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Abstract. Social choice theory studies of how groups of people should
and do make collective decisions. In this talk I will argue that modern
logic can contribute to the study of social choice theory in many different
ways, and I will substantiate this claim with examples from recent work
by members of my group at the University of Amsterdam.

1 Social Choice Theory

Social choice theory (SCT) is the formal study of mechanisms for collective
decision making. As a scientific discipline, it is usually considered to be part of
Economic Theory, although it also plays an important role in Political Science
and Philosophy. In recent years, furthermore its fundamental significance for
work in Multiagent Systems has become to be widely recognised.

The archetypal problem in the field is preference aggregation: given the pref-
erences of a number of agents over a set of alternatives, how should we aggregate
these individual preferences so as to arrive at a single collective preference order?
To see that this is not a trivial question, consider the following example. There
are three alternatives, called A, B and C, and five agents. The preferences of
each agent are modelled as a linear order over the set of alternatives:

Agent 1: A � B � C
Agent 2: B � C � A
Agent 3: C � A � B
Agent 4: C � A � B
Agent 5: B � C � A

The most obvious approach for obtaining a collective preference order is to use
the majority rule: rank X above Y if and only if a majority of the agents do. If
we follow this rule, then we must adopt A � B (as three of the agents do), B � C
(as again three of the agents do), and C � A (as four of the agents do). But this
means that we get a collective preference order that is cyclic! This surprising
outcome is an instance of the Condorcet Paradox, named after the 18th century
political scientist and mathematician who first discussed it at length.

The question now arises whether there is a better aggregation rule than the
majority rule, one that does not suffer from this paradox. Social choice theo-
rists have approached this question using the so-called “axiomatic method”: by
formulating desirable properties of aggregation rules as “axioms” in a mathemat-
ically rigorous manner, they have been able to obtain results that show that it



is impossible to find a rule that satisfies a certain combination of desirable prop-
erties or that a certain combination of such properties uniquely characterises a
particular rule. Famous examples include Arrow’s Theorem (showing that there
exists no preference aggregation rule for three or more alternatives that respects
unanimous choices made by the individuals, that ranks pairs of alternatives in-
dependently from how other alternatives are ranked, and that is not dictatorial);
the Gibbard-Satterthwaite Theorem (showing that there exists no voting rule for
three or more alternatives that does not exclude an alternative from winning a
priori, that does not allow for situations in which a voter can benefit from sub-
mitting a ballot that does not truthfully reflect her actual preferences, and that
is not dictatorial); and May’s Theorem (showing that for two alternatives the
majority rule is the only aggregation rule that treats all agents and alternatives
symmetrically and that respects a basic monotonicity condition).

2 Applications of Logic

Logic has long played an important role in SCT: for instance, some properties of
aggregation rules entail other properties, and impossibility theorems establish
the inconsistency of certain sets of properties.

However, this use of “logic” is rather informal in nature. While it does refer to
logical concepts such as “consistency”, it does not make use of a formal language.
In the sequel I will argue that logic, including formal symbolic logic, has many
more applications in SCT, and I will substantiate this claim with examples from
recent work by members of my group at the University of Amsterdam.1

2.1 Representation of Preferences

Before we can tackle the problem of aggregating preferences, we need to decide
how to model the preferences themselves. In classical SCT, preferences are taken
to be linear (or weak) orders over the set of alternatives, but other types of
preference structures are also of interest (see e.g. [4]).

How to actually represent preferences, using a formal language, becomes
critical when alternatives have a combinatorial structure, e.g., when agents are
asked to express their preferences over all combinations of assigning truth values
to, say, ten variables. (For an introduction to the field of preference modelling
for social choice in combinatorial domains, see the expository article authored
jointly with Chevaleyre et al. [1].) One family of languages proposed is based on
weighted goals: agents describe their preferences in terms of propositional formu-
las they would like to see satisfied, together with numerical weights indicating
their relative importance. Besides their application in SCT, also the study of the

1 This is not intended to be a comprehensive review of the field; in particular, refer-
ences are restricted to my own work. For extensive references to the use of logic in
SCT, as well as to work in classical SCT and modern computational social choice
more generally, please refer to the bibliographies of the cited papers.



properties of such languages themselves, e.g., their expressive power, has lead to
interesting research questions [11, 12].

Much of this work requires only classical propositional logic, but nonclassical
logic also has a role to play. For instance, for resource allocation problems where
there may be multiple copies of the same type of resource available, linear logic
turns out to be the right kind of formalism to represent preferences [9].

2.2 Characterisation and Impossibility Results

A natural application of logic in SCT is to attempt to fully formalise parts of the
field. For instance, we have been able to give a full formalisation, in classical first-
order logic, of the framework of preference aggregation introduced by Arrow and
we have shown that Arrow’s Theorem corresponds to the claim that a particular
set of first-order formulas does not have a finite model [6].

In another line of work we have shown that paradoxes of social choice, such as
the Condorcet Paradox, can be explained in terms of the violation of an integrity
constraint, expressed in propositional logic, that characterises the domain of ag-
gregation [7, 8]. This approach provides a new way of characterising aggregation
rules, namely in terms of the types of integrity constraints it respects, as well as
a new proof technique for deriving old and new impossibility theorems in SCT.

2.3 Automated Reasoning in Social Choice Theory

One motivation for seeking to formalise SCT is that it opens up the possibility
of using automated theorem provers to verify known results. For instance, a by-
product of our work on the formalisation of the Arrovian framework of preference
aggregation is a specification of that framework in the language of Prover9, the
automated theorem prover formerly known as Otter [6]. Further optimisation
may one day lead to a fully automated proof of Arrow’s Theorem.

In another area of SCT, known as ranking sets of objects, we already have
been able to obtain results in a fully automated manner. Here the choice-
theoretic problem is how to extend an agent’s preferences over individual objects
to a preference order over sets of such objects. Building on a model-theoretic re-
sult, we have been able to use a satisfiability checker to not only verify known
impossibility theorems but also to discover nontrivial new results [5].

2.4 Judgment Aggregation

Logic is not only useful for the analysis of aggregation problems, but information
expressed in terms of logic may itself be subject to aggregation. This kind of
problem is studied in the field of judgment aggregation (JA). Suppose three
agents each have to judge which of the formulas ϕ, ψ and ϕ ∧ ψ are true:

ϕ ψ ϕ ∧ ψ
Agent 1: true true true
Agent 2: true false false
Agent 3: false true false



Observe that each agent provides a logically consistent set of judgments. How
should we aggregate this information? If we use the majority rule for each propo-
sition, then ϕ should be collectively accepted, ψ should also be collectively ac-
cepted, and ϕ∧ψ should be collectively rejected—that is, we obtain an inconsis-
tent judgment set! Over the past decade or so, this paradox of JA has given rise
to a fast moving area of research, spanning Legal Theory, Philosophy, Economic
Theory and AI. For instance, we have recently begun to analyse the computa-
tional complexity of a number of problems that naturally arise in JA [2, 3].

While originally associated with problems in legal reasoning, it is not hard
to see that JA can have a range of significant applications in other fields as
well. One of them I believe to be the Semantic Web, and more specifically the
aggregation of knowledge distributed over a number of different ontologies [10].
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