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ABSTRACT

I introduce a model of judgment aggregation that allows for an
explicit distinction between rationality and feasibility constraints.
The former are assumed to be satisfied by the individual agents;
the latter must be met by the collective decision returned by the
aggregation rule in use. Using this model, I characterise the class of
combinations of rationality and feasibility constraints for which the
majority rule can guarantee feasible outcomes and I propose several
majoritarian aggregation rules that, in some sense, approximate
the ideal of the majority when using the majority rule itself is not
feasible. Finally, to illustrate the power and flexibility of the model,
I show how it can be used to simulate several common voting
rules in a simple and elegant manner. This includes the well-known
Borda rule, for which finding a natural counterpart in judgment
aggregation has long been an elusive quest.
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1 INTRODUCTION

The field of judgment aggregation is concerned with the design
and analysis of procedures for combining the judgments of several
agents regarding the truth of a number of logically related state-
ments into a collective judgment [23, 34]. Inspired by questions
arising in legal theory [27], it has received significant attention in
both philosophy and economics, starting with the seminal contri-
bution of List and Pettit [33]. More recently, due to its potential
for applications in areas such as multiagent systems and crowd-
sourcing, and due to the interesting algorithmic questions it raises,
judgment aggregation has also received increasing attention in
computer science and artificial intelligence [1, 13, 21, 47].

I propose to enrich the standard model of judgment aggregation
by distinguishing between rationality constraints (to be respected
by the individual agents when supplying their judgments) and
feasibility constraints (to be respected by the outcomes returned
by an aggregation rule). In contrast to this proposal, in essentially
all existing work on judgment aggregation there is only a single
type of constraint (which sometimes is explicitly represented and
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sometimes left implicit), governing what is permissible for both the
input and the output.

This new model will allow us to handle a wider range of applica-
tion scenarios than what has hitherto been possible. For example,
we may consider it irrational for an individual to support both a law
to subsidise local health education and a law providing tax breaks to
international fast food chains, while we may very well accept this
combination as a compromise when returned by an aggregation
rule (i.e., in some contexts, rationality constraints may be more
demanding than feasibility constraints). At the same time, for the
outcomes of an aggregation rule we may be bound by budget con-
siderations, while we may not want to think of individuals as being
concerned with such feasibility constraints when pondering their
personal judgments (i.e., in other contexts, feasibility constraints
may be more demanding than rationality constraints).

ExampiE 1. The 5-member local council of a medium-sized town
has to decide on the funding for three projects: refurbishing the
primary school (¢1), organising a “Summer of Culture” (¢3), and
building a second parking lot next to the shopping mall (¢3). The
budget is limited and it is not feasible to fund all three projects,
ie, =(p1 A @2 A @3) is a feasibility constraint. However, the indi-
vidual councillors are not expected to keep this constraint in mind
when making their personal judgments regarding the merit of each
project. Instead, each of them can be assumed to want to please at
least one type of clientele, i.e., it would be irrational for a councillor
not to recommend any of the projects for funding. Thus, ¢1 V@2V @3
is a rationality constraint. Suppose they vote as follows:

¢1 @2 @3

Councillor 1
Councillor 2
Councillor 3
Councillor 4
Councillor 5

_m = O =
_am O O
= e =

Thus, all councillors respect the rationality constraint. If we decide
on each issue by majority, then the outcome is (1, 1, 1), in viola-
tion of the feasibility constraint. A better rule might be to select
from amongst the feasible outcomes one that maximises overall
agreement, resulting in a tie between (1, 1,0) and (1,0, 1). A

Existing work on judgment aggregation speaks of either “consis-
tency” [33] or “rationality” [22] to define what individual judgments
are permissible. Feasibility is not discussed as a separate concept
in this literature. Rather, the common assumption is that for the
output one would want to impose the same requirements as for the
input. This is known as collective rationality. On the other hand,
the concept of a feasibility constraint on aggregation outcomes is



prominent in work on logic-based belief merging [26], a framework
that is closely related to judgment aggregation [17]. But in belief
merging one usually makes no assumptions regarding individual
rationality (other than respecting the laws of classical logic).

While the explicit distinction between rationality and feasibility
constraints is a new idea, similar ideas—arguably—are implicit in at
least some prior work on judgment aggregation. For instance, in a
proposal for a model of judgment aggregation to handle scenarios
that require reasoning about a number of premises and a single
conclusion, Miller [36] suggests that individual agents may have
subjective views on the logical relationship between the premises
and the conclusion. Using my terminology, this would amount to
each individual agent being subject to a possibly different rational-
ity constraint. In related work, Benamara et al. [2] allow for the
possibility that a given agent may or may not accept the (shared)
rationality constraint. Another example is the work of Lang and
Slavkovik [31]. While—in line with much of the literature—they
only specify a single constraint (which conceptually takes on the
role of a feasibility constraint), some of their results relate to sce-
narios where all individual agents happen to conform to a stronger
constraint than the feasibility constraint imposed explicitly. That
stronger constraint corresponds to the rationality constraint in
my model. Costantini et al. [7] speculate about the possibility of
learning feasibility constraints from data: if most individual agents
happen to respect a certain constraint, even if that constraint is
not explicitly imposed as a rationality constraint, then it arguably
makes sense to try to respect this constraint in the output of a judg-
ment aggregation rule. Finally, my proposal to clearly distinguish
rationality from feasibility constraints is conceptually (though not
technically) similar to an idea due to Porello [43, 44] who proposes
to use different logical calculi to assess the consistency of individual
judgments (which is what I call rationality) and the consistency of
collective judgments (which is what I call feasibility).

Besides the conceptual contribution of proposing an enriched
model of judgment aggregation and formulating a number of natu-
ral aggregation rules for this model, the technical contribution of
this paper is twofold. First, I fully characterise the set of all com-
binations of rationality and feasibility constraints that avoid the
“majority paradox” illustrated by Example 1, where the majority
rule applied to individual judgments that are rational returns a
collective outcome that fails to be feasible. Second, I show how to
embed several voting rules into the model in a simple and elegant
manner. This includes, amongst others, the Borda rule (for which
finding an appropriate counterpart in judgment aggregation has
long been an open problem and for which there still is no broad
consensus as to what would be the “right” kind of embedding). It
also includes the Uncovered Set (which appears not to have been
discussed in the context of judgment aggregation before). Refining
an idea originally due to Lang and Slavkovik [31], my approach
makes it possible to simulate several common voting rules using
the same basic judgment aggregation rules by only varying the
feasibility constraint.

The remainder of the paper is organised as follows. Section 2 is a
presentation of my model of judgment aggregation with rationality
and feasibility constraints. In Section 3, I characterise the range of
aggregation problems for which the majority rule is well-behaved
and then define several other majoritarian rules that approximate

the ideal represented by the majority whilst guaranteeing the feasi-
bility of outcomes by definition. My approach to simulating voting
rules in judgment aggregation is introduced in Section 4. This ap-
proach is then applied to the majoritarian aggregation rules defined
earlier, yielding several common voting rules. Section 5 concludes.

2 THE MODEL

In this section, I introduce the model of judgment aggregation with
rationality and feasibility constraints. It heavily borrows from the
standard model of judgment aggregation going back to the work of
List and Pettit [33], particularly in its incarnation known as “binary
aggregation with integrity constraints” [21, 22].

2.1 Notational Preliminaries

For any given set S, we use P(S) to denote its powerset, i.e., the set
of all subsets of S, and P4 (S) to denote the set of nonempty subsets
of S, ie, P+(S) = P(S) \ {0}.

Recall the familiar argmax-operator, which for a given set S
and a given function f : S§ — R can be used to denote the set of
elements x in S for which f(x) is maximal:

argmax f(x) = {xe€S|f(y)> f(x)fornoy e S}

x€S
In analogy to argmax, we define the argsetmax-operator, which for
two given sets S and S” as well as a function f : S — P(S’) can be
used to denote the set of elements x in S for which f(x) is maximal
with respect to set-inclusion:

argsetmax f(x) = {xeS| f(y) D f(x) fornoy € S}

x€eS

2.2 Judgments and Aggregation Rules

Let N = {1,...,n} with n > 1 be a finite set of agents. For ease of
exposition, throughout this paper we assume that n is odd (so we
can avoid having to consider tied majorities).

Each agent is asked to answer a number of questions with either
“yes” or “no”. We model these questions as a finite set @, referred to
as the agenda. A judgment is a function J : ® — {0, 1}, mapping each
agenda item ¢ € @ to either 0 (indicating rejection) or 1 (indicating
acceptance). We often write {0, 1}? as a shorthand for @ — {0, 1},
the space of all possible judgments. For any two judgments J : ® —
{0,1} and J’ : ® — {0, 1}, let their equaliser be defined as the set of
agenda items on which they agree:

EqUJ.J) = fee®|J(p)=J"(p))

A profile J = (J1,...,Jn) € ({0, 1}®)™ is a vector of judgments, one
for each agent. That is, in profile J every agent i € N provides us
with her judgment J;. The majority judgment Maj(J) : ® — {0, 1}
derived from profile J is defined as follows, for every ¢ € ®:

. B 0 ifl{ie N|Ji(p) =0} >
Maj(/)e) = {1 if1{i e N1 Ji(p) = 1| >

Note that, due to our assumption that n is odd, Maj(J) is always a
complete judgment, taking a well-defined position on every single
agenda item.

An aggregation rule is a function F that takes as input a profile
and that returns as output a single judgment that is supposed to
represent a suitable compromise between the judgments made by
the individual agents. In fact, most rules allow for the possibility of
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ties between two or more judgments in the output. Thus, formally
an aggregation rule is a function F : ({0, o 5 2,0, 1)),
mapping any given profile to a nonempty set of judgments.!

An example for an aggregation rule is the majority rule, defined
as Fyj ¢ J — {Maj(J)}. That is, for any given profile, it returns a
singleton set containing only the majority judgment.

2.3 Rationality and Feasibility Constraints

By a slight abuse of notation, we identify each agenda item ¢ € @
with a propositional variable. Let £(®) be the propositional language
over this set of variables. That is, £(®) is the set of all well-formed
formulas of propositional logic that we can construct using the
propositional variables in ® and the familiar connectives — (nega-
tion), A (conjunction), V (disjunction), and — (implication).

We are going to think of such formulas as constraints on judg-
ments. In particular, we say that a judgment J : & — {0, 1} satisfies
a constraint T € L(®), denoted J |= T, if T evaluates to true under
the assignment of propositional variables to truth values induced
by J in the natural manner, for the usual semantics of classical
propositional logic [8]. In other words, this notion of satisfaction is
defined recursively as follows:

o ] |= ¢ for propositional variables ¢ € ®ifand only if J(¢) = 1

e J = -T'if and only if J |= T is not the case

e JIET AT’ ifand only ifboth J =T and J =T’

e JETVIifandonlyif J =T or J |= T’ (or both)

e JET - I”ifand onlyif J [ T or J |= I/ (or both)
Thus, for example, if J is given by (¢1 — 1,¢2 — 0,93 — 1), or
(1,0, 1) for short, then J = ¢1 V —¢3 but J £ ¢2. We write T = T’
in case I entails T/, i.e., in case J |= T implies J |= I’ for every
judgment J € {0, 1}2. For a given formula I' € L(®), the set of
models of T is the set of judgments that satisfy I':

Mod(T) = {Jef{0,1}®|J T}

We make use of constraints in two complementary ways. First,
we use rationality constraints T € L(®) to constrain the range of
profiles we consider relevant. A profile J = (J1,...,Jn) € ({0, 1}2)n
is called T'-rational if J; |= T for alli € N, ie., if J € Mod(T')".
Second, we use feasibility constraints T’ € L(®) to define what
outcomes we consider acceptable. We are now ready to state the
central definition of this paper.

DEFINITION 1. An aggregation rule F is said to guarantee
I'’-feasible outcomes on I'-rational profiles, if for every profile J €
Mod(T)™ it is the case that F(J) € Mod(T"’).

In other words, F guarantees I'’-feasible outcomes on I'-rational
profiles, if J |= T’ for all J € F(J) for every profile J with J; E T
for all i € N. In the remainder of this paper, I' always denotes a
rationality constraint and " always denotes a feasibility constraint.

3 MAJORITARIAN AGGREGATION RULES

The majority rule is very appealing on normative grounds, as it
treats all agents in a “fair” manner. However, as we are going to see,

'How to break ties so as to select a single judgment from the set of judgments returned
by an aggregation rule is a question of some interest that, however, is beyond the
scope of this paper. For instance, in the case of Example 1, we may favour (1, 0, 1)
over (1, 1, 0), as the latter would leave Councillor 2 extremely unhappy.

it cannot always guarantee that the outcomes it returns will be fea-
sible. Whether this problem arises depends on both the rationality
and the feasibility constraint. In this section, I first prove a charac-
terisation theorem that settles for which combinations of rationality
and feasibility constraints the majority rule is well-behaved.
When the conditions of this characterisation theorem are not
met, then we should not use the majority rule. Nevertheless, we
may want to preserve some of its appealing features. In the second
part of this section, I therefore define several aggregation rules that
are “as close as possible” to the majority rule, whilst nevertheless
being able to guarantee the feasibility of outcomes. These rules
differ in how they interpret the qualification “as close as possible”.?

3.1 The Majority Rule

Recall that, for any given profile J, the majority rule Fj,j returns a
set containing only the majority judgment Maj(J).

ExampLE 2. Consider the case of ® = {¢1, @2, 3} and =T’ =
(91V @2V 3). For this scenario, the majority rule Fyj,j does not guar-
antee feasible outcomes on all rational profiles, as demonstrated by
the following counterexample J = (J1, J2, J3):

¢1 Q2 @3
Agentl 1 0 0 JE@Ve2Ves
Agent2 0 0 J2E@1Ve2Ves

RE@LV @2V es
0 Maj(J) £ @1V @2V @3

This is a variant of the famous doctrinal paradox, showing that the
majority rule may violate constraints (“doctrines”) that are satisfied
by every single individual [27]. A

1
Agent3 0 0 1
Majority 0 0

Of course, this problem does not occur for every combination of
constraints. So when can we guarantee feasible outcomes, given
rational profiles? For the standard model of judgment aggregation
(with T = I"’) the answer to this question is well understood. To be
able to state it here, we require some further terminology.

Recall that a clause is a disjunction of literals. Let us call a for-
mula T’ € L(®) simple, if it is logically equivalent to a conjunction
of clauses with at most two literals each. Otherwise I is called
nonsimple. Note that these definitions can also be applied to clauses:
a simple clause has at most two literals and a nonsimple clause
cannot be simplified to a clause with fewer than three literals.

By a known result, in case I' = I/, the majority rule will guar-
antee I''-feasible outcomes on I'-rational profiles if and only if T is
simple [22, Theorem 28].3 Thus, to use the language of that paper,
the majority rule can “lift” the constraint I from the individual to
the collective level if and only if T is simple.

We are now going to state and prove a generalisation of this
result for the model of judgment aggregation with rationality and
feasibility constraints. This requires some additional machinery.

2 All of the rules defined here are known rules for the special case of T' = . Some were
originally inspired by similar rules for preference aggregation. There unfortunately
is no consensus regarding terminology and a variety of different—often confusing—
names are used to refer to these rules in the literature. I propose here a very simple
naming scheme that directly alludes to what is being optimised by each rule.

3This is the “syntactic counterpart” of a seminal result in judgment aggregation, first
proved by Nehring and Puppe [41] in an algebraic framework, which characterises the
domains on which the majority rule is well-behaved as the so-called median spaces.



Recall that a prime implicate of a formula T’ € L(®) is a clause
€ L(®) such that (i) I' |= & and (ii) 7 is logically equivalent to
every clause 7’ € L(®) with T |= #’ and #’ |= 7 [35]. Thus, the
prime implicates of T are the logically strongest clauses that are
entailed by T'. For example, if I' = (p V q) A (p — r), then the set of
prime implicates of T includes (p V g), (=p V r), and (g V r). Observe
that a formula T is simple if and only if all its prime implicates are
simple.* We are going to make use of the following well-known
property of prime implicates [35, p. 59].

LemMMA 1. If T |= T is the case, then for every prime implicate =’
of T there exists a prime implicate & of T such thatx |= n’.

Using the concept of prime implicates, we now extend the definition
of simplicity from single formulas to pairs of formulas.

DEFINITION 2. A pair of formulas (T,T’) € L(®)? is simple, if
for every nonsimple prime implicate ©’ of T’ there exists a simple
prime implicate = of T such that & |= 7’.

In particular, if I'” is simple (and thus has no nonsimple prime
implicates), then (I',I'’) is simple for every I' € L(®).

ExaMPLE 3. Consider the agenda ® = {¢1, ¢2, 93, ¢4, ¢5} and the
following two constraints:

I = (p1Ve2) A3V eaVgs)

r’ (p1V @2V 93)
Then neither I’ nor I'” are simple, because they involve 3-clauses
that cannot be eliminated. Nevertheless, (I',T”) is simple, because
the 3-clause @1 V @2 V @3 is entailed by the 2-clause @1 V ¢2. A

We are now ready to state a characterisation theorem that identifies
the precise conditions under which the majority rule is safe to use.

THEOREM 2. The majority rule guarantees I''-feasible outcomes
on T-rational profiles if and only if T |= T’ and (T, T”) is simple.

Proor. We first show that I' |= I’ is a necessary condition
for Fyppaj guaranteeing I'’-feasible outcomes on I'-rational profiles.
Suppose I' | T’ and thus Mod(I') ¢ Mod(I"”). This means that
there exists a judgment J € Mod(T') \ Mod(I'’). Now consider the
unanimous profile J = (J,...,J). Then, even though J satisfies
the rationality constraint I', the majority judgment Maj(J) = J
returned by Fyy,j fails to satisfy the feasibility constraint I'".

So, from now on assume I' |= I'’. It remains to be shown that,
given this assumption, Fyfj guarantees I'-feasible outcomes on
T'-rational profiles if and only if (T,I'’) is simple.

(=) We prove the contrapositive. So suppose (I, I'’) is not simple.
Thus, there exists a nonsimple prime implicate 7’ of I'” such that
for no simple prime implicate 7 of T it is the case that = |= n’.
However, by Lemma 1, we know that there must exist some prime
implicate 7 of T such that 7 |= 7’. Hence, this 7 must be nonsimple.
As they are nonsimple, both 7 and 7’ must be clauses with at least
three literals, and as 7 |= 7’ they must share at least three literals.
W.lo.g., we may assume that these shared literals are all positive (if
not, given that the majority rule treats acceptance and rejection of
4The right-to-left part of this statement follows from the fact that I' is equivalent to
the conjunction of all its prime implicates. The left-to-right parts follows from the
completeness of the resolution calculus (i.e., given a representation of I in terms of

2-clauses, we can infer every prime implicate of I') and the fact that applying the
resolution rule to two 2-clauses can never yield a k-clause with k > 2.

agenda items symmetrically, we can switch the roles of, say, ¢1 and
—¢1 everywhere), i.e., 7 = 91 V@2 V3V and 1’ = @1V Vs Vi,
with the ¢; being agenda items and i and ¢ being (possibly empty)
clauses with ¢ |= /’. Now consider a profile J € Mod(T')" in which
the first L%J agents accept ¢ but neither ¢, nor ¢s3, the next I'%'I
agents accept ¢z but neither ¢; nor ¢3, and the remaining agents
accept @3 but neither ¢; nor ¢,. Furthermore, J; [ ¢ (and thus
Ji [E ¢) for all agents i € N. Note that J; |= 7 forall i € N and thus
it is indeed possible to extend this to a I'-rational profile. However,
Maj(J) rejects all of @1, @2, and @3, and it also does not satisfy /”.
Hence, Maj(J) |~ #’, which implies Maj(J) £ I”, i.e., the majority
judgment is not I'’-feasible.

(<) Suppose (T,I”) is simple. For the sake of contradiction,
assume there exists a profile J € Mod(I')" with Maj(J) | I'’. Then
we must have Maj(J) [ #’ for one of the prime implicates 7" of T'’.
There must be a simple prime implicate 7 of T with = |= #’: if
7’ is nonsimple, then this follows from the simplicity of (T,I”);
if 7’ is simple, then this follows from Lemma 1 and the fact that
simplicity of 7" together with 7 |= #’ implies simplicity of 7. Due
to Maj(J) ¢ 7/, we must have also Maj(J) |£ 7. W.lo.g., we may
assume that 7 is of the form @1 V ¢2.> As J is T-rational, we must
have Ji(¢1) = 1or Ji(pz) = 1forall i € N. Hence, as n is odd,
there must be a strict majority accepting at least one of ¢; and ¢,.
W.l.o.g., assume this is so for ¢1, i.e., Maj(J) |= ¢1. But then we
get Maj(J) = 7 and thus Maj(J) |= n’ and Maj(J) |= I’, which
contradicts our original assumption. O

So the majority rule is not well-behaved in all cases. In the remain-
der of this section, I therefore define several alternative aggregation
rules that guarantee feasible outcomes by definition, whilst pre-
serving some of the attractiveness of the majority rule.

3.2 Rules Based on Simple Majorities

Let I be a feasibility constraint. The first rule goes through all judg-
ments that satisfy T” and selects those for which the set of agenda
items on which there is agreement with the majority judgment
cannot be extended further.

DEFINITION 3. In the context of the feasibility constraini T, the
max-set rule maps any given profile J to the following outcome:

max-set(J,I’) = argsetmax Eq(J, Maj(J))
JeMod(I")
Lang et al. [30] call this the maximal Condorcet rule, while Nehring
et al. [40] call its outcome max-set(J,T”) the Condorcet set.

Strictly speaking, max-set is a family of aggregation rules, one
for each feasibility constraint I'/ (the same is true for all other rules
to be introduced in this section). For a family of aggregation rules F
such as max-set, we are going to write F(-,T’) for the aggregation
rule induced by feasibility constraint I'’.

Adopting the terminology of Nehring et al. [40], let us call an
aggregation rule F that guarantees I''-feasible outcomes majori-
tarian, if it never unnecessarily rejects a majority opinion, i.e., if
F(J) € max-set(J,T”) for all profiles J. Observe that a majoritarian
rule F will return only the majority judgment whenever doing so
is feasible: Maj(J) |= I'" implies F(J) = {Maj(J)}.
5In case 7 is not even a proper 2-clause but merely a single literal, the remainder of
the proof is analogous (but simpler).



The rule defined next seeks to maximise the number of agenda
items on which the majority opinion is being respected.

DEFINITION 4. In the context of the feasibility constraint T, the

max-num rule maps any given profile J to the following outcome:
argmax [Eq(J, Maj(J))|

JeMod(T")
This has been called the endpoint rule by Miller and Osherson [37]
and the maximum-cardinality subagenda rule by Lang et al. [29]. It
also has been called the (generalised) Slater rule [13, 40], because—
as we are going to see in Section 4—it is closely related to the
well-known Slater rule in preference aggregation.

max-num(J,T’/) =

3.3 Rules Based on Weighted Majorities

If we also take into account the strengths of the majorities to be
respected, then we naturally arrive at a rule that maximises the
overall number of opinions that are being respected, summing both
over individual agents and over agenda items.

DEFINITION 5. In the context of the feasibility constraint T, the
max-sum rule maps any given profile J to the following outcome:

argmax " [Eq(J, Jy)|

JeMod(I”) jen

max-sum(J,I’) =

This has been called the prototype rule by Miller and Osherson [37]
and the maximum-weight subagenda rule by Lang et al. [29]. More
common names are ‘the” distance-based rule [15, 42], the median
rule [30, 40], and the (generalised) Kemeny rule [9, 14]. The latter
name is due to the close connection between max-sum and the
Kemeny rule in preference aggregation (see Section 4).

Let me conclude this section by pointing out that there are further
options for defining majoritarian rules that take the strengths of ma-
jorities into account. I briefly sketch two of them here. One option
is to return judgments that are maximally majoritarian in a lexico-
graphic sense, i.e., we first try to satisfy as many of the strongest
majorities as we can, then as many of the second-strongest majori-
ties as we can, and so forth. Such a lexi-max rule has been discussed
by Nehring and Pivato [39] and Everaere et al. [16]. Another option
is to implement this kind of sequential rule in a greedy fashion,
i.e., to adopt majority decisions in order of their strengths but now
without enforcing lexicographic optimality.® This is closely related
to Tideman’s ranked-pairs rule in preference aggregation [48]. In
judgment aggregation such a greedy-max rule has been discussed
by Lang et al. [29] and by Porello and Endriss [45], under the names
of ranked-agenda rule and support-based rule, respectively.

4 EMBEDDING COMMON VOTING RULES

It is well known that judgment aggregation is a generalisation
of the standard model of preference aggregation studied in social
choice theory [13, 32]. Exploring this connection has been use-
ful, for instance, to clarify the nature of impossibility theorems
in both areas [10] and to obtain complexity results in judgment
aggregation [15]. Nevertheless, attempts to exploit this connection
to generalise voting rules (for preference aggregation) to judgment
aggregation have only succeeded to a limited extent [29, 31, 40]. In

This makes a difference only in case there are several agenda items with the exact
same majority strength (in favour or against).

particular, there is no consensus in the literature as to what kind
of judgment aggregation rule would correspond to the Borda rule,
one of the most important voting rules [9, 11].

In this section, I am going to demonstrate that the clear distinc-
tion between rationality and feasibility constraints facilitates the
embedding of a range of voting rules into judgment aggregation.
In particular, we are going to see that—contrary to what earlier
attempts may have suggested [31]—it is possible to simulate the
Borda rule in judgment aggregation using the standard embedding
of preferences into judgment aggregation. In addition, I provide the
first simulation of the Uncovered Set within judgment aggregation
and a new embedding of the Copeland rule. All of the voting rules
discussed in this section will turn out to correspond to one of the
three basic majoritarian aggregation rules introduced earlier.

This section is strongly inspired by work of Lang and Slavkovik
[31], although I believe that my new model provides a better frame-
work in which to carry out this kind of research agenda.

4.1 Voting Theory Preliminaries

We briefly recall the relevant fundamentals from the theory of
voting [49]. Let X be a finite set of alternatives with m = |X|. We
now think of N = {1,...,n} as a set of voters. Again, we assume
that n is odd. Every voter i € N is endowed with a preference
order =;, which is a total order on X. We use X! to denote the set of
all possible preference orders. We write >; for the strict part of =;.
The majority relation >y, is defined on X as follows:

x>y y ifandonlyif [{i e N|x>; y}| > F

Given the stated preferences of the voters, the question arises how
one should select the “best” alternative. A voting rule (or social choice
function) encodes a possible answer to this question. It is a function
F: X!" - P, (X), mapping any given profile of preferences to a
set of (tied) election winners. Here are six examples:

e Borda. Under the Borda rule, we select the alternatives that
maximise the score B(x) = Y jen I{y | x >; y}|. Thus, an
alternative x receives as many points from a voter i as there
are other alternatives that i ranks below x [3].

e Copeland. Under the Copeland rule, we select the alternatives
maximising the score C(x) = [{y | x >ar yH—Uly | y >am x}.
Thus, we select the alternatives that maximise the difference
between won and lost pairwise majority contests [6].

e Uncovered Set.For any x € X,let D(x) = {y | x > y} denote
the set of alternatives dominated by x. We say that x covers y
if D(x) 2 D(y). The Uncovered Set is the set of alternatives
that are not covered by any other alternatives [20, 38].

e Top Cycle. The Top Cycle is the smallest nonempty subset S
of X such that every alternative in S wins all majority con-
tests against all alternatives not in S [5].

o Slater. Under the Slater rule, we select the top alternatives of
those total orders on X that minimise disagreement with > .
Here, disagreement is measured in terms of the number of
pairs of alternatives ranked differently [46].

e Kemeny. Under the Kemeny rule, we select the top alterna-
tives of those total orders on X that minimise the sum of the
disagreements with the individual preference orders >; [25].



An alternative x is called a Condorcet winner in case x >y y for
all alternatives y # x. While there may be no Condorcet winner
for a given profile, if there is one, then it is unique and—with the
exception of the Borda rule—all of the solution concepts listed above
will select that Condorcet winner and no other alternatives.

4.2 Simulating Preference Aggregation

We adapt the standard approach of embedding preference aggrega-
tion into judgment aggregation [10, 13] to our model. Given a set
of alternatives X, we define the preference agenda CID); as follows:

fbiﬁ_ = Apxpy | v,y € X}

Thus, for every pair of alternatives (x, y) we introduce an agenda
item py.,, acceptance of which intuitively signifies that the agent
in question likes x at least as much as y. When formulating con-
straints, we use px>y as a shorthand for pyyyy A =pys -

We can now use formulas, with propositional variables ranging
over the preference agenda, to describe properties of a binary rela-
tion »=. Examples include the familiar properties of completeness,
transitivity, and antisymmetry (which together define total orders):

COMPLETE = /\(px>;y V Pysx)
X,y
ANTISYM = /\ “(Pxi=y A Pys=x)
XFY
TRANSITIVE = /\ (Px=y N Pys=z = Pxi=z)
XY,z

In fact, we need not restrict attention to properties of binary rela-
tions that are usually associated with preferences:

NoCHAIN = /\ “(px>y A Py>z)
X,Y,z

ROOTED = \//\px>y
X y#x

The NoCHAIN property expresses that there exists no chain of
strictly ranked alternatives of length 3 or more. A judgment satisfies
RooTED when there is exactly one top alternative that is ranked
strictly above all others.” We can now use the basic properties
defined earlier to describe more complex properties:

WEAKORDER = COMPLETE A TRANSITIVE
RANKING = WEAKORDER A ANTISYM
Dicuotomous = WEAKORDER A NOCHAIN
WINNER = RoOOTED A DicHOTOMOUS

Thus, we have J |= RANKING if and only if the binary relation >
described by the agenda items accepted by J is a total order (i.e., a
strict ranking of the alternatives). Note that the difference between
RooTED and WINNER is that the latter fixes the relationship between
the alternatives that are not at the top (intuitively, WINNER declares
indifference between all of them), while the former permits any
kind of structure with a single top element.

"While RooTED explicitly postulates the existence of at least one such top alternative,
due to the semantics of > there cannot be more than one.

ExamPLE 4. Let X = {x,y,z}. The corresponding preference
agenda has nine elements. Consider this profile for three agents:

Px=x Pxry Pxzz Py=x Pyry Pyrz Pzxx Pzry Pzirz

Agent 1 1 1 1 0 1 1 0 0 1
Agent 2 1 0 0 1 1 1 1 0 1
Agent 3 1 1 0 0 1 0 1 1 1

Thus, agent 1 has preference order x >1 y >1 z, agent 2 has
y >2 z >3 x, and agent 3 has z >3 x >3 y. If we aggregate
this profile using the majority rule, then we obtain the judgment
(1,1,0,0,1,1,1,0,1), which corresponds to the binary relation >
with x > y > z > x. Thus, we obtain a cycle! This is an instance
of the classic Condorcet paradox [49]. In the rendering in judgment
aggregation given here, this paradox manifests itself in the fact that
each of the three individual judgments satisfies RANKING, but the
majority judgment does not. We can also make a subtly stronger
statement: the majority judgment does not satisfy ROoTED, which
means that there is no Condorcet winner in this profile. A

We are going to impose RANKING as a rationality constraint to
model the fact that each voter supplies us with a ranking of the
alternatives.® Feasibility constraints of interest are those that entail
ROOTED, as this allows us to associate a single winning alternative
with every single judgment in the outcome. Observe that RANKING,
in particular, entails ROOTED, as every total order on a finite set
has exactly one top element. We are going to focus on RANKING
and WINNER for feasibility constraints, but also comment on the
possibility of using ROOTED instead.

Thus, to simulate a voting rule in judgment aggregation, we first
translate the given preference profile into a profile of judgments
(which should all satisfy RANKING). We then apply a judgment
aggregation rule. Finally, for each of the judgments J in the outcome
(for which we must assume that they all satisfy ROOTED), we extract
that one alternative x for which py is satisfied by J for all other
alternatives y. The following definition formalises this approach.

DEFINITION 6. Fix a set of alternatives X. Let F be an aggregation
rule for the corresponding preference agenda CD{ that guarantees
RooTED-feasible outcomes on RANKING-rationafproﬁles. Then we
say that F, when restricted to RANKING-rational profiles, simulates

the voting rule F' if, for every preference profile (=1,. .., n) and
corresponding profile ] = (J1,. .., Jn), the following holds:
F'(m1,.0mn) = | (x €X 1T prsy forally # x)

JeF())

As an aside, let us count how many distinct models the constraints
we use to represent inputs and outputs have. There are m models of
the constraint WINNER (as each of the m alternatives could be the
top alternative) and m! models of RANKING (one for each permuta-
tion of the m alternatives). For comparison, the number of models
of RooTED is m - 2M=1)(Mm=2); there are m possibilities for choosing
a top alternative x, and then each of the (m — 1)(m — 2) propositions
Py=z With x # y # z # x can be made either true or false.

8While most voting rules, including the six defined in Section 4.1, presuppose that
ballots take the form of such rankings, there are exceptions. The most important is
approval voting, where you vote by approving a subset of the alternatives [4]. For
approval voting, DicHoToMOUs would be an appropriate rationality constraint.



Rationality Feasibility ‘ max-set max-num  max-sum
RANKED RANKED Top Cycle Slater Kemeny
RANKED WINNER Uncovered Set  Copeland Borda

Table 1: Embedding Common Voting Rules

4.3 Results

Applying our three majoritarian aggregation rules (max-set,
max-num, and max-sum) to profiles of judgments that all satisfy
RANKING and using either RANKING or WINNER as the feasibility
constraint yields—potentially—up to six different voting rules. In-
terestingly, they all turn out to be very well-known rules. These
results are summarised in Table 1. In fact, the results in the first
row (which can be expressed in the standard model of judgment
aggregation, given that T' = ') were previously known. In particu-
lar, those for the Kemeny and the Slater rule are immediate from
the relevant definitions and best classified as folklore. The former
is implicit, for instance, in the work of Endriss et al. [15] and the
latter, for instance, in that of Nehring et al. [40].

The fact that, when restricted to RANKING-rational profiles,
max-set( -, RANKING) simulates the Top Cycle was first noted by
Lang and Slavkovik [31].7 This may be seen as follows. For a given
preference profile, suppose we are looking for a ranking > that max-
imises agreement on the relative ordering of pairs of alternatives
with the majority relation (with respect to set-inclusion). Then it
cannot be the case that, in >, an element of the Top Cycle is ranked
below an alternative not in the Top Cycle—because in that case
swapping an adjacent pair of this kind would lead to strictly greater
agreement with the majority relation. Thus, max-set( - , RANKING)
returns all rankings in which Top Cycle alternatives are ranked
above non-Top Cycle alternatives. And the maximal elements in
those rankings form the Top Cycle.

In the remainder of this section, I am going to prove and comment
on the results in the second row of Table 1.

THEOREM 3. When restricted to RANKING-rational profiles,
max-sum( -, WINNER) simulates the Borda rule.

Proor. For any given alternative x € X, let J* denote the judg-
ment with J*(p,.-,) = 1if and only if y = x or z # x. Observe
that Mod(WINNER) = {J* | x € X}. Now, for any given profile
J € Mod(RANKING)", we obtain:

argmax > [Eq(, J)l

J€Mod(WINNER) je N
argmax " [EqU*, Ji)|

J*IxeX jen

= argmax Z l{o € ‘b); | T (¢) = Ji()}]
J¥IxeX jeNn

max-sum(J, WINNER) =

Fixing x, we can decompose the preference agenda like this:
X = Py ly=2Ulpyz [ x#y#z#x}U
{px#y | Yy #x}U {py#x | Y+ x}

First, J* and J; agree on {py-, | y = z} for all J; € Mod(RANKING):
they both accept all m agenda items in this set. Second, while J*
also accepts all of {pysz | x#y#z#x}any J; € Mod(RANKING)

To be precise, their result subtly differs from the result stated here.

accepts exactly half of them, i.e., (m — 1)(m — 2)/2 agenda items.
Note that these two figures do not depend on the choice of x, so
we can ignore them as we evaluate argmax. Finally, J* accepts all
of {Pxpy 1y #x) and rejects all of {pys=x |y # x}. Ji agrees with
these judgments exactly for those alternatives y that are ranked
below x by agent i, i.e., the number of agreements for this part of
the agenda is 2 - [{y | x >; y}|. Note that the factor of 2 is irrelevant
for the evaluation of argmax, so we can drop it and obtain:

max-sum(J, WINNER) = argmax Z
J¥IxeX jen

Hy | x > y}

But this is a direct simulation of the Borda rule, so we are done. O

So the Borda and the Kemeny rule reduce to the same aggregation
rule when viewed through the lense of judgment aggregation. This
may come as a surprise for a number of reasons, one of them
being the difference in computational complexity of the two rules.
While the Kemeny rule is highly intractable [24], the Borda rule,
of course, can be computed in polynomial time. The explanation is
simple. While both rules require us to maximise the sum of relevant
agreements, the key difference is the number of potential outcomes
we have to inspect: for WINNER the number of models is polynomial,
while for RANKING it is super-exponential.

Still, the fact that there are connections between the Borda and
the Kemeny rule is not entirely new either. First, both can be defined
in terms of majority margins [19]. Second, using the distance-based
approach to the rationalisation of voting rules [12], the Kemeny rule
is naturally rationalised using the swap-distance and, by a result of
Farkas and Nitzan [18], the same is possible for Borda. Third, Lang
et al. [28] observe similarities between Borda and Kemeny when
interpreted in the context of graph aggregation.

As previously mentioned, how to model the Borda rule in judg-
ment aggregation has long been an open problem. There now are
alternative proposals to the one I have given here, but the question
of what is the “right” approach certainly has not been settled. One
approach is due to Dietrich [9]. Using my terminology, he defines
a scoring function as a function that associates each pair (¢, J;) of
an agenda item and a (rational) judgment with a score. The cor-
responding aggregation rule is the rule that returns the (feasible)
judgments J that maximise the sum of the scores we obtain when
we apply the scoring function to all pairs of agenda items ¢ in J
and judgments J; in the profile. Then, when using the preference
agenda and a specific scoring function (the reversal scoring function,
scoring how many agenda items need to be flipped in J; to preserve
rationality if ¢ is flipped), we obtain a counterpart of the Borda
rule. This is an attractive approach, in particular as it also permits
modelling other positional scoring rules [49]. On the downside, the
definition is very complex and, arguably, does not well reflect the
algorithmic simplicity of the original Borda rule. Duddy et al. [11]
propose an aggregation rule that is similar in spirit to the Borda
rule, but which does not amount to a full simulation of Borda in
judgment aggregation. Lang and Slavkovik [31] attempt a similar
kind of embedding as I have performed here, using ROOTED instead
of WINNER. They show that this attempt fails, although it does
result in a voting rule that, again, is similar in spirit.

THEOREM 4. When restricted to RANKING-rational profiles,
max-num( - , WINNER) simulates the Copeland rule.



PRrOOF. Define J* as in the proof of Theorem 3. Consider any
profile J € Mod(RANKING)". We obtain:

max-num(J, WINNER) = argmax |Eq(J, Maj(]))I

J €Mod(WINNER)
= argmax |[Eq(J*, Maj(J))|
JX|xeX
= argmax |(p € @% | J*(p) = Maj(J) ()}
JX|xeX

Now consider the decomposition of CID); also considered in the proof
of Theorem 3. J* and Maj(J) agree on all m propositions of the
form p,., with y = z and on exactly (m —1)(m — 2)/2 propositions
of the form py,. , with x # y # z # x. Furthermore, they agree on
Px =y if and only if they agree on pyy . Thus, to evaluate argmax,
we can simply count the number of times J* and Maj(J) agree on
propositions of the form p,,,. But recall that J* (py-,) = 1 for all
alternatives y. Thus, we obtain:

max-num(J, WINNER) = argmax [{pxs-y | Maj(J) (pxs=y) = 1}
JX|xeX

Hence, x is selected if it maximises the number of alternatives y
it beats in pairwise majority contests. Given that the number n of
individuals is odd, which excludes the possibility of tied majority
contests, this formulation is equivalent to the Copeland rule. O

If we substitute WINNER with ROOTED, we still obtain the Copeland
rule. This was shown by Lang and Slavkovik [31]. It is easy to adapt
our proof of Theorem 4 to obtain this result: simply observe that,
for any model of ROOTED that can possibly maximise the cardinality
of the equaliser, there will be full agreement on all propositions of
the form p,., with x # y # z # x. But, arguably, the simulation in
terms of WINNER is the more useful one, at least from an algorithmic
point of view, given that the number of models of WINNER is linear
while that of ROOTED is exponential in the number m of alternatives.

THEOREM 5. When restricted to RANKING-rational profiles,
max-set( -, WINNER) simulates the rule returning the Uncovered Set.

ProoF. Define J* as in the proof of Theorem 3. Consider any
profile J € Mod(RANKING)". We obtain:

max-set(J, WINNER) =  argsetmax Eq(J,Maj(J))
JeMod(WINNER)
= argsetmax Eq(J*, Maj(J))
J¥IxeX
= argsetmax {p € ¥ | J*(p) = Maj(J)(p)}
J¥IxeX

Now consider once more the decomposition of <I>§ given in the
proof of Theorem 3. First, J* and Maj(J) agree on all p,,,, with
y = z, so we can disregard propositions of this form when eval-
uating argsetmax. Second, they agree on both pyy, and pyy
if Maj(J)(px3=y) = 1; otherwise they disagree on both proposi-
tions. So we can focus on pyy-, and ignore p .., when evaluating
argsetmax. Third, they agree on p,.., withx # y # z # x if and

only if Maj(J)(py:--) = 1, given that J* accepts all such proposi-
tions. Thus, we can simplify and obtain:

max-set(J, WINNER)
= argsetmax {pyy. | y # z and Maj(J)(pys--) = 1 and z # x}

xeX

= argsetmax {(y,z) | y >p 2} \ {(y, %) | y >pr x}
xeX

= argsetmax {z € X | x >, z}
xeX

The final step above is sanctioned by the fact that {(y, x) | y > x}
is minimal if and only if {(x, z) | x >»s 2z} is maximal. Now, given
that D(x) = {z € X | x > z}, we have in fact obtained the
Uncovered Set and are done. ]

To the best of my knowledge, this is the first characterisation of
the Uncovered Set in judgment aggregation.

5 CONCLUSION

Thave introduced a new model of judgment aggregation that clearly
separates the constraints to be satisfied by individuals from those
to be satisfied by the collective decision arrived at by these individ-
uals. I have argued that the natural distinction between rationality
and feasibility at the conceptual level should be reflected at the
technical level as well. The new model allows for this distinction
and thus can represent a wider range of application domains in
a natural manner. The technical results in this paper support this
view. First, comparing the characterisation theorem for the major-
ity rule proved here with known results for the standard model
of judgment aggregation shows that there are pairs of integrity
constraints that each would permit paradoxical outcomes in the
standard model but that will avoid such paradoxes when one is
used as the rationality constraint and the other as the feasibility
constraint. Second, the results regarding the simulation of voting
rules show that the new model greatly simplifies the task of finding
counterparts of common voting rules in judgment aggregation.
The new model should be investigated further and this paper
opens up several concrete avenues for future work. This includes,
in particular, the research agenda concerned with finding natural
counterparts of common voting rules in judgment aggregation. To
this end, the lexi-max and greedy-max rules should be explored, as
should be alternative feasibility constraints, such as a variant of
the WINNER-constraint under which incomparability rather than
indifference is stipulated amongst nonwinning alternatives.
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