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Abstract

Motivated by the danger of polarization and echo chambers in social networks, we
develop several logics to analyze the social phenomena balance, triadic closure and
homophily. We first expand on a logical framework known from the literature with
several intentions in mind. To explore measures of how far a network is from polar-
ization, we consider and compare a variation of distances between models in relation
to balance. We introduce additional modalities to the language of positive and neg-
ative relations logic to define previously undefinable frame properties in the original
work. We also include dynamic operators in this framework to investigate change
in networks with respect to polarization. Then we move away from balance and
present tied logic: a hybrid logic of strong and weak ties. We provide an axiomati-
zation, prove soundness and strong completeness and relate our results to analyzing
echo chambers. Inspired by work on social group formation we define a subclass of
threshold frames in which relations are justified on the basis of features agents in
a network share. Lastly, we extend tied logic with epistemic states and dynamic
and epistemic modalities to examine the interplay between change and knowledge
in networks of strong and weak ties.
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Chapter 1

Introduction: Polarization and
Echo Chambers

The way in which we receive and exchange information changes rapidly with the
advances of new technology in our current world. Simultaneously we are facing
world issues that are driving our opinions to the extremes of the political landscape.
Two increasingly dangerous social phenomena related to these trends are group
polarization and echo chambers.

Group polarization, or polarization for short, is not a new concept but has adapted
well to communication through social media [25]. The phenomenon has been exten-
sively researched by, among others, Cass Sunstein (in e.g. [36] [37]). Polarization
describes the tendency for people to develop more extreme views after deliberation
within a group. Although issues up for debate often are complex and dependent
on a number of factors, an effect of polarization is that fine lines are blurred and
that answers to complicated questions are driven into opposing parties of either
‘for’ or ‘against’. This applies to juries in court rooms and participants in political
discussions, but can also find its way into mundane everyday social settings.

The reasons for polarization are taken to be a combination of peer pressure and
the way information exchange is carried out within group settings. One important
aspect of this process is that individuals with a weak inclination towards one opinion
are likely be confronted with louder voices expressing a radicalized version of the
same opinion. As a result of exposure to new arguments and the desire to be part
of a community, unsure agents might leave their insecurities behind and adopt a
stronger position.

Another indication of the potential danger of a group of likeminded people is the
emergence of echo chambers. Echo chamber is not a formal terminology with an
explicit definition, but is widely and vaguely referred to in several contexts. The
phrase is often used as a derogatory term pointing to a situation where certain
information within a group is contained and repeated inwards, and where challenging
opinions are rejected. As an echo reflects sound, an echo chamber reflects similar
opinions in a setting closed off from the outside world to a certain degree.
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In this thesis, we develop several logics to analyze these social phenomena by working
in a formal framework based on theories from social network analysis. In particular,
we assess the social concepts of structural balance, triadic closure and homophily
through a logical lens to develop a deeper understanding of these social network
tendencies and their relation to polarization and echo chambers.

Our initial outset is the logic of positive and negative relations (PNL) first seen in
the PhD thesis of Zuojun Xiong defended in 2017 [39]. PNL is a logic modeling
two-sorted Kripke frames as networks where agents can be related positively or
negatively, but not both, and is created for the purpose of analyzing balance in
social networks. Balance is a local property of groups of three agents equivalent to
a global property of the network: that all agents can be divided into two internally
positive groups where all relations to members of the other group are negative. This
equivalence between local and global balance properties is a known result by Frank
Harary called the Balance Theorem [22].

There are a number of questions we seek to answer in this thesis. One concerns
the close relationship between balance and polarization. By examining the distance
from any model to a balanced model, we aim to interpret how far a social network
is from being polarized.

Two essential motivations then leads us to build upon and extend the language and
semantics of PNL. The first is again related to polarization. We add dynamic op-
erators to PNL with the goal of analyzing change in the networks. These operators
are inspired by local dynamic modalities known from sabotage modal logic [3] [28]
and enables us to review in a stepwise manner how a social setting can change from
imbalanced to balanced; unpolarized to polarized, or vice versa.

Not only are we interested in developing PNL to study polarization, but also for
the sake of investigating the expressive power of the logic itself. A strong motivation
to expand the logical framework is to be able to define vital frame properties in this
context with corresponding axioms. PNL has been axiomatized in the literature, yet
a number of important properties are axiomatized as rules, not axioms. By including
new elements in the language, we discuss different approaches that enables us to
define the formulas we need. Most notably we introduce a dynamic characterization
of the balance property.

Balance is, as mentioned, not the only social concept we intend to study in a logical
framework. Another prospect of this thesis is to analyze triadic closure in social
networks and its connection to echo chambers. Triadic closure is meant to formalize
the phenomenon where one is likely to know the friends of one’s friends. Based on
a socio-psychological background proposed by Mark Granovetter [21], we introduce
the novel tied logic (TL). Like PNL, this logic models social networks as two-sorted
frames, although in terms of strong and weak ties instead of positive and negative
relations. Furthermore, TL is a hybrid logic that lets us name agents in the network.
We show that Granovetter’s most important result is a validity in TL and provide
an axiomatization as well as proof of soundness and strong completeness.
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The last social notion we consider in this thesis is homophily; the tendency that
we are like our friends. Of several reasons behind homophily, our topic of interest
is social selection: the idea that we become friends with people who are similar to
us. This concept is particularly relevant to reason formally about echo chambers
in combination with triadic closure. To implement the idea of social selection into
our formal framework we borrow from existing literature on social group formation
[34] [35] and define threshold models of PNL and TL, respectively. The threshold
models make up a subclass of models where relations between agents are justified
on the basis of properties they have in common with respect to a given threshold.

The final angle from which we will approach social phenomena in this context is to
evaluate our formal concepts of strong and weak ties in an epistemic and dynamic
setting. By investigating the interplay between knowledge and change in these net-
works, we gain an extensive picture of how agents might reason in specific social
situations. We extend the frames and models of TL with epistemic states and add a
knowledge and dynamic modalities to the language, thereby defining tied epistemic
logic (TEL).

1.1 Thesis Outline

The structure of the thesis will be as follows. We begin in Chapter 2 by present-
ing an overview of structural balance theory including the Balance Theorem. The
logic of positive and negative relations from the literature is also introduced in this
chapter. We show the axiomatization of PNL and discuss some details we find
unsatisfactory.

Chapter 3 is devoted to measures of distance in terms of balance to analyze how
close a network is to polarization. We present three metrics and discuss strengths
and weaknesses before using an example for comparison.

In Chapter 4 we present a series of suggestive additions to PNL in order to charac-
terize balance, non-overlapping and collective connectedness. We show that this can
be done in several ways and discuss benefits and disadvantages of each approach.
We then continue by extending PNL with local dynamic adding and link chang-
ing modalities with the purpose of studying stepwise change in our networks. A
summary of all possible additions to PNL is given together with an example for
intuitive explanation.

In Chapter 5 we present tied logic (TL) to reason about strong and weak ties in
relation to triadic closure and echo chambers. We outline the socio-psychological
framework behind the strength of weak ties theory and present the syntax and
semantics of TL. We show that we can formalize a well-known claim as a validity
in tied logic. Then, we give an axiomatization of TL as well as a proof of soundness
and strong completeness.
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Chapter 6 concerns the implementation of the social selection aspect of homophily
into our logical framework. We define a subclass of threshold models for both logic
of positive and negative relations and tied logic, before presenting some observations
on the latter.

In the final Chapter 7 we extend tied logic to tied epistemic logic (TEL) by including
knowledge and dynamics in the established system of the previous chapters. We
present a new syntax and semantics and reason about axioms we can embrace to
restrict the class of tied epistemic frames. Provided is also a discussion on validities,
both of frames restricted and unrestricted by thresholds. Finally, we give an example
of a tied epistemic threshold model and reason about the truth value of formulas
depending on what axioms we choose to adopt.

1.2 Contributions to the Field

This thesis is a contribution to the emerging field of social network logic. The main
results are listed below.

• We provide a novel definition of line index of imbalance in relation to PNL.

• We prove that we can define a dynamic characterization of balance by extend-
ing PNL with a global modality and global adding modalities.

• We prove that non-overlapping can be defined by adding either the [D] opera-
tor, the ⟨+∩−⟩ modality or nominals to PNL, and that collective connectedness
can be defined by including the global [A] modality.

• We extend PNL with dynamic modalities to analyze change in relation to
balance and polarization in a dynamic framework.

• We define a new logic TL where we show that known properties from social
network analysis can be formalized with hybrid formulas. We also give a
full axiomatization and prove soundness and strong completeness of TL with
respect to tied frames.

• We extend TL to TEL and present validities of this novel logic.

• We implement definitions from social group formation theory in a new setting
and define subclasses of threshold models of PNL, TL and TEL.

4



Chapter 2

Preliminaries: Logic of Balance
in Social Networks

In this preliminary chapter, we informally explain the social network theory behind
the idea of structural balance in signed networks and its close connection to polar-
ization. We then introduce the syntax and semantics of the logic of positive and
negative relations (PNL) which we will extend and use in later chapters. We for-
mally present the Balance Theorem in this framework to give the reader a proper
understanding of the concepts we will be working with. The chapter is concluded by
a discussion of the axiomatization, soundness and weak completeness of PNL.

2.1 Structural Balance Theory

The aim of this section is to give the reader an informal introduction to the social
concept of balance. We will define properties and theorems in a conceptual and
intuitive fashion and leave formal definitions of the same properties to the succeeding
section.

2.1.1 The enemy of my enemy is my friend

The notion of structural balance, often referred to as balance for short, is defined in
the context of signed graphs [16]. A signed graph is a two-sorted undirected graph
structure where nodes are related by either positive or negative edges (see Figure
2.1).

As motivation for the concept of structural balance we can interpret signed graphs
as social networks [16]. Here, the nodes are viewed as agents where edges represent
positive and negative relations these agents have to each other. In this context the
graph is restricted such that there cannot be both a positive and a negative edge
between two nodes. We can also think of all agents having a positive relation to
themselves.
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a

b

c

d

+

−

−

−
−+

Figure 2.1: Example of a signed graph.

The idea behind structural balance in a signed graph originates from theories in
social psychology [24], and it also carries empirical support [27]. Intuitively, a struc-
turally balanced signed graph is depicting a scenario where relations between agents
are somewhat stable. Consider the four following signed graphs in Figure 2.2 (exam-
ple from [16]). The four signed graphs represent all possible combinations of edges
for a set of 3 connected nodes. We will examine them all and explain that (a) and
(c) are balanced, whereas (b) and (d) are not.

(a) (b)

(c) (d)

+

+

+ −

+

+

−

−

+ −

−

−

Figure 2.2: Signed graphs (a) and (c) are balanced, (b) and (d) are not.

In graph (a), all nodes have positive relations to each other. No reason to suspect
there to be any sudden changes to the structure. This also holds for (c). Here,
two of the nodes have a positive relation between them, and they have a common
“enemy” in the third node. In graph (b) and (d), the situation is not as stable.
In (b) one of the agents is positively related to both of the other agents while they
are negatively related to each other. We can imagine a situation where one of the
“enemies” tries to pull the “friend” over to their side, or where the mutual “friend”
wants the others to reconcile. We also observe that (d) share a similar instability.
As all relations between nodes are negative, two of the three agents might have an
incentive to gang up on the third.
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The structural balance property is a local property based on this relationship be-
tween three nodes in a signed graph, but it is extended to hold for a graph of any
size. The succeeding definition holds that the graph in question is complete. A graph
is complete when there are edges connecting every single pair of nodes in the graph.
We define structural balance in the following way.

Definition 1 (Structural Balance Property [16]) A complete signed graph has the
structural balance property iff for every set of three nodes, if we consider the three
edges connecting them, either all three of these edges are labeled +, or exactly one of
them is labeled +.

We return to Figure 2.1 and see that it is both complete and structurally bal-
anced.

It is important to already note that looking at relations between humans in this way
is a significant over-simplification at the very least. The complete graph assumption
does not seem to make much sense as a general rule. It is also rarely such that
one can view relations between people as purely negative or positive. Another way
to look at the signed edges in a social network is by agreement or disagreement in
context of a certain debate or political issue. We will get back to this at a later
stage, and to balance in incomplete graphs shortly.

2.1.2 The Balance Theorem

Before we begin to define the logical framework we will analyze balance in, we
introduce the Balance Theorem. The Balance Theorem was proved in 1953 by Frank
Harary [22] and claims an equivalence between the structural balance property in
Definition 1 and a global property of the graph.

Theorem 1 (*Complete* Balance Theorem [16]) A complete signed graph has the
structural balance property iff the nodes in the graph can be divided into two sets
X and Y where all nodes in X have a positive relation to each other and negative
relations to the nodes in Y , and all nodes in Y have a positive relation to each other
and negative relations to the nodes in X.

To illustrate the Balance Theorem we return again to Figure 2.1 from the beginning
of this section, now depicted in Figure 2.3. We see that the theorem indeed holds
for this graph. We can divide the nodes into the sets X = {a, c} and Y = {b, d}
such that a and c have a positive relation to each other, while both have a negative
relation to the nodes b and d in Y , and vice versa. We also observe that for all sets
of three agents, the edges relating them correspond to the local balance property of
the signed graph.

The connection to polarization is already evident. A balanced graph is a polarized
one, where all agents find themselves in a group of peers with negative relations to
all agents in another group. It is also suggested in the literature (e.g. [16] [26])
that like polarization, balance is a property that social networks seem to converge
towards. We will therefore use the terms balanced and polarized interchangeably
when the context disallow any confusion.

7



a

b

c

d

+

−

−

−
−+

X

Y

Figure 2.3: Division of nodes into sets X and Y .

As mentioned earlier, modeling social relations as complete graphs is only relevant
in particular cases. In this thesis we will juggle between these two graph types
as both have advantages and disadvantages in terms of formalization through logic
and application to human interaction. We therefore introduce a general Balance
Theorem. This is the standard we adopt in later sections, as it also implies the
complete version.

Theorem 2 (*General* Balance Theorem [16]) The nodes in a signed graph can be
divided into two sets X and Y where all relations between nodes in X are positive
and all relations between nodes in Y are positive, while relations between nodes in
X and nodes in Y are negative iff it is possible to fill in edges in such a way that
the resulting complete signed graph has the structural balance property.

This theorem states that any incomplete graph which has the potential of being
structurally balanced by adding positive and negative edges has the mentioned global
property. We turn to Figure 2.4 for an example and recognize the network from the
previous Figure 2.1 and Figure 2.3 with several edges excluded. We observe again
that the nodes can be divided into sets X = {a, c} and Y = {b, d} where relations
within the sets are positive and the relation across sets between b and c is negative.
As we know from the earlier figures, we can “fill in” edges to get a complete signed
graph with the structural balance property. Since the two are equivalent, we will
refer to a signed graph with the two mentioned balance properties as balanced.

What is especially interesting about the Balance Theorem is that it states an equiv-
alence between a local property of sets of three nodes and a global property of the
whole graph; that all nodes can be divided into two groups, where everyone within
the group are “friends”, while “enemies” towards everyone in the other group. There
is, however, another property equivalent to these two: that there are no simple cy-
cles with an odd number of negative edges. We will refer to these cycles as negative
cycles. A simple cycle, often and especially in this thesis just called a cycle, is de-
fined in graph theory as a path of nodes and at least three edges, in which the first
and last nodes are the same and visited exactly twice [16]. Otherwise all nodes are
distinct. We distinguish between simple cycles and closed walks, where the latter

8
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Figure 2.4: A balanced incomplete signed graph.

allows the path to visit the start/end node more than twice [26]. The cycle-version
of the Balance Theorem is presented below.

Theorem 3 (*Cyclic* Balance Theorem [11] [22]) A signed graph is balanced iff it
contains no negative cycles.

As it will become necessary to explain the formal properties of the logic presented
to reason about balance, we also define the concept of n-balance.

Definition 2 (n-Balance [40]) Let n ∈ N+. A signed graph is n-balanced iff it has
no simple cycle of length less than or equal to n with an odd number of negative
edges.

The motivation behind the n-balance property is that studies (such as [17]) show
that short cycles have more effect upon a person’s tension than longer cycles. We are
also more likely to observe longer cycles of odd negative length in a social network
than short ones. It follows that the n-balance definition yields an alternative version
of the cyclic Balance Theorem.

Theorem 4 (n-Balance Theorem) A signed graph is balanced iff it is n-balanced for
all n ∈ N+.

2.1.3 Weak Balance

Balance as we have defined it so far describes a fairly strong graph property. There
is also a weaker notion of balance appropriately called weak balance, introduced by
James A. Davis in 1967 [13]. Weakly balanced graphs are supersets of balanced
graphs that disallow only one type of triangle:

Definition 3 (Weak Structural Balance [16]) A complete signed graph has the weak
structural balance property iff for every set of three nodes, if we consider the three
edges connecting them, either all three of these edges are labeled +, all three edges
labeled − or exactly one of them is labeled +.

9



Davis [13] also proved a similar Balance Theorem for weak balance, although in this
case the global property of weak balance characterizes the possibility of dividing
nodes into not just two, but any number of sets of “friends”. In other words, weakly
balanced signed graphs are polarized with respect to a collection of groups, where the
relations within each group are positive and all relations between agents in different
groups are negative.

Analogous to (strong) balance, a weakly balanced signed graph also has a cycle
property: it cannot contain a simple cycle with only one negative edge. As before,
there is a complete and general version of the weak Balance Theorem, but as the
latter implies the former we present only the general theorem.

Theorem 5 (Weak Balance Theorem [13]) Let G be a signed graph. The following
properties are equivalent:

1. It is possible to fill in edges in G in such a way that the resulting complete
signed graph has the weak structural balance property.

2. The nodes in G can be divided into sets of nodes where all edges between nodes
within each set are labeled + and all edges between nodes across different sets
are labeled −.

3. G has no simple cycles with exactly one negative edge.

The theorem is exemplified in Figure 2.5. We observe that all three weak balance
properties hold in this network. Adding a negative edge between a and d constructs
a complete graph with the weak structural balance property. Illustrated are the
sets X = {a, c}, Y = {b} and Z = {d} where relations between sets are negative and
the only relation within a set, between a and c, is positive. Moreover, there are no
simple cycles with exactly one negative edge. We also note that although this signed
graph is weakly balanced, it is not balanced: the three edges between agents b, c
and d are all negative.

a

b

c

d

−

−

−

−+

X

Z

Y

Figure 2.5: A weakly balanced signed graph.
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Studies, such as [26], has found strong balance to be too restrictive as a common
property for real-world social networks and propose weak balance as a more likely al-
ternative. In this thesis we will keep both definitions as they serve different purposes.
A network of football fans might converge to a weakly balanced graph structure
where supporters of the same team agree and disagree with supporters from other
teams. In the context of particular political issues, like Brexit or anti-vaccination,
the same network could converge to a strongly polarized network in camps of ‘yes’
and ‘no’. Depending on social context and research goal both balance definitions
are valuable in their own respect.

2.2 PNL

An aim of the next chapters is to analyze change in signed networks within a logical
framework. To do this we build upon positive and negative relation logic (PNL)
developed in the PhD thesis of Zuojun Xiong defended in 2017 [39] and further
studied in [40] in which the latter paper constitutes the basis of our presentation.
PNL is a fully axiomatized sound and weakly complete logic using two-sorted Kripke
frames to account for social networks of positive and negative relations. In this
section we introduce PNL and formally define the properties related to balance and
weak balance in a logical context. Then, we present the axiomatization of PNL as
well as a brief assessment of the soundness and weak completeness results known
from the literature.

2.2.1 Syntax and Semantics

We begin by defining the syntax of PNL.

Definition 4 (Syntax) Let At be a countable set of propositional letters. We define
the well-formed formulas of the language LPNL to be generated by the following
grammar:

φ ∶∶= p ∣ ¬φ ∣ (φ ∧ φ) ∣|φ ∣xφ

where p ∈At. We define propositional connectives like ∨,→ and the formulas ⊺,⊥ as
usual. Further, we define the duals as standard ⊞ ∶= ¬| ¬ and ⊟ ∶= ¬x ¬.

To rightfully depict relations R+ and R− as edges in a signed graph, we want both
relations to be symmetric as signed graphs are undirected. We also want R+ to be
reflexive and R− to be irreflexive to account for the reasonable restriction of agents
having a positive relation to themselves. Moreover, we want the accessibility relation
property that in [40] and [39] is called non-overlapping : no two agents can be related
by both a positive and negative relation. To reason about complete graphs we also
occasionally want to reason about collectively connected relations. Formal definitions
of the non-overlapping and collective connectedness properties follow.

11



Definition 5 (Non-overlapping and Collective Connectedness) Let A be a set of
agents and R+ and R− be two binary relations on A. We define the following prop-
erties of R+ and R−:

• R+ and R− are non-overlapping iff ∀a, b ∈ A ∶ ¬(aR+b) or ¬(aR−b).
• R+ and R− are collectively connected iff ∀a, b ∈ A ∶ aR+b or aR−b.

We can now define signed frames and models, and the semantics of PNL.

Definition 6 (Signed Frame) Let A be a set of agents and R+ and R− be two sym-
metric and non-overlapping binary relations on A where R+ is reflexive. We call the
tuple F = ⟨A,R+,R−⟩ a signed frame.

For a, b ∈ A we will denote members of R+ as (a, b)+, members of R− as (a, b)−.

Definition 7 (Signed Model) A signed model M = ⟨A,R+,R−, V ⟩ is a tuple where
⟨A,R+,R−⟩ is a signed frame and V ∶At→ ℘(A) is a valuation function.

Definition 8 (Semantics) Let M be a signed model and a be an agent in A. We
define the truth conditions for PNL as follows:

M, a ⊩ p iff a ∈ V (p)
M, a ⊩ ¬φ iff M, a /⊩ φ
M, a ⊩ φ ∧ ψ iff M, a ⊩ φ and M, a ⊩ ψ
M, a ⊩|φ iff ∃b ∈ A such that aR+b and M, b ⊩ φ
M, a ⊩xφ iff ∃b ∈ A such that aR−b and M, b ⊩ φ

Intuitively, we read |φ to hold at an agent if and only if the current agent is
positively related to an agent where φ is true. Similarly, we read xφ to be forced
at an agent if and only if the current agent is related negatively to an agent where
φ holds.

2.2.2 The Balance Theorem

We proceed to define three definitions of balance, which we will call local balance,
global balance and cyclic balance. Local balance is capturing the structural balance
property in Definition 1, now applied to signed frames. Global balance is the global
property of being able to divide all agents into two groups of “friends” presented in
the Balance Theorems 1 and 2. Cyclic balance is the property of a network having
no simple cycles with an odd number of negative edges depicted in the cyclic Balance
Theorem 3.

Definition 9 (Local Balance) A signed frame F = ⟨A,R+,R−⟩ has the local balance
property iff ∀a, b, c ∈ A ∶

• if aR+b and bR+c, or aR−b and bR−c, then aR+c, and

• if aR+b and bR−c, or aR−b and bR+c, then aR−c.

12



Definition 10 (Global Balance) A signed frame F = ⟨A,R+,R−⟩ has the global bal-
ance property iff ∃S ⊆ A such that ∀a, b ∈ A ∶

• if aR+b, then a, b ∈ S or a, b ∈ A ∖ S, and

• if aR−b, then a ∈ S and b ∈ A ∖ S, or a ∈ A ∖ S and b ∈ A.

Definition 11 (Cyclic Balance) A signed frame F = ⟨A,R+,R−⟩ has the cyclic bal-
ance property iff ∀a1, . . . , ar ∈ A: if a1R

x1 . . .Rxi−1amR
xia1 for xn ∈ {+,−}, then

∣{(as, at)− ∣ 1 ĺ s < t ĺ m}∣ = 2n for n ∈ N0. 1

For any signed frame F with balance properties, we will call it locally balanced,
globally balanced or cyclic balanced if we want to make it explicit that we are
addressing a specific balance property. However, we will mostly just call the signed
frame balanced. Further, for any valuation V on a balanced frame, we will also call
the signed model M = ⟨F, V ⟩ balanced. We go on to state the Balance Theorem
again, in more formal terms now than in the previous section.

Theorem 6 (The Balance Theorem) Let F = ⟨A,R+,R−⟩ be a signed frame. The
following properties are equivalent:

1. There exists a collectively connected signed frame F′ = ⟨A′,R+′ ,R−′⟩ such that
A = A′, R+ ⊆ R+′ and R− ⊆ R−′ that has the local balance property.

2. F has the global balance property.

3. F has the cyclic balance property.

Proof. See [39], or [11] for the original proof. Additionally, parts of the proof are
included in Appendix A.1.1.

Corollary 1 A locally balanced signed frame F = ⟨A,R+,R−⟩ is balanced.

When a signed frame F is locally balanced and collectively connected, Corollary 1 is
the Balance Theorem. A frame can however have the local balance property while
not being collectively connected. It might have disconnected elements, i.e. agents
in A not related by any relation to any other agent. Similarly, it might consist of
several smaller frames that individually are collectively connected, but not related to
each other. Yet, this locally balanced signed frame will still be generally balanced.
By the Balance Theorem, every disconnected component of the frame will have the
cyclic balance property. Having them together in the same frame will not affect this
cyclicness. Hence, the corollary follows directly from the Balance Theorem.

2.2.3 The Weak Balance Theorem

We turn to the notion of weak balance and define properties accordingly.

1We denote N ∪ {0} as N0.
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Definition 12 (Weak Local Balance) A signed frame F = ⟨A,R+,R−⟩ has the weak
local balance property iff ∀a, b, c ∈ A ∶

• if aR+b and bR+c, then aR+c, and

• if aR+b and bR−c, or aR−b and bR+c, then aR−c.

Definition 13 (Weak Global Balance) A signed frame F = ⟨A,R+,R−⟩ has the weak
global balance property iff ∃S1, . . . , Sn ⊆ A such that ∀a, b ∈ A ∶

• if aR+b, then a, b ∈ Sm for 1 ĺ m ĺ n, and

• if aR−b, then a ∈ Ss and b ∈ St for 1 ĺ s < t ĺ n and s ≠ t.

Definition 14 (Weak-Cyclic Balance) A signed frame F = ⟨A,R+,R−⟩ has the weak-
cycled balance property iff ∀a1, . . . , ar ∈ A: if a1R

x1 . . .Rxi−1amR
xia1 for xn ∈ {+,−},

then ∣{(as, at)− ∣ 1 ĺ s < t ĺ m}∣ ≠ 1.

Note that all classical, or strong, balance definitions directly entail the corresponding
weak balance properties. We now present the weak Balance Theorem.

Theorem 7 (Weak Balance Theorem) Let F = ⟨A,R+,R−⟩ be a signed frame. The
following properties are equivalent:

1. There exists a collectively connected signed frame F′ = ⟨A′,R+′ ,R−′⟩ such that
A = A′, R+ ⊆ R+′ and R− ⊆ R−′ that has the weak local balance property.

2. F has the weak global balance property.

3. F has the weak-cyclic balance property.

Proof. See [13].

By a similar reasoning as in the case of balance in the last section, we have a
corresponding weak version of Corollary 1.

Corollary 2 A weak locally balanced signed frame F = ⟨A,R+,R−⟩ is weakly bal-
anced.

2.2.4 Axiomatization, Soundness and Weak Completeness

In [40] an axiomatic system called pnln over the language LPNL is introduced for
a given number n ∈ N+.2 Included in the axiomatization as the only component
dependent on n is the rule Nbn. To define this rule, we first need to get acquainted
with the following definitions.

2We denote N ∖ {0} as N+.
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Definition 15 [40] Let x, y, z ∈ N and φ ∈ LPNL. We define the following:

• (⊞;⊟)x,yφ is the set of all formulas that are obtained by prefixing φ with a

sequence of x positive (⊞) and y negative (⊟) box modalities in some order;

• ⋀(⊞;⊟)x,yφ is the conjunction of all elements in the set (⊞;⊟)x,yφ ;

• ⋀
n
(⊞;⊟)Oφ is the conjunction of all ⋀(⊞;⊟)x,oφ such that x + o = n and o is an

odd number;

• ⋀
n
(⊞;⊟)Eφ is the conjunction of all ⋀(⊞;⊟)x,eφ such that x + e = n and e is an

even number.

There is no formula corresponding to the property “there are no negative cycles
of length n at the current agent” [40], although there are formulas sufficient but
not necessary for this property to hold. We define the class of formulas namen.
Note that this class of formulas also is sufficient for the non-overlapping property to
hold.

Definition 16 (namen(φ,ψ) [40]) Let n ∈ N+. For any φ,ψ ∈ LPNL, we define:

namen(φ,ψ) = ⊞(φ ∧ ¬ψ) ∧ ⋀
n−1

(⊞;⊟)O¬φ∨ψ ∧ ⊟(¬φ ∧ ψ) ∧ ⋀
n−1

(⊞;⊟)Eφ∨¬ψ.

Lemma 1 [40] Let F = ⟨A,R+,R−⟩ be a signed frame, V a valuation on F, a ∈ A,
n ∈ N+ and φ,ψ ∈ LPNL. If ⟨F, V ⟩, a ⊩ namen(φ,ψ), then F has no negative cycle of
length n starting in a.

Proof. See [40].

We now have enough background to present the rule Nbn and the subsequent propo-
sition.

Definition 17 (Nbn [40]) Let n ∈ N+ and let P (φ) denote the set of propositional
atoms in φ for any φ ∈ LPNL. We define the rule Nbn as follows:

⊢ namen(p, q)→ χ implies ⊢ χ, where p, q /∈ P (χ) and p ≠ q.

Proposition 1 Nbn preserves validity with respect to the class of n-balanced signed
frames.

Proof. See [40].

We summarize the axioms of pnln given by [40] in Table 2.1.
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Table 2.1: Axiomatization pnln where p, q ∈ At, ◇ ∈ {|,x} and ◻ ∈ {⊞,⊟}.
(PC) all substitution instances of propositional tautologies
(T +) ⊢ p→|p (Positive-reflexivity)
(B±) ⊢ p→ (⊞| p ∧ ⊟x p) (Symmetry)
(Dual) ⊢ ◻p↔ ¬◇¬p (Duality)
(Ks) ⊢ ◻(p→ q)→ (◻p→ ◻q) (Signed K-axiom)

(MP) ⊢ φ→ ψ & ⊢ φ⇒ ⊢ ψ (Modus Ponens)
(Nec) ⊢ φ⇒ ⊢ ◻φ (Signed Necessitation)
(Us) ⊢ φ⇒ ⊢ φ(ψ1/p1, . . . , ψn/pn) (Universal Substitution)
(Nbn) ⊢ namen(p, q)→ χ⇒ ⊢ χ, where p, q /∈ P (χ) and p ≠ q (n-balanced)

With these axioms, [40] prove soundness and weak completeness of pnln with respect
to the class of n-balanced models.

Theorem 8 [40] For any n ∈ N+, pnln is sound and weakly complete with respect
to the class of n-balanced models.

We make some important observations of the work on PNL in addition to the
satisfactory results we have been supplied with for using the logic as a tool to analyze
social networks. Firstly, there is no formula in LPNL that defines the frame property
of being balanced for all signed frames; as we have seen, balance is axiomatized as a
rule, and not an axiom. Secondly, the non-overlapping property is as mentioned also
axiomatized in the Nbn rule. Moreover, it has been proved that non-overlapping is
not modally definable in PNL.

2.2.5 Collectively Connected

Recall that collective connectedness is the property of a signed frame F = ⟨A,R+,R−⟩
if and only if ∀a, b ∈ A ∶ aR+b or aR−b. Although there can be no formula defining the
balance property for all signed frames, there is a formula defining balance given that
the signed frame is collectively connected. This formula is in [39] named 4B.

((|| p ∨xx p)→|p) ∧ ((|x p ∨x| p)→xp) (4B)

Lemma 2 For any signed frame F, F ⊩ 4B iff F has the local balance property.

Proof. See [40].

Collective connectedness, like non-overlapping, has in [39] been proved modally un-
definable in PNL. These properties and formulas that can define them will be ad-
dressed later in this thesis.

16



2.3 Summary

In this chapter we presented what constitutes as preliminaries of this thesis in two
parts: structural balance theory and introduction of the logic PNL. The concept
of structural balance in graph theory is motivated by conflict-stable situations of
relations between agents in a social network. The most notable result in this con-
text is the Balance Theorem which states the equivalence between local and global
properties of a network. To reason about graphs with these properties, the logic
of positive and negative relations, PNL, has been developed in recent literature.
This is a sound and weakly complete logic that is fully axiomatizable. We noted
that the balance property is axiomatized as a rule, not an axiom and that the prop-
erties of non-overlapping and collective connectedness are not modally definable in
PNL.
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Chapter 3

Distance

The goal of this chapter is to investigate networks changing from imbalanced to
balanced, and in particular analyze how far a network is to being polarized. To do
this, we begin by assessing different properties a measure of distance might have
and discuss the usefulness of the criteria for our purpose. Then we introduce several
measures of distance from a balanced model found in the literature, but accommo-
dated to PNL. We review gains and losses of each metric and compare the measures
in an example.

3.1 Distance Properties

There is already a body of literature on distance. Some covers a measure of dis-
tance between judgment sets for the purpose of judgment aggregation [33], others
between models for use in belief revision [10] or for modeling implementation of so-
cial laws in multi-agent systems [1]. Although we will build upon important features
from existing measurements, we need to adapt the methods of distance in terms of
balance.

In the literature (e.g. [1], [10]), distance between two “ordinary” Kripke models1 is
defined as a mapping from an ordered pair of two models to a real number. This
mapping usually has to satisfy certain properties:

Definition 18 (Distance [10]) Let K be the class of Kripke models. The distance
between two Kripke models K,K′ ∈ K is a mapping d ∶ K ×K → R which satisfies the
following properties:
[indistinguishability] d(K,K′) = 0 iff K ∼ K′

[symmetry] d(K,K′) = d(K′,K)
[subadditivity] d(K,K′′) ĺ d(K,K′) + d(K′,K′′)
[nonnegativity] d(K,K′) ľ 0,
where ∼ ⊆ K ×K is an indistinguishability relation.

1We assume the reader will be familiar with Kripke semantics for modal logic. For clarification,
see [9].
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These properties for distance are relatively non-controversial. Yet, we need to modify
these properties to accommodate for what we will call balanced distance. The core
feature of balanced distance should be that it tells us how far a signed model is from
being balanced. For this purpose, we will first and foremost consider single signed
models and measure how far they are from the closest balanced model. Therefore,
we might as well define balanced distance as a mapping from one signed model
to a real number. This has the following consequence for the classical distance
properties. The indistinguishability, symmetry and subadditivity constraints are
not necessary in this context. Instead we need another constraint that we call
balance indistinguishability. This property tells us that a signed model has balanced
distance 0 if and only if the model is balanced. We summarize the characteristics of
a balanced distance in the following definition.

Definition 19 (Balanced Distance) Let M be the class of signed models. The bal-
anced distance of a signed model M ∈M is a mapping d ∶M→ R which satisfies the
following properties:

[nonnegativity] d(M) ľ 0,

[balance indistinguishability] d(M) = 0 iff M is balanced.

In addition to these standard properties of balanced distance, there are other restric-
tions we can impose on a metric of balanced distance depending on our motivation
and purpose. The first one is long cycle discrimination. As mentioned, there are
studies showing that longer cycles have less effect on people’s tension than shorter
cycles [17]. Moreover, the number of cycles in a network of a given length generally
increases with length [26]. A count of cycles in a network would therefore be domi-
nated by long cycles. This might motivate the need for a metric that downplays the
role of longer cycles in the calculation.

It is evident that transition from imbalance to balance is closely related to the num-
ber of negative cycles. The relationship between balance and negative cycles can
however turn out less straightforward than one might think. By simply counting
the number of negative cycles, we do not distinguish between cases where the cycles
overlap and cases where they do not. Imagine a network containing only two over-
lapping negative cycles. There is only need of a single link change for the network to
become balanced. In a network of the same two negative cycles, however in this case
not overlapped, we require two link changes for the purpose of a balanced network.
Counting the number of bad cycles determines the same balanced distance between
these two networks. This problem might provoke the need for an overlapping cycle
discrimination.

Lastly, note that for all measures of balanced distance there is a corresponding
weakly balanced version. As balance always entails weak balance, balanced and
weakly balanced distance measures might, but not necessarily, output the same
number. With all possible properties in mind, we turn to examine some options for
a concrete notion of balanced distance.
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3.2 Counting Cycles

By the Balance Theorem, imbalance is directly related to negative cycles. This
observation was applied to balanced distance already in a paper by Cartwright and
Harary in 1956 [11] and realized as degree of balance. Recall that we, as is often
custom, will refer to simple cycles as just cycles. Degree of balance in its original
form is the number of balanced cycles, that is, cycles that are not negative, divided
on the number of cycles. In our context, this would make a balanced model have
degree 1 of balance. As we have defined a measure of balanced distance to be 0 when
the model is balanced, we define a variation of degree of balance to accommodate to
our needs. This variation simply subtracts the degree of balance from 1. Therefore
we appropriately rename this variation degree of imbalance. We define it concretely
and also consider the weak version in the following definition.

Definition 20 (Degree of Imbalance) Let c+(M) denote the number of cycles in M
that are not negative, and c(M) denote the total number of cycles in M. Denote
c+W (M) the number of cycles in M that do not have exactly one single negative
edge. Note that c+(M) ⊆ c+W (M) ⊆ c(M).

Let M be the class of signed models and let M = ⟨A,R+,R−, V ⟩ ∈M. The degree of

imbalance of M is a map dDB ∶M → R such that dDB(M) = 1 − c+(M)
c(M) . The degree

of weak imbalance of M is a map dDBW ∶M→ R such that dDBW (M) = 1− c+W (M)
c(M) .

We observe that although this simple measure of distance is a balanced distance
metric by Definition 19, it does not satisfy neither the long cycle nor the overlapping
cycle discrimination property. [26] defines another cycle counting measure of balance
that is motivated by long cycle discrimination, called level of imbalance.

Definition 21 (Level of Imbalance) Let M be the class of signed models and let
M = ⟨A,R+,R−, V ⟩ ∈M. The level of imbalance of M is a map dBz ∶M → R such

that dBz(M) = ∑∞
k=1

Ik
zk

where Ik is the number of negative cycles of length k and

z > 1 is a free parameter. The weak level of imbalance of M is a map dBzW ∶M→ R
such that dBzW (M) = ∑∞

k=1

IWk

zk
where IWk is the number of cycles with a single

negative edge of length k.

The level of imbalance satisfies the long cycle discrimination property in addition to
being a measure of balanced distance. The measure divides the number of negative
cycles by a free parameter that increases by the negative cycle’s length. Like de-
gree of imbalance, this metric does not satisfy the overlapping cycle discrimination
property. We turn to the last measure of distance in this chapter called line index
of imbalance for a balanced distance that discriminates overlapping cycles.
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3.3 Line Index of Imbalance

Line index of imbalance is a measure of distance in terms of balance proposed by
Harary in 1959 [23]. The idea is simple: the line index of imbalance of a network
measures the minimal number of edges deleted for the network to be balanced. The
measure has also been implemented in terms of weak balance by [15], and discussed
further in [38].

The transition from a signed model to a submodel of fewer edges can seem unin-
tuitive when we imagine the links between agents to model positive and negative
relations. Where it is easy to imagine relations in a network to be created, it might
be slightly harder to think of situations where agents completely lose touch. We can
still of course regard line index of imbalance as a fruitful measurement, although
we also remark that the minimal number of edges deleted is the same number as
the smallest number of edges changing signs in order to make the network balanced.
The reasoning is as follows. By the general Balance Theorem 2, we have that a
network is balanced if and only if it has the potential to have the local structural
balance property for each set of three agents. That is, as long as it is possible to fill
in missing edges such as to create a collectively connected model where all triangles
have either three positive signs or one positive and two negative, the signed model
is balanced. Thus, changing signs in an imbalanced network have the same purpose
as deleting edges in terms of balance: each edge needed to change signs could be
deleted and now have the potential of the desired sign.

We present a novel definition of line index of imbalance suitable for the signed models
of PNL. For this purpose, we turn back to the literature on distance between Kripke
models for inspiration. [1] and [10] introduce Kripke distance as a measurement
mapping that judges distance between two Kripke models by the number of elements
in the relations in which they are dissimilar.

Definition 22 (Kripke Distance) Let M = ⟨A,R+,R−, V ⟩ and M′ = ⟨A′,R+′ ,R−′ , V ′⟩
be signed models. We define the Kripke distance between M and M′ as δ(M,M′) =
∑i∈{+,−} ∣Ri/Ri

′ ∣.

There are several versions of Kripke distance, especially presented in [1], although
none of them specified according to our requirements. We briefly list the properties
in which we need to modify this metric to accommodate. Firstly, a measurement
of balanced distance is a map taking one signed model. Secondly, Kripke distance
is introduced in the literature as a measure between two Kripke models where one
is a subset of the other. It is not necessarily so in our case. Thus for all signed
models M = ⟨A,R+,R−, V ⟩ and M′ = ⟨A′,R+′ ,R−′ , V ′⟩, for i ∈ {+,−} if Ri ⊆ Ri′ , then
d(M,M′) = 0. In this case we would still want a number of difference between the
elements in Ri and Ri

′
.

21



Thirdly, we have two sets of relations that are both symmetric. Fourthly, for com-
parison purposes we want to normalize the metric. Fifthly, we want a measure of
distance that judges no distance between two balanced models. Sixthly, but related
to the fifth, there are many combinations of relation sets on the nodes that consti-
tute a balanced signed model. We need a measurement that can give us the distance
from any imbalanced model to the closest balanced model.

M

−

−

−

− −

M′ M′′

+

+

+

+ +

−

+

−

− −

Figure 3.1: M′ and M′′ are two alternatives for balance by relation change in M.

As an example, all imbalanced models can turn balanced by changing all the negative
relations to positive relations. It does not mean that this is the fastest way towards
balance. Consider the signed models in Figure 3.1 (for simplicity, we have omitted
the reflexive positive relations). We observe that M is imbalanced. M′ and M′′ are
only two of several ways of altering the relations on M for balance, especially when
we also consider the possibility of adding and deleting relations. What we see here
is nevertheless two equally balanced models with a different Kripke distance from
M. We observe that the Kripke distance from M to M′ is 10 whereas the distance
from M to M′′ is 2.

Definition 23 (Line Index of Imbalance) Let M be the class of signed mod-
els and let M = {A,R+,R−, V } ∈ M. The line index of imbalance of M is a

map dLI ∶ M → R such that dLI(M) = min{∑i∈{+,−} ∣
∣Ri∣ − ∣Ri′ ∣

2(∣R+ ∪R−∣ − ∣A∣) ∣ ∣ M′ =

⟨A′,R+′ ,R−′ , V ′⟩ where A′ = A and M′ is balanced}.
The line index of weak imbalance of M is a map dLIW ∶ M → R such that

dLIW (M) = min{∑i∈{+,−} ∣
∣Ri∣ − ∣Ri′ ∣

2(∣R+ ∪R−∣ − ∣A∣) ∣ ∣ M′ = ⟨A′,R+′ ,R−′ , V ′⟩ where A′ =

A and M′ is weakly balanced}.

As an example of line index of imbalance in action, consider again the signed models
in Figure 3.1. We decide the line index of imbalance dLI(M). We first calculate with
respect to M′:

∑
i∈{+,−}

∣ ∣Ri∣ − ∣Ri′ ∣
2(∣R+ ∪R−∣ − ∣A∣) ∣ = ∣ ∣R+∣ − ∣R+′ ∣

2(∣R+ ∪R−∣ − ∣A∣) ∣ + ∣ ∣R−∣ − ∣R−′ ∣
2(∣R+ ∪R−∣ − ∣A∣) ∣

= ∣ 4 − 14

2(14 − 4) ∣ + ∣ 10 − 0

2(14 − 4) ∣ =
20

20
= 1.
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Then, similarly with respect to M′′:

∑
i∈{+,−}

∣ ∣Ri∣ − ∣Ri′′ ∣
2(∣R+ ∪R−∣ − ∣A∣) ∣ = ∣ ∣R+∣ − ∣R+′′ ∣

2(∣R+ ∪R−∣ − ∣A∣) ∣ + ∣ ∣R−∣ − ∣R−′′ ∣
2(∣R+ ∪R−∣ − ∣A∣) ∣

= ∣ 4 − 6

2(14 − 4) ∣ + ∣ 10 − 8

2(14 − 4) ∣ =
4

20
= 0.2.

It becomes clear that dLI(M) =min{1,0.2} = 0.2.

Note that there are of course other balanced signed models than M′ and M′′ with
the same number of agents as M. However, M′′ already guarantees dLI(M) = 0.2.
This number is the smallest possible line index of imbalance of M as it is imbalanced
and 0.2 = 1

2(∣R+∪R−∣−∣A∣) .

Line index of imbalance satisfies the properties to be a balanced distance. It does not
discriminate long cycles; in a network with both shorter and longer negative cycles,
line index of imbalance will output a number independent on the ratio between
short and long negative cycles. As mentioned, line index of imbalance satisfies the
overlapping cycle property. In networks where cycles overlap, this metric will not
count twice any edges needed to be changed for the purpose of balance.

3.4 Comparing Measurements: How Far From Polar-
ization?

We will now look at an example to compare the different measurements we have
considered in this chapter. How far the network is from being polarized or weakly
polarized is decided with respect to the metric one chooses to adopt. Consider the
network in Figure 3.2. Positive reflexive arrows are omitted for simplicity.

a

d

f

hg

c

e

b

+

−

−

−
−−

+ −

−

+

−−

−

+

Figure 3.2: A network that is not yet polarized.

Call the signed model depicted in the figure M. We calculate and compare the
distance towards polarization in Table 3.1.
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Table 3.1: How far is M in Figure 3.2 from being polarized?.
Strong Polarization Weak Polarization

Degree of Imbalance

dDB(M) = 1 − c
+(M)
c(M) = 15

27 ≈ 0.556 dDBW (M) = 1 − c
+W (M)
c(M) = 2

27 ≈ 0.074

Level of Imbalance

dBz(M) = ∑∞
k=1

Ik
zk

= 183
729 ≈ 0.251 for z = 3 dBzW (M) = ∑∞

k=1

IWk

zk
= 2

27 ≈ 0.074 for z = 3

Line Index of Imbalance

dLI(M) = 1
4 = 0.25 dLIW (M) = 1

6 ≈ 0.167

We make some observations from the comparison. In level of imbalance, z is a free
parameter. The choice of z = 3 was made deliberately for comparison. We see
that the degree of imbalance is higher than the level of imbalance and line index of
imbalance for strong polarization. We also note that line index of imbalance has a
slightly higher measure with respect to weak polarization. As a general analysis of
the signed model in Figure 3.2 over all three measurements, we see that the network
is relatively far from being strongly polarized. Nevertheless, we observe that this is a
social setting quite close to being weakly polarized. Recall that this would indicate a
situation where the agents are divided into groups where there would be friendships
within, but hostility towards all other groups.

3.5 Summary

In this chapter we investigated measures of distance of signed models in terms of
balance. We proposed a definition of properties a map should inhabit to be clas-
sified as a balanced distance. Three metrics were presented: degree of imbalance,
level of imbalance and line index of imbalance. The two former measurements were
modified to accommodate signed models of PNL, whereas the latter is novelly de-
fined in this thesis based on ideas from social psychology and literature on distance
between Kripke models. We end by a comparison of the three with an example, in
turn showing how we can analyze a degree of polarization with the given distance
measurements.
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Chapter 4

Extending PNL

We have now reached the point where we extend the logic of positive and negative
relations with the following aims. There is a clear incentive to investigate what
additions we need to the language to be able to define properties such as balance,
non-overlapping and collective connectedness. We will present some likely candidates
and discuss what other purpose these operators can carry in our context. Further-
more, we want to analyze transition to, and from, polarization and balance in the
networks we are formalizing. With this intention we introduce dynamic modalities
for local link change and local link addition to examine step-by-step change in our
signed models.

4.1 Speaking of Balance

Finding an axiom to define the signed frame property of being balanced is not only
desirable for the sake of its own. In beginning to formalize change in signed models,
we are faced with an immediate problem. We have a strong motivation to be able
to write formally that after a network has changed, it is now balanced. Recall that
the only formula we have in PNL to define balance on a signed frame is axiom 4B
[39].

((|| p ∨xx p)→|p) ∧ ((|x p ∨x| p)→xp) (4B)

This axiom defines the local balance property, yet is only really relevant when we
are working with collectively connected signed frames. Collective connectedness has
as we know been shown to be modally undefinable in PNL [39]. Also recall that
balance in the general sense is axiomatized as a rule, namely Nbn, and not as an
axiom. We have the formula namen(φ,ψ) sufficient to express that there are no
negative cycles starting at the current agent, although this is not necessarily true if
the property holds.
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To begin to resolve this issue, we introduce a global modality [A] and global adding-
modalities [!+]G and [!−]G. The global adding-modalities take inspiration from
sabotage modal logic [3] [19], although sabotage modal logic is traditionally equipped
with a deleting modality instead of an adding modality.

Intuitively, the formula [A]φ states that φ is true at all agents in the network. The
formulas [!+]Gφ and [!−]Gφ are forced at an agent if and only if φ is true at
the current agent after adding a positive or negative link anywhere in the network,
respectively. We go on to present the semantics in a more formal way.

Definition 24 (Semantics of Global Addition Modalities) Let M = ⟨A,R+,R−, V ⟩
be a signed model and a ∈ A. We define truth conditions for the global addition
modalities as follows:

M, a ⊩ [A]φ iff ∀b ∈ A ∶M, b ⊩ φ
M, a ⊩ [!+]Gφ iff ∃b, c ∈ A such that ⟨A,R+ ∪ {(b, c), (c, b)},R−, V ⟩, a ⊩ φ
M, a ⊩ [!−]Gφ iff ∃b, c ∈ A such that ⟨A,R+,R− ∪ {(b, c), (c, b)}, V ⟩, a ⊩ φ

This gives us enough to develop the following axiom BG as a dynamic characteriza-
tion of balance:

[!x1]G . . . [!xn]G[A]4B for xi ∈ {+,−} (BG)

What this formula states is that it holds at any agent in the network if and only
if axiom 4B will be forced at all agents after adding positive and negative edges
anywhere in the signed model. This is essentially characterizing the general Balance
Theorem: the formula holds at an agent in a signed model M if and only if there
exists a supermodel of M where the local balance property holds.

Another way to define BG is by adding the following choice and iteration modalities
inspired by known dynamic logics, e.g. propositional dynamic logic (PDL) [9]. We
accommodate them to the global adding modalities of our language and define them
accordingly.

Definition 25 (Semantics of Choice and Iteration Modalities) Let M =
⟨A,R+,R−, V ⟩ be a signed model and a ∈ A. We define truth conditions for the
global addition choice and iteration modalities as follows:

M, a ⊩ [! + ∪! −]Gφ iff [!+]Gφ or [!−]Gφ
M, a ⊩ [(! + ∪! −)∗]Gφ iff ∃n ľ 0 such that

M, a ⊩ [! + ∪! −]G1 ⋯ [! + ∪! −]Gn−1[! + ∪! −]Gnφ

The modality [! + ∪ ! −]G is a version of the change operator known from the
literature and is to be understood as that [! + ∪! −]Gφ is true at an agent if and
only if φ is true at the current agent after adding a positive or negative link anywhere
in the network. We read the iterated modality [(! + ∪! −)∗]Gφ to be true at an
agent if and only if φ holds at the current agent after adding a finite number of
positive or negative edges to the signed frame. This lets us, perhaps unsurprisingly,
have the following definition of the BG axiom:
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[(! + ∪! −)∗]G[A]4B (BG)

We now have the following lemma.

Lemma 3 For any signed frame F, F ⊩ BG iff F has the balance property.

Proof. (⇒) Let F = ⟨A,R+,R−⟩ be a signed frame such that F ⊩ BG. Fix an arbitrary
valuation V on F and let M = ⟨F, V ⟩. Also let a ∈ A. Since the formula BG is valid on
the signed frame, we have M, a ⊩ BG. Thus, M, a ⊩ [!x1]G ⋯ [!xn]G[A]4B. Then
there exists b1, . . . , bj ∈ A such that ⟨A,R+ ∪ {(bm, bn), . . .},R− ∪ {(bs, bt), . . .}, V ⟩ ⊩
[A]4B. For simplicity, call ⟨A,R+ ∪ {(bm, bn), . . .},R− ∪ {(bs, bt), . . .}⟩ = F′ and
⟨F′, V ⟩ = M′. We now have that ∀b ∈ A, M′, b ⊩ 4B. Since we fixed an arbitrary
valuation V , it follows that F′ ⊩ 4B. By Lemma 2, also known as Lemma 8 in [40],
F′ has the local balance property. By Corollary 1, F′ has the balance property and
thus by the Balance Theorem 6 there exists a collectively connected signed frame
F′′ = ⟨A′′,R+′′ ,R−′′⟩ such that A′′ = A′, R+′ ⊆ R+′′ and R−′ ⊆ R−′′ that has the local
balance property. Now, since F ⊆ F′ and F′ ⊆ F′′, we have F ⊆ F′′ and again by the
Balance Theorem F has the balance property.

(⇐) Let F = ⟨A,R+,R−⟩ be a signed frame with the balance property. By the Balance
Theorem 6 there exists a collectively connected signed frame F′ = ⟨A′,R+′ ,R−′⟩ such
that A′ = A, R+ ⊆ R+′ and R− ⊆ R−′ that has the local balance property. By Lemma
2, it follows that F′ ⊩ 4B. Now fix an arbitrary element a ∈ A = A′ and an arbitrary
valuation V on F and F′ and let M = ⟨F, V ⟩ and M′ = ⟨F′, V ⟩. Since F′ ⊩ 4B, we
have that M′, a ⊩ [A]4B. Thus, as R+ ⊆ R+′ and R− ⊆ R−′ it follows directly that
M, a ⊩ [!x1]G ⋯ [!xn]G[A]4B and hence M, a ⊩ BG. Since we fixed an arbitrary
valuation V and a ∈ A, we conclude that F ⊩ BG. ◻

Note that this means that we now have an axiom not only for balance in a collectively
connected signed model, modeling a complete signed graph, but for any signed
model. In fact, we have that for any signed model, BG is forced at any agent if and
only if the model is balanced.

Corollary 3 Let M = ⟨A,R+,R−, V ⟩ be a signed model and a ∈ A. M, a ⊩ BG if and
only if M is balanced.

4.2 Speaking of Weak Balance

By modifying the 4B axiom to adapt to the local weak balance conditions, we
present the axiom 4W for local weak balance.

(|| p→|p) ∧ ((|x p ∨x| p)→xp) (4W)

We now also have the analogous lemma for weak locally balanced signed frames.
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Lemma 4 For any signed frame F, F ⊩ 4W iff F has the weak local balance property.

Proof. (⇒) Proof by contraposition. Let F = ⟨A,R+,R−⟩ be a signed frame without
the weak local balance property. Then, without loss of generality ∃a, b, c ∈ A such
that aR+b, bR+c and aR−c. Now, let V be a valuation on F such that V (p) = {c}. It
follows that ⟨F, V ⟩, a ⊩ || p. However, by the non-overlapping property, we have
that ¬(aR+c). Thus ⟨F, V ⟩, a /⊩|p. We have that ⟨F, V ⟩, a /⊩||p→|p and hence
F /⊩ 4W.

(⇐) Let F = ⟨A,R+,R−⟩ be a signed frame with the weak local balance property
and fix an arbitrary valuation V and a ∈ A. Assume that ⟨F, V ⟩, a ⊩ || p. Then
∃b ∈ A such that aR+b and ⟨F, V ⟩, b ⊩|p. Thus it follows that ∃c ∈ A such that bR+c
and ⟨F, V ⟩, c ⊩ p. By the weak local balance property aR+c and hence ⟨F, V ⟩, a ⊩
||p→|p. Now assume that ⟨F, V ⟩, a ⊩|xp. Then ∃b, c ∈ A such that aR+b and
bR−c where ⟨F, V ⟩, c ⊩ p. The weak local balance property of F demand aR−c and
therefore ⟨F, V ⟩, a ⊩xp. By similar reasoning ⟨F, V ⟩, a ⊩xp if we assume ⟨F, V ⟩, a ⊩
x|p. Hence it follows that ⟨F, V ⟩, a ⊩ (||p→|p)∧ ((|xp∨x|p)→xp) and
as we fixed an arbitrary V and a ∈ A we conclude that F ⊩ 4W. ◻

As in the case of strong balance, we can use the global modalities to axiomatize the
property of general weak balance. We name the axiom BW .

[(! + ∪! −)∗]G[A]4W (BW )

Thus we have the following lemma.

Lemma 5 For any signed frame F, F ⊩ BW iff F has the weak balance property.

Proof. (⇒) Let F = ⟨A,R+,R−⟩ be a signed frame such that F ⊩ BW . Let V
be an arbitrary valuation on F and name M = ⟨F, V ⟩. Let a ∈ A. We have that
M, a ⊩ BW . Then there exists b1, . . . , bj ∈ A such that ⟨A,R+ ∪ {(bm, bn), . . .},R− ∪
{(bs, bt), . . .}, V ⟩ ⊩ [A]4W. For simplicity, call ⟨A,R+ ∪ {(bm, bn), . . .},R− ∪
{(bs, bt), . . .}⟩ = F′ and ⟨F′, V ⟩ = M′. We now have that ∀b ∈ A, M′, b ⊩ 4W.
Since we fixed an arbitrary valuation V , it follows that F′ ⊩ 4W. By Lemma 4 we
have that F′ has the weak local balance property. By Corollary 2, F′ is weakly bal-
anced and thus by the weak Balance Theorem 7 there exists a collectively connected
frame F′′ = ⟨A′′,R+′′ ,R−′′⟩ with the weak local balance property such that A′′ = A′,
R+′ ⊆ R+′′ and R−′ ⊆ R−′′ . Since F ⊆ F′ ⊆ F′′ it follows that F ⊆ F′′ and hence again
by the weak Balance Theorem F has the weak balance property.

(⇐) Let F = ⟨A,R+,R−⟩ be a signed frame with the weak balance property. Then
by the weak Balance Theorem 7 there exists a collectively connected frame F′ =
⟨A′,R+′ ,R−′⟩ such that A = A′, R+ ⊆ R+′ and R− ⊆ R−′ that has the local balance
property. It follows from Lemma 4 that F′ ⊩ 4W. Fix an arbitrary valuation V and
an arbitrary a ∈ A,A′. It follows that ⟨F′, V ⟩, a ⊩ [A]4W. Since A = A′, R+ ⊆ R+′

and R− ⊆ R−′ , it follows directly that ⟨F, V ⟩, a ⊩ [(! + ∪ ! −)∗]G[A]4W. As we
chose an arbitrary V and a ∈ A, we conclude that F ⊩ BW . ◻

The subsequent corollary follows directly from Lemma 5.
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Corollary 4 Let M = ⟨A,R+,R−, V ⟩ be a signed model and a ∈ A. M, a ⊩ BW if
and only if M is weakly balanced.

4.3 Collective Connectedness

Recall that the collective connectedness property is modally undefinable in PNL. It
just so happens that by adding the global modality [A] we can have an axiom for
collective connectedness. Call it C:

(⊞p→ [A]p) ∨ (⊟p→ [A]p) (C)

We prove the following lemma:

Lemma 6 For any signed frame F, F ⊩ C iff F has the collective connectedness
property.

Proof. (⇒) Let F = ⟨A,R+,R−⟩ be a signed frame and F ⊩ (⊞p → [A]p) ∨ (⊟p →
[A]p). Fix a ∈ A arbitrarily. For any V ∶ ⟨F, V ⟩, a ⊩ (⊞p → [A]p) ∨ (⊟p →
[A]p). Then ⟨F, V ⟩, a ⊩ ⊞p → [A]p or ⟨F, V ⟩, a ⊩ ⊟p → [A]p. Let V (p) = {b ∣
aR+b or aR−b}. Fix c ∈ A arbitrarily. We want to prove that ⟨F, V ⟩, c ⊩ p. Assume
that ⟨F, V ⟩, a ⊩ ⊞p→ [A]p. By V , we have ⟨F, V ⟩, a ⊩ ⊞p and thus ⟨F, V ⟩, a ⊩ [A]p.
Therefore ⟨F, V ⟩, c ⊩ p. Similarly for the case where ⟨F, V ⟩, a ⊩ ⊟p → [A]p. Since
we fixed a, c ∈ A arbitrarily, we conclude that F is collectively connected.

(⇐) Let F = ⟨A,R+,R−⟩ be a signed frame with the collective connectedness property.
Then ∀a, b ∈ A ∶ aR+b or aR−b. Suppose for reductio that ∃a ∈ A and V such that
⟨F, V ⟩, a /⊩ (⊞p → [A]p) ∨ (⊟p → [A]p). Then ⟨F, V ⟩, a ⊩ ¬(⊞p → [A]p) ∧ ¬(⊟p →
[A]p). Thus ⟨F, V ⟩, a ⊩ (⊞p ∧ ⊟p) ∧ ¬[A]p. Then ∃b ∈ A such that ⟨F, V ⟩, b /⊩ p. As
⟨F, V ⟩, a ⊩ ⊞p ∧ ⊟p and aR+b or aR−b, this is a contradiction. Hence F ⊩ (⊞p →
[A]p) ∨ (⊟p→ [A]p). ◻

The following corollaries follow directly from this theorem.

Corollary 5 For any signed frame F, F ⊩ 4B +C iff F is locally balanced and has
the collective connectedness property.

Corollary 6 For any signed frame F, F ⊩ 4W+C iff F is weak locally balanced and
has the collective connectedness property.

Perhaps more interestingly we can now also express the following results.

Corollary 7 For any signed frame F = ⟨A,R+,R−⟩, F ⊩ BG iff ∃F′ = ⟨A′,R+′ ,R−′⟩
such that A = A′, R+ ⊆ R+′, R− ⊆ R−′ and F′ ⊩C + 4B.

Corollary 8 For any signed frame F = ⟨A,R+,R−⟩, F ⊩ BW iff ∃F′ = ⟨A′,R+′ ,R−′⟩
such that A = A′, R+ ⊆ R+′, R− ⊆ R−′ and F′ ⊩C + 4W.
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4.4 Non-Overlapping

Like collective connectedness, the property of non-overlapping is modally undefin-
able in PNL. Recall that it is axiomatized with n-balance in the Nbn rule. [39]
also proposes another rule that captures the property of non-overlapping for the
possibility to axiomatize PNL without n-balance. Although, like Nbn, this is a
rule, and not an axiom. In this section, we propose some options of additions to the
language such that we can have an axiom for non-overlapping and briefly discuss
strengths and weaknesses of each approach.

4.4.1 Difference

One possible solution is the difference operator [D]. This is not a commonly used
operator and requires the inequality relation ≠. We the define the semantics of the
modality in the following definition.

Definition 26 (Semantics of Difference Operator [9]) Let M = ⟨A,R+,R−, V ⟩ be a
signed model and let a ∈ A. We define the semantics of the difference operator [D]
as follows:

M, a ⊩ [D]φ iff ∃b ∈ A such that b ≠ a and M, b ⊩ φ.

With this definition, we introduce the axiom ND for the non-overlapping prop-
erty:

(p ∧ ¬[D]p)→ (⊞(xp→ p) ∧ ⊟(|p→ p)) (ND)

Inclusion of the [D] modality is not hard to motivate in connection to this thesis.
It simply states that [D]φ holds at an agent if and only if there is another agent in
the network where φ is true. A problem with this operator is that it is not modally
definable in PNL. We let LPNL[D] be the language of PNL including [D]φ and
prove the following lemma.

Lemma 7 For any symmetric frame F = ⟨A,R+,R−⟩ of LPNL[D], F ⊩ND iff F has
the non-overlapping property.

Proof. (⇒) Let F = ⟨A,R+,R−⟩ be a frame of LPNL[D] such that F ⊩ND. Let a, b ∈ A
and without loss of generality assume that aR+b. We want to prove that ¬(aR−b).
Let V be a valuation on F such that V (p) = {a}. It follows that ⟨F, V ⟩, a ⊩ p∧¬[D]p.
Since F ⊩ (p∧¬[D]p)→ (⊞(xp→ p)∧⊟(|p→ p)), we have that ⟨F, V ⟩, a ⊩ ⊞(xp→
p)∧⊟(|p→ p). As aR+b, then ⟨F, V ⟩, b ⊩xp→ p. We know that ⟨F, V ⟩, b /⊩ p, thus
⟨F, V ⟩, b /⊩xp. Hence, ¬(bR−a) and by symmetry ¬(aR−b).
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(⇐) Let F = ⟨A,R+,R−⟩ be a symmetric frame of LPNL[D] with the non-overlapping
property. Fix an arbitrary valuation V on F and a ∈ A. Assume that ⟨F, V ⟩, a ⊩
p∧¬[D]p. Then ¬∃b ∈ A such that b ≠ a and ⟨F, V ⟩, b ⊩ p. It follows that V (p) = {a}.
Let c ∈ A such that aR+c. By symmetry and non-overlapping ¬(cR−a). Thus
⟨F, V ⟩, c /⊩ xp and hence ⟨F, V ⟩, c ⊩ xp → p. Then ⟨F, V ⟩, a ⊩ ⊞(xp → p). Now, let
d ∈ A such that aR−d. By similar reasoning ⟨F, V ⟩, d ⊩ |p → p and thus ⟨F, V ⟩, a ⊩
⊟(|p→ p). It follows that ⟨F, V ⟩, a ⊩ (p ∧ ¬[D]p)→ (⊞(xp→ p) ∧ ⊟(|p→ p)) and
as we chose an arbitrary V and a ∈ A, we conclude that F ⊩ND. ◻

We note that we can also define collective connectedness with this operator, as the
axiom CD:

((p ∨ [D]p)→ ⊞p) ∨ ((p ∨ [D]p)→ ⊟p) (CD)

We leave the proof to the reader.

4.4.2 Intersection

Another possible option is to include an intersection modality in our language. The
intersection modality is perhaps most commonly used as a distributed knowledge
operator known in the literature of Dynamic Epistemic Logic, e.g. [14] and [30]. We
modify it to our purpose and define the semantics in the following way.

Definition 27 (Semantics of Intersection Modality) Let M = ⟨A,R+,R−, V ⟩ be a
signed model and let a ∈ A. We define the semantics of the intersection modality
⟨+ ∩ −⟩ as follows:

M, a ⊩ ⟨+ ∩ −⟩φ iff ∃b ∈ A such that aR+b, aR−b and M, b ⊩ φ

By including this operator, the axiom for non-overlapping NI would simply be:

⟨+ ∩ −⟩ ⊥ (NI)

Let LPNL⟨+∩−⟩ be the language of PNL including ⟨+∩−⟩φ. The proof of the following
lemma is trivial.

Lemma 8 For any frame F = ⟨A,R+,R−⟩ of LPNL⟨+∩−⟩, F ⊩ NI iff F has the non-
overlapping property.

This modality shares with the difference operator that it is modally undefinable in
PNL. The intersection modality is however not either easy to motivate in connection
to the theme of this thesis. We read ⟨+ ∩ −⟩φ to hold at an agent if and only if
there exists another agent that is both a friend and an enemy of the current agent
where φ is true. That two agents cannot be both friends and enemies is a property
assumed in the original work on signed graphs, and it is therefore difficult to see
how the intersection operator would have any application outside axiomatizing the
non-overlapping property.
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4.4.3 Nominals

A third option is to add nominals in the hybrid tradition. We will leave the formal
discussion of nominals rather brief and suggest that the reader turn to [2] for further
details. A more extensive explanation of elements from hybrid logic will also be given
in later sections.

Nominals are a set of propositional variables where output of the valuation function
is a singleton. In other words, nominals are propositional variables that can only be
true at exactly one world. In our context, this lets us name individual agents in the
network.

To do this, we extend the set of propositional variables to be the union of two sets At
and Nom with an empty intersection. At is the set of propositional atoms, whereas
Nom is the set of nominals. We also extend our valuation function and call it VH
such that VH ∶ At∪Nom→ ℘(A) satisfies the property: for all i ∈ Nom, ∣VH(i)∣ = 1.
We denote members of At = {p, q, r, . . .} and Nom = {i, j, k, . . .}. Satisfaction of
nominals in a signed model with nominals M = ⟨A,R+,R−, VH⟩ with a ∈ A is defined
as we are used to with propositional variables:

M, a ⊩ i iff a ∈ VH(i)

Before we present a nominal axiom for non-overlapping we show that we can now
also define negative irreflexivity. Irreflexivity is property known to be modally un-
definable in the Kripke semantics for modal logic [9]. We call the language of
PNL including nominals LPNLi and the nominal axiom for negative irreflexivity
IrrT−:

i→ ¬x i (IrrT−)

Lemma 9 For any frame F = ⟨A,R+,R−⟩ of LPNLi, F ⊩ IrrT− iff F is negative
irreflexive.

The proof of previous lemma is trivial. We go on to present the nominal axiom for
non-overlapping NH :

i→ (⊞(xi→ i) ∧ ⊟(|i→ i)) (NH)

We conclude this section with the following lemma.

Lemma 10 For any negative irreflexive and symmetric frame F = ⟨A,R+,R−⟩ of
LPNLi, F ⊩NH iff F has the non-overlapping property.

Proof. (⇒) Proof by contraposition. Let F = ⟨A,R+,R−⟩ be a symmetric and
negative irreflexive frame of LPNLi such that F does not have the non-overlapping
property. Then ∃a, b ∈ A such that aR+b and aR−b. By negative irreflexivity a ≠ b.
Now, let V be a valuation on F such that V (i) = {a}. By symmetry bR−a. It follows
that ⟨F, V ⟩, b ⊩xi whereas ⟨F, V ⟩, b /⊩ i. As aR+b, we have that ⟨F, V ⟩, a ⊩|(xi→
¬i). Thus ⟨F, V ⟩, a /⊩ i→ (⊞(xi→ i) ∧ ⊟(|i→ i)) and hence F /⊩NH .
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(⇐) Let F = ⟨A,R+,R−⟩ be a symmetric and negative irreflexive frame of LPNLi

with the non-overlapping property. Fix an arbitrary valuation V and a ∈ A. Assume
that ⟨F, V ⟩, a ⊩ i. Let b ∈ A such that aR+b. By symmetry and non-overlapping it
follows that ¬(bR−a). Thus ⟨F, V ⟩, b /⊩ xi. Hence we have ⟨F, V ⟩, b ⊩ xi → i and
therefore also ⟨F, V ⟩, a ⊩ ⊞(xi → i). Now, let c ∈ A such that aR−c. By similar
reasoning as before ⟨F, V ⟩, c ⊩ |i → i and we have ⟨F, V ⟩, a ⊩ ⊟(|i → i). Hence
⟨F, V ⟩, a ⊩NH and as we fixed V and a arbitrarily we conclude that F ⊩NH . ◻

Including nominals greatly extends the expressivity of a logic. However, it is not
always evident what the motivation is beyond simply being allowed to express oth-
erwise undefinable properties like irreflexivity, asymmetry, antisymmetry and in-
transitivity, to mention some. That being said, when we are modeling agent based
networks with a logic like PNL, we already have an incentive to add nominals to
make it clear who we are modeling. This is not a novel approach to social network
logics, and can be seen in work such as [12], [31] and [32].

4.5 Local Link Change

The natural first step in observing and analyzing change in a signed social network
is to look at how we can formalize link change. This depicts the action of agents
changing their views towards one another, and is seemingly the most crucial action
of transition in this context. Since we indeed want to model the fact that agents
can affect relationships they have with other agents, we add modalities of local link
change to our language.

Again, we take inspiration from sabotage modal logic, most notably [3] and [28]. As
mentioned, sabotage modal logic usually includes modalities on link deletion, but
we adapt the operators to create a language suited to our needs. We will add two
modalities [⊕]L and [⊖]L. In intuitive terms, we read [⊕]Lφ to be true at an agent
if and only if φ holds at the current agent after changing one edge connected to this
agent from negative to positive. Similarly, we read [⊖]Lφ to be true at an agent if
and only if φ holds at the current agent after changing one edge connected to this
agent from positive to negative. We proceed to a more formal definition.

Definition 28 (Semantics of Local Link Change Modalities) Let M = ⟨A,R+,R−, V ⟩
be a signed model and a ∈ A. We define truth conditions for the local link change
modalities as follows:

M, a ⊩ [⊕]Lφ iff ∃b ∈ A such that aR−b and

⟨A,R+ ∪ {(a, b), (b, a)},R− ∖ {(a, b), (b, a)}, V ⟩, a ⊩ φ
M, a ⊩ [⊖]Lφ iff ∃b ∈ A such that aR+b, a ≠ b and

⟨A,R+ ∖ {(a, b), (b, a)},R− ∪ {(a, b), (b, a)}, V ⟩, a ⊩ φ
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Figure 4.1: An imbalanced signed model.

Consider the imbalanced triangle M in Figure 4.1. Note again that positive reflexive
arrows are omitted for simplicity, and that they will continue to be in examples to
come. We can now state the following claims about M, among many:

M, a /⊩ BG

M, a ⊩ [⊕]LBG

M, c /⊩ [⊕]LBG

M, c ⊩ [⊖]L[⊖]LBW

M, c ⊩ [⊖]LBG

4.6 Adding Local Links

Change in relations between agents in a social network is not captured in its entirety
as adjustments from positive to negative, or from negative to positive. As we have
mentioned in earlier sections, collective connectedness is a strong restriction when
modeling relations in a social network. There are only in specific social settings we
can assume that all agents have a relation to each other. It might therefore be useful
to introduce local edge addition modalities.

We need to clarify that adding edges between agents in an imbalanced signed model
can never make the model balanced. The reasoning goes as follows: by the Balance
Theorem, an imbalanced signed model contains at least one negative cycle. Adding
relations between agents in the network cannot get rid of any negative cycles. Link
addition in a balanced network can however make the model imbalanced. We present
the local adding modalities for the purpose of analyzing these situations.

We include the modalities [!+]L and [!−]L. These operate in a close similarity to
[!+]G and [!−]G. Although where [!+]Gφ holds at an agent if and only if φ is
true at the current agent after any link addition to the signed model, [!+]Lφ holds
if and only if φ is true at the current agent after a link addition to the signed model
at that specific agent. Note that [!+]Lφ implies [!+]Gφ, but the converse does not
hold. The analogous implication holds for [!−]G and [!−]L. We follow up with a
formal definition of the semantics of the new operators.
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Definition 29 (Semantics of Local Addition Modalities) Let M = ⟨A,R+,R−, V ⟩ be
a signed model and a ∈ A. We define truth conditions for the local link addition
modalities as follows:

M, a ⊩ [!+]Lφ iff ∃b ∈ A such that ¬(aR+b), ¬(aR−b) and

⟨A,R+ ∪ {(a, b), (b, a)},R−, V ⟩, a ⊩ φ
M, a ⊩ [!−]Lφ iff ∃b ∈ A such that ¬(aR+b), ¬(aR−b) and

⟨A,R+,R− ∪ {(a, b), (b, a)}, V ⟩, a ⊩ φ

a

bc

M

−+

Figure 4.2: A collectively non-connected balanced signed model.

We can now state the following selected facts about the signed model M in Figure
4.2:

M, b ⊩ BG

M, b ⊩ [!+]L¬BG

M, c ⊩ [⊖]L[!−]L¬BG

M, c ⊩ [!+]L| [⊕]LBG

4.7 Summing-up Definitions and Example

To clear up any confusion and to give a comprehensive view of suggested additions
to the language of PNL, we display a full syntax and semantics of the modalities
presented in this chapter. We also present a more extensive example to give an intu-
itive representation of the extended PNL. As previously discussed, some additions
to the language such as ⟨+∩−⟩ are not particularly fruitful in this context, however
included in the following definitions. The extended language we call LPNL+ is the
language including all possible extensions given in this thesis, not a syntax meant
to be adopted as is. The idea is rather to embrace a subset according to needs and
ambitions of a particular context. As LPNL+ includes nominals, the semantics of all
operators will be defined on a signed model with a nominal valuation.
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Definition 30 (Syntax of PNL+) Let At be a set of propositional atoms and Nom
be a set of nominals. Let At and Nom be countable and pairwise disjoint. We define
the well-formed formulas of the language LPNL+ to be generated by the following
grammar:

φ ∶∶= p ∣ i ∣ ¬φ ∣ (φ ∧ φ) ∣|φ ∣xφ ∣ [A]φ ∣ [!+]Gφ ∣ [!−]Gφ ∣ [D]φ ∣ ⟨+ ∩ −⟩φ

[⊕]Lφ ∣ [⊖]Lφ ∣ [!+]Lφ ∣ [!−]Lφ
where p ∈ At and i ∈ Nom. We define propositional connectives like ∨,→ and the
formulas ⊺,⊥ as usual. Further, we define the duals as standard ⊞ ∶= ¬ | ¬ and
⊟ ∶= ¬x ¬.

We will continue to denote members of At = {p, q, r, . . .} and Nom = {i, j, k, . . .}.

Definition 31 (Signed Model with Nominals of PNL+) Let A be a set of agents
and R+ and R− be two symmetric and non-overlapping binary relations on A where
R+ is reflexive. A signed model with nominals is a tuple M = ⟨A,R+,R−, VH⟩ where
VH ∶At ∪Nom→ ℘(A) is a valuation function such that ∣VH(i)∣ = 1 for i ∈Nom.

We define a signed frame with nominals F = ⟨A,R+,R−⟩ as a signed model with
nominals without valuation.

Definition 32 (Semantics of PNL+) Let M = ⟨A,R+,R−, VH⟩ be a signed model
with nominals and a an agent in A. We inductively define the truth conditions as
follows:

M, a ⊩ p iff a ∈ V (p) for p ∈At

M, a ⊩ i iff a ∈ V (i) for i ∈Nom

M, a ⊩ ¬φ iff M, a /⊩ φ
M, a ⊩ φ ∧ ψ iff M, a ⊩ φ and M, a ⊩ ψ
M, a ⊩|φ iff ∃b ∈ A such that aR+b and M, b ⊩ φ
M, a ⊩xφ iff ∃b ∈ A such that aR−b and M, b ⊩ φ
M, a ⊩ [A]φ iff ∀b ∈ A ∶M, b ⊩ φ
M, a ⊩ [!+]Gφ iff ∃b, c ∈ A such that ⟨A,R+ ∪ {(b, c), (c, b)},R−, V ⟩, a ⊩ φ
M, a ⊩ [!−]Gφ iff ∃b, c ∈ A such that ⟨A,R+,R− ∪ {(b, c), (c, b)}, V ⟩, a ⊩ φ
M, a ⊩ [D]φ iff ∃b ∈ A such that b ≠ a and M, b ⊩ φ
M, a ⊩ ⟨+ ∩ −⟩φ iff ∃b ∈ A such that aR+b, aR−b and M, b ⊩ φ
M, a ⊩ [⊕]Lφ iff ∃b ∈ A such that aR−b and

⟨A,R+ ∪ {(a, b), (b, a)},R− ∖ {(a, b), (b, a)}, V ⟩, a ⊩ φ
M, a ⊩ [⊖]Lφ iff ∃b ∈ A such that aR+b, a ≠ b and

⟨A,R+ ∖ {(a, b), (b, a)},R− ∪ {(a, b), (b, a)}, V ⟩, a ⊩ φ
M, a ⊩ [!+]Lφ iff ∃b ∈ A such that ¬(aR+b), ¬(aR−b) and

⟨A,R+ ∪ {(a, b), (b, a)},R−, V ⟩, a ⊩ φ
M, a ⊩ [!−]Lφ iff ∃b ∈ A such that ¬(aR+b), ¬(aR−b) and

⟨A,R+,R− ∪ {(a, b), (b, a)}, V ⟩, a ⊩ φ
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Consider now the example in Figure 4.3, reused from the last chapter, although
modified slightly in terms of signs for our purposes. We call the network M and
make the following observations.

a

d

f

hg

c

e

b

+

−

−

−
−−

+ −

−

+

−−

+

+

Figure 4.3: A network M with 8 agents.

• M is neither balanced nor weakly balanced.

M, a /⊩ BG ∨BW

• M can become weakly balanced after changing a link from negative to positive,
or vice versa, at agent b.

M, b ⊩ [⊕]LBW ∧ [⊖]LBW

• There exists an agent other than c where after changing a link from negative
to positive, M can become weakly balanced.

M, c ⊩ [D][⊕]LBW

• A positive edge can be added from agent g, such that after it has been added,
then at no agent is it possible to make M weakly balanced by changing one
link from negative to positive or vice versa.

M, g ⊩ [!+]L[A]¬([⊕]LBW ∨ [⊖]LBW )

4.8 Summary

This chapter was devoted to extending the logic PNL for two purposes. The first
was to examine options of additions to the language that could give us axioms to de-
fine otherwise modally undefinable properties in PNL. By including dynamic edge
adding operators, we presented the BG and BW axioms as dynamic characteriza-
tions of balance and weak balance, respectively. We also introduced a set of possible
candidates of extensions to LPNL to get axioms corresponding to the frame prop-
erties of collective connectedness and non-overlapping. Our second motivation for
extending the logic of positive and negative relations was to analyze network change
in particular regards to balance and polarization. We approached this challenge by
including dynamic local link change and link adding modalities. The chapter ended
with a review of the syntax and semantics of all the discussed additions to PNL
with an example for clarification.
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Chapter 5

Strong and Weak Ties

In this chapter we move away from positive and negative relations and introduce
strong and weak ties. To reason about strong and weak ties we develop tied logic
(TL), a hybrid logic inspired by former work on PNL and our extensions to its
framework. We begin the chapter by assessing the socio-psychological background
in which we will reason about strong and weak ties: Granovetter’s theory on the
strength of weak ties and its close relation to echo chamber formation in social
networks. We then present the syntax and semantics of tied logic, and show that
the most notable claim in this context is a validity in TL. We also offer a full
axiomatization of TL and prove that it is sound and strongly complete with respect
to the class of what we call tied frames.

5.1 The Strength of Weak Ties

Where we formerly considered relations between agents in a social network to be
either positive or negative, we now divide edges into strong and weak ties. Strong
ties represent friends, and weak ties model acquaintances such that one tie cannot
be both strong and weak. It is of course impossible to give a strict characterization
of what is required for a tie between two agents to be either strong or weak. We
will therefore rather think of the distribution of ties to function as a simplification,
one that hopefully can give us some important indications of essential behavior in
social networks.

Central to the implementation of strong and weak ties is the concept of triadic clo-
sure. Triadic closure is meant to formalize the phenomenon where one is likely to
know the friends of one’s friends. The formalization was made popular by Mark
Granovetter in the 1970s as part of his theory of the strength of weak ties [21].
Triadic closure, or Strong Triadic Closure as it will be called in this context, is a
property of agents in the network. The property holds of an agent if and only if its
strong ties are subsequently tied together by a weak or a strong tie.
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As an example we turn to Figure 5.1 where nodes depict agents and strong ties are
labeled ‘S’ and weak ties are labeled ‘W ’. We observe that all agents except b have
the Strong Triadic Closure property, as b is strongly tied to a and d who are not
related.

a

b

c

d

S

S

W

WS

Figure 5.1: All agents except ‘b’ have the Strong Triadic Closure property.

The strength of weak ties theory by Granovetter suggests that agents in social net-
works have a high chance of being strongly triadic closed. Further, as a result of
Strong Triadic Closure, a network of strong and weak ties are likely to be made up
of clusters with a high density of strong ties which are individually tied by weak
ties. See Figure 5.2, taken from [16] for an illustration. The argument goes that
weak ties have an important role channeling information between clusters of strong
ties. This is the strength of weak ties.

We propose that these clusters where information to a great degree is preserved
within the strong ties essentially are echo chamber-like structures. Assumed in the
division between strong and weak ties is that we share information with our strong
ties more frequently than with our weak ties [21]. Moreover, we are more likely to
share the views of our strong ties. Therefore, there seems to be a great likelihood
that echo chambers occur in such a cluster. In Figure 5.2 the echo chamber clusters
are marked with dashed ellipses.

5.2 Syntax and Semantics

As in other hybrid logics,1 the language of TL includes operators @i and ↓ x. In-
tuitively, @i lets us shift the evaluation to the agent where name i is true. ↓ x
names the current agent ‘x’. These operators are closely related, but serve different
purposes. By including both, we allow formulas where naming agents lets us later
return the evaluation to the same agent. The language of TL includes the two dia-
mond modalities ⟨S⟩ and ⟨W ⟩. They are read intuitively as ⟨S⟩φ when the current
agent has a strong tie where φ holds. A strong tie is replaced by a weak tie for
⟨W ⟩φ. The reader will recognize the association to positive and negative relations.
We define the syntax, frames and models of TL formally as follows.

1For further details on hybrid logics beyond the scope of this paper, we again recommend turning
to [2].
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Figure 5.2: A network where all agents have the Strong Triadic Closure property.

Definition 33 (Syntax of TL) Let At be a set of propositional atoms and Nom be
a set of nominals. Further, let Var be a set of agent variables. Let At,Nom and
Var be countable and pairwise disjoint. We define the well-formed formulas of the
language LTL to be generated by the following grammar:

φ ∶∶= p ∣ s ∣ ¬φ ∣ (φ ∧ φ) ∣ ⟨S⟩φ ∣ ⟨W ⟩φ ∣ @sφ ∣↓ x.φ

where p ∈ At, s ∈ Nom ∪Var and x ∈ Var. We define propositional connectives
like ∨,→ and the formulas ⊺,⊥ as usual. Further, we define the duals as standard
[S] ∶= ¬⟨S⟩¬ and [W ] ∶= ¬⟨W ⟩¬.

We will denote members of At = {p, q, r, . . .}, Nom = {i, j, k, . . .} and Var =
{x, y, z, . . .}.

Definition 34 (Tied Model and Frame) Let A be a set of agents and RS and RW be
two symmetric and non-overlapping binary relations on A where RS is reflexive and
RW is irreflexive. A tied model is a tuple M = ⟨A,RS ,RW , V ⟩ where V ∶At∪Nom→
℘(A) is a valuation function such that ∀i ∈Nom: ∣V (i)∣ = 1.

We define a tied frame F = ⟨A,RS ,RW ⟩ as a tied model without valuation.

Our two relations RS and RW define strong and weak ties, respectively. We assume
reflexivity of RS , irreflexivity of RW and symmetry of both relations. As in PNL
we also require the property of non-overlapping: no two agents can be related by
both a strong and a weak tie. For a, b ∈ A we will denote members of RS as (a, b)S ,
members of RW as (a, b)W . As tied models describe social networks, we will as
before sometimes refer to tied models as networks or social networks. Moreover, we
view all formulas as propositions about agents. For instance we read a ∈ V (p) as
proposition p or feature p holds of agent a.
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To define truth in a tied model M = ⟨A,RS ,RW , V ⟩, we need to include an assign-
ment function g ∶ Var → A that assigns agents to variables. Further, define the
x-variant of g to be gxa(x) = a and gxa(y) = g(y) for all y ≠ x. We also define [s]M,g
for s ∈ Nom ∪Var. For i ∈ Nom, [i]M,g is the state a ∈ A called ‘i’, i.e. the unique
a such that a ∈ V (i). For x ∈ Var, [x]M,g = g(x). We can now present satisfaction
in a tied model.

Definition 35 (Semantics of TL) Let M = ⟨A,RS ,RW , V ⟩ be a tied model, a an
agent in A and g ∶Var→ A an assignment function. We inductively define the truth
conditions as follows:

M, g, a ⊩ p iff a ∈ V (p) for p ∈At

M, g, a ⊩ s iff a = [s]M,g for x ∈Nom ∪Var

M, g, a ⊩ ¬φ iff M, g, a /⊩ φ
M, g, a ⊩ φ ∧ ψ iff M, g, a ⊩ φ and M, g, a ⊩ ψ
M, g, a ⊩ ⟨S⟩φ iff ∃b ∈ A such that aRSb and M, g, b ⊩ φ
M, g, a ⊩ ⟨W ⟩φ iff ∃b ∈ A such that aRW b and M, g, b ⊩ φ
M, g, a ⊩ @sφ iff M, g, [s]M,g ⊩ φ for s ∈Nom ∪Var

M, g, a ⊩↓ x.φ iff M, gxa , a ⊩ φ

5.2.1 Strong Triadic Closure and Local Bridges

As mentioned earlier, the formation of echo chambers is tightly connected to the
property of Strong Triadic Closure. Recall that an agent a is strongly triadic closed
when all its strong ties are related by a strong or a weak tie. A formal definition
follows.

Definition 36 (Strong Triadic Closure [16], [21]) Let M = ⟨A,RS ,RW , V ⟩ be a tied
model. An agent a ∈ A has the strong triadic closure property iff ∀b, c ∈ A:

• if aRSb and aRSc, then bRSc or bRW c.

Strong Triadic Closure is closely related to Euclidicity in the standard Kripke se-
mantics. 2 It is important to note that where Euclidicity is a frame property, Strong
Triadic Closure is defined as a property of agents in the network. However, the prop-
erty of all agents being strongly triadic closed is indeed a frame property which we
prove in the following lemma.

Define the axiom called STCG for global strong triadic closure:

⟨S⟩p→ [S](⟨S⟩p ∨ ⟨W ⟩p) (STCG)

2See [9] for details.
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Lemma 11 For any tied frame F, F ⊩ STCG iff all agents in F have the strong
triadic closure.

Proof. (⇒) Proof by contraposition. Let F = ⟨A,RS ,RW ⟩ be a tied frame such that
there exists an agent a ∈ A that does not have the Strong Triadic Closure property.
Then ∃b, c ∈ A such that aRSb and aRSc, but ¬(bRSc) and ¬(bRW c). Consider now
the valuation V (p) = {b}. Since ¬(bRSc) and ¬(bRW c), it follows that (F, V ), c ⊩
¬⟨S⟩p ∧ ¬⟨W ⟩p. Thus, as aRSc, we know that (F, V ), a ⊩ ⟨S⟩(¬⟨S⟩p ∧ ¬⟨W ⟩p). As
aRSb, we have that (F, V ), a ⊩ ⟨S⟩p. Hence (F, V ), a /⊩ ⟨S⟩p → [S](⟨S⟩p ∨ ⟨W ⟩p)
and we conclude that F /⊩ ⟨S⟩p→ [S](⟨S⟩p ∨ ⟨W ⟩p).

(⇐) Let F = ⟨A,RS ,RW ⟩ be a tied frame where all agents in A have the Strong
Triadic Closure property. Fix an arbitrary a ∈ A and let V be a valuation on F such
that (F, V ), a ⊩ ⟨S⟩p. Then ∃b ∈ A such that aRSb and (F, V ), b ⊩ p. Let c ∈ A be
an arbitrary agent such that aRSc. By the Strong Triadic Closure property of a, it
follows that bRSc or bRW c. Thus (F, V ), c ⊩ ⟨S⟩p ∨ ⟨W ⟩p. Hence, as c was chosen
arbitrarily (F, V ), a ⊩ ⟨S⟩ → [S](⟨S⟩p ∨ ⟨W ⟩p). As we fixed a ∈ A and V arbitrarily
too, we have that F ⊩ ⟨S⟩→ [S](⟨S⟩p ∨ ⟨W ⟩p) which concludes the proof. ◻

Granovetter’s theory that networks with a high occurrence of Strong Triadic Closure
have a tendency to form weakly tied clusters of strong ties, is demonstrated in a
known claim. Before we present this claim, we introduce the concept of a local
bridge.

Definition 37 (Local Bridge [16]) Let M = ⟨A,RS ,RW , V ⟩ be a tied model. Let
a, b ∈ A. An edge (a, b)○ for ○ ∈ {S,W} is a local bridge iff ∀c ∈ A such that c ≠ a,
c ≠ b: ¬(aRSc) and ¬(aRW c), or ¬(bRSc) and ¬(bRW c).

A local bridge is tie between two agents such that these two agents have no other
friends or acquaintances in common. Agents in a social network that are related
by a local bridge are in an important position when it comes to distribution of
information. In a clustered network, local bridges are essential carriers of outside
information. As we argue, clusters create echo chamber-like situations. Local bridges
carrying new information are crucial in dissolving dangerous situations such as rad-
icalization. We return to Figure 5.2 to observe that there is a local bridge between
agents g and h.

The claim is stated informally as follows.

Claim.[16][21]If an agent in a network satisfies the Strong Triadic Closure property
and is connected to other agents by at least two strong ties, then any local bridge it
is related with must be a weak tie.3

3For proof of the claim see Granovetter’s original paper [21].
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To formalize this claim as a validity in TL, we introduce formulas corresponding
to the relevant properties. For simplicity, we first define the following abbreviation
⟨S ∪W ⟩φ ∶= ⟨S⟩φ ∨ ⟨W ⟩φ. We read ⟨S ∪W ⟩φ as true at an agent a if and only if a
is connected to an agent by a strong or a weak tie where φ holds. The reader might
recognize a similar operator in the rewritten BG axiom in earlier chapters. We now
present the formula STCL which holds at an agent a if and only if a has the Strong
Triadic Closure property.

↓ x.[S] ↓ y.@x[S](¬y → ⟨S ∪W ⟩y) (STCL)

Then we propose the following formula named S2 which holds at an agent a if and
only if a is strongly tied to at least two other agents.

↓ x.⟨S⟩ ↓ y.(¬x ∧@x⟨S⟩(¬x ∧ ¬y)) (S2)

The formula LB holds at an agent a if and only if a is related by a local bridge.

↓ x.⟨S ∪W ⟩ ↓ y.(¬x ∧ ¬⟨S ∪W ⟩(¬x ∧ ¬y ∧ ⟨S ∪W ⟩x)) (LB)

Lastly, we introduce the formula LBW which holds at an agent a if and only if any
local bridge a is related with must be a weak tie.

↓ x.[S] ↓ y.((⟨S ∪W ⟩(¬x ∧ ¬y ∧ (⟨S ∪W ⟩x)) (LBW )

We can now present the following corollary; that Granovetter’s claim is a validity of
TL.

Corollary 9 (STCL ∧ S2)→ LBW is a validity of TL.

Proof. Follows by the original work by Granovetter [21].

5.2.2 Axiomatization

To account for strong and weak ties in a social network, we assume strong reflexivity
and weak irreflexivity, as previously noted. These frame properties are defined by
the following two axioms TS and IrrTW , respectively.

i→ ⟨S⟩i (TS)

i→ ¬⟨W ⟩i (IrrTW )

Symmetry of both relations is preserved in the following axiom BSW .

i→ ([S]⟨S⟩i ∧ [W ]⟨W ⟩i) (BSW )

Non-overlapping can also be defined with the hybrid axiom NonO, stated directly
below. As we know from earlier chapters, non-overlapping, like weak irreflexivity is
modally undefinable in the standard Kripke semantics considering two-sorted Kripke
frames.

i→ ([S](⟨W ⟩i→ i) ∧ [W ](⟨S⟩i→ i)) (NonO)

The final axiomatixation of TL is the axiomatization of the standard normal hybrid
logic KH(@,↓) [2] together with our recently presented axioms. A full list of axioms
and rules is found in Table 5.1.
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Table 5.1: Axiomatization of TL, where ◇ ∈ {⟨S⟩, ⟨W ⟩} and ◻ ∈ {[S], [W ]}.

(CT ) All classical tautologies
(K◻) ⊢ ◻(φ→ ψ)→ ◻φ→ ◻ψ
(K@) ⊢ @i(φ→ ψ)→ @iφ→ @iψ
(Selfdual) ⊢ @iφ↔ ¬@i¬φ
(Ref@) ⊢ @ii
(Agree) ⊢ @i@jφ↔ @jφ
(Intro) ⊢ i→ (φ↔ @iφ)
(Back) ⊢◇@iφ→ @iφ
(DA) ⊢ @i(↓ x.φ↔ φ[x/i])
(TS) ⊢ i→ ⟨S⟩i
(IrrTW ) ⊢ i→ ¬⟨W ⟩i
(BSW ) ⊢ i→ ([S]⟨S⟩i ∧ [W ]⟨W ⟩i)
(NonO) ⊢ i→ ([S]⟨W ⟩i→ i) ∧ [W ](⟨S⟩i→ i))
(MP) If ⊢ φ and ⊢ φ→ ψ then ⊢ ψ
(Subst) If ⊢ φ then ⊢ φσ, for σ a substitution
(Gen@) If ⊢ φ then ⊢ @iφ
(Gen◻) If ⊢ φ then ⊢ ◻φ
(Name) If ⊢ @iφ and i does not occur in φ, then ⊢ φ
(BG) If ⊢ @i◇ j → @jφ, j ≠ i and j does not occur in φ, then ⊢ @i ◻ φ

5.2.3 Soundness and Strong Completeness

We will now prove that TL is sound and strongly complete with respect to the class
of tied frames.

Theorem 9 TL is sound and strongly complete with respect to the class of tied
frames.

Proof. (Soundness) Let F be the class of tied frames. Since KH(@,↓) is sound
with respect to the class of all hybrid frames, we know that F ⊩ KH(@,↓). Thus it

suffices to show the validity of the axioms TS , IrrTW ,BSW and NonO. Validity of
TS , IrrTW and BSW is trivial. To show the validity of NonO, we refer to Lemma
10 where we observe that axiom NH is NonO where instead of ⊞,| we substitute
[S], ⟨S⟩ and replace ⊟,x with [W ], ⟨W ⟩.

(Completeness) Note again that TL is KH(@,↓) + {TS , IrrTW ,BSW ,NonO}. The
Sahlqvist-like theorem proved in [8] states that if Σ is a set of pure H(@, ↓)-formulas,
then KH(@,↓)+Σ is strongly complete for the class of frames defined by Σ. It follows

directly that if we can show that {TS , IrrTW ,BSW ,NonO} is a set of pure H(@, ↓)-
formulas, then TL is strongly complete with respect to the class of tied frames. The
result follows straightforwardly from the fact that none of the axioms contain any
propositional variables and that they can all be formulated in the language H(@, ↓).
Proof of soundness and strong completeness follows.
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Corollary 10 TL + ⟨S⟩i → [S](⟨S⟩i ∨ ⟨W ⟩i) is sound and strongly complete with
respect to the class of tied frames where all agents have the Strong Triadic Closure
property.

Proof of Corollary 10 follows from Lemma 11 and Theorem 9 given that the above
formula is a nominal version of STCG. Whereas this is perhaps not a surprising
result, completeness on this class of frames is worth taking note of. Recall that
according to Granovetter’s theory, Strong Triadic Closure is a property we often
observe across social networks. We now have the ability to reason and conduct
a logical analysis directly within networks with this property; where the following
corollary is a favorable example.

Corollary 11 S2 → LBW is a validity of TL + ⟨S⟩i→ [S](⟨S⟩i ∨ ⟨W ⟩i).

5.3 Summary

In this chapter we introduced a novel logic called tied logic, abbreviated TL. Tied
logic is a hybrid logic based on theories originating from Mark Granovetter where
relations in social networks are divided into strong and weak ties. According to this
theory, agents in social networks are likely to have the Triadic Closure property,
namely that their strong ties are subsequently strongly or weakly tied. This leads
to the formation of strongly tied clusters that are tied by weak ties. We argued that
these clusters are closely related to the emergence of echo chambers. We presented
syntax and semantics of TL before showing that Granovetter’s most notable claim
is a validity in TL. Then we provided a full axiomatization of tied logic and proved
that the logic is sound and strongly complete with respect to tied frames.
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Chapter 6

Homophily

In the preceding chapters, we have been considering change and knowledge in social
networks with agents related by different types of relations. We have however not
provided any justification behind these relations, nor said anything about how they
might have come to be. Homophily is known as the tendency of being similar
to one’s friends [16]. Perhaps, among many, there are two particularly prominent
reasons behind this tendency. One is social influence: the habit of becoming like
the people we surround ourselves with. Another is social selection; that we form
friendships with others who are alike us. In this chapter we integrate our work with
research on social group formation [34] [35] to illustrate the latter phenomenon. By
defining a subclass of previously introduced models similar to the threshold models
known from the literature, we present a support for relation making by properties
agents have in common. We will integrate homophily in both logic of positive and
negative relations and tied logic in successive sections. In the tied logic section we
also make some observations to explore the attributes this subclass holds.

6.1 Positive and Negative Relations

Before we begin assessing positive and negative relations in terms of properties the
agents share, we need to clarify exactly what subset of LPNL+ we will be working
with. A natural choice seems to be LPNL+ without nominals or the ⟨+∩−⟩ modality.
This gives us the logic PNLD as in D for both dynamic and the [D] operator. As
we know, PNLD is a dynamic logic that guarantees axioms for balance, collective
connectedness and non-overlapping. To confirm that the reader is up to speed, we
define LPNLD

.
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Definition 38 (Syntax of PNLD) Let At be a countable set of propositional atoms.
We define the well-formed formulas of the language LPNLD

to be generated by the
following grammar:

φ ∶∶= p ∣ ¬φ ∣ (φ ∧ φ) ∣|φ ∣xφ ∣ [A]φ ∣ [!+]Gφ ∣ [!−]Gφ ∣ [D]φ ∣

[⊕]Lφ ∣ [⊖]Lφ ∣ [!+]Lφ ∣ [!−]Lφ

where p ∈At. We define propositional connectives like ∨,→ and the formulas ⊺,⊥ as
usual. Further, we define the duals as standard ⊞ ∶= ¬| ¬ and ⊟ ∶= ¬x ¬.

To simplify notions to come, we will in this section work with signed models M =
⟨A,R+,R−, V ⟩ as defined in Definition 7 with a slight modification. The valuation
function is now defined V ∶ A → ℘(At). Recall that we consider propositions in
our language to be propositions of agents, or rather certain features agents in the
network can have. The set of properties of an agent a is now captured in V (a).

We define the semantics of PNLD as a fragment of Definition 32 with a minor
change in the truth of a propositional atom in a model, according to the redefinition
of the valuation function:

M, a ⊩ p iff p ∈ V (a) for p ∈ At.

6.1.1 Mismatch and Distance

We now define the notions mismatch and distance.

Definition 39 (MSMTCH and DIST [34]) Let M = ⟨A,R+,R−, V ⟩ be a signed
model. We define the set of features distinguishing agents a, b ∈ A in M as:

MSMTCHM(a, b) ∶=At ∖ {p ∈At ∶ p ∈ V (a) iff p ∈ V (b)}.

Further, we define the distance between a and b in M to be:

DISTM(a, b) ∶= ∣MSMTCHM(a, b)∣.

Intuitively, the mismatch of agents a and b in signed model M is the set of all features
or properties that the agents do not share. This also includes properties that none
of them have. The distance of a and b with respect to the same tied model is the
cardinality of the mismatch, i.e. the number of properties a and b do not share. We
read that agents with a small distance are more similar and have a higher degree of
homophily than agents with a larger distance. Important to note here is that DIST
is a distance between agents, not models as we have considered in earlier chapters.
We also observe that DIST is non-negative, symmetric and subadditive.
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6.1.2 Signed Threshold Models

Using the distance between agents, we define signed threshold models as a subclass
of signed models in close relation to the similarity updates of [34] and [35]. Now
positive and negative relations between agents are decided based on the number of
properties they have in common with respect to certain natural number thresholds
θ+ and θ−. We define signed threshold models accordingly.

Definition 40 Let θ+, θ− ∈ N be two given thresholds such that θ+ < θ− ĺ ∣At∣. We
define a signed threshold model Mθ+− = ⟨A,Rθ+,Rθ−, V ⟩ where:

• A is a set of agents

• Rθ+ is a symmetric and reflexive binary relation such that

Rθ+ ∶= {(a, b) ∈ A ×A ∶DISTM(a, b) ĺ θ+}

• Rθ− is a symmetric and Rθ+-non-overlapping binary relation such that

Rθ− ∶= {(a, b) ∈ A ×A ∶ θ− <DISTM(a, b)}

• V ∶ A→ ℘(At) is a valuation function

A signed threshold frame Fθ = ⟨A,Rθ+,Rθ−⟩ is a signed threshold model without
valuation.

We read aRθ+b as agent a and b have enough in common to be positively related.
Similarly, we read aRθ−b as a and b does not have enough in common to be positively
related, and furthermore have so few common properties that they are negatively
related instead.

6.2 Strong and Weak Ties

The introduction of the social selection aspect of homophily into tied logic is highly
related to echo chamber formation, particularly in the context of information ex-
change through social media. Most social media platforms give users or platform
operators the ability to filter out annoying and/or incompatible voices. This is di-
rectly related to social selection, and can promote the creation of echo chambers
where a shortage of new and opposing information can lead to fragmentation in
society [25].

We will as in the former section define a threshold model subclass, now of tied
models. Implemented in networks where we have formalized Strong Triadic Clo-
sure, strongly tied clusters are now made up of agents not only strongly related,
but also similar to a certain degree. The resemblance to echo chambers is only
strengthened.
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We bring back TL and define a subclass of tied models called tied threshold models.
As in the case of signed models, we modify the valuation function of a tied model.
Recall the definition of a tied model M = ⟨A,RS ,RW , V ⟩ in Definition 34. We alter
the valuation function to be defined as V ∶ A→ ℘(At ∪Nom) such that ∀i ∈ Nom:
if i ∈ V (a) and i ∈ V (b), then a = b. Thus, for i ∈ Nom, [i]M,g is now the unique a
such that i ∈ V (a). This again modifies the semantics of TL given in Definition 35
in the following fashion.

M, g, a ⊩ p iff p ∈ V (a) for p ∈ At.

6.2.1 Tied Threshold Models

Let the definitions of MSMTCH and DIST be as in Definition 39, however now
specified for a tied model instead of a signed model. We define the subclass of tied
threshold models.

Definition 41 Let θS , θW ∈ N be two thresholds such that θS < θW ĺ ∣At∣. We
define a tied threshold model MθSW = ⟨A,RθS ,RθW , V ⟩ where:

• A is a set of agents

• RθS is a symmetric and reflexive binary relation such that

RθS ∶= {(a, b) ∈ A ×A ∶DISTM(a, b) ĺ θS}

• RθW is an symmetric, irreflexive and RθS-non-overlapping binary relation such
that

RθW ∶= {(a, b) ∈ A ×A ∶ θS <DISTM(a, b) ĺ θW }

• V ∶ A→ ℘(At ∪Nom) is a valuation function

We read aRθSb as agent a and b have enough in common to be connected by a strong
tie. Similarly, we read aRθW b as a and b have enough in common to be connected
by a weak tie, but not enough in common to be connected by a strong tie.

We observe that the thresholds interact differently in tied threshold models in com-
parison to signed threshold models. In the former, for two agents a and b that are
not related by either weak or strong tie θW < DISTM, i.e. the agents will not have
enough in common to be related by even a weak tie, let alone a strong tie. In the
latter we also operate with two thresholds θ+ and θ−, however for two agents a and b
not related by either positive or negative relation θ+ < DISTM(a, b) ĺ θ−. In other
words, a and b do not have enough in common to be positively related, yet too much
in common to be negatively related.
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6.2.2 Observations

To familiarize the reader with the newly defined tied threshold models, we make the
following observations.

• @i⟨S⟩j → (@ip↔ @jp) is valid on tied threshold frames where θS = 0;

• @i¬⟨S ∪W ⟩j → (@ip → @j¬p) is valid on tied threshold frames where θW =
∣At∣ − 1.

The first formula expresses that when θS = 0, if two agents i and j are strongly tied,
then the property p holds at i if and only if p holds at j. When θW = ∣At∣ − 1, two
agents that are neither tied strongly nor weakly do not share any properties. The
latter formula asserts that if this is the case for two agents i and j, if the property
p holds at i, then it does not hold at j.

Further observations where homophily and tied threshold models come into play will
be presented in the next chapter where we explore the extension of knowledge and
dynamics to TL.

6.3 Summary

In the penultimate chapter of this thesis before concluding remarks, we implemented
the social selection element of homophily in our formal frameworks. Homophily
is the social concept that we are like our friends. Social selection is one aspect
of homophily suggesting that we choose to form friendships with others who are
similar to us. To incorporate these ideas into our previous work, we combined
our results with research on social group formation based on agent similarity. We
defined a subclass of threshold models for each logic where relations and ties between
agents are justified in terms of properties agents have in common. In the section
on tied threshold models we also presented some observations of this subclass in
particular.
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Chapter 7

Ties, Knowledge and
Dynamics

In this chapter we add a knowledge modality and dynamic operators to TL and in
consequence, extending it to tied epistemic logic (TEL). Our motivation is to inves-
tigate the interplay between social concepts like echo chambers and local bridges,
change in the network, and how this relates to agents’ knowledge of their surround-
ing context. We present the syntax and semantics of TEL, threshold frames and
models, and discuss a number of possible axioms up for adoption to further specify
the frames within which we want to reason. We also introduce some validities of
tied epistemic logic on both frames with and without thresholds, depending on what
axioms we choose to adopt. The chapter concludes with an example to accustom
the reader to this extensive logic.

7.1 Syntax and Semantics

TEL is inspired by other epistemic logics for social networks, such as [31] and
[32]. Still, TEL differs from these on some notable accounts. Firstly, our valuation
function in which the range includes nominals depends on epistemic states. This is as
we do not want the underlying assumption that every agent in the network knows
the name of all other agents. Secondly, we have included dynamic local adding
modalities to the language of TEL, similar to those of the dynamic extension of
PNL. Local dynamic operators of this kind are as far as we know yet to be seen in
a social network context. We introduce the syntax of TEL.
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Definition 42 (Syntax of TEL) Let At be a set of propositional atoms and Nom
be a set of nominals. Further, let Var be a set of agent variables. Let At,Nom and
Var be countable and pairwise disjoint. We define the well-formed formulas of the
language LTEL to be generated by the following grammar:

φ ∶∶= p ∣ s ∣ ¬φ ∣ (φ ∧ φ) ∣ ⟨S⟩φ ∣ ⟨W ⟩φ ∣ [A]φ ∣Kφ ∣ @sφ ∣↓ x.φ ∣ [!S]Lφ ∣ [!W ]Lφ

where p ∈At, s ∈Nom∪Var and x ∈Var. We define propositional connectives like
∨,→ and the formulas ⊺,⊥ as usual. Further, we again define the duals as standard
[S] ∶= ¬⟨S⟩¬ and [W ] ∶= ¬⟨W ⟩¬.

We observe that there are four new operators in the language. The intuitive reading
of them are as follows. We read [A]φ to hold at the current agent if and only if φ is
universally true at all agents in the network. Kφ is intuitively read as the current
agent knows that φ. The dynamic modality [!S]Lφ holds at agent a if and only if
after adding a strong tie that a previously did not have, φ is true at a. [!W ]Lφ is
read similarly, although by replacing a strong tie with a weak tie. Before we present
the semantics of these operators, we define tied epistemic models.

Definition 43 (Tied Epistemic Frames and Models) A tied epistemic model is a
tuple M = ⟨W,A,∼,RS ,RW , V ⟩ where:

• W is a set of epistemic alternatives,

• A is a set of agents,

• ∼ is a family of equivalence relations ∼a on W for every a ∈ A,

• RS is a family of symmetric and reflexive relations RSw on A for each w ∈W ,

• RW is a family of RS-non-overlapping and symmetric relations RWw on A for
each w ∈W , and

• V ∶ W × A → P(At ∪Nom) is a valuation function, assigning each agent to
a unique name and a set of properties in an epistemic state. I.e, for each
i ∈Nom and for all w ∈W and all a, b ∈ A: if i ∈ V (w,a) and i ∈ V (w, b), then
a = b. Additionally, all names correspond to an agent and an epistemic state.
That is ∀i ∈Nom: ∃a ∈ A and ∃w ∈W such that i ∈ V (w,a).

We define a frame F = ⟨W,A,∼,RS ,RW ⟩ in the usual way, as a model without
valuations.

Again, let g ∶ Var → A be an assignment function assigning agents to variables.
Furthermore, define the x-variant of g to be gxa(x) = a and gxa(y) = g(y) for all y ≠ x.
We now define the semantics of TEL.
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Definition 44 (Semantics of TEL) Let M be a model, a an agent in A, w ∈W an
epistemic state and g ∶Var → A an assignment function. We inductively define the
truth conditions as follows:

M, g,w, a ⊩ p iff p ∈ V (w,a) for p ∈At

M, g,w, a ⊩ i iff i ∈ V (w,a) for i ∈Nom

M, g,w, a ⊩ x iff a = g(x) for x ∈Var

M, g,w, a ⊩ ¬φ iff M, g,w, a /⊩ φ
M, g,w, a ⊩ φ ∧ ψ iff M, g,w, a ⊩ φ and M, g,w, a ⊩ ψ
M, g,w, a ⊩ ⟨S⟩φ iff ∃b ∈ A such that aRSwb and M, g,w, b ⊩ φ
M, g,w, a ⊩ ⟨W ⟩φ iff ∃b ∈ A such that aRWw b and M, g,w, b ⊩ φ
M, g,w, a ⊩ [A]φ iff ∀b ∈ A ∶M, g,w, b ⊩ φ
M, g,w, a ⊩Kφ iff ∀v ∈W such that w ∼a v ∶M, g, v, a ⊩ φ
M, g,w, a ⊩ @sφ iff ∀b ∈ A ∶M, g,w, b ⊩ s→ φ for s ∈Nom ∪Var

M, g,w, a ⊩↓ x.φ iff M, gxa ,w, a ⊩ φ
M, g,w, a ⊩ [!S]Lφ iff ∃b ∈ A such that ¬(aRSwb), ¬(aRWw b) and

⟨W,A,∼, RSw ∪ {(a, b), (b, a)},RWw , V ⟩, g,w, a ⊩ φ
M, g,w, a ⊩ [!W ]Lφ iff ∃b ∈ A such that ¬(aRSwb), ¬(aRWw b) and

⟨W,A,∼, RSw,RWw ∪ {(a, b), (b, a)}, V ⟩, g,w, a ⊩ φ

The two dynamic modalities [!S]L and [!W ]L are model changing operators.
Their semantics, similar as in Dynamic Epistemic Logic [4] [14], are evaluated by
taking into account an updated model in which only the relations RS or RW are
changed.

7.2 Possible Axioms

We might want to add some axioms to narrow down our class of tied epistemic
frames. In this section we consider candidates corresponding to some properties we
believe put natural constraints on agents in an epistemic context.

The first property we propose is that an agent knows it when it is strongly tied to
another agent.

↓ x.[S] ↓ y.@xK⟨S⟩y (1)

Perhaps a bit less likely is the property that an agent knows it when it is weakly
tied to another agent. This property depends on what we assign to the term ‘ac-
quaintance’ and the meaning we expect of the knowledge modality.

↓ x.[W ] ↓ y.@xK⟨W ⟩y (2)
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Another reasonable attribute to assume is that an agent knows it when they have a
property p or a name i, defined by the following two axioms.

p→Kp (3)

i→Ki (4)

It is also likely to assume that if an agent is strongly tied to another agent whose
name is i, they know the other agent’s name.

↓ x.[S] ↓ y.(i→ @xK@yi) (5)

A further axiom up for discussion is the one defining the property that an agent
knows if its strong tie has the property p. This is a strong assumption that might
only be relevant in certain contexts.

↓ x.[S] ↓ y.(p→ @xK@yp) (6)

Similarly, but perhaps a weaker assumption is that agents know the strong ties
of their strong ties. This seems likely when defining strong ties as agents’ closest
friends.

↓ x.[S] ↓ y.[S] ↓ z.@xK@y⟨S⟩z (7)

The last axiom we will consider defines the likely property of agents knowing when
they are acquainted by a new agent by a weak tie. Note that this would be implied
by Axiom (2) and that the strong tie version of this axiom is implied by Axiom
(1).

↓ x.[!W ]L[W ] ↓ y.@xK⟨W ⟩y (8)

7.3 Tied Epistemic Threshold Models

We proceed to present the definitions of DIST and MSMTCH aligned with the
inclusion of epistemic states to the models. Note that for simplicity we will write
V (w,a) instead of V ((w,a)). The set V (w,a) now denotes the set of features, or
properties, of agent a in state w.

Definition 45 (MSMTCH and DIST) Let M = ⟨W,A,∼,RS ,RW , V ⟩ be a tied epis-
temic model. We define the set of features distinguishing agents a, b ∈ A in state
w ∈W in M as:

MSMTCHM
w (a, b) ∶=At ∖ {p ∈At ∶ p ∈ V (w,a) iff p ∈ V (w, b)}.

Further, we define the distance between a and b in state w ∈W in M to be:

DISTM
w (a, b) ∶= ∣MSMTCHM

w (a, b)∣.

We can now continue by introducing the notion of tied epistemic threshold frames
and models.
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Definition 46 (Tied Epistemic Threshold Frames and Models) Let θS , θW ∈ N be
two thresholds such that θS < θW ĺ ∣At∣. A tied epistemic threshold model is a tuple
MθSW = ⟨W,A,∼,RθS ,RθW , V ⟩ where:

• RθS is a family of symmetric and reflexive relations RθSw for each w ∈W such
that

RθSw ∶= {(a, b) ∈ A ×A ∶ ∀u ∼a w,DISTM
u (a, b) ĺ θS},

• RθW is a family of RθS-non-overlapping, irreflexive and symmetric relations
RθWw for each w ∈W such that

RθWw ∶= {(a, b) ∈ A ×A ∶ ∀u ∼a w, θS <DISTM
u (a, b) ĺ θW }, and

• W,A,∼ and V are defined as in the case of a tied epistemic model.

Again, we define a tied threshold frame FθSW = ⟨W,A,∼,RθS ,RθW ⟩ as a model
without valuation.

We read aRθSw b as agent a knows in state w that a and b have enough in common to
be connected by a strong tie. Similarly, we read aRθWw b as a knows in state w that
a and b have enough in common to be connected by a weak tie, but not enough in
common to be connected by a strong tie.

7.4 Validities

We look at some validities of TEL depending on axioms we choose to embrace to get
a better understanding of our logic in relation to echo chambers and related social
phenomena. Firstly, if we would adopt Axiom (1), the following formula would be
a validity on a tied frame.

↓ x.((⟨S⟩ ↓ y.@x⟨S⟩ ↓ z.@xK@z¬⟨S ∪W ⟩y)→K¬STC)

This validity says that “If I am tied to any two successors y and z by strong ties
and I know that y and z do not know each other, then I know I am not strongly
triadic closed.” The formula represents a relationship between knowledge and echo
chambers. If an agent knows that they do not have the Strong Triadic Closure
property, they can derive that it is less likely that they are participating in an echo
chamber.

↓ x.(K¬⟨S ∪W ⟩ ↓ y.(i ∧ [A](⟨S ∪W ⟩y → ¬⟨S ∪W ⟩x)))→K[!W ]L(⟨W ⟩i→ LB)

This formula states that “If I know that there is another agent y in the network
in which we do not have any friends in common, then I know that if we become
acquainted by a weak tie, then I am related to another agent by a weak local bridge.”
Imagine agents find themselves in a place where they suspect an echo chamber has
been or were about to be formed. They might have an incentive to get acquainted
by a local bridge to receive some new information and hear opposing opinions. Note
that the above formula is also valid in the case of strong instead of a weak tie.
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The next is a validity on tied threshold frames where we adopt Axiom (6) for all
p ∈ At.

STC→KSTC

This validity is a result of the homophily-motivated definitions of RθS and RθW and
represents that the current agent knows whether they are strongly triadic closed.
Strong Triadic Closure is closely related to echo chamber formation. If the agent
knows whether they are strongly triadic closed, then principally they would know
whether they could be in an echo chamber-like situation.

7.5 Example

In the concluding section we present an example of a tied epistemic threshold model
and discuss what formulas might hold at specific agents depending on what axioms
we adopt to restrict the model.

Consider the tied epistemic threshold model MθSW = ⟨W,A,∼,RθS ,RθW , V ⟩ in Fig-
ure 7.1. In particular, we observe that A = {a, b, c, d, e, f} and W = {w, v}. For
simplicity the reflexive arrows are omitted for ∼x for all x ∈ A as well as for RθSw and
RθSv .
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Figure 7.1: A tied epistemic threshold model MθSW .

We first regard the model MθSW where (w ∼x v) ∈ ∼x for all x ∈ A. Let a, b, c, d, e, f ∈
Nom such that the corresponding ‘name’ is true for each agent in A in each epistemic
state in W . For instance MθSW , g,w, c ⊩ c and MθSW , g, v, e ⊩ e etc. We make,
among many, the following observations.
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• MθSW , g,w, a ⊩KSTCL

Agent a knows in w that it has the Strong Triadic Closure property.

• MθSW , g,w, d ⊩ STCL ∧ ¬KSTCL

Agent d has the Strong Triadic Closure property in state w, but does not know
it.

• MθSW , g, v, a ⊩ LB

Agent a is related by a local bridge in state v. We see that this also holds in
both w and v for agents a and d.

• MθSW , g,w, f ⊩ ⟨S⟩e ∧ ¬K⟨S⟩e

Agent f is strongly tied to agent e in state w, but does not know it.

• MθSW , g, v, e ⊩ [!S]L(⟨S⟩f → @dKSTCL) ∧ [!W ]L(⟨W ⟩f → @dKSTCL)

If agent e in state v is strongly or weakly tied to f after adding a strong
or weak tie respectively, then agent d will know that it then has the Strong
Triadic Closure property.

We now notice the following regarding the axioms in the previous section.

• Axiom (1) does not hold in MθSW in both states at e and f in particular.
Adjusting ∼ such that ¬(w ∼e v) and ¬(w ∼f v) is one way to let Axiom (1)
hold at all agents in both epistemic states. The reasoning is as follows. Axiom
(1) lets agents e and f know that they are related in state w, and not in state
v; MθSW , g,w, e ⊩ K⟨S⟩f and MθSW , g, v, e ⊩ K¬⟨S⟩f . Thus if both agents
can distinguish between states w and v, the axiom holds.

• Neither Axiom (6) nor Axiom (7) is forced at agent d in either epistemic state.
Letting ¬(w ∼d v) would make either axiom true. Axiom (7) restricts the
model such that every agent knows the strong ties of their strong ties. If
this is the case then MθSW , g,w, d ⊩ KSTC while MθSW , g, v, d ⊩ K¬STC.
Letting agent d distinguish between w and v would solve this problem. Axiom
(6) make agents know the properties of their strong ties. As MθSW is a tied
epistemic threshold model, agent d would know by the properties of its strong
ties e and f that eRSwf whereas ¬(eRSv f). Thus agent d would again know
whether it has the Strong Triadic Closure property. A contradiction is also
avoided here when we let agent d be able to distinguish between states w and
v.
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7.6 Summary

In this chapter we presented the logic TEL, the epistemic and dynamic extension
of TL. We introduced the language and semantics of a now complex and highly
expressive logic and presented tied epistemic frames both restricted and unrestricted
by thresholds. Then we discussed possible restrictions to tied epistemic frames and
validities depending on these restrictions. We concluded the chapter with an example
where we assessed what consequences adopting particular axioms would have in this
setting.
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Chapter 8

Further Directions and
Concluding Remarks

This concludes our investigation thus far. After introducing the social network the-
ory behind structural balance and the logic of positive and negative relations known
from the literature, we set out to expand this logical framework with several inten-
tions in mind. To explore measures of how far a network is from polarization, we
considered and compared a variation of distances in relation to balance. We pre-
sented a number of additions to PNL to be able to define previously undefinable
frame properties in the original work. In particular, we presented a dynamic char-
acterization of the balance property. By further extension of dynamic modalities we
developed a framework to analyze change with regards to signed social networks.
Then, we moved away from positive and negative relations and defined tied logic:
a hybrid logic of strong and weak ties. Closely related to the social phenomenon of
echo chambers, we formalized essential properties from social psychology and showed
that a known claim in this field is a validity in tied logic. We provided an axioma-
tization of tied logic and proved soundness and strong completeness with respect to
tied frames. Inspired by work on social group formation we defined threshold frames
in which relations are justified on the basis of features agents in a network share.
Lastly, we introduced tied epistemic logic by extending tied frames with epistemic
states and the language of tied logic with dynamic and epistemic operators. We
discussed possible axioms to narrow down the class of tied epistemic frames, and
presented valid formulas showing the interplay between dynamics and reasoning in
significant social settings.

There are a number of paths in which we can continue the work of this thesis. We
will address a selection of possible proposals for future work.

Completeness Results for Extended PNL and TEL. A natural place to con-
tinue this work is to explore further technical results of our extended dynamic logics,
and in particular assess potential completeness proofs. It remains to see if the results
are directly connected to the open problem of axiomatization of sabotage modal logic
[3].
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Echo Chambers and Filtering Mechanisms. Important to remark is that our
presentation of echo chambers as strongly tied clusters is not the only way in which
one can formalize the concept. Other formalizations (such as [18]) include a fil-
tering mechanism, representing the habit of filtering out extraneous information
within echo chambers. Such a mechanism could be engaging to implement into our
framework and can possibly be done by taking into account the ‘selective learning
principle’ that is formally explored in [5].

Computational Results. Beyond the scope of this thesis are various investigations
of computational results related to the work. A suggestion for future work is the
computational complexity of the different measures of balanced distance.

Homophily and Social Influence. In our work we implemented only the social
selection component of homophily. Another angle to approach in a logical framework
is the social influence side; that we become like our friends.

Other Agent Attributes. Interesting to explore are further attributes agents in
a social network can hold in addition to knowledge, such as beliefs, preferences or
trust. Trust would be especially interesting to investigate in relation to webpage
rankings as explored in for instance [16]. We find several models of trust in the
literature (e.g. [29]) for future application to our logical framework.

Public Announcements and Common Knowledge. On a final note, our work
motivates a further investigation of change in social networks. This could be done by
exploring other validities, but also by the inclusion of additional dynamic operators.
A possible approach is to extend our multi-agent dynamic framework with features of
communication such as public announcements and group knowledge such as common
knowledge [4], [14].
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Appendix A

Appendix

A.1 Chapter 2

A.1.1 Proof of Theorem 6

Theorem 6

(Local Balance ⇒ Global Balance) Let F = ⟨A,R+,R−⟩ be a signed frame. If there
exists a collectively connected signed frame F′ = ⟨A′,R+′ ,R−′⟩ such that A = A′,
R+ ⊆ R+′ and R− ⊆ R−′ that has the local balance property, then F has the global
balance property.

Proof. Let F = ⟨A,R+,R−⟩ be a signed frame. Assume that there is a collectively
connected signed frame F′ = ⟨A′,R+′ ,R−′⟩ such that A = A′, R+ ⊆ R+′ and R− ⊆ R−′

that has the local balance property. If F′ has the global balance property, it will
stay globally balanced for any subset of R+′ and R−′ . It follows that also F will have
the global balance property. We will therefore prove that F′ has the global balance
property and our desired result will follow directly.

Pick an arbitrary a ∈ A′. Recall that as F′ is collectively connected, ∀b ∈ A′ either
aR+′b or aR−′b. Now, define S such that ∀b ∈ A′ ∶ if aR+′b, then b ∈ A′ and if aR−′b,
then b ∈ A′ ∖ S.

Since F′ is positive reflexive aR+′a, and we have that aR+a. Thus a ∈W .

We want to prove that ∀w, v ∈ A′ ∶

• if wR+′v, then w, v ∈ S or w, v ∈ A′ ∖ S, and

• if wR−′v, then w ∈ S and v ∈ A′ ∖ S, or w ∈ A′ ∖ S and v ∈ A′.

Let w and v be arbitrary in A′.

• Assume that wR+′v. Then by symmetry wR+′v. There are two cases to
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consider:

– aR+′w. Then w ∈ S. By the local balance property, as aR+′w and wR+′v,
then aR+′v. Thus w, v ∈ S.

– aR−′w. Then w ∈ A′ ∖ S. By the local balance property, as aR−′w and
wR+′v, then aR−′v. Thus w, v ∈ A′ ∖ S.

• Assume that wR−′v. Then wR−′v. Again, there are two cases to consider:

– aR+′w. Then w ∈ S. By the local balance property, as aR+′w and wR−′v,
then aR−′v. Thus w ∈ S and v ∈ A′ ∖ S.

– aR−′w. Then w ∈ A′ ∖ S. By the local balance property, as aR−′w and
wR−′v, then aR+′v. Thus w ∈ A′ ∖ S and v ∈ S.

We have proved that F′ has the global balance property, and thus directly that F is
globally balanced too. ◻

(Global Balance ⇒ Cyclic Balance) If a signed frame F = ⟨A,R+,R−⟩ has the global
balance property, then it has the cyclic balance property.

Proof. Let F = ⟨A,R+,R−⟩ be a signed frame. Assume that F is globally bal-
anced. Suppose for reductio that F does not have the cyclic balance property. Then
∃a1, . . . , am ∈ A such that a1R

x1 . . .Rxi−1amR
xia1 for xn ∈ {+,−} and ∣{(as, at)− ∣ 1 ĺ

s < t ĺ m}∣ = 2n
1 for n ∈ N+.

Assume without loss of generality that a1 ∈ S. By the global balance property of F,
if a1R

+a2 then a2 ∈ S and if a1R
−a2 then a2 ∈ A ∖ S. Similarly, if a1R

+a2R
−a3 then

a1, a2 ∈ S and a3 ∈ A ∖ S, and if a1R
−a2R

−a3 then a1, a3 ∈ S and a2 ∈ A ∖ S. And
so on. In the cycle of relations from a1, call the last negative relation in the cycle
before reaching a1 for (aj , ak)−. Since the number of negative relations in the cycle
is odd, it follows that aj ∈ S and ak ∈ A ∖ S. We also have that akR

+ . . .R+a1, thus
either ak, a1 ∈ S or ak, a1 ∈ A ∖ S. This is a contradiction. Hence, we conclude that
F must have the cyclic balance property. ◻
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Sets” in E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp.607–617.

[34] Smets, S & Velázquez-Quesada, FR 2017, “The Creation and Change of Social
Networks: A Logical Study Based on Group Size.” in Dynamic Logic. New Trends
and Applications, LNCS Volume 10669, pp.171–184, Cham: Springer.

[35] Smets, S & Velázquez-Quesada, FR 2017, “How to Make Friends: A Logical Ap-
proach to Social Group Creation” in Logic, Rationality, and Interaction, LNCS
Volume 10455, pp.377–390, Berlin, Heidelberg: Springer.

[36] Sunstein, CR 2002, “The Law of Group Polarization”. The Journal of Political
Philosophy, 10(2), pp.175–195.

[37] Sunstein, CR 2007, “Group Polarization and 12 Angry Men”, Negotiation Jour-
nal, 23(4), pp.443–447.

[38] Traag, VA, Doreian, P, & Mrvar, A 2018, “Partitioning Signed Networks”,
arXiv preprint arXiv:1803.02082.

[39] Xiong, Z 2017, On the Logic of Multicast Messaging and Balance in Social
Networks (Doctoral dissertation), University of Bergen.
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