truth value gaps as specified by a certain construction.29 What
Maddy proposes is that we adapt this solution to the case of logical classes by
allowing gaps in the membership relation, this is that we abandon classical logic
in favour of a paracomplete sytem. This is, for any property, assign an extension
and an antiextension, but allow some things to fall in between. 30 Thus, Maddy
proposes to adopt indeterminate membership as a key difference between classes
and sets, and to use an imitation of Kripke’s construction to show when these
indeterminate membership relations occur.

More concretely, we consider a first order language L with = and ∈ as
nonlogical symbols and we add a term-forming operator ̂, to form terms such
as x̂(x = x) and x̂(x ∈ ∅).31 To gain expressive power we will also include a
constant V to stand for the class of all sets, and a constant a for each set a.

Definition 5 (Terms and formulas of L).

1. All constants and variables are terms.

2. If t and t′ are terms, then t = t′ and t ∈ t′ are formulas.

3. If φ and ψ are formulas, and x is a variable, then ∼φ, φ& ψ and ∀xφ are
formulas.

4. If φ is a formula, and x is among the free variables of φ, then x̂φ is a term.

T is the collection of all terms, it is the union of S, the collection of all set
constants, C, the collection of all terms of the form x̂φ, and {V }. C∗ is the
collection of closed terms in C, similarly, T ∗ is the collection of closed terms in
T .

The intended model for this language contains all sets, a standing for a,
here V will be a class with extension all sets and antiextension all classes. The
variable part of the interpretations of L is the extension and antiextension of
the elements of C∗.

Definition 6 (L − structure). C = {(t, t+C , t
−
C ) : t ∈ C∗} is an L-structure iff

∀t ∈ C∗, t+C ⊆ T ∗ and t
−
C ⊆ T ∗ and t

+
C ∩ t

−
C = ∅.

Note that it needn’t be the case that t+C ∪ t
−
C = T ∗, and so we can have

membership gaps, as mentioned above. The idea is that t+C and t−C ; represent
the extension and antiextension respectively of the class term t.

Given a sentence τ we have three possibilities C � τ (C thinks τ is true),
C 6� τ (C thinks τ is false) and C �? τ (C does not have an opinion about τ).

Definition 7 (Semantics for atomic sentences).

29See (Kripke, 1975).
30Here we follow closely the exposition of (Maddy, 2000), the other relevant work is (Maddy,

1983).
31Note that in the rest of this work we will adopt this notation to denote classes and leave

the set-builder notation to talk about sets.
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• τ is of the form t ∈ t′ for t, t′ ∈ T ∗, then:

– C � τ iff

1. t is a, t′ is b, and a ∈ b, or
2. t ∈ S and t′ is V , or
3. t′ ∈ C∗ and t ∈ (t′)+C

– C 6� τ iff

1. t is a, t′ is b, and a /∈ b, or
2. t is V and t′ ∈ S ∪ {V }, or
3. t ∈ C∗ and t′ ∈ S ∪ {V , or
4. t′ ∈ C∗ and t ∈ (t′)−C

• If τ is of the form t = t′ for t, t′ ∈ T ∗, then C � τ iff t and t′ are the same
term, and C 6� τ iff t and t′ are different terms.

For complex sentences truth and falsity is defined via the strong Kleene rules.

Definition 8 (Semantics for complex sentences). For sentences σ and τ ,

1. C � ∼σ iff C 6� σ; C 6� ∼σ iff C � σ.

2. C � σ & τ iff C � σ and C � τ ; C 6� σ & τ iff C 6� σ or C 6� τ .

3. C � ∀xφ iff for all t ∈ T ∗,C � φ(t/x); C 6� ∀xφ iff for some t ∈ T ∗,C 6� φ(t/x).

One can then define ∨,⊃,≡ and ∃ from these in the usual way

Definition 9 (v). If C and C′ are two L−structures, then C v C′ iff for all
t ∈ C∗, t+C ⊆ t

+
C′ and t−C ⊆ t

−
C′

.

Proposition 3.9 (Monotonicity). If C v C′, then for any sentence σ, if C � σ,
then C′ � σ, and if C 6� σ, then C′ 6� σ.32

This tells us that once a sentence is decided, adding more elements to the
extensions and antiextensions of classes does not disturb this fact.

With this machinery in place we construct the following sequence of L−structures:

C0 = {(x̂φ, x̂φ+0 , x̂φ
−
0 ) : x̂φ ∈ C∗} where x̂φ+0 = x̂φ−0 = ∅

Cα+1 = {(x̂φ, x̂φ+α+1, x̂φ
−
α+1) : x̂φ ∈ C∗} where

{
x̂φ+α+1 = {t ∈ T ∗ : Cα � φ(t/x)}
x̂φ−α+1 = {t ∈ T ∗ : Cα 6� φ(t/x)}

For λ a limit ordinal,
32Here and in the rest of the section we omit the proofs of the results for the sake of brevity,

the interested reader can find these in (Maddy, 2000), or otherwise should be able to provide
them themselves without too much difficulty given an adequate supply of patience.
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Cλ = {(x̂φ, x̂φ+λ , x̂φ
−
λ ) : x̂φ ∈ C∗} where

{
x̂φ+λ =

⋃
α<λ x̂φ

+
α

x̂φ−λ =
⋃
α<λ x̂φ

−
α

Define an L−structure U (for universe):

U = {(x̂φ, x̂φ+, x̂φ−) : x̂φ ∈ C∗} where

{
x̂φ+ =

⋃
α∈Ord x̂φ

+
α

x̂φ− =
⋃
α∈Ord x̂φ

−
α

We are interested in U . By monotonicity, whatever becomes true or false
at one of the Cα, remains true or false in U . For example, C0 � ∅ ∈ {∅} so
∅ ∈ x̂(x ∈ {∅})+1 and so C1 � ∅ ∈ x̂(x ∈ {∅}) thus U � ∅ ∈ x̂(x ∈ {∅}).

Note that since ẑ(z = t ∨ z = t′) is not the same symbol as ẑ(z = t′ ∨ z = t)
it is easily established that:

Definition 10 (Ordered tuple). For t, t′ ∈ T ∗, ‘(t, t′)’ is ẑ(z = t ∨ z = t′).

Proposition 3.10 (Equality of ordered tuples). For t, t′ ∈ T ∗, U � ((t, t′) = (u, u′))
iff U � (t = u& t′ = u′).

Notice also that these ordered classes are total, and so U 6� ((t, t′) = (u, u′))
iff U � (t = u&t′ = u′). We can define ordered n-tuples as usual: (t, t′, t′′) = ((t, t′), t′′).
Now, if x0, . . . , xn are among the free variables of φ then x̂0, . . . , x̂n abbreviates
ẑ(∃x0, . . . ,∃xn(z = (x0, . . . , xn) & φ)), with z, the first variable not appearing
in φ.

Continuing with the last example, recall that C0 � ∅ ∈ {∅} and so
C0 � ∃x∃y(∅ ∈ {∅}) = (x, y)&x ∈ y, which means (∅, {∅}) ∈ ẑ(∃x∃y(z = (x, y)&x ∈ y))+1
and so C1 � (∅, {∅}) ∈ x̂ŷ(x ∈ y) and by monotonicity, U agrees.

Now we can prove what Maddy considers one of the great advantages of her
system, namely that the class of infinite collections is self-membered.

Theorem 4. U � x̂(x is infinite) ∈ x̂(x is infinite)

Finally, and as anounced above, the gaps in the membership relation allow
for the Russell paradox to be sidestepped:

Theorem 5. U �? x̂(x /∈ x) ∈ x̂(x /∈ x)

Note that we take the extension of a set, say a, to consists of its members,
i.e. {b|b ∈ a}, and its antiextension to be everything else, i.e. T ∗\{b|b ∈ a}. The
definition of equality we gave earlier is not extensional (by extensional we just
mean that if collections A and B have the same extension and antiextension,
then A = B), since the set a and the class x̂(x ∈ a) have the same extension and
antiextension but are not identical (it is of course extensional when it comes to
dealing exclusively with sets, since coextensive sets are identical).
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Maddy seems to find this outcome welcome since one of the aims of her
theory is to render sets and classes as two clearly distinct entities. Moreover,
identifying coextensional and antiextensional sets and classes would mean that
we import the membership gaps present in classes onto the realm of sets, e.g.
whether {a} has ẑ(z ∈ a & x̂(x /∈ x) ∈ x̂(x /∈ x)) as a member would be
indeterminate, this would indeed be an unwelcome result. Note that failures of
extensionality are not only observed across the set/class boundary, classes that
are picked out by different terms can be coextensive without coinciding. Again,
Maddy thinks this is an advantage of the theory since for her classes are to be
understood as tightly tied to the properties that single them out and coextensive
properties needn’t be identified. However, she concedes that the distinctions in
place may be too fine-grained since they distinguish between classes such as
x̂(x ∈ a and ŷ(y ∈ a or even between x̂(x ∈ y ∨ x ∈ z and x̂(x ∈ z ∨ x ∈ y.

We now look at a different notion of identity.

Definition 11 ('). Let t, t′ ∈ T , and z be a variable not in t or t′, then if
∀z(z ∈ t ≡ z ∈ t′) we write t ' t′.

Note that it is now indeed the case that this relation holds between coex-
tensional sets and classes, e.g. U � {â} ' x̂(x ∈ a), and between very similar
classes, e.g. U � x̂(x ∈ a) ' x̂(x ∈ a & x ∈ a). Recall that given the seman-
tics of ≡, for U to be decided about u ∈ t ≡ u ∈ t′ it cannot be undecided
about u ∈ t or u ∈ t′, hence, U � t ' t′ is a way of expressing that t is total, i.e.
U � ∀x(x ∈ t∨x /∈ t), and so as a result we have that U �? x̂(x /∈ x) ' x̂(x /∈ x).

2.8.1 Looking for the axioms

We now look at the issue of finding an axiomatisation for the truths of our
structure U , the goal would be to get as much information about sets as zfc
and a large amount of information about classes. The main obstacle here is
the non-classical context created by the membership gaps, indeed, consider a
comprehension axiom x ∈ x̂φ ≡ φ, what Maddy calls Frege’s principle, then
given that the biconditional will, as remarked above, by indeterminate if either
side is we cannot hope for this to be an axiom. However as the next result shows,
the problem here is more general than our particular choice of conditional:

Proposition 5.1 (Curry’s paradox). Any system with the following properties:

1. Γ ` x ∈ x̂φ iff Γ ` φ (Frege’s principle)

2. Γ ∪ {φ} ` ψ iff Γ ` φ ⊃ ψ (Deduction theorem)

3. Γ ` φ and Γ ` ψ, then Γ ` ψ (Modus ponens)

is inconsistent.

Maddy then considers the proof system m (after John Myhill) which counts
with an infinitary axiomatisation and where the deduction theorem fails, more-
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over, due to the inability of ≡ to express the comprehension axiom we will have
a series of rules in addition to the axioms.

Definition 12 (The proof system m).

• Axioms:

1. Membership: For any a, b ∈ V , and any t ∈ C∗

(a) a ∈ b when a ∈ b
(b) a /∈ b when a /∈ b
(c) a ∈ V
(d) t /∈ a
(e) t /∈ V

2. Equality: For any distinct t, t′ ∈ T ∗

(a) t = t

(b) t 6= t′

• Rules of inference:

1. Double negation

φ

∼∼φ

2. Conjunction

(a) φ ψ

φ& ψ
(b)

∼φ
∼(φ& ψ)

(c)
∼ψ

∼(φ& ψ)

3. Universal quantification

(a) φ(t/x) for all t ∈ T ∗

∀xφ
(b) ∼φ(t/x) for some t ∈ T ∗

∼∀xφ
4. Frege’s principle

(a)
φ(t/x)

t ∈ x̂φ
(b)

∼φ(t/x)

t /∈ x̂φ

When σ can be derived in this system we write `M σ. M would be successful
if it would be able to proof what U thinks true and only this, i.e. `M σ iff U � σ
(and `M ∼σ iff U 6� σ).

Proposition 5.2 (α-completeness of M w.r.t. U). For all sentences σ, and
any ordinal α, if Cα � σ, then `M σ and if Cα 6� σ, then `M ∼σ.

To get from this to the completeness of m with respect to U it is enough
that this construction reached a fixed point, i.e. Cα = Cα+1 for some α for then
U � τ , would reduce to Cα � τ .
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Since we know that for any α, if Cα � τ , then U � τ , to get from here to
soundness of m with respect to U it suffices to know that if `M τ there is some
α such that Cα � τ . Since all the axioms are true in all the Cαs we need to show
that if the antecedent of a rule is true in some Cα, then there is some α′ such
that Cα′ forces its consequent. The problem comes when dealing with the rule
for universal quantification and again the existence of a fixed point would solve
the problem. Although advantageous for our purposes there is no such a fixed
point in the construction

Theorem 6 (Tait). For any formula φ(y, x), there is a formula ψ(z) s.t.
ẑψ+ = x̂φ(ẑψ, x)+ and ẑψ− = x̂φ(ẑψ, x)−. In fact, for all α, ẑψ+

α+1 = x̂φ(ẑψ, x)+α
and ẑψ−α+1 = x̂φ(ẑψ, x)−α .

This theorem provides us with interesting examples, including one under-
mining the possibility of a fixed point.

Proposition 6.1. Suppose that φ(y, x) is ∀w(w ∈ x ⊃ w ∈ y). If ψ is formed
as in the proof of Tait’s theorem,33 then:

1. For any α, α /∈ ẑψ+
α .

2. For any α, ∃n ∈ N s.t. α ⊆ ẑψ+
α+n and α ∈ ẑψ+

(α+n)+2

3. ẑψ− is empty.

This shows that new ordinals will be entering ẑψ+ at arbitrarily high up
stages, and so the construction cannot become constant and so no fixed point
exists. Even if we cannot solve question about soundness and completeness of
m with respect to U thanks to a fixed point, we can do this directly. First we
turn our attention to the following class:

Proposition 6.2. Suppose that φ(y, x) is x /∈ y. If ψ is formed as in the
proof of Tait’s theorem (call such a class E, we also write Ord(x) to say that
x is transitive and ∈-connected, also recall ẑψ is the class we considered in the
previous proposition), then:

1. E+ = E− = ∅

2. U �? Ord(E)

3. U �? E ∈ ẑψ

So for all t ∈ T ∗, U �? t ∈ E.

We also note that the proofs in m and the construction of U go along hand
in hand.

Proposition 6.3 (α-soundness of M w.r.t. U). For all sentences σ, if σ is
provable in α steps, then Cα � σ, and if ∼σ is provable in α steps, then Cα 6� σ.

33Again, the reader is referred to (Maddy, 2000, p. 308), for such a proof.
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But recall that our model of interest is U , note then that m would be sound
in the sense that if `M τ , then U � τ , but what we are really interested in is to
know whether the rules are a dependable way to move from truths in U to truths
in U (this is what we will mean in the sequent when we refer to soundness), and
for this we would need that if the antecedents of a rule are true in U so it is its
consequent.

Proposition 6.4. If there is a φ(x) be s.t.

1. ∀t ∈ T ∗ ∃ αt s.t. Cαt � φ(t/x).

2. ∀α Cα �? ∀xφ.

it follows that m is both incomplete and unsound w.r.t. U .

We now turn to the task of finding such a formula, since we know that
ordinals enter ẑφ at cofinal stages we might think of Ord(x) ⊃ x ∈ ẑψ as a
candidate, however the problem is that the strong Kleene interpretation of ⊃
requires that Ord(t) is false for any t of which Ord(t) is not in ẑψ, E is a
counterexample to this, since we saw that U �? Ord(E) and U �? E ∈ ẑψ.

We now consider a variant of this formula, making Ord(x) total by making
it false of all non-ordinals for this we relativise it to V , let then Ord∗(x) be
x ∈ V & [Ord(x)]V .

Proposition 6.5. Suppose that φ(x) is Ord∗(x) ⊃ x ∈ ẑψ, then

1. ∀t ∈ T ∗ ∃ αt s.t. Cαt � φ(t/x).

2. ∀α Cα �? ∀xφ.

And thus we see that the system m is both incomplete and unsound.

2.9 Summary

In this chapter we saw a variety of different of formal theories of collections
that although trying to still capture some of our pre-theoretical notions of col-
lection, are careful through very different devices not to fall prey of the paradox
that brought down their Fregean predecessor explored in §1.3.

We in §2.2 by looking at st, a typed theory which imposes restrictions in
the language in order to limit the instances of the comprehension schema in a
way that excludes the problematic cases. In §2.3 we looked at nf, as well as its
class extension ml, a system that encodes the solution to the paradoxes offered
by type theories through the notion of a stratified formula, but is otherwise
type-free. In §2.4 we looked at the theory of sets whose use is most widespread
in the mathematics of today, zfc were we saw how the paradoxes are avoided
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by imposing the doctrine of limitation of size, were we saw that if some too big
things such as the domain are a set then contradiction ensues.

In §2.5 we looked at the extension of zfc with classes, namely, nbg. Here
some collections, the proper classes fail to be sets, and in particular the prob-
lematic classes will fall into this category, here a set is demarcated as such entity
that belongs to some other collection, and comprehension is limited through the
notion of predicative formula. We also looked at mk a similar theory which al-
lows for unrestricted comprehension, but where again the diagnosis is that the
Russell class fails to be a set.

In §2.6 we studied theories such as a, s and p this theories emphasise the
idea that sets are generated through an open iterative process and so at no
given point we can fix for good what is the meaning of talk of all the sets, hence
the appeal from these to notions of imagination as well as their intuitionistic
flavour. This idea was then given a formal framework in §2.6.1 when looking at
intuitionistic semantics for set theory.

In §2.7 we looked at Schindler’s theory. This gives us a class for every open
formula, but although sticking to classical logic uses the notion of range of sig-
nificance to block the paradoxical instances of comprehension, this is motivated
in the idea that although always true or false some assertions incur in categor-
ical mistakes. In the case of the paradoxes we saw how Schindler blames in a
circularity phenomenon as seen by the fact that the Russell class is not in its
own range of significance. In §2.7.1 we turned our attention to a consistency
proof of the theory, as well as more briefly at the introduction of urelements.

Lastly, in §2.8 we looked at Maddy’s theory of classes. We saw that as in
the case of Schindler’s here we will also have a class for every property. In
contrast, now we drop classical logic and adopt a paracomplete system. We
can then show using a hierarchy of structures that thinks that the paradoxical
Russell statement is neither true nor false but undecided, and so no contradiction
arises. In any case, in §2.8.1 we looked at an axiomatisation of the theory that
was shown to be incomplete and unsound.
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Chapter 3

What a theory of collections
could not be

3.1 Introduction

In §1 we motivated the need to design formal theories of collections more nu-
anced than that originally created by Frege in order to deal with the antinomies
that apply to it. In §2 we explored a series of such theories, these came in differ-
ent groups such as type theories, like st, theories of sets without classes, such
as zfc or nf, theories of sets with classes, like a or nbg or theories of classes,
like that of Schindler.

In this chapter, we will examine some characteristics that we find a suitable
theory of collections should meet. Our focus will be mainly on the issues of
unrestricted quantification, §3.3, and self-instantiating properties, §3.2. The
aim of the section will be then to set the stage for the remaining of the work
which will focus on theories of sets and classes, by arguing that such systems fare
better than theories without classes, such as type theories like st and canonical
theories of sets without classes zfc, when it comes to dealing with issues of
universal quantification and self-instantiation.

3.2 Self-instantiation

In §1.2 we remarked how to each property we can associate a unique collec-
tion namely that featuring as members the objects satisfying it, its extension in
the Fregean vocabulary. So far we have been talking of the extension class of
a property being associated or determined by the property itself. However, one
might opt for a more parsimonious ontology and take the extension itself to be
the property. As Lewis puts it: ‘The simplest plan is to take a property just as
the set of all its instances’, 1

1See (Lewis, 1986, p50).
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This characterisation of predicates in terms of collections is called a reduction
in the sense that we have now one sort of entity, namely objects, for recall that
classes are just objects which are composed of other objects, when before we had
two, objects and relations. Note that, if accused of arbitrariness in this move,
one can justify such a reduction in the unique relationship between a predicate
and its extension just indicated. One might object to this reduction on a more
principled manner by pointing out that there are distinct properties, for their
intension or sense differs, but are nevertheless coextensional. Hence this will
be identified after the reduction and so this cannot be a felicitous endeavour,
since in a sense the reduction process is not fine-grained enough. In that case
the reductionist could clarify that what Lewis in the quote above, as well as
them, means by all its instances are all the instances in all possible worlds. So
although the properties might be coextensional when restricting their extension
to a particular world, such as the actual. This will cease to be the case when
we consider the entire extension.2

Leaving the worries just voiced aside, we see that if this reduction can indeed
be successfully carried out we have reasons for rejecting frameworks that do not
allow a property to instantiate itself. We look in particular here at two examples
one from metaphysics the other from semantics of natural language. The idea
is, when translated into the framework of the theories explained in §2, that we
will need it to be allowed for a set, or class or other kind of aggregate, to be
contained in itself. After the reduction, this will model the state of affairs where
a property instantiates itself.

Now, before moving to these examples let us consider in more detail the
framework we have in mind. Suppose we had in the universe of the theory of
collections, not only pure sets, but also urelements, atoms, or in short objects
that are not collections. Then, if we want to render in our reduced framework
that Moby Dick is a whale is true, we begin by seeing that this means that the
object named Moby Dick, say b, instantiates the property of being a whale, M ,
and so Mb holds. Now suppose we have reduced the property of being a whale
to the set of whales, say m, now we render the instantiation of this predicate
by this object in the reduced framework by saying that b belongs to m, it is a
member of the collection to which the predicate has been reduced, i.e. b ∈ m.

Moreover, we see that this reductionist picture seems to be commonplace
in all the theories of sets through the various comprehension schema we have
been presenting, albeit with the qualm that in those schema the reduction to
the collection takes place directly from the open sentence and not through the
associated property. In any case, we have now been talking about objects in-
stantiating properties, however, collection theories we have been considering
are usually taken to be dealing with pure sets, i.e. sets that have as members
only other collections. Now, if we interpret these collections as reduced prop-
erties these frameworks also allow us to speak of properties that instantiate
other properties, so coming back from our reduced property of being a whale m,
this property is identical to itself, and so it instantiates the property of being
self-identical, say that this corresponds to the collection V , then we could ex-
press this formally as m ∈ V . However, presumably also the property of being

2(See Lewis, 1986, p51)
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self-identical is self-identical to itself and so V ∈ V . For a less trivial example
consider the property of being infinite, presumably there are infinitely many
infinite things, indeed one could just think about co-finite subsets of the natural
numbers to illustrate this point. So if this property seems again to instantiate
itself. Now, this however is definitely something not expressible in the standard
set-theoretic account, zfc, or any other system adopting the axiom of regularity
decreeing all its entities to be well-founded.

A final note of caution regarding self-instantiating properties seems in order.
Indeed, although in the rest of this section we will provide some reasons to allow
into our theory collections those aggregates corresponding to self-instantiating
properties, one can immediately recall that these were precisely, the kind of
property that self-refers, the ones that landed us in Russell’s paradox and out
of Frege’s garden of Eden in the first place. Indeed, recall that in st’s synatctic
constraints are set out precisely to rule out such instances. So what this means
is that even if we have strong theoretical reasons to allow for such properties
in our system, a felicitous paradox-free implementation of this desiderata in
practice will be an endeavour requiring the utmost care.

3.2.1 A metaphysical excursion

We now return, as promised above, to some applications of a theory of col-
lections, or perhaps more perspicuously of properties, that makes use of self-
instantiantiation in the way we have just been discussing. The first concerns
the metaphysical puzzle known as Bradley’s regress, first formulated by the
British idealist F.H. Bradley at the end of the XIX century. 34 We now give
an outline of the problem, although Bradley originally used the example of a
lump of sugar and its properties, we can here use the already familiar example
of Moby Dick. As we pointed out, we say that Moby Dick instantiates the prop-
erty of being a whale. However, one could note that this instantiation is just
another relation, say I, and so we not only have that Mb, but also that IMb,
or in Bradley’s words: ‘There is a relation C [I in our example], in which A [M
in our example] and B [b in our example] stand; and it appears with both of
them’5 But if we now try to describe the situation as before when talking about
Mb we must say something along the lines of that Moby Dick and being a whale
are an instantiation of the relation I, which is itself some instantiation relation,
and so following Bradley: ‘If so, it would appear to be another relation, D [our
second instantiation relation], in which C, on one side, and, on the other side,
A and B, stand.’ 6. Note also that at face value this instantiation relations
are different since one is a 2-place while the other is a 3-place relation. Bradley
concludes that:

3See for the original formulation (Bradley, 1893, §2)
4The reader who has a preference for more contemporary metaphysical puzzles might want

to consider the effort to explain what grounds the grounding relation, the interested reader
able to parse the title are referred to (Litland, 2017), for an instance where self instantiating
properties might also be helpful.

5See (Bradley, 1893, p. 19).
6See (Bradley, 1893, Ibid.)
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[S]uch a makeshift leads at once to the infinite process. The new relation D can be
predicated in no way of C, or of A and B; and hence we must have recourse to a fresh
relation, E, which comes between D and whatever we had before. But this must lead to
another, F ; and so on, indefinitely. (Bradley, 1893, Ibid.)

Indeed, the idea being that we need an infinite amount of instantiation re-
lations to account for, what we could call, the metaphysical glue holding the
object and property it instantiates together. Since for any series of properties or
objects that instantiate some (n-place) property we can always take a further
distinct (n + 1-place) instantiation relation as relating them and like this ad
infinitum. On the metaphysical side, the upshot of the argument seems to be
to undercut the idea that objects and properties that they seem to instantiate
are really related since our attempt at explaining their interaction leads to an
infinite number of relations and so cannot be taken as satisfactory. This is be-
cause we seem to be shifting the problem one level up each time without ever
actually addressing it.

The literature offers several attempted solutions of this puzzle. Firstly, one
could bite the bullet and accept that such a regress is vicious but that it does not
arise in the first place. The mischaracterisation in the way we have described
the situation lies in the fact that, although we have talked about instantiation
as being a relation, it really is not, as David Armstrong puts it:‘We have to
allow the introduction of a fundamental tie or nexus: instantiation.’7 Instead
of a common or garden property, instantiation is the brute metaphysical glue
that binds a relation with its relata. And so there is an infinite regress but
this is logical and not ontological, since: ‘As we go on expanding the regress,
our statements remain true, but no new truth-maker, or ontological ground, is
required for all these statements to be true.’, 8 but just this nexus provided by
the porperty-like entity of instantiation.9

Another solution stems from a distinction drawn by Francesco Orilia in the
ways one can read the regress: an externalist and an internalist one.10 In the
internalist reading we have a single state of affairs containing an infinity of
different instantiation relations, however in the externalist reading we have an
infinity of states of affairs and these, in turn have finitely many instantiation
relations each.11 For Orilia only the internalist regress is a vicious one,12 since
this requires us to have states of affairs with infinitely many constituents, as
opposed to simply infinitely many finitely-constituted states of affairs. This
would force us to admit that the world must have infinite complexity, and this
‘is in conflict (. . . ) with the basic intuition that a simple fact like Fa must have
a finite number of primary constituents’,13whereas admitting infinite chains of
evidence as in the externalist reading does not contradict any basic intuition:

That at any given stage we can continue the explanatory task does not show that no

7(Armstrong, 1989, p. 109)
8(Armstrong, 1989, p. 110)
9For a discussion of such an approach consult (Allen, 2016, p. 32).

10See (Orilia, 2006, p. 216)
11See (Orilia, 2006) section 3.
12See (Orilia, 2006) sections 6 and 7.
13See (Orilia, 2006, p. 228)
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knowledge or no understanding is provided at any stage. It merely shows that at no stage we
know/understand everything that there is to know/understand about the explicandum which
gives rise to the explanatory chain. (Orilia, 2006, p. 232)14

More relevant for our focus on self-instantiating properties are approaches
that try, as Armstrong does, to stop the regress, but unlike him do take instan-
tiation to be a genuine relation. Indeed, the idea here would be to push-back
on our assertion above that the several instances of an instantiation relation
present in the regress must be different since they have different arities, in the
sense that we are dealing with a single relation albeit an unusual one in the
sense that it is variably polyadic. This would mean that it can relate different
numbers of objects in different instances, and so firstly the instantiation relation
is diadic, then, triadic, and so on. Hence we see that, if we allow properties to
self-instantiate what we have is that there is no infinite regress since we have
that there are only three entities present here, Moby Dick, the property being a
whale and the instantiation relation, or better its instances. Even though this
relation or, again, its infinite chain of instances of increasing arity, instantiates
itself infinitely often.15

3.2.2 An expedition into natural language semantics

Leaving the metaphysical camp for another more worldly area where self-instantiating
properties are useful, we turn our attention to the semantics of natural language.
Indeed, if we want our reduced properties to be the basis of a formal semantics
system that adequately models natural language inferences it seems plain that
self-instantiation must be a feature if we want to accommodate inferences like
the following:16

1. Everything has the property of being self-identical.

∴ The property of being self-identical has the property of being self-identical.

Indeed, this inference could be rendered as the valid inference from ∀x(x ∈ V )
to V ∈ V , via the universal instantiation rule. Recall V is the reduction of the
property of being self-identical, i.e. the universe of discourse. Note also that,
as Menzel points out17, this inference is exactly analogous to the one that is
indeed warranted by well-founded theories of sets, namely

2. Everything has the property of being self-identical.
14Again, for a discussion of such an approach consult (Allen, 2016, p. 30).
15Note that a similar solution would be to take the several instantiation relations in the

regress not as equal but as inexactly resembling instances of a single relation. The idea can
be illustrated thinking that aloe, tulip or petunia are instances of the property being a flower,
for more details on inexact resemblance consult (Allen, 2016, §2.3.3). In any case, it does
nOt really matter whether we opt for a multigrade relation or a group of inexactly resembling
instances of a relation since in both cases we would need these properties to self-instantiate.

16This example is taken from (Chierchia & Turner, 1988, p. 253).
17See (Menzel, 1986, p. 2)
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∴ Moby Dick has the property of being self-identical.

Or, formally from ∀x(x ∈ V ) to b ∈ V , via the universal instantiation rule.
So one proponent of well-founded theories of sets that rejects the first infer-
ence as illegitimate while accepting the second might be legitimately accused of
cherry-picking.

Now, putting aside self-reference for a moment, we look at some specific
challenges that face typed theories such as st (Russell’s theory discussed in §2.2).
We have already mentioned some problems for these approaches when it comes
to universal quantification, we now turn to issues with existential quantification
when we come to analysing natural language. Consider the following inference:18

3. Being a whale is less common that being an atom.19

∴ Something is less common that being an atom.

Indeed, this inference could be rendered as a (second-order) valid inference
from (B,A) ∈ L to ∃X1((X1, A) ∈ L), via the existential weakening rule. Now,
this would indeed be valid in a typed theoretic framework. But note that the
existential quantifier in the conclusion is ranging over entities of type 1, since we
take objects like Moby Dick to be of type 0 and so predicates, or their reductions
containing objects of type 1, incidentally the predicate L will be of type 2. Now
consider the following inference which as in the case of (1) and (2), is exactly
analogous to (3):

4. Moby Dick is a whale.

∴ Something is a whale.

This inference is also valid in a typed framework using existential weakening.
However, we see a disanalogy with the formalisation of (3), since here we would
write that from b ∈ M we conclude ∃x0(x0 ∈ M). And so we see that whereas
there on the surface no difference between the natural language deductions (3)
and (4), there is indeed one when rendering it in a typed framework. Indeed
there is a divergence in the formal regimentation since in the one case we use the
existential quantifier of type 1 and in the other of type 0. In fact, there is nothing
particular to these two instances, but we see that whenever we use existential
weakening in a deduction there is an ambiguity with respect to which typed
quantifier we will use. In fact, notice that here it was easy to write down the
inferences since the entities involved were just objects and properties of objects,
but if the entities in use are of a very high type we might have actual problems
as to how to transcribe them. This is because we must first know which is the

18Here we are following (Menzel, 1986, pp. 3-5).
19Here by X being less common than Y I mean that after a reduction of properties X and

Y to their extensions one cannot find a surjection from X to Y . And so (3) is indeed true
since there are more atoms than whales.
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type corresponding to the reduction of the natural language properties alluded
to, which might be nontrivial business.

In any case, the type-theorist, would then have to, if taking his translation
seriously, be prepared to sustain some kind of error-theory with regards to exis-
tential quantification. In the sense that the speaker is using a single quantifier
when he should used instead a family of these. Moreover, this of ambiguity
problem is not just confined to quantifiers but also permeates to relations, for
consider the following statements one, familiar one new (in fact, we could have
also used the conclusion of (1) here but we prefer not to in order to avoid any
qualms with self-instantaition):

2C. Moby Dick has the property of being self-identical.

6. The property of being a whale has the property of being self-identical.

Here again the type-theory proponent should endorse some kind of error
theory with respect to natural language and defend that, contrary to what
appears, there are two predicates in use self − identical1, a type 1 property,
and self − identical2 a type 2. Actually, we see that for any type n, there will
be a different property self − identicaln+1, and so when the natural language
speaker thought to be just one predicate the type-theorist ought to affirm that
there are infinitely many. In fact this entire ambiguity problem might be seen
as the natural language analogue of the mathematical fact observed before that
in st there is not an emptyset but infinitely many, and the same goes for many
of the mathematical constructions, one for each (non-zero) type.

3.3 Universal quantification

We begin this section by noting, first that a prominent feature of st is that
we take objects in the domain of quantification to be stratified into different
types and so in particular whenever writing a quantified statement we must
specify over which of these types we intend to be quantifying over. Clearly
then what such a system does not warrant us to do is say, when prompted over
which types we intend to quantify, that over all types, namely over all objects
in the universe. However, this seems like a shortcoming of the theory since in
mathematical contexts,20 we seem to be doing just that, namely when asserting
that there is a set that is empty or infinite, ordinarily, but also more generally
that everything is self-identical. As Quine forcefully asserts about st: ‘Not only
are all these cleavages and reduplications intuitively repugnant, but they call
continually for more or less elaborate technical manoeuvres by way of restoring
severed connections.’21

Indeed, it seems that when using these expressions we do not intend to
be understood in terms of stratified domains. Indeed we would not take it as

20Although one could argue that in some other contexts such as computer science typed
languages are indeed a natural choice, see for instance the discussion in (Turner & Eden, 2008,
§6.2).

21See (Quine, 1937, p. 79).
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acceptable that if someone asserted that All numbers are even and we pointed
out to them that 3 is not, they replied that this is not a counterexample since
they were not meaning to quantify over the type of 3. This does not seem a
valid not a valid reply to his universal statement.

More generally, what we are doubting here is the distrust of unrestricted
quantification, the worries however are not merely the ones attaining to our
ordinary use of the quantifiers sketched above but, might even rest in the logical
inconsistency of the position. This comes from observing that when one says
that we cannot quantify over everything, this entails that there is something we
cannot quantify over.22

3.3.1 Against unrestricted quantification

We concluded the previous section by doubting the coherence of rejecting unre-
stricted quantification after giving some reasons in favour of universal quantifi-
cation. However, in this section we give an argument that doubts the coherence
of this position. Unsurprisingly, this argument will have a very similar appear-
ance as Russell’s paradox but in a more general fashion since, for instance, we
will not be referring here to extensions of predicates. Indeed, this similarity is
not surprising since the type theory proposed by Russell as well as Zermelo’s re-
stricted comprehension principle sidestep the paradoxes by preventing universal
quantification. 23

Now, for the argument. Here we will follow Williamson’s presentation24 and
start by noticing that when talking about logically valid inferences, such as
modus ponens:

1. ∀xPx
2. ∀x(Px ⊃ Qx)

∴ ∀xQx

The validity of such inference is preserved regardless of how we interpret the
predicate letters P and Q. So it must be possible to interpret these predicate let-
ters by some (legitimate) interpretation of any predicate of our meta-language,
put more formally:

3. For everything x, I(F ) is an interpretation in which P applies to x iff Fx.

Now, at this point we make one of the key observations of the argument,
namely that since quantifiers are unbounded here they range also over interpre-

22Strictly speaking what is self-defeating is to utter is that It is impossible to quantify in
my current language over everything, see (Willamson, 2003, §v) for details.

23This idea that when we quantify over everything we are really quantifying over the
members of some domain, that which is not itself in the scope of the quantifier amounts, as
we will see in §3.3.3, to a denial of the All-in-One principle.

24See (Willamson, 2003, §IV)
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tations, and so these entities are after all objects in the domain, as Williamson
puts it:

On the naive theorist’s maximally liberal understanding of ‘thing’, even an interpreta-
tion such as I(F) counts as a thing: to claim that it is not a thing would be self-defeating.
(Willamson, 2003, p. 426)

The only thing that is left in order to complete the argument is to be able
to define the following predicate R, which we do as follows:

4. ∀x(Rx iff x is not an interpretation in which P applies to x).

Since the ability to form R is key for the argument we need to be sure
that such definition is legitimate. For Williamson this is the case since: ‘it is
well-formed out of materials entirely drawn from the naive theory [the theory
of unrestricted quantification] itself.’, 25 and so for him there is no room for a
supporter of unrestricted quantification to complain since all the elements in
the predicate are accepted as part of their theory.

To continue with the argument we apply (3) to R:

5. For everything x, I(R) is an interpretation in which P applies to x iff Rx.

Now we apply the definition in (4) so:

6. For everything x, I(R) is an interpretation in which P applies to x iff x
is not an interpretation in which P applies to x.

But since we take interpretations to be objects we can universally instantiate
(6) with I(R):

7. I(R) is an interpretation in which P applies to I(R) iff I(R) is not an
interpretation in which P applies to I(R).

Contradiction!

Now, how can the supporter of unrestricted quantification respond to this
argument? According to Linnebo,26 one thing we can do is turn our attention
to the key observation above endorsed by Williamson that interpretations of our
language are just objects like any other, since after all we are able to quantify
over them using the same (first-order) quantifiers as for any other entity. The
move then is to introduce higher order variables to range over interpretations
and hence deny that these are objects. As we will see in the next section, this
will entail the introduction of st back into the picture.

25See (Willamson, 2003, ibid.)
26See (Linnebo, 2006, §6.3).
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3.3.2 st revisited

We concluded the previous section by indicating that a way to block the ar-
gument against the coherence of universal quantification by insisting that in-
terpretations are not in the range our first-order quantifiers since these are
second-order entities and so no instantiation of such a variable as it is done in
the derivation of the paradox is acceptable. In fact, it is no longer the case
that the problematic predicate R can be defined since it would incur in the
mistake of taking a first order variable x to be a second-order entity such as an
interpretation.

However, the story is more complicated than what we just presented since
it is not only that we need second-order entities to block the paradox but arbi-
trarily many finite types, and so a theory like st. Indeed, as Linnebo observes:

The Semantic Argument challenges us to develop a general semantics for some first-order
language L1, (. . . ) The response just outlined develops a general semantics for L1 in a second
order language L2. (Linnebo, 2006, p. 152)

And so it is clear that when developing the semantics of our language we run
into trouble with the concept of interpretation of that language. This we take,
to avoid problems, to be an entity of some other second order language, and
so to explain the semantics of our first order language we go to a second order
language. Now, the obvious worry presents itself by asking how to explain the
semantics of this second order language, and the answer as before that we will
now need a third order language and so on until we have the full typed language
of st available.

One might find curious that we bring in type theory into the picture to
save a theory that was seen, as we noted above, as a reaction against such
typed frameworks in the first place. In fact the worry is deeper, since it is the
case that the semantic picture sketched above that prompted the adoption of
a typed homework entails some consequences which cannot be expressed in a
such a framework. For instance, consider the assertion:

Unique Existence. Every expression of every syntactic category has a semantic value which
is unique, not just within a particular type, but across all types.27

Indeed, according to our response, expressions of type 1 will have a semantic
value (interpretation) of type 2, those of type 2 of type 3 and successively and
so in this sense we say that the value is unique across types, since it will indeed
be found in only one such entity, but again since as we pointed out before type
theories do not allow to quantify over all types this principle is not expressible
in the system.

Hence, it seems that such a proposed solution is of not a lot of help since
one of the main aims of allowing for unrestricted quantification was to gain in

27For this and other examples as well as a discussion of possible replies by the type theorist
look at (Linnebo, 2006, pp. 154-55)
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expressive power. However this proposal will make us adopt in order to attain
this a framework which carries its own limitations of expressive power. We seem
to be between Scylla and Charybdis, in some sense, it would be much better
if we did not need to appeal to a framework with its own manifest expressive
shortcomings in order to achieve our aim of defending a system we prefer for
its improved expresssive power. Hence, it would be preferable to solve the
challenges presented without appealing to a typed framework is called for28
Note, however, that, as Linnebo points out, this freedom of type restrictions
comes at a cost:

The cost is the reinstatement of the first premise (. . . ) of the Semantic Argument [inter-
prtations are taken to be objects]; for the first-order variables of the meta-language will then
be allowed to range over interpretations. This will remove the type-theorists’ defense against
paradox. (Linnebo, 2006, p. 156)

Indeed, since now again all entities in our language will be objects the only
way to block the paradoxical argument from §3.3.1 will be then to deny that
such a predicate R in operation there is well-formed, the challenge of course will
be to do so in a principled and non ad-hoc manner. Some ways to do so were
surveyed in §2 when explaining how type-free collections avoid the paradox, the
degree of success of such attempts will be judged in more detail in the remainder
of this work. For now, the remarks here were aimed to give some reasons why
a responses to the challenge presented using type theory should be rejected.

3.3.3 All in One principle

We turn our attention to the notion of universe of discourse or universe of
quantification itself which. This is of course relevant to our discussion since we
have been defending throughout universal quantification and so one question we
ought to ask ourselves is whether this domain will itself constitute an object.
As Catwright puts it this notion of domain ought to be used cautiously:

[Speaking of the universe of discourse] involve[s] a certain risk, the risk of being understood
to imply that the universe of discourse is an object-a set, or class, or collection-of which
the values of the variables of the language are the members. The implication must simply
be disavowed: to say that the universe of discourse of a language comprises the ordinal
numbers is to say no more than that the ordinal numbers are the values of the variables
of the language.(see R. Cartwright, 1994, p3)

The inference that Catwright tells us to guard ourselves against is what he
calls the All-in-One principle (AiO), namely that the objects in a domain of dis-
course constitute an object. In fact this principle is familiar from mathematics,
for instance when taking the domain of a model to be a set, or the worlds in a
Kripke-frame to be the members of some set.

Now, recall here that what we are trying to argue is that their inability to
quantify over everything is a problem for typed theories. The idea then is that

28Of course we already gave independent reasons not to adopt such a framework in section
§3.2 when dealing with self-instantiating properties.
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the proponent of typed theories will point out to the All-in-One principle as an
unwanted consequence of the view and hence as a tool to make us abandon it.
One could first meet the challenge and affirm that there is indeed a universal
collection. The issue is then to characterise the nature of the collection. It
cannot be a set, at least as ordinarily understood in the context of zfc, the
usual theory of sets, since in this theory there is a doctrine of limitation of
size in operation. It could be however a set in the sense of some non-classical
theories like nf, there are of course questions that such a position will have to
answer, for instance whether such an understanding of set as different from the
more common one is warranted in the first place, we will return to these issues
when we discuss NF and the notion of set in more detail in subsequent sections.
All we should note at the moment is that defending that such a universal set is,
at least at the outset, a reply open to the supporter of universal quantification.

Another, perhaps more appealing, way of proceeding after accepting the All-
in-One principle is to assert that this collection in question is not a set but rather
a (proper) class. And so we would be supplementing our ontology, if we take
the domain of discourse to be the universe of sets, with an object containing all
sets but not itself a set. Again, the notion of class as well as the philosophical
merits of different theories of classes explored in §2 will be explored in more
detail in subsequent chapters. What is relevant now is that the adherent to the
AiO principle need not be committed to the existence of a universal set.

What must however be noted is that any adherence to AiO will entail a
departure from zfc the usual theory of understanding sets. Hence, one might
think this is sufficient reason to prefer to reject the principle altogether. Indeed,
Cartwright himself boldly remarks that ‘There would appear to be every reason
to think it false.’, 29 as for him it seems to rely on the equivocation that when-
ever there is a group of some objects (the objects quantified over in the given
domain) there is some corresponding object that has all of them as members
(the purported universal collection). Indeed, even if we can find many instances
were this is the case, the week collecting the different days or ω the different
natural numbers, it seems a generalisation requiring further support that this is
a must. This distinction seems in line with the contrast between Russell’s use of
the terms class-as-one and class-as-many or Cantor’s consistent and inconsistent
multiplicities.30

Nevertheless, in what follows we will disagree with Cartwright’s indication
above and abide by the AiO, since this seems to follow from taking our reduction
of properties seriously,31 again quoting Linnebo:

Moreover, given that we want to allow quantification over absolutely everything, we have
no choice but to accept that a predicate can be true of absolutely everything. Such a predicate
must thus have as its semantic value an object that somehow collects or represents absolutely
all objects, including itself.(Rayo & Uzquiano, 2006, p. 156)

29See (R. Cartwright, 1994, p8)
30See (Russell, 1937, p. 104) and (Cantor, 1899, pp. 113-7), respectively.
31In fact, it suffices to take the more modest position that for every property there corre-

sponds an object, namely its extension, without having to endorse that the property is the
extension.
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Indeed, since we do take self-identity to be a property, in fact it is not even
an outright paradoxical property like that of Russell, as well as the idea that
for each property, or if the reader prefers non-paradoxical property at least,
there corresponds an object with the objects instantiating it as members, or for
the reductionist that such object is the property. We do accept that there is
some object that will be some aggregate containing all self-identical things, i.e.
everything.

3.4 Summary

In this chapter we have presented some considerations that a satisfactory
theory of collections must take into account. We have focused in the need to
accommodate self-instantiating properties, in order to account for natural lan-
guage inferences, §3.3.2, and metaphysical puzzles, §3.3.1, as well as unrestricted
quantification. We noted that theories like st or zfc are not the best suited
to deal with these desiderata, for instance in §3.3.2 we suggested that types
theories are not the best ways to deal with the problems posed for unrestricted
quantification in §3.3.1, in , §3.3.3 we highlited how our endorsement of the
All-in-One principle is incompatible with a theory like zfc where there are only
sets and these are size-limited. The task at hand seems then to opt for theories
that allow us to avoid paradox but not at a price we are not prepared to pay, i.e.
giving up on our desiderata. As suggested by our catalogue of theories we now
turn to theories of sets and classes in order to get this job done, the basic idea
being that, as we saw in §2, it will be classes and not sets the entities associated
to the most ill-behaved properties. Hence, in the next chapter we will explore
more closely the central notions of these, namely sets and classes.
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Chapter 4

Sets and classes

4.1 Introduction

In the previous chapter we gave some reasons in favour of allowing our
formalisation of a theory of properties and objects to be type-free or allow for
a universal collection, due to issues having to do with, for instance unrestricted
quantification or self-instantiation. As we saw in chapter §2 most of the theories
that allow such features are theories of sets and classes. This chapter aims to
clarify the notions of set and class, and, hence, identify and substantiate their
differences.

We thus begin in §4.2 with some historical remarks regarding sets and classes.
Since the notion of set arose and developed in the context of work by mathe-
maticians at the end of the XIX century, in particular that of Georg Cantor,
we can trace the original motivation of this notion with great precision. With
regards to the notion of class, there is no such a precise point of origin in time
as with sets, since this is tied to the more general notions of property, predicate
or condition. We will however look at the role properties had in the approach
of Russell to the work of Cantor, again at the turn of the XX century, and more
specifically springing from the notion of Fregean concept that we already dis-
cussed in §1, this will be the focus of section §4.3. Next, in §4.4 we continue this
journey through Cantor’s paradise and focus in some novel existence principle
he introduces, that of the powerset which is present in the diagonal argument
investigated by Russell. This historical excursion will be worth pursuing for its
own sake, however it will also serve to pinpoint very clearly that sets and classes
are different entities, several ways in which the original motivations for their use
makes them distinct will be dealt with in §4.5.

4.2 Cantorian sets

In 1869, Georg Cantor was a young mathematician and a former student of
Karl Weirstrass in Berlin that had started working at the university of Halle-
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Wittenberg and was about to obtain his Habilitation.1 Cantor was challenged
by his colleague Eduard Heine to fix the proof that the trigonometric series rep-
resenting a function is, if it exists, unique provided this converges everywhere.2

Cantor managed to show the uniqueness of such series, the Fourier series, by
the next year, and continued his work on the topic by generalising the result to
series that diverge at finitely many points, that is to series with finitely many
exceptional points, in 1871. In 1872, Cantor provided a further generalisation
for series with infinitely many exceptional points, provided these are isolated,
in the sense that there for any such point there are always two other points for
which this is the only exceptional point between them. Moreover, if a point
is not isolated we say it is a limit or accumulation point. In his proof of this
latter result, Cantor defined a new notion, that of the derived set operation,
which just takes a set, say E, as input and returns the set of its accumulation
points, ∂E. For an example note that if E is the unit interval (0, 1), i.e. r ∈ E
iff 0 < r < 1, ∂E = [0, 1]. Thus, the condition for the theorem to hold can be
expressed by the expression ∂E = ∅, with E of course the appropriate set of
exceptional points.

Cantor also showed that the result holds when ∂E is finite and more generally
whenever ∂E is infinite but these exceptional points are isolated. This fact can
be easily expressed using the derived set operation, namely by ∂(∂E) = ∅, or
more succinctly by ∂2E = ∅. For this to hold it is again sufficient that ∂2E is
finite or if infinite its accumulation points are, zero, finite or again its derived
set fulfills the aforementioned conditions. So the upshot is that it is enough if
for some n ∈ N, ∂nE is finite.

We then see that by studying the properties of Fourier series, Cantor had
arrived to the study of sets of points with surprising characteristics. In the
sense that these were big since infinite but still not too big or chaotic in order
to compromise the uniqueness results, as Maddy eloquently points out: ‘But
what an odd set of points it was: infinite, and quite complex, yet still somehow
small enough, or well-behaved enough, in relationship to all the reals, to do no
damage!’3

This result led Cantor to the study of the real numbers in two ways. On
a more practical level, since he needed a precise formulation of these numbers
in order to define and iterate the derived sets of infinite sets of accummulation
points, making sure these higher order sets are themselves sets of accummula-
tion points.4 But secondly on a more abstract note, connected to the peculiar
nature of these sets we pointed out above, and relating to the comparisons of
size between several infinite collections, which lead to his results regarding the
equinumerosity of the rationals and the natural numbers in 1874. As well as
his celebrated proof that the naturals are not equinumerous to the reals, and

1For a biography of Cantor consult (O’Connor & Robertson, 1998).
2The problem with the proof was that it computed the coefficients of the series by in-

tegrating the different terms separately, but as already overlooked by Cauchy, the notion
required for such a procedure to be legitimate is not convergence but uniform convergence.
(See (Lavine, 1994, pp. 33,39)).

3See (Maddy, 1990, p. 108).
4See (Lavine, 1994, p. 40).
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the equinumerosity of the closed unit interval with a plane, or an n-dimensional
space for that matter, whose surprise upon finding this result in 1877 was ex-
pressed by: ‘Je le vois, mais je ne le crois pas’ in a letter to Richard Dedekind.5

These series of discoveries lead Cantor to define notions familiar to contem-
porary mathematicians, like that of closed set or, more relevant for set theory
that of cardinality in terms of existence of a bijection in 1879. Even though
the study of sets was just beginning, at least that of subsets of points of the
real line, his research so far already took Cantor to push the field to its limits
by considering the question of whether every subset of the reals is equal to the
size of the naturals or the reals themselves. Namely, that there are no inter-
mediate cardinalities between these two, or more precisely still that the size of
the continuum is the immediately succeeding cardinality to that of the natu-
ral numbers. This is what Cantor supposed, today we call this hypothesis the
continuum hypothesis. Quoting Cantor himself:

And now that we have proved, for a very rich and extensive field of manifolds [subsets],
the property of being capable of correspondence with the points of a continuous straight line
or with a part of it (. . . ) the question arises . . . : Into how many and what classes (if we
say that manifolds of the same or different power [cardinality] are grouped in the same or
different classes respectively) do linear manifolds [subsets of the real numbers] fall? By a
process of induction, into the further description of which we will not enter here, we are led
to the theorem that the number of classes is two (. . . ) (Cantor, 1915, p. 45)

If we now turn our attention back to the derived set operation defined above,
we see that the condition regarding the structure of the set of exceptional points
of a series makes use of finitely many iterations of the operation. However, the
existence of a finite iteration of the operation where the derived set is finite is
equivalent to saying that after performing the operation infinitely many times
(or more precisely the intersection of all the ∂nE for n finite, or the points that
belong to the derived set no matter how many finite iterations we carry out),
name this set ∂ω, this derived set will be empty.6 However, as Cantor noticed,
this point set operation can be iterated even after infinitely many applications,
indeed just apply the operation again to ∂ωE, to get ∂ω+1E and even further
into what what Cantor called the transfinite.

This is how the sequence of ordinal numbers, whose symbols were introduced
by Cantor in 1880, was born, by shifting attention from the derived sets to the
sequence of symbols of the sets, namely:

0, 1, 2, . . . , ω, ω + 1, . . . , ω + ω, . . . , ω · 3, . . . , ω · ω, . . . , ω3, . . . , ωω, . . . , ωω
ω

, . . .

Notice that in this sequence every ordinal has an immediate successor and
that every infinite increasing sequence of ordinals has some ordinal as a limit.
Abstracting from the ordinal sequence Cantor obtained the notion of a well-
ordered set. This is a set such that any of its subsets has a least element and is

5See (Dauben, 1990, p. 55) and also for the negative impact this discovery had in his
relation with David Kronecker see (O’Connor & Robertson, 1998)

6As an example note that if E := {0} ∪ { 1
n

: n ≥ 2} ∪ { 1
n

+ 1
nm

: n,m ≥ 2} ∪ [1, 2],
∂E = {0} ∪ { 1

n
: n ≥ 2} ∪ [1, 2], ∂2E = {0} ∪ [1, 2] and ∂ωE = [1, 2].
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totally ordered. Indeed, notice that in such a set (if infinite) every element has
an immediate successor and that if we take an infinite ascending sequence of
elements in the set these will have a least upper bound. We say that two well-
ordered sets have the same order type if there is an order isomorphism between
them, one can then think of the ordinal numbers as representatives of each of
these order-types.

Cantor drew a parallel between the notion of counting an infinite collection
and well-ordering it, in other words finding an order isomorphism between the
collection and one of the ordinal numbers. This generalises counting a finite
set since when we do so we begin by picking an element and labelling it as
the first, then a second from the remaining ones and so on, this orders the
elements of the set in the process. So for any subset of the set there is always
an element with the smallest label and for any proper sequence of elements,
there is always an element that follows these elements in the counting, unless
of course the sequence exhausts the collection. Conversely, if one has a well
ordered set one can read-off this order as a way of counting the set, namely
start by the smallest element, and continue with the immediate successors and
the least upper bounds in case of sequences.7 The centrality of the ordinals is
now apparent since for him that a collection can be counted, in this formalised
sense through well-orders, is part and parcel of being a well-defined set:

The concept of well-ordered set turns out to be essential to the entire theory of point-sets.
It is always possible to bring any well-defined set into the form of a well-ordered set. (Cantor,
1883, p. 550) as cited in (Moore, 1982, p. 42)

Note also that it is already apparent that the theory of Cantor is not one
that is to be applied to all collections. This signals a contrast with theories of
classes as we will see below, these begin by trying to associate an object to any
property. Indeed, if we consider the collection of ordinal numbers it is clear that
this cannot be well-ordered since suppose this would be counted by an ordinal,
then notice that the order type of any initial segment of the ordinal sequence
is the successor ordinal of this initial segment. So the collection of ordinals
preceding the ordinal counting the class of ordinals is well ordered by it, but
then since this ordinal well orders a proper initial segment of the sequence of
ordinals, this cannot well-order the entire sequence, contradiction!8 Hence, the
distinction that Cantor draws between the Absolute and the transfinite. The
former being radically different from the transfinite numbers, in the sense that
these can be increased unboundedly by finding bigger and bigger successors in
the sequence, but precisely because of this cofinal nature, these numbers cannot
reach the Absolute infinite represented by the entirety of the sequence itself.
This reasoning leads Cantor to mystically assert that: ‘The absolute can only
be recognised, never known, not even approxinately.’910

Cantor is thus not offering us a theory of all collections, only of those infinite
collections that are sufficiently similar to finite ones in his sense of being able

7See (Lavine, 1994, p. 53).
8Incidentally, this is the reasoning behind the Burali-Forti paradox.
9See (Hallett, 1986, p. 42).

10For the theological underpinnings of Cantors notion of the Absolute, including a proof of
the existence of God based in his ordinal sequence, see (Dauben, 1990, pp. 143-44).



4.2. CANTORIAN SETS 79

to be, like the former, counted in the sense explained above. Cantor remains
silent about collections like the class of ordinals that symbolise the Absolute and
so cannot be understood by us. These he also calls inconsistent multiplicities.
Since this is precisely the kind of collection that will land the class theorist in
trouble with the paradoxes, it is important to ask if Cantor is warranted in
taking our inability to count them, in his sense of the term, as a good reason
to bar these collections from set theory.11 Indeed, one could turn the argument
against Cantor by saying that, since not all infinite collections can be counted
this notion is not a good foundation for such a theory and take instead, like
Frege, the notion of cardinality as foundational. According to this approach,
one has not to pay attention to the ordering of the elements of a set in order
to determine its number, but merely on how many of these there are. Then, no
distinction between infinite sets that can and cannot be counted would seem to
be called for.12

In 1882 Cantor also realised that there is a transfinite hierarchy of infinte
sizes of sets, starting from the size of the natural numbers, by considering the
set of all ordinal numbers equinumerous with ω. Adapting his proof of the
distinct cardinality of the reals and the rationals he showed that this set is not
equinumerous to any of its members, and more generally that for each ordinal,
there corresponds a cardinality.13 In 1891 Cantor presented a new proof of
the difference in power between the reals and the rationals, that based on his
celebrated diagonalisation. This method was also used to formalise the result
just mentioned that there are arbitrarily large cardinalities, and shows that
given any set we can construct one of larger power.14 Also notice that the order
types discussed above are distinct from cardinality, in the sense that collections
with the same size can be counted in different ways. For instance, consider the
sets {0, 1, . . .} and {3, 4 . . . 1, 2} both have the same number of elements as the
natural numbers, but the first set is counted by ω and the second by ω+2, they
have different order types. In 1883 he related these cardinalities, or powers, with
cardinal numbers and so to the cardinality of ω there corresponds the cardinal
number ℵ0 15, to that of the sets equinumerous to ω, ℵ1, to the set of ordinals
of cardinality ℵ1, the cardinal ℵ2, and so on, obtaining a sequence of cardinal
numbers similar to that of ordinals beginning with the finite cardinals:

0, 1, 2, . . . ,ℵ0,ℵ1, . . . ,ℵω, . . . ,ℵω+1, . . . ,ℵω+ω, . . . ,ℵω·3, . . . ,ℵω·ω, . . . ,ℵωω , . . .

Cantor also assumed that the real numbers are sets and so well-ordered, i.e.
can be counted by some ordinal, and so that their cardinality is that of one
of the symbols in the sequence above. In 1895 he defined exponentiation for

11In particular, it seems troublesome that even after admitting that a collection such as
the transfinite sequence of ordinals can be a symbol for the Absolute we are still unable to
know it even approximately.

12See (Hallett, 1986, pp. 151-153) for a discussion.
13From this and the fact observed above that the sequence of ordinals cannot be counted we

conclude that the class of cardinalities will also be another example of inconsistent multiplicity.
14This article is reprinted in English as appendix B to chapter 4 in (Lavine, 1994).
15This was the notation introduced by Cantor in 1886, earlier this number was denoted by

(I), see (Lavine, 1994, pp. 45, 50).
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cardinal numbers and noticed that the cardinality of the real numbers is that of
the set of functions from the natural numbers to a set with two members, i.e.
2ℵ0 .

Note that in this section the theme has been to use the history of Cantor’s
development of set theory to emphasise that this arose from within mathematics
and not as some foundational project for mathematics, as Frege’s attempt to
do so with the tools of logic. Nevertheless, set theory has developed to offer a
foundation to the mathematical edifice and this potential was already present
in Cantor’s thinking in 1885 when he remarked that:

Sie [Cantor’s theory of ordered types] bildet einen wichtigen und grossen Theil der reinen
Mengenlehre (Thèorie des ensembles), also auch der reinen Mathematik, denn letztere ist nach
meiner Auffassung nichts Anderes als reine Mengenlehre. (Grattan-Guinness, 1970, p. 84)16

It is also worth mentioning that Frege wrote approvingly of a paper by Can-
tor on 1887 developing the arithmetic of transfinite cardinal numbers. Although
complaining of the lack of rigour in his exposition, Lavine points out17 Frege
could have taken the theory developed in his Grundgesetze, whose first volume
was published in 1893, as able to play the foundational role in Cantor’s theory
of the infinite that he found lacking in its original presentation.

4.3 Russellian classes and sets

In 1895, while Cantor was publishing his last papers in set theory, Bertrand
Russell was writing his fellowship dissertation in Cambridge, after he knew
of Cantor’s writings Russell was opposed to the idea of Cantor that the real
numbers form a set, taking it to be contradictory. By 1899, following Leibniz,
he accepted the idea of actual infinity but rejected that of infinite number,
since if this was the case given, that as we saw in §1 and following Frege, he
took any extension associated to a concept to constitute an object, paradox
arises when we try to determine the number associated to the extension of the
predicate being a number. However, by 1900, after meeting Peano, he became
convinced that to every aggregate there corresponds a number, and so pointed
out an alleged error in Cantor’s diagonalisation argument by pointing out that
the cardinal of the set of all classes is indeed the biggest such number. Taking
this to mean that there are some classes like that of all individuals or that of all
classes, which he took as equinumerous with the former, such that one cannot
diagonalise their way out of it. In the sense that the class of all subclasses of
the class of all classes cannot be bigger than the class of all classes itself, since
this is a member of it. 18

More formally Russell took Cantor’s diagonalisation to tell us that for any
map d from a class to its class of subclasses the class of members, x, of the class

16‘It constitutes an important and large part of pure set theory (Thèorie des ensembles),
thus of pure mathematics, for the latter is, in my opinion, nothing other than pure set theory.’
(Our translation)

17See (Lavine, 1994, p. 49)
18Russell also noted that there is indeed a biggest order type that of the sequence of ordinals

itself, and took this to mean that this sequence is not itself well-ordered after all.
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such that x is not in d(x) is a member of the class of subclasses not in the range
of d. Then put V for the class of all classes, and for any map d from V to its
class of subclasses, say P(V ), note that the cardinality of V is not larger than
that of P(V ) since for any x in V , the class only containing x is in P(V ) for it is
a subclass of V . But as we mentioned, the diagonal argument shows we cannot
establish a bijection from V to P(V ), and so P(V ) is bigger than V . However,
Russell thought that in the case of V , one could indeed produce a surjection
from V to P(V ). He defined d as follows:

d(x) =

{
x, if x is a pure class
{x}, otherwise

But then note that the class of members of V such that x is not in d(x),
is in the range of the function since this will just be a fixpoint, say r, and
so diagonalisation seems to fail. Thus, for Russell, turning our attention to the
universal class we see that Cantor’s argument that there is no largest cardinality
is flawed. Note that, with some ingenuity we see that r is the familiar Russell
class since it is the class of all classes such that x /∈ d(x), and so we must have
that d(x) = x and so of (pure) classes that do not belong to themselves. This was
the very same class that was causing so much trouble to the Fregean project
in §1.3.2. In fact this seems to be the origin of Russell’s paradox since after
sketching the argument above in a 1900 draft of his Principles of Mathematics,
he notes the impossibility of applying the diagonalisation procedure to the class
r just defined:

In fact, the procedure is, in this case, impossible; for if we apply it to [r] itself, we find
that [r] is a [d(r)] and therefore not a [r]; but from the definition, [r] should be a [r]. (As
quoted in (Coffa, 1979, pp. 35-6))

Indeed, even if these remarks seem quite cryptic, we see that one can both
deduce that r ∈ r iff r /∈ r. Thus, for Russell, turning our attention to the
universal class we see that Cantor’s argument that there is no largest cardinality
is flawed.

We then see that there is a gap between the objects that Russell and Can-
tor are talking about. Indeed, Russell seems to be failing to appreciate that
Cantor’s arguments do not apply to all classes, but only to those countable in
the sense explained above and so, in particular, not to his paradoxical class of
all numbers. Indeed this is too close to the Cantorian Absolute as we saw in
§4.2 and not in the transfinite, the region of the infinite which is the focus of
his theory. In fact, these inconsistent multiplicities cannot be individuated and
so in particular cannot be members of consistent multiplicities, thus P(V ) is
not a legitimate mathematical object. This was the diagnosis of Cantor himself
regarding Russell’s argument, as he puts it in a letter to Jourdain from 1904:

Were we now, as Mr. Russell proposes, to replace M by an inconsistent multiplicity
(perhaps by the totality of all transfinite ordinal numbers, which you call W[V ]), then a
totality corresponding to [P(M)]) could by no means be formed. The impossibility rests upon
this: an inconsistent multiplicity because it cannot be understood as a whole, thus as a thing,
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cannot be used as an element of a multiplicity. (Reprinted in English as appendix A to chapter
4 in (Lavine, 1994).)

Hence, Cantor’s results escape the antinomies of Russell discussed above,
and also the paradox named after him discussed at length in §1 regarding the
property of being a class. Russell seemed to realise this by 1901 when in a letter
to Courat he said that: ‘Je croyais pouvoir refuter Cantor; maintenant je vois
qu’il est irrefutable’19

However, the situation with Frege’s system printed in the second volume of
his Begriffsschrift is different from that of Cantor’s and his insistence that to all
predicates there corresponds an extension, also if this turns to be a Cantorian
inconsistent multiplicity as happens to be the Russell class, as was made known
to him by Russell to him in his famous letter of 1902.

4.4 Powerset, a novel inhabitant of Cantor’s heaven

We now return to the quote from Cantor discussed at the end of §4.3. Cantor
points out that the collection of subcollections, more precisely of functions from
the collection to a tuple, is not a set whenever this collection is an inconsistent
multiplicity. However, Cantor seems to be endorsing the set existence principle
that when a collection is a set, this collection of functions, what its known as
the powerset, is also a set. This principle is in operation on his diagonalisation
argument for the existence of the cardinal number hierarchy, which remarkably,
does not require transfinite ordinals, and so is independent of his notion of set as
something that can be associated with an ordinal. Thus the existence principle
discussed here was not apparent until the publication of that article in 1891. 20

This powerset axiom is what enabled Cantor to show his result about the
cardinality of the continuum in 1895 mentioned above, and thus prove that
this is a set, and so we come to realise its great importance in the Cantorian
theory. Note however that the existence of the set 2ℵ0 , as well of course of the
other powersets, seems to be in tension with the notion of set as well-orderable
collection espoused by Cantor since for the first time Cantor did not know how
proceed with the definition of the well-ordering of such set. Indeed, in the case of
the reals at least he held the position that such a well-ordering could be found.21
Hence, we see that Cantor’s theory is in trouble, not the kind of trouble that
the paradoxes caused Frege, but a more conceptual trouble. Namely, that of
fitting the powerset operation within his framework where the main notion was
that of a well-order, as Lavine puts it:

Cantor’s theory was in trouble, but it was not trouble caused by the paradoxes. It was

19As quoted in (Coffa, 1979, p. 37).
20A less precise principle justifying the existence of the powerset is what Hallett calls

Cantor’s domain principle(Hallett, 1986, p. 7) and is adapted by Lavine (Lavine, 1994, p. 90)
as saying that the domain of a mathematical variable is a set. Indeed, this principle can justify
the adoption of the existence of the the set of reals, as well as being a source of justification
for the set of natural numbers.

21For interesting remarks regarding Cantor’s concept of well-ordering and definable well
orderings consult the technical note in (Lavine, 1994, p. 96).
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trouble caused by trying to fit the Power Set Axiom into a theory that took well-orderings to
be primary. (Lavine, 1994, p. 97)

As an example of this conceptual strife, we can take that after the intro-
duction of cardinal exponentianion through the powerset Cantor does no longer
take as immediate the well ordering of the cardinalities, as he says:

On the other hand, the theorem that, with any two cardinal numbers a and b one of these
three relations [trichotomy] must necessarily be realized is by no means self-evident and can
hardly be proved at this stage. (Cantor, 1915, p. 90)

Since this result follows from the fact that all-sets are well ordered, it is also
conceivable that he came to doubt such otherwise central feature of his theory.
However, Cantor did produce a proof of the well ordering of the sequence of
cardinals in a letter to Dedekind:

If we take a definite multiplicity V and assume that no aleph corresponds to it as its
cardinal number, we conclude that V must be inconsistent. For we readily see that, on the
assumption made, the whole system Ω [the transfinite sequence of ordinals] is projectible into
the multiplicity V , that is, there must exist a submultiplicity V ′ of V that is equivalent to
the system Ω. V ′ is inconsistent because Ω is, and the same must therefore be asserted of V .
(Cantor, 1899, pp. 116-7)

Cantor also communicated this proof to Jourdain four years later, but refused
him permission to publish it.22 Thus, he might have had doubts about the proof,
however, what is clear is that the problem with such a cardinality is that one
would fail to count it using the transfinite sequence of ordinals. So in a sense we
must be able to ‘project’ the sequence into a subcollection of this cardinal, but
being this as we saw above an inconsistent multiplicity, this cardinal number
would have the transfinite as a proper part and so would be itself inconsistent.

This seems to be the origin of the notion of limitation of size, namely, that
some collections, such as the one under discussion, are too big to be sets. As we
have already seen, this is encoded in modern set theories, for instance by the z
notion that new sets are separated from already existing sets. More generally,
any collection that fails to be a set is bigger than any set for if we begin counting
it and can finish this at some transfinite ordinal this was a set, and so not
inconsistent after all. So in each of these multiplicities one can project, as in
Cantor’s reasoning, the entire ordinal sequence. Hence, this would be larger
than every set for these can be counted. So we see that Cantor characterises
inconsistent multiplicities as those things too big to be a set, or alternatively
sets as those collections that are small enough, in the precise sense of being able
to be enumerated by an ordinal.

Note in passim that the logical notion of class has nothing to do with size
matters and so to identify Cantor’s inconsistent multiplicities with classes seems
to evidence some degree of lack of awareness with regards to the historical
development of these notions. Note also that this doctrine of limitation of size
does not originally arise as an attempt to solve the paradoxes, although the

22See (Grattan-Guiness, 1971, pp. 115-8).
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term was apparently firstly introduced by Russell when describing a theory
that intended to do precisely so.23

We then see that even though Cantor had a procedure for showing that some
collection is not a set, after the introduction of the powerset operation there is no
unified characterisation of what is a set. Indeed, we are left with just a negative
characterisation of the notion of set, which does indeed sound less appealing than
the original position of Cantor in which sets were just obtained by following the
transfinite sequence of ordinals and finding canonical well orderings with it.
Indeed, if the cardinals form a well-order then every set can be counted, but
this does not tell us what is a set in the first place. Consider for instance the
reals, if they are a set then they can be well-ordered but are they a set in the
first place? Well, Cantor can just tell us that if it is too big it will not be, but
given our inability to find a explicit well-order that is all that can be said about
such entity. Indeed, We cannot rule out its status as set yet for it could be, as it
is indeed the case, one of the sets given by the new power set operation. Surely,
more is required for a satisfactory theory of sets, this was the task taken up by
Zermelo and others that culminated in zfc.

4.5 The real gap between sets and classes
It seems that a clear difference now emerges between the Cantorian sets

and Russellian classes, for the former existence is governed by the ability to be
well-ordered, but the latter are ruled just by a comprehension principle, quoting
Russell:24

The values of x which render a propositional function φx true are like the roots of an
equation—indeed the latter are a particular case of the former—and we may consider all the
values of x which are such that φx is true. In general, these values form a class, and in fact
a class may be defined as all the terms satisfying some propositional function (Russell, 1937,
§23)

This notion of class is what Maddy calls the logical notion of collection, in
the sense that the way we determine the members of this class is by checking for
all objects in the domain of discourse whether they satisfy some open formula
of the language, i.e. a logical requirement, as she puts it:

The logical notion, beginning with Frege’s extension of a concept, (. . . ) [is characterised
by]the idea of dividing absolutely everything into two groups according to some sort of rule.
(Maddy, 1990, p. 121).

Indeed, note that the picture suggested by the remarks by Russell is familiar
from our earlier survey of the Fregean theory if we replace the talk of proposi-
titional functions by concepts and that of classes by their extensions. However,
as Lavine indicates, 25 there exist relevant differences between the notion of
extension of Frege and that of class of Peano and Russell, these include their

23See (Lavine, 1994, Ch. 4, f.43).
24Such a principle seems to have been formulated firstly by Giuseppe Peano in his Principles

of Arithmetic, see (Peano, 1889, p. 90).
25Consult (Lavine, 1994, f.2, pp 63-5).
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differences when it comes to the property of being true, the ontological depen-
dence of extensions on concepts and not in objects, or a proposal to solve the
paradox by Frege assigning the same extension to two concepts with different
collections of objects satisfying them.

As pointed out above, Russell was aware that the Cantorian notion of set,
as opposed to his classes, avoided paradox, and so were different entities. He
characterises his understanding of this difference in the following way:

[W]hen mathematicians deal with (. . . ) [a set], it is common, especially where the number
of terms involved is finite, to regard the object in question (. . . ) as defined by the enumeration
of its terms (. . . ). Here it is not predicates and denoting that are relevant, but terms connected
by the word and, in the sense in which this word stands for a numerical conjunction. (Russell,
1937, §68)

This passage is of remarkable interest. Firstly, note how Russell starts by
pointing out that the Cantorian sets are the formalisation of collections em-
ployed by mathematicians. Indeed, as we pointed out in the previous section
that a difference in a sociological level between sets and classes is that the for-
mer emerged from the within mathematics and the latter outwith mathematics
in the logicist endeavour of reducing it to logic of Frege and later Whitehead
and Russell. After noticing this purpose it is understandable why the classes are
precisely those that can be individuated through first-order definable properties,
and why the notion of number is here defined in terms of the definable property
of bijective correspondence. As has already widely discussed both formally and
philosophically in this work, Russell’s attempt to give a paradox-free account
of a classes is his theory of types. Note also that it is the approach of Cantor,
later axiomatised by Zermelo and discussed in the first chapter has become,
through time, in the mathematicians’ theory of choice, as opposed that of the
typed frameworks of Russell and Whitehead.

Secondly, on a more conceptual level, Russell seems to be giving a combi-
natorial characterisation of Cantorian sets. The notion of counting in use is
already familiar, namely that what matters is not that a property picks out the
members of the set as in the case of the classes that are defined via logical prop-
erties, but merely that the elements of a set are arbitrarily put together. In the
finite case, as Russell points out this would be accomplished by defining the set
as a conjunction of its elements, since there need not exist any other predicate
individuating such a collection. Hence we see that at the heart of the distinction
between sets and classes lies in that, in the former case its elements are allowed
to be pick out by arbitrary functions but in the latter we require some kind
of explicitly defined rule for this job. That the notion of arbitrary selection of
elements was understood as a key feature of sets is even more explicitly asserted
in the following remarks by Paul Bernays:

[Sets] are used in a ‘quasi-combinatorial’ sense, by which I mean: (. . . ) one views a set of
integers as the result of infinitely many independent acts deciding for each number whether
it should be included or excluded. (. . . ) Sequences of real numbers and sets of real numbers
are envisaged in an analogous manner. From this point of view, constructive definitions of
(. . . ) sets are only ways to pick out an object which exists independently of, and prior to, the
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construction. (Bernays, 1964, pp. 275-6)

Of especial interest is the last part of the passage, which makes clear that
in the case of sets, as opposed to classes, we do not require a constructive
specification of the collection in order for it to exist. Hence Bernays label of
Platonistic for this notion of set as opposed to the more intuitionistic flavour of
classes, which seem to depend on us and our language.

Another difference between the notions of set and class seems to be classes
can be bigger than sets. Indeed, consider the transfinite sequence of ordinals,
these sequence is, as we saw, too large to be counted and so does not constitute
a set. However, it seems perfectly licit to collect it under the logical property of
being an ordinal. As we remarked above limitation of size applies to sets and not
to classes. It also seems, however, that given a domain there are more sets than
classes. Indeed there are usually more subsets of the universe than collections
that can be individuated through definable properties. It is clear that this claim
will depend on our notion of definable logical property, but it seems that unless
we already accept the combinatorial notion as providing legitimate collections,
and so we allow for properties with set parameters such as being a member of
the set A, this will be the case. Indeed, consider the discussion regarding the
axiom of choice below. Moreover, note that the restrictions on the classes that
exist in the different theories we surveyed in chapter 2 came, not like in Cantor’s
cases from size matters, but from restricting the properties that are successful
participants in a comprehension principle. On a related point, note also that
while the notion of set is not subject to paradoxical conclusion this is not the
case with classes.

We also note some intriguing differences between the individuation condi-
tions of sets and classes. These stem from the fact that sets are just given by
some arbitrary function and so they are in this sense arbitrary (not-too big)
collections of objects, there is no more to them than their members, in Can-
tor’s words they are: ‘(. . . ) consisting of clearly differentiated, conceptually
separated elements m,m′, . . . and which is thereby determined and delimited’26

Hence, even if we used a property to discover the existence of a set. For
instance, from being a finite number we arrive to the cofinal sequence of natural
numbers and after some observations about well-orders to its existence, this
property was just a heuristic device in our grasp of the set and not an essential
feature of it. Quoting Hallett: ‘while an intension is what pointed out the set
to us, the set itself is something quite separate from the intension.’27

On the other hand, classes are more closely tied to the definable proper-
ties specifying them, in the sense that there is nothing more to the class than
the property, no further independent Cantorian considerations are required to
ensure its existence. The result of these remarks is that although extensional-
ity suffices to determine the identity of sets, this is not the case with classes,
since their specification conditions make them inherit the intensional flavour
of properties. Indeed, the class of all sets is co-extensional as the class of all

26See ((Cantor, 1932, p. 387), as quoted in (Hallett, 1986, p. 34))
27See (Hallett, 1986, ibid.)
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well-founded sets in a theory with the axiom of regularity but these are distinct
properties. In short, co-extensionality is a sufficient condition for the identity
of sets but not of classes, as Maddy puts it:

[C]lasses can be coextensive without coinciding if they are picked out by different terms.
To a certain extent, this seems appropriate, because classes are understood as closely tied to
the properties that determine them, and coextensive properties are not identified. (Maddy,
2000, p. 305)

Note however, that as Maddy also points out immediately after this quote,
it is a question that requires some subtle choices that of when to decide that the
predicates defining the classes are similar enough to determine the same class.
Indeed, the properties being a whale and being a whale or being a whale are
strictly speaking not identical, but it is not clear that one should be willing to
take their characteristic classes as distinct.

After the remarks above one might now, in turn, have concerns regarding
the necessity of co-extensionality when it comes to the individuation of sets
and classes. Again, when it comes to sets since there is no more to them
than their members this seems to be the case. However, the case of classes
seems more subtle. Again noting that perhaps the key notion of the concept
of class is its close connection to that of property and that the extension of a
property changes without this doing so, indeed the property of being a citizen
of Amsterdam changes extension with each update of the municipal census, but
the property remains unchanged. Similarly, to avoid reference to time, consider
the property of being a set, and the intuitionistic model discussed in §2.6.1. Here
the extension of the property contains at the stage ω+ 1 the set of naturals but
not in the levels below it. And so, again, taking the close relationship between
classes and properties seriously moves us to accept that there are classes that
have different members and are nevertheless the same. In fact this seems a
natural consequence of the fact that we take classes as extensions of properties,
not as the particular extension of the property at a given point. Hence, since
the objects instantiating the property change so does the membership of the
class. In sum, we see that sets are individuated extensionally while classes are
not. This is summarised in the following remarks by Reinhardt:

A proper class P may however be distinguished from a set x in the following way (if the
reader will indulge another counterfactual conditional): If there were more ordinals (. . . ), x
would have exactly the same members, whereas P would necessarily have new elements. We
could say that the extension of x is fixed but that of P depends on what sets exist. Roughly,
x is its extension, whereas P has more to it than that. (Reinhardt, 1974a, p. 196)

Note that here instead of classifying classes as intensional entities Reinhardt
seems to be seeing them as hyperintensional. Indeed, since it is usually accepted
that in all possible worlds the same sets exist necessarily, for the class of ordinals
to vary its extension we would need to consider impossible worlds. Of course,
intensionality is enough if we reject Platonism and adopt a constructive frame-
work in which sets can exist in one possible world and not in another. Even
a Platonist might regard classes as genuinely intensional if the talk of possible
worlds here is understood in terms of epistemic states of the speaker, or com-
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munity of speakers, rather than ontologically.28 In any case, even in a purely
metaphysical Platonistic reading some classes would be genuinely intensional,
unless we press the more hardline view that classes can only contain mathemat-
ical objects, and so that a a property such as being a student of the University
of Amsterdam fails to determine a class in good standing.

Note also, that here we are not making a distinction between classes and
proper classes, those that violate limitation of size. Consider again our example
above of the citizens of Amsterdam. Presumably, these do not violate limitation
of size, but again we take the class to have varying members, as Maddy puts
it: ‘though small enough to be sets, are individuated differently, so they are
classes, too, without being proper.’29 Moreover, note also that the remarks we
have made regarding classes having different members at different points leads,
quite naturally to a modal treatment with regards to possible worlds, leaving
aside the remarks about impossible worlds following Reinhardt’s quote above,
so that we can talk of sets as rigid designators or in a more Lewisian treatment
of them being their own counterparts in all possible worlds, and of classes as
functions from possible worlds to extensions.30

Another difference that Maddy points out between sets and classes is that the
latter can be members of themselves while the latter do not, indeed this claim
about classes follows naturally from the remarks made in §3.2 regarding self-
instantiating properties and the close relation between sets and properties. How-
ever, one should be cautious about the claim that sets are not self-membered.
Indeed, this is the case under the iterative conception of set, that takes sets to be
generated in successive stages, and always after all their members have already
been formed through different operations. So the axiom of foundation, banning
for instance such self-membered sets and sets with infinitely descending chains
of members, is a natural principle formulating this picture. Note then that such
conception has not been mentioned while discussing Cantor’s notion of set, but
was first officially introduced in Zermelo’s 1930 axiomatisation of set theory and
is since a trademark feature of zfc the dominant theory of sets. Indeed, Lavine
remarks that ‘Cantor never, so far as I know, commented on whether a set can
be a member of itself.’31

The point is that even if the most popular theory of collections in use by
mathematicians today takes sets to be well-founded, this was not a fundamental
feature of the notion of set as conceived by Cantor. Since Cantor did not
seem to take non-wellfoundedness as an essential feature of sets we will here
remain agnostic about this point and be silent in this respect when it comes to
the requirement well-foundedness for an adequate theory of sets. To be clear
we require (some) classes to be non-wellfounded but we are silent about this
requirement for sets, hence if we are to agree with Maddy in that this feature
marks a difference between sets and classes is only in a weaker sense than she
maintains. Namely that classes require non-wellfoundedness but sets do not,

28See for instance, (Incurvati, 2008, p. 93)
29See (Maddy, 1990, p. 102).
30Such a treatment is offered by Charles Parsons in (Charles Parsons, 1983, §III-V).
31See (Lavine, 1994, p. 145), note that, as he makes clear immediately after this quote, he

believes the Cantorian theory to enable the existence of such sets.
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which does not mean as she takes to that sets are are well-founded. Of course
this is just due to the fact that she is working with the more developed notion
of zfc set while here we are guided by a less fine-grained Cantorian notion.

Finally, we turn our attention to some axioms in which the difference between
sets and classes becomes relevant in the debate regarding their acceptability.
First we look at the axiom of choice, as we mentioned in the first chapter,
this principle tells us that for every family of non-empty collections there is a
choice-collection that is constituted by a member of each of the collections in
the family. Now, in the Cantorian notion of collection such a principle seems
completely harmless for, as Bernays pointed out, the elements of a set can be
chosen from other sets by an arbitrary function. However on the notion of a
Russellian class, such a collection will be highly suspicious since there is no way,
in general, to provide an effective procedure to pick the elements of such a class
from each of the classes in the family. That the axiom of choice is nowadays
widely accepted correlates with the idea stressed before that the concept of set
encodes the collection of choice for mathematicians.32

Similarly, consider the axiom of constructibility, which takes all the existing
sets to be constructible.33 Then one can see as a reason to reject the principle
the fact that the notion of set has at its core the notion of arbitrary selection of
elements and so this axiom’s constraint regarding definability over a first order
language seems out of place. On the contrary, in the understanding of collections
as classes one seems to have fewer reasons to consider these restrictions as
arbitrary but rather necessary for the adequate understanding of the objects
under consideration.34

4.6 Summary

In this chapter we have offered a historical account of Cantor’s notion of
set as a well-orderable collection (§4.2), we then turned to examining Russell’s
reaction to Cantor’s diagonal argument noting his mistaken suspicion of an
error in the prove owing to his failure to distinguish the notion of set from
that of class, entities very related to Fregean concepts and their extensions
(§4.3). Next we looked at how the diagonal argument, with its acceptance
of the powerset, undermines Cantor’s unified and positive picture of sets that
we had before, for a negative one in which inconsistent multiplicities will be
those collections bigger than any set and thus violating limitation of size (§4.4).
Finally (§4.5), we were in a position to assert several differences between sets and

32This is the diagnosis of Donald Martin, as quoted by Maddy in (Maddy, 1997, p. 55)
33The constructible sets are the inhabitants of the hierarchy L, whose stages are defined

as follows:
L0 = {x : x is an individual}

Lα+1 = def(Lα), i.e. the set of sets definable over Lα in FOL

Lλ =
⋃
α<λ

Lα

Where α is an ordinal and λ a limit ordinal.
34Reasons along these lines are given, for instance by Moschovakis and Devlin against and

in favour of this axiom. See (Moschovakis, 2009, p. 610) and (Devlin, 1977, pp. iv, 13-8)
respectively.
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classes, from the combinatorial nature of sets to the logical of classes, to issues
regarding size and number, through some deeper issues like those relating to
individuating conditions, and some less significant for the Cantorian sets related
to non-wellfoundedness of some classes. We also provided some comments as
to how these two notions can inform the debate regarding some mathematical
axioms.



Chapter 5

Defending classes

5.1 Introduction

In §4 we offered a mostly historical account that showed the differences in the
notion of Cantorian set and Russellian class and pointed out several differences
of these two entities that result from their distinct developmental stories. In
the present chapter we will make use of these facts about sets and classes in
order to address some philosophical arguments against the use of both sets and
classes in our theories of collections.

The chapter begins by addressing in §5.2 the very direct objection that the
usual theories employed in mathematics only employ first order logic and so the
burden of proof is on us if we want to introduce second order resources such as
classes. Next we move in §5.3 to the criticism that the classes used in theories of
collections are not well-motivated entities, as opposed to sets, and thus should
not be used. Thirdly, in §5.4 we address the worry that even if warranted in
using sets and classes, since one of the entities is reducible to the other, we
could obtain a more parsimonious ontology by giving up the reducible entities.
Finally we address the worry that such a simpler ontology could be obtained,
not by reduction, but by interpreting the second order resources in play in a
more parsimonious and so paraphrasing away the use of classes in the discourse,
and so in §5.5 we look at taking talk of classes as merely plural quantification
over sets.

5.2 Second order resources

In this section we comment on perhaps the more blunt objection to the
employment of classes, or more generally of second order quantification, in our
formalisation of ideas about objects, properties collections and so on. The idea is
simple and seems quite persuasive, especially perhaps for the more (classically)
mathematically minded.

91
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Indeed, suppose that we deal with someone who is informed in their on-
tology and language by zfc, the most common theory of collections in use by
mathematicians. Now, since this is a first order theory, in particular, classes
or other devices of second order logic are completely absent from its picture.
The question then seems to be why do we want to add them.Indeed, the bur-
den of justification seems to be on the proponent of classes. Now, I think that
throughout this work we have developed some tools that allow us to begin to
reply to this challenge in a satisfactory fashion.

Note that in this section we will usually talk about classes as representative
example of the use second order resources. However, the reader might prefer to
replace our reference to classes here with their favourite interpretation of second
order quantification, for instance pluralities of sets. What matters here is the
need for these resources rather than their interpretation.

5.2.1 Not all collections

First, we take issue with the idea that set theory, or more precisely a set theory
that omits any mention of the resources of second order logic, succeeds at being
an adequate theory. To begin with we saw in §4 how there are two formal notions
of collections that of Cantorian set and that of Russellian class, that have not
only a distinct historical origin but also different ontological flavour, one tied
to properties and so to second order machinery, the other to counting. These
have as we saw in particular in §4.5 several differences, such as the limitations of
sets with respect to size, or their different individuation conditions, i.e. classes
seem to be intensional, or even hyperintensional, entities while sets are purely
extensional. So these remarks give us prima facie reasons to resist that a first
order theory of sets tells us the entire story about collections.

Moreover, if as it seems to be the case here one takes the sets to be the well-
founded entities of zfc, the remarks in §3 seem particularly concerning. First,
with this limited in size notion of set since in §3.3.3 we argued for the inclusion
of a universal collection. This is a collection that the set theorist might feel more
pressured to accept than some other classes tied to other properties since taking
the set theorist seriously seems to be on a par with taking the quantifiers to
range over absolutely all sets1. Moreover, if as it seems to be the case here too,
one takes the sets to be the well-founded, we have given some reasons to allow
some collections to be self-membered in §3.2, for instance in order to account
for some metaphysical puzzles or natural language inferences. Thus, we do not
take sets to be all collections on pain of contenting ourselves with a suboptimal
theory.

5.2.2 Not all mathematical collections

The critic might reply that what they meant by saying that a first order theory
was sufficient to deal perhaps not with all the requirements posed by trying

1More on this in the §5.4.2



5.2. SECOND ORDER RESOURCES 93

to model natural language inferences, or solve metaphysical puzzles, but it is
after all more than enough to conduct all the mathematical business. So, the
motivations just alluded to would be irrelevant for what is meant by an adequate
theory in this context. These are simply not things that they are trying to
solve. However, we would like to maintain that there are still some practices of
a distinctly mathematical flavour not captured by set theories devoid of second
order resources. Indeed, from a strictly Cantorian conception of set one could
think of things such as the empty set or the singleton set,2 from a more modern
understanding of the term though there are still some mathematical entities
that fail to be sets such as the collection of ordinals, cardinals or that of infinite
(mathematical) collections.

Note first that one might have doubts about why we take this collections to
be mathematical, for sure their members are mathematical entities, but does
this status transfer to the class collecting them? Of course, the pluralist should
not worry at this point since they do not take it to be anything over and above
the members of the collection, and so the question would make little sense to
them. The friend of taking, like us, classes seriously ontologically might indeed
think so. However, we might just want to, instead of trying to answer that
seemingly obscure metaphysical question, insist that all we seem to mean by a
mathematical collection is one that is, or was at some point, used by mathe-
maticians in their everyday mathematical business. This seems to be enough
though, since mathematicians do talk about theorems holding of all ordinals,
cardinals or even all infinite sets. This coupled with our beliefs expressed in
§3 of taking the all in one principle seriously, i.e. that for all property there
corresponds an extension, a class, implies that not only these entities talked
about are collections but are mathematical collections.

In what remains of this section we illustrate this point by giving some exam-
ples in which mathematicians employ second order resources in their investiga-
tions, or at least seem to do so, in a way that seems crucial to their endeavours.
Note first that classes can be used to give a succinct and finite axiomatisation
of theories such as zfc, indeed the following schema:

Separation
∀x∃y∀u(u ∈ y ≡ (u ∈ x& φ(x)))

For any φ in the language, with y not free in φ.
Replacement
Fun(φ) ⊃ ∀w∃z∀v(v ∈ z ≡ ∃u(u ∈ w & φ(u, v)))

For any φ(x, y) in the language.

Can be rendered as axioms using classes as follows:

2Indeed, the emptyset and singleton sets, though commonplace in theories such as zfc are
not clearly part of the Cantorian notion of set, see (Oliver & Smiley, 2013, pp. 14.3-4)
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Separation
∀z∀x∃y∀u(u ∈ y ≡ (u ∈ x& x ∈ ẑφ(z)))

Replacement
∀x∀yFun(x̂ŷφ) ⊃ ∀w∃z∀v(v ∈ z ≡ ∃u(u ∈ w & (u, v) ∈ x̂ŷφ))

And so we see that, even though not strictly necessary for the mathematical
discourse, one could still see that some mathematical entities that are classes
can be coherently taken to form part of the mathematician’s toolbox. Say for
instance if this placed a great emphasis on the importance of finite axiomatisa-
tions. Note here that, importantly, we are not appealing necessarily to classes
that are too big to be sets like in the case of cardinals above and so it would
not be enough to use limitation of size. Indeed, take for instance the property
[λxFin(x) & ∃z ∈ (z = ∅)] it seems not problematic to use the associated class
in separation for size concerns, to block the existence of these classes, but some-
thing more general about them like that there are not such things as extensions
associated to properties, which is the key feature of classes in use here. As we
just said, talk of classes connected to the issue of finite axiomatisation is more
a matter of conciseness or ease of expression rather than of necessity. How-
ever, there are instances in mathematics when the talk of classes seems more
difficult to dispose of, here we look at the example of reflection arguments for
large cardinal axioms. First recall that a strongly inaccessible cardinal, κ, is
an uncountable cardinal such that 2λ < κ, for any λ < κ, i.e. it is a strong
limit, and the least limit ordinal α such that there is an increasing sequence
(βη)η<α converting to κ is κ, i.e. it is a regular cardinal. As Jech points out
these cardinals get their name from the fact that they cannot be reached from
below:

The [strongly] inaccessible cardinals owe their name to the fact that they cannot be
obtained from smaller cardinals by the usual set-theoretical operations.(Jech, 2003, p. 58)

Now from the fact that if κ is strongly inaccessible Vκ is, as we have already
mentioned, a model of zfc. It follows that this theory doesn’t prove the exis-
tence of inaccessibles, for then violating Gödel’s second incompleteness theorem,
it would prove its own consistency. One way to motivate the existence of such
cardinals is to use reflection principles, the idea motivating these is that the
universe of sets is structurally undefinable, as Gödel explains further:

One possibility of making this statement precise is the following: The universe of sets
cannot be uniquely characterized (i.e. distinguished from all its initial segments) by any
internal structural property of the e-relation in it, expressible in any logic of finite or transfinite
type, including infinitary logics of any cardinal number. (Wang, 1974, p. 189)

More concretely then the idea is that if we have some property that the
universe of sets enjoys there must be some set that does too, so in a sense in
contrast with the set theoretic operations here we approach the universe of sets
from above.

Back into strong inaccessibles then, and consider the class of all ordinals.
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Then we see that this is an inaccessible since any sequence of ordinals has an
ordinal as limit and the application of the continuum function to any ordinal
renders another ordinal. Hence by the reflection principle there is some set
exhibiting this features and so there exists an inaccessible cardinal. So here we
have seen an example of the usefulness of reflection principles in justifying our
axioms, however the problem is that, as Uzquiano points out3, it is challenging
to encode this principles in the first order language of zfc. In fact what we can
prove in zf is, as Jech puts it that ‘for any finite number of formulas, there is
a set M that is like an “elementary submodel” of the universe, with respect to
the given formulas.’ (Jech, 2003, p. 168), i.e. taking the case of a single formula
that:

Reflection
∀α∃β > α∀x1, . . . , xn ∈ Vβ(φ(x1, . . . , xn) ≡ φVβ (x1 . . . xn))

For any φ(y1, . . . , yn) in the language.

We say that Vβ reflects φ. This being provable in zfc does of course not
imply the existence of strongly inaccessibles but it does indeed prove the axioms
of replacement and infinity. In any case, it seems clear that if we want to be able
to use reflection principles strong enough to formalise the informal argument for
the existence of inaccessibles, the talk of classes, like that of the ordinals or the
universe, is not easily sidelined.4

Now, reflection principles are, as we mentioned, a way to investigate the
(iterative) set-theoretic universe from above. However, taking seriously the
idea that we also find in Cantor that the transfinite sequence of ordinals are a
generalisation of the finite natural numbers gives us another way to investigate
it, namely from below, via transfer principles. As Friedman puts it these encode
the idea that:

‘any assertion of a certain logical form that holds of all functions on N holds
of all functions on On [the class of ordinals]. (Friedman, 1997, p. 1)’

And so we transfer properties of Vω to V itself. It turns out, that these prin-
ciples are equivalent to strong cardinal axioms. However, it also turns out that
these principles are not fully expressible unless we add classes to the language of
zfc. Indeed, a transfer principle relating properties of functions on the naturals
with those of functions on the ordinals is as follows:

Definition 13 (Transfer principle). If for all appropriate functions f1, . . . , fn : Nk → N,
A(f1, . . . , fn), with A an appropriate existential formula, then for all appropriate
functions f1, . . . , fn : Onk → On, A(f1, . . . , fn).

However, as Friedman also points out, to formalise the content of the con-
sequent of the principle we need to be working in a theory of classes. In fact,

3See (Uzquiano, 2012, §2), which we follow closely when exploring this point.
4Incidentally, it also proves together with Gödel’s theorem that zfc cannot have a finite

axiomatisation, and so that if one is hoping for such an achievement one must take the
introduction of classes as a serious possibility.
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the use of classes seems to be stronger than in other cases since here we are not
only referring to the class of ordinals but to that of ordinal functions.

Recall that here we are giving some examples of how the talk of classes,
or more broadly the employment of second order resources, are used by mathe-
maticians in their research and so we seem to have reasons to look at how classes
are used in the study of large cardinals since, as Jech points out: ‘The theory
of large cardinals plays central role in modern set theory’5 Indeed, classes are
used prominently in the study of the hierarchy of large cardinals, through the
employment of elementary embeddings from the universe of sets to an inner
model of zfc. Recall that such an embedding is just an injection that preserves
truth, i.e. f : V → M s.t. if V � φ(x1, . . . xn), then M � φ(f(x1), . . . f(xn))
for every formula of the language, and that an inner model is just a transitive
∈-model that contains the ordinals. Now, it is the case that the existence of a
measurable cardinal is equivalent to the existence of a (non-trivial) elementary
embedding from the universe to some inner model.6 We can investigate further
large cardinals by imposing conditions on the model M , for instance we call a
cardinal κ, λ-strong, with λ > κ if there exists some (non-trivial) elementary
embedding f , with critical point κ, i.e. κ is the smallest ordinal moved by the
embedding, such that f(κ) ≥ λ and Vλ ⊂ M . Moreover, if κ is λ-strong for
all λ ≥ κ we say κ is strong. If Vf(λ) ⊂ M we say that κ is superstrong. If
we keep imposing conditions on the structure of M we arrive at higher stages
of the large cardinal hierarchy such as weakly compact, supercompact or huge
cardinals. Now, a limit to this method was found by Kunen7 when he showed
that the only elementary embedding from the universe to itself is the identity.
Incidentally, this was not proven in zfc but rather in mk, a theory of classes.

Now, the problem here is that these principles regarding elementary embed-
dings are not expressible in a first order theory like zfc, first of course, because
of its satisfaction relation is not formalisable in itself, now this can be addressed
by introducing an implicit satisfaction definition in the language of zfc. How-
ever, here we are more interested with the problem that there is no universal
set, V , in zfc, and so of course no function with domain V as these principles
discuss. Now, there are indeed devices to express the existence of such maps
within the language of set theory, for instance in terms of ultrafilters or the
rather technically ingenious theory of extenders8. However, that one can usu-
ally find such reformulations is no guarantee that will be able to do so for any
principle regarding embeddings, for instance, as Welch and Vickers put it when
discussing embeddings from a model to the universe:

It is quite natural to study the properties of elementary embeddings j : V → M for M
some inner model, since many such embeddings, if they exist, have first order formulations
within zfc. The question of reversing the arrow and looking at a non-trivial j : M → V in
general does not readily admit of such formulations.(Vickers & Welch, 2001, p. 1090)

In view of this, one could try a bolder route to encode these embeddings

5See (Jech, 2003, p. 285).
6See for instance (Jech, 2003, §17)
7See (Kunen, 1971, §1)
8See for instance (Jech, 2003, §20)
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into the language of zfc. Namely, to include a function symbol in the language
and add an axiom schema that reflects the fact that this map is an elementary
embedding, quoting Jech:

As the statement “there exists an elementary embedding of V ” is not expressible in the
language of set theory, the theorem needs to be understood as a theorem in the following
modification of zfc: The language has, in addition to ∈, a function symbol j, the axioms
include Separation and Replacement Axioms for formulas that contain the symbol j, and
axioms that state that j is an elementary embedding of V (Jech, 2003, p. 290)

It is clear that, even if in this case the classes can be disposed of, this
process seems rather artificial, for they are, through model theory, valuable in
the development of principles regarding these cardinals, or as Uzquiano puts it
although

sometimes eliminable, but which nevertheless seem heuristically indispensable (. . . ) In-
deed, set theorists often begin to work within an informal theory of sets and classes, and
then search for technical formulations within either ZFC or some schematic extension thereof.
(Uzquiano, 2012, pp. 70,72)

Not only that, but these theories seem more cumbersome to use than a theory
of classes where one can use the second order machinery available to quantify at
will over functions such as the ones under discussion here. So one could press the
point further of why one should not take classes seriously given their important
role in the development of the theory, but be content with what seems a much
more artificial and ad hoc formulation which seems to be preferable just because
it does away with the classes.

In view of all these examples showing how mathematicians employ resources
of second order logic in their daily business, one could concede that point while
still insist that we needn’t take them as committed to the existence of classes.
Or press the point further by claiming that they are not really talking about
classes when they make statements about all ordinals and the such, i.e. the
use of classes must, or at least could, be paraphrased away. More precisely,
the use of second order resources could be explained in some way that does
not ontologically commit us to these entities distinct from sets. This will be
explored in §5.4− 5, below by means of reduction of classes to sets or the use of
plurals. Nevertheless, our aim will be to convince the reader of the plausibility
of accepting these ontological commitments. Now, one reason why one might
not want to take classes as genuine entities that must be taken seriously is that,
as opposed to sets, they are not well-motivated entities. They would be just
some patches that we employ to fix a flawed theory, i.e. that classes are ad hoc,
this is the focus of the next section.

5.3 Ad hocness

We take as a representative example of this argument against the use of
classes the remarks Jonathan Lear makes in the introduction to his article Sets
and Semantics. Lear points out that modern theories of collections usually
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employ both the notion of set and of proper class, in order: ‘to reconcile the
intuition that any well-determined objects can be collected together and the
classical interpretation of the universal quantifier.’9. Indeed, the idea is that
the universal quantifier is taken to range over all sets, and that any collection
of well-determined sets can be collected into another set. Now, even if dismiss-
ing the last query by pointing out how Cantor’s principle of limitation of size
acknowledges the fact that some collections of well-formed entities such as the
ordinal or cardinal numbers are too big to do so. The fact seen in §3 that we
do accept the fact that the universal quantifier ranges over all sets, together
with our endorsement of the All in one principle (AiO), does indeed prompt
us to affirm that there is some object collecting all sets. However, this respect
for the limitation of size principle does inform us that this will not be a set.
This last idea is something that most theories of collections agree with and, as
Lear points out, these usually take the position, either implicit such as zfc, or
explicitly, such as nbg, that this object is a proper class.

Before proceeding note that what Lear is talking about is a class of all sets,
strictly speaking all we are sure to affirm is that there is a class that contains
all sets, namely [λxx = x]. But not only this, since it will also contain all
classes, hence the existence of this class, given that we take the logical notion
of class seriously, will be contingent upon having a language that is allowed to
express the notion of being a set, for instance via a predicate as in zfc or a, or
a constant such as in Maddy’s theory.

Lear thinks that this use of classes in order to account for the problem just
mentioned is ‘unacceptable’. Firstly, he says because:

classically interpreted quantifier must indeed range over all sets. But it is not necessary
for the quantifier to range over an object that contains all sets. (Lear, 1977, p. 87)

Indeed, this is just expressing his rejection of the AiO principle that we
defended from Cartwright’s remarks in §3, and so need not detain us here.
Next, Lear seems to complain that the use of classes does not clarify the issue
at stake since they seem an ad hoc object, given that the restrictions imposed
on them in the usual theories of collections seem unmotivated, as he puts it:

the standard restrictions imposed—e.g., that proper classes can only have sets as members,
that one cannot perform set-theoretic operations on them—appear arbitrary.(Lear, 1977, ibid.)

Indeed, I agree with Lear that these usual restrictions on classes are deeply
unsatisfactory, however, I think that with the discussion about the Russellian
notion of class in §4, we can respond by saying that we do have a clear un-
derstanding of the notion of class or at least of our notion of class and that it
is precisely our task to elucidate which of these conditions usually imposed on
classes are acceptable or not. Indeed, it is precisely the close tie between prop-
erties and these entities on the logical notion of class which is historically very
different from that of set that allows us to face any criticism of ad-hocness. For
instance, we are ready to say that we must reject that classes can have only sets
as members, as our remarks above about the universal class show. Of course,

9See (Lear, 1977, p. 86)
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we should also reject that one can perform set-theoretic operations on them,
since these are not sets, in fact these are entities of a distinctive logical flavour
and so what we can indeed do is perform logical operations some of which, such
as negation, which seem to have no counterpart among set-theoretic operations.
Indeed, in zfc for instance the complement of ∅ is not taken to be a set. In
fact, in this way we can also respond to Lear’s immediate comment that there is
nothing preventing us from creating what he calls a layer of set-like objects using
some analoguos of the power set operation for classes, which he calls the power
class operation. Incidentally, this seems to be one of Boolos’ worries regarding
classes:

If one admits that there are proper classes at all, oughtn’t one to take seriously the
possibility of an iteratively generated hierarchy of collection-theoretic universes in which the
sets which ZF recognizes play the role of the ground-floor objects? (Boolos, 1998, p. 36)

The answer would indeed be that no. As we have just pointed out, we do
not have any prima facie reason to allow set operations to be applied to classes,
and as we saw in §4.4 the power set is a distinctively set-theoretic operation.
Indeed, it is clear, as Lear points out, it seems that if allowed to do so: ‘we have
succeeded only in constructing another rank of the cumulative hierarchy.’10,
and so that we didn’t take the universe of sets as argument of the operation in
the first place, for here subclasses are taken to be just collections of sets, and
so the idea would be that this new stage reveals some possible sets we were
missing. Thus, classes could be seen as additional layers of sets if the hierarchy
of sets went up high enough.11 Indeed, I agree that this seems like a very
serious objection to theories of collections that do allow for such a move, and
so we would have that in sets and classes we would have a distinction without
a difference. In any case this is definitely not what we would allow, under our
logical conception of class, there is a real difference between sets and classes,
indeed this was precisely the point that §4 wanted to make.

5.4 Reduction

Suppose then that we are persuaded by the remarks of the section above
and we take classes to be well-motivated entities, now we look into a the worry
that even if sets and classes are distinct entities, and so our theory of collections
might employ both notions without fear of ad hocness, one could still maintain
that our theory could be doing the same with less. So perhaps if not motivated
by quantitative parsimony yes by qualitative parsimony, the idea is that if we
could reduce sets to classes or viceversa we would have, at the very least a
simpler theory in ontological terms. This is a question that occupies Charles
Parsons, as he notes after pointing out the different combinatorial notion of set
and the logical notion of class, one should indeed be careful when stating that
classes are just new layers of sets. Indeed, this was our opinion in §5.3, as he puts
it: ‘The above discussion, (. . . ), should have made clear that it is at least not
obvious that extension and set are just one concept.’12. It is also immediate as

10see (Lear, 1977, ibid.)
11See §5.4.2formoreonthisissue.
12See (Charles Parsons, 1974, p. 8)
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Parsons says and we already mentioned in §4.5 when considering the question
of whether there are more sets than classes,13 that this, as we will also see
below, ‘turns as much on the conception of extension as on that of set.’14, or
more precisely on the logical language we use. Now, following Parsons, we take
ourselves to deal with two questions, first whether we can reduce sets to classes
and secondly whether classes can be reduced to sets.

5.4.1 From sets to classes

It seems that our the best attempt of reducing sets to classes is by taking a
language with a name for each set. Indeed, note that this would be a language
very different from the ones we are used for instance in set theory since it will
be an uncountable language. Say a is the name for the set a, we would then
have the coextensional class x̂(x ∈ a) as a class surrogate for the set a. Now,
it is immediate that although on some occasions such class surrogates can be
found without introducing all the aforementioned constants, for instance in the
case of the emptyset x̂(∼x = x), its singleton x̂(∼∃y(y ∈ x)) or the powerset of
the latter x̂(∀y(y ∈ x ⊃ ∼∃z(z ∈ y))), it will clearly not be the case in general
that for every set there is a coextensional property expressible in, say, fol=,∈.
Think for instance of P(ω), hence the bulk of the work is done by the constants,
and so such a process can only be possible by presupposing set theory, and in
so doing begging the question of the reduction.

Note that here we are already leaving aside worries that, even if we had a
coextensional property with a set, this would be different since the individuation
conditions of sets and classes are as we pointed out in §4.5 different. Though
here one might reply that insofar as properties specified as being a member of set
x, these inherit their rigidity of designation from the sets they mention and so in
these particular cases extensionality does suffice for equality. Nevertheless, one
could further reply to this by pointing out that these properties are somehow
too close to sets to be full-blooded classes, or allowing for the terminological
mismatch, to be proper classes.

Indeed, we return now to our familiar theme that classes as opposed to sets
are closely tied to what is expressible given a language, while sets depend on
some set operations, as well as, more generally, on the notion of well-order. This
seems to be independent of our choice of language. To borrow Bernays’ point
in his quote from §4.5, these exist independent of us and so, in particular, of
our language. Indeed, even the notion of counting meant, for Cantor, countable
by God, as Lavine remarks,15 and so is far removed from our fellow earthly
mathematicians. So, as Parsons puts it such a purported reduction fails since
when talking about what constitutes a set, as opposed to a class, there is an:
‘absence of any specific role for language.’16

13This is of course closely tied to that of whether we can reduce classes to sets for if this
was feasible the answer would be a clear no.

14See (Charles Parsons, 1974, ibid.)
15See, (Lavine, 1994, p. 55)
16See (Charles Parsons, 1974, p. 10)
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Another problem for the reductionist seems to surface when we considering
the distinctively set theoretic operation of the powerset 17. Now, the idea here
is that we suppose that we have obtained the class reduction of some set and
we want to obtain by some analogous operation the class surrogates of all its
subsets, i.e. a class containing all the subclasses. Now, here we brig into play
a key different between sets and classes, for in the case of sets we now that all
the members of a set are well defined sets. Indeed, as we now from Cantor’s
demonstration that some collections are not sets, a collection containing an
inconsistent multiplicity is itself inconsistent, and so we can say that for this
operation to be carried out successfully we need to be able to quantify over
all members of the set in order to collect them into the definite subsets, and
in particular over these subsets since this will be the well-defined members of
the new set. In fact, for any set we must be able to quantify over its members
since this will be a well-defined domain. Indeed, these are crucial features of
sets, as Parsons puts it: ‘ the two assumptions that get real set theory off the
ground-the extensional definiteness of quantification over all subsets of a given
set, and the existence of the power set-’18.

Let’s now return to our surrogate class for the reduced set, we want to find
all the subclasses, in order to construct the power class which will serve as
the class reduction of the power set. However, note that it is not clear what
do we mean by all the subclasses since by using the logical operators we can
find new classes out of the purported totality of subclasses. Indeed, just think
about diagonalisation properties or properties that quantify over all such classes.
Then, to get all the classes we should really need a hierarchy of languages that
build up classes on stages by performing the class operations on the classes
already formed in the previous stage and so on19. Then, we might hope for this
hierarchy to reach a fixpoint at some high enough ordinal stage of iteration, or if
this is not to happen, just take the union over all ordinals as our final language.
However, such a thing will again be not a good basis for a reduction since we
would then again be presupposing the set-theoretic operations or other notions
such as the sequence of transfinite ordinals.

If, on the contrary, we take all classes to be ‘all those that might be defined
, independently of any specification of the means’20, as Parsons puts it, it seems
that doing this would be of no help since then we would not gain much in the
determinacy of the quantification over the subclasses. Indeed, what does it even
mean to talk about all classes that might be formed, and how is this determinate
when, under this understanding it is not even determinate the language or group
of languages under use? Moreover, recall that the notion of class is closely tied
to that of definable property, not just that, but to a notion of logically definable
in some given language, so it seems that to have a clear understanding of the
totality of classes, and of just a class for that matter, one needs a clear picture
of the languages (or sequence thereof) in use. This is not the case under such
understanding of the totality of classes. Indeed, here the problem does not even
seem to be that we lack an understanding of the totality of classes but of even

17Indeed, see §4.4.
18See (Charles Parsons, 1974, p. 9)
19See for instance (Maddy, 1983, pp. 126-7) for something along these lines.
20(Charles Parsons, 1974, p. 9)
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any class. This is being forced upon by its close ties to language and our lack
of clarity with respect to this.

5.4.2 From classes to sets

After giving some reasons for rejecting the possibility of reducing sets to classes
in the previous section we now occupy ourselves with the converse notion,
namely, can we reduce classes to sets? The idea of the reductionist here seems
to be to understand statements regarding all sets as quantifying over some suit-
able large cardinal but such that it is, analogous to Russell’s notion of typical
ambiguity, not clear over which such cardinal this quantification is taking place.
This is what Parsons calls a vague understanding of the quantifiers21. Given
this understanding of the quantifiers, even when discussing properties that give
rise to classes with an extension too big to be sets such as [λx(x = x)], once
we make the statement more precise, ranging over some set, we can see that
even these classes as a higher layer of sets. Indeed, suppose the statement is
made precise by ranging over Vκ with κ some inaccessible strong enough that
the speaker is not aware of its existence.22 23 Then, the class will be a set once
we get to an interpretation of the quantifier when this ranges over Vκ+1, since
the extension of x̂(x = x) is the domain of discourse, which was in that case κ,
this being a set in Vκ+1. Now it is then very clear how this would reduce classes
to sets, for what we take as classes are just sets we have not yet grasped.

There are several ways to resist this reduction. First, we could say that given
our conception of class, the reduction rests in the concept we have of set, and
so it is not sure that this could be obtained in general, but that only in certain
theories of sets. Not, in particular, in a well-founded theory. Indeed, suppose
we consider again [λx(x = x)], since clearly [λx(x = x)] = [λx(x = x)], then
x̂(x = x) ∈ x̂(x = x), and suppose further that we have done the reduction of
this class to κ, then we would have that κ ∈ κ, which is simply false in zfc. That
the reduction cannot be carried out in the most common theory of sets, which
seems after all what Parsons tries to do since he talks about the von Neumann
hierarchy as the universes of quantification, is not to say that this cannot be
carried out at all, specially since we do not take sets to be necessarily well-
founded, but perhaps indicates that classes of a more traditional theory such as
nbg where self-membership of classes is disallowed would be less resistant to a
purported reduction. Hence, we should pay special attention to make sure that
reductionist arguments take into account, in order to be successful, the specifics
of our notion of class.

Note also that the reduction that Parsons is suggesting would be perhaps not
what we would at the outset thought of a successful reduction. Indeed, suppose
we have the class x̂(x 6= x), then we would look at ∅ as the adequate reduction of

21See (Charles Parsons, 1974, p. 10) and (Charles Parsons, 1983, p. 521).
22Though, one must be, according to Parsons, careful since this precisification does not

exactly capture the speaker’s intention, for we seem to be sharpening the domain too much,
see (Charles Parsons, 1983, p. 523).

23Moreover, the idea behind this proposal should remind the reader of the intuitionistic
semantics for set theory explained in §2.
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such class. Here we use a definite description since one can take the reductionist
to be saying that to each class there corresponds one and only one set. However
consider again our class x̂(x = x), this will be reduced to some κ. Now, what
Parsons says is that which particular κ this turns out to be is ambiguous. But
it would be some definite κ or another. However after realising this we again
want to account for our universal quantification, accordingly, we will be now
quantifying over some other inaccessible cardinal κ′, such that κ′ > κ, now
then this class will be reduced to some κ′. The idea here might be that the
class reduced to κ′ is a new class and so it makes sense that it is assigned to
a different set, since one class includes more sets than the other now that our
understanding of the notion of sets has grown to a new inaccessible. However,
note that, with our view of classes, this reply is not tenable since we take classes
to be intensional entities closely tied to properties. Even if the extension of the
class is different when taking the universe to be Vκ than when it is Vκ′ , this is
the same class since the property defining it [λx(x = x)] is the same in both
cases. And so repeating this thought process we see that this class has been
reduced to a infinite number of sets and all of them different. It is hard to see
then how a picture like this can be seen as a satisfactory reduction since, it is
not only that we do not know exactly to which set the class corresponds, but
that we do not know to which infinite family of sets we have reduced the class.
It is not clear how such a picture can give us a practical way to explain away our
talk of classes. Indeed, if asked to reinterpret talk about the empty class I can
just talk of the properties of the empty set, if asked about the universal class
in what seems to be Parsons understanding I will just refer to some cardinal
albeit not knowing which, but in our case we have lost also the definiteness of
reference.

One might think that we are exaggerating the problems of such a reduction
by drawing our attention to the case of structuralists about numbers24, (at least
when we are not talking about ante-rem structuralism) the idea here is that we
reduce numbers to certain positions on isomorphic structures, hence as in the
case we are interested with here, what seems like one object in our discourse has
been reduced to a plurality of entities. However, note that the situation here
looks more problematic since what for the structuralist brings these entities in
the reduction together is to be certain positions they share on some isomor-
phic structure. So one might want to know what is the analogous thing these
large cardinals share? Certainly nothing like that, for the only thing they have
in common is that at some point the speaker had an understanding of set such
that this could be formalised in a truth preserving way by a model of zfc of that
cardinality, Vκ. So unlike the structuralist reduction this seems a sui-generis re-
duction, relativised and particular to each of the mathematical subjects, and
seemingly not capable of objective verification as is straightforward in the case
of structuralists by means of finding an isomorphic map. In short, in the struc-
turalist case there seems to be a clear tie between the entities that constitute
the number, which seems to be lacking for the multiple sets corresponding to
the class.

Now, the previous remarks were an attempt to undermine the reductionist

24For more information consult for instance Benacerraf, 1965.
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picture by focusing on features of our conception of class, perhaps it is more
direct to oppose Parsons idea that one is allowed to take talk of universal quan-
tification over sets to be talk over some Vκ for a suitably large κ. Indeed,
one might resist the idea that preservation of truth is enough to preserve the
intended meaning of someone’s utterances and assertions. As is familiar to read-
ers acquainted with the debate regarding model-theoretic or Quinean arguments
undermining the determinacy of reference, such positions come with a cost.25.
Indeed, that this is the case is plain in the mathematical camp by thinking
about the opposition to nonstandard models of arithmetic, these models pre-
serve truth but might seem to be missing something significant nevertheless. As
Boolos puts it in our case:

reinterpreting what they say in such a way that it is not about all sets is changing the
meaning of what was said if not the truth value; (. . . ) [this] would be to misrepresent what
they said. (Boolos, 1998, p. 31)

Hence, that Parsons reductionist account preserves truth is not a sufficient
condition to take it as satisfactorily. In fact it seems to me that Parsons is con-
flating the distinction between not knowing that some set, like a large cardinal,
is actually a set from the fact that this set is part of the universe. If my inten-
tion is to quantify over all sets, I will quantify over the inaccessible even though
at some point on time I am ignorant of this fact. Upon becoming persuaded
this, only my epistemic state with regards to my domain of quantification will
change, not the domain itself. Quoting Boolos again:

But why should we believe that this account of the matter is the correct one rather than
the simpler one: that at to and t he quantified over the same sets and at ti believed something
about those sets (viz., that one of them was an inaccessible) that he did not believe at to?
(Boolos, 1998, p. 33)

Be that as it may, as Boolos also mentions26 this relativisation of reference
can be seen as going further than what Parsons seems prepared to accept. In-
deed, he only talks of interpretations ranging over Vκ, for κ inacessible, indeed
assuming the consistency of zfc, according to the downward Löwenheim-Skolem
theorem, there will be a countable model of this theory. Now, Parsons takes the
universe to be some inaccessible cardinal but if this ambiguity is taken seriously
and the only requirement is that the interpretation makes the statements true
how could we rule out a model where the universe is a countable set? The
dilemma seems to be that either we accept quantification over all sets, which
seems to be also supported by set-theoretical practice. Indeed, there is no warn-
ing of ambiguity when a textbook presents a theorem as holding for all sets. Or
we cannot rule out that the model we are quantifying over is a set we seem to be
not intending to quantify over such as a countable set. This however seems to
much ambiguity to accept happily, for one thing is that one does not grasp the
theory of inaccessible cardinals, and so what he takes to be all sets is just one of
those, but another is to make the speaker accept that they might be wrong in
their understanding of Cantor’s theorem and that actually they do not quantify

25The interested reader on this more general debate might consult (Williams, 2008) or
(Mcgee, 2005).

26(Boolos, 1998, p. 31),
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over uncountable sets.

Now a possible reply by Parsons would be to assert that any reasonable
user of zfc will have an adequate interpretation of Cantor’s theorem and so,
although his quantification will be ambiguous, it can rule out the possibility of
quantifying over a countable set. Indeed, for him, upon being acquainted with
an inaccessible the new domain cannot be this old inaccessible but something
larger since it needs to include this cardinal. However, it is not then clear
what is preventing a speaker to realise that the universe can contain larger
and larger inaccessibles and so that, in order to make sure that all of these
are encompassed in their speech, when they talk about all sets it is clear that
the intended domain cannot be some set be this as big as one wants since
a larger set is susceptible of being found. In a sense an understanding of this
possibility is what would eventually remove the ambiguity, and so at some point
any competent set theorist must be taken seriously as quantifying not over some
given set but over the class x̂(x = x) which is not reducible to any large cardinal
on pain of misreading the intended universality of the quantification. A user
that would accept otherwise is, albeit maybe in a less flagrant way, suffering
from the same incompetence as a speaker that accepted a countable model.

5.5 On the plurality of sets

In this section we consider the objection against classes that, any of the
functions that our theory of collections assigns to them can be carried out with-
out them by using plural quantification. The idea here is to substitute singular
quantification over classes with plural quantification over sets in order to carry
out the traditional mathematical tasks of classes explained in §5.2.2 such as
achieving finite axiomatisations or motivate large cardinal axioms. The advan-
tage then is one of qualitative parsimony, as already pointed out when talking
about the reductionist in §5.4, quoting Burgess:

The advantage of employing plural quantification in this way is that it leaves us able to
maintain that there is just one kind of collection, and that set theory is the most general
theory of collection. (Burgess, 2012, p. 201)

Then the question seems to be if we want to privilege a parsimonious ontology
and so keep plurals, or a classical logic and so retain classes. This seems to be
hence a matter of taste. Nevertheless, we can see that the worry as whether
interpreting the use of classes as referring to a single object or simply to a
plurality of sets is already present in Russell with the use of class as one and
class as many mentioned in §4:

Is a class which has many terms to be regarded as itself one or many? Taking the class
as equivalent simply to the numerical conjunction “A and B and C and etc.”, it seems plain
that it is many; yet it is quite necessary that we should be able to count classes as one each,
and we do habitually speak of a class. Thus classes would seem to be one in one sense and
many in another.(Russell, 1937, §74)

Hence, for the supporter of plural interpretation of class talk, when math-
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ematicians’ talk quantifies singularly over classes, what is really happening is
that they are using plural quantification over sets. Just as in the case of def-
inite descriptions there is a mismatch between the grammatical structure and
its logical or semantic content, as Cartwright puts it:

the use of ’collection’ I have in mind is one in which it serves only to singularize a plural
nominal: they are some people iff they are a collection of people. They are the present kings of
France iff they are the collection of present kings of France. (H. M. Cartwright, 1993, p. 213)

Hence, we would be in a position to paraphrase the truth conditions of
a sentence regarding classes to one regarding pluralities of sets. Consider as
an example under the plural reading that there are some sets that are well-
founded sets and such that all such sets are one of them. Indeed, assume
that zfc deals with all sets and consider all sets this theory describes. This
is enough to guarantee the truth of the assertion that the Russell class, namely
x̂(x /∈ x),27 exists. Even as we might not stop using talk of classes since this
singular nominal facilitates coreference and helps making statements about the
collections in question more concise. Indeed, as Uzquiano points out:

the purpose of the noun ’class’ is to bring into play convenient and familiar devices of
singular pronominal cross-reference (. . . ) [the use of these nouns is useful since] plural para-
phrases quickly become unwieldy and difficult to parse. (Uzquiano, 2012, p. 73)

In any case, the key idea is that even if very useful, this talk of classes can
always be paraphrased in terms of plurals and, more importantly, that is only
in that way that we understand the semantics of the expressions since we re-
alise that no existence of a collection encompassing the terms of the plurality is
required for the truth of such statements but only the existence of its compo-
nents. So the Russellian class-as-many is the correct semantic reading even if
the class-as-one is more friendly to the speaker.

One immediately sees the advantages of such an approach for a critic, such
as Boolos in (Boolos, 1998), takes sets to be all collections. Be that because
they are a friend of qualitative parsimony, as discussed in §5.4, or otherwise. As
Burgess says:

The advantage of employing plural quantification in this way is that it leaves us able to
maintain that there is just one kind of collection, and that set theory is the most general
theory of collection (Burgess, 2012, p. 201)

5.5.1 Membership matters

We want to point out several problems with this pluralist approach, that aim
at persuading the reader not to follow the pluralist down their proposed route
but to take the classes seriously both heuristically and semantically. As when
dealing with the issue of reducing classes to sets in §5.4.2, we have some more
general remarks and others more closely related to our notion of class. We
begin with the latter and focus on some observations that Uzquiano makes with

27Note that here the variables are taken to range over the sets.
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respect to the relation between sets and classes once we understand the latter
pluralistically. It is perhaps worth noting how, as we will see in a moment, what
Uzquiano characterises as a great advantage of the plural interpretation will be
for us rather an inconvenience. This of course is a sign of how our notion of class
is a revisionary one and departs from the way most usual theories characterise
these objects.

The first thing that Uzquiano notices is that on the most usual understand-
ing ‘sets are a special case if classes’28. Indeed the usual classification seems to
rule that classes encompass sets and proper classes, the latter being just those
collections too big to be sets. It is of course immediate why this is the case, since
in this framework sets are individual objects and classes are just collections of
individual objects but that are members of a further singular entity existing
over and above them, as it is indeed the case withe the members of sets. Recall
that the closest we get to such an identification in our view is as seen in §5.4.1,
through accepting a language with a name for each set and via the classes cor-
responding to the properties [λx.x ∈ ā]. However, note that under the pluralist
option the class we are looking for so that this is indistinguishable from the set a
is not the one just mentioned but rather [λx.x = ā], which will have as member
the set a i.e. under for the pluralist this will just be a. Uzquiano acknoledges the
issue here by considering the relation between individual ordinals and the class
On: ‘nothing can literally be a member of them—even though every ordinal is
one of them.’29. Uzquiano proposes thus that we understand the relation that
a set bears to a class not as we ordinarily do in terms of membership, but in
terms of correspondence:

Let us say that a set x and a class X correspond if and only if for every set y, y is a
member of x if and only if y is one of X. (Uzquiano, 2012, ibid.)

So coming back to our example, [λx.x ∈ ā] would correspond to a. Now, as
we have made abundantly clear throughout this work, this is not our position
since we take sets and classes to be very distinct entities and so the failure to
identify sets with classes need not be a problem in our view, in fact it seems more
an advantage of the pluralist position that in this view sets are not reducible to
classes as we defended above, and not a drawback as Uzquiano thinks.

We now focus on a potential problem that pluralist approaches have with
regards to membership. Indeed, the membership relation holds between two ob-
jects, not between an object and a plurality of objects or between two pluralities.
Quoting Russell:

And thus ∈ cannot represent the relation of a term to its class as many; for this would be
a relation of one term to many terms, not a two-term relation such as we want. This relation
might be expressed by “Socrates is one among men”; but this, in any case, cannot be taken to
be the meaning of ∈. (Russell, 1937, §76)

The pluralist, thus has no problem in explaining membership between sets
since these are singular objects. However, they must explain how we can have

28See (Uzquiano, 2012, p. 73)
29See (Uzquiano, 2012, ibid.)
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a set belonging to a class, this is something that the pluralist is pressed to do
since remember that he takes his view to vindicate the classical view of classes.
Namely, that these do not contain other classes, as seen above this is a problem
in our understanding of classes, and in this view sets are indeed the members
of classes. Incidentally, this means that a class cannot be a member of a set,
this is a common position regarding sets and classes that we do not have any
reason to dispute. Similarly to the relation of correspondence introduced above,
Uzquiano explains as follows the understanding of membership of some set of a
class:

The other item of business is to specify the conditions under which a formula of the form
x ∈ X is to be evaluated as true (relative to an assignment of values to the variables). The
answer is that x ∈ X will be true relative to an assignment when the set assigned to the set
variable x is one of the sets assigned to the class variable X. (Uzquiano, 2012, p. 76)

Hence here membership just means that x is one of the sets of the plurality
X. A natural question now is how would this framework handle membership
of a class to another class, the answer is that it cannot do so, as Uzquiano
observes: ‘It is of interest to notice that the proposal to eliminate occurrences
of the term ’class’ in favor of plural noun phrases does not iterate.’30. Here
we see that a class containing another class would be such iteration. Now, if
classes would indeed iterate we would have such things as the class of non-self
membered classes, and so on. The reason for this is that for the pluralist,31 such
iteration would be the same as having the plurality of pluralities of sets that
are non-self membered, but this seems to be nothing else that the plurality of
non-self membered sets, i.e. the pluralisation of classes is an idempotent device.
Hence, the pluralist cannot distinguish between X ∈ Y and X ⊂ Y . Uzquiano
takes this to be an advantage of the pluralist account since in the usual theories
of classes, say for instance nbg or mk, classes are not members of other classes.
In these theory then, iterative classes, i.e. classes of classes are not a thing and
so vindicate this plural reading that rejects so-called superplural quantification.

However, a theory of plurals that accepts this is not a permissible choice for
our understanding of classes. Indeed, it is clear that given our conception of
class where we have classes belonging to other classes and also potentially to
themselves, this feature is not an advantage but rather a grave disadvantage.

Consider as an example the following property [λx.x is infinite], since we
take the variables to range over everything, and so in particular over individ-
ual objects and collections, be these sets or classes. And since presumably, as
already mentioned we have reasons to believe that at least in the usual math-
ematical picture there are infinitely many of these, this property will be in-
stantiated by infinitely many things and so its associated class will also satisfy
it, i.e. [λx.x is infinite]x̂(x is infinite) and so x̂(x is infinite) ∈ x̂(x is infinite).
Now, assume for simplicity that this class only contains the infinite sets and
the class itself, then if we reject a superplural quantification one cannot distin-
guish this class from the class of all infinite sets, i.e.x̂(x is infinite & x ∈ V ).

30See (Uzquiano, 2012, p. 74)
31Not for all pluralist though, for instance Eileen Wagner does advocate for a theory ac-

commodating superplurals, see (Wagner, 2015).
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Indeed, under the plural reading of classes, the class of infinite collections is
just the collection of infinite sets, since ultimately all classes are just plurali-
ties of these, and so this class will just consist of the collection of infinite sets
twice counted which is still the same collection of infinite sets. But of course
these classes are different since one contains itself and the other does not! In-
deed while x̂(x is infinite) ∈ x̂(x is infinite) it is clear that x̂(x is infinite) /∈
x̂(x is infinite & x ∈ V ) as x̂(x is infinite) /∈ V . Note that here we assume that
the property of being a set is definable, if we do not assume this the problem
could be even worse since we end up with something that according to our
theory should not even be a class in the first place.

5.5.2 Where to hit the brakes

We now move to a more general worry regarding pluralist accounts, which how-
ever will have an impact for our choice of theory of classes. Indeed, the pluralist
rejects that the members of a class form an individual object distinct from them.
However, he seems to be perfectly happy that such individual objects collecting
their members exists when we deal with sets. This is something that we agree
with as explained in §4 when comparing sets to rigid designators, in the sense
that whenever their members exist they exist, and so if we take the position
that mathematical objects exist necessarily and we focus on the sets that only
contain pure sets, as it is usually done in mathematics, we arrive at the con-
clusion that all mathematical sets exist in all possible worlds. In the case of
non-mathematical sets, these that contain urelements, we get the weaker con-
clusion that whenever the urelements exist the set containing them also exists,
as van Inwagen says:

‘a position about sets that almost everyone holds: In every possible world in which,
for instance, Tom, Dick, and Harry exist, there also exists a set that contains just them.’
(Inwagen, 2006, p. 74)

and similarly Cartwright:

The cookies in the jar are such that in every possible world in which they exist, there is
a set of which they are the members (R. L. Cartwright, 2001, p. 30)

Now note first that although, as van Inwagen points out, the view expressed
above is the most common one, one might nevertheless what we could call a
nihilist about collections and insist that no plurality of objects forms a novel
object namely its collection, be this sets or classes or otherwise. One could even
spouse a more moderate version of the nihilist view, namely that the determi-
nation or not of a set by some objects may vary from possible world to possible
world.32 This is not the position with which we take issue here, although we
of course are not nihilists about sets and take seriously the idea that whenever
somethings can be collected in a set they are necessarily so collected (whenever
their elements are present), here we follow Cantor as explained in §4.2, with
regards to that the ability to count a finite collection is enough to have its set

32See for similar comments (Charles Parsons, 1983, p. 526), or (Boolos, 1984, p. 72).
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and how we carry this idea on into the transfinite through the ordinal hierarchy
or the powerset operation.33. Indeed, the position we want to focus on here is
that which seems to be admitted by Uzquiano and Burgess, namely that the
elements of sets, be this the strictly Cantorian ones or those more familiar to
the mathematician of zfc, succeed in determining a novel object, the set, while
those in a class do not. The question is then, why these double standards? Why
plurality principles apply to classes and not to sets?

It seems that the main problem with classes stems from the fact that as
pointed out in §5.2, set theory ought to be the theory of all collections, echoing
Boolos, Uzquiano says:

The subject matter of set theory comprises all the collections there are (. . . ). There are
no well-founded collections that lie outside of its realm, and, in particular, no collections that
fail to form a set, i.e., no proper classes. There is, as a consequence, no distinction to be made
between sets and classes. There is no proper class of all sets. Nor is there a proper class of all
ordinals. And, in general, one should not take at face value locutions that suggest that there
are proper classes as well as sets. (Uzquiano, 2012, p. 68)

The idea here seems to be that the pluralist has no issue with real collections,
or collections that are in good standing, the only such collections are sets and so
they accept it without problem. Classes, however, are not in the same category
and so this being unacceptable their use must be explained away, hence the
introduction of plural quantification. Now, as we have mentioned abundantly
we do not take set theory to encompass all collections, but those that were
begun to be studied by Cantor at the turn of the XX century. There is other
notion of collection namely those tied to extensions of logical properties that are
also used in general and, at least before trying any paraphrasing or reductionist
device seems also to be used in mathematics as indicated in §5.2. In fact, the
main problem that the pluralist seems to have is that they take classes to be ad
hoc devices to solve some problems of the theory of sets, but that since these
problems can be solved without appeal to them by using plurals, the latter
should be the preferred course of action. We, like the pluralist also reject the
use of such a type of class, the more orthodox use of the term, as pointed out
in §5.3.

That our classes are not the entities in ill standing that the pluralist wants to
excise from the ontological picture can be justified indirectly by the fact noted in
§5.5.1 that, when Uzquiano portrays as an advantage of the pluralist approach
that it does not allow classes to contain other classes since the usual class theories
also disallow such a move, this was taken by us as a big disadvantage. Indeed,
we do insist that classes contain other classes, hence it seems that the classes
Uzquiano is eager not to accept in his ontology are ones we also reject. We seem
to be able to draw similar conclusions from the following remarks by Burgess:

The word ’class’ rather than ’set’ was originally used by Frege for the extensions of con-
cepts, but it has since come to be used for set-like entities that in some mysterious way fail

33For a concise argument for the conclusion that the falsity of the necessity of any group
of individuals to constitute a set entails that there is a possible world devoid of sets consult
(R. L. Cartwright, 2001, §6)



5.5. ON THE PLURALITY OF SETS 111

to be sets. (Burgess, 2012, p. 200)

Indeed, it is clear that our notion of class is much closer to that of a Fregean
concept, given its key tie to logical properties, as opposed to the more com-
monplace notion of classes which, as we agree with Burgess make a distinction
without a difference between sets and classes. That Burgess is not directing
the pluralist account of classes to the entities we call classes is further demon-
strated by the fact that he then offers two different accounts of what classes
are, as we will see neither of this is an adequate description of our position.
Burgess talks first of the splitters, which take no class to be a set. Indeed, this
we also agree to, but then take every set to be coextensive with a class, now
as we remarked in §5.4.1 we do not endorse such a view, indeed remember our
remarks regarding the powerset operation, on pain of trivialising the language
with a name for each set. Burgess then identifies the lumpers which takes sets
not to be just coextensional but identical with some classes, the proper classes
having no classes as other members. Now, this position is something we really
do not endorse as can be clear from reading the previous chapter, we do take
sets and classes to be very different entities and so not identical and we see no
problem with properties instantiating other porperties.

In sum, the point that we are trying to make is that pluralists about classes
such as Uzquiano or Burgess accept that the members of sets make up a collec-
tion over and above themselves, but reject this in the case of the usual classes
of say nbg or mk. Since they see these entities as ill motivated, ad hoc, or
just being entities that bring a distinction without a difference with respect to
sets. Since our notion of class does not fall prey of any such charges as we have
tried to show throughout this and the preceding chapter, we take the pluralists
that takes sets as objects in good standing to have no reason not to do so with
the classes that we propose. Failure to do so would result on being charged
with arbitrariness since they would accept the existence of some well-standing
collections such as sets but not of other such as classes also in perfectly good
standing.

The previous defense of accepting classes has been focused in our notion
of class, namely that the criticisms that the pluralist raise for classes do not
apply to them and so they have no reason to reject our class offer. Now, it
seems however that there is some strand of criticism to which notions of classes
like ours that are close to Fregean extensions as pointed out by Burgess are
specially vulnerable to. Namely, that one feature that distinguishes sets from
classes, is that the latter are prone to paradox while the Cantorian notion of set
is not. This reasoning is specially forceful since although a claim that the Russell
class exists coupled with the possibility we accept of classes being members of
themselves and other classes leads to paradox, there seem to be nothing more
innocent that there are some objects such that all and only those objects that
are sets and not members of themselves are among them, the plural reading of
Russell’s class existence.

The point here is that at some point we should limit our admission of con-
stitution of new objects by their members or risk inconsistency. As Cartwright
beautifully puts it: ‘The brakes must thus be applied somewhere; but it is un-
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clear where’34 Note that in a sense Cantor gives us some indications as to when
we ought to hit the breaks with regards to sets. For instance, we should observe
the notion of limitation of size and so on, and thus since his theory of sets is
taken to be paradox free the breaks seem to have been applied correctly there.
However the issue seems trickier when we talk about classes, it seems we cannot
allow all properties to determine a class, but it would be ad hoc to bar some
properties to determine a class but not others. Even if asserting only to ban
those arising from paradoxical properties, we cannot be sure which ones will
turn out to be paradoxical and even this criterion seems prone to accusations
of ad hocness. So, even if we knew, one ought to be consistent in the treatment
of classes, i.e. so in any case one should not allow for any class to be a genuine
individual object. Moreover, since before we accused the pluralist of arbitrari-
ness when treating classes and sets differently, we would be blatantly falling on
our own sword if discriminating among classes in these respect.

Since we accept this point but we still maintain that we take, a priori before
paradoxical results appear, that both Cantorian sets and Russellian classes are
notions of collection and that so these should be treated alike in terms of deter-
mination of novel objects in terms of their members, we opt to bite the pluralist
bullet and accept that all properties, including the paradoxical ones will deter-
mine a class. Now, since of course we want to avoid paradox the reader can
already suspect that if we are not willing to compromise in the camp of which
properties determine a class, the compromise will have to come from elsewhere,
as we have seen in theories that allow for such freedom in the construction of
classes such as those of Maddy or Schindler, this will have to come from mod-
ifications to the logical system in use. These considerations will come to the
forefront in the next chapter when we discuss how the different theories surveyed
in §2 fare against the different criteria we have laid out throughout this work
for our theory of sets and classes, and so this seems a fitting point to conclude
the present chapter.

5.6 Summary

In this chapter made use of the facts about sets and classes explained in
previous chapters in order to address some philosophical arguments against the
use of classes in addition to sets in our theories of collections.

We began §5.2 by addressing the objection that the usual theories employed
in mathematics do not employ second order resources, and so in particular
do not employ classes and so we needn’t adopt the use of such entities. The
burden of proof is on us if we want to introduce second order resources and so
the possibility of classes. Here we explained how both outside (§5.2.1), but also
crucially within mathematics (§5.2.3) they seem to play an important role, if
not officially for crucial heuristic purposes.

Next, in §5.3 we addressed the related criticism that our theories of col-
lections needn’t deal with classes since these are after all not well-motivated
entities, as opposed to sets they are ad hoc. Against this charge we argued that

34See (R. L. Cartwright, 2001, p. 32).
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even though this seems to be the case to more traditional conceptions of classes
under our understanding classes are sufficiently well motivated and distinct from
sets to avoid this charge.

In §5.4, we looked into the worry that even if warranted in using sets and
classes, since one of the entities is reducible to the other, we would have a
more parsimonious ontology by giving eliminating the reducible entities from our
picture. First we looked into the possible reduction of sets to classes (§5.4.1) and
noticed that these reductions are not satisfactory since they seem to presuppose
the concept of set. Then we looked at the reduction of classes to sets (§5.4.2)
in particular in Parsons proposal of doing so via the notion of ambiguity of the
set-theoretical universe of quantification. Here again, we pointed out that this
reduction is not satisfactory once we respect the intensional character of our
classes, and more broadly, as well as by directly attacking the claim that our
reference to the universe of sets is indeterminate.

Finally, §5.5 we addressed the worry that a simpler ontology could be ob-
tained not by reductionist methods but by paraphrasing away the use of classes
in the discourse as plural quantification over sets, this is the correct interpre-
tation of th second order quntification in play. We took as an example of such
an approach that of Uzquiano and then made some remarks to the effect that
what he considers one of the main advantages of his approach, namely that as
standard theories of classes it does not allow for classes to be members of others
classes is in our view a disadvantage of the theory (§5.5.1). Next, we also raise
the worry for the pluralist of why they accept plural quantification over sets for
classes but they accept that objects can be collected into a set to form a novel
object collecting them (§5.5.2). Since we take classes to be as sets collections
in good standing we take the pluralist to be acting arbitrarily in this respect,
however, being coherent with respect means that also us will have to accept
that all properties determine a class even the ones leading to paradox, this will
have revisoconsequences for the logic of our theory.
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Chapter 6

Which classes?

6.1 Introduction

In this final chapter we will put together all the facts gathered in the preivous
chapters of this work regarding sets and classes in order to go back to the differ-
ent theories of collections surveyed in §2 and asses how they fullfil the different
requirements we laid out for a satisfactory theory, offering the reader our advice
about which theories ought to be prefered due to their better performance in
meeting our desiderata.

The chapter begins by putting together the different features regarding sets
and classes that we have been uncovering throughout the different sections of
this work in §6.2. We hope that this will serve as a remainder to the reader
about the desiderata we lay out for the theories studied as well as serve as
some sort of checklist when we asses the different theories of collections in the
remainder of the chapter. Indeed, this will be done in §6.3, were we will take
the theories studied in §2 and filter them trough the requirements laid out in
§6.2 in order to determine which system emerge as the more felicitous ones. We
will look at theories such as zfc and st more briefly since their shortcomings
have already been discussed extensively earlier in this work. We will pay more
attention to systems like nbg, nf, a, or those of Maddy and Schindler. Finally,
in §6.4 we will look back to the different chapters of this thesis and suggest to
the reader some further avenues of research not covered there but that arise
from their themes and we think are worth pursuing.

6.2 Taking stock of classes

During the course of this work we have been investigating sets and classes,
including several ideas regarding the different characteristics that our notion of
classes ought to fulfill. The aim of this section is to collect the different ideas
developed about sets and classes, especially of classes given the revisionary view
of these that we have taken here in order to carry out the review of the theories
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introduced in §2.

Notice then first that wen we think of collections of objects we might want
to refer to the collection of objects that share together some property, this is
in a sense a more subjective notion of collection tied to our linguistic abilities
and in our formalisation of that of property expressible in our given logical
language. Such extensions of properties is what we call classes, which are close
to the notion of Fregean concept surveyed in §1. However, we also see that we
might want to collect some objects that do not share any property, or that we
do not take to share a property to the best of our knowldege, or that share a
property we cannot express the with our language and so on. Here the idea is
that if finite we can still take this objects to form a collection if we count them
together.

This last idea is captured by the idea of Cantorian sets take into the infinite
and transfinite realm. These are then, the sets and the classes, the two ways we
have to approach the notion of putting together some objects into a collection.
Thus we could say that we have a classical way to approach our notion of set
but a revisionary way to approach the notion of class. Indeed, here we take
sets to be those collections that can be well-ordered by establishing an order
isomorphism between them and one of Cantor’s ordinal numbers discovered in
his investigations of the properties of Fourier series as discussed in §4.2. We also
noted in §4.4 that following Cantor’s powerset principle we take to be sets some
collections that, at least before explicitly adopting the axiom of choice, are not
as easy to well-order. We also see that from the idea of counting stems also
the requirement of limitation of size. Namely, that if a collection is so big that
one can project the transfinite sequence of ordinals this is somehow too big to
be counted and so cannot be a set. From operations like the powerset in which
we take all the subsets of a set, even if we have no way to refer to these in the
language, we see that the notion of set is closely tied to that of an arbitrary
function, as opposed to a definable one. And so in a sense we understand this
objective standing of sets were their existence is not tied to what we can express
and summarised by Lavine when remarking that: ‘for Cantor, (. . . ) "countable"
meant countable by God’1

Regarding classes, our story is more heterodox. As mentioned above, as
opposed to sets which are closely tied to arbitrary maps, classes are joined to
definable properties. As seen in §4.3, we take the Russellian notion of class
closely tied to that of a Fregean extension explained in §1 as a starting point.
These are entities not bound by the limitation of size property as seen by the
fact that Russell tried to show contradiction in Cantor’s reasoning by applying
his diagonalisation arguments to the universal class, of course although this is
too big to be a set it is straightforward to associate it with a class to this via
the property [λx.x = x].

Thus, we observed that while Cantor’s notion of set is not prone to paradox
this is the case with the Fregean extensions as belaboured in §1. We also re-
quire for the reasons outlined in §3 that classes can belong to other classes and
to themselves. This was suggested by noticing how such approach is of great

1See (Lavine, 1994, p. 55)
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advantage when one tries to solve puzzles in metaphysics for instance as we saw
in §3.2.1 regarding Bradley’s regress were the circle can be stopped by allow-
ing self-instantiation and also when formalising natural language inferences as
noted in §3.2.2 that deal with some property showing some other property. For
instance, since the class arising from the aforementioned property [λx.x = x],
x̂(x = x), is self-identical, i.e. x̂(x = x) = x̂(x = x), then it follows that it
instantiates the property [λx.x = x]x̂(x = x), and so it is in its extension and so
x̂(x = x) ∈ x̂(x = x). Again, we see how the notion of class is prone to paradox
since this kind of self-instantiation facilitates Russell’s paradox. We also argued
in §3.3 that when we use the property [λx.x = x] its corresponding class has
as members all the objects in the domain, i.e. that we are really quantifying
over the entire domain and endorsing the All-in-One principle, and so that our
theory of classes will have such object as the universal class.

We also noticed in §4.5 that, although this will depend on our language,
there might be in the same domain more sets than classes since the classes
that exits will be limited by our ability to pick them out with the expressible
properties of such a language. This is the sense in which classes can be seen as
more subjective than sets since although the latter are independent from us in
ontological terms, the former will depend on language. Related to this point is
that as opposed to sets which will have the same members and exist necessarily
in all possible worlds in which their members do, classes have an intensional,
or perhaps even hyperintensional, character. Their membership depending on
the world we the property they arise from is evaluated, unlike sets existence,
as noted in §4.5, extensionality will not suffice to individuate them. Indeed,
while the class of present emperors of France will be empty if evaluated in the
actual world, it would not have been so if we had looked in 1854 for it would
have contained Napoleon III. On the other hand ω would have had the same
members regardless of the French constitutional arrangements of the day.

Finally we also noted in §5.5.2 that since we see some arbitrariness in that
some friends of seeing talk of classes as just plural quantification over sets but
not sets as talk of plural quantification over objects. As we saw this could
be based in the fact that pluralists see sets but not classes as objects in good
standing. Since we of course see classes as such and also see that we could
be charged of the same offence if we took that some properties give rise to an
actual class but some others would not, we bite this bullet and admit that for
any definable property there correspond an object, namely its class. Even if this
leads us to accept that there is, for instance, a Russell class x̂(x /∈ x) associated
to the paradox inciting Russell property [x.x /∈ x]. Again this in contrast with
sets were assortments of objects like the totality of ordinals that might look like
candidates for this status are rejected due to their problematic size.

6.3 The theories revisited

With the remarks from the previous section regarding the features of our
notions of set and class in place, we now move to an assessment of the theories
introduced in §2. Here we will devote most of our space to deal with theories
of sets and classes. Of course, these are not all the theories we have dealt with
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throughout this work. There is for instance zfc a theory that only uses sets in its
ontology, however we feel that the remarks made at length on §5 regarding the
need to add classes to a theory of collections and especially to a mathematical
theory of collections in which the basic theory for which supplementation with
classes was being argued for was taken to be zfc, should make clear to the reader
why we do not endorse the use of zfc alone. Indeed, this has no objects that
are self membered, no objects that encompass the entire domain, or all objects
are extensionally individuated. This is not to say that we reject it as a theory
of sets, but that it is not an adequate theory of collections since it omits any
mention of classes and so to be satisfactory it ought to be supplemented with a
theory in which classes are treated appropriately, and for that a prerequisite is
to be at least treated somehow.

Another theory that we already discussed at some length is st, Russell’s
simple theory of types. First note that such a theory does not make the distinc-
tions between the two types of collection that we have clearly drawn between
sets and classes. For less general criticism, the reader is mostly referred to our
remarks in §3 in which we insisted in the necessity of our collections to be ca-
pable of self-instantiation. We also gave some particular instances in which the
formalisation of natural language inferences dealing with existential quantifica-
tion seem to be ill-served with a typed framework, as well as how our defense of
universal quantification over the entire domain does not fit well with the strat-
ified framework of the theory of types. Hence, as we suggested in §3.4 we now
turn, after the historical remarks of §4 and the philosophical arguments of §5,
to examining the different theories that include the use of classes. We begin
with Quine’s new foundations.

6.3.1 Quine’s New Foundations

The first thing we notice about Quine’s nf, explored in §2.3, is that, even if
this theory only recognises one type of collection, it is not entirely clear whether
the objects dealt with here are classes or sets. For example, the fact that these
collections are individuated extensionally might lead us to think we are dealing
with sets. However, we also oberve after further scrutiny that there is a blatant
lack of limitation of size doctrine for these entities and so the idea that these
are sets becomes untenable. Indeed, as already discussed in §2.3 paradoxes
are avoided in this theory through restricting the collections that exist in a
type theoretic way through nf’s axiom of comprehension which requires the
properties that give raise to a class to be stratified. This will not bar collections
such as the universal one V which is clearly too big to be a set. We also saw that
in this theory V ∈ V and this is the kind of self-membership that we want to
guarantee for classes. Moreover that these objects are closer to classes is clear
given our ability to prove the axiom of infinity through defining a stratified
non-empty irreflexive transitive binary relation.

More evidence that these objects are not compatible with our Cantorian
understanding of set comes when noticing that the stratification requirement
blocks, as we remarked in §2.3, the proof of Cantor’s theorem to the effect that
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P(X) > X. So it definitely seems that the entities defined here are closer to
classes given the reliance in definition through properties definable through a
stratified formula and we lack entities set-like enough. In the sense of being
independent enough from the definable properties, further evidence from this
overdependence on properties comes from the fact also mentioned above that
the axiom of choice a distinctively set-theoretic principle is disprovable in nf.
This is not what we desire for a theory of collections, we want a sharp distinction
between sets and classes but of course for the distinction to be sharp there must
be some distinction in place.

Note incidentally that this theory taken simply as a class theory would still
fall short of our mark not only because of extensionality but because the notion
of stratified formula lying at its core. Indeed this forces us to hit the ontological
brake for classes such as the Russell class arising from a property which is
not expressible in a stratified formula, <n otherwise syntactically well formed
formula. Since we take seriously the slogan that no formula without its class,
this restriction is not acceptable for a class theory that we would endorse.

So we see that nf is not an adequate theory of collections since it fails to
distinguish among these sets and classes, although the objects posited are closer
to classes than to sets, and so leaving aside the worry of lacking objects playing
the role we demand from sets, the requirement of stratification still bars this
from being considered as a satisfactory theory of classes.

We now briefly comment on ml the theory also introduced in §2.3. This
introduces in nf class variables, although we now have unrestricted comprehe-
nion for classes which was a criticsm of nf above, this theory is still deficient.
First because it defines classes as those objects that do not have other classes
as members, of course this is something we oppose as we have made abundantly
clear. It has also the odd consequence that the universal class is considered a set.
Still this approach does not solve one of the central problems of nf namely that
its its sets, now ruled by comprehension of stratified formulas, are too different
from the Cantorian sets we have in mind for us to be acceptable. Examples
includes the aforementioned blatant violations of limitation of size as well as
the refutation of ac, which ml conservatively extending nf carries with it, and
so it is also not acceptable to us. This theory attempts a separation between
sets and classes but not only are its classes not satisfactory, its sets look too
unrecognasible to even be labelled as sets.

6.3.2 nbg and mk

We now turn our attention to nbg. This, as we commented on §2.5, is the
usual expansion with classes of zfc, this being the most common theory of sets,
it can also be claimed that this is the most canonical theory of classes for the
mathematician. As the reader can probably by this point accurately predict, we
do not find this theory of sets and classes acceptable, even though we take zfc
as an acceptable development and axiomatisation of the principles behind the
Cantorian notion of set. So here our problems will not be like in §6.3.1 with nf’s
notion of set, but purely with the notion class in place. Indeed that we do not
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approve of this theory is clear when noticing that this is the canonical theory of
classes and we have labelled on multiple occasions on this work our approach to
classes as revisionary precisely by comparing it to the usual conception of class
which is embodied in nbg.

More concretely, we object to the fact that in nbg, like in ml above, all
collections are classes and these are distinguished from sets and proper classes.
We would rather prefer to label all objects as collections and proper classes just
as classes and leave sets as sets. Putting these terminological issues aside, as in
the case of ml, we do not accept that all elements of classes are sets. Indeed,
as we know we take it as fundamental that some proper classes, using the nbg
parlance, are elements of other proper classes. Here only sets are elements of
other classes and this we reject, in fact note that here all collections are well-
founded and again we do not take classes to obey this although we are open
for sets to abide by it. Here both sets and proper classes are individuated
extensionally, which again contradicts the intensional character that we attach
to classes. Note on a positive note that some of the axioms of nbg such as that of
intersection or complement do indeed encode the idea of classes obeying logical
operations, in this case negation and conjunction. However, recall that classes
includes sets so even if we are happy that these principles apply to proper classes
we are more cautious with the prospect of sets having for instance a complement.
Even if these turns out to be a proper class and not a set, we would prefer if
sets did not have a complement at all since these objects are bound by the usual
set-theoretic operations such as power set or pairing, which are indeed listed as
axioms, but not the logical ones like negation. In short, one could say that here
classes and sets are not properly well-distinguished entities.

We now turn our attention to the class existence theorem. If in nf we had a
class for every stratified formula, here we will have a class for each predicative
formula. Again as in the case of nf’s comprehension, where we remarked that we
do not find satisfactory to be limited in the classes that exist, here in particular
by the fact that the property they arise from is such that only set variables are
bound by quantifiers. Unlike in nf, nbg fares better in this respect since we do
have the Russell class. This is after all tied to a predicative formula, however
the paradox is blocked by using the fact that for something to be a member of
this class it ought to be a set and so if the class itself is a set then contradiction
would arise, again we do not agree with such a conditionaL. Indeed, we shouldn’t
assume that only sets can belong to classes and so again this doesn’t seem to
us a felicitous way to block the paradox. All the preceding remarks leads us to
reject nbg as a satisfactory theory of classes.

We now briefly turn our attention to the other theory considered in §2.5,
namely, mk. Recall that this is a theory stronger than nbg. In fact it is as
strong as nbg plus the existence of an inaccessible cardinal. This is achieved by
replacing the predicative comprehension schema of nbg in its infinite axioma-
tisation by an unrestricted comprehension schema. Given our principle of no
property without class, it is clear that mk ought to be preferred to nbg. Still, we
cannot take this theory as satisfactory with respect to its treatment of classes,
since negative issues that get carried over from nbg include not allowing proper
classes to contain other proper classes and solving the paradoxes through the
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same device using this fact regarding membership. In addition, the theory will
not distinguish clearly enough between sets and classes with regards to issues
like operations and individuaton.

6.3.3 Ackermann

In this section we deal with the theory a, Ackermann’s set theory, as well as
others introduced in §2.6. Although in a we also notice the problem that both
sets and classes are individuated extensionally, we readily notice an advantage
of this systme with respect to the previous theories of sets and classes just
considered. Namely, that here, although we will also have a set predicate,
this will not be definable. Recall that this was justified by Ackermann taking
seriously the idea that the extension of the set predicate is never completed and
varies with time and so we should not at any given point be allowed to fix its
extension. We also saw this can be modelled using intutionistic Kripke frames.
In particular it will not be definable in terms of membership as in ml, nbg, or
mk and so we seem to have as desired a more genuine distinction between sets
and proper classes. Indeed, as we also proved in §2.6 there are proper classes
that contain other proper classes and so this is something that we welcome.

Notwithstanding the previous remarks, we see that this theory still has lim-
itations that we cannot accept. For instance, consider the class comprehension
principle, as we saw in the case of nbg it prevents Russell’s paradox by speci-
fying that the elements of this new class will just be sets. But of course, we do
not endorse the restriction with regards the classes introduced that these should
only be introduced through properties whose instances are sets. Our compre-
hension principle must not discriminate a priori between properties satisfied by
sets and those by classes when it comes to deciding which entities are included
in the new class. Indeed, although this principle would guarantee a class of all
sets, it would not guarantee a universal class, i.e. a class including all sets and
classes, as we require. Related to this point we see that since we cannot rely on
this principle of comprehension to introduce classes containing other classes, we
cannot prove the fact that some class contains some other class constructibly,
by for instance considering the universal class. We must do this by appealing to
a contradiction via the definability of sets. So in sum even if this theory allows
a class to contain another class it does so in too an uninformative of a way to
be considered satisfactory.

There are also serious worries here with the notion of set Ackermann is
employing. Indeed, we see that as opposed to the Cantorian notion of set we
espouse, for Ackermann the axiom guaranteeing the existence of sets is com-
pletely devoid of any flavour of limitation of size. Even leaving this aside, as
we noted in §2.6, it seems arbitrary that since for Ackermann formulas with
class parameters are ill formed sentences, since recall that since the notion of
set is being always sharpened the range of these would not be stable enough,
but allows quantification over all of them. Given our adoption of the all in one
principle the domain must be a class and so ill formed as well according to him.
In any case, his set comprehension schema seems much closer to a reflection
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principle. This makes sense when we consider his idea of the notion of set in
continuous development, and so embodied in the fact that if at a given point
some class has only sets as members, in the next step of the hierarchy it will be
a itself coextensional with a set. Indeed, if the reader forgives the excursion into
zfc, in Vω, there is an infinite class of sets, and this ω is a set in Vω+1. It seems
an interesting question whether reflection principles fit in with the Cantorian
idea of set, lacking a more exhaustive analysis of the issue, it seems however
that closer to the spirit of Cantor’s ideas would be the notion of transfer prin-
ciples such as those of Friedman, as seen in §5.2.2. Indeed, reflection principles
approach the hierarchy from above.This we see in the proof of the axiom of
infinity of a through an appeal to the universe of sets. This would correspond
to Cantor’s transfinite and it seems at least dubious that appealing to such a,
for him, unknowable entity to prove some facts about sets would be felicitous
in this framework. Be this as it may, the notion of allowing a comprehension
principle not alluding to size to be governing the existence of sets seems to us
too close to the notion of class to find it satisfactory. In sum, in this theory
even though the classes are closer to our idea of class, they seem rather obscure
entities with regards to membership matters. It also seems that the notion of
set is too close to that of class.

We now look briefly into Reinhardt’s theory s. Note that one can interpret
Reinhardt’s talk of imagined entities as what we understand as classes. Even if
not a technical problem this can already prompt a more ontological protest from
us since we do not take classes as less real than sets as this denomination would
suggest but rather as equally real albeit different. Remember, incidentally, that
Ackermann takes the real subject of set theory to be sets and not classes, indeed
for us a satisfactory theory ought to take into consideration both entities and do
so seriously. In any case, the s schema characeristic of this theory is a reflection
principle similar to the comprehension for sets in a, although stronger since here
the objets satisfying the property are not required to be sets like in Ackermann’s
case, and so our worries doubting this is a principle respecting Cantor’s notion
of set limited by size are still a negative feature carried into this system. Also
note that the class comprehension schema of s is less adequate than that of a
since it embodies the idea of limitation of size, note in fact that the universal
class of sets cannot be introduced through this principle, and so is added to
the language as a constant. Hence it seems that this theory is actually less
acceptable than a.

Finally, we also mentioned the stronger theory of Powell, p. This is an
interesting theory in the sense that it adds a predication symbol, 3, informing
us that a class is predicated of a set. However, the fact that we have noted
already in multiple occasions that sets and classes are not well-distingushed
entities resurfaces, for here classes are just taken to be subsets of the universe
of sets for which the language provides the constant V . Hence, although when
talking about sets it is the same to say that a set belongs to a class or the class
is predicated of the class. For classes no such axiom is present. Of course, we
reject this since we seem to be taking classes as too close to properties since
even if a class is predicated of the property giving rise to some class we want to
say that it actually belongs to the given class not that it is predicated of it, this
seems to be some kind of categorical mistake. In short, here sets seem to be
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taken more seriously than classes in ontological terms since only the former are
allowed to belong to classes, this we do not take as a good principle. Other usual
points of friction here include extensionality for classes as well as restrictions
to the class comprehension of the theory that we do not accept, such as that
classes can only appear to the left of predication.

6.3.4 Maddy and Schindler

We now look at the theories of classes of Maddy and Schindler described in
§2.8 and §2.7 respectively. First notice that both of these theories satisfy one of
our main desideratum regarding classes that we found wanting in many of the
theories discussed above. Namely that every open formula in the language of
the theory will give rise to a corresponding class. Now, our next question will be
to determine how are the paradoxes blocked. Recall that in Schindler’s case this
is achieved by qualifying that the usual equivalence between satisfaction of a
property and belonging to its corresponding class is restricted for those classes
that are in the range of significance of the property. In the case of Maddy
this is by making the logic of her system paracomplete and so by allowing the
membership relation to have gaps. For Maddy’s intended model then, whether
the russell class is self-membered is neither true nor false and so the paradox
does not ensue. In Schindler’s case the point is that the Russell class is not in
its own range of significance and so the comprehension schema leading to the
paradox does not apply to it.

We note how these seem much more felicitous ways to avoid inconsistency
than defining the sets in terms of the membership relation and so blocking the
paradox by establishing that the Russell class is not a set, as we saw to be the
case in some of the theories discussed above. First because we are not imposing
restrictions on the membership of classes and perhaps also because, in a sense,
it is unsatisfactory that something clear under our conception of set and class as
this fact must be demonstrated thorugh a proof by contradiction. We also note
that both the approaches of Schindler and Maddy are similar in their dealing
with the paradoxical classes. So although to every property there corresponds
a class, it is not necessarily the case that it makes sense for every object to
be predicated of it and so that it is straightforward to determine its belonging
to such a class through comprehension. Insisting in this would be incurring in
some kind of categorical mistake. Schindler labels his theory as Gödelian in
spirit given the following quote:

a new idea for the solution of the paradoxes, especially suited to their intensional form. It
consists in blaming the paradoxes not on the axiom that every propositional function defines
a concept or class, but on the assumption that every concept gives a meaningful proposition,
if asserted for any arbitrary object or objects as arguments.(Gödel, 1984, p. 228)

Incidentally, Gödel is referring in the above quote to the theory of types of
Russell. Given our concerns with such a framework it is fortunate that both of
the theories under consideration carry out the principle in a type-free way. The
possibility of this achievement and that it would constitute an improvement on
the typed solution is acknowledged subsequently by Gödel himself:
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It is not impossible that the idea of limited ranges of significance could be carried out
without the above restrictive principle. It might even turn out that it is possible to assume
every concept to be significant everywhere except for certain "singular points" or "limiting
points," so that the paradoxes would appear as something analogous to dividing by zero. Such
a system would be most satisfactory in the following respect: our logical intuitions would then
remain correct up to certain minor corrections, i.e., they could then be considered to give an
essentially correct, only somewhat "blurred," picture of the real state of affairs. (Gödel, 1984,
p. 229)

Hence although a friend of bivalence might prefer Schindler’s approach to
Maddy’s, and a friend of a the Kripkean apprach to the paradoxes of truth might
prefer the opposite route, we see that both accounts solve the problem similarly.
We also see that both theories have no problem with allowing other classes to
belong to themselves or to others, in fact both take the universal class to belong
to itself. Indeed, we take to be as Maddy also notices, a great advantage of
her theory that, as we saw, it can prove that the class of infinite collections is
self-membered as we have conjectured earlier in this work.

Coming back to Schindler’s theory, we also take as positive feature that
ranges of significance are closed under connectives. This takes seriously our idea
that classes are a logical notion. However, it is not that positive that classes
are, provided their ranges of significance coincide, extensionally individuated.
Indeed, this is not the case in Maddy’s theory in which, as discussed already
in §2.7, although sets are coextensionally individuated, equality for classes only
follows if the two terms are identical. Hence one might have here the opposite
problem, namely that this criterion might be too extreme of a notion. She then
introduces the idea of a different notion of identity in which we can express that
a class is equivalent to its coextensional set or to classes given by very similar
properties. Note also that this relation only holds between classes when these
are total, and so Schindler’s extensionality axiom would also apply here since
these classes share the same range of significance, this is also a nice similarity
between both theories.

Both of these theories are theories of classes, and so one should ask about the
treatment of sets in these systems. As we saw in §2.8, Maddy suggest introducing
a constant for the universe of sets and also for each set, and so we see that her
theory is intended as a supplement for an already known such theory such as
zfc. The idea of a supplementary theory is also shared by Schindler’s theory
since he suggest introducing sets as urelements indicating that these will be in
the range of significance of all the classes. Now here we find a problem since
we do not take sets as urelements, indeed, this are extensionally individuated
collections. However it seems easy to apply here some solution similar to Maddy
by stipulating that the membership relations of the sets is determined already
by some background theory like zfc and even by introducing names for such
entities, then since all of these will be total, they will indeed be extensionally
individuated.

Now, although very philosophically satisfying the main problem of these
theories compared to the previous ones examined seems to surface when we
turn to their mathematical application, for instance as we saw in §2.8.1 the
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proposed axiomatisation of Maddy’s theory is both unsound and incomplete,
and the consistency strength of Schindler’s theory is just ω+1 as seen in §2.7.1.

The issue now of which one of these to prefer over the other will depend
largely on the reader’s fondness or lack thereof of classical logic or Kripkean
hierarchies. However, we would be satisfied with any of these moree than with
any of the other proposals surveyed in theis work. These are, albeit not the
most technically satisfying theories, the ones that fare best with respect to the
desiderata laid out at the beginning of the chapter in their treatment of classes.
They also seem able to piggyback on a theory of sets like zfc which we find to
give an acceptable picture of sets in order to deal with these entities. Finally,
since we also see that their approach to dealing with the paradoxes is in both
cases Gödelian in spirit in the sense described above, the fact of which one fares
better could be largely seen as a matter of logical taste.

6.4 Looking backwards and looking forwards

In this last section we point out some topics that have emerged throughout
this work about which we would have liked, time had permitted, to learn more
about or regarding which we think that interesting work continuing the themes
of the present work might be carried out in the future.

In §1 we explored Frege’s formal theory as presented in (Frege, 1893) and
(Frege, 1950), it would have been of course very interesting to delve more deeply
into such a system especially given the importance of Frege’s theorem in contem-
porary philosophy of mathematics, for instances in research programs such as
neologicism. It would have also been interesting to look at Frege’s own attempt
to respond to Russell’s paradox in the appendix he added to the second volume
of (Frege, 1893), even if ultimately unsuccessful. In this chapter we also looked
at possible diagnosis of where does the inconsistency arise, we only looked at
this briefly and it would have been interesting to look more into this issue as
is for instance discussed in (Boolos, 1986), (Boolos, 1993) or (Dummet, 1991,
§17).

In §2 we looked at different theories of collection that try to salvage some
of the ideas present in Frege’s theory without incurring in contradiction. Of
course our biggest regret in this chapter was not to include for reasons of time
and space more theories to the discussion, although the possibilities are almost
endless at this point, we would have liked to look with some attention to the
theory of supersets of Toby Meadows proposed in (Meadows, 2016) and to the
theory of properties presented by Linnebo in (Linnebo, 2006) and put them
through the lens developed in this work with regards to sets and classes. Next
to the desire to include more theories in the survey there is also that of looking
in more detail to the ones included, especially those that we usually have less
opportunities to encounter while stidying mathematics like tha or Ackermann
or Reinhardt, and also that of Powell with its difference between the symbols
for membership and predication. We would also have found interesting to look
more into the relations that the different theories share with each other, since
the comparisons drawn here were usually lim ited to zfc.
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In §3 we presented some considerations that a satisfactory theory of collec-
tions must take into account. The focus was in the need to accommodate self-
instantiating properties, in order to account for natural language inferences, and
metaphysical puzzles. It would seem natural now to come back and asses how
well our conception of class accounts for the particular inferences and puzzles
considered. It would have also been better of course if we had considered more
applications of our notion of class, by looking at different areas of metaphysics
or instances of inferences were their application could be helpful. In this chapter
we also dealt with unrestricted quantification. We looked at the inadequacy of
st to deal with argument against restricted quantification presented there. It
would be important to further look into the replies that a supporter of typed
frameworks could offer to our criticism regarding the lack of expressive power of
their language. We also defended the All-in-One principle, again it would have
been better if more time had permitted dealing further with issues raised by the
debate regarding whether the domain of discourse is an object. Similar remarks
go to the objections levelled to our broad defense of property reductionism raised
by the intensional or even hyperintensional character of properties.

In §4 we offered a historical account of Cantor’s notion of set as a well-
orderable collection, of course this account was quite brief and so we would
have liked explore many features of his framework further. These include more
central issues such as the importance of notion of counting and how this relates
to ordinals or the tension in his conception of set after the introduction of the
power. However are not limited to these since other areas that suggest them-
selves of interest include Cantor’s theological motivations, his views in non-well
founded collections or in particular enities like singletons and the emptyset. In
this chapter we also dealt with Russell’s reaction to Cantor’s diagonal argument
noting his mistaken suspicion of an error in the proof, it would be of interest
to delve into the process that made Russell realise that his assumptions regard-
ing the inconsistency of Cantor’s system were misguided. Since we noted the
similarity between Russellian classes and Fregean extension a detailed analysis
of their differences also seems to be called for. Here we also looked into the
differences between sets and classes. We for insance mentioned their different
individuating conditions. This seems to be a very interesting issue since after
rejecting extensionality and noting the issues regarding hyperintensionality one
can ask what is the best way to individuate classes and how given the usual as-
sumption that sets exist necessarily one can account for the intensional flavour
of the entities. Suggestions here included looking into impossible worlds, or
epistemic readings of possible worlds. Another fascinating topic that deserves
attention and was briefly touched upon here is the use of our conception of set
and classes in order to assess the justification of mathemaical axioms.

In §5 addressed some philosophical arguments against the use of classes in
addition to sets in our theories of collections. We begun by giving instances of
the use of in mathematics of second order resources, and so more time would
have allowed to incorporate more examples to this small catalogue. Of particular
interest seemed the use of such resources in the investigation of large cardinal
principles. We also looked into the worry that even if warranted in using sets
and classes, since one of the entities is reducible to the other, we would have
a more parsimonious ontology by giving eliminating the reducible entities from
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our picture. Here we focused in, when looking at the reduction of classes to
sets at Parsons proposal in (Charles Parsons, 1974), it would be of interest to
compare his views there with the position he adopts in (Charles Parsons, 1983)
and how this relates to our notion of class. Here we also addressed the worry
that a simpler ontology could be obtained by paraphrasing away the use of
classes in the discourse as plural quantification over sets. It looks worthy to
investigate how the notion of superplurals as discussed in (Wagner, 2015) would
have an impact in allowing the pluralist to make sense of our position requiring
membership of classes to other classes. It would have also been important to
look at other attemps to paraphrase away classes beyond plurals. We could
for instance have looked at substitutional interpretations of classes as found for
instance in (Quine, 1974) or (Charles Parsons, 1971). Of course we could have
also looked at different objections to our use of classes and sets, for instance
one might find it very important for a theory to give a uniform treatment of the
collections in place and argue that this is lacking in our proposal. The criticism
being that although we have a theory of classes and one of sets we do not have
a single theory of collections. Indeed, for a physics analogy consider that one
might think that having a theory of leptons and one of bosons does not amount
to having a theory of particles. And so a theory like zfc which for all its faults
can acommodate this coherence requirement ought to be prefered.

Finally, in §6 we have put together the facts gathered in the preivous chapters
regarding sets and classes and assesed how the theories of collections surveyed
fullfil these requirements. Of course a more detailed and systematic analysis
of each of the theories against the criteria summarised here would have been
prefered. Especially, in the case of of those like zfc and st that were only
superficially treated at this point. Regarding the methodology of our analysis
note that we were assesing each theory mostly in individual terms. It would
have perhaps been more illustrative in order to gain a more general picture to
perform an analysis of a more comparative nature between the theories. Indeed,
the usefulness of a comparative analysis seems to be patent when we noticed that
our prefered theories of classes, those of Maddy and Schindler seem to adopt
a similar apprach to the avoidance of paradox. Of particular interst would be
to carry out an study of up to what extent these theories are similar. For
instance, are the classes that Maddy’s structure does not form a judgmenent
regarding their membership of other class, precisely what for Schindler consitute
the singularities of such class? And, if not how do these two notions relate?
Note, of course, that the most ambitious task ahead of us would be to, instead
of assesing how the theories of other authors fare when faced with our criteria as
our present work does, produce our own theory of collections explicitly designed
with the satisfaction of such criteria in mind.

6.5 Summary

In this final put together all the facts gathered in the preivous chapters of this
work regarding sets and classes in order to asses how the theories of collections
surveyed earlier fullfil the different requirements we laid out for a theory to be
considered satsifactory.



128 CHAPTER 6. WHICH CLASSES?

The chapter begun by putting together the different features regarding sets
and classes that we have been uncovering throughout this work in §6.2 and
which can be broadly summarised as taking a Cantorian combinatorial view of
sets and a Russellian logical position on classes. With these criteria in place we
turned to the assesment of the theories in §6.3. Here we dealt in greater detail
with the theories nf and ml (§6.3.1),nbg and mk (§6.3.2), a, s and p (§6.3.3)
as well as those of Maddy and Schindler (§6.3.4). We also made some brief
remarks about zfc and st recalling their already encountered shortcomings.
We concluded that the theories better equipped to accommodate our notions of
set and class are those of Maddy and Schindler, since they avoid common pitfalls
of other discussed theories such as treating classes in a less serious way than sets,
in terms of restrictons to their existence or their ability to be members of other
classes, or drawing a difference without a distinction between the two catgories
of entities. Finally we closed the chapter with some directions for future work
arising from the topics present in this work in §6.4.
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