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Abstract
We develop a model for the aggregation of pref-
erences that do not need to be either complete or
transitive. Our focus is on the normative character-
isation of aggregation rules under which each agent
has a weight that depends only on the size of her
ballot, i.e., on the number of pairs of alternatives for
which she chooses to report a relative ranking. We
show that for rules that satisfy a restricted form of
majoritarianism these weights in fact must be con-
stant, while for rules that are invariant under agents
with compatible preferences forming pre-election
pacts it must be the case that an agent’s weight is
inversely proportional to the size of her ballot.

1 Introduction
Modelling and aggregating the preferences of agents is rel-
evant to various important applications of AI [Domshlak et
al., 2011], ranging from online recommendation systems, to
decision-theoretic planning engines, to the emerging topic of
incorporating ethical principles into computer-supported de-
cision making [Conitzer et al., 2017]. While it is acknowl-
edged that decision makers cannot be expected to be perfectly
rational and to always report transitive preferences regarding
the full set of alternatives under consideration [Darmann et
al., 2017; Hansson and Grüne-Yanoff, 2018], much existing
work in computational social choice is still based on the clas-
sical model of preferences that presupposes completeness and
transitivity [Brandt et al., 2016]. In this paper we propose
a model of preference aggregation that does not make such
assumptions. Instead, preferences are represented as merely
acyclic sets of pairwise comparisons between alternatives.

To illustrate the need for systems that can handle such non-
standard preferences, consider the following example.
Example 1. Suppose you are asked in a poll to rank sev-
eral apps in order of preference. You strictly prefer the New
York Times app to Facebook for getting informed about the
news and Facebook to Gmail when it comes to communicat-
ing with friends. But NYT and Gmail serve two completely
distinct purposes for you, and you simply cannot rank them.
The poll also includes apps you have never used, you are not
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aware of their features, and hence do not hold any preference
about them. So, you presumably would greatly appreciate the
possibility of (i) expressing your preferences in a pairwise
manner rather than as a list, and of (ii) leaving some of the
apps unranked altogether.

We focus on a family of aggregation rules under which the
weight assigned to agent i’s ranking of two alternatives de-
pends on how many other pairs of alternatives she ranks as
well. For example, we may want to give an agent who only
reports her preferences on a selected few pairs of alternatives
more weight than an agent who expresses a view on all pairs.
We consider different variants of these aggregation rules, con-
cerning the type of output required: we may use a rule to ob-
tain a consensus regarding the ranking of the alternatives, we
may look for a single winner amongst the alternatives, or we
may need to select a set of winners of a given size. Our new
model is thus very flexible both with respect to the individual
preferences and the corresponding collective outcomes.

Our main technical results concern the rules characterised
by two normative principles (also known as axioms):1

• Majoritarianism: Try to respect the will of the major-
ity regarding the relative ranking of pairs of alternatives.
We consider a highly restricted form of this principle
that avoids majority cycles [de Condorcet, 1785].

• Splitting: If several agents have mutually compatible
preferences, it should be possible for them to form a pre-
election pact and all report the union of their individual
preference sets—without this change affecting the out-
come. We consider different variants of this idea.

We concentrate our analysis on (restricted) majoritarianism
and splitting because these axioms—contrary to other well-
known ones—are specifically relevant to scenarios with in-
complete preferences. We find that restricted majoritarianism
characterises the rule with constant weights and that (certain)
splitting axioms characterise the rule where an agent’s weight
is inversely proportional to the size of her reported preference
set (we call this the even-and-equal-weight rule). These re-
sults are robust across all types of output requirements. We
also simulate prominent rules of the standard voting frame-
work with complete preferences and suggest new ones that

1Similar axioms have been discussed by Terzopoulou et al.
[2018] in the context of judgment aggregation.



(despite being very natural) have not been considered in the
literature before. These proposals for new rules for standard
voting are highlighted as Remarks 1–4. Finally, we spell out
basic complexity results for all the rules introduced.

The dominant approach to handling incomplete prefer-
ences in computational social choice so far has been the
possible winner solution concept [Konczak and Lang, 2005;
Boutilier and Rosenschein, 2016]. Given a profile of incom-
plete preferences, the possible winners of a voting rule F are
all the alternatives that win under F for some completion of
the preferences. This is a reasonable solution concept when
in fact the preferences of the agents are complete but we have
not yet fully elicited them. Along similar lines, one could
also assume that there is an underlying true ranking of the
alternatives and that the agents’ incomplete preferences cap-
ture their partial knowledge about that ranking [Caragiannis
et al., 2017]. Here, instead, we are interested in the aggre-
gation of bona fide incomplete preferences, i.e., in scenar-
ios where it is the preferences themselves that are incomplete
rather than our information about them. Of course, which ap-
proach is appropriate depends on context. Like us, Pini et al.
[2008] and Endriss et al. [2009] have studied the aggrega-
tion of bona fide incomplete preferences, but their proposals
are less radical (they do not dispense with transitivity) and,
in some sense, less flexible (they do not have the notion of
outcome type, which is prominent in our model). While Pini
et al. extend a number of classical impossibility theorems in
social choice theory to the case of incomplete preferences and
while Endriss et al. investigate how forcing voters to report
preferences that are either more or less complete than their
true ones affects strategic behaviour, our focus is on the de-
sign and axiomatic characterisation of new aggregation rules.

The main body of this paper is organised as follows. We
introduce our model in Section 2, and each of the next three
sections is dedicated to results for a specific type of output of
aggregation rules: a collective ranking (Section 3), a single
winner (Section 4), and a set of winners (Section 5).

2 The Model
In this section we present our model of pairwise-preference
aggregation and establish some of its elementary properties.

2.1 Basic Notation and Terminology
The superpopulation N is an unbounded set of all potential
agents that may participate in a preference aggregation sce-
nario, and A is an unbounded set of all potential alternatives
that agents in N may form preferences on.2 Any specific
preference aggregation scenario concerns a finite group of
agents N = {1, . . . , n} ⊆ N and a finite subset A ⊆ A,
which we call the set of alternatives.

Every agent i ∈ N performs pairwise comparisons over
the alternatives in A and submits her ballot Ri, which is a set
of strictly ordered pairs of alternatives:

Ri = {(a, b) ∈ A×A | a is ranked above b by agent i}
2The notions of superpopulation and potential alternatives make

explicit what is often left implicit in related models: that the num-
ber of agents and alternatives may vary across applications. In the
proofs, they allow us to move between different scenarios.

We write ab as an abbreviation for (a, b) and use the terms
“ballot” and “(pairwise-)preference (set)” interchangeably.
We assume that for every agent i the set Ri is acyclic: if
a1a2, a2a3, . . . , ak−1ak ∈ Ri, then aka1 /∈ Ri, for every
a1, a2, . . . , ak ∈ A.3 To talk about the transitive closure
of a ballot {a1a2, a2a3, . . . , ak−1ak}, we sometimes write
a1 � a2 � · · · � ak. Lastly, let us denote byR(A) the set of
all acyclic pairwise preferences over a set of alternatives A.

A profile R = (R1, . . . , Rn) ∈ R(A)n captures the ballots
of all agents in N . NR

ab denotes the set of agents i for which
ab ∈ Ri in R. A preference aggregation rule F is a function
that maps any profile R ∈ R(A)n for any set of alternatives
A and group N to a nonempty set of preferences on the same
alternatives, i.e., to a nonempty subset of 2R(A). Thus, the set
F (R) may contain several, tied, outcomes.

2.2 Weight Rules and Types of Preferences
In this paper we introduce a specific family of aggregation
rules. The primary constituent of a weight rule for aggregat-
ing pairwise preferences is a weight function w : N→ R+. A
weight function assigns to each natural number, representing
a ballot size |Ri|, a positive real number w|Ri| = w(|Ri|),
expressing how much any ordered pair ab ∈ Ri weighs,
given the size of Ri. We may also think of w as an infi-
nite vector. For example, w = (1, 12 ,

1
3 , . . .) means that we

distribute a total weight of 1 equally across all pairs in Ri,
whilew = (1, 1

M , 1
M2 , ...), for a sufficiently large numberM ,

weighs smaller ballots “infinitely” more than larger ones.
The concept of a weight function is essential for a number

of applications. For example, in the context of peer-grading,
suppose one grader submits a ranking of only three out of
the twenty submissions, while another grader ranks all twenty
of them. Should the same weight be assigned to those two
rankings? Should the small ranking weigh less, or more? By
the end of this paper we will be able answer these questions.

We shall assume that any weight wλ for λ ∈ N is com-
putable in polynomial time (polynomial in the length of the
description of λ).4 We use the following notation to refer to
the cumulative weight assigned to all the pairs in a preference
set R ⊆ A×A from the perspective of holding Ri:

wRi(R) =
∑
ab∈R

w|Ri| · 1ab∈Ri = w|Ri| · |R ∩Ri|

A second component of the definition of a weight rule is
a type T , which is a function that maps every set of alter-
natives A ⊆ A to a subset T (A) ⊆ R(A) of preference
sets. We focus on four specific types of immediate practi-
cal relevance. First, in the literature on preference aggrega-
tion both individual preferences and outcomes traditionally
are complete rankings over the alternatives. So we consider
the type of linear orders L, where L(A) contains all asym-
metric, complete, and transitive relations overA. On the other
hand, in voting theory we are mainly concerned with finding

3Acyclicity implies asymmetry (i.e., ab ∈ Ri ⇒ ba /∈ Ri for
every a, b ∈ A). However, we stress that we do not assume that Ri

needs to be transitive or complete; that is, there may exist alterna-
tives a, b, c ∈ A such that ab, bc ∈ Ri, but ac /∈ Ri.

4This is important for the (upper bounds in) complexity results.



a (single) winner, that is, an alternative ranked higher than
any other alternative [Zwicker, 2016]. Hence, we also define
the type W , where W(A) includes all pairwise preferences
of the form R = {aa′ | a′ ∈ A \ {a}}, for some a ∈ A. In
multiwinner voting the outcome should be a given number of
winning alternatives, constituting, for instance, a committee
[Faliszewski et al., 2017]. So we define the typeWk, where
Wk(A) consists of all pairwise preferences that designate a
set of k winners (for some fixed k > 1), i.e., that are of the
form R = {(a1, a′), . . . , (ak, a′) | a′ ∈ A \ {a1, . . . , ak}},
for some a1, . . . , ak ∈ A with ai 6= aj for i 6= j. Finally,
we define the type C of chains, which are linear orders over
subsets of A, to model situations where agents rank part of
the alternatives. Formally, C(A) consists of all pairwise pref-
erences of the form R = (a1 � a2 � · · · � ak), for some
k ∈ N and a1, . . . , ak ∈ A with ai 6= aj for i 6= j.5

In line with our existing notationR(A), we use the letterR
to denote the type of all preference sets.

Given a weight functionw and a profile R = (R1, . . . , Rn)
for a specific set of alternatives A ⊆ A and group of
agents N ⊆ N , a weight rule of type T , denoted by F Tw , de-
cides the outcome by selecting those preference sets in T (A)
that maximise the total weight across all agents:

F Tw (R) = argmax
R∈T (A)

∑
i∈N

wRi(R)

Note that for every weight rule F Tw there are infinitely many
weight functions that induce it. For example, if we multiply
all weights with some positive constant, then the rule being
induced does not change. The following two weight rules
will play a major role in this paper:
• Take any weight function w with wλ = wλ′ for all
λ, λ′ ∈ N and any type T . We call the weight rule F Tc
induced by w the constant-weight rule of type T .
• Take any weight function w with wλ = w1

λ for all λ ∈ N
and any type T . We call the weight rule F Tee induced by
w the equal-and-even-weight rule of type T .

The latter rule borrows its name from its counterpart for vot-
ing with approval ballots, the equal-and-even cumulative vot-
ing rule [Glasser, 1959; Alcalde-Unzu and Vorsatz, 2009].

2.3 Type Restrictions
The restriction of a set of preferences S ⊆ R(A) to a given
type T is formally defined as S|T = S ∩ T (A).

Recall that, to compute F Tw (R), we have to go through
all preferences R of type T and select those that maximise
total weight. An alternative definition would be to first select
all preferences R of any type that maximise total weight and
to only then restrict the resulting set to T , i.e., to compute
(argmaxR∈R(A)

∑
i∈N wRi(R))|T , which we can also write

as FRw (R)|T . Now the question arises: When do these two
alternative approaches result in the same outcomes?

5Lang et al. [2017] define certain aggregation outcomes that
include ours. For instance, their plain dominating 1-chain and plain
dominating k-subset correspond to our single-winner and k-winner
sets, respectively. But the model and the results they provide are
restricted to complete input profiles.

To answer this question, we require some further terminol-
ogy. Given two types T and T ′ we say that T refines T ′ if
T (A) ⊆ T ′(A) for all A ⊆ A. We furthermore say that T
extends T ′ if for all A ⊆ A and preferences R′ ∈ T ′(A)
there exists a preference R ∈ T (A) with R ⊇ R′.
Proposition 1. If T simultaneously refines and extends T ′,
then F Tw (R) = F T

′

w (R)|T for any w and R.

Proof. Since T (A) ⊆ T ′(A), which holds as T refines T ′,
we have that F Tw (R) = argmaxR∈T (A)

∑
i∈N wRi(R) ⊇

T (A) ∩ argmaxR∈T ′(A)

∑
i∈N wRi(R) = F T

′

w (R)|T .
For the other direction, we first show that there exists at

least one R ∈ T (A) with R ∈ F T
′

w (R). Take any R′ ∈
F T

′

w (R). Since T extends T ′, there exists anR ∈ T (A) with
R ⊇ R′. Observe that w|Ri| · |Ri ∩ R| ≥ w|Ri| · |Ri ∩ R′|
for all i ∈ N and thus

∑
i∈N wRi(R) ≥

∑
i∈N wRi(R

′).
Hence, we indeed get R ∈ F T ′

w (R) as claimed.
Now take any R∗ ∈ F Tw (R). By definition of the weight

rule, this entails
∑
i∈N wRi(R

∗) ≥
∑
i∈N wRi(R) for all

R ∈ T (A), including the specific R we know to exist in
F T

′

w (R). As furthermore R∗ ∈ T ′(A), which is due to
T (A) ⊆ T ′(A), we get R∗ ∈ F T ′

w (R) and thus also R∗ ∈
F T

′

w (R)|T . We conclude that F Tw (R) ⊆ F T ′

w (R)|T .

Every type T refines R. But which types T also extend R?
Certainly L extends R, as every pairwise-preference set can
be extended to a linear order, and therefore so does every
type T that includes all linear orders, answering our question.
Corollary 2. For any weight function w and type T that is
refined by L, it holds that F Tw (R) = FRw (R)|T .

3 Obtaining a Collective Ranking
In this section we study the family of weight rules for out-
comes that are complete rankings, i.e., outcomes of type L.

Agents may still report incomplete preferences. But for the
special case of complete profiles L ∈ L(A)n, all ballots are
associated with the same weight (since their size is the same
and their weight only depends on their size) and the choice
of the weight function w is irrelevant. Hence, the induced
weight rule for outcomes in L(A) for this particular case co-
incides with the well-known rule of Kemeny [1959].6,7

Proposition 3. For any profile L ∈ L(A)n and weight func-
tion w, it holds that FLw (L) = Kemeny(L).

We now state the relative ranking problem for a weight
rule FLw : “Given a profile R ∈ R(A)n and two distinguished
alternatives a, b ∈ A, is a ranked above b in at least one rank-
ing in FLw (R)?” Proposition 4 clarifies that determining rel-
ative rankings under any weight rule of type L is complete

6In the interest of space, we omit a formal definition of this rule
and refer to Brandt et al. [2016] for a modern exposition.

7It might be tempting to confuse the possible outcomes (as de-
fined by Konczak and Lang 2005) of the Kemeny rule with the out-
comes induced by the constant-weight rule FLc . But in different ag-
gregation situations possible outcomes may coincide with, include,
or be included in the set of outcomes of FLc . For an example of the
latter case, consider the profile ({ab, bc, ac}, {ab, ca}, {ab, ca}).



for PNP
|| , i.e., for the class of problems solvable in polynomial

time via parallel access to an NP oracle. We note that com-
puting the outcome under such a rule is at least as hard.
Proposition 4. The relative ranking determination problem
for FLw is PNP

|| -complete, for any weight function w.

Proof sketch. By Proposition 3, PNP
|| -hardness follows from

the corresponding result for the Kemeny rule [Hemaspaandra
et al., 2005]. Proving membership in PNP

|| is routine.

Next, we wonder: what weights induce “good” rules? To an-
swer, we adopt an axiomatic perspective [Arrow et al., 2002;
Brandt et al., 2016]. For the sake of our definitions, we fix
a set of alternatives A ⊆ A, a group of agents N ⊆ N , and
an aggregation rule F of type L, and say that F satisfies an
axiom if the relevant definition holds for every A and N .

3.1 Majoritarianism
Generating a collective ranking based on the pairwise pref-
erences of the majority is commonly considered a desirable
attribute of an aggregation rule. However, blindly following
the majority’s preferences easily leads to problematic cases
of preference cycles [de Condorcet, 1785]. But there clearly
are situations where some pairs of alternatives cannot cause a
Condorcet-type paradox on a profile. Such is the case when
the alternatives a, b are independent of a profile R, i.e., when
for each ballot Ri in R, a and b might be compared to each
other, but neither a nor b are compared to any other c (for-
mally, ac, ca, bc, cb /∈ Ri for all c ∈ A \ {a, b} and i ∈ N ).

The axiom of restricted majoritarianism expresses a funda-
mental normative principle (namely that more agents ranking
a above b than b above a should imply collective preference
of a to b), but limits its scope to cases of independence. As its
name suggests, restricted majoritarianism is indeed very re-
strictive and this makes our findings all the more remarkable:
Even by using only this weak (and hence indisputable) axiom,
we get a characterisation of a very natural rule (Theorem 5).

For a profile R ∈ R(A)n, let us define the simple-majority
set as m(R) = {(a, b) ∈ A×A | |NR

ab| > |NR
ba|}.

Axiom 1 (Restricted majoritarianism). A rule F is said to
satisfy restricted majoritarianism if for all alternatives a, b ∈
A independent of a profile R ∈ R(A)n, it holds that ab ∈
m(R) implies that ab ∈ R for all R ∈ F (R).
Theorem 5. The only weight rule of type L satisfying re-
stricted majoritarianism is the constant-weight rule FLc .

Proof. That the constant-weight rule FLc satisfies restricted
majoritarianism is easy to verify. For the other direction, con-
sider an arbitrary weight function w that induces a weight
rule FLw and suppose that FLw satisfies restricted majoritarian-
ism. To prove that FLw is the constant weight rule it suffices
to show that wλ = wλ′ for all λ, λ′ ∈ N.

We first show that FLw satisfying restricted majoritarianism
for a group N ⊆ N with odd n > 1 implies that wλ

wλ′
< 1 +

2
n−1 for all λ, λ′. Indeed, consider two arbitrary λ > λ′ and a
set of alternatives A = {a1, b1, a′1, b′1, . . . , aλ, bλ, a′λ, b′λ} ⊆
A (which is possible because A is unbounded). Then,
take R = {a1b1, a2b2, . . . , aλbλ} ∈ R(A) and R′ =

{b1a1, a′2b′2, . . . , a′λ′b′λ′} ∈ R(A). We construct the follow-
ing profile R ∈ R(A)n for an odd n > 1:

R = (R, . . . , R︸ ︷︷ ︸
(n−1)/2

, R′, . . . , R′︸ ︷︷ ︸
(n+1)/2

)

Clearly, a1, b1 are independent of R, and b1a1 ∈ m(R).
Hence, by restricted majoritarianism it must be the case that
b1a1 ∈ R′′ for all R′′ ∈ FLw (R), implying that n−12 w|R| <
n+1
2 w|R′| and thus wλ

wλ′
< 1 + 2

n−1 .
To conclude, we know that if FLw satisfies restricted ma-

joritarianism, then it does so for every group N ⊆ N of odd
cardinality. Thus, we must have that wλ

wλ′
< 1 + 2

n−1 for ev-
ery odd n > 1 and for every wλ, wλ′ ∈ R+. Letting n go to
infinity, this implies that wλ = wλ′ for all λ, λ′.

3.2 Splitting
We now define a novel axiom tailored to the aggregation of
bona fide incomplete preferences. The basic idea is that when
several agents have compatible and disjoint preference sets,
they should be able to simply all report the union of their
individual sets without affecting the outcome. This is use-
ful in practice: If some members of a council meet before a
vote and realise that they do not disagree on any of the rela-
tive rankings between alternatives, they could simply send a
messenger to the main meeting to vote on their behalf. Alter-
natively, in a strategic setting, we may wish to disincentivise
pre-election pacts between agents who care about different
issues—vote trading [Eldar, 2008] is a special case of this.

Axiom 2 (Splitting). A rule F is said to satisfy (arbitrary)
splitting if for every profile R ∈ R(A)n and subgroup
N ′ ⊆ N of agents with pairwise disjoint ballots, it is the
case that

⋃
i∈N ′ Ri ∈ R(A) implies F (R) = F (R′), where

R′ arises from R by replacing the ballot of each member of
N ′ by the union

⋃
i∈N ′ Ri. F furthermore is said to satisfy

equal splitting if the ballots of all agents in N ′ are of equal
size, and single splitting if they are all singletons.

We find that the single-splitting axiom characterises the
equal-and-even-weight rule, and so does the equal-splitting
axiom. But interestingly, the arbitrary-splitting axiom proves
to be too demanding: it is not satisfied by any weight rule.

Theorem 6. The only weight rule of type L satisfying the
single-splitting axiom is the equal-and-even-weight rule FLee .

Proof. We consider an arbitrary instance of the single-
splitting axiom and show that FLee satisfies it. Take two pro-
files R,R′, where R′ arises from R by replacing the prefer-
ence set of each member of N ′ by the union

⋃
i∈N ′ Ri. By

the definition of the weights for the rule FLee , we know that ev-
ery pair of alternatives in

⋃
i∈N ′ Ri weighs exactly the same

in R and in R′, because |Ri| = 1 for every i ∈ N ′, and
wλ = w1

λ for every λ. The same holds for all pairs that are
not in

⋃
i∈N ′ Ri too, since they trivially appear in exactly the

same preference sets in both profiles R and R′. This means
that FLee (R) = FLee (R

′).
For the other direction, consider an arbitrary λ ∈ N,

a set of alternatives A = {a1, b1, . . . , aλ, bλ} ⊆ A, and



two profiles R = ({a1b1}, {b1a1}, {a2b2}, . . . , {aλbλ}) ∈
R(A)n and R′ = ({a1b1}, {b1a1, a2b2, . . . , aλbλ},
. . . , {b1a1, a2b2, . . . , aλbλ}) ∈ R(A)n (this can be done
for a sufficiently large group N ⊆ N ). First, for any
weight rule FLw we must have L,L′ ∈ FLw (R) for some
{a1b1, a2b2, . . . , aλbλ} ⊆ L and {b1a1, a2b2, . . . , aλbλ} ⊆
L′. Moreover, if FLw satisfies single splitting, it must be the
case that FLw (R) = FLw (R

′). So the weights of a1b1 and b1a1
should be the same in the profile R′, that is, w1 = λ ·wλ.

Theorem 7. The only weight rule of type L satisfying the
equal-splitting axiom is the equal-and-even-weight rule FLee .

Proof. If a weight rule satisfies equal splitting, then it sat-
isfies single splitting too, so Theorem 6 implies that it must
be the equal-and-even-scoring rule. The proof of the other
direction, showing that FLee satisfies equal splitting, proceeds
exactly as the first part of the proof of Theorem 6.

Proposition 8. No weight rule of type L satisfies the
arbitrary-splitting axiom.

Proof. Every weight rule of type L that satisfies arbitrary
splitting also satisfies single splitting, so by Theorem 6,
the only candidate rule is FLee . Then it remains to show
that FLee fails arbitrary splitting on at least one counterex-
ample. Let A = {a1, b1, a2, b2, a3, b3} and consider the
profiles R = ({b1a1}, {a1b1}, {a2b2, a3b3}) and R′ =
({b1a1}, {a1b1, a2b2, a3b3}, {a1b1, a2b2, a3b3}). Let w be
the weight function associated with FLee . Since both a1b1
and b1a1 weigh w1 in profile R, there will exist two collec-
tive preference sets in FLee (R) that each contain one of them.
Now, note that w|{a1b1,a2b2,a3b3}| =

w1

3 . So, a1b1 weighs
2w1

3 < w1 in R′, while b1a1 still weighs w1. This means that
for every preference set in FLee (R

′), only b1a1 but not a1b1
will belong to that set. Hence, FLee (R) 6= FLee (R

′), which
violates the arbitrary-splitting axiom.

4 Obtaining a Winner
In this section we study weight rules for outcomes of typeW ,
indicating a single winner. To refer to a winning alternative
of a preference set R, we define the set of the top alternatives
in R: top(R) = {a ∈ A | (b, a) ∈ R for no b ∈ A}. For any
set S ⊆ R(A), we define top(S) =

⋃
R∈S top(R).

For complete input profiles, the winners of any weight rule
are exactly the winners according to the rule of Borda (1784):
Given a linear order a1 � a2 � · · · � am, an alternative
gets m − 1 points for the first place, m − 2 points for the
second place, and so forth. A winning alternative of Borda
maximises the added score from all agents. Proposition 9
follows from Observation 4 of Lang et al. [2017].8

Proposition 9. For any profile L ∈ L(A)n and weight func-
tion w, it holds that top(FWw (L)) = Borda(L).

Moreover, for any weight rule of typeW , the outcome can be
computed in polynomial time, generalising the well-known

8A similar result is also given by Endriss [2018], who simulates
voting in the framework of judgment aggregation.

fact that the Borda winner can be found in polynomial time
(the simple proof is omitted due to space constraints).9

Proposition 10. For any profile R ∈ R(A)n and weight
function w, FWw (R) can be computed in polynomial time.

We next wonder what kind of weights make sense when the
outcome is of typeW but some of the agents submit strictly
incomplete preferences (as opposed to the complete input
profiles we just examined).

4.1 Majoritarianism
We observe that the axiom of restricted majoritarianism, as
formulated earlier, does not apply to outcomes of type W ,
because these are incomplete. We therefore slightly modify it
(and for complete outcomes the two versions coincide).

Axiom 3 (Weak restricted majoritarianism). A rule F sat-
isfies weak restricted majoritarianism if for every profile R ∈
R(A)n and alternatives a, b ∈ A that are independent of R,
it holds that: if ab ∈ m(R), then ba /∈ R for all R ∈ F (R).

We obtain a similar result as for rules of type L (Theorem 5).

Theorem 11. The only weight rule of typeW satisfying weak
restricted majoritarianism is the constant-weight rule FWc .

Proof. The proof matches that of Theorem 5, so we only
explain here the part that differs, after the construction
of the profile R. Let Ra denote the preference set
in W(A) corresponding to a being the winning alterna-
tive. We have

∑
i∈N wRi(R

a1) =
∑
i∈N wRi(R

a2) =

· · · =
∑
i∈N wRi(R

aλ) = n−1
2 wλ and

∑
i∈N wRi(R

b1) =∑
i∈N wRi(R

a′2) = · · · =
∑
i∈N wRi(R

a′
λ′ ) = n+1

2 wλ′ .
Thus, either each of a1, a2, . . . , aλ win in some profile or
none of them do, and the same is true for b1, a′2, . . . , a

′
λ′ . This

means that it cannot be the case that both a1b1 /∈ R′′ and
b1a1 /∈ R′′ for all R′′ ∈ FWw (R), because then ∅ ∈ FWw (R),
which would be contrary to the definition of a weight rule.
But a1, b1 are independent of R, and b1a1 ∈ m(R). Hence,
by weak restricted majoritarianism, it must hold that b1a1 ∈
R′′ for some R′′ ∈ FWw (R). The remainder of the proof
proceeds exactly as for Theorem 5.

Remark 1. To demonstrate how the constant-weight rule of
winner type works, we inspect it on profiles of chains (i.e., on
profiles C ∈ C(A)n), by first defining a variant of the Borda
rule: For a chain a1 � a2 � · · · � ak, a1 gets k−1 points, a2
gets k−2 points, and so forth, with ak and all alternatives not
appearing in the chain getting 0 points. Shortsighted Borda
(sBorda) then maximises the collected points in a profile.10

9So, there is a clear difference in complexity between using
weight rules and computing possible winners: FWw , which gener-
alises the Borda rule, can be evaluated in polynomial time—yet, the
possible-winner determination problem for Borda is NP-complete
[Xia and Conitzer, 2008].

10Shortsighted Borda differs from optimistic (or modified) and
pessimistic Borda, which implictly take alternatives not included in
a chain to be less preferred than those included [Baumeister et al.,
2012]. Optimistic Borda (used also by Caragiannis et al. 2015)
assigns k points to the most preferred alternative in a chain with k
elements, k−1 points to the second most preferred, and so on, while



Proposition 12. For any profile C ∈ C(A)n, it holds that
top(FWc (C)) = sBorda(C).

Proof sketch. For simplicity take wλ = 1 for all λ ∈ N.
Then, for an outcome Ra corresponding to alternative a win-
ning, we have wCi(R

a) = |Ci ∩Ra| = |{b ∈ A | ab ∈ Ci}|,
which means that Ra gains as many points from the ballot of
agent i as there are alternatives that i explicitly ranks below
a. This is precisely how the sBorda score of a is defined.

4.2 Splitting
The splitting axioms for rules of typeW can be (and thus are)
defined and operate exactly as for rules of type L. The proof
of our next result is similar to the proofs of Theorems 6 and 7.
Theorem 13. The only weight rule of type W satisfying the
single-splitting (or the equal-splitting) axiom is the equal-
and-even-weight rule FWee .
Remark 2. When applied to profiles of chains, FWee is rem-
iniscent of a positional scoring rule, suggesting the defi-
nition of a new family of voting rules (the exploration of
which is beyond the scope of this paper) that integrates po-
sitional scoring rules [Zwicker, 2016] and cumulative voting
rules [Glasser, 1959]: Consider the rule that associates a
chain a1 � a2 � · · · � ak−1 � ak of length k with the
scoring vector ( k−1

k(k−1)/2 ,
k−2

k(k−1)/2 , . . . ,
1

k(k−1)/2 , 0). Under
this rule, every agent distributes a total weight of 1 across the
alternatives in her chain in a Borda-like fashion.

5 Obtaining a Set of Winners
This section is concerned with weight rules generating out-
comes of typeWk, which designate k-sized sets of winners.

Whenever the input profile consists of complete prefer-
ences only, any weight rule simulates the k-Borda rule, re-
turning the k alternatives with the highest Borda scores [Fal-
iszewski et al., 2017]. Proposition 14 can be seen as a corol-
lary of Observation 5 of Lang et al. [2017].
Proposition 14. For any profile L ∈ L(A)n and weight func-
tion w, it holds that top(FWk

w (L)) = k-Borda(L).
In analogy to Proposition 10, for any weight rule of typeWk,
the set of winners is easy to compute.
Proposition 15. For any profile R ∈ R(A)n and weight
function w, FWk

w (R) can be computed in polynomial time.
Moving on to the investigation of multiwinner weight rules
for incomplete ballots, we note that the definitions of weak
restricted majoritarianism and splitting apply and the proofs
of Theorems 11 and 13 carry over to the case of k winners.
Theorem 16. The only weight rule of type Wk satisfying
weak restr. majoritarianism is the constant-weight rule FWk

c .
Theorem 17. The only weight rule of typeWk satisfying the
single-splitting (or the equal-splitting) axiom is the equal-
and-even-weight rule FWk

ee .

the least preferred alternative in the chain gets 1 point and all others
get 0 points. For an example where the two rules give different out-
comes, consider the profile (a � b � c, c � d). However, sBorda
coincides with the rule assigning as score to an alternative a based
on the length of the longest path below a [Endriss et al., 2009].

Remark 3. For profiles of chains, the constant-weight k-
winner rule is not k-sBorda,11 but it gives rise to a neat orig-
inal definition of a multiwinner rule. Conceptually, when de-
ciding for a set of k winners, one could regard the potential
outcome (for instance, the committee) as a whole and com-
pare the power of its members (based on the voters’ explicitly
declared preferences) against its nonmembers: Consider the
multiwinner voting rule that makes a set S ⊆ A of fixed size
win when the alternatives in S are preferred over the alterna-
tives outside S the maximum number of times.

Remark 4. The equal-and-even-weight k-winner rule closely
follows the constant-weight rule of the same type; however,
in this case, the power of a committee member over an alter-
native outside the committee hinges also on the sizes of the
ballots that rank the member above the nonmember.

Overall, our results in Sections 3, 4, and 5 suggest that ma-
joritarianism and splitting can never be satisfied together, by
any weight rule; we thus formulate a principal impossibility:

Corollary 18. For any type T ∈ {L,W,Wk}, there is no
weight rule F Tw that satisfies weak restricted majoritarianism
together with single, equal, or arbitrary splitting.

Corollary 18 sheds light on a fundamental theoretical fact that
also has significant practical implications. For instance, we
now know that for an online recommendation system based
on weight rules it is impossible to respect the opinion of the
majority of the recommenders and at the same time disincen-
tivise them to manipulate the outcome in groups.

6 Conclusion
We have introduced a model for the representation and ag-
gregation of incomplete preferences, designing a family of
rules based on the weight a pairwise ranking of two alter-
natives receives when reported within a preference set. Our
model is relevant to multiagent scenarios where agents may
satisfy minimal rationality requirements and violate not only
completeness but also transitivity. We have examined two
original normative principles—restricted majoritarianism and
splitting—that tie in directly with the incompleteness of pref-
erences and characterise two weight rules with particularly
simple weight functions. These results are robust across ag-
gregation scenarios with varying output types (full rankings,
single winning alternatives, and sets of winners). Besides
providing a basic complexity analysis, we have also shown
that the rules thus characterised reduce to well-known rules
for the special case of complete input profiles and suggest the
definition of new ones in the standard voting framework.

Our work opens up several opportunities for future re-
search: not only to identify further axioms and the weight
rules they characterise, but also to explore our model of ag-
gregation rules for incomplete pairwise preference sets more
broadly, beyond the class of weight rules we have focussed
on in this first paper on the topic. Finally, an experimental
study to compare different aggregation rules in addition to
our theoretical analysis could also be an interesting next step.

11For a counterexample, consider a profile with three ballots that
are chains: a � b � c � d, c � d � a, and d � a.
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