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Abstract

This thesis investigates logical models for branching spacetimes, in the tradi-
tion started by Belnap. To get a proper generalization of Minkowski space-
time that is closer to physical reality, the thesis adds to Belnap’s causal (i.e.
order-theoretic) structure appropriate topological, differentiable and metric
structures, and investigates the resulting setting, proving a number of inter-
esting original results. Notably, it is shown that the Minkowskian Branching
Spacetimes of Belnap’s school can be seen as non-Hausdorff, time-oriented
Lorentzian manifolds in which each history is an open, Lorentzian submani-
fold isometric to a fixed Minkowski spacetime. The approach used in this thesis
naturally lends itself to the construction of a new class of models, which are
named Lorentzian Branching Spacetimes. It is shown that these Lorentzian
BSTs can be constructed from arbitrary spacetimes, in such a way that many
enjoyable causal properties are preserved.
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Introduction

Since at least the 1960’s, indeterministic processes have been modelled within
a branching framework. The idea, which was historically used for temporal
models, is that each branch looks like a conventional timeline, whereas the
global structure is tree-like, as pictured in Figure 1. These “branches” are
normally referred to as histories, and can be seen as the maximally-linear
subsets of the model.1

Fig. 1. A branching temporal model with 8 histories, each of which is order-
isomorphic to a linear temporal model. There are a certain number of “split-
ting points” which determine where the histories split from one another.

An important characteristic of branching temporal models is the existence
of points that are temporally unrelated. This means that there are points in
the model that share a common past, but have disconnected futures. Formally,
this manifests as a relaxation of the totality2 of the temporal ordering, so that
the model is only a partial order.

1 Here maximality is with respect to set-theoretic inclusion, i.e. a history is a linear
subset that is not properly contained in any other linear subset.

2 Recall a binary relation R on a set X is called total (or sometimes, linear) if for
each pair of elements x and y of X, either xRy or yRx.
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In 1992, Nuel Belnap generalised this idea by proposing a theory that
merged the branching process of an indeterministic model with the causal
structure of Minkowski spacetime [1].3 Belnap’s approach was very similar to
the description of branching time models – first he provided an axiomatisation
of the causal properties of Minkowski spacetime, and then he relaxed the
property of directedness4 in order to facilitate branching. Histories can then
be analogously defined as subsets of the model that are maximally-directed.

Belnap’s axiomatisation, which we will call BST92,5 has been widely stud-
ied.6 Notably, there have been discussions of probability theory within BSTs
[6], analyses of quantum-mechanical phenomena [7]–[10], and even some ap-
plications to the theory of computation [11], [12]. It can be suggested that
this broad range of applications has arisen from the ontological simplicity of
BST92 – the theory only takes a set W and a binary relation ≤ as it’s primi-
tives.

The intended class of models of BST92 are the so-called Minkowskian
Branching Spacetimes (hereafter Minkowskian BSTs, or MBSTs for short).
As the name suggests, MBSTs are models of BST92 in which every history
is order-isomorphic to a fixed Minkowski spacetime. Figure 2 depicts a sim-
ple MBST in which there are two histories, both of which are isomorphic to
the 2-dimensional Minkowski spacetime. It should be noted that Minkowskian
BSTs were not explicitly constructed until a decade later by Müller [13], and
this was later refined by Placek/Wronski [14].

Despite BST92 being a novel generalisation of branching temporal mod-
els, Belnap had other ambitions. With regards to his motives for introducing
BST92, he writes

“The aim was to contribute to the problem of uniting relativity with
indeterminism in a fully rigorous theory” [1, Pg. 43].

Although Belnap’s work was a groundbreaking contribution to this problem,
there are some obvious senses in which BST92 and its Minkowskian BSTs do
not suffice as a full resolution. In particular, there are two main limitations of
Belnap’s theory BST92, namely:

3 The original paper can be found as [2], though we will generally refer to the 2003
post-print [1], since it contains more detail.

4 Recall that a binary order R on a set X is directed iff for any pair of elements x
and y in X, there exists some z in X such that both xRz and yRz.

5
BST92 is an abbreviation of “Branching Spacetime 1992”, and is also called
BST1992 by other authors.

6 There have been other proposals for BSTs, for instance McCall [3] and Douglas
[4] have both proposed topological models that exhibit a different kind of branch-
ing known as individual branching. Given the arguments of Earman [5] against
individual branching, we will not consider such models in this thesis.
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Fig. 2. A 2-dimensional Minkowskian BST in which the origin has two causal
futures. These two futures are superimposed on top of one another, and are in
some sense “in the same place”. For a more-complicated model, see [15, Fig.
12.3(a)]

1. Structurally speaking, models of BST92 are too coarse to be interpreted
as models of relativity. Specifically, models of general relativity have topo-
logical, differentiable and metric structures that need to be accounted for.

2. BST92 and its MBSTs can only deal with special-relativistic branching,
and do not treat the models of general relativity adequately.

In the last decade, various attempts have been made to resolve these issues.
For the first item above, there have been a number of discussions of the topo-
logical properties of branching spacetimes – see e.g. [16], and [17] for a more
general discussion. A notable contribution came from Placek et. al. [18], who
introduced a natural topological extension of BST92 models known as the
Bartha topology. As of yet there have been no concrete discussions of the
potential differentiable and metric structures of the MBSTs of BST92.

As for the second item, Placek has recently provided a logico-mathematical
generalisation of BST92 [19]. The models, which are called genBSTs are con-
structed by pasting together MBSTs in a manner analogous to the standard
construction of smooth manifolds from local data (as in, say [20, Lem. 1.35]).
It is also shown that in certain situations, a topological structure can be de-
fined by pasting together locally-defined Bartha topologies.

In this thesis, we will introduce a novel resolution to these two limitations.
As it turns out, this is far easier to do if we adopt a modified version of BST92
recently introduced by Placek in [19], which we will call BST92*. By the end
of this thesis, we will have constructed Minkowskian BSTs of BST92* that
possess topological, differentiable and metric structures. Moreover, we will ar-
gue that these structural extensions are natural under the same criteria used
to justify the naturalness of the Bartha topology as in [18, Sec. 6].
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The concept that underpins our solution is our choice of construction of
the MBSTs of BST92*. In general, there are two ways to take a non-branching
object and make it branch at a point. These are

1. to glue on another future at the point, and
2. to take two disjoint copies of the whole space, and then glue them together

everywhere outside of the future of the point.

Figure 3 depicts the idea behind these two constructions. In the branching
spacetime setting, a type-1 construction has been used in [16] and sketched
in [21], and a type-2 construction has been used in [13] and [14]. We will
opt for a type-2 construction, since this will allow us to easily develop the
mathematical machinery needed to complete our task.

Our approach is as follows: first, we construct the Minkowskian BSTs of
the modified theory BST92* by gluing together copies of a fixed Minkowski
spacetime. The branching processes of a given MBST will be encoded by
a collection of interacting subsets which we will call “splitting data”. This
construction, which will be an adaption of the type-2 construction used by
Müller in [13], is performed at the level of the causal structure of Minkowski
spacetime. The idea is then to glue together Minkowski spacetimes at the
level of their topological, differentiable, and metric structures, in accordance
with the same splitting data. The resulting space will be a non-Hausdorff,
smooth manifold possessing a metric structure that is isomorphic to the metric
structure of the starting Minkowski space, once restricted to its histories.

Fig. 3. Two methods for constructing a branching model

This thesis is divided into two parts. The first part develops the metathe-
ory of BST92*. In Chapter 1, we remind the reader of the relevant causal
properties of Minkowski spacetime, as well as the basic tenets of Belnap’s
original theory BST92. In Chapter 2, we introduce BST92* and take the op-
portunity to prove some yet-to-be-documented basic facts about the system.
We will also construct the Minkowskian BSTs of BST92*. Chapter 3 is more
of an intermezzo in which we will introduce the reader to a general theory of
adjunction spaces, which are a well-known type of topological space that are
formed by gluing together other topological spaces. In Chapter 4, we com-
plete the first part of this thesis by analysing the Bartha topology on BST92*
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models. This can be seen as a recreation of the results of [18] in the BST92*
setting. We will strike a comparison with the BST92 Bartha topology, and
draw the conclusion that from a topological perspective, BST92* is actually
a better theory.

In Part 2 of this thesis, we will extend the theory of adjunction spaces
introduced in Chapter 3 to the Lorentzian manifold setting. In Chapter 5,
we will show that smooth manifolds can be glued along diffeomorphic, open
submanifolds. We will also discuss the nature of vector bundles over adjoined
manifolds. In Chapter 6, we complete the thesis by extending the results of
the previous chapter one more time, by identifying conditions under which
Lorentzian manifolds can be glued to each other. We will then synthesise the
results of Part 2 with the developments in Part 1, and express the Minkowskian
Branching Spacetimes of BST92* as an adjunction of Minkowski spacetimes
at the level of the Lorentzian structure. Finally, we will complete the thesis
by introducing and discussing a new class of general branching spacetimes,
which we will call Lorentzian Branching Spacetimes.

Before getting on with things, we should first make a few remarks. First,
a note on assumed knowledge. If the reader has not already guessed, we will
assume familiarity with the basic notions of topology, order theory, and set
theory, as well as the basic tenets of calculus and linear algebra. We will not
assume familiarity with differential or Lorentzian geometry – the uninitiated
reader is invited to read Appendix A1 before beginning Part 2 of this thesis.7

Second, we should make explicit the scope of this paper. In this thesis, we
will not be pushing any arguments suggesting that the branching spacetime
framework is an accurate description of reality. This is a technical paper, and
we will be intentionally agnostic with regards to any descriptive or ontological
claims.

7 In this appendix we introduce the relevant background material in Lorentzian
geometry, all from a non-Hausdorff perspective. This chapter can be seen as a
mathematical introduction to spacetime (in the physicists’ sense of the word),
without assuming the Hausdorff property.
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BST92* and its Topological Extension





1

Preliminaries: Minkowski Spacetime and

BST92

Before discussing the theory BST92* and its topological development, we will
start by introducing the required background material. First, we will intro-
duce the Minkowski spacetime and discuss some of its causal properties. We
will then provide a brief overview of Belnap’s original theory BST92. It will
become very clear that in essence, Belnap is using an axiomatisation of the
causal relation on Minkowski spacetime in which a particular property is re-
laxed in order to facilitate branching. We will also remind the reader of the
Bartha topology on BST92 models, since this will be a very useful reference
for Chapter 4.

1.1 The Causal Structure of Minkowski Spacetime

A Minkowski spacetime is an n-dimensional Euclidean space Rn equipped
with a (pseudo)metric η. We will denote this object by (Mn, η), or where the
context is clear, simply Mn. The metric η acts on points x := (x0, ..., xn−1)
and y := (y0, ..., yn−1) of Mn by:

η(x, y) = −x0y0 + x1y1 + ...+ xn−1yn−1.

The negation sign in front of the first components (which are physically inter-
preted as the temporal components of x and y) is needed in order to guarantee
that the speed of light is constant for all observers. It can also be shown that
the metric η is both symmetric and non-degenerate.1 We also have the fol-
lowing definitions.

Definition 1.1. Let x, y ∈ Mn. We say that x and y are

1. timelike related iff η(x, y) < 0,

1 Recall that η is symmetric if η(x, y) = η(y, x) for all x, y ∈ Mn, and η is non-
degenerate if the only element x ∈ Mn such that η(x, y) = 0 for all y is the zero
element.
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2. lightlike related iff η(x, y) = 0, and
3. spacelike related iff η(x, y) > 0.

We will call an element x of Mn timelike (lightlike, spacelike) if it is timelike
(lightlike, spacelike) related to itself. We can also generalise the above defini-
tion to curves2 in Mn, by saying that a curve γ is timelike (lightlike, spacelike)
if its derivative is everywhere timelike (lightlike, spacelike). In particular, we
will say that a curve γ is causal if its derivative at each point is not spacelike.

t

xy

Fig. 1.1: The lightcone at the origin in M3.

This notion of causal curves can be used to define the light cone at a
point, which would look something a bit like Figure 1.1. Roughly speaking,
the lightcone at a point x in Minkowski spacetime represents the region of Mn

that is accessible from x at light speed or less. Since there is no a priori notion
of the flow of time, we will also assert that time flows “upwards” through Mn.3

This allows us to divide our lightcones into two parts – the future-facing part
(which points upwards), and the past-facing part (which points downwards).

Causal Relations

We can use the concept of future and past lightcones to define some binary
relations on Minkowski spacetime that encode its causal structure. Given two
points x, y ∈ Mn, we say that x causally precedes y, written x ≤M y, if there
is a future-directed, causal curve γ connecting x to y, and we will say that x
temporally precedes y, written x ≪M y, if there is a future-directed, timelike

2 Recall that a curve is a continuous map γ : R → Mn, and a curve with endpoints
is a continuous map γ : [0, 1] → Mn.

3 Such a choice of future/past is called a time-orientation. For our current purposes
we do not need to formalise this notion, though the interested reader can go to
Section A.3.2, where we discuss time-orientations of general-relativistic space-
times.
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curve connecting x to y. Clearly x ≪M y implies that x ≤M y. Intuitively
speaking, x causally precedes y whenever y lies in the future lightcone of x.
We also have the following fact about the causal relation ≤M .

We will now introduce some standard notation that will simplify things
going forward.

Definition 1.2. Let x be a point in Mn, and A ⊆ Mn.

• The causal future of x is the set J+(x) := {y ∈ Mn | x ≤M y},
• The temporal future of x is the set I+(x) := {y ∈ Mn | x ≪M y}, and
• The horismotic future of x is the set E+(x) := J+(x)\I+(x).

We define the causal, temporal and horismotic pasts analogously, and denote
these by J−(x), I−(x) and E−(x), respectively.

The relations ≤M and ≪M can be rephrased in terms of the sets introduced
in the definition above. For a pair of elements x, y ∈ Mn, we have that:

x ≪M y iff y ∈ I+(x) iff x ∈ I−(y), and

x ≤M y iff y ∈ J+(x) iff x ∈ J−(y).

We also have the following result, which follows routinely from the defini-
tion of ≤M .

Proposition 1.3. (Mn,≤M ) is a dense, directed partial order.

The directedness of the Minkowski ordering is depicted in Figure 1.2.

x y

t

J+(x) J+(y)

J+(x) ∩ J+(y)

x

Fig. 1.2: The directedness of the causal relation ≤M .

The causal and temporal sets have the following enjoyable properties.

Proposition 1.4 (Facts about J and I). Let x, y and z be points in Mn.
Then:
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1. If x ∈ J+(y) and y ∈ I+(z), then x ∈ I+(z).
2. If x ∈ I+(y) and y ∈ J+(z), then x ∈ I+(z).
3. I+(x) and I−(x) are open sets in the Euclidean topology4 on Mn.
4. Cl(I+(x)) = Cl(J+(x)) = J+(x).

Proof. Items 1 and 2 follow routinely from the definitions of the I and J sets;
the proofs can be found in [22, Prop 2.8]. Items 3 and 4 are corollaries of [23,
Prop 2.16]. ⊓⊔

It is also possible to generalise the I, J and E formulations to regions of
Minkowski spacetime. Given a subset A of Mn, we can define the causal,
temporal and horismotic futures of A as

J+(A) := {y ∈ Mn | ∃x ∈ A(x ≤M y)} =
⋃

a∈A

J+(a),

I+(A) := {y ∈ Mn | ∃x ∈ A(x ≪M y)} =
⋃

a∈A

I+(a), and

E+(A) := J+(A)\I+(A),

respectively. The past sets of A are again defined similarly. A corollary of the
previous proposition is that the sets I+(A) and I−(A) are topologically open.

Causal Chains

We will finish our discussion of the causal properties of Minkowski spacetime
by listing a few facts about ≤M -chains that will be needed in subsequent
arguments.5 Our first result should come as no surprise.

Proposition 1.5. Every causal (timelike) curve γ : [0, 1] → Mn induces an
≤M -chain C (an ≪M -chain C). Moreover, γ acts as an order-isomorphism
from [0, 1] to C.

Proof. We claim that the subset C := γ([0, 1]) is the required ≤M -chain.
Consider two distinct elements x and y in γ([0, 1]). To see that γ is an order-
isomorphism, suppose first that γ−1(x) ≤ γ−1(y). Then we can restrict the
curve γ to the interval [γ−1(x), γ−1(y)], and this will be a future-directed
causal curve connecting x to y. Thus x ≤M y. Conversely, if x ≤M y, then
since [0, 1] is linearly-ordered, either γ−1(x) ≤ γ−1(y) or γ−1(y) ≤ γ−1(x).
But the latter case is impossible – if this were true, we could restrict γ to
the interval [γ−1(y), γ−1(x)], and this would imply that y ≤M x. Then we
would have that x ≤M y ≤M x, which contradicts the antisymmetry of ≤M

4 Recall that the Euclidean topology is the topology generated by the open balls
of rational radii, centred at rational coordinates.

5 Recall a ≤M -chain is a subset of Mn that is linearly-ordered by the relation ≤M .
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(since by assumption x and y are distinct). Thus it must be the case that
γ−1(x) ≤ γ−1(y).

To see that γ is a bijection from [0, 1] to C, it suffices to show that γ is injec-
tive. So, suppose towards a contradiction that there are two distinct elements
a, b ∈ [0, 1] such that γ(a) = γ(b). Since [0, 1] is linearly ordered, without loss
of generality we may assume that a < b. Since γ is order-preserving, it follows
that γ(a) ≤M γ(b). If it were the case that γ(a) = γ(b), then it would also
be the case that γ(b) ≤M γ(a), and thus b ≤ a < b, a contradiction. Hence
γ(a) 6= γ(b), and we may conclude that γ is injective. Since we defined C to be
the image of γ, it follows that γ : [0, 1] → C is a bijective map that preserves
order in both directions, that is, γ is an order-isomorphism. ⊓⊔

Before discussing any more properties of causal chains, we first remind the
reader of the following definitions.

Definition 1.6. Let (P,≤) be a poset, and C a chain of P . An element p of
P is called the supremum of C in P if:

1. p upper-bounds C, i.e. c ≤ p for every c in C (we will write this as C ≤ p),
and

2. p is the minimum element of P with this property, i.e. if there is some
other q ∈ P such that C ≤ q, then p ≤ q.

We will denote the supremum of C by sup(C). Additionally, if A is a subset
of P , and C ⊂ A, we denote by supA(C) the supremum of C in A.

We define the infimum inf(C) and subset-relative infimum infA(C) in an
analogous way (i.e. by reversing the ordering ≤).

The following result shows that the partial order (Mn,≤M ) is in some
sense chain-complete.

Proposition 1.7. In (Mn,≤M ) every lower-bounded chain has an infimum
and every upper-bounded chain has a supremum.

Proof. Let C be some ≤M -chain and let C ≤M x for some x ∈ Mn. With-
out loss of generality we can extend C to a maximal chain D that passes
through x. By the previous result, maximal chains are order-isomorphic to
the real line under some mapping f : D → R. Thus we can consider the
subset C as a subset f(C) of R. Since f(C) is upper-bounded by f(x) and
R has the upper-bound property, there is some supremum r of f(C). Order-
isomorphisms preserve suprema, so it follows that f−1(r) is the supremum of
C in Mn. A similar argument can be made for the existence of an infimum in
the case where C is lower-bounded. ⊓⊔

The above result, together with Proposition 1.3 gives us the following
corollary.
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Corollary 1.8. Let Mn be a Minkowski spacetime. Then (Mn,≤M ) is a di-
rected partial order in which every upper-bounded chain has a supremum, and
every lower-bounded chain has an infimum.

We will now finish our discussion of the causal properties of Minkowski
spacetime with a few results that will be needed when we discuss the Bartha
topology on BST92(*) models.

Proposition 1.9. If y ∈ I−(x) then there exists an ≤M -chain C such that
y ∈ C and sup(C) = x.

Proof. By definition, y ∈ I−(x) implies that there is a future-directed, timelike
curve connecting y to x. By the previous proposition, the curve γ induces a
maximal ≤M -chain C on Mn, and acts as an order-isomorphism from C to
the interval [0, 1]. We now show that γ(1) = x is the supremum of C in Mn.
Since γ is an order-isomorphism, and 1 upper-bounds the interval [0, 1], it
follows that x upper-bounds C in Mn. Clearly x is the least such element
– if there were some z ∈ Mn such that C ≤M z and z <M x, then x ∈ C
would imply that x ≤M z <M x, which is a contradiction. Thus sup(C) = x
as required. ⊓⊔

Proposition 1.10. Let x, y, z be distinct elements of Mn such that z ∈
I+(x) ∩ I−(y), and let C be a maximal ≤M -chain of Mn passing through
z. Then:

1. there is an element c1 ∈ C such that x ≪M c1 <
M z, and

2. there is an element c2 ∈ C such that z <M c2 ≪M y.

Proof. The hypothesis is displayed in Figure 1.3. We will only show prove
the first item, since the other proof is similar. Consider the subchain D :=
C\I+(x). Observe that D is upper-bounded by z, and non-empty since C is
maximal.6 Thus by Prop. 1.7 the supremum d := sup(D) exists. We now show
that d ∈ C. Let c ∈ C be arbitrary. If c ∈ D then c ≤M d, and we are done.
So, suppose that c /∈ D, that is, c ∈ I+(x). Let c′ be any element of D. If
it were the case that c′ 6≤M c, then since C is a chain, c ≤M c′ and thus
c′ ∈ I+(x), contradicting c′ as a member of D. Thus c′ ≤M c. Since we chose
c′ arbitrarily, it follows that c upper-bounds D and thus d ≤M c. It follows
that d is comparable with every c in C, that is, C ∪ {d} is a ≤M -chain. Since
C is maximal, it follows that d ∈ C as required.

To obtain the element c1 as in Fig. 1.3, we can use the density of ≤M to
pick c1 in C such that d <M c1 <

M z. Observe that since d is the supremum
of D, c1 /∈ I+(x) would imply that c1 ∈ D and thus c1 ≤M d <M c1, a
contradiction. Thus c1 ∈ I+(x) as required. ⊓⊔

6 In the case that D = ∅, it would follow that C ⊆ I+(x), and thus we can form a
chain C ∪ {x} that extends C, contradicting its maximality.
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Fig. 1.3: The set-up of Proposition 1.10.

1.2 The Theory BST92

We will now introduce the logical theory BST92 introduced by Belnap [1].
Given the scope of this thesis, we will not delve into the philosophical moti-
vations of BST92,7 instead we will focus mainly on the technical details. We
will first introduce the axioms of BST92, then discuss its models, and finally
we will recall the basic facts about the Bartha topology.

As mentioned in the introduction, the theory BST92 has two primitives,
namely a set W and a binary relation ≤ on W . The idea here is that the set
W represents the collection of spacetime points, and the binary relation ≤
encodes the causal structure of W . There is an intentional similarity between
(W,≤) and the causal structure (Mn,≤M ) of a Minkowski spacetime. In fact,
most of the axioms of the theory are postulated in order to force the relation ≤
to mimic the properties of the causal ordering ≤M . The first axiom of BST92
takes inspiration from Proposition 1.3, and can be stated as follows.

BST1: The tuple (W,≤) is a dense partial order with no maxima.

As with the formation of branching temporal models, Belnap enables branch-
ing by relaxing a property of the ordering ≤. Histories (i.e. branches) of a
given model are then described as maximal subsets of the model that retain
this globally-relaxed property. In BST92, the relaxed property is the direct-
edness of the ordering ≤ (which is why the above axiom only assumes that
≤ is a partial order, cf. Prop. 1.3). This motivates the following definition of
histories.

Definition 1.11. A subset h of W is a history iff it is maximally-directed.
We denote the set of histories of W by H(W ).

7 For a discussion of the philosphical underpinnings of BST92, see Belnap’s paper.
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Note that in the above definition, we mean maximal with respect to set-
theoretic inclusion.8 Each history naturally possesses a causal structure in-
herited from the ordering ≤ restricted to h. From this notion of a history and
the axiom BST1, we have the following results.

Proposition 1.12 (Basic facts about histories).

1. Histories are downwards-closed.
2. Every directed subset of W can be extended to a history.
3. Every element x of W belongs to at least one history.
4. For every pair of distinct histories h1 and h2, the differences h1\h2 and
h2\h1 are non-empty.

5. Every finite subset A of a history h has an upper bound in h.

Proof. 1. Suppose that h ⊆ W is a history with x ∈ h and y ≤ x. Pick any
z ∈ h. Since h is directed, there is some element w ∈ h such that z ≤ w
and x ≤ w. Since y ≤ x, it follows from the transitivity of ≤ that y ≤ w as
well. Since z was an arbitrary member of h, we can conclude that h∪ {y}
is a directed subset of W . The maximality of h then implies that y ∈ h.

2. This result follows as an application of Zorn’s lemma.
3. Follows from the previous item, since the singleton {x} is directed.
4. If the difference h1\h2 was empty, then h1 would be a subset of h2. Since

we assumed that h1 and h2 are distinct, h1 would be a proper subset of
h2, which contradicts h1 as maximal.

5. A standard inductive argument. ⊓⊔

The next two axioms of BST92 regard the behaviour of ≤-chains. These
axioms assert that the infima and suprema of a bounded chain C exist in every
history containing C, which amounts to postulating that histories behave like
(Mn,≤M ) as in 1.7. The axioms are stated as follows.

BST2: If C is a lower-bounded chain of W then C has an infimum in W ,
which we denote by inf(C).

BST3: If C is an upper-bounded chain of W then C has a suprema in every
history h such that C ⊆ h. We denote such a supremum by suph(C).

Note that in the statement of BST2, we can unambiguously refer to the
infimum of C, since whenever C lies in the intersection of two histories h1

and h2, the downward closure of histories ensures that infh1
(C) = infh2

(C).
We should also remark that the above axioms are required since it is not
guaranteed from BST1 alone that such suprema and infima exist.9 Before

8 That is, h is a history iff h is directed and there is no directed subset h′ of W
such that h ( h′.

9 As a counterexample, consider the rational line (Q,≤). This satisfies BST1, since
Q is a dense linear order with no maxima. However, the rational line is famously
not complete: a subset such as C := Q ∩ [0, π) is an upper-bounded chain that
has no suprema in Q.
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introducing the final axiom of BST92, we first give some results about chains.

Proposition 1.13 (Basic facts about chains). Let (W,≤) be a tuple that
satisfies axioms BST1-3, and let C be a chain of W .

1. C can be extended to a maximal chain.
2. C ⊆ h for some history h of W .
3. If C ⊂ h1 ∩ h2 and suph1

(C) 6= suph2
(C), then suph1

(C) ∈ h1\h2 and
suph2

(C) ∈ h2\h1.

Proof. 1. A standard Zorn’s lemma argument.
2. Since C is a linear order, in particular it is directed, so we can use Prop.

1.12.2 to extend C to a history.
3. If suph1

(C) ∈ h2 or suph1
(C) ∈ h2, then this would contradict suprema

as unique. ⊓⊔

The final axiom of BST92 regards the splitting of histories. Roughly speak-
ing, the axiom says that if a chain C is in the set-theoretic difference of his-
tories h1 and h2, then there was some event prior to C that triggered the
splitting of h1 and h2. This axiom, known as the Prior Choice Principle, is
stated as follows.

PCP: (Prior Choice Principle) If C is a chain of W such that C ⊆ h1\h2,
then there is some element x of W such that x ≤ C and x is maximal in
h1 ∩ h2.

We will call an element x a choice point for histories h1 and h2 if x is a
maximal element of the intersection h1 ∩ h2. The requirement of maximality
with respect to ≤ ensures that choice points are the last points before two
histories split.

Models of BST92

A trivial example of a BST92 model is the Minkowski spacetime Mn, viewed
as a set, together with its causal ordering ≤M . Corollary 1.8 shows that axioms
BST1-3 are satified, and the axiom PCP is trivially met since (Mn,≤M ) has
a single history.

A less trivial example used by Belnap is depicted in Figure 1.4. Intuitively,
Belnap’s model is a modification of the standard 2-dimensional Minkowski
spacetime (M2,≤M ) in which the future lightcone of the origin is replaced
with two copies. There are then two histories, depicted as h1 and h2 in the
figure. The origin is left in the intersection of h1 and h2, and acts as the sole
choice point for these histories.

Models such as in Figure 1.4 in which every history is order-isomorphic to
some Minkowski spacetime have been studied and constructed by a number
of authors, e.g. , [13], [14] and [24]. In this thesis we will refer to this class
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0

h1

h1 ∩ h2

0

h2

h1 ∩ h2

Fig. 1.4: A model of BST92 in which each history is order-isomorphic to M2,
the two-dimensional Minkowski spacetime. Note that the point 0 is included
in the intersection h1 ∩ h2, whereas the rest of the border of h1 ∩ h2 is not
included in the intersection.

of models as the Minkowskian Branching Spacetimes (Minkowskian BSTs, or
MBSTs for short).

It is also possible to define models in which histories split in multiple
places, as in Figure 1.5. However, it has to be the case any choice points x, y
for given histories h1 and h2 are incomparable under ≤, since otherwise this
would contradict x and y as maximal elements of h1 ∩ h2. This leads to the
possibility of MBSTs in which there are arbitrarily-many histories, all splitting
from each other at uncountably-many points. Given this plethora of available
models, we will need to restrict our attention to more manageable ones. In
this thesis we will work with the following conventions.

x y

h1

h1 ∩ h2

x y

h2

h1 ∩ h2

Fig. 1.5: A model of BST92 in which two histories have multiple choice points.
Again the points x and y are included in the intersection h1 ∩h2, whereas the
causal futures of these points lie in the differences h1\h2 and h2\h1.

Remark 1.14 (Assumptions in this thesis).

1. Each model has at most countably-many histories. This is necessary for
the discussion of non-Hausdorff manifolds in Part 2.
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2. Each model has at most finitely-many choice points. This is used for two
reasons: simplicity, and to exclude models in which splitting occurs at a
spacelike hypersurface.

In the remainder of this thesis, unless specified otherwise, we will assume that
all models of both BST92 and BST92* satisfy these requirements.

1.2.1 The Bartha Topology on BST92 Models

In this section we introduce a topology on BST92, known as the Bartha topol-
ogy.10 This topology has been discussed in a number of papers, the most
exahustive of which is [18]. As such, we will omit some proofs and instead
provide references where necessary. Throughout this section, we fix a model
(W,≤) of BST92.

Before introducing the Bartha topology, we need to define the notion of a
causal diamond.

Definition 1.15. Given two elements x and y of W , we define the causal
diamond dxy to be the set:

dx,y = ↑x ∩ ↓y = {z ∈ W | x ≤ z ≤ y}.

We can now define what it means for a set to be open in the Bartha topology
on W .

Definition 1.16. A subset U of W is open in the Bartha topology iff for every
x ∈ U and every maximal chain C of W passing through x, there are elements
c1 and c2 in C such that c1 < x < c2 and dc1c2

⊆ U . We denote the collection
of all such sets by τWB .

Where the context is clear, we will sometimes simplify τWB to τB . We will
also casually refer to the condition listed in the above definition as the Bartha
condition. Figure 1.6 depicts the intuition behind the Bartha condition.

We now confirm that the Bartha topology is well-defined.

Proposition 1.17. For every BST92 model (W,≤), the tuple (W, τWB ) is a
topological space.

Proof. Clearly ∅ and W are open, so it suffices to show that τWB is closed
under finite intersections and arbitrary unions.

Let U and V be open sets such that U ∩ V 6= ∅. Let x ∈ U ∩ V , and let
C be a maximal chain such that x ∈ C. Since x ∈ U , there exist c1, c2 ∈ C
such that c1 < x < c2 and dc1c2

⊂ U . Similarly, x is an element of V , so
there exist d1, d2 ∈ C such that d1 < x < d2 and dd1d2

⊂ V . Since C is a

10 The name comes from P. Bartha, who Belnaps credits with the suggestion of this
topology. See [1, Fn.26].



14 1 Preliminaries: Minkowski Spacetime and BST92

U

C

c1

c2

x

dc1c2

Fig. 1.6: An open set U in the Bartha topology.

chain, the elements xi and yi are comparable, so we can always pick the two
elements closest to x, and use these for our choice of causal diamond. For
instance, suppose that c1 ≤ d1 < x < d2 ≤ c2. Then dd1d2

⊆ dc1c2
⊂ U and

thus dd1d2
⊂ U ∩V . The other cases are similar. It follows that U ∩V is open.

Suppose now that {Ui}i∈I is a collection of open sets, and consider
⋃

i∈I Ui.
Let x ∈

⋃

i∈I Ui, and let C be a maximal chain passing through x. Since x
lies in a union of sets, there is some i ∈ I such that x ∈ Ui. By assumption Ui
is open, so there are c1, c2 ∈ C such that c1 < x < c2 and dc1c2

⊂ Ui. Since
Ui ⊆

⋃

i∈I Ui, it follows that dc1c2
⊂
⋃

i∈I Ui and thus
⋃

i∈I Ui is open. ⊓⊔

We also have the following fact, which will be useful in subsequent argu-
ments.

Lemma 1.18. Suppose (W ′,≤′) is a BST92 model and f : W → W ′ an
order-isomorphism. Then f is also a homeomorphism of Bartha topologies.

Proof. Let U be open in W , and consider its image f(U). We will show that
f(U) is open in W ′. Consider an element x of f(U), and a maximal ≤′-chain C
that passes through x. Since f is an order-isomorphism, the preimage f−1(C)
is a maximal ≤-chain in W .11 Since f is a bijection, there is a unique element
f−1(x) in U . By assumption U is open in W , so there are elements c1, c2 ∈
f−1(C) such that f−1(x) ∈ dc1c2

⊂ U . Thus f(dc1c2
) = df(c1)f(c2) ⊂ f(U),

from which it follows that f(U) is open in W ′. A symmetric argument holds
for the converse direction. We may conclude that both f and its inverse f−1

are open maps, and consequently f is a homeomorphism. ⊓⊔

11 Since f is order-preserving, the set f−1(C) is a chain of W . Moreover, if it were
the case that there were some d ∈ W\f−1(C) such that f−1(C) ∪ {d} were a
chain, then {f(d)} ∪ C would be a chain in W ′ extending C, which contradicts
the maximality of C. Hence no such dinW exists, and thus f−1(C) is a maximal
chain of W .
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It will also be useful to discuss a history-relative Bartha topology, which
we will denote by τhB . This is defined as follows:

Definition 1.19. Let h be a history of W . A subset U of h is open in the
history-relative Bartha topology iff for every x ∈ U and every maximal chain
C of h passing through x, there are c1 and c2 in C such that c1 < x < c2 and
dc1c2

⊆ U . We denote the collection of all such sets by τhB.

Strictly speaking we should verify that τhB is well-defined, however the
proof is near-identical to that of 1.17. The following proposition is a summary
of facts about the Bartha topology on BST92 models. These will be very useful
when we discuss the Bartha topology on BST92* models in Chapter 4.

Lemma 1.20 (Basic facts about the Bartha topology on BST92 mod-
els). Let (W,≤) be a model of BST92 and let h a history of W . Then

1. If U ⊆ h is an open set of the topology τhB and U contains a choice point
for h and some other history h′, then U is not open in τWB .

2. If W is a multi-history model, then no histories are open.
3. U is open in W iff for every h ∈ H(W ), the set U ∩ h is open in (h, τhB).
4. Both (W, τWB ) and (h, τhB) are connected.
5. If W is a multi-history model then W is not Hausdorff.
6. If W is a multi-history model then W is not locally Euclidean.
7. Given some natural assumptions, each history h is Hausdorff.

Proof. 1. See [18, Fact 6].
2. An immediate consequence of the previous item.
3. See [18, Fact 7].
4. See [19, Facts 53,54].
5. See [18, Thm. 44].
6. See [19, Lem. 59].
7. See [18, Thm. 35].12 ⊓⊔

It is also suggested in [18, Fn.10] that the subspace topology

τhS = {U ∩ h | U ∈ τWB }

induced on h may be strictly coarser than τhB , though no proof is provided.

12 The “natural assumptions” which are assumed can be found earlier in the same
paper as Conditions 15,17,18 and 19. These are imposed in order to restrict the
class of models to ones in which the up-sets of events in W , that is the sets of
the form ↑x := {y ∈ W | x ≤ y} behave in a manner closer to the light cones of
Minkowski spacetime.
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Naturality of the Bartha Topology

It has been argued in [18, Sec. 6] that the Bartha topology is a natural exten-
sion of BST92’s structure. Placek et. al. identify three main criteria for the
naturality of the Bartha topology. These can be paraphrased as follows.

1. Given certain circumstances the history-relative Bartha topology coincides
with the Euclidean topology,

2. The Bartha topology possesses a certain universal property, and
3. The topological notion of convergences agrees coincides with the order-

theoretic notions of suprema and infima.

We can generalise these three criteria to accommodate different structures
other than the topological. For any structure S that is proposed as extension of
BST92 (or BST92*), we will say that S is a natural extension of the BST92(*)
structure whenever the following naturality criteria are satisfied.

N1) The structure, once restricted to a single-historied model, should be
isomorphic (where relevant) to a Minkowski spacetime.

N2) The structure possesses a certain universal property, in that it can be
canonically reconstructed from its history-relative structures.

N3) The structure is compatible with any pre-existing BST92(*) concepts.



2

BST92* and its Minkowskian Branching

Spacetimes

In this chapter we will introduce the theory BST92* and its Minkowskian
Branching Spacetimes. The key difference between BST92 and BST92* is that
in the latter, choice points are replaced by choice pairs. At this point, one
might ask – why bother to make the leap to BST92* ? Well, we will see in
Chapter 4 that the Bartha topologies on BST92* models are far easier to deal
with, and that they are truly natural in a way that would be difficult to show
in the BST92 case. In fact, these topologies are so well-behaved that they
catalyse an extension to the manifold setting, as we will discuss in Part 2 of
this thesis. With this in mind, we will work with BST92* .

There is only one resource to date that discusses BST92* , and this is
a recent paper by Placek [19]. We will introduce a simplified fragment of
this theory, and take the opportunity to prove some basic results. After this,
we will construct the Minkowskian BSTs associated to BST92* . Technically
speaking these are new models, however, conceptually speaking they are not.
We will closely follow the construction of MBSTs used by Müller in [13], and
adapt the notation according to our needs.

2.1 The Theory BST92*

For pedagogical reasons, we will start with the intended models of BST92* ,
and reverse-engineer its axioms. Roughly speaking, we would like the models
of BST92* to be near-identical to the models of BST92, except that choice
points are replaced by pairs. As such, the causal ordering should still behave
similarly to the causal ordering ≤M of some Minkowski spacetime, and the
histories of a BST92* still ought to be isomorphic to some Mn. As such,
BST92* should maintain the axioms BST1-3.
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2.1.1 The Definition of BST92*

We begin by making precise this notion of a choice pair. Throughout this
section, we will fix a model (W,≤) of the axioms BST1-3.1 For simplici-
ties sake, suppose that W has only two histories, say h1 and h2. Perhaps a
suitable criterion to capture our intuition of choice pairs is the following: two
elements x and y of W should form a choice pair for h1 and h2 iff once suitably
identified, the resultant structure is a BST92 model with a single choice point.

Recall that in a BST92 model (W ′,≤′), we defined a choice pair for two
histories h′

1 and h′
2 to be an element x of W ′ that is maximal in the intersection

h′
1 ∩ h′

2. So, we could satisfy the criterion above by simply adding in a new
point y in the same place as x.2 That way, identifying y and x would yield
a BST92 isomorphic to W ′. However the problem with this approach is that
in such a model, subsets like h′

1 ∪ {y} would be histories, but are clearly not
isomorphic to Minkowski spacetime.3

A naive approach to avoiding this problem would be to replace the BST92
choice point x with two points, say y and z, such that y is minimal in h1\h2

and z is minimal in h2\h1.4 That way the histories would only contain at
most one of the doubled points, which means that they could potentially be
isomorphic to some Minkowski spacetime. A naive definition of a choice pair
might be something like the following.

Definition 2.1 (Naive Definition of a Choice Pair). The set {y, z} forms
a choice pair for histories h1 and h2 iff y is minimal in h1\h2 and z is minimal
in h2\h1, or vice-versa.

The problem with this definition is that the histories h1 and h2 may well split
at multiple locations, as in Figure 2.1. According to our naive definition, the
set {x1, y2} in the figure would count as a choice pair, which is strange. We
need some way of expressing that two points x ∈ h1\h2 and y ∈ h2\h1 are in
the same “place”. We will follow the terminology of Placek and refer to such
elements as hot pairs, which are defined as follows.

Definition 2.2. Let x, y be two distinct elements of W , and h1, h2 be his-
tories of W . We say that {x, y} is a hot pair for h1 and h2 iff there is an
upper-bounded, non-empty chain C ⊂ h1 ∩ h2 such that suph1

(C) = x and
suph2

(C) = y (or vice versa). We denote the collection of all hot pairs of h1

and h2 by H(h1, h2).

1 This means that the results of 1.12 and 1.13 still hold in (W,≤).
2 Roughly speaking, we could form W := W ′ ∪ {y} and define a new causal order

≤′ so that ≤′ is equal to ≤ once restricted to W , and for all w ∈ W , defining
w ≤′ y iff w ≤ x, and y ≤′ w iff x ≤ w.

3 Instead they would be isomorphic to a Minkowski spacetime with two origins.
4 This means that instead of a choice point being the last element in the intersection
h1∩h2, a choice pair would consist of the first elements that lie in the set-theoretic
differences h1\h2 and h2\h1.
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x1 y1

h1

h1 ∩ h2

x2 y2

h2

h1 ∩ h2

Fig. 2.1: The intuition for a BST92* model. In contrast to Figure 1.5, here
x1, y1 ∈ h1\h2 and x2, y2 ∈ h2\h1. The only choice pairs of this model ought
to be {x1, x2} and {y1, y2}.

Observe that hot pairs are well-defined, since such suprema exist by BST3.
The requirement that x and y be distinct has a number of consequences.
First, this removes the possibility of any singletons existing in H(h1, h2).
Second, since suprema in individual histories are unique, it means that hot
pairs have to exist within the difference of h1 and h2, that is, H(h1, h2) ⊂
(h1\h2) ∪ (h2\h1). The intuition behind hot pairs is captured in Figure 2.1,
where the hot pairs are displayed by the thick lines above the xi and yi.

It seems as though requiring choice pairs to also be hot pairs solves the
problem outlined previously: in Figure 2.1, the pair {x1, y2} is not a hot pair,
so is excluded as a possible choice pair of the model. We make this explicit
by defining choice pairs as follows.

Definition 2.3. A hot pair {x, y} ∈ H(h1, h2) is called a choice pair for h1

and h2 iff x is minimal in h1\h2 and y is minimal in h2\h1, or vice-versa.
We denote the set of all choice pairs of h1 and h2 by C(h1, h2).

Now that we have properly defined the concept of a choice pair, we can
introduce the final axiom of BST92* , which is a modification of the Prior
Choice Principle.

PCP*: Let C be a chain of W such that C ⊂ h\h′. Then there is some choice
pair {x, y} ∈ C(h, h′) such that x ∈ h and x ≤ C.

Observe the similarity between PCP and PCP*. The only difference is that
now, we are requiring that the prior choice is witnessed by an element of a
choice pair, instead of a single choice point.

We should remark that Placek defines choice pairs differently, and we ought
to show that our definition coincides. Observe first that the set of hot pairs
H(h1, h2) has a natural ordering given by:

{x, y} � {x′, y′} iff x ≤ x′ and y ≤ y′.
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It is not hard to be convinced that � is a partial order on H(h1, h2), since all
of the properties are inherited from the ordering ≤ on W .5 We then have the
following.

Lemma 2.4. If {x, y} ∈ C(h1, h2) then {x, y} is an �-minimal element of
H(h1, h2).

Proof. By definition it is the case that {x, y} ∈ H(h1, h2). Suppose that there
is some {w, z} ∈ H(h1, h2) such that w ∈ h1 and z ∈ h2, and {w, z} � {x, y}.
Then w ≤ x and z ≤ y. If {w, z} 6= {x, y} then we would get w < x or z < y,
or both. In any case, this would contradict x and y as minimal elements of
h1\h2 and h2\h1 respectively. ⊓⊔

In the next section we will prove the converse to the above result.

2.1.2 Basic Facts About Hot Pairs and Choice Pairs

As previously mentioned, there is only one resource for the theory BST92* .
As such, there is little in the way of a basic development of the theory. In this
section, we will take the opportunity to provide some basic facts about hot
pairs and choice pairs. Throughout this section, we will assume that the tuple
(W,≤) is a model of BST92* . We start by proving some basic facts about
hot pairs.

Lemma 2.5 (Basic facts about hot pairs). Let h1, h2 be histories, and
x, y ∈ W such that {x, y} ∈ H(h1, h2). Denote by Hx and Hy the collections
of histories of W that contain x and y, respectively.

1. If x ∈ h3, then {x, y} ∈ H(h3, h2)
2. {x, y} ∈ H(h3, h4) for all h3 ∈ Hx and h4 ∈ Hy

3. x 6≤ y and y 6≤ x
4. Hx and Hy are disjoint.

Proof. Without loss of generality we may assume that x ∈ h1 and y ∈ h2.
By assumption there is a chain C ⊆ h1 ∩ h2 such that x = suph1

(C) and
y = suph2

(C).

1. Since h3 is downwards closed and C ≤ x, it follows that C ⊆ h3, and
thus C ⊆ h3 ∩ h2. Suppose towards a contradiction that x 6= suph3

(C).
By assumption x = suph1

(C), so C ≤ x. It follows from the definition of
suprema that suph3

(C) < x. By Prop REF, h1 is downwards-closed, so
suph3

(C) lies in h1, which contradicts x = suph1
(C). Thus x = suph3

(C),
from which we may conclude that {x, y} ∈ H(h2, h3).

5 Since x ≤ x and y ≤ y, the order � is reflexive. Suppose that {x, y} � {w, z} �
{x, y}. Without loss of generality let x ≤ w and y ≤ z. If w ≤ x then antisymmetry
of ≤ is violated, and if w ≤ y then x ≤ y which contradicts Prop 1.14.6. Now
suppose that there is some {u, v} such that {x, y} � {w, z} � {u, v}. There are
four cases to consider (namely x ≤ w ≤ u, x ≤ w ≤ v, x ≤ z ≤ u and x ≤ z ≤ v),
and transitivity follows from the transitivity of ≤.
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2. Follows immediately from two applications of the previous item.
3. Suppose towards a contradiction that x ≤ y. We can proceed as in

item 1, this time using the downward-closure of h2 to conclude that
C < x < suph2

(C) = y, which is a contradiction since by definition,
hot pairs consist of distinct elements.

4. Suppose towards a contradiction that there is some history h3 containing
both x and y. Since h3 is downwards closed, C ≤ x implies that C ⊆ h3.
By axiom BST3, the chain C has a unique supremum z := suph3

(C).
Note that z 6= x, since z = x and C ≤ y implies that x ≤ y, contradicting
item 3. However, since h1 is downwards closed, it follows that z ∈ h1 and
thus C ≤ z < x, which contradicts x = suph1

(C). ⊓⊔

It is quite often the case that the histories of a branching spacetime (be it
in BST92 or BST92* ) are pairwise isomorphic. In such a situation, the models
are very well-behaved. The following lemma illustrates this.

Lemma 2.6. Let h1, h2 ∈ H(W ) and {x, y} ∈ H(h1, h2), and let f : h1 → h2

be an order-isomorphism.

1. f maps x to y.
2. If D ⊂ h1 ∩ h2 is a chain, then suph1

(D) = x iff suph2
(D) = y.

3. {x, z} /∈ H(h1, h2) for all z in h2 distinct from y.
4. For every z ∈ h1 ∩ h2, z ≤ x iff z ≤ y.

Proof. 1. Since f acts as the identity on the intersection h1 ∩ h2, it follows
that any chain C witnessing {x, y} as a hot pair will be mapped to itself
under f . Since order-isomorphisms preserve suprema, it must be the case
that f(x) = f(suph1

(C)) = suph2
(f(C)) = suph2

(C) = y.
2. Suppose that suph1

(D) = x. By the previous item, the order-isomorphism
f maps x to y. Hence y = f(x) = f(suph1

(D)) = suph2
(D). A similar

argument holds for the converse, except this time we use the inverse map
f−1 instead of f .

3. Suppose that there is some z ∈ h2 and some chain D ⊂ h1 ∩ h2 such that
suph1

(D) = x and suph2
(D) = z. Since {x, y} is a hot pair for h1 and h2,

it follows from the previous item that suph2
(D) = y, and thus z = y.

4. Suppose first that z ≤ x. We can use the order-isomorphism f to conclude
that f(z) ≤ f(x). Then item 1 and the fact that f acts as the identity on
h1 ∩h2 imply that z ≤ y. A symmetric argument holds for when z ≤ y. ⊓⊔

Now we move on to choice pairs. By definition, all choice pairs are hot
pairs, so the results of the previous two lemmas also apply to choice pairs. We
also have the following facts specific to choice pairs.

Lemma 2.7 (Basic facts about Choice pairs). Let x, y ∈ W and h1, h2 ∈
H(W ) such that {x, y} ∈ C(h1, h2), where x ∈ h1 and y ∈ h2. Then:

1. If x ∈ h3, then {x, y} ∈ C(h3, h2).
2. If x ∈ h3 and y ∈ h4, then {x, y} ∈ C(h3, h4).
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3. If {w, z} ∈ C(h3, h4) where x < z and x < w, then {x, y} ∈ C(h3, h2) and
{x, y} ∈ C(h4, h2).

4. If {w, z} ∈ C(h1, h3) and w < x, then {w, z} ∈ C(h2, h3).

Proof. 1. Suppose towards a contradiction that {x, y} /∈ C(h3, h2). By
Lemma 2.5, we have that {x, y} ∈ H(h3, h2), since all choice pairs are
hot pairs. So, the only way that {x, y} does not form a choice pair is if
x is not minimal in h3\h2, i.e. there is some z ∈ h3\h2 such that z < x.
However, since x ∈ h1 and histories are downward closed, it follows that
z ∈ h1\h2 which contradicts x as a minimal element of h1\h2.

2. Follows from two applications of the previous item.
3. Since histories are downwards closed, x is in both h3 and h4. Hence item

1 implies that {x, y} is in both C(h3, h2) and C(h4, h2).
4. Suppose that {w, z} ∈ C(h1, h3) where w 6= x and w < x. Since h1 is

downwards closed, w ∈ h1. Also, w ∈ h2, since otherwise w ∈ h1\h2 and
w < x would contradict x as a minimal element of h1\h2. Since w ∈ h2,
we can use item 1 to conclude that {w, z} ∈ C(h2, h3). ⊓⊔

We will now prove the converse of Lemma 2.4.

Lemma 2.8. If {x, y} is an �-minimal element of H(h1, h2), then {x, y}
forms a choice pair for h1 and h2.

Proof. Suppose towards a contradiction that x is not minimal in h1\h2. Then
there is some z ∈ h1\h2 such that z < x. Since z /∈ h2, by PCP* there is
some choice pair {a, b} for h1 and h2 such that a ≤ z. Since both {x, y} and
{a, b} are hot pairs for h1 and h2, it follows from Lemma 2.6.1 that f(x) = y
and f(a) = b under the order-isomorphism f : h1 → h2. Then a ≤ x implies
that b = f(a) ≤ f(x) = y, and thus {a, b} � {x, y}, contradicting {x, y} as an
�-minimal element of H(h1, h2). Hence no such z exists, and thus x is minimal
in h1\h2. The case for y is similar. ⊓⊔

The above result, together with Lemma 2.4, shows that our notion of a choice
pair is definitionally-equivalent to the one discussed by Placek. We have as-
sumed that histories are pairwise order-isomorphic, though from a practical
perspective this is not too important, since we will mostly be working with
Minkowskian BSTs (whose histories are always isomorphic to some Mn). We
finish our introduction to BST92* with a result that will be useful in Chapter
4.

Lemma 2.9. Let W be a BST92* model. Then every pair of histories of W
have non-empty intersection.

Proof. Let h1 and h2 be histories of W . Pick some x ∈ h1\h2 (which exists by
Prop 1.12.4). By PCP* there is some choice pair {w, x} for h1 and h2 such
that w ≤ x. Since choice pairs are also hot pairs, by definition there is some
chain C ⊂ h1 ∩ h2 whose history-relative suprema are equal to w and z. In
particular, C is non-empty, and lies in h1 ∩ h2. ⊓⊔
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2.2 Minkowskian Branching Spacetimes

In this section we will construct our Minkowskian BSTs. These are nothing
new – in the BST92 setting, MBSTs have been discussed extensively, see e.g.
[13], [14], [18] and [24]. As a framework for our construction, we will closely
follow the work of Müller found in [13], and simply adapt it to the BST92*
setting. We will start by introducing the basic models known as simple MBSTs.

2.2.1 A Motivating Example: Simple MBSTs

Simple MBSTs are models in which all the histories split from each other at
the origin. Following the convention of Müller [24], we will denote by Mn

m the
n-dimensional simple MBST with m-many histories.

To construct Mn
m, we first consider m-many disjoint copies of Mn, i.e.

m
⊔

i=1

Mn
i := {(x, i) | x ∈ Mn, i = 1, ...,m}.

Observe that this set naturally inherits a causal ordering from ≤M . We can
then define a relation ∼ on this disjoint union as follows:

(x, i) ∼ (y, j) iff

{

x = y and i = j whenever 0 ≤M x

x = y whenever 0 6≤M x

that is, ∼ is the reflexive relation that identifies every element (x, i) of Mn
i

with its counterparts (x, j) ∈ Mn
j , unless (x, i) is in the future lightcone of

(0, i), in which case we only identify (x, i) to itself. It should be clear that ∼
is an equivalence relation, with equivalence classes equal to:

[(x, i)] :=

{

{(x, i)} if x ≤ 0 in Rn

{(x, j) | j = 1, ...,m} if x 6≤ 0 in Rn

Throughout this thesis we will abuse notation and denote the equivalence
class of a point (x, i) simply by [x, i]. We can now define the tuple (Mn

m,≤),
where:

Mn
m =

(

m
⊔

i=1

Mn
i

)

�∼ and [x, i] ≤ [y, j] iff (x, j) ∈ [x, i] and x ≤M y

We will refer to (Mn
m,≤) as a simple MBST, and will typically denote it by

Mn
m. Figure 2.2 depicts the construction of the simplest non-trivial6 model,

namely M2
2 .

6 We have that Mn
1 is just (Rn,≤), and in the case of M1

m, we have a variety of
dense branching time models with one branching point.
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Strictly speaking, we ought to show that the Mn
m are actually models of

BST92* , however we will prove this for the general case in the next section.
For now, we remark that the histories of Mn

m will be the images of Mn under
the natural embeddings ιi : Mn → Mn

m, defined by ιi(x) = [x, i].

Fig. 2.2: Constructing a binary Minkowski BST in 2 dimensions. Observe
that the two future lightcones of the origin are in some sense “on top” of one
another.

Remark 2.10. Observe that when defining the equivalence relation ∼, it is
possible to instead use the strict ordering <M . This would mean that every
copy (0, i) is identified. The results of this section would still apply, and the
resultant structures will be BST92 models.

2.2.2 The Construction of Minkowskian BSTs

In this section we construct our Minkowskian BSTs. The idea is the same as
in the simple case above, except for a few deviations. First, we will not assume
that the copies of Mn only split at the origin. This means that for every pair
of copies Mn

i and Mn
j , there are a collection of points Cij ⊆ Mn at which

these two copies split from each other. In the case of simple MBSTs, each
Cij is equal to the singleton {0}. Second, we will relax the assumption that
there are finitely-many copies of Mn. As such, we will assume that there is a
potentially-infinite set I that indexes the various copies of Mn. Of course in
the simple case, this indexing set is equal to m.

Aside from this, the construction is essentially the same as in the simple
MBST case. Specifically, we take I-many copies of some Mn, i.e.

⊔

i∈IM
n
i , and

identify elements (x, i) and (x, j) in the case that x lies outside of the causal
future J+(Cij) in Mn. We will show that the resulting space is a BST92*
model, and the histories of this model are precisely the images of Mn under
the natural embeddings ιi, as in the simple case. So, we will now construct
these models formally.
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We start our construction by discussing the nature of the splitting-sets
Cij . The collection of all such Cij , which we will denote by C, needs to meet
at least some criteria in order to exclude certain pathologies. The following
definition makes this precise.

Definition 2.11. A set C := {Cij | i, j ∈ I} ⊂ P(Mn) is called splitting
data for Mn iff the set

⋃

C is finite, and every element Cij of C satisfies the
following conditions:

C1) For all a, b ∈ Cij it is the case that a 6≤M b and b 6≤M a
C2) Cij = Cji
C3) For each k 6= i, j, and for every a ∈ Cij, there exists some b ∈ Cik∪Cjk

such that b ≤M a.
C4) Cii = ∅

The splitting data C should encode the ways in which histories of an MBST
split from each other. The various requirements are stipulated in order to
capture the intuitions of a branching.

• The requirement that
⋃

C =
⋃

i,j∈I Cij be finite is imposed in order to
cohere with Remark 1.14. Observe that this condition implies that each
Cij is finite.

• The condition C1 is needed for the same reason that PCP* is imposed:
requiring Cij to be spacelike means that the copies Mn

i and Mn
j cannot

split, and then split again at some point afterwards.
• Condition C2 translates to the intuition that splitting is a symmetric

relation: if Mn
i splits from Mn

j at a certain point, then Mn
j splits from

Mn
i at the same place.

• Condition C3 takes inspiration from Lemma 2.5.4 in that there ought to
be no history that contains both elements of a (soon-to-be) choice pair.

• Condition C4 is needed to ensure that no copy of Mn splits from itself.

We can now begin constructing our Minkowskian BSTs. We start by fixing
some Mn and some splitting data C. Consider I-many disjoint copies of Mn,
i.e.

⊔

i∈IM
n
i . From this, we can define a relation ≈ by:

(x, i) ≈ (y, j) iff x = y and for all a ∈ Cij , it is not the case that a ≤M x.

We would like to proceed as in the construction of simple MBSTs and
quotient the collection of Mn’s under ≈. However, it is not immediately clear
that the relation ≈ is an equivalence relation. The following result confirms
that this is indeed the case.

Lemma 2.12. The relation ≈ is an equivalence relation on
⊔

iM
n
i .

Proof. The fact that ≈ is a reflexive, symmetric relation is fairly trivial: re-
flexivity follows from condition C4, and symmetry follows immediately from
condition C2. So, it suffices to show that ≈ is transitive.
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Suppose that (x, i) ≈ (y, j) ≈ (z, k). This means that x = y = z, so
without loss of generality we can relabel these elements as (x, i), (x, j) and
(x, k). In the cases that i = j, or j = k, or i = k, the result is trivial7, so
suppose that i 6= j 6= k 6= i. Suppose towards a contradiction that (x, i) 6≈
(x, k). Then there must be some a ∈ Cik such that a ≤M x. Applying condition
C3 to this element a, it follows that there exists some b ∈ Cij ∪Cjk such that
b ≤M a. Observe that the transitivity of ≤M implies that b ≤M x. However, if
b ∈ Cij , then b ≤M x implies that (x, i) 6≈ (x, j), and if b ∈ Cjk then b ≤M x
implies that (x, j) 6≈ (x, k). In either case we contradict our assumption that
(x, i) ≈ (x, j) ≈ (x, k). We can thus conclude that (x, i) ≈ (x, k), from which
it follows that ≈ is transitive. ⊓⊔

The above result allows us to define the MBST subordinate to C, which we
will denote by (Mn

C ,≤). This is defined as follows:

Mn
C :=

(

⊔

i∈I

Mn
i

)

�≈, and [x, i] ≤ [y, j] iff (x, j) ∈ [x, i] and x ≤M y.

We also make the following observation, which follows near-immediately from
the definition of ≤.

Proposition 2.13. The natural embeddings ιi : Mn → Mn
C given by x 7→

[x, i] are order-embeddings.

The remainder of this chapter can be seen as one big proof that the tuple
(Mn

C ,≤) is a model of BST92* . We begin with our first result, which is,
amongst other things, a confirmation that each Mn

C satisfies the axiom BST1.

Lemma 2.14. The tuple (Mn
C ,≤) is a dense partial order with no maxima.

Proof. This is fairly routine to verify, since all of these properties are inherited
from ≤M . For the interested reader, the proofs are below.

• Reflexivity: Since (x, i) ∈ [x, i] and x ≤M x, it is always the case that
[x, i] ≤ [x, i].

• Antisymmetry: Suppose that [x, i] ≤ [y, j]. Then (x, j) ∈ [x, i] and x ≤M y.
If [y, j] ≤ [x, i], then (y, i) ∈ [y, j] and y ≤M x. Since ≤M is antisymmetric,
it follows that x = y. Since (x, i) ∼ (x, j), it follows that [x, i] = [x, j] =
[y, j] as required.

• Transitivity: Suppose that [x, i] ≤ [y, j] ≤ [z, k]. Then (x, j) ∈ [x, i] and
(y, k) ∈ [y, j] and x ≤M y ≤M z. Since ≤M is transitive, it follows that
x ≤M z. We now show that (x, k) ∈ [x, i]. Suppose not. Then (x, i) 6≈
(x, k). It follows from the transitivity of ≈ that (x, j) 6≈ (x, k). Hence
there exists some a ∈ Cjk such that a ≤M x. However, x ≤M y implies
that a ≤M y, and thus (y, j) 6≈ (y, k), which contradicts (y, k) ∈ [y, j].

7 If i = j then (x, i) ≈ (y, i) implies that x = y (since Cii = ∅). Hence (x, i) =
(y, j) ≈ (z, k) implies that (x, i) ≈ (z, k). If j = k then a similar argument holds,
and if i = k, then (y, j) ≈ (z, i) implies that y = z, and (x, i) ≈ (y, j) implies that
x = y, hence (x, i) = (z, k) and the result follows from reflexivity.
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• Density: Suppose that [x, i] ≤ [y, j]. Then (x, j) ∈ [x, i] and x ≤M y. Since
≤M is dense, there exists some z ∈ Mn such that x ≤M z ≤M y. The
element [z, j] will then lie between [x, i] and [y, j]. Indeed: [x, i] ≤ [z, j],
since (x, j) ∈ [x, i] and x ≤M z, and [z, j] ≤ [y, j] since (z, j) ∈ [z, j] and
z ≤M y.

• No maxima: Let [x, i] be any element of Mn
C . Since ≤M has no maxima,

there exists some y ∈ Mn such that x ≤M y. It follows from this that
[x, i] ≤ [y, i]. ⊓⊔

The following result shows that events in the future of splitting data are
causally-disconnected in Mn

C .

Lemma 2.15. Let [x, i] and [y, j] be elements of Mn
C such that there exists

some a ∈ Cij where both a ≤M x and a ≤M y. Then no element of Mn
C

upper-bounds both [x, i] and [y, j].

Proof. If [x, i] ≤ [z, k] and [y, j] ≤ [z, k], then it would be the case that
both (x, k) ≈ (x, i) and (y, k) ≈ (y, j). However, an application of C3 gives
us the existence of some b ∈ Cjk ∪ Cik such that b ≤M a. If b ∈ Cik, then
b ≤M a ≤M x implies that b ≤M x and thus (x, i) 6≈ (x, k), and if b ∈ Cjk, then
b ≤M y implies that (y, j) 6≈ (y, k). In either case we arrive at a contradiction,
thus we may conclude that no such [z, k] exists. ⊓⊔

Corollary 2.16. If [x, i] 6= [x, j] then [x, i] and [x, j] have no common upper
bound.

Proof. If [x, i] 6= [x, j], then (x, i) 6≈ (x, j), and thus there is some a ∈ Cij
such that a ≤M x. The result then follows from the previous lemma. ⊓⊔

2.2.3 Characterisation of Basic Features

We will now describe the nature of the histories, hot pairs, and choice pairs
of Minkowskian BSTs.

Characterisation of Histories

We will now show that, as with the case of simple MBSTs, the histories of
Mn

C turn out to coincide with the images of Mn under the order-embeddings
ιi defined as in Proposition 2.13. We will need a way to refer to these images
before proving that they are histories, so as an intermediate definition we will
follow Müller and refer to the sets Li := ιi(M

n) as layers. We ought to also
remark that a corollary of Lemma 2.14 is that the MBST Mn

C satisfies the
axiom BST1, and as such, the results of Proposition 1.12 apply. Our first
result shows that each layer is a history.

Lemma 2.17. Let Mn
C be an MBST. Then each Li is a maximal directed

subset of Mn
C .
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Proof. Directedness follows immediately from Prop. 2.13 and the fact that
≤M is directed. For maximality, suppose that there is some directed subset h
of Mn

C such that Li ( h. Then there is some element [x, j] of Mn
C such that

[x, j] ∈ h\Li. Since h is directed and [x, i] lies in Li, there is some element of
h that is above both [x, i] and [x, j]. However, this contradicts Corollary 2.16.
Thus we may conclude that that no such subset h exists, and consequently Li
is maximal. ⊓⊔

The converse of Lemma 2.17 is more difficult to prove. We will follow in
the footsteps of Müller [13], and appeal to our assumption that our splitting
data is finite.8 We have the following result.

Lemma 2.18. Suppose Mn
C is an MBST with a finite indexing set I. Then

every history h is of the form ιi(M
n) for some i in I.

Proof. Let h be some maximal, directed subset of Mn
C , and suppose towards

a contradiction that h is distinct from each Li. Then it cannot be the case
that h ⊆ Li for some i in I, since the maximality of h and Lemma 2.17
would imply that h = Li, contradicting our supposition. Thus for each i there
is some element [xi, ji] ∈ h\Li. For each i, pick one such element and let
X = {[xi, ji] | i ∈ I}. Observe that the set X is finite, since we are only
picking one witness per i, and we have assumed that I is finite. Since the set
X is a finite subset of h, we use Prop 1.12.5 to conclude that there is some
element a ∈ h such that X ≤ a. This element a, also being an element of Mn

C ,
must be of the form [y, k] for some k in I. Since [y, k] lies above all elements of
X, in particular [xk, jk] ≤ [y, k]. However, since Lk is a history, in particular
Lk is downwards-closed, and thus [xk, jk] lies in Lk. This contradicts the fact
that [xk, jk] ∈ h\Lk. We may thus conclude that no such h exists, whence
every history of Mn

C is of the form Li for some i. ⊓⊔

Of course, we can only use the argument above in the case that I is finite, no
analogue of Prop. 1.12.5 holds for infinite subsets of a history.9 The case for
when I is countably-infinite is slightly more complicated, but still holds true.

Lemma 2.19. Suppose Mn
C is an MBST with a countably-infinite indexing

set I. Then every history h is of the form ιi(M
n) for some i in I.

Proof. Let h be some maximal directed subset of Mn
C , and again suppose

towards a contradiction that h 6⊂ Li for all i in I. We will now recursively
construct an infinite subset X of

⋃

C. This will suffice for a contradiction,

8 It should be noted that this is not the only way to prove that the converse to
Lemma 2.17 – Placek and Wronski have showed that with a topological assump-
tion, the converse of Lemma 2.16 will hold when the splitting data is infinite.
This is done in the context of BST92, so a similar argument might be possible in
the BST92* case.

9 As a counterexample: think of a maximal chain.
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since by definition 2.11, the set
⋃

C is finite. We start the construction by
fixing some i in I.

Base Step: By our supposition h 6⊆ Li, so there is some [x, j] in h such
that [x, j] 6= [x, i]. It follows that (x, j) 6≈ (x, i) and thus there is some a0 ∈ Cij
such that a0 ≤M x. It is also the case that h 6⊆ Lj , and thus there is some
[y, k] ∈ h such that [y, k] 6= [y, j] ∈ Lj . As such, there is some a1 ∈ Cjk such
that a1 ≤M y. Since h is directed, there is some [z, l] ∈ h that lies above both
[x, j] and [y, k]. It follows from the definition of ≤ that (x, l) ≈ (x, j) and
(y, l) ≈ (y, k), where both x ≤M z and y ≤M z.

Suppose towards a contradiction that a0 = a1. Then a0 ∈ Cjk, and thus
by C3 there is some a′ ∈ Cjl ∪ Ckl such that a′ ≤M a0. If a′ ∈ Cjl, then
a′ ≤M a0 ≤M x implies that (x, l) 6≈ (x, j), and if a′ ∈ Ckl then a′ ≤M a0 =
a1 ≤M y implies that (y, l) 6≈ (y, k). Either of these leads to a contradiction,
thus we may conclude that a0 and a1 are distinct. We then set X0 := {a0, a1}.
Observe that since a0 ∈ Cij and a1 ∈ Cjk, it follows that X0 ⊆

⋃

C.
Recursive Step: Suppose now that we have the subset Xn = {a0, ..., an}

consisting of distinct members of
⋃

C, such that for each aα ∈ X there ex-
ists some jα ∈ I such that [aα, jα] ∈ h. Since h is maximally-directed, and
{[aα, jα] | α = 0, ..., n} is a finite subset of h, by Prop. 1.12.5 there is some ele-
ment [y, k] that upper bounds all of the [aα, jα]. It follows from the definition
of ≤ that

(aα, k) ≈ (aα, jα) and aα ≤M y for every α = 0, .., n.

By assumption h 6⊆ Lk, so there is some [z, l] ∈ h\Lk. Hence there is some
an+1 ∈ Ckl such that an+1 ≤M z. Moreover, since h is directed, there is some
[w,m] that lies above both [z, k] and [y, l]. Since ≤ is transitive and [y, l]
lies above all of the [aα, jα], it is also the case that [w,m] lies above all of
the [aα, jα]. As such, it follows that (z,m) ≈ (z, l) and (y,m) ≈ (y, k), and
(aα, jα) ≈ (aα,m) for every α.

We now show that this an+1 is distinct from all of the aα. Suppose towards
a contradiction that an+1 = aβ for some fixed β ∈ {0, ..., n}. Then aβ ∈ Ckl,
thus by C3 there is some a′ ∈ Ckm ∪ Clm such that a′ ≤M aβ . If a′ ∈ Ckm,
then a′ ≤M aβ ≤M y implies that (y, k) 6≈ (y,m), and if a′ ∈ Clm then
a′ ≤M aβ = an+1 ≤M z implies that (z, l) 6≈ (z,m). Either of these leads
to a contradiction, hence it follows that an+1 6= aβ . Since aβ was fixed but
arbitrary, we may conclude that an+1 is distinct from all the aα. We then set
Xn+1 = Xn ∪ {an+1}.

The construction of X is then complete by setting X :=
⋃

n∈N
Xn. We

then see that this set X consists of infinitely-many distinct elements of
⋃

C,
which contradicts Definition 2.11. We may thus conclude that h ⊆ Li for some
i, and since h is maximal, Lemma 2.17 implies that h = Li. ⊓⊔

The above two results combine to give a converse to Lemma 2.17. We
summarise these results in the following theorem.
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Theorem 2.20. Let Mn
C be an Minkowskian Branching Spacetime. A subset

h of Mn
C is a history iff h is of the form Li := ιi(M

n) for some i in I.

Characterising Hot pairs and Choice Pairs

Now that we know each history of Mn
C is of the form Li := ιi(M

n), we can
provide a characterisation of hot pairs and choice pairs. We start with the hot
pairs, for which we have the following result.

Lemma 2.21. The hot pairs for histories Li and Lj are precisely the elements
of the form {ιi(x), ιj(x)}, where x ∈ E+(Cij).

Proof. Let x ∈ J+(Cij)\I
+(Cij), and consider some y ∈ I−(x). By Prop

FIX1.10 there is a a ≤M -chain C in Mn that is contained in I−(x) and whose
supremum is equal to x. Consider now ιi(C). Since ιi is an order-embedding,
ιi(C) is a ≤-chain in (Mn

C ,≤). Moreover, it is also the case that ιi(C) = ιj(C).
Indeed: if it were the case that ιi(c) 6= ιj(c) for some c in C, then (c, i) 6≈ (c, j),
and thus there is some b ∈ Cij such that b ≤M c, i.e. c ∈ J+(b). Since c ∈
I−(x), it follows from Prop 1.4.1 that b ∈ I+(x), contradicting our assumption
that x /∈ I+(Cij). Thus ιi(c) = ιj(c) for every c in C. Since order-embeddings
preserve suprema, it follows that supLi

(ιi(C)) = ιi(supMn(C)) = ιi(x) and
supLj

(ιj(C)) = ιj(supMn(C)) = ιj(x). Thus we have a chain ιi(C) that lies
in the intersection Li∩Lj , and whose suprema in Li and Lj are equal to [x, i]
and [x, j] respectively. It follows that {[x, i], [x, j]} is a hot pair for Li and Lj .

We now show that all the hot pairs are of this form. Suppose that
{[x, i], [y, j]} is a hot pair for Li and Lj , and let C ⊂ Li ∩ Lj be a ≤-
chain in Mn

C such that supLi
(C) = [x, i] and supLj

(C) = [y, j]. Since
ιi is an order-isomorphism once restricted to its image Li, it follows that
supMn(ι−1

i (C)) = ι−1
i ([x, i]) = x, and similarly, supMn(ι−1

j (C)) = y. Since
suprema in Mn are unique, it follows that x = y. Observe that by assump-
tion, C lies in the intersection Li ∩ Lj , so the preimages ι−1

i (C) and ι−1
j (C)

coincide.
Since [x, i] and [x, j] form a hot pair, and by definition hot pairs consist

of distinct elements of Mn
C , it must be the case that (x, i) 6≈ (x, j). Thus

there is some a ∈ Cij such that a ≤M x, and hence x ∈ J+(Cij). We now
show that x /∈ I+(Cij). Suppose towards a contradiction that there is some
a′ ∈ Cij ∩ I−(x). Then by Prop 1.10.1 there is some c ∈ C such that a′ ≤M c.
However, it then follows that [c, i] 6= [c, j], which contradicts C ⊆ Li ∩ Lj .
Thus we may conclude that I−(x) ∩ Cij = ∅, which completes the proof. ⊓⊔

The above result captures the intuition that hot pairs ought to be the
horismotic rims of light cones of the sets Cij . We also have the following
result, which confirms that choice pairs of Mn

C correspond to the images of
the splitting data C under the embeddings of 2.13.

Lemma 2.22. The choice pairs for Li and Lj are precisely the elements of
the form {ιi(a), ιj(a)} where a ∈ Cij.
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Proof. Let a ∈ Cij and consider the pair {[a, i], [a, j]}. Since a ∈ J+(a) it
follows that a ∈ J+(Cij). It should be fairly clear that a /∈ I+(Cij). Indeed –
if there were some b ∈ Cij such that b ∈ I+(a), then a ≤M b, which contradicts
condition C1. By the previous lemma it follows that [a, i] and [a, j] form a
hot pair for histories Li and Lj .

Suppose towards a contradiction that [a, i] is not minimal in Li\Lj . Then
there is some [x, i] ∈ Li\Lj such that x <M a. If [x, i] /∈ Lj , then in particular
(x, i) 6≈ (x, j), and thus there is some b ∈ Cij such that b ≤M x. However,
then it would be the case that b <M a, and this contradicts C1. Thus [a, i]
is a minimal element of Li\Lj . By a similar argument it can be shown that
[a, j] is minimal in Lj\Li, from which we can conclude that {[a, i], [a, j]} is a
choice pair for Li and Lj .

We now show that every choice pair for Li and Lj is of the form
{[a, i], [a, j]}, where a ∈ Cij . Suppose that [x, i] and [x, j] form a choice pair
for Li and Lj . Since [x, i] and [x, j] also form a hot pair, in particular they
are distinct. Then (x, i) 6≈ (x, j), and thus there is some a ∈ Cij such that
a ≤M x. Since a ∈ Cij , it is the case that (a, i) 6≈ (a, j), thus [a, i] ∈ Li\Lj
and [a, j] ∈ Lj\Li. Since a ≤M x, it follows that both [a, i] ≤ [x, i] and
[a, j] ≤ [x, j]. By assumption [x, i] and [x, j] are minimal elements of the dif-
ferences Li\Lj and Lj\Li. Thus [a, i] = [x, i] and [a, j] = [x, j] as required. ⊓⊔

2.2.4 Minkowskian BSTs as Models of BST92*

We now complete this chapter by confirming that each Mn
C satisfies the axioms

of BST92* .

Theorem 2.23. The MBST (Mn
C ,≤) is a model of BST92* .

Proof. That BST1 is satisfied follows as a corollary of Lemma 2.14. For axiom
BST2: let C be an upper-bounded chain in a history h of Mn

C . By Thm 2.20
this history h is of the form Li = ιi(M

n) for some i. Then ι−1
i (C) is a chain in

Mn that is upper-bounded. Thus Prop 1.3 implies that there the supremum
supMn(ι−1

i (C)) exists. Map this element back to Li under ιi, and the resulting
element is equal to supLi

(C) (since order-embeddings preserve suprema of
chains). This confirms that Mn

C satisfies axiom BST2. The argument for
BST3 is similar.

We now verify PCP*. Suppose towards a contradiction that C ∈ Li\Lj
is an ≤-chain that is lower-bounded by some [x, i], but there is no a ∈ Cij
such that [a, i] ≤ C. Let [c1, i] ∈ C. Since [c1, i] /∈ Lj , there is some a1 ∈ Cij
such that [a1, i] ≤ [c1, i]. By assumption [a1, i] 6≤ C, so there is some [c2, i] in
C such that [a1, i] 6≤ [c2, i]. Note that [c2, i] ≤ [c1, i]. Similarly, there is some
a2 ∈ Cij such that [a2, i] ≤ [c2, i] ≤ [c1, i]. Thus a2 6= a1, since [a1, i] 6≤ [c2, i].
Repeating this argument, we can inductively define a subset {an | n ∈ N}
of Cij , which contradicts our assumption that each Cij is finite. We may
conclude that there is some a ∈ Cij such that [a, i] ≤ C, and thus PCP* is
satisfied. ⊓⊔
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Adjunction Spaces

In the previous chapter, we constructed the Minkowskian BSTs of the modified
theory BST92* by appropriately gluing together copies of Minkowski space-
time, viewed as a causal structure (Mn,≤M ). This gluing was performed by
taking a quotient of a disjoint collection of the same space. In the topological
setting, this type of construction is known as an adjunction space. The idea
is essentially the same – we can glue two topological spaces, say X and Y ,
together by quotienting their disjoint union X ⊔Y . The information on where
to glue X to Y is encoded within a subspace A of X, and a continuous map
f : A → Y , as pictured in Figure 3.1. The adjunction space based on this
information is denoted by X ∪f Y .

In Chapter 4, we will show that the MBSTs constructed in Section 2.2.2
can be naturally endowed with a topological structure. We will do this by
representing MBSTs as a topological adjunction space. Before we do anything
of the sort, we will first need to introduce a basic theory of adjunction spaces.
Throughout this chapter, we will do just that.

There are two main ways in which we will deviate from a standard in-
troduction to adjunction spaces found in say, [25]. First, we will explore ad-
junction spaces formed from a subset A of X that is topologically open.1 The
reason for this is that when constructing MBSTs, we glued the ith and jth

copies of Mn together along the subsets Mn\J+(Cij). Since the set J+(Cij)
is topologically closed in Mn (see Prop. 1.4.4), this means that we are gluing
along open subsets of Mn. Second, we will introduce a generalised theory in
which it is possible to glue arbitrarily-many topological spaces to each other.

1 This is in contrast to the standard theory, which typically assumes that A is a
closed subset of X. This is done to ensure that the adjunction of two Hausdorff
spaces is still Hausdorff.
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3.1 The Binary Case

The idea behind a binary adjunction space is fairly simple – we take two
topological spaces, say X and Y , and specify the parts which are to be glued
to each other. Formally, (binary) adjunction spaces are defined as follows.

Definition 3.1. Let X,Y be topological spaces and A ⊆ X. Given a continu-
ous function f : A → Y , we define the adjunction space of X and Y under f
as:

X ∪f Y := X ⊔ Y�∼

where ∼ is the reflexive transitive closure of the relation that identifies (a, 1)
and (f(a), 2) for each a ∈ A. The topology on X∪fY induced from the quotient
of the disjoint union topology on X ⊔Y is called the adjunct topology, and we
will denote this topology by τA.

The construction of X ∪f Y can be described with the following diagram,

A X

Y X ⊔ Y

X ∪f Y

f

idX

ϕ1

φX

ϕ2

φY

q

where the maps φX and φY are simply the compositions of the canonical
inclusions ϕi and the quotient map q associated to the equivalence relation
∼, i.e. φX = q ◦ ϕ1 and φY = q ◦ ϕ2. Throughout this thesis we will refer to
maps such as φX and φY as canonical maps. Observe that since the maps ϕi
and q are continuous, so are the canonical maps φX and φY . We will follow
standard practice and abbreviate the above diagram to the following:

A X

Y X ∪f Y

idX

f φX

φY

The diagram above is commutative, which means that on the subset A, the
maps φX and φY ◦ f are equal. Observe also that the points of X ∪f Y are
equivalence classes, and be described explicitly as:

• [x, 1] = {(x, 1)} if x /∈ A
• [y, 2] = {(y, 2)} if y /∈ f(A)
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• [a, 1] = {(f(a), 2)} ∪ {(a′, 1) | a′ ∈ f−1(f(a))} for each a ∈ A
• [y, 2] = {(y, 2)} ∪ {(a, 1) | a ∈ f−1(y)} for each y ∈ f(A)

We also have the following observation, which follows immediately from
the definition of the topology τA.

Proposition 3.2. Let U be a subset of X ∪f Y . Then U is open in X ∪f Y
iff φ−1

X (U) and φ−1
Y (U) are open in their respective spaces.

The following lemma shows that the adjunction space X ∪f Y possesses a
certain universal property.

Lemma 3.3. Let Z be a topological space where ψX : X → Z and ψY : Y → Z
are continuous maps such that ψX(a) = ψY ◦ f(a) for each a ∈ A. Then there
is a unique continuous map g : X ∪f Y → Z that makes the following diagram
commute.

A X

Y X ∪f Y

Z

f

idX

φX

ψX
φY

ψY

g

Proof. We define g by:

g([x, i]) =

{

ψX(x) if i = 1

ψY (x) if i = 2

Observe first that this is well-defined: if [x, 1] = [y, 2], then f(x) = y and thus:

g([x, 1]) = ψX(x) = ψY ◦ f(x) = ψY (y) = g([y, 2]),

We now show that this map is continuous. Let U ⊆ Z be open and consider
the preimage g−1(U). According to Prop. 3.2, it suffices to show that both
φ−1
X (g−1(U)) and φ−1

Y (g−1(U)) are open in their respective spaces. It is not
hard to see that φ−1

X (g−1(U)) = ψ−1
X (U), which is open in X since we as-

sumed ψX was continuous. A similar situation holds for Y , from which we
can conclude that g−1(U) is open in X ∪f Y , and thus g is continuous.

To see that g is unique, suppose we have some other continuous map
g′ : X∪fY → Z such that ψX = g′◦φX and ψY = g′◦φY . Consider an element
[x, 1] in X ∪f Y . Then g([x, 1]) = g ◦ φX(x) = ψX(x) = g′ ◦ φX(x) = g′([x, 1])
and thus g([x, 1]) = g′([x, 1]) for all x ∈ X. The argument for Y is similar,
and from this we can conclude that g = g′. ⊓⊔
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It will be useful to know under what circumstances X and Y topologically
embed into X ∪f Y under the canonical maps φX and φY .2 The following
lemma summarises a number of results.

Lemma 3.4 (Basic facts about the canonical maps). Let X ∪f Y be an
adjunction space.

1. φY is always an injection.
2. If f is an injection, then so is φX .
3. If A is open, then φY is an open map.
4. If f is injective and open map, then φX is open.
5. φY is always a topological embedding.
6. If f is an injective, open map, then φX is a topological embedding.

Proof. See Appendix A1. ⊓⊔

In the above result we have omitted certain well-known results for the case
when A is assumed to be closed, since these are not useful for our purposes.
The following is an immediate corollary of the above lemma, and is a useful
identification of some sufficient conditions required to turn the canonical maps
φX and φY into open embeddings.

Corollary 3.5. If A is an open subset of X and f is an injective, open map,
then φX and φY are both open topological embeddings.

It will also be useful to know which properties the adjunction space X∪f Y
naturally inherits from X and Y . The following lemma collects some results
regarding the preservation of various properties, the proofs of which can be
found in the Appendices.

Lemma 3.6. Let X ∪f Y be an adjunction space.

1. If BX and BY are bases for X and Y respectively, and φX and φY are
open maps, then the collection

B = {φX(U) | U ∈ BX} ∪ {φY (V ) | V ∈ BY }

forms a basis for the topology τA.
2. If X and Y are connected and A is non-empty, then X ∪f Y is connected.
3. If X and Y are compact, then so is X ∪f Y .

3.2 The General Case

We will now set about generalising the binary adjunction spaces to the setting
in which multiple spaces can be adjoined.

2 Recall that a topological embedding is an injective, continuous map between
topological spaces that acts as a homeomorphism once restricted to its image.
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As a motivating example, suppose that we have three topological spaces
X1,X2 and X3 that we would like to adjoin. In order to join all three spaces
together, we need information telling us how to glue the spaces pairwise,
namely for each i = 1, 2, 3, a collection of subsets Aij of Xi and attaching
maps fij : Aij → Xj . We would like there to be some topological space, which
we will tentatively denote by

⋃

F
Xi, that is the colimit of the system of Xi,

Aij and fij . The result may be depicted as in the diagram below.

X1

A12 A31

⋃

F
Xi

X2 X3

A23

φ1

f12

idX1

idX3

f31

φ2 φ3

f23idX2

This can be generalised by fixing some index set I, and defining a tuple of
sets F := (X,A,F), where the set X is a collection of topological spaces Xi,
the set A is a collection of sets Aij such that Aij ⊆ Xi for all j ∈ I, and the
set F is a collection of continuous maps fij : Aij → Xj . We will now define
what it means for such an F to be an adjunction system.

Definition 3.7. The tuple F = (X,A,F), is called an adjunction system if
it satisfies the following conditions for all i, j ∈ I.

A1) Aii = Xi and fii = idXi

A2) Aji = fij(Aij), and f−1
ij = fji

A3) fik(a) = fjk ◦ fij(a) for each a ∈ Aij ∩Aik.

The conditions listed above in some sense resemble familiar constructions
in differential geometry. Condition A2 ensures that each fij is a homeomor-
phism from Aij to Aji, and thus condition A3 resembles the cocycle condition
used when constructing vector bundles from local data.3

From an adjunction system, we can then define the adjunction space
⋃

F
Xi

as the space obtained from quotienting the disjoint union
⊔

iXi under the
relation ∼=, where (x, i) ∼= (y, j) iff fij(x) = y. The following result confirms
that this space is well-defined.

Proposition 3.8. The relation ∼= described above is an equivalence relation.

3 Cf. the “Bundle Chart Lemma”, listed as Lemma A.14 in Chapter 5.
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Proof. Reflexivity and symmetry follow immediately from conditions A1
and A2 respectively. For transitivity, suppose that there are three elements
(x, i), (y, j) and (z, k) such that (x, i) ∼= (y, j) ∼= (z, k). Then by definition
fij(x) = y and fjk(y) = z. By condition A2, it follows that y ∈ Aji and
fji(y) = x. Then y ∈ Aji ∩Ajk, hence by A3 it follows that

z = fjk(y) = fik ◦ fji(y) = fik(x),

thus (x, i) ∼= (z, k). ⊓⊔

The above result shows that as a set, the adjunction space
⋃

F
Xi is a

collection of equivalence classes of the form

[x, i] = {[y, j] | fij(x) = y}.

As in the previous section, we define the topology on
⋃

F
Xi to be the quotient

topology induced from the disjoint union topology
⊔

iXi by the quotient map
q associated to ∼=. We then have a collection of canonical maps φi : Xi →
⋃

F
Xi defined as the composition q ◦ϕi, where ϕi is the canonical embedding

into the disjoint union. We make the following observation, which follows
immediately by definition.

Proposition 3.9. A subset U of
⋃

F
Xi is open in the adjunction topology iff

φ−1
i (U) is open in Xi for all i in I.

We also have the following result, which confirms that the adjunction space
is indeed the colimit of the diagram formed from the adjunction system F .

Lemma 3.10. Let ψi : Xi → Y be a collection of continuous maps from each
Xi to some topological space Y , such that for every i, j ∈ I it is the case
that ψi(x) = ψj(fij(x)). Then there is a unique continuous map g such that
g :
⋃

F
Xi → Y and ψi = g ◦ φi for all i in I.

Proof. We define the map g by g([x, i]) = ψi(x), that is, g = ψi ◦ φ−1
i . To see

that this defines a function, we need to confirm that g preserves equivalence
classes. Suppose that [x, i] = [y, j], i.e. x = fij(y). Then:

g([x, i]) = ψi(x) = ψj(fij(x)) = ψj(y) = g([y, j])

as required. We now show that g is continuous. Let U be open in Y , and
consider the set g−1(U) = φi ◦ ψ−1

i (U). Recall the set g−1(U) is open in
⋃

F
Xi iff for each i ∈ I, the set φ−1

i (g−1(U)) is open in Xi. Observe that:

φ−1
i (g−1(U)) = φ−1

i ◦ φi ◦ ψ−1
i (U) = ψ−1

i (U)

which is open since ψi is continuous. It follows that g−1(U) is open in
⋃

F
Xi,

and thus g is continuous. To see that g is unique, we can use the same argument
as in 3.3. ⊓⊔



38 3 Adjunction Spaces

It will be useful to identify under which conditions the maps φi are open,
and are topological embeddings. Note that each φi is always continuous and
injective – continuity follows immediately from the definition of canonical
maps, and injectivity follows as a consequence of condition A1. We also have
the following result, which is an analogue of Corollary 3.5.

Lemma 3.11. If each fij is a topological embedding and each Aij is an open
subset of Xi, then φi is an open topological embedding.

Proof. Fix some φi. We have already seen that each φi is injective and contin-
uous. Since every open, continuous, injective map is a topological embedding,
it suffices to show that φi is an open map. Let U be an open subset of Xi, and
consider φi(U). By Prop. 3.9 this set is open in

⋃

F
Xi iff for every j ∈ I, the

preimage φ−1
j ◦φi(U) is open in Xj . Observe that φ−1

j ◦φi(U) = fij(U ∩Aij).
4

Since U is open in Xi, the set U ∩Aij is open in Aij (equipped with the sub-
space topology). By assumption, fij : Aij → Xj is a topological embedding.
In particular, it is a homeomophism onto its image, that is, fij : Aij → Aji is
a homeomorphism. Thus the set fij(U ∩ Aij) is open in Aji (again equipped
with the subspace topology). By assumption Aji is an open subspace, thus
fij(U ∩Aij) is also open in Xj .

5 Since U was arbitrary, we may conclude that
φi is an open map, from which the result follows. ⊓⊔

Rn

R3

R2

R1

...

0n

01

02

03 ...
[0i, i]

Fig. 3.1: The construction of the n-branched real line.

Example 3.12 (The n-branched real line). If we take I be to be of size n, set
each Xi equal to R, each Aij equal to the set (−∞, 0), and each fij to be
the identity function on R, then the associated tuple F forms an adjunction
system. The adjunction space subordinate to F will be the real line with n-
branches as pictured in Figure 3.1. Of course, it is also possible to relax the
requirement that I be finite. In this case, we could obtain a real line with
arbitrarily-many branches at the origin.

4 If φj(y) ∈ φi(U), then φj(y) = φi(u) for some u ∈ U . Thus [y, j] = [u, i], hence
(y, j) ∼= (u, i), and fij(u) = y. Thus y ∈ fij(U∩Aij). Conversely, if y ∈ fij(U∩Aij)
then there is some u ∈ U ∩ Aij such that fij(u) = y. Hence (y, j) ∼= (u, i), so
[y, j] = [u, i] and thus φj(y) = φi(u), i.e. y ∈ φ−1

j ◦ φi(u).
5 In an open subspace A of X, V ⊂ A is open in A iff V = A ∩ U where U and A

are open in X, so V is the finite intersection of open sets, thus is open in X.
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3.2.1 Preservation of Properties

We now prove analogues to the binary case. For our first result, we confirm
that bases can be transferred into the adjunction space, provided that each
φi is open.

Lemma 3.13. Suppose that for each i in I, the collection Bi forms a basis
for Xi. If each φi is an open map, then the collection B = {φi(B) | B ∈ Bi}
forms a basis for

⋃

F
Xi.

Proof. By assumption each φi(B) is open in
⋃

F
Xi. So, it suffices to show

that every open set of
⋃

F
Xi can be represented as union of elements of B.

Let U be some open subset of
⋃

F
Xi, and consider the subset φ−1

i (U) for
some fixed i (which is open in Xi since φi is continuous). Since Bi forms a
basis for Xi, the set φ−1

i (U) can be represented as:

φ−1
i (U) =

⋃

α∈Ai

Biα

where each Biα ∈ Bi. It then follows that:

φi(Xi) ∩ U = φi(φ
−1
i (U)) = φi

(

⋃

α∈Ai

Biα

)

=
⋃

α∈Ai

φi(B
i
α)

and, since the φi(Xi) cover
⋃

F
Xi, it follows that:

U = U ∩
⋃

i∈I

φi(Xi) =
⋃

i∈I

(U ∩ φi(Xi)) =
⋃

i∈I

⋃

α∈Ai

Biα

Thus U can be represented as a union of elements of B, as required. ⊓⊔

Recall that a topological space is second-countable iff it has a countable
basis. The following result is a natural continuation of the previous lemma.

Corollary 3.14. Suppose each Xi is second-countable. If I is countable and
each φi is an open map, then

⋃

F
Xi is also second-countable.

Proof. We use the collection B as in the previous lemma, and since I is count-
able, the basis B will be a countable union of countable sets, i.e. a countable
basis for

⋃

F
Xi. ⊓⊔

We also have the following result regarding the connectedness of the ad-
junction space, which is an analogue to Lemma 3.6.2.

Lemma 3.15. If each Xi is connected and each Aij is non-empty, then
⋃

F
Xi

is connected.
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Proof. Let ψ :
⋃

F
Xi → {0, 1} be a continuous map. Suppose towards a

contradiction that ψ is not constant, i.e. suppose there are elements [x, i] and
[y, j] of the adjunction space

⋃

F
Xi such that ψ([x, i]) = 0 and ψ([y, j]) = 1.

Since φi and φj are continuous, it follows that the maps ψi := ψ ◦ φi : Xi →
{0, 1} and ψj := ψ ◦ φj are continuous maps. By assumption Xi and Xj are
both connected, so it follows that ψi and ψj are both constant. Observe that
ψi(x) = ψ([x, i]) = 0, hence it follows that ψi(Xi) = 0, and by a similar
argument, ψj(Xj) = 1. However, by assumption the set Aij is non-empty.
Then for any element a in Aij , we have that:

ψj(fij(a)) = ψ ◦ φj ◦ fij(a) = ψ ◦ φi(a) = 0

which contradicts ψj(Xj) = 1. We can conclude that the map ψ is constant,
and thus

⋃

F
Xi is indeed connected. ⊓⊔

It is not true in general that the adjunction of infinitely-many compact
spaces is compact. As such, we have a restricted analogue to Lemma 3.6.3.

Lemma 3.16. If I is finite and each Xi is compact, then so is
⋃

F
Xi.

Proof. We can use that compactness is preserved in finite disjoint unions and
under quotients, as in Lemma 3.6.3, together with [26, Thm 3.2.3]. ⊓⊔

Lemma 3.17. If K ⊆ Xi is compact, then φi(K) is a compact subset of
⋃

F
Xi.

Proof. This follows immediately from the fact that the continuous image of a
compact set is compact.6 ⊓⊔

Remark 3.18. In general, the maps φi are not proper, that is, the preimages of
compact subsets of

⋃

F
Xi are not necessarily compact in the Xi. To see this,

consider again the n-branched real line as in Example 3.12. By the Heine-
Borel theorem7, the subset [−1, 1] is a compact subset of Ri. By the previous
lemma, the image φi([−1, 1]) is compact in the space

⋃

F
Ri. Consider now

any φj where j is distinct from i. Then the preimage of this compact subset
is:

φ−1
j ◦ φi([−1, 1]) = fij([−1, 0)) = [−1, 0)

which is not compact in Rj since it is not closed.

Recall that a topological space X is locally-Euclidean if every point in X
has a neighbourhood that is homeomorphic to some Euclidean space Rn. The
following result shows that this property can be transferred to an adjunction
space.

6 Let A ⊆ X be compact, and suppose that {Ui} forms an open cover of f(A) in
Y . Since f is continuous, the sets {f−1(Ui)} form an open cover for A. Since A is
compact, there is a finite subcover {f−1(U1), ..., f−1(Un)}. Thus {U1, ..., Un} is a
finite subcover of {Ui}.

7 The Heine-Borel theorem states that a subset of Euclidean space is compact iff
it is closed and bounded. See [27, Thm 27.3].
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Lemma 3.19. If each Xi is locally-Euclidean, and each φi is an open topo-
logical embedding, then

⋃

F
Xi is also locally-Euclidean.

Proof. Let [x, i] ∈
⋃

F
Xi. Then x ∈ Xi. Since Xi is locally-Euclidean, there

is a chart (U,ϕ) of Xi at x. We show that (φi(U), ϕ ◦ φ−1
i ) is a chart for

⋃

F
Xi at [x, i]. By assumption φi is open, thus φi(U) is an open subset of the

adjunction space. Since we assumed that φi is a topological embedding, it is
homeomorphic onto its image. Then the restriction of φi to an open subset is
also a homeomorphism, as is its inverse. Thus the map ϕ◦φ−1

i : φi(U) → ϕ(U)
is a composition of homeomorphisms, thus is also a homeomorphism. It follows
that (ϕ(U), ϕ ◦ φ−1

i ) is a chart for
⋃

F
Xi at [x, i]. ⊓⊔
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The Bartha Topology on BST92* Models

In this chapter we will evaluate the topological properties of the models of
BST92*. We will start with a general treatment of the issue, and provide a
BST92*-analogue to the results found in Lemma 1.20. WE will see that the re-
sults are very similar, however in the BST92* context the histories of a model
are open in the Bartha topology. This is a crucial observation that underpins
various arguments throughout the remainder of this thesis. One important
consequence, which we will explore in Section 4.2, is that the Bartha topol-
ogy on a given model can be canonically reconstructed as an adjunction of its
history-relative Bartha topologies. In Section 4.3, we will complete our discus-
sion by computing the Bartha topology on the Minkowskian BSTs. The main
result here is that the Bartha topology coincides with a topology proposed by
Müller in [16]. This encouraging result unifies the order-theoretic approach of
Placek et. al. with the topological approach of Müller.

4.1 Comparison with the BST92 Bartha Topology

In this section we evaluate the Bartha topology on BST92* models. The frame-
work for our exploration is the results found in Lemma 1.20 – we would like to
see how the Bartha topology interacts with its history-relative counterparts,
whether the spaces are connected, and so on. Throughout this section, we fix
(W,≤) as a BST92* model, and let h1 and h2 be arbitrary histories of W . The
Bartha topology on W is defined as in Definition 1.16.1 Again we will denote
by τWB the Bartha topology on W , and by τhB the Bartha topology relative to
the history h of W .

1 Namely, a subset U of W is open in the Bartha topology iff for each point in U
and each maximal chain C passing through x, there are elements c1 and c2 in C
such that c1 < x < c2 and the causal diamond dc1c2

is contained within U (see
Fig. 1.6 for the intuition).
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Our first result is an analogue to Lemma 1.18. We omit the proof, since it
is identical to the BST92 case.

Proposition 4.1. Let (W,≤) and (W ′,≤′) be BST92* models. If f : W →
W ′ is an order-isomorphism, then f is also a homeomorphism between the
topological spaces (W, τWB ) and (W ′, τW

′

B ).

Before proving any analogues to the results of Lemma 1.20, we first need
a few facts regarding maximal ≤-chains.

Lemma 4.2. Suppose that C is a maximal chain of W , and h1 and h2 are
histories of W such that C ∩ h1 6= ∅ and C 6⊆ h1 and C ⊆ h2. Then

suph2
(C ∩ h1) = inf(C\h1).

Proof. Denote a := suph2
(C ∩ h1) and b := inf(C\h1). We show that both a

and b are members of C.
Consider first a. Let c ∈ C. If c ∈ C ∩ h1, then by definition c ≤ a. If

c /∈ h1, then c ∈ C\h1, and thus C ∩ h1 ≤ c (otherwise, C ∩ h1 6≤ c implies
that there is some d ∈ C ∩ h1 such that d ≤ c, hence c ≤ d and thus c ∈ h1).
Hence a ≤ c. It follows that C∪{a} is a chain, and since C is maximal, we may
conclude that a ∈ C. Consider now b, and let c ∈ C be arbitrary. If c ∈ C\h1

then b ≤ c by definition. If c ∈ h1 that c ∈ C ∩ h1, and thus c ≤ C\h1 (if not,
d ≤ c for some d ∈ C\h1, hence d ∈ h1 follows from the downward closure of
h1). It follows that C ∪ {b} is a chain, and hence b ∈ C.

Suppose towards a contradiction that a 6= b. Observe that a ≤ C\h1,
since otherwise any element d ∈ C\h1 such that d < a would contradict
a = suph2

(C ∩ h1). Hence a < b, and since W is dense (see BST1), there
is some c in W such that a < c < b. We now show that this element c lies
in the chain C. Consider some d ∈ C. If d ∈ h1, then d ≤ a < c and if
d /∈ h1, then d ∈ C\h1 and c < b ≤ d. It follows that C ∪ {c} is a chain, hence
c ∈ C. However this leads to a contradiction – if c ∈ h1, then c ∈ C ∩ h1 thus
c ≤ a, and if c /∈ h1, then c ∈ C\h1 thus b ≤ c. In either case, we contradict
a < c < b. We may then conclude that a = b, as required. ⊓⊔

From the above result, we can identify hot pairs using maximal chains.
This is done as follows.

Lemma 4.3. If C is a maximal chain of W , and h1 and h2 are two histories
such that C ∩ h1 and C 6⊂ h1 and C ⊆ h2, then the pair

{suph1
(C ∩ h1), suph2

(C ∩ h1)}

forms a hot pair for h1 and h2.

Proof. If C 6⊆ h1 then there is some c ∈ C such that c /∈ h1. Then this
element upper-bounds the subchain C ∩ h1. By axiom BST3 it follows that
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there exists (possibly two) history-relative suprema a := suph1
(C ∩ h1) and

b := suph2
(C ∩ h1). We show that {a, b} ∈ H(h1, h2).

Observe first that C∩h1 ⊂ h1∩h2. So, to show that a and b form a hot pair
for h1 and h2, it suffices to show that a 6= b. Suppose towards a contradiction
that a = b, and consider the subchain C\h1. This is a chain in the difference
h2\h1, so by PCP* there exists some choice pair {x, y} ∈ C(h1, h2) such
that x ≤ C\h1 (where here y ∈ h1 and x ∈ h2). By the previous lemma,
b = inf(C\h1), hence x ≤ b = a. Since we have supposed that a = b, and a is
by definition a member of h1, we may use the downwards-closure of histories
to conclude that x ∈ h1. However, this means that both elements of the choice
pair {x, y} lie in the history h1, which contradicts Lemma 2.5.4. Thus a 6= b,
and we may conclude that {a, b} ∈ H(h1, h2). ⊓⊔

Using the above lemma, we can prove the following result, which says that
every open set in τhB is also an open set in τWB .

Lemma 4.4. Let h be a history of W and τhB its associated Bartha topology.
Then τhB ⊆ τWB .

Proof. Let U be some element of τhB . Consider some element x in U and
some chain C that is a maximal chain of W . If C ⊂ h, then C is also a
maximal chain of h, and the result follows immediately. So, suppose that
C 6⊆ h. Then there is some c ∈ C such that c /∈ h. By Lemma 4.3, it follows
that {suph(C ∩ h), suph′(C ∩ h)} forms a hot pair for the histories h and h′,
where h′ is some history such that C ⊂ h′. Since suph(C ∩ h) is compatible
with every element of C ∩h, we can extend (C ∩h)∪{suph(C ∩h)} to a chain
D that is maximal in h. By assumption U is open in the Bartha topology
on h, and since x ∈ C ∩ h ⊂ D, and D is a maximal chain in h, it follows
that there are c1, c2 ∈ D such that c1 < x < c2 and dc1c2

⊂ U . Without loss
of generality we can assume that c2 < suph(C ∩ h) (i.e. c2 ∈ C ∩ h), since
otherwise we can take some c3 ∈ C ∩ h such that x < c3 < suph(C ∩ h) ≤ c2

and use that dc1c3
⊂ dc1c2

⊂ U . Since c1 and c2 are members of C, it follows
that U ∈ τWB as required. ⊓⊔

An immediate corollary of the above is the following.

Corollary 4.5. Every history h of W is open in the topology τWB .

This is in stark contrast to the BST92 case (cf. Lemma 1.20.2), and this is
one of the key reasons that we have adopted BST92* over BST92 in this thesis.
We also have the following useful characterisation of τhB , which is suspected
to be false in the BST92 setting.

Lemma 4.6. The Bartha topology τhB on a history coincides with the subspace
topology τhS := {U ∩ h | U ∈ τWB }.
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Proof. Let V ∈ τhB . Then by Lemma 4.4 V ∈ τWB , hence V = V ∩ h ∈ τhS , and
consequently τhB ⊆ τhS . For the converse, suppose that V ∈ τhS , i.e. V = U ∩ h
where U ∈ τWB . Let x ∈ V and C a maximal chain in h. Since every maximal
chain in h is also a maximal chain in W , it follows from our assumption that
there are c1 and c2 in C such that x ∈ dc1c2

⊂ U . Since U ∈ τWB and x ∈ U ,
there are c1 and c2 in C such that x ∈ dc1c2

⊂ U . Since c2 ∈ C ⊂ h, the
downward closure of H implies that dc1c2

⊂ h, and thus dc1c2
⊂ U ∩ h = V .

It follows that V is an open set of τhB , from which the result follows. ⊓⊔

Corollary 4.7. A subset U of W is open in the Bartha topology on W iff
for each history h of W , the set U ∩ h is open in the history-relative Bartha
topology τhB.

Proof. The direction from left-to-right follows from the previous lemma. So,
suppose that U ∩ h is open in τhB for all h in H(W ). By Lemma 4.4, the sets
U ∩ h are also open in τWB . Then U =

⋃

h∈H(W )(U ∩ h) is a union of open

sets, and is thus open in τWB as well. ⊓⊔

From the above result we can conclude that the analogue of Lemma 1.20.3
holds in the BST92* case.

We will now move on to discussing the connectedness of the Bartha topol-
ogy. In the next two results, we will prove the BST92*-analogue to Lemma
1.20.4. We start with a proof that all histories of a BST92* model are con-
nected. Before introducing the argument, it should be noted that the following
proof is an adaptation of that found in [19, Fact 53].2

Lemma 4.8. The topology (h, τhB) is connected.

Proof. Suppose towards a contradiction that there are two open subsets
U, V ∈ τhB such that U ∩ V = ∅ and U ∪ V = h. Since both U and V are
empty, there are two elements x, y ∈ h such that x ∈ U and y ∈ V . Since h is
directed, there is some z ∈ h that upper-bounds both x and y. By assumption
U and V cover h, so z must lie in one of these sets. Without loss of generality,
suppose that z ∈ U . Since y ≤ z, we can extend {y, z} to a chain C that is
maximal in h. We can restrict the chain C to the segment D := C∩ ↓ z∩ ↑ y,
which can be seen as a maximal chain with endpoints y and z.3

Consider now the subchain D ∩ U . Since this is a chain that is lower-
bounded by y, by BST3 there exists an infimum inf(D ∩ U). We now show

2 Unfortunately, a modification of [19, Fact 53] is quite necessary. This is because
Placek applies the axiom BST3 to a chain without first confirming that the
chain in question is lower-bounded. As it turns out, the chain in question is

lower-bounded, but this complicates things sufficiently as to warrant a reshaping
of the argument.

3 Here we do not use “maximal” in our normal sense, but instead we mean that D
is a maximal element of the poset of bounded chains in h whose endpoints are y
and z (ordered by inclusion.)
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that the element inf(D ∩ U) is an element of the chain D. Let a be some
element in D. We proceed via case distinction:

Case 1: a ∈ U . Then a ∈ D∩U , so by definition we have that inf(D∩U) ≤ a.
Case 2: a ∈ V and a lower-bounds the sub-chain D ∩U . Since inf(D ∩U) is

the greatest lower-bound of D ∩ U , we have that a ≤ inf(D ∩ U).
Case 3: a ∈ V and a does not lower-boundD∩U . Then there is some b ∈ D∩U

such that b < a. Since inf(D ∩ U) lower-bounds D ∩ U , we have that
inf(D ∩ U) ≤ b < a, whence inf(D ∩ U) < a.

We can conclude from the above cases that inf(D∩U) is comparable with
every element ofD. Moreover, the first case above ensures that inf(D∩U) < z,
and the second case above ensures that y ≤ inf(D ∩ U). We then have that
D∪{inf(D∩U)} is a chain whose endpoints are y and z, from which it follows
from the maximality of D that inf(D ∩ U) ∈ D.

Now that we have proved that inf(D ∩ U) lies in D, consider again our
original chain C, which is maximal h. Since inf(D∩U) ∈ D ⊆ C, we can now
apply the Bartha condition in the relevant places to obtain our contradiction.
Since U and V cover h, it must be the case that inf(D ∩ U) lies in one of
these two covering sets.

If inf(D ∩ U) ∈ U , then we can apply the Bartha condition to C and U
to conclude that there are c1, c2 ∈ C such that c1 < inf(D ∩ U) < c2 and
dc1c2

⊂ U . Observe that y < c1 (since otherwise, c1 < y < inf(D ∩ U) < c2

implies that y ∈ U). Then c1 is an element of the subchain D ∩ U that is
strictly below inf(D ∩ U), which is a contradiction.

Similarly, if inf(D∩U) ∈ V , then we can again apply the Bartha condition
to C and V to conclude that there are e1, e2 ∈ C such that e1 < inf(D∩U) <
e2 and de1e2

⊂ V . Observe that e2 lower-bounds the sub-chain D ∩ U (since
otherwise, there would be some element a ∈ D∩U such that inf(D∩U) ≤ a <
e2, so a ∈ V ). Then inf(D∩U) < e2 < D∩U , which is again a contradiction.

In either case, we arrive at a contradiction. Thus we may conclude that
no such U and V exist, and therefore h is indeed connected. ⊓⊔

Lemma 4.9. The topology (W, τWB ) is connected.

Proof. Suppose towards a contradiction that there are two non-empty, open
subsets U, V ⊆ W that cover W . Since both U and V are non-empty, there
are elements x ∈ U and y ∈ V . By Lemma 1.12.3, there are histories h1 and
h2 of W such that x ∈ h1 and y ∈ h2.

Consider first the history h1. As witnessed by x, the set h1 ∩ U is non-
empty. Moreover, since U is open in W , by Lemma 4.7 the set h1 ∩U is open
in the history-relative Bartha topology on h1. It then has to be the case that
h1 ∩ V = ∅, else we contradict the connectedness of h1. Since h1 and V are
disjoint, and U, V cover W , we may conclude that h1 ⊆ U .

We can perform a similar argument for h2 to conclude that h2 ⊆ V . By
assumption U and V are disjoint, which means that h1 and h2 are also disjoint.
However, this contradicts Lemma 2.9. ⊓⊔
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We will now finish this section with a look at the Hausdorff property on
W . The following result tells us that hot pairs are Hausdorff-violating.

Lemma 4.10. Let h1 and h2 be histories of W . Then every hot pair {x, y} ∈
H(h1, h2) violates the Hausdorff property.

Proof. Without loss of generality suppose that x ∈ h1 and y ∈ h2. Let U, V
be open sets of W such that x ∈ U and y ∈ V . We show that U and V are
not disjoint. Since x and y form a hot pair, there is some chain C ⊂ h1 ∩ h2

such that suph1
(C) = x and suph2

(C) = y. Let C1 and C2 be two maximal
extensions4 of C containing x and y respectively. Observe5 that C = {z ∈
C1 | z < x} and similarly C = {z ∈ C2 | z < y}.

Since U is open, x ∈ U and x ∈ C1, by definition there are two points
x1, x2 ∈ C1 such that x1 < x < x2 and dx1x2

⊂ U . Since x1 < x, it must be
the case that x1 ∈ C, hence x1 ∈ C ∩ U . Similarly, since x < x2 it must be
the case that x2 ∈ C1\C. We can repeat the same argument for y, C2 and
V to conclude that there is some y1, y2 ∈ C2 such that y1 < y < y2, with
y1 ∈ C ∩ V and dy1y2

⊂ V .
We would like to show the existence of at least some point in the inter-

section U ∩ V . In fact, any point z ∈ C that lies above both x1 and y1 will
suffice6. Indeed, we have x1 ≤ z < x < x2 and y1 ≤ z < y < y2, thus both
z ∈ dx1x2

⊂ V and dy1y2
⊂ V , and thus z ∈ U ∩V as required. Since we chose

U and V arbitrarily, it follows that x and y violate the Hausdorff property. ⊓⊔

The following theorem summarises the results of this section, and serves
as a direct comparison to Lemma 1.20.

Theorem 4.11. Let (W,≤) be a model of BST92*, and h a history of W .
Then

1. τhB ⊆ τWB
2. All histories h of W are open.
3. U is open in W iff U ∩ h is open in (h, τhB) for each h in H(W ).
4. Both W and h are connected.
5. If W is a multi-history model, then W is not Hausdorff.
6. The history-relative Bartha topology τhB coincides with the subspace topol-

ogy induced from τWB .

4 These always exist by Zorn’s lemma.
5 If z ∈ C then z < x (z 6= x since x /∈ h2 and C ⊂ h1 ∩ h2). If z /∈ C then C < z

(otherwise z ≤ c and then z ∈ C) hence x ≤ z.
6 An element z such as this always exists: since x1 and y1 are both in C, they are

comparable, so we can take z = y1 in the case that x1 ≤ y1, or z = x1 in the case
that y1 ≤ x1.
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4.2 Naturality of the Bartha Topology

Recall that in Section 1.2.1 we identified three naturality criteria for struc-
tural extensions of BST92(*). When the structure in question is the Bartha
topology, these criteria manifest as:

N1) Under certain assumptions, the history-relative Bartha topologies are
homeomorphic to a Minkowski spacetime.

N2) The Bartha topology possesses a certain universal property, in that it
can be canonically reconstructed from its history-relative substructures.

N3) The Bartha topology is compatible with any pre-existing BST92* con-
cepts.

In this section we will argue that conditions N2 and N3 are satisfied. We will
start with N3, since it is the most straightforward, and then we will tackle
N2.

4.2.1 Compatibility with Pre-Existing Structure

There is not much interaction between the topological and the order-theoretic
properties of BST92* models. As Placek et. al observe, the only potential com-
patibility issue is between the Bartha-topological convergence of sequences,
and the order-theoretic concepts of suprema and infima. In this section, we
will verify that (where relevant) these two notions of convergence are in fact
one and the same. In order to do this, we first need a small lemma.

Lemma 4.12. Let h be a history of W . Then the sets:

↑x := {y ∈ h | x ≤ y} and ↓x := {y ∈ h | y ≤ x}

are closed in the Bartha topology on h.

Proof. Consider first ↑x. We show that the complement is h\↑x is open. Let
z ∈ h\↑x, and let C be some maximal chain in h that passes through z. In
order to show that the Bartha condition is satified by z and C, it suffices to
show the existence of some c in C such that z < c and c ∈ h\↑x. Consider the
subchain

C ′ := C ∩ ↑x = {c ∈ C | x ≤ c}.

then C ⊆ h\↑x, and we can pick any element above z. So, suppose that C ′

is non-empty. Since x lower-bounds C ′, thus by axiom BST3 the infimum
inf(C ′) exists. This infimum must be distinct from z; otherwise x ≤ z, which
contradicts z ∈ h\↑x. Since C is a maximal chain, in particular it is dense,
so we can pick an element c ∈ C such that z < c < inf(C ′). Whatever this
element is, it is strictly below inf(C ′), so lies in the complement h\↑x. Since
C is a maximal chain, there exists some element b below z in C. Thus we
have the existence of two elements c and b of C such that b < z < c and the
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diamond dbc is fully contained within h\↑x (see Figure 4.1 for the idea). Since
we picked both z and C arbitrarily, it follows that h\↑x is open in the Bartha
topology on h, and and thus its complement ↑x is closed. The argument for
↓x is similar. ⊓⊔

x

inf(C′)

c

z

b

C

C′

Fig. 4.1: The proof of Lemma 4.12

Using the above result, we can now show that on the level of histories, the
topological and the order-theoretic notions of convergence coincide. This result
comes in the form of the next two lemmas, where will show the compatibility
for suprema and infima separately.

Lemma 4.13. Let h be a history, and C ⊆ h a countable chain indexed by
the natural numbers, so that cn ≤ cm in h iff n ≤ m in N. Then suph(C) = x
iff C, when viewed as a sequence, converges to x in the history-relative Bartha
topology τhB.

Proof. Suppose first that suph(C) = x, and let U an open neighbourhood of
x. Let D be a maximal extension of the chain C. Since U is open, there are
points b1 and b2 on D such that b1 < x < b2 and db1b2

⊂ U . Since b1 < x
and both elements lie in D, it must be the case that C 6≤ b1, since otherwise
this would contradict x as the least upper bound of C. Hence there is some
cN ∈ C such that b1 ≤ cN . Since C is order-isomorphic to N, it follows that
b1 ≤ cm < x for all m > N . Since db1b2

⊂ U , it follows that all such cm
are contained within U , as required. Since U was arbitrary, it follows that C
converges to x in τhB .

Conversely, suppose that C converges to x. We first show that C ≤ x.
Suppose towards a contradiction that C 6≤ x, that is, there exists some cn ∈ C
such that cn 6≤ x. Then x /∈ ↑cn, and thus x ∈ h\cn. It follows from Lemma
4.12 that h\↑cn is an open set containing x. Since C converges to x, there
exists some N ∈ N such that cm ∈ h\↑cn for all m > N . Fix such a cm.
Since cm ∈ h\↑cn, it follows that cn 6≤ cm, and thus cm ≤ cn (since C is a
chain). However since C is order-isomorphic to N, it follows that N < m < n
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and thus cn ∈ h\↑cn, a contradiction. We may thus conclude that no such cn
exists, and thus C ≤ x.

We now show that x is the least upper bound of C. Suppose towards a
contradiction that there is some y ∈ h such that C ≤ y < x. Since x and y are
distinct, there is some z1 ∈ h such that y < z1 < x. Since h has no maxima,
there is some z2 in h such that x < z2. Consider now the set (h\↑z2)∩(h\↓z1),
which by Lemma 4.12 is an open set. Since C ≤ y < z1, that is, C ⊂ ↓z1, it
follows that the set (h\↑z2) ∩ (h\↓z1) is an open neighbourhood of x disjoint
from C, which contradicts our assumption that C converges to x. Thus we
may conclude that there is no such y, from which it follows that suph(C) = x.

⊓⊔

We can now show the dual result to the above. Conceptually speaking, the
proof is very similar, but here will replace up-arrows with down-arrows.

Lemma 4.14. Let C = {cn | n ∈ N} be a countable, lower-bounded chain
contained in some history h that is inversely order-isomorphic to N. Then
inf(C) = x iff C, when viewed as a sequence, converges to x in the history-
relative Bartha topology τhB.

Proof. Suppose first that inf(C) = x, and let U be an open subset of h
containing x. Again we can extend C to a maximal chain that passes through
x and proceed as in the previous lemma to conclude that C converges to x.

Conversely, suppose that C converges to x. If x 6≤ C, then there is some
cn ∈ C such that x 6≤ C. Then x ∈ h\↓cn, thus there is some N ∈ N such
that cm ∈ h\↓cn for all m > N . Then any such cm will have to be above cn,
and since C is inversely order-isomorphic to N, it follows that m < n and thus
cn ∈ h\↓cn, a contradiction. To see that x is the greatest lower bound of C,
we can use an argument symmetric to that of the previous lemma. Indeed – if
there is some y ∈ h such that x < y ≤ C then again we can pick two elements
z1, z2 in h such that z1 < x < z2 < y ≤ C, and use that (h\↑z2) ∩ (h\↓z1) is
an open subset containing x that is disjoint from C. ⊓⊔

Now that we have verified that convergence coincides with suprema and
infima on the history-relative Bartha topologies, we will do the same for the
Bartha topology τWB on W .

Lemma 4.15. Let C = {cn | n ∈ N} be a countable, upper-bounded chain
contained in some history h that is order-isomorphic to N. Then suph(C) = x
iff C, when viewed as a sequence, converges to x in the Bartha topology τWB .

Proof. Suppose first that suph(C). By Lemma 4.13 we know that C converges
to x in τhB . Since this is a subspace of τWB , C also converges to x in τWB . For
the converse, suppose that C converges to x in W , and let h be some history
that contains x. By Lemma 4.6, τhB can also be viewed as an open subspace
of W . Since x ∈ h, it follows that C also converges to x in τhS . By Lemma 4.6
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the subspace topology τhS is equal to τhB , so it follows7 that C converges to
x in h equipped with the history-relative Bartha topology. Thus by Lemma
4.13 it follows that suph(C) = x, as required. ⊓⊔

It should be clear that a result analogous to Lemma 4.14 also holds. From
all of this, we can conclude that on both τhB and τWB , the notion of topological
convergence and infima/suprema coincide. The results of this section are then
grounds to accept that condition N3 is satisfied by the Bartha topology on
BST92* models.

4.2.2 Construction from History-Relative Topologies

We will now show that the Bartha topology τWB is equivalent to an appropriate
adjunction of its history-relative Bartha topologies. In this section we will fix
an enumeration H(W ) = {hi | i ∈ I}, where (in accordance with Remark
1.14), I is assumed to be at most countably-infinite. The choice of such an
“appropriate adjunction” should be fairly obvious – consider the tuple F =
(X,A,F), where:

• X consists of the topological spaces (hi, τ
hi

B ),
• Each Aij is the intersection hi ∩ hj
• Each fij : Aij → hj is the identity map.

It is not hard to see that the tuple F defines an adjunction system – the
various conditions of Definition 3.7 follow trivially from the properties of the
identity map and intersections. Thus we can form the adjunction space

⋃

F
hi,

whose elements are equivalence classes of the form

[x, i] = {(y, j) | y = x and x ∈ hi ∩ hj}.

In this context, the canonical maps φi : hi →
⋃

F
Xi send each x in hi to the

equivalence class [x, i]. We remark that the space
⋃

F
hi is essentially a copy

of W in which elements of W are indexed by the histories that they lie in. It
should then come as no surprise that the following holds.

Theorem 4.16. The space
⋃

F
hi equipped with the adjunction topology τA is

homeomorphic to (W, τWB ).

Proof. Consider the inclusion maps ψi : hi → W . These are clearly continuous
maps that meet the sufficient conditions of Lemma 3.10. As such, there is a
unique continuous map g :

⋃

F
hi → W . In this context, the map g sends

7 Let an be a sequence that converges to x in X, and let A be an open subspace of
X that contains x. Let U ⊂ A be open in A. Then U = A ∩ V , where V is open
in X. Since A is also open, U is open in X. Thus there is some N ∈ N such that
an ∈ U for all n > N . Since U was arbitrary, it follows that an converges to x in
A (also, we can effectively view an as a sequence lying in A since A is open an
contains x so falls into the scope of the convergence property).
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elements [x, i] to x in W . We now show that g is a bijective open map. That g
is bijective is fairly obvious: if [x, i] = [y, j] then x = y, hence g([x, i]) = x =
y = g([y, j]), and if x ∈ W then x lies in some history hi, thus [x, i] ∈

⋃

F
hi

will be mapped to x under g.
Suppose now that U is some open subset of

⋃

F
hi. Then for each i, the

set φ−1
i (U) is open in hi (equipped with the topology τhB). By Corollary 4.5

and Lemma 4.6, the histories hi are open subspaces of W , thus the inclusion
maps ψi are open8. As such, each ψi(φ

−1
i (U)) is open in W , and thus so is the

set
⋃

i∈I φ
−1
i (U). But this is precisely the set g(U). Indeed: x ∈ φ−1

i (U) for
some i implies that [x, i] ∈ U , thus g([x, i]) = x. Conversely, if x ∈ g(U) then
[x, i] ∈ U for some i, so x ∈ φ−1

i (U). Hence g(U) =
⋃

i∈I φ
−1
i (U) is open in W ,

and since we chose U arbitrarily, it follows that g is an open map. The proof
is complete by observing that all bijective maps that are both continuous and
open are homeomorphisms9. ⊓⊔

The above theorem suggests that the Bartha topology on any BST92*
model can be canonically expressed as an adjunction of its history-relative
Bartha topologies. As such, the naturality condition N2 is satisfied.

4.3 Topological Properties of Minkowskian BSTs

In this section we will discuss the Bartha-topological properties of the Minkowskian
BSTs constructed in Section 2.2.2. In particular, we will show that on each
Mn

C , the Bartha topology is equivalent to an adjunction of the Euclidean
topology on Mn (which is equivalent to a topology proposed by Müller in
[16]).

Before doing anything of the sort, we first make the following observation.
In the previous section we saw that the naturality criteria N2 and N3 were
satisfied by the Bartha topology. The following result confirms that condition
N1 is satisfied.

Lemma 4.17. The space (Li, τ
Li

B ) is homeomorphic to Mn equipped with the
Bartha topology.

Proof. We have seen in the form of Prop. 2.13 that the canonical embeddings
ιi : Mn → Li are order-isomorphisms. Thus we can apply Prop. 4.1 to con-
clude that the ιi act as homeomorphisms. ⊓⊔

8 This is a general result: if U ⊂ A is open in an open subspace A of a topological
space X, then U = A ∩ V where V is open in X. Since A is open, U is the
intersection of two sets open in X, hence it is also open in X. Then the inclusion
map ι : A → X is open.

9 Again, this is a general result. Let f : X → Y be a bijective, continuous and open
map between two topological spaces X and Y . Since f is bijective, the inverse
f−1 is well-defined. Let U ⊆ X be open. Then: (f−1)−1(U) = f(U) is open since
f is an open map. Thus f−1 is continuous, whence f is a homeomorphism from
X to Y .
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From this result, we may conclude that the Bartha topology is a natural
extension of the order-theoretic structure of BST92* models.

4.3.1 Equivalence of the Bartha and Müller’s Topology

In his paper [16], Müller defines a topology on Minkowskian BSTs that is
generated by the open balls in each layer Li. We will now show that such a
topology can be equivalently defined as an appropriate topology on an ad-
junction space.

Müller’s Topology Described as an Adjunction Space

Although Müller only defines his topology on simple MBSTs, his definition
naturally generalises to the case of arbitrary MBSTs. Consider the system
G := (Y,B,G), where:

• each Yi is equal to Mn equipped with the Euclidean topology,
• each Bij is equal to the set Mn\J+(Cij), and
• each gij : Bij → Mn is the inclusion map.

It should be clear that this defines an adjunction system.10 Observe the
(intended) similarity between the above system G and the construction of
Mn

C as in Section 2.2.2. We are essentially performing the same construction,
though this time at the topological level. Observe that on the set-theoretic
level, the set

⋃

G
Mn
i is equal to the set Mn

C , and as functions, the canonical
maps φi : Mn →

⋃

G
Mn
i are equal to the canonical embeddings ιi defined as

in Prop. 2.13.11

We will momentarily break our notation and refer to the adjunction topol-
ogy associated to

⋃

G
Mn
i as the adjoined Euclidean topology on Mn

C , and we

will denote this by τEA . We also remark that by construction, each Bij is an
open subset of Mn and each gij is an open map, so by Lemma 3.14 the canon-
ical maps φi are open, topological embeddings. As such, we can use Lemma
3.16 to conclude that

B := {φi(U) | U ∈ BMn , i ∈ I}

is a basis for τEA , where BM denotes the basis for Mn consisting of open balls
of rational radii centered at rational coordinates.

10 This is the same idea as with the tuple F defined in Section 4.2.2 – the conditions
A1-3 are satisfied due to basic properties of intersections and inclusion maps.

11 However, in order to emphasise that the canonical maps are continuous maps
between topological spaces, we will keep with the notation of adjunction spaces,
and denote them by φi.
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Proving the Equivalence

Before showing that the adjoined Euclidean topology is equivalent to the
Bartha topology, we need to make a key observation.

Theorem 4.18. On Mn, the Bartha topology coincides with the Euclidean
topology.

Proof. We show that the Bartha topology on Mn has a basis comprised of
sets of the form I+(x) ∩ I−(y). To do this, we need to show that every such
set is open in the Bartha topology, and that every set U open in the Bartha
topology can be represented as a union of sets of this form.

We first show that all subsets of the form I+(x) ∩ I−(y) are open in the
Bartha topology on Mn. Suppose that z ∈ I+(x) ∩ I−(y), and let C be a
maximal ≤M chain that passes through z. It follows from Prop 1.10 that
there are elements c1 and c2 in C such that x ≪M c1 <

M z <M c2 ≪M y.
We can then use the causal diamond dc1c2

to witness the Bartha condition
at z. Since we chose x, y and z arbitrarily, it follows that all sets of the form
I+(x) ∩ I−(y) are open in the Bartha topology on Mn.

We now show that every subset of Mn that is open in the Bartha topology
can be represented as a union of elements of the form I+(x) ∩ I−(y). So,
let U be some subset of Mn open in the Bartha topology. By definition,
for each x and each maximal ≤M -chain C, there are a, b ∈ C such that
dab = J+(a) ∩ J−(b) ⊂ U , where a <M x <M b. Let A be the collection of
ordered pairs (a, b) such that a and b are witnesses to the Bartha condition
for some x ∈ U and some maximal ≤M -chain C containing x. We will now
show that

U =
⋃

(a,b)∈A

I+(a) ∩ I−(b).

The inclusion from right-to-left is immediate – if x ∈ I+(a) ∩ I−(b) for some
(a, b) ∈ A, then since I+(a) ∩ I−(b) ⊂ J+(a) ∩ J−(b) = dab ⊂ U , it follows
that x ∈ U . For the converse, suppose that x ∈ U . Pick any timelike curve
γ passing through x. By Prop 1.5, γ induces a maximal ≤M -chain C passing
through x in which the elements of C are pairwise timelike related (that is,
≪M -related). Since U is open, there are elements a and b of C such that
dab ⊂ U and a <M x <M b. Since we chose C to be timelike, it follows that
a ≪M x ≪M x, and thus x ∈ I+(a)∩I−(b). Hence x ∈

⋃

(a,b)∈A I
+(a)∩I−(b),

from which we may conclude that U =
⋃

(a,b)∈A I
+(a) ∩ I−(b). From all of

this we may conclude that the collection

B := {I+(x) ∩ I−(y) | x, y ∈ Mn}

forms a basis for the Bartha topology on Mn. However, this is precisely the
definition of the Alexandrov topology onMn. A necessary and sufficient condi-
tion for a spacetime to be strongly-causal is that the Alexandrov topology and
the manifold topology coincide (see e.g. [23, Sec. 3.6.1.]). It is also well-known
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that Minkowski spacetime is strongly-causal12. From this we can conclude
that on Mn, the Bartha topology coincides with the Euclidean topology. ⊓⊔

The above result is the crucial observation that allows us to prove the
equivalence of the Bartha and the adjoined Euclidean topologies. The argu-
ment is given as follows.

Theorem 4.19. The Bartha topology on Mn
C is equal to adjoined Euclidean

topology.

Proof. Let U be some subset of Mn
C . Suppose first that U is open in the

Bartha topology on Mn
C . Then by Lemma 4.6, this implies that U ∩Li is open

in the history-relative Bartha topology τLi

B . In order to show that U is open
in the adjoined Euclidean topology τEA , by Prop. 3.9 it suffices to show that
the preimages φ−1

i (U) are open in the Euclidean topology on Mn. Subject to
the remarks made in Section 4.2.2, the canonical maps φi : Mn → Mn

C are
precisely equal to the canonical embeddings ιi defined as in Prop. 2.13. By
Lemma 4.17, the maps ιi act as homeomorphisms from Mn to Li, where both
are equipped with their respective Bartha topologies. Since U ∩ Li is open
in the history-relative Bartha topology τLi

B , it follows that the set ι−1
i (U) is

open in (Mn, τM
n

B ). By Theorem 4.18, it follows that ι−1
i (U) is also open in

the Euclidean topology on Mn. Since we chose i to be arbitrary, we can apply
Prop. 3.9 to conclude that U is open in the adjoined Euclidean topology τEA ,

and thus τ
Mn

C

B ⊆ τEA .
The converse is a near-symmetric argument – if U is open in the adjoined

Euclidean topology τEA , then by Prop. 3.9 the preimages ι−1
i (U) are open in

the Euclidean topology on Mn. Thus by Theorem 4.18 the preimages ι−1
i (U)

is open in τM
n

B , hence ιi(ι
−1
i (U)) = U ∩ Li is open in the history-relative

Bartha topology τLi

B . Then U ∈ τ
Mn

C

B by Corollary 4.7 from which it follows

that τ
Mn

C

B ⊆ τEA , whence equality. ⊓⊔

The above result unifies the bottom-up, order-theoretic Bartha topology
of Placek et. al with the top-down, pseudo-Euclidean topology of Müller. As
a consequence, we may deduce the following.

Theorem 4.20. Let Mn
C be a Minkowskian BST of the theory BST92*.

Then the Bartha topology on Mn
C is second-countable, connected, and locally-

Euclidean. Moreover, Mn
C is Hausdorff iff Mn

C is a single-historied model.

Proof. When we view Mn
C as the adjoined Euclidean topology, the canonical

maps φi are open, topological embeddings. Thus we can use Corollary 3.14
to conclude that Mn

C is second-countable, Lemma 3.15 to conclude that it is
connected, and Lemma 3.19 to conclude that it is locally-Euclidean. If Mn

C

has a single history, then by Prop 4.17, Mn
C is homeomorphic to Mn, which

is Hausdorff. Conversely, if Mn
C has multiple histories, then by Prop 2.21

these histories possess hot pairs, which by Lemma 4.10 violate the Hausdorff
property.
12 In fact, Minkowski spacetime is globally-hyperbolic, a far-stronger condition.
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4.3.2 Topological Characterisations of Hot Pairs

We finish this chapter with an observation regarding hot pairs. We saw in the
form of Lemma 4.10 that for any BST92* model W , every hot pair violates
the Hausdorff property on its Bartha topology. We will now show that on
Minkowskian BSTs the converse also holds.

Lemma 4.21. Every Hausdorff-violating pair {w, z} of Mn
C is a hot pair for

Mn
C .

Proof. Suppose w, z ∈ Mn
C violate the Hausdorff property. Since each history

Li is homeomorphic to Mn (see 4.17,4.18), it cannot be the case that w and z
lie in the same layer. So, let w := [x, i] ∈ Li\Lj and z := [y, j] ∈ Lj\Li. Since
[x, i] ∈ Li\Lj , in particular (x, i) 6≈ (x, j), thus there is some a ∈ Cij such
that a ≤M x. Similarly, there is some b ∈ Cij such that b ≤M y. It follows
that both x and y are elements of J+(Cij).

Suppose towards a contradiction that x 6= y. Since Mn is Hausdorff, there
are two disjoint open subsets U and V of Mn such that x ∈ U and y ∈ V . We
know from Lemma 4.17 that the maps ιi : Mn → Li are homeomorphisms. In
particular, the ιi are open maps. The sets ιi(U) and ιj(U) are then open in
Li, hence are also open in Mn

C by Lemma 4.6. Observe that the sets ιi(U) and
ιj(V ) are disjoint in Mn

C , since by assumption U and V are disjoint in Mn.
Thus we have two disjoint open sets separating the elements [x, i] and [y, j],
which contradicts our assumption that [x, i] and [y, j] violate the Hausdorff
property. We may then conclude that x = y.

We now show that x /∈ I+(Cij). Suppose towards a contradiction that
x ∈ I+(Cij), and denote by c1, ..., cn the elements of Cij such that x ∈
⋂n
α=1 I

+(cα) (note that there are at most finitely-many by our convention
that C is finite). By Prop 1.4, it follows that x ∈

⋂n
α=1 I

+(cα) is open in the
Euclidean topology on Mn, and is non-empty since it contains x. Thus there
is some neighbourhood U of x such that U ⊆

⋂n
α=1 I

+(cα). We can always
pick U small enough so that the inclusion is proper. Since ιi and ιj are open
maps, it follows that ιi(U) is open in Li and ιj(U) is open in Lj , hence by
Lemma 4.4 these sets are also open in Mn

C . However, since U is contained
entirely within J+(Cij), it follows that ιi(U) ⊂ Li\Lj and ιj(U) ⊂ Lj\Li.
Thus ιi(U) and ιj(U) are disjoint open sets of Mn

C that separate [x, i] and
[x, j], which contradicts our assumption that this pair violates the Hausdorff
property. We may conclude that there is no c ∈ Cij such that x ∈ I+(c), and
thus x /∈ I+(Cij). It follows that x ∈ E+(Cij), and the result follows as an
application of Lemma 2.21. ⊓⊔

The above result, combined with Lemma 4.10, provides a topological char-
acterisation of hot pairs in Mn

C , namely the hot pairs are precisely the pairs
of points that violate the Hausdorff property. In combination with Theorem
4.20, the above result then suggests that the violation of the Hausdorff prop-
erty is deeply connected to the branching (i.e. indeterminism) of Minkowskian
BSTs.
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Adjoined Manifolds and Their Vector Bundles

In Chapter 3 we identified some conditions under which a collection of topo-
logical spaces could be glued along open subspaces. In this chapter, we will
extend this idea to the setting of smooth manifolds. In the first section, we
will identify conditions under which a collection of smooth manifolds Mi of
the same dimension can be glued. The resulting glued space will then be a
(typically non-Hausdorff) smooth manifold in which the canonical maps φi
act as smooth embeddings. We will call such manifolds adjoined manifolds,
and denote them by

⋃

F
Mi (as opposed to the Xi-notation of Chapter 3).

In Section 6.2, we will discuss the nature of vector bundles over adjoined
manifolds. We will start by providing a natural method for adjoining vector
bundles, and then we will move on to show that the tangent bundle of an ad-
joined manifold

⋃

F
Mi is naturally isomorphic to an adjunction of the bundles

TMi. After this, we will show that any vector bundle F over an adjoined man-
ifold

⋃

F
Mi is naturally isomorphic to an adjunction of its pullback bundles

φ∗
iF .

5.1 Adjoining Smooth Manifolds

We will now discuss the adjunction spaces of smooth manifolds. It is fairly
common within differential geometry to glue smooth manifolds together to
obtain a new one. A particularly useful construction is that of the connected
sum of manifolds M1 and M2, which is typically denoted by M1#M2. This is
constructed by taking taking open balls Ui of Mi, removing them, gluing the
Mi\Ui along their diffeomorphic boundary, and then defining an appropriate
smooth structure on the resulting topological space.

This is essentially how we will approach the problem, with a few small
changes. To begin with, we would like to glue our manifolds along regions
that are topologically open, not closed as in the standard approach. The rea-
son we do this should be clear by now – we are eventually going to call these
smooth manifolds “branches” and form a branching spacetime from them. In
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accordance with the standard BST92* theory outlined in Chapter 2, and the
topological properties of the MBSTs found in Chapter 4, we would like the
boundaries of these to-be-glued open regions to be left well alone, so that the
resulting space will be non-Hausdorff, and these Hausdorff-violating pairs will
be hot pairs.

We will now start to define our “adjoined manifolds”. Suppose that we
have an adjunction system F , where in addition to the conditions outlined in
Definition 3.7, we have that the indexing set I is countable, and

• X consists of smooth n-manifolds Mi,
• each Aij is an open submanifold of Mi, and
• each fij : Aij → Mj is a smooth embedding.

Observe that the last item above ensures that the map fij acts as a diffeo-
morphism from Aij to Aji (see Lemma 3.11). Put differently, we will be glu-
ing smooth manifolds along diffeomorphic open submanifolds. By definition
smooth embeddings are also topological embeddings, so we can apply Lemma
3.11 to conclude that the canonical maps φi are open topological embeddings
into the adjunction space

⋃

F
Mi. As such, we can use Lemmas 3.19 and 3.14

to conclude that
⋃

F
Mi is locally-Euclidean and second-countable, that is,

the adjunction space
⋃

F
Mi is at least a topological manifold. We will now

set about defining a smooth structure.

5.1.1 Defining a Smooth Structure

In this section we will show that the smooth structure of each Mi can be trans-
ferred to the adjunction space

⋃

F
Mi in a natural way, so that the canonical

maps φi become smooth. Our first result describes the smooth structure of
⋃

F
Mi.

Lemma 5.1. Let Ai be the smooth structure of Mi. Then the collection

A := {(φi(U), ϕ ◦ φ−1
i ) | (U,ϕ) ∈ Ai}

induces a smooth structure on
⋃

F
Mi.

Proof. We begin by showing that A consists of pairwise-compatible elements.
So, let (φi(U), ϕ ◦ φ−1

i ) and (φj(V ), ψ ◦ φ−1
j ) be elements of A, whose overlap

φi(U)∩φj(V ) is non-empty. In order to show that these charts are compatible,
we need to compute their transition functions and show that these are smooth
in the Euclidean sense. Before doing so, we observe that by assumption, any
element in the overlap φi(U) ∩ φj(V ) will be of the form [p, i] = [fij(p), j],
where fij is the diffeomorphism mapping Aij to Aji, which are both endowed
with the open-submanifold smooth structure induced from their respective
parent spaces. By assumption, the tuples (U,ϕ) and (V, ψ) are members of the
atlases Ai and Aj respectively. Since these are open subsets of their respective
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spaces, it follows that (U ∩Aij , ϕ|Aij
) and (V ∩Aji, ψ|Aji

) are charts for Aij
and Aji respectively. The transition functions for the charts (φi(U), ϕ ◦ φ−1

i )
and (φj(V ), ψ ◦ φ−1

j ) can be computed as follows

(ϕ ◦ φ−1
i ) ◦ (ψ ◦ φ−1

j )−1 = ϕ ◦ φ−1
i ◦ φj ◦ ψ−1 = ϕ ◦ fji ◦ ψ−1

(ψ ◦ φ−1
j ) ◦ (ϕ ◦ φ−1

i )−1 = ψ ◦ φ−1
j ◦ φi ◦ ϕ−1 = ψ ◦ fij ◦ ϕ−1

where the last equalities follow from the definition of an adjunction space. The
transition maps above are essentially a local representation of the maps fij
and fji, restricted to an open subset. Since we have assumed that these are
diffeomorphisms (i.e. smooth), it follows that the transition maps are smooth
and thus the charts (φi(U), ϕ ◦φ−1

i ) and (φj(V ), ψ ◦φ−1
j ) are compatible. We

can then apply Prop. A.3 and extend the atlas A to a smooth structure. ⊓⊔

From now on, we will assume that the adjunction space
⋃

F
Mi is equipped

with the smooth structure A of Lemma 5.1. Our next result says that this
smooth structure A turns the canonical maps φi into smooth embeddings.

Lemma 5.2. Each φi is a smooth embedding into
⋃

F
Mi.

Proof. As previously remarked, our choice of F and Lemma 3.11 imply that
each φi is already a topological embedding. Thus it suffices to show that both
φi : Mi → φi(Mi) and its left-inverse φ−1

i : φi(Mi) → Mi are smooth, since
the result will then follow from an application of Lemma A.12.

We start with φi. Let p ∈ Mi and consider φi(p) = [p, i] in
⋃

F
Mi. Let

(U,ϕ) be any chart for Mi at p. In order to show that φi is smooth at p, it
suffices to show that φi is smooth in some local representation. We will use
the chart (φi(U), ϕ ◦ φ−1

i ). Since φi is an open map, the set φi(Mi) forms an
open submanifold of

⋃

F
Mi. As such, the chart (φi(U), ϕ◦φ−1

i ) is also a chart
for φi(Mi). It should be clear1 that the local representation of φi is equal to
the identity map restricted to ϕ(U), which is clearly smooth. Since we picked
the point p arbitrarily, we may use Prop. A.7 to conclude that φi is indeed
smooth.

The case for the inverse map φ−1
i : φi(Mi) → Mi is identical in spirit.

Suppose we have a point [p, i] in φ−1
i . Again we can pick the chart (U,ϕ) of

M at p and (φi(U), ϕ◦φ−1
i ) of φi(Mi) at [p, i]. Again, the local representation

of φ−1
i will be the identity map on Rn, from which it follows that φ−1

i is
smooth. ⊓⊔

A nice observation from the above argument is that at every point p in Mi,
the local expression of φi can always be made to coincide with the identity
map of Rn. This shouldn’t be that surprising – when we perform an adjunc-
tion, the only possible place that we might deform any of the Mi is on the

1 Indeed: (ϕ ◦ φ−1
i ) ◦ φi ◦ ϕ−1 = ϕ ◦ ϕ−1.
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to-be-glued regions Aij . However, we are assuming that these are diffeomor-
phically mapped into the Mj , and as such our adjunctions of manifolds are
constructed by mere rearrangement. There will be an analogous result when
we discuss vector bundles in the next section.

The following theorem summarises the previous two results, and will serve
as a useful point of reference.

Theorem 5.3. Let F = (X,A, f) be an adjunction space with a countable
indexing set I, in which:

1. X consists of smooth (Hausdorff) manifolds Mi,
2. each Aij is open submanifold of Mi, and
3. each fij : Aij → Xj is a smooth embedding.

Then the adjunction space
⋃

F
Mi is a smooth manifold in which the canonical

maps φi : Mi →
⋃

F
Mi are open, smooth embeddings.

We will refer to any adjunction space
⋃

F
Mi satisfying the conditions of

Theorem 5.3 as an adjoined manifold.

5.1.2 Smooth Maps on Adjoined Manifolds

We will now discuss the smooth maps on such spaces. Our first result says
that we can push certain smooth maps out to the adjoined manifold

⋃

F
Mi.

2

Lemma 5.4. Suppose that ψi : Mi → N are smooth maps such that ψi =
ψj ◦ fij. Then the map f̃ :

⋃

F
Mi → N defined by f̃([p, i]) = ψi(p) is a

well-defined smooth map.

Proof. By Prop. A.7.1 the smooth maps ψi are continuous, so it follows from
our assumption and the universal property of topological adjunction spaces (as
in Lemma 3.10) that the map f̃ is a well-defined, continuous map from

⋃

F
Mi

to N . To see that f̃ is smooth, let [p, i] be an element in
⋃

F
Mi and consider

the restriction of f̃ to the open set φi(Mi). Then f̃ |φi(Mi) : φi(Mi) → N is

equal to ψi ◦ φ−1
i . By Theorem 5.3 φi is a smooth embedding, thus Lemma

A.12 implies that φi is a diffeomorphism onto its image. In particular φ−1
i is

smooth, hence the restriction f̃ |φi(Mi) = ψi ◦ φ−1
i is a composition of smooth

maps, thus is smooth. Since we chose [p, i] arbitrarily, we can apply Prop.
A.7.2 to conclude that f̃ is smooth. ⊓⊔

An immediate application of the above lemma is that certain real-valued func-
tions can be transferred to

⋃

F
Mi.

2 In the statement of Lemma 5.4, we have use a tilde to denote the pushed-out map
f̃ . From now on we will keep this convention and denote with a tilde any objects
that are pushed out to adjunction spaces.
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Corollary 5.5. Let {fi | fi ∈ C∞(Mi)} be a collection of real-valued functions
such that fi(p) = fj(fij(p)) for all i, j ∈ I. Then the function f̃ :

⋃

F
Mi → R

defined by [p, i] 7→ fi(p) is a member of C∞(
⋃

F
Mi).

5.2 Vector Bundles Over Adjoined Manifolds

In this section we will discuss the nature of vector bundles over an adjoined
manifold

⋃

F
Mi. We will start by showing that given vector bundles Ei over

the Mi, we can glue these together to form an adjoined bundle
⋃

G
Ei over

⋃

F
Mi. Our approach is in some sense the obvious one – we will require

that the Ei are pairwise isomorphic on their restricted bundles Ei|Aij
, and

we will glue the Ei along these subbundles, making sure to keep the vector-
space structure of the fibres intact. Figure 5.1 depicts this intuition behind
an adjunction of vector bundles. Once we have verified that our construction
works, we will discuss the nature of the tangent bundle T (

⋃

F
Mi). We will

show that this is bundle-isomorphic to an adjunction of the bundles TMi.
Finally, we show that by starting with a vector bundle F over

⋃

F
Mi, it is

possible to reconstruct F from an adjunction of its pullback bundles φ∗
iF .

Throughout this section we will assume that
⋃

F
Mi is an adjoined manifold

as in Theorem 5.3.

M ∪f N

E ∪g F

π̃

Fig. 5.1: The intuition behind an adjunction of vector bundles E → M and
F → N .

5.2.1 Adjoining Vector Bundles

Suppose that we have a collection of vector bundles {(Ei, πi,Mi)}i∈I . We saw
in Section 6.1 that by requiring the regions Aij to be open submanifolds, and
the gluing maps fij to preserve the smooth structure of Aij , the adjunction
space

⋃

F
Mi became a smooth manifold in which the canonical maps φi act
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as open, smooth embeddings. We can repeat this “gluing maps preserve struc-
ture” mantra once again, and consider an adjunction system G = (E,B,g),
where:

• E consists of the rank-k bundles Ei,
• each Bij ⊆ Ei is equal to the restriction bundle Ei|Aij

, i.e. Bij = π−1
i (Aij),

and
• each gij : Bij → Ej is an injective bundle morphism covering fij , with

every gii equal to the identity map.

We will denote the adjunction space subordinate to G by
⋃

G
Ei, and we will

denote the canonical embeddings by χi : Ei →
⋃

G
Ei. We now confirm that

the objects above ensure that G is well-defined.

Lemma 5.6. The adjunction space
⋃

G
Ei is an adjoined manifold.

Proof. We have assumed that G is an adjunction system to begin with,3 so it
suffices to prove that conditions of Theorem 5.3 are satisfied. Clearly the first
condition is met, since all vector bundles are defined to be smooth manifolds.
The second condition follows from Lemma A.23 (and our assumption that the
Aij are open submanifolds of Mi). For the third condition, we can observe
that gij restricted to its image, namely gij | : Bij → Bji is a bijective bundle
morphism covering the diffeomorphism fij : Aij → Aji. Thus by Lemma A.25,
gij : Bij → Bji is a bundle-isomorphism. In particular, it is a diffeomorphism.
Since Bji is an open submanifold of Ej , and all open submanifold are embed-
ded submanifolds (see e.g. [20, Prop. 5.2]), it follows from Lemma A.12 that
gij : Bij → Ej is a smooth embedding of manifolds, as required. ⊓⊔

Now that we have verified that the adjunction space
⋃

G
Ei is a smooth

manifold, we can begin to describe its bundle structure. As a rough idea, we
would like to do this in such a way that the canonical maps χi : Ei →

⋃

G
Ei

become smooth bundle morphisms covering the φi. Our first step to achieving
this is to define an appropriate projection map π̃ :

⋃

G
Ei →

⋃

F
Mi. The

natural way to do this is to define π̃ in such a way that it behaves like the πi
on their respective bundles, that is, we would like to define π̃ in such a way
that the diagram

Ei
⋃

G
Ei

Mi

⋃

F
Mi

πi

χi

π̃

φi

commutes for each i. Since our manifolds Mi and our bundles Ei are glued
along pairwise isomorphic substructures, we also need π̃ to be consistent on
the overlaps, so that the following diagram commutes for each i and j.

3 For the reader unsatisfied by our choice to surmise that such adjunction systems
exist – don’t worry, we will see plenty of examples in the next two sections.
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Ei|Aij
Ei

Ej
⋃

G
Ei

Aij Mi

Mj

⋃

F
Mi

gij

πi

χi

χj

πj

fij

φi

φj

π̃

Now that we have fixed our intuitions, we can set about defining the pro-
jection map π̃. Recall that since

⋃

G
Ei is an adjunction space, its elements

are equivalence classes of the form

[u, i] = {(v, j) | gij(u) = v}.

As such, a natural definition for the projection map π̃ would be to map each
[u, i] to the element [πi(u), i] in

⋃

F
Mi. The following lemma confirms that

this map is a well-defined projection map.

Lemma 5.7. The map π̃ defined by π̃([u, i]) = [πi(u), i] is a smooth surjection
from

⋃

G
Ei to

⋃

F
Mi.

Proof. To see that the map π̃ is well-defined as a function, suppose that
there are two elements u ∈ Ei and v ∈ Ej such that [u, i] = [v, j], i.e. such
that gij(u) = v. Since we required that gij covers fij , the following diagram
commutes

Bij Bji

Aij Aji

πi

gij

πj

fij

that is, fij(πi(u)) = πj(v). Hence [πi(u), i] = [πj(v), j], from which it follows
that π̃([u, i]) = [πi(u), i] = [πj(v), j] = π̃([v, j]), and thus π̃ is a function. To
see that π̃ is a surjection, let [p, i] be an element of

⋃

F
Mi. We can pick any

element u in the fibre Ep, since then π̃([u, i]) = [πi(u), i] = [p, i] as required.
We now show that π̃ is smooth. Observe first that the restriction of π̃ to

the subspace χi(Ei) is equal to π̃|χi
= φi ◦πi ◦χ

−1
i . Since this is a composition

of smooth maps, it follows from Prop. A.7.2 that π̃ is smooth. ⊓⊔

Now that we have confirmed that π̃ is a projection map, we can discuss
the fibres of

⋃

G
Ei, i.e. the preimages π̃−1([p, i]). The following result confirms

that these fibres have a vector space structure.
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Lemma 5.8. The fibres π̃−1([p, i]) of
⋃

G
Ei are real-valued vector spaces of

dimension k.

Proof. The idea is fairly simple – for every p in Mi and every i ∈ I, we are
just going to transfer the structure from the fibres (Ei)p into π̃−1([p, i]). In
order to do this, we need to show that the canonical map χi is a fibrewise
bijection, since then we can use a standard argument to induce a vector-space
structure on π̃−1([p, i]).

We begin by showing that π̃−1([p, i]) is equal to the image of (Ei)p under
the canonical map χi, that is, we show

π̃−1([p, i]) = χi((Ei)p) := {[u, i] | u ∈ (Ei)p}.

Suppose that there is some element u in the fibre (Ei)p. Then π̃([u, i]) =
[πi(u), i] = [p, i], so χi((Ei)p) is a subset of π̃−1([p, i]). For the other direction,
suppose that we have some [v, j] ∈ π̃−1([p, i]). Then π̃([v, j]) = [πj(v), j] =
[p, i], so fij(p) = πj(v). Since p ∈ Aij , it follows that v ∈ Bji and thus there is
some gji(v) ∈ Bij , hence [gji(v), i] = [v, j]. By assumption gji is a bundle map,
so gji(v) ∈ (Ei)fji(πj(v)) = (Ei)fji◦(fij(p)) = (Ei)p. Thus [v, j] = [gji(v), i] ∈
χi ◦ (Ei)p as required.

Now that we have confirmed that χi(π
−1
i (p)) = π̃ ◦ φi(p), we can use

the fact that χi is a fibrewise bijection to transfer the vector space structure
of (Ei)p into the fibre π̃−1([p, i]). Suppose that we have two elements [u, j]
and [v, k] of π̃−1([p, i]). By the above argument, it must be the case that
[u, j] = [gji(u), i] and [v, k] = [gki(v), i]. We can then define the operations of
addition and scalar multiplication on π̃−1([p, i]) by:

[u, j] + [v, k] = [gji(u), i] + [gki(v), i] := [gji(u) + gki(v), i], and

r · [u, j] = r · [gji(u), i] := [r · gji(u), i].

where we have used the g·· maps to shift the representative of the equivalence
classes [u, j] and [v, k] to the element coming from (Ei)p.

4 It should also be
noted that the maps g·· ensure that the operations are well-defined, and stay
within the fibre π̃−1([p, i]). Indeed, if for example [u, j] = [w, l], i.e. glj(w) = u,
then

4 This is not that necessary to do, since there are other representations, for instance

[u, j] + [v, k] = [gji(u) + gki(v), i]

= [gij(gji(u) + gki(v)), j]

= [gij ◦ gji(u) + gij ◦ gki(v), j]

= [u+ gkj(v), j]

and similarly [u, j] + [v, k] = [gkj(u) + v, k] and r · [u, j] = [r · u, j].
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[w, l] + [v, k] = [w + gkl(v), l]

= [glj(w + gkl(v)), j]

= [glj(w) + glj ◦ gkl(v), j]

= [u, gkj(v), j]

and similarly:

r · [w, l] = [r · gli(w), i] = [r · gji ◦ glj(w), i] = [r · gji(u), i] = r · [u, j].

This argument can be reproduced for whenever [v, k] contains more than two
members. Thus these operations of addition and scalar multiplication are well-
defined as functions. It should also be clear that the vector space axioms are
satisfied, though this is cumbersome to prove, so we will omit this part of the
proof. ⊓⊔

The previous two results confirm that the adjoined manifold
⋃

G
Ei satisfies

the first few conditions of Def.A.13. The following result confirms that the
space

⋃

F
Ei is locally-trivialisable, from which we may .

Lemma 5.9. The space
⋃

G
Ei is locally-trivialisable.

Proof. The proof of this lemma is similar in spirit to Lemma 5.1 in that we
will show that local trivialisations of the Ei can be tranferred into

⋃

G
Ei.

Let [p, i] be an arbitrary member of
⋃

F
Mi. Since p ∈ Mi and Ei is a vector

bundle over Mi, we can pick a local trivialisation (U,Φ) of Ei at p.
We now show that φi(U) induces a local trivialisation of

⋃

G
Ei. Observe

first that since φi is a diffeomorphism from Mi to φi(M), it follows from A.7.3
that the restriction of φi to U is a diffeomorphism onto its image, i.e. U and
φi(U) are diffeomorphic. As such, we can define a map ζ : U×Rk → φi(U)×Rk

by ζ(p, r) = (φi(u), r), that is, componentwise, ζ is equal to (φi, id). Since the
components of this map are smooth, we can use Prop. A.8.4 to conclude that
ζ is smooth. Moreover, ζ has an inverse map given by ζ−1 = (φ−1

i , id), and
again this is manifestly smooth. Thus φi(U) ×Rk is diffeomorphic to U ×Rk.
We will now define Ψ : π̃−1(φi(U)) → φi(U) × Rk in such a way that the
following diagram commutes.

U × Rk π−1
i (U) π̃−1(φi(U)) φi(U) × Rk

U U φi(U) φi(U)

p1

ζ

Φ χi

πi π̃

Ψ

p1

φiid id
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We define Ψ = ζ ◦ Φ ◦ χ−1
i . This is clearly well-defined, and is a composi-

tion of diffeomorphisms, so is also a diffeomorphism. It follows that the tuple
(φi(U), Ψ) acts as a local trivialisation for

⋃

G
Ei at the point [p, i]. Since we

chose [p, i] arbitrarily, it follows that
⋃

G
Ei is locally-trivialisable. ⊓⊔

The following theorem is a summary of the results covered thus far.

Theorem 5.10. Let (Ei, πi,Mi) be a collection of vector bundles, F an ad-
junction system as in Theorem5.3, and G = (E,B, g) an adjunction system
where additionally:

1. E consists of the bundles Ei,
2. each Bij is equal to the restriction bundle Ei|Aij

, and
3. each gij : Bij → Bji is a bundle isomorphism covering fij.

Then the space
⋃

G
Ei forms a smooth generalised vector bundle over the space

⋃

F
Mi in which the canonical maps χi : Ei →

⋃

G
Ei are bundle morphisms

and open, smooth embeddings.

Proof. We know from Lemmas 5.6, 5.7, 5.8 and 5.9 that
⋃

G
Ei is a vector

bundle over
⋃

F
Mi. It also follows from our construction that χi is a bundle

map covering φi – the remarks above Lemma 5.7 confirms that χi covers φi,
Lemma 5.6 confirms that χi is smooth, and the construction of the fibres as
in the proof of Lemma 5.8 confirms that χi is a fibrewise linear map. ⊓⊔

We will now show that bundles such as
⋃

G
Ei possess a certain universal

property.

Lemma 5.11. Let Ei be vector bundles over Mi and F be a vector bundle over
⋃

F
Mi. If ψi : Ei → F is a collection of vector-bundle morphisms covering φi,

such that ψi(u) = ψj(gij(u)) for every i, j ∈ I, then there is a unique bundle
morphism ξ :

⋃

G
Ei → F .

Proof. We define the map ξ :
⋃

G
Ei → F by [u, i] 7→ ψi(u). This is well-

defined, since [u, i] = [v, j] implies that gij(u) = v and thus ξ([u, i]) = ψi(u) =
ψj(gij(u)) = ψj(v) = ξ([v, j]). We now show that ξ is smooth. Consider some
element [u, i] of

⋃

G
Ei, and its image ψi(u). Since

⋃

G
Ei has its smooth struc-

ture induced from the smooth structures of the Ei, without loss of generality
we can pick a chart (χi(U), ϕ ◦ χ−1

i ) of
⋃

G
Ei at [u, i], where (U,ϕ) forms a

chart for Ei at u. We then let (V, ψ) be any chart of F at ψi(u). The local
representation of ξ is then:

ψ ◦ ξ ◦ (ϕ ◦χ−1
i )−1 = ψ ◦ ξ ◦χi ◦ϕ−1 = ψ ◦ (ψi ◦χ−1

i ) ◦χi ◦ϕ−1 = ψ ◦ψi ◦ϕ−1

which is smooth, since we assumed ψi is smooth. We now show that ξ is
fibrewise linear. Consider the fibrewise restriction ξ| :

(
⋃

G
Ei
)

[u,i]
→ Fψi(u).

Recall that ξ = ψi ◦ χ−1
i , so it follows from our assumption and Theorem

5.10 that the restriction ξ| is the composition of linear maps, so is also linear.
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Our proof is complete by showing that ξ covers the identity map on
⋃

F
Mi.

Fortunately, this follows from our assumption that ψi covers φi. Indeed:

πF ◦ ξ([u, i]) = πF (ψi(u)) since ξ = ψi ◦ χ−1
i

= φi ◦ πi(u) since ψi covers φi

= π̃ ◦ χi(u) since χi covers φi

= π̃([u, i]).

We have shown that ξ is a smooth, fibrewise-linear map from
⋃

G
Ei to

⋃

F
Mi

that commutes with the identity map on
⋃

F
Mi, i.e. ξ is a bundle morphism

as required. We note that uniqueness follows from an argument that is near-
identical to that found in 6.7. ⊓⊔

A corollary of Theorem 5.10 is that the restriction of the bundle
⋃

G
Ei to

the subspace φi(Mi) is naturally bundle-isomorphic to Ei. Similarly, we also
make the following observation.

Lemma 5.12. Ei is bundle-isomorphic to the pullback bundle φ∗
i

(
⋃

G
Ei
)

for
all i ∈ I.

Proof. We know from Section 5.2.4 that the bundle morphism χi : Ei →
⋃

G
Ei has to factor through the pullback bundle φ∗

i

(
⋃

G
Ei
)

, that is, there is

some bundle morphism ξ : Ei → φ∗
i

(
⋃

G
Ei
)

that makes the following diagram
commute.

Ei φ∗
i

(
⋃

G
Ei
)

⋃

G
Ei

Mi Mi

⋃

F
Mi

ξ

χi

πi p1

p2

π̃

φi

Recall that ξ sends each u in Ei to (πi(u), χi(u)). The map ξ is a smooth
bundle morphism with inverse given by ξ−1 = χ−1

i ◦ p2. Thus we can apply
Lemma A.17 to conclude that ξ is a bundle isomorphism. ⊓⊔

We will finish this section with a useful lemma regarding the sections of
an adjoined bundle.

Lemma 5.13. Let {si | si ∈ Γ (Ei)} be a collection of sections such that the
diagram

Bij Bji

Aij Aji

gij

si

fij

sj
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commutes for each i and j. Then the map s̃ :
⋃

F
Mi →

⋃

G
Ei defined by

s̃([p, i]) = [si(p), i] is a section of
⋃

G
Ei.

Proof. We first show that s̃ is well-defined as a function. Suppose that [p, i]
is an element of

⋃

G
Ei, and consider [fij(p), j]. Then

s̃([fij(p), j]) = [sj ◦ fij(p), j] = [gij ◦ si(p), j] = [si(p), i] = s̃([p, i])

as required. We now show that s̃ is smooth. To do this, we can use Prop.A.7.2,
and show that every point has an open neighbourhood on which s̃ is smooth.
This is fairly simple: for [p, i] in

⋃

F
Mi, we can pick the neighbourhood

φi(Mi), and observe that s̃|φi(Mi)) = χi ◦ si ◦ φ−1
i , which is a composition

of smooth maps. We complete the proof by showing that s̃ is actually a
right-inverse of π̃. Let [p, i] be a point in

⋃

F
Mi, and consider π̃(s̃([p, i])) =

π̃([si(p), i]). It follows from the definition of π̃ that π̃([si(p), i]) = [πi(si(p)), i],
and since we assumed that si is a section of Ei, we may conclude that
[πi ◦ si(p), i] = [p, i]. ⊓⊔

5.2.2 The Tangent Bundle of an Adjoined Manifold

We will now show that given an adjoined manifold
⋃

F
Mi as in Theorem

5.3, the tangent bundles TMi can be adjoined, and moreover the resulting
space is always isomorphic to the tangent bundle of T (

⋃

F
Mi). To do this,

we will form an adjoined bundle as in the previous section, and then exploit
the universal property of such a bundle to obtain an isomorphism. To begin
with, consider the tuple G = (E,B,g), where:

• each Ei is equal to the tangent bundle TMi,
• each Bij is equal to the restricted bundle TMi|Aij

, and
• each gij is equal to the differential dfij .

The following result confirms that first and foremost, the tuple G induces an
adjoined bundle.

Lemma 5.14. The tuple G described above is an adjunction system that sat-
isfies the criteria of Theorem 5.10.

Proof. It is fairly straightforward to see that G is an adjunction system: con-
dition A1 is trivial, and conditions A2 and A3 follow from the basic facts
about differentials (as in Prop. A.10). Indeed, for A2 we have:

g−1
ij = (dfij)

−1 = d(f−1
ij ) = dfji = gji,

and for A3 we have:

gik = dfik = d(fjk ◦ fij) = dfjk ◦ dfij = gjk ◦ gij .

As for the conditions of Theorem 5.10, observe that the first two are triv-
ially met by construction. So, it suffices to show that each gij is a bundle
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isomorphism covering fij . Since we have assumed that F satisfies the condi-
tions of Theorem 5.3, each fij is a smooth embedding from Aij into Xj . Thus
by Lemma A.12, fij is a diffeomorphism onto its image, i.e. Aij is diffeo-
morphic to fij(Aij) = Aji. It follows from Lemma A.18 that the differential
dfij : TAij → TAji is a bundle isomorphism covering fij . Moreover, since
each Aij is an open submanifold, we can use Lemma A.24 and its subsequent
remarks to make the identification TAij = TMi|Aij

, and thus dfij is also a
bundle morphism from Bij to Bji. ⊓⊔

Now that we have confirmed that
⋃

G
TMi is a well-defined adjoined bundle

over
⋃

F
Mi, we can prove our desired result.

Theorem 5.15. The bundles T (
⋃

F
Mi) and

⋃

G
TMi are isomorphic.

Proof. We would like to use the universal property of
⋃

G
TMi. In order to do

so, we need a collection of bundle maps from the bundles TMi to T (
⋃

F
Mi)

that commute on their overlaps. We claim that the differential maps dφi are
suitable candidates.

Since φi : Mi →
⋃

F
Mi is smooth, it follows from Lemma A.18 that the

differential dφi is a bundle morphism covering φi. It also follows from Prop.
A.18 that

dφi = d(φj ◦ fij) = dφj ◦ dfij = dφj ◦ gij

and thus the maps dφi commute on overlaps. We may then apply Lemma 5.11
to conclude that there is some bundle morphism ξ :

⋃

G
TMi → T (

⋃

F
Mi).

We will now show that the map ξ is a bijection. Before we do this, observe
that by definition, the map ξ sends [(p, u), i] to ([p, i], (dφi)p(u)).

To see that ξ is injective, let [(p, u), i] and [(q, v), j] be two elements of
⋃

G
TMi such that

ξ([(p, u), i]) = ([p, i], (dφi)p(u)) = ([q, j], (dφj)q(v)) = ξ([(q, v), j]).

It follows immediately that [p, i] = [q, j] (i.e. fij(p) = q) and (dφi)p(u) =
(dφj)q(v). Using the various properties of the pointwise differential (as in
Prop. A.10), we have that

(dfij)p(u) = d(φ−1
j ◦ φi)p(u)

= (dφ−1
j )φi(p) ◦ (dφi)p(u)

= (dφ−1
j )φj(q) ◦ (dφj)q(v)

= d(φ−1
j ◦ φj)q(v)

= d(idMj
)q(v)

= v.

It then follows that gij(p, u) = (fij(p), (dfij)p(u)) = (q, v), and thus [(p, u), i] =
[(q, v), j] as required.
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To show surjectivity, suppose that we have some element of the tangent
bundle T (

⋃

F
Mi). Whatever this element is, it must be of the form ([p, i], u)

for some p ∈ Mi. We claim the element [(p, (dφ−1
i )φi(p)(u)), i] maps to ([p, i], u)

under ξ. Observe first that this element is a well-defined member of
⋃

G
TMi

– since φi is a diffeomorphism, the differential map (dφi)p is a bijective linear
map (see Lemma A.10), so it has a well-defined inverse

(dφ−1
i )φi(p) : Tφi(p)

(

⋃

F

Mi

)

→ TpMi.

As such, the element u maps to (dφ−1
i )φi(p)(u) in TpMi, and consequently the

element [(p, (dφ−1
i )φi(p)(u)), i] exists as a member of

⋃

G
TMi. It then follows

from Lemma A.10 that

ξ
([

(p, (dφ−1
i )φi(p)(u)), i

])

=
(

[p, i], (dφi)p ◦ (dφ−1
i )φi(p)(u)

)

=
(

[p, i], d(φi ◦ φ−1
i )φi(p)(u)

)

=
(

[p, i], d(id)φi(p)(u)
)

= ([p, i], u)

and thus we may conclude that ξ is surjective. Now that we have show that
ξ is a bijective bundle morphism, the result then follows from an application
of Lemma A.17. ⊓⊔

5.2.3 Canonicity of Adjoined Bundles

We saw in the form of Lemma 5.12 that the pullback of an adjoined bundle
⋃

G
Ei along the canonical map φi is isomorphic to Ei. We will now work in

the opposite direction, and show that any vector bundle F over
⋃

F
Mi can be

expressed as an appropriate adjunction of its pullback bundles φ∗
iF . In order

to do this, we will need the adjunction system H = (F,D,h), where:

• F consists of the pullback bundles φ∗
iF ,

• each Dij is the restriction of the pullback to Aij , i.e. Dij := (φ∗
iF )|Aij

=

p−1
1 (Aij), and

• each hij : Dij → Dji is the map defined by (p, u) 7→ (fij(p), u).

The reasoning behind the definition of H is that we would like the diagram
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(φ∗
iF )|Aij

φ∗
iF

φ∗
jF

⋃

H
φ∗
iF

Aij Mi

Mj

⋃

F
Mi

hij

pi
2

p
j

2

fij

φi

φj

to commute for every i and j. Our first task is to show that H is well-defined.

Lemma 5.16. The tuple H defines an adjunction system.

Proof. It follows from the definition of the pullback bundle, and the fact that
πF (u) = [p, i] = [fij(p), j] that the hij are injective functions. It should also
be clear condition A1 is met, since Dii = π−1

i (Aii) = π−1
i (Mi) = φ∗

iF , and
each hii acts as the identity map, since fii = idMi

. We also have that

hij(Dij) = {(fij(p), u) | p ∈ Dij} = {(q, u) | q ∈ fij(Aij) = Aji} = Dji

and that hji ◦ hij(p, u) = hji(fij(p), u) = (fji ◦ fij(p), u) = (p, u), and conse-
quently h−1

ij = hji. Thus condition A2 is also satisfied. To see that condition
A3 is met, let (p, u) ∈ Dij ∩Dik. Then:

hik(p, u) = (fik(p), u) = (fjk ◦ fij(p), u) = hjk(fij(p), u) = hjk ◦ hij(p, u)

as required. ⊓⊔

A corollary of the above result is that the adjunction space
⋃

H
φ∗
iF is

a well-defined topological space. The next lemma confirms that the space
⋃

H
φ∗
iF is an adjoined bundle.

Lemma 5.17. The space
⋃

H
φ∗
iF is an adjoined bundle over

⋃

F
Mi.

Proof. We would like to show that H satisfies the conditions of Theorem 5.10.
Of course, the first two conditions of are met by construction, so it suffices to
show that each hij is a bundle isomorphism covering fij .

We first show that hij is smooth. It is always possible to find a local
representation of hij that has component functions fij and idRk .5 Of course

5 Indeed, for any p in Aij we can let (U,Φ) be a local trivialisation of F at [p, i] =
[fij(p), j]. We can then use the local trivialisation Ψi : π−1

i (φ−1
i (U)) → φ−1

i (U) ×
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these are both smooth and local trivialisations are equipped with the product-
manifold structure, so we can use A.8 to conclude that hij is smooth. Since
h−1
ij = hji, it follows that each hij is a diffeomorphism from Dij to Dji. We

finish the proof by showing that hij is a fibrewise linear map. Fix some point
p in Mi, and let (p, u) and (p, v) be elements of the fibre (φ∗

iF )|p. It follows
from the definition of the fibres of the pullback bundle (as in Def.A.21) that:

hij(p, u+ v) = (fij(p), u+ v) = (fij(p), u) + (fij(p), v) = hij(p, u) + hij(p, v)

and
hij(p, ru) = (fij(p), ru) = r(fij(p), u) = rhij(p, u)

as required. It should be clear that hij covers fij , since fij ◦p1(p, u) = fij(p) =
p1(fij(p), u) = p1 ◦ hij(p, u).

We have shown that each hij is a diffeomorphism that is fibrewise linear,
and covers fij , i.e. hij is a bundle isomorphism from Dij to Dji. We can thus
apply Theorem 5.10 to conclude that the adjunction space

⋃

G
φ∗
iF is a well-

defined vector bundle over
⋃

F
Mi in which the canonical maps ψi are open,

smooth embeddings, and are also bundle morphisms covering the fij . ⊓⊔

We finish this chapter with the result that all vector bundles over an
adjoined manifold are isomorphic to an adjoined bundle.

Theorem 5.18. Let F be a vector bundle over
⋃

F
Mi. Then F is isomorphic

to the adjunction bundle
⋃

H
φ∗
i (F ).

Proof. The proof of this result revolves around the fact that the adjunction
bundle possesses a certain universal property (see Lemma 5.11). We know from
Def.A.21 that for each pullback bundle φ∗

iF , the projection map pi2 : φ∗
iF → F

acts as a bundle morphism covering φi. Moreover, for any p ∈ Aij it is also

the case that pi2(p, u) = u = pj2(fij(p), u) = pj2 ◦ hij(p, u). Hence we can
apply Lemma 5.11 to conclude that there is some (unique) bundle morphism
ξ :
⋃

H
φ∗
iF → F .

In the proof of Lemma 5.11 we saw that this map is described by
[(p, u), i] 7→ pi2(p, u), that is, ξ = pi2 ◦ψ−1

i . We already know that the map ξ is
a bundle morphism, i.e. it is smooth, fibrewise linear, and covers the identity
map on

⋃

F
Mi, so the proof is complete once we show that ξ is bijective.

To see that ξ is injective, suppose that we have two distinct elements
[(p, u), i] and [(q, v), j] of

⋃

G
φ∗
iF , where ξ([(p, u), i]) = u and ξ([(q, v), j]) = v.

Suppose towards a contradiction that u = v. Since both elements are distinct,

Rk of Dij at p given by (q, u) 7→ (q, p2 ◦ Φ(u)), and we can similarly define Ψj

as a local trivialisation for Dji at fij(p). The representation of hij in these local
triviliasations is given by

Ψj ◦ hij ◦ Ψ−1
i (q, r) = Ψj ◦ hij(q, u) = Ψj(fij(q), u) = (fij(q), r).
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it must be the case that hij(p, u) = (fij(p), u) 6= (q, v) = (q, u). By definition,
this means that fij(p) 6= q, and thus [p, i] 6= [q, j]. Since we assumed u = v,
we have that πF (u) = [p, i] and πF (u) = [q, j], which contradicts πF as a
function. Thus u 6= v, from which it follows that ξ is injective. To see that
ξ is surjective, let u be some element of F . Then u lies in some fibre F[p,i]

where p ∈ Mi. Then the element [(p, u), i] is mapped to u under ξ. Thus ξ
is bijective. We can then apply Lemma A.17 to conclude that ξ is a bundle
isomorphism from

⋃

H
φ∗
iF to F . ⊓⊔



6

The Lorentzian Structure of Branching

Spacetimes

In the previous chapter we identified conditions under which a collection of
smooth Hausdorff manifolds Mi may be glued together to form an adjoined
manifold

⋃

F
Mi. We also saw that a collection of objects (e.g. functions,

sections of bundles) defined on theMi could be transferred to
⋃

F
Mi, provided

that the fij preserved the structure of the objects. In this chapter, we will
apply these ideas in the situation that each Mi is a spacetime. A notable
result, listed as Theorem 6.6, identifies conditions under which a collection of
spacetimes (Mi, gi) can glued together to form an adjoined spacetime.

In Section 7.2, we apply all of the theory outlined in Part 2 spaces (in
particular, Theorem 6.6) to the Minkowskian BSTs of Part 1. The approach
is similar to that outlined in Section 4.3, however now we will express the
construction of MBSTs at the level of the metric structure. We will see that
the MBSTs can be expressed as an adjoined spacetime, and moreover this
extra mathematical structure meets all the criteria for a natural extension of
the order-theoretic BST92* structure.

Finally, we will generalise this approach to the case of arbitrary spacetimes.
We will define a new class of adjoined spacetimes called Lorentzian Branching
Spacetimes, which are constructed similarly to MBST. Drawing inspiration
from the fact that spacetimes are locally-Minkowskian, we will show that
Lorentzian BSTs are locally isometric to MBSTs.

6.1 Constructing Adjoined Spacetimes

We will now show that under some conditions, spacetimes in the sense of
Definition A.32 can be naturally adjoined. Throughout this section, we will
fix a collection of spacetimes (Mi, gi) and an adjunction system F such that
the space

⋃

F
Mi is an adjoined manifold as in Theorem 5.3. We will also

assume that each Aij is non-empty, since we can then apply Lemma 3.15
conclude that

⋃

F
Mi is connected.
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Given these assumptions, there are two things to do: we need to define a
Lorentzian metric on

⋃

F
Mi, and we need to define a time-orientation. We

will treat these tasks separately.

6.1.1 Defining a Lorentzian Metric

Recall that a Lorentzian metric on a manifold M is a section g of the tensor
bundle T 2(T ∗M) that is everywhere symmetric and non-degenerate, with sig-
nature (−,+, ...,+). In order to construct a Lorentzian metric on

⋃

F
Mi we

first need to describe the bundle T 2(T ∗
⋃

F
Mi). In the same spirit as The-

orem 5.15, we will show that the bundle T 2(T ∗
⋃

F
Mi) is isomorphic to an

adjunction of the bundles T 2(T ∗Mi).

To begin with, consider the tuple G = (E,B,g), where:

• each Ei is equal to the bundle T 2(T ∗Mi),
• each Bij is equal to the restricted bundle (T 2(T ∗Mi))|Aij

, and
• each gij is the map sending (p, α) to (fij(p), (fij)∗α), where (fij)∗α is the

pushforward of α along fij defined as in Section 5.2.3.

Observe the similarity between this system and the system defined in Sec-
tion 6.2.2. In fact, lots of the following results follow the same conceptual
framework as our discussion of adjoined tangent bundles. Our next result is
an analogue of Lemma 5.14.

Lemma 6.1. The tuple G defined above is an adjunction system that satisfies
the conditions of Theorem 5.10.

Proof. That G is an adjunction system follows routinely from the basic
facts of pointwise pushforwards and pullbacks – condition A1 follows from
Prop.A.19.1, condition A2 follows from Prop.A.19.2, and condition A3 fol-
lows from Prop.A.19.4.

By construction, G satisfies the first two conditions of Thm. 6.REF. To
see that the third condition is met, observe that the definition of the gij
is essentially the same as the map used in Lemma A.20. We can use the
same arguments found there to conclude that the gij are bundle isomorphisms
covering the maps fij . ⊓⊔

The above result, together with Theorem 5.10, confirms that
⋃

G
T 2(T ∗Mi) is

an adjoined bundle over
⋃

F
Mi. We will now show that this adjoined bundle

is isomorphic to the bundle of bilinear forms on the adjoined manifold
⋃

F
Mi.

Theorem 6.2. The bundles
⋃

G
T 2(T ∗Mi) and T 2(T ∗

⋃

F
Mi) are isomor-

phic.
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Proof. Consider the maps ψi : T 2(T ∗Mi) → T 2(T ∗
⋃

F
Mi) defined by

ψi(p, α) = ([p, i], (φi)∗α). It should be clear that these maps are well-defined
– by Thm. 5.3 the canonical maps φi are smooth embeddings, thus they are
diffeomorphic onto their images. Moreover, we can use the same argument as
in Lemma A.20 to conclude that the ψi are bundle morphisms covering the
φi. We now show that ψi = ψj ◦gij where defined. Suppose that (p, α) is some
element of T 2(T ∗Aij). Then:

ψj ◦ gij(p, α) = ψj(fij(p), (fij)∗α)

= ([fij(p), j], (φj)∗ ◦ (fij)∗α)

= ([fij(p), j], (φj ◦ fij)∗α)

= ([p, i], (φi)∗α)

where the third equality follows from Prop. A.19.4. We can then use Lemma
5.11 to conclude that there is some smooth bundle morphism

ξ :
⋃

G

T 2(T ∗Mi) → T 2(T ∗
⋃

F

Mi),where ξ([(p, α), i]) = ([p, i], (φi)∗α).

We will now show that ξ is bijective. For injectivity, suppose that we have two
distinct elements [(p, α), i] and [(q, β), j] of the adjoined bundle

⋃

G
T 2(T ∗Mi).

Then gij(p, α) = (fij(p), (fij)∗α) 6= (q, β). In the case that fij(p) 6= q, i.e.
[p, i] 6= [q, j], we immediately have that

ξ([(p, α), i]) = ([p, i], (φi)∗α) 6= ([q, j], (φj)∗β) = ξ([(q, α), j]).

So, suppose that fij(p) = q. Thus it must be the case that (fij)∗α 6= β. Then
gij(p, alpha) = (fij(p), (fij)∗(α)) = (q, (fij)∗(α). So, in order for [(p, α), i]
and [(q, β), j] to be distinct, it must be the case that (fij)∗(α) 6= β. This
means that there are elements v, w in TqMj such that (fij)∗α(v, w) 6= β(v, w).
Since fij is a diffeomorphism, by Prop. A.10.4 the differential (dfij)p is a
bijective map from TpMi to TqMj . Thus the elements v and w are of the form
v = (dfij)p(v

′) and w = (dfij)p(w
′), where v′ and w′ are elements of TpMi.

Consider now the elements (dφi)p(v
′) and (dφi)p(w

′) in the tangent space
T[p,i]

⋃

F
Mi. Then:

(φi)∗α ((dφi)p(v
′), (dφi)p(w

′)) = α(v′, w′)

= (fij)∗α((dfij)p(v
′), (dfij)p(w

′))

6= β ((dfij)p(v
′), (dfij)p(w

′))

= (φj)∗β ((dφj)q ◦ (dfij)p(v
′), (dφj)q ◦ (dfij)p(w

′))

= (φj)∗β (d(φj ◦ fij)p(v), d(φj ◦ fij)p(w))

= (φj)∗β ((dφi)p(v), (dφi)p(w))

that is, (φi)∗α 6= (φj)∗β. Again we have that ξ([(p, α), i]) 6= ξ([(q, α), j]), from
which we may conclude that ξ is indeed injective.
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To see that ξ is surjective, suppose that we have some element ([p, i], α) in
the bundle T 2(T ∗

⋃

F
Mi). Consider the element [(p, φ∗

iα), i] in the adjoined
bundle

⋃

G
T 2(T ∗Mi). It is not hard to see that ξ will map this element to

([p, i], α). Indeed, we have:

ξ([(p, φ∗
iα), i]) = ([p, i], (φi)∗(φ∗

iα)) = ([p, i], α)

where the final equality follows from Prop. A.19.2. We may then conclude
that ξ is surjective. The result then follows from an application of Lemma
A.17. ⊓⊔

Now that we have a nice description of the bundle of bilinear forms on
⋃

F
Mi, we can transfer the Lorentzian metrics of each Mi. Of course, this

can not be done arbitrarily – we need to make the assumption that the gi are
compatible on their overlaps. The following theorem says that if this assump-
tion is made, then the Lorentzian metrics of the spacetimes Mi can be pushed
into

⋃

F
Mi.

Theorem 6.3. Suppose that each Mi is equipped with a Lorentzian metric gi,
and each fij is an isometric embedding. Then there is a well-defined Loren-
ztian metric g̃ on

⋃

F
Mi that turns the canonical maps φi into isometric

embeddings.

Proof. Since each fij is an isometry, we have that gj ◦ fij = gij ◦ gi, that is,
the diagram

T 2(T ∗Aij) T 2(T ∗Aji)

Aij Aji

gij

fij

gi gj

commutes. Thus we can apply Lemma 5.13 to define a section ĝ of the adjoined
bundle

⋃

G
T 2(T ∗Mi), where in this case ĝ maps each [p, i] to [gi(p), i]. By the

previous result, the adjoined bundle
⋃

G
T 2(T ∗Mi) is isomorphic to the bundle

T 2(T ∗
⋃

F
Mi) under the mapping ξ. We can then use xi to push the section

ĝ forward to T 2(T ∗
⋃

F
Mi), by defining the map g̃ := ξ ◦ ĝ. We now show

that this new section g̃ is a well-defined Lorentzian metric on
⋃

F
Mi. Clearly

g̃ is a smooth section – it is smooth since both ĝ and ξ are smooth, and it is
the case that π ◦ ξ ◦ ĝ = π̃ ◦ ĝ = id since ξ covers the identity map on

⋃

F
Mi

and ĝ is section of
⋃

G
T 2(T ∗Mi).

To see that g̃ is everywhere symmetric and non-degenerate, let [p, i] be
arbitrary and consider two tangent vectors v, w in T[p,i]

⋃

F
Mi. By the results

of Prop. A.10, we know that the differential (dφi)p is a bijective linear map
from TpMi to the fibre T[p,i]

⋃

F
Mi. Thus there are two unique elements v′, w′
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in TpMi such that v = (dφi)p(v
′) and w = (dφi)p(w). Moreover, by definition

we have that:

g̃([p, i]) = ξ ◦ ĝ([p, i]) = ξ([(p, gi(p)), i]) = ([p, i], (φi)∗(gi(p))) (∗)

where (φi)∗(gi(p))(v, w) = gi(p)(v
′, w′). Then:

(φi)∗(gi(p))(v, w) = gi(p)(v
′, w′) = gi(p)(w

′, v′) = (φi)∗(gi(p))(w, v)

and thus the bilinear form (φi)∗(gi(p)) is symmetric. To see that g̃ is also
non-degenerate, suppose now that v is an element of T[p,i]

⋃

F
Mi such that

(φi)∗(gi(p))(v, w) = 0 for all w in the same fibre. Then v′ ∈ TpMi will have
the same property. Indeed, for any w′ ∈ TpMi, we would have that:

gi(p)(v
′, w′) = (φi)∗(gi(p))(v, w) = 0.

Since gi is non-degenerate, this can only be the case iff v′ is equal to the zero
element of TpMi. Since the pointwise differential (dφi)p is a linear map, it
follows that v = (dφi)p(v

′) = (dφi)p(0) = 0 as required. We now show that g̃
turns the φi into isometric embeddings. Of course, by Theorem 5.3 we know
that the φi are smooth embeddings, so it suffices to show that

gi(v, w) = g̃((dφi)p(v), (dφi)p(w))

for all v, w in TpMi. However, this is precisely how we defined g̃ := ξ ◦ ĝ,
as seen in the expression (∗). Thus the φi are isometric embeddings. Since
isometries preserve the signature of a metric (see Prop. A.28), it follows that
the signature of g̃ is equal to the signature of each gi, and thus g̃ is a Lorentzian
metric. ⊓⊔

6.1.2 Defining a Time-Orientation

Now that we have shown that our adjoined manifold
⋃

F
Mi has well-defined

Lorentzian metric g̃, we can discuss time-orientations. Again, it is not the
case in general that every collection τi of time-orientations can induce a time-
orientation on

⋃

F
Mi. However, if we assert that the τi are pairwise compat-

ible, then we obtain the following result.

Lemma 6.4. If the fij preserve time-orientations, then there is a time-
orientation τ̃ on

⋃

F
Mi such that the φi preserve time-orientations.

Proof. Recall that fij preserves time-orientations whenever dfij(τi(p)) =
τj(fij(p)) for every p in Aij . We define the time orientation τ̃ by τ̃([p, i]) =
dφi(τi(p)). Observe first that this is well-defined, since whenever [fij(p), j] =
[p, i], we have that

dφj(τj(fij(p))) = dφj ◦ dfij(τi(p)) = d(φj ◦ fij)(τi(p)) = dφi(τi(p)).
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We now check that τ̃ is smooth, i.e. we check that for every point in
⋃

F
Mi

there is an open neighbourhood and a locally-defined vector field that agrees
with τ̃ . So, let [p, i] be a point in

⋃

F
Mi, and consider p in Mi. By assumption

the time-orientation τi on Mi is smooth, so there is some open neighbourhood
U of p and a vector field XU on U such that for each p′ in U , it is the case that
XU (p′) ∈ τi(p). Consider now the subset φi(U), which is an open neighbour-
hood of [p, i] (since φi is an open map). Since φi is a smooth embedding, in
particular it is a diffeomorphism onto φi(Mi) and thus by Lemma A.9 it is a
diffeomorphism once restricted to U . Thus we can pushforward the vector field
XU along φi to obtain the vector field (φi)∗XU . Recall that the pushforward
of a vector field along a diffeomorphism is defined to be:

(φi)∗XU ([p′, i]) := dφi ◦XU (φ−1
i ([p′, i])) = dφi ◦XU (p′).

We now show that this vector field will suffice to witness the smoothness
of τ̃ at [p, i]. Consider some element [q, j] of φi(U). Since φi(U) ⊆ φi(Mi),
it must be the case that [q, j] = [fij(p

′), j] = [p′, i] for some p′ ∈ Aij ∩
U . Then τ̃([p′, i]) = dφi(τi(p

′)). It follows from the definition of (φi)∗XU

that (φi)∗XU ([p′, i]) = dφi ◦ XU (p′). By assumption XU (p′) ∈ τi(p
′), thus

dφi ◦ XU (p′) ∈ dφi(τi(p
′)) = τ̃([p′, i]), and we may conclude that τ̃ is indeed

smooth. Observe that the canonical maps φi preserve time-orientations follows
immediately from the construction of τ̃ . ⊓⊔

We suggested in Section 5.3.3 that when a spacetime is non-Hausdorff, it
may not be the case that the two definitions of a time-orientation coincide.
As such, we cannot conclude from the above result that the existence of a
time-oreintation τ̃ entails the existence of a globally-defined timelike vector
field. As a small aside, the following is a sufficient condition to guarantee the
existence of globally-defined timelike vector field on the adjoined manifold
⋃

F
Mi.

Lemma 6.5. Let {Xi} be a collection of globally-defined, timelike vector fields
for the Mi such that the diagram

TAij TAji

Aij Aji

dfij

Xi

fij

Xj

commutes for each i and j. Then (
⋃

F
Mi, g) has a globally-defined timelike

vector field.

Proof. By assumption, we can use Lemma 5.13 to define a section X̂ of the
bundle

⋃

G
TMi. By Thm.5.15, there is a bundle isomorphism Ψ :

⋃

G
TMi →
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T (
⋃

F
Mi). We define the vector field X̃ :

⋃

F
Mi → T (

⋃

F
Mi) to be X̃ :=

Ψ ◦ X̂. This means that

X̃([p, i]) = Ψ([(p,Xi), i]) = ([p, i], (dφi)p(Xi(p))).

It is not hard to see that this is indeed a globally-defined section of T (
⋃

F
Mi)

– the argument is similar to that of Thm.6.3. To see that X̃ is timelike,
suppose we have some [p, i] ∈

⋃

F
Mi, and consider X̃([p, i]) ∈ T[p,i]

⋃

F
Mi.

Then X̃([p, i]) = ([p, i], (dφi)p(Xi(p))). By definition of the Lorentzian metric
g̃, we have that

g̃[p,i]((dφi)p(Xi(p)), (dφi)p(Xi(p))) = (gi)p(Xi(p),Xi(p)).

which is timelike since we assumed that Xi is timelike on Mi. ⊓⊔

The next theorem is a summary of the results thus far.

Theorem 6.6. Let {(Mi, gi)} be a countable collection of Hausdorff space-
times, and F = (X,A, f) an adjunction system in which:

1. X consists of the spaces Mi,
2. each Aij is an open Lorentzian submanifold of Mi, and
3. each fij : Aij → Mj is an isometric embedding that preserves time-

orientation.

Then the adjunction space
⋃

F
Mi possesses a Lorentzian metric that makes

the canonical maps φi act as open, isometric embeddings that preserve time-
orientation.

Proof. We can use Theorem 6.3 to conclude that
⋃

F
Mi has a Lorentzian

metric, and we can use Lemma 6.4 to define a time-orientation τ̃ on
⋃

F
Mi

that makes every φi preserve time-orientations. ⊓⊔

We will refer to adjunction spaces satisfying the conditions of Theorem 6.6 as
adjoined spacetimes. We complete this section by showing that the adjoined
spacetime (

⋃

F
Mi, g̃) possesses a certain universal property.

Lemma 6.7. Let F be as in Theorem 6.6. Suppose that there are smooth
isometric embeddings ψi : Mi → N that commute on overlaps. Then there is
a unique isometric embedding from

⋃

F
Mi to N .

Proof. We know from Lemma 5.11 that there is at least a unique smooth
embedding ξ :

⋃

F
Mi → N where [p, i] 7→ ψi(p). To see that ξ is an isometry,

we need to show that g̃[p,i](v, w) = gNξ([p,i])((dξ)[p,i](v), (dξ)[p,i](w)), however
this follows from our assumption that each ψi is an isometric embedding.
Indeed:
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g̃[p,i](v, w) = (gi)p((dφ
−1
i )[p,i](v), (dφ−1

i )[p,i](w))

= (gN )ψ(p)((dψi)p ◦ (dφ−1
i )[p,i](v), (dψi)p ◦ (dφ−1

i )[p,i](w))

= (gN )ψ(p)(d(ψi ◦ φ−1
i )[p,i](v), d(ψi ◦ φ−1

i )[p,i](w))

= (gN )ξ([p,i])((dξ)[p,i](v), (dξ)[p,i](w))

Thus ξ is an isometric embedding from
⋃

F
Mi into N . ⊓⊔

6.1.3 Causal Properties of Adjoined Spacetimes

Given an adjoined spacetime (
⋃

F
Mi, g̃), we can associate a causal ordering

≤g, defined by: [p, i] ≤g̃ [q, j] iff there is a future directed, causal curve γ :
[0, 1] →

⋃

F
Mi such that γ(0) = [p, i] and γ(1) = [q, j]. Since the maps φi are

so well-behaved, it will be interesting to see whether the causal properties of
⋃

F
Mi are inherited from the Mi. In what follows we will denote by ≤i the

causal ordering of the ith spacetime (Mi, gi). Our first result shows that the
canonical maps φi are monotone with respect to the orderings ≤i and ≤g̃.

Lemma 6.8. Let p ≤i q in Mi. Then [p, i] ≤g̃ [q, i] in
⋃

F
Mi.

Proof. By Thm. 6.6, the canonical map φi is an isometric embedding that
is time-orientation preserving. The result then follows from an application of
Lemma A.34 and the observation that a causal curve in φi(Mi) is also a causal
curve in

⋃

F
Mi. ⊓⊔

At the very least, we have that the φi are order-preserving. We will now set
about proving a restricted dual to the above lemma. Specifically, we will show
that whenever the Aij are past-sets, then two elements [p, i] and [q, j] that
are ≤g̃-related must also be ≤j-related. Recall that a subset A of a spacetime
(M, g) is called a past-set if it is downwards-closed under ≤g (or equivalently,
if J−(A) = A). This will mean that the ordering ≤g̃ will have a downwards-
closure property similar to that of Prop. 1.12.1. Before we prove our restricted
converse to Lemma 6.8, we need a small result.

Lemma 6.9. Let γ : [0, 1] →
⋃

F
Mi be a future-directed causal curve such

that γ(1) = [p, i]. If each Aij is a past-set, then γ ⊂ φi(Mi).

Proof. Suppose towards a contradiction that γ 6⊂ φi(Mi). Since γ is a curve,
in particular it is continuous. Hence the preimages γ−1(φj(Mj)) are all open
subsets of [0, 1]. By our supposition the set γ−1(φi(Mi)) is an open, non-empty,
proper subset of [0, 1].

We would like to pick a (maximal) open set U ⊂ [0, 1] such that U ⊆
γ−1(φi(Mi)) and 1 ∈ U . This is done as follows:

U :=
⋃

{Uα | Uα := (aα, 1] ⊆ γ−1(φi(Mi))}
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This set is clearly open, and it is connected since it is the union of connected
subsets that are pairwise non-disjoint1. Since the set U is a connected, open
subset of [0, 1], it must2 be of the form U := (a, 1].

Consider now the element a ∈ [0, 1]. It should be clear that a /∈ γ−1(φi(Mi)).
Indeed, suppose towards a contradiction that a ∈ γ−1(φi(Mi)). Since the
set γ−1(φi(Mi)) is open and contains a, we can pick some open interval
(a − ǫ, a + ǫ) contained within γ−1(φi(Mi)). Then it would be the case that
(a − ǫ, a + ǫ) ∪ (a, 1] = (a − ǫ, 1] is a connected, open set contained within
γ−1(φi(Mi)), and thus a ∈ U = (a, 1], a contradiction. Thus a /∈ γ−1(φi(Mi)).
Denote by [y, j] the image of a under γ, i.e. γ(a) = [y, j].

Since a /∈ γ−1(φi(Mi)), it must be the case that [y, j] /∈ φi(Mi)∩φj(Mj) =
φj(Aji). Consider now the set γ−1(φj(Mj)), which is an open subset of [0, 1].
Since γ−1(φj(Mj)) is open and a lies in this set, it follows that there is some
open subset V of [0, 1] such that a ∈ V ⊆ γ−1(φj(Mj)). Without loss of
generality we can assume V is of the form (b1, b2).3 Pick any element c ∈
(b1, b2) ∩ (a, 1]. Observe that c ∈ (b1, b2) ⊆ γ−1(φj(Mj)) and c ∈ (a, 1] ⊆
γ−1(φi(Mi)), so c lies in their intersection, and thus γ(c) ∈ φi(Mi)∩φj(Mj) =
φi(Aij). Denote this element by γ(c) = [z, j].

Observe now that the restriction of γ to the closed (connected) interval
[a, c] ⊂ [0, 1] is a future directed curve that lies entirely within φj(Mj), so can
effectively be seen as a curve on the subspace (φi(Mi), g̃|φi(Mi)). Since φ−1

j is

an isometry, the curve γ′ := φ−1
j ◦γ is a future-directed causal curve connecting

y to z. Thus y ≤j z. Recall that [z, j] lies in φj(Aji). Thus z ∈ Aji. We have
assumed that Aji is a past-set, thus y ≤j z and z ∈ Aji implies that y ∈ Aji.
Thus [y, j] ∈ φj(Aji). However, this contradicts the fact that [y, j] /∈ φi(Mi).

⊓⊔

We can now use the above lemma to prove the following result, which is a
restricted dual to Lemma 6.8.

Lemma 6.10. Suppose that every Aij is a past set. Then [p, i] ≤g̃ [q, j] iff
[p, i] ∈ φi(Aij) and fij(p) ≤j q.

Proof. Suppose first that [p, i] ≤g̃ [q, j]. Then there is a future-directed, causal
curve γ in

⋃

F
Mi such that γ(0) = [p, i] and γ(1) = [q, j]. It follows from

1 This is a fairly well-known fact. Let Ai be connected subsets of a topological
space X such that Ai ∩ Aj 6= ∅ for every i, j. If

⋃

i
Ai were disconnected, then

there are two disjoint open subsets U, V of X such that U ∪ V =
⋃

i
Ai. Let

x ∈ U ∪ V . Then x ∈ Ai. Since Ai connected, it must be the case that Ai ⊆ U ,
since otherwise Ai = (Ai ∩ U) ∪ (Ai ∩ V ), a contradiction. Since Ai ∩ Aj 6= ∅,
every Ak is a subset of U , and thus V is empty, a contradiction.

2 The connected subsets of [0, 1] are of the form (a, b), [a, b), (a, b] or [a, b]. Thus the
open connected subsets are of the form (a, b), [0, a), or (a, 1].

3 If V is open then it is a union of basis elements, which are of the form (r, r′)∩[0, 1].
So, a ∈ V = [0, 1] ∩

⋃

(r, r′) implies that a ∈ (r, r′) ∩ [0, 1], so just pick a local
basis for a, say (a− ǫ, a + ǫ) small enough that its contained within the interval
(r, r′).



6.1 Constructing Adjoined Spacetimes 85

the previous lemma that γ ⊆ φj(Mj), and thus [p, i] = [fij(p), j]. Hence
[fij(p), j] ≤g̃ [q, j], and since φ−1

j : φj(Mj) → Mj is a time-orientation-

preserving isometry, it follows from Lemma A.34 that fij(p) ≤j q, as required.
Conversely, suppose that p ∈ Aij and fij(p) ≤j q. By Lemma 6.8, it follows
that [fij(p), j] ≤g̃ [q, j], and thus [p, i] ≤g̃ [q, j]. ⊓⊔

The above result is fairly strong, and it allows us to transfer potential
causal properties of the Mi to the adjoined spacetime

⋃

F
Mi. Our first result

says that whenever the Mi possess compatible global time functions, then
these can be pushed into

⋃

F
Mi.

Lemma 6.11. Suppose that each Aij is a past-set. If each Mi has a global
time function ti such that tj ◦ fij(p) = ti(p) for each j, then

⋃

F
Mi has a

well-defined global time function.

Proof. Define t̃ :
⋃

F
Mi → R by [p, i] 7→ ti(p). By Cor. 5.5 this is a well-

defined, real-valued function on
⋃

F
Mi. To see that t̃ is monotone, suppose

that we have some [p, i] and [q, j] in
⋃

F
Mi such that [p, i] ≤g̃ [q, j]. By Lemma

6.10, this is the case iff [p, i] ∈ φj(Aji) and fij(p) ≤j q. Since tj is a global
time function, it follows that:

t̃([p, i]) = t̃([fij(p), j]) = tj(fij(p)) ≤j tj(q) = t̃([q, j]),

and consequently t̃ is a global time function on
⋃

F
Mi. ⊓⊔

We finish this section with a corresponding result for global hyperbolicity.

Lemma 6.12. Let I be a finite indexing set. If each Mi is globally-hyperbolic
and each Aij is a past-set, then every causal diamond in

⋃

F
Mi is compact.

Proof. Let [p, i] ≤g̃ [q, j], and consider the set

J+([p, i]) ∩ J−([q, j]) := {[r, k] | [p, i] ≤g̃ [r, k] ≤g̃ [q, j]}.

We can apply Lemma 6.10 to conclude that the above set is contained as a
subset of φj(Mj). It should be clear4 that the following equivalence holds:

J+([p, i]) ∩ J−([q, j]) = φj(J
+(fij(p)) ∩ J−(q)).

By assumption, the set J+(fij(p))∩J−(q) is compact in Mj . By assumption I
is finite, so we can apply Lemma 3.16 to conclude that the set φj(J

+(fij(p))∩
J−(q)) is compact in

⋃

F
Mi. ⊓⊔

4 Specifically, [p, i] ≤g̃ [w, k] ≤g̃ [q, j] iff fij(p) ≤j fik(w) ≤j q iff fij(w) ∈
J+(fij(p)) ∩ J−(q) iff [w, k] ∈ φj(J+(fij(p)) ∩ J−(q))
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6.2 Branching Spacetimes

It is now time to combine our theory of adjunction spaces with the branch-
ing spacetimes of Part 1. We will start by expressing our Minkowskian BSTs
as an adjoined manifold, and justifying this extra structure as natural. After
this, we will generalise this construction and effectively replace the Minkowski
spacetime with an arbitrary one. This generalisation, which is the main con-
tribution of this thesis, enables the definition of a new class of BSTs, which
we will call Lorentzian Branching Spacetimes.

6.2.1 The Lorentzian Structure of Minkowskian BSTs

We have already discussed the construction of Minkowskian BSTs at two levels
of structure – in Section 2.2 we constructed MBSTs as models of BST92*,
and in Section 4.3 we constructed MBSTs from a topological perspective. In
this section, we will do this one last time, and construct MBSTs as adjoined
spacetimes.

The obvious way to do this is to invoke Theorem 6.6. In order to do so,
we first need to define an appropriate adjunction system F = (X,A, f). We
can take inspiration from Section 4.3.1, where now we require that:

• each member of X consists of the n-dimensional Minkowski spacetime
(Mn, η) viewed as a Lorentzian manifold,

• Aij = Mn\J+(Cij), viewed as an open Lorentzian submanifold of Mn,
and

• each fij : Aij → Mn is the inclusion map.

The underlying set of the adjunction space
⋃

F
Mi is of course equal to Mn

C

(constructed as in Section. 2.2.2). It should also be clear that the tuple F meets
the criteria of Theorem 6.6 – all of the conditions either follow by construction,
or from the basic properties of the inclusion map. So, we can conclude that
there is a well-defined Lorentzian metric η̃ on the adjunction space Mn

C . In
order to distinguish this object from the standard MBSTs defined in Section
2.2.2, we will denote the adjoined spacetime subordinate to the system F by
(Mn

C , η̃).

Naturality of the Structure

In Section 1.2.1 we identified three general criteria for the naturality of struc-
tures defined on BST92(*) models. These were:

N1) The structure, once restricted to a single-historied model, should agree
with the Minkowski version.

N2) The structure should possess a certain universal property, in that it can
be canonically reconstructed from its history-relative substructures.
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N3) The structure should be compatible with any pre-existing BST92* con-
cepts.

We will now argue that the structure (Mn
C , η̃) meets all of these criteria. Of

course, we have already discussed the nature of the topological structure of
Mn

C (cf. Section 4.3.1), so we will only need to discuss the differentiable and
metric structures.

We start with condition N1. We know from Theorem 2.17 that the his-
tories of Mn

C are precisely equal to the layers Li := φi(M
n). We also know

from Theorem 6.6 that the canonical maps φi are isometric embeddings that
preserve time-orientation. This means that each φi acts as an isometry from
Mn to the history φi(M

n). As such, the spaces φi(M
n) are isomorphic to

the Minkowski spacetime (Mn, η) (at least from the perspective of Lorentzian
geometry).

To see that condition N2 is met, can use the results of 5.15, 5.18 and
6.2 to confirm that all of the structures discussed can be reconstructed as an
adjunction of their history-relative substructures, and the results of 5.4, 5.11,
and 6.7 to conclude that they possess the relevant universal properties.

To complete our argument, we need to confirm that (Mn
C , η̃) is compatible

with all pre-existing BST92* structure. Fortunately, in BST92* there are no
notions pertaining to differentiable structures nor vector bundles. Neverthe-
less, the elephant in the room is clearly the causal structure of (Mn, η̃), i.e.
we need to show that the causal relation ≤η̃ coincides with the relation ≤
defined as in Section 2.2.2.5 The following result confirms this.

Theorem 6.13. Let (Mn
C , η̃) be an MBST, viewed as an adjoined spacetime.

Then ≤η̃ coincides with ≤.

Proof. Each Aij = Mn\J+(Cij) is closed under ≤M , thus is a past-set. We
know from Lemma 6.10 that [x, i] ≤η̃ [y, j] iff [x, i] ∈ φi(Aij) and fij(x) ≤M y.
Since fij is equal to the inclusion map on Mn, it follows that [x, i] ≤η̃ [y, j]
iff [x, i] = [x, j] and x ≤M y, which is precisely the definition of ≤. ⊓⊔

We also have the following result, which can be seen as an analogue to
Proposition 1.5.

Lemma 6.14. Let [x, i], [y, j] be elements of Mn
C such that [x, i] ≤ [y, j]. Then

every causal curve from [x, i] to [y, j] induces a maximal ≤-chain C.

Proof. Since [x, i] ≤η̃ [y, j]. Then x ≤M y, so by Prop.1.5 there is a maximal
≤M -chain C connecting x to y. Since φj acts as an order-isomorphism between
Mn and φj(M

n), it follows that φj(C) is a maximal ≤-chain in φj(Mj). Thus
φj(C) is also a maximal ≤-chain in Mn

C . ⊓⊔

5 Recall that the causal order ≤η̃ induced from η̃ is defined by: [x, i] ≤η̃ [y, j] iff
there is a future-directed causal curve γ : [0, 1] → Mn

C from [x, i] to [y, j].
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The above results suggest that the causal structure of η̃ is essentially the
same as the causal structure ≤. Since all of our conditions for naturality are
met, we have a strong argument to suggest that the Lorentzian structure
defined on Mn

C is indeed a natural extension of the order-theoretic structure
of MBSTs, viewed as models of BST92*.

6.2.2 Lorentzian Branching Spacetimes

We will now generalise the approach of the previous section, by defining a
new class of models which we will call Lorentzian Branching Spacetimes. We
start by fixing a Hausdorff spacetime (M, g), and defining what it means for
M to have splitting data.

Definition 6.15. A set C := {Cij | i, j ∈ I} ⊂ P(M) is called splitting data
for M iff the set

⋃

C is finite, and every element Cij of C satisfies the following
conditions:

C1) For all a, b ∈ Cij it is the case that a 6≤g b and b 6≤g a
C2) Cij = Cji
C3) For each k 6= i, j, and for every a ∈ Cij there exists some b ∈ Cik ∪Cjk

such that b ≤g a.
C4) Cii = ∅

The above definition is essentially a rehash of the splitting data introduced in
Definition 2.11, and as such enjoys the same justification.

Suppose now that we have some fixed splitting data C for the spacetime
(M, g). We can then proceed as in the previous section, and define an adjunc-
tion system F = (X,A, f), where:

• every member of X is a copy of (M, g), viewed as a spacetime,
• each Aij is equal to the set M\Cl(J+(Cij)), viewed as an open Lorentzian

submanifold,6 and
• each fij : Aij → M is the inclusion map.

Observe that F is well-defined. Indeed, that F is an adjunction system follows
from a routine argument – all of the conditions of Definition 3.7 follow from
the properties of the splitting data C and the fact that each fij is equal to
the identity map on M . Moreover, it follows that by construction, F meets
the first two criteria of Theorem 6.6, and the third criterion is met since the
inclusion map of an open Lorentzian submanifold always preserves distances
and time-orientations.

Since F is a well-defined adjunction system meeting the criteria of The-
orem 6.6, we may conclude that the adjunction space

⋃

F
Mi is an adjoined

6 The reason we use the closure of J+(Cij) is to guarantee that Aij is open, since in
the general setting, it is not guaranteed that causal futures J+(x) are topologically
closed (as an example, see [22, Fig. 11]).
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Fig. 6.1: A simple Lorentzian BST constructed in a similar manner to the
MBST Mn

2 .

spacetime. We will denote the adjoined spacetime (
⋃

F
Mi, g̃) by MC , and we

will call the class of all such MC Lorentzian Branching Spacetimes (Lorentzian
BSTs, or LBSTs for short). Figure 6.1 depicts the type of branching that LB-
STs exhibit.

The following result shows that whenever M is a locally-flat spacetime
(that is, whenever it is locally Minkowskian), the Lorentzian BSTs built from
M are locally isomorphic to Minkowskian BSTs.

Theorem 6.16. Let MC be a Lorentzian BST, where M is a locally-flat space-
time. Then at every point in MC, there is an open neighbourhood that is locally
isometric to some Minkowskian BST.

Proof. Let [x, i] be some element of MC , and consider the element x in (M, g).
Since M is locally-Minkowskian, there is some open neighbourhood U of x and
an isometric embedding ϕ : U → Mn that preserves time-orientations. The
idea is to look at the fragment of the splitting data C of M that is contained
within U , and then use this to define some new splitting data D for Mn.

We first need to define the indexing set and splitting data forMn
D. Consider

the set
J := {i ∈ I | ∃j ∈ I(U ∩ Cij 6= ∅)}

that is, J is the subset of I that has splitting data contained within U . We
can then define the splitting data D on Mn by using the sets

Dij := ϕ(Cij) = {ϕ(a) | a ∈ Cij}.

To see that the collection D := {Dij | i, j ∈ J} defines splitting data for
Mn, we need to confirm that the conditions of Definition 2.11 (or 6.15) are
satisfied. However, these follow routinely from the fact that C forms splitting
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data for M , and the observation that ϕ, once restricted to its image, is an
isometry that preserves time-orientation (which by Lemma A.34 implies that
ϕ can be seen as a “causal isomorphism” between U and ϕ(U)).

1. For C1, suppose towards a contradiction that there are a, b ∈ Dij such
that a ≤M b. Since Dij = ϕ(Cij), and ϕ acts as a causal isomorphism,
it follows that ϕ−1(a) ≤g ϕ−1(b), which contradicts Cij as spacelike. We
may conclude that Dij is also spacelike in Mn.

2. For condition C2, we have: Dij = ϕ(Cij) = ϕ(Cji) = Dji.
3. For condition C3, suppose that a ∈ Dij . Since Dij = ϕ(Cij), there is

some element a′ ∈ Cij such that a = ϕ(a′). Since C forms splitting data
for (M, g), there is some b′ ∈ Cik∪Cjk such that b′ ≤g a′. Since the map ϕ
preserves causal orders, it follows that ϕ(b′) ∈ Dik ∪Djk and ϕ(b′) ≤M a
as required.

4. For condition C4, we have that Dii = ϕ(Cii) = ϕ(∅) = ∅.

We may then conclude that the set D forms splitting data for Mn. As such, we
can construct the Minkowskian BST subordinate to D, which we will denote
by (Mn

D, η̃). In order to distinguish the adjunction space Mn
D from the space

(MC , g̃), we will denote the to-be-glued regions of Mn by Bij (recall that
Bij := Mn\J+(Dij)), and the canonical maps by χi : Mn → Mn

D. We will
use the standard notation for (M, g), that is, we denote the canonical maps
and to-be-glued regions of (M, g) by φi and Aij , respectively.

We will now show that the set Ũ :=
⋃

j∈J φj(U) is isometric to Mn
D. In

order to do this, we will define an isometry ψ : Ũ → Mn
D so that the following

diagram commutes.

(Ũ , g̃|U ) (Mn
D, η̃)

(U, g|U ) (Mn, η)

ψ

ϕ

··· ···φj ··· χj ···

We define the map ψ by

ψ([y, j]) = χj ◦ ϕ ◦ φ−1
j ([y, j]) = [ϕ(x), j].

To see that ψ is well-defined, suppose we have some element [z, k] such that
[y, j] = [z, k]. By construction of MC , it must be the case that y = z and
x ∈ Ajk. We now show that ϕ(y) ∈ Bjk := Mn\J+(Djk). Suppose towards a
contradiction that ϕ(x) /∈ Bjk. There there is some element a ∈ Djk such that
a ≤M ϕ(y). Since Djk = ϕ(Cjk), the element a must be of the form a = ϕ(a′),
where a′ ∈ Cjk. Since ϕ preserves causal orders, it follows that a′ ≤g x, thus
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x ∈ J+(Cjk), and consequently, x /∈ Ajk, a contradiction. We may then
conclude that ϕ(x) ∈ Bjk. It follows that ψ([z, k]) = [ϕ(z), k] = [ϕ(y), j], and
thus ψ is well-defined as a function.

To see that ψ is a diffeomorphism, we can pick the open neighbourhoods
φj(U) and use Prop. A.7.2 in the obvious way. We now show that ψ is an
isometry, that is, for all v, w in T[y,j](Ũ), we show that

g̃|Ũ (v, w) = η̃
(

dψ)[y, j](v), η̃(dψ)[y, j](w)
)

.

This follows from the fact that ϕ and the canonical maps φj and χj act as
isometries on their respective domains of definition. Indeed, we have that

g̃|Ũ (v, w) = (g|U )
(

(dφ−1
j )[y,j](v), (dφ−1

j )[y,j](w)
)

= η
(

(dϕ)y ◦ (dφ−1
j )[y,j](v), (dϕ)y ◦ (dφ−1

j )[y,j](w)
)

= η̃
(

(dχj)ϕ(y) ◦ (dϕ)y ◦ (dφ−1
j )[y,j](v),

(dχj)ϕ(y) ◦ (dϕ)y ◦ (dφ−1
j )[y,j](w)

)

= η̃
(

d(χj ◦ ϕ ◦ φ−1
j )[y,j](v), d(χj ◦ ϕ ◦ φ−1

j )[y,j](w)
)

= η̃
(

(dψ)[y,j](v), (dψ)[y,j](w)
)

as required. It follows by a similar argument that the map ψ preserves time-
orientations. We may then conclude that ψ : Ũ → Mn

D is a well-defined,
smooth isometry that preserves time-orientations. ⊓⊔

Before moving on, we should remark that in the above theorem, it is
not the case that the Lorentzian BST MC is locally-isometric to some fixed
Minkowskian BST. Moreover, we can always take the open region U small
enough so that the MBSTs are always simple MBSTs.

Causal Properties of Lorentzian BSTs

We finish this section by commenting on the potential causal properties of
models such as MC . For a first result, we make the interesting observation
that in LBSTs, the two definitions of time-orientability once again coincide.

Theorem 6.17. Let MC be a Lorentzian BST built from the Hausdorff space-
time (M, g). Then MC is time-orientable iff there exists a global timelike vector
field X̃ on MC.

Proof. The direction from left-to-right is trivial – we can define the time-
orientation τ by picking the pointwise values of X̃. Conversely, suppose that
we have a time-orientation τ on

⋃

F
Mi. By Theorem 6.6 the canonical maps

φi preserve time-orientations, so by definition this means that the pullback
of τ along φi is equal to τi, the time-orientation of (the ith copy of) M .
Since M is Hausdorff, we can apply Lemma A.29 to conclude that there is a
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globally-defined timelike vector field Xi on M . If we do this for every i, we
will have a collection of Xi’s that will agree on the overlaps Aij (since the
time orientations τi and τj agree on Aij = Aji). Thus we can apply 6.5 and
push out the vector fields Xi to a vector field X̃ on MC . By Theorem 6.6 the
maps φi preserve time-orientation, so we apply the same idea as in Figure A.4
to conclude that the vector field X̃ will be future-directed. ⊓⊔

We also have the following result, which suggests that a Lorentzian BST
MC may be causally well-behaved, provided M is.

Theorem 6.18. Let (M, g) be a Hausdorff spacetime, and MC a Lorentzian
BST built from M .

1. If M is causal, then so is MC.
2. If M has a global time function, then so does MC.
3. If the indexing set I is finite and M has compact causal diamonds, then

so does MC.

Proof. If there were some CTC γ in MC , then we could use Lemma 6.10 to
conclude that γ lies in some layer φi(M). Then we could pull γ back to M
along φi, and this would be a CTC in M . Items 2 and 3 follow from Lemmas
6.11 and 6.12, respectively. ⊓⊔

We finish this chapter with an observation that is mostly beyond the scope
of this thesis. Using item 3 in the above theorem, and the fact that Minkowksi
spacetimes are globally-hyperbolic, we can obtain a non-Hausdorff counterex-
ample to Geroch’s Splitting Theorem.7 For a concrete example, any MBST will
do, take for instance M2

2 (pictured as in Figure 2.2) endowed with the appro-
priate Lorentzian structure. This spacetime is globally-hyperbolic (i.e. it has
compact causal diamonds), but it is clearly not topologically-tubular (that is,
M2

2 is not homeomorphic to S ×R for any Cauchy surface S). Moreover, such
a model would contain non-homeomorphic (and thus, non-isometric) Cauchy
surfaces.

7 See A.37 for the statement of this result.
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Conclusion

In the introduction to this thesis we identified two limitations of Belnap’s
approach to the unification of relativity and indeterminism. These were:

1. the intended models of BST92, namely the Minkowskian BSTs, are an
inadequate representation of the structure of a relativistic model, and

2. BST92 can only deal with special-relativistic branching, and cannot cap-
ture the branching of arbitrary spacetimes.

In this thesis we have removed both these limitations by building up to the
construction of the Lorentzian BSTs outlined in Section 7.2.2. These branch-
ing spacetimes display a rich-enough mathematical structure to be considered
by general relativists. Indeed – we know from results like Theorem 6.6 that
our LBSTs are smooth manifolds, possessing a Lorentzian metric and a time-
orientation; results from Sections 6.2 and 6.3 suggest that the vector bundles
over MC can be naturally constructed by adjoining bundles over M , and Theo-
rem 6.18 suggests that at least some causality conditions are preserved during
the construction of MC . The only apparent anomaly is the violation of the
Hausdorff property. However, the discussion of Section 4.3.2 suggests that the
Hausdorff-violating pairs are intricately connected to the points of indetermin-
ism in MC . The intention of branching is to capture a models indeterminism,
so this violation of the Hausdorff property is somewhat justifiable.

We were able to draw such a conclusion by a serendipity – the use of
BST92*, together with a type-2 construction of its MBSTs catalysed our de-
velopment of adjoined spacetimes. It should be clear why we opted for the
modified theory BST92* over BST92. In Chapter 4, we saw that the histories
of a BST92* model are open in the Bartha topology, and thus we could ex-
press the construction of MBSTs as a topological adjunction space in which
the histories of a given Mn

C were glued to each other along homeomorphic
open subspaces. This approach of gluing along open regions could then be
transferred to the Lorentzian manifold setting. Moreover, the results of Chap-
ters 6 and 7 were strongly motivated by the fact that histories of a BST92*
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model were topologically open. This heavily simplified some potentially prob-
lematic arguments, and in particular allowed us to transfer objects defined on
histories to the branching spacetime.

In fairness, it may well be possible recreate the results of this thesis in the
BST92 setting, however it is not immediately clear how this could be done.
For instance, it is known that the histories of a BST92 model are specifically
not open, so we cannot use the results of Section 3.2.1, and thus would have
to develop an even more general theory of adjunction spaces in order to argue
that the BST92 Bartha topology were natural. Moreover, if we cannot glue the
MBSTs of BST92 along smooth, open submanifolds (i.e. along the intersection
of histories), then we could not prove the results of Chapters 6 and 7.

Future Work

The results of thesis suggest a number of interesting developments. We will
finish the thesis by highlighting some potential avenues of exploration.

Extending the Branching of LBSTs

Although we have alleviated Belnap’s approach of some limitations, there
are still some lurking throughout this thesis. In particular, the remarks of
1.14 mean that MBSTs and LBSTs can only have splitting data of finite
size, and can only have at most countably-many branches in total. Recall
that we used the finitude of splitting data in order to prove that histories of
MBSTs are precisely equal to the layers Li (see 2.20), and we used that the
countability of the indexing set I to ensure that the adjoined spacetimes were
second-countable. A next step would be to relax these assumptions, and to
see whether the resulting structures are still well-behaved.

Generalising BST92*

We saw in Section 7.2.2 that from a Lorentzian perspective, we can build
Lorentzian BSTs from splitting data, in the same way that we did for
Minkowskian BSTs. However, in the case of MBSTs, we have an associated
logical theory, i.e. BST92*. A pertinent question to ask is: what is the associ-
ated logical theory of Lorentzian BSTs? It is probably the case our LBSTs are
precisely the class of intended models of Placek’s recent theory found in [19],
though this needs to be checked. Perhaps a good measure of the correct theory
would be to consider the intended class of models that the theory permits,
and then to employ some form of metric recovery, and compare the resulting
BSTs with our Lorentzian BSTs.1

1 This is a slightly limited approach – typically you can only recover a metric up to a
conformal factor, however recent results by Martin/Panangaden [28] suggest that
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Establishing the Relationship between BST92 and BST92*

Another interesting avenue of research would be to explore the relationship
between models of BST92 and BST92*.2 We mentioned in Chapter 2 that a
useful criterion for motivating the definition of a choice pair would be that,
once identified and endowed with an appropriate quotient ordering, the result-
ing space should be a BST92 model. What will be interesting to see is if there
is a general procedure for passing between models of BST92 and BST92*.

Finding the Mathematical Characterisation of MBST Histories

By definition, a history of an MBST Mn
C is a maximal directed subset. We

saw in the form of Theorem 2.20 that the histories of Mn
C are precisely the

layers ιi(M
n). These layers are also equal to the images φi(M

n), which we
know from the results of Chapter 4 are open, Hausdorff subspaces of Mn

C . A
pertinent question is the following – is there a topological property that only
the φi(M

n) possess? A result is known in the case of simple MBSTs – Müller
has shown that histories of a simple MBST are maximal H-submanifolds, see
[24, Sec. 3.2.2] for the details. However, it is not immediately clear how such
arguments generalise to the setting of arbitrary MBSTs (and I have tried).
Taking this idea one step further: what is the Lorentzian characterisation of a
history in an LBST? We know that histories should equal the images φi(M),
however it is not immediately clear what the characterising properties of these
subspaces are. For instance – we know as a corollary of Theorem 6.6 that the
images φi(M) are open, Hausdorff Lorentzian submanifolds of MC , and they
are probably maximal with respect to these properties, but is there more?

Tensor Bundles of Adjoined Manifolds

We saw in the form of Theorem 6.2 that the bundle of bilinear forms of
the adjoined manifold

⋃

F
Mi is naturally isomorphic to an adjunction of the

bundles T 2(T ∗Mi). The crux of the proof was really Lemma A.20. This result
is actually an instance of a more general result – if two (Hausdorff) manifolds
are diffeomorphic, then their tensor bundles of all orders agree. As such, the
construction of Section 7.1.1 easily generalises to the case of arbitrary tensor
bundles on

⋃

F
Mi.

Defining Global Objects Using Partitions of Unity

We saw in the form of Theorem 6.17 that in Lorentzian BSTs the two notions
of time-orientations coincide. This was proved by pulling the time-orientation

the full metric can be recovered in the case of a globally-hyperbolic (Hausdorff)
spacetime. However, all of this is done with Hausdorff spacetimes, and it is not
necessarily true that such a recovery applies in the non-Hausdorff setting.

2 This was mentioned to me by Thomas Müller in private correspondence.
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back to the Hausdorff spacetimes, and then appealing to an argument in-
volving partitions of unity. The approach of 6.17 is actually a special case of
something deeper, which could potentially enable the construction of globally-
defined objects on adjoined manifolds. As a sketch: we could potentially define
an object on adjoined manifold by using partitions of unity on the Hausdorff
manifolds Mi. With the extra condition that these Mi-relative objects agree
on overlaps, it could then be possible to use something akin to the topolo-
gist’s Gluing lemma to obtain an object that is globally-defined. This idea is
promising in that it would suggest that adjunctions of Hausdorff smooth man-
ifolds are in some sense well-behaved, compared to class of all non-Hausdorff
manifolds.

The Consistency of LBSTs and General Relativity

From a coarse perspective, Lorentzian BSTs adhere to the basic mathematical
tenets of General Relativity (with the exception of the Hausdorff property,
though its violation is linked to the points of indeterminism). However, before
any real conclusions can be made about the utility of Lorentzian BSTs, the
question of their physical reasonableness must be answered. In particular,
there may well be deeper reasons as to why LBSTs are not suitable objects of
study for general relativists. A next step will be to evaluate some physically-
reasonable conditions in the context of Lorentzian BSTs. We have already
made some progression – in Section 7.2.2 we showed that the causal properties
of LBSTs can be reasonable. However, it follows from a result of Hajicek [29,
Thm. 4] that stably-causal LBSTs must contain bifurcating geodesics. This
may well activate the criticisms of Earman [5, Sec. 3.4] against non-Hausdorff
spacetimes, though this needs to be verified. This is perhaps the most crucial
area of future work.

Applications of LBSTs to Quantum Mechanics

A popular criticism (e.g. Earman [5]) of branching spacetimes is that there
is currently no dynamical theory for the branching process. Authors such as
McCall [3] and Douglas [4] (and probably others) suggest that the branching
of spacetime occurs at a measurement of a quantum system, though there
is no consensus on these ideas. Of course this is wildly beyond the scope of
this thesis, but there are some potentially non-trivial applications of LBSTs
to quantum mechanics. The best guess at an application of branching space-
times would be the consistent histories approach introduced by Isham.3 Müller
has made the first steps to combining Isham’s approach within a branching
framework – in [30] he provides a branching-time interpretation of Isham’s ap-
proach. A next step would be to use our Lorentzian BSTs as a generalisation
of Müller’s approach to the spacetime setting.

3 This is an unfortunate name – here “histories” are not the histories in the
BST92(*) sense of the word, but a use that is particular to Isham’s formalism.
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Appendix: Manifolds, Vector Bundles and

Spacetimes

In the first part of this thesis, we saw that the models of BST92* can be
enriched with a topological structure, namely the Bartha topology. We ar-
gued that this topology was natural in the sense of the criteria outlined in
Section 4.2. We also saw that the Minkowskian BSTs of BST92* are well-
behaved with regards to their Bartha topology. In particular, we expressed
their Bartha topologies as adjunctions of the Euclidean topology on Minkowski
spacetime. In this part of the thesis, we will extend this idea further, by adjoin-
ing Minkowski spacetimes at the level of its smooth structure, and eventually,
at the level of the metric structure. The key result of this part will be that
Minkowskian BSTs possess a natural pseudometric that is obtained by gluing
η appropriately.

Before we do anything of the sort, we will first remind the reader of the
precise definition of a spacetime, in the physicist’s sense of the word. In short,
a spacetime is a connected, smooth manifold possessing a Lorentzian metric
and a time-orientation. In this chapter, we will slowly unpack the various
terms in this definition. Our treatment of spacetimes is all fairly standard,
with one exception: we will not assume that our smooth manifolds are Haus-
dorff. This is because we would eventually like to describe Minkowskian BSTs
as spacetimes, and we know from Theorem 4.20 that MBSTs are typically
non-Hausdorff. Unfortunately the Hausdorff property is used throughout the
standard literature on Lorentzian geometry,1 so we will have to be very careful
when proving results that Hausdorffness is not assumed. As a convention, we
will label any results that assume Hausdorffness with a dagger (†).

1 For instance, the Hausdorff property is used to define partitions of unity, which
are a tool for constructing global objects from local data.



98 A Appendix: Manifolds, Vector Bundles and Spacetimes

A.1 Smooth Manifolds

We start by introducing some of the basic theory of smooth manifolds. We
will use Lee’s Introduction to Smooth Manifolds [20] as our resource, and
make minor alterations depending on the role of the Hausdorff property. As
a convention we will refer to the proofs in [20] where possible, and any facts
stated without proof are proved in the Appendix A.2.

A.1.1 Basic Notions

We will call a topological spaceM a topological manifold whenever it is second-
countable and locally-Euclidean. It is often useful to equip a topological man-
ifold with a smooth structure. This allows the various techniques of calculus
(i.e. differentiation, integration etc.) to be generalised to the locally-Euclidean
setting. We will start by defining this concept formally.

A topological manifold M is a locally-Euclidean space, so M possesses a
collection of charts (U,ϕ), where ϕ is a homeomorphism from the open subset
U to some open subset of Rn.2 In the situation that two charts (U,ϕ) and
(V, ψ) overlap, i.e. when U ∩V 6= ∅, we can use the homeomorphisms ϕ and ψ
to obtain two maps ϕ◦ψ−1 and ψ ◦ϕ−1, which are homeomorphisms between
open subsets of Rn. Maps of this type are known as transition maps, since
they allow us to switch between different local representations of M .3 This
motivates the following definition.

Definition A.1. We say that two charts (U,ϕ) and (V, ψ) of M are smoothly
compatible iff the maps ϕ ◦ ψ−1 : ψ(V ) → ϕ(U) and ψ ◦ ϕ−1 : ϕ(U) → ψ(V )
are smooth in the Euclidean sense.4

Smoothly compatible charts then allow us to jump between local representa-
tions of objects defined on M without destroying any sense of differentiability.
We will refer to a collection A of charts of M as a smooth atlas whenever the
charts of A cover M , and they are pairwise smoothly compatible. Note that

2 Whatever the value of n, it is constant throughout M , and we call this the di-

mension of X.
3 As an example – suppose we have a curve γ on M , and a point p in M that lies

in the intersection of the two charts U ∩ V . These charts give us two ways of
representing γ within Rn, namely the curves ϕ◦γ and ψ◦γ. In the overlap U ∩V ,
we can switch between these two local representations by using the transition
maps, e.g. (ϕ ◦ ψ−1) ◦ (ψ ◦ γ) = ϕ ◦ γ.

4 Recall that a map f : Rn → Rn is smooth in the Euclidean sense iff the com-
ponent maps f i : Rn → R have continuous partial derivatives of all orders. For
more on this see [20, App. 3]
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the existence and uniqueness of smooth atlases is not guaranteed, and some-
times two smooth atlases can induce the same structure.5 To avoid this latter
issue, smooth structures are defined as follows.

Definition A.2. A smooth structure on M is a smooth atlas A that is maxi-
mal with respect to inclusion.

We will call a topological manifold M a smooth manifold if it is equipped
with a fixed smooth atlas A. We also have the following fact regarding the
construction of smooth structures.

Proposition A.3. Every smooth atlas can be extended to a unique smooth
structure.

We remark that the proof of the above proposition does not require the Haus-
dorff property (see [20, Prop. 1.17] for the full argument). We finish this section
with two useful examples of smooth manifolds.6

Example A.4 (Open Submanifolds). Given a smooth manifold M with atlas
A, and an open subset U of M , there is a natural way in which U inherits a
smooth structure from M . We can define an atlas AU by:

AU := {(U ∩ V, ϕ|U∩V ) | (V, ϕ) ∈ A}

that is, AU is simply the restriction of charts in M to U . One can verify (see
e.g. [20, Example 1.26]) that U equipped with this atlas is a smooth manifold
of the same dimension as M . The set U , viewed as a smooth manifold, is then
called an open submanifold of M .

Example A.5 (Product Manifolds). Givenm-many smooth manifoldsM1, ...,Mm

of dimensions n1, ..., nm respectively, there is a natural way in which the Carte-
sian product M1 × ...×Mn can be endowed with a smooth structure. We can
define an atlas by

A = {(U1 × ...× Un, ϕ1 × ...× ϕn) | (Ui, ϕ) ∈ Ai}

where Ai is the smooth structure of Mi, and

ϕ1 × ...× ϕn : U1 × ...× Un → Rn1+...+nm

maps (p1, ..., pn) to the concatenation of the tuple (ϕ1(p1), ..., ϕn(pn)).

5 Here by “same structure” we mean that two smooth atlases may determine the
same class of smooth, real-valued functions on M .

6 For more examples of Hausdorff smooth manifolds, see [20, Pg. 17].
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A.1.2 Smooth Maps

Suppose we have a map f : M → N between smooth manifolds M and N .
We can express f in terms of local coordinates by using two charts (U,ϕ) for
M at p, and (V, ψ) of N at f(p), and then by looking at the map ψ ◦ f ◦ϕ−1.
Intuitively speaking, we will say that the map f is smooth if it is smooth in
all of its local expressions. The following is a more-precise formulation.

Definition A.6. A map f : M → N between smooth manifolds is smooth
at p iff there are charts (U,ϕ) at p and (V, ψ) at f(p) such that the map
ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth in the Euclidean sense. We say that f
is smooth iff it is smooth at every p in M .

It can be shown that this definition of smoothness is independent of the choice
of local expression. We will then say that the map f is smooth if it is smooth
at every point p in M . We have the following useful facts about smooth maps.

Proposition A.7 (Basic facts about smooth maps). Let f : M → N be
a map between smooth manifolds.

1. If f is smooth, then f is continuous.
2. If every point p has an open neighbourhood U for which the restricted map
f |U : U → N is smooth, then f is smooth.

3. If f is smooth, then the restriction of f to an open submanifold is smooth.
4. If there is a collection of open maps Uα such that each fα : Uα → N is

smooth and fα|Uα ∩ Uβ = fβ |Uα∩Uβ
, then f =

⋃

α fα is a well-defined
smooth map from M to N .

Proof. See [20, Pg.35] and thereafter for the various proofs. ⊓⊔

The following is a collection of maps that are known to be smooth.

Proposition A.8. Let M,N and P be smooth generalised manifolds.

1. The identity map idM is smooth.
2. If U is an open submanifold of M , then the inclusion map ι : U → M is

smooth.
3. If f : M → N and g : N → P are smooth, then so is g ◦ f : M → P .
4. A map h : M → N1 × ...×Nk is smooth iff the components hi := pi ◦ h :
M → Ni are smooth.

Proof. See [20, Prop. 2.10, 2.12]. ⊓⊔

A homeomorphism between topological spaces is a bijective, continuous map
whose inverse is also continuous. The analogous notion for smooth manifolds
is that of a diffeomorphism. A map f : M → N is called a diffeomorphism
if it is a bijective, smooth map whose inverse is smooth. In such a situation,
we will call M and N diffeomorphic. We finish this section by recalling some
useful properties of diffeomorphisms.
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Proposition A.9. Let f : M → N be a diffeomorphism.

1. f is a homeomorphism and an open map.
2. If U is an open submanifold of M , then f |U : U → f(U) is a diffeomor-

phism.
3. If g : N → P is a diffeomorphism, then so is the composition g ◦ f : M →
P .

Proof. See [20, Prop. 2.15]. ⊓⊔

A.1.3 Tangent Spaces

We will eventually discuss the notion of embeddings of smooth manifolds.
But before doing this, we need to introduce the notion of a the tangent space
of a manifold. For our purposes, we will never need to appeal to the precise
definition of a tangent space, so we will save some time and simply give an
intuitive sketch of the idea.

Recall that in the Euclidean setting, the tangent to a curve γ at a point p
is obtained by evaluating its derivative at p. Analogously, if the curve γ and
the point p live on a smooth manifold M , we can compute the derivative of
γ in local coordinates (by using some chart (U,ϕ) at p) and evaluate it at p
to obtain a derivative. The collection of all the derivatives7 of all the curves
passing through p forms the tangent space of M at p, which we denote by
TpM . The space TpM can then be seen as the collection of all velocity vectors
of curves passing through p.8 It turns out that the tangent space TpM forms
a real-valued vector space of dimension equal to dim(M).

We will now introduce the notion of a differential of a smooth map. The
idea is that every smooth map f : M → N , induces a map dfp : TpM →
Tf(p)N at every point p in M , as in Figure A.1.9 We will refer to this map as
the pointwise differential of f at p. Using this idea, it can be shown (see [20,
Pg. 60]) that from a chart (U,ϕ) at p, the collection of directional derivatives:

∂

∂ϕi

∣

∣

∣

∣

p

:= (dϕp)
−1

(

∂

∂ϕi

∣

∣

∣

∣

ϕ(p)

)

= (dϕ−1)ϕ(p)

(

∂

∂ϕi

∣

∣

∣

∣

ϕ(p)

)

7 Actually, two different curves might have the same derivative at p, so in practice
we would identify them and work with equivalence classes of derivatives of curves.

8 There are a number of other ways to define the space TpM . For instance,
Lee defines tangent vectors v ∈ TpM as derivations, which are linear maps
v : C∞(M) → R that satisfy a type of product rule (see [20, Chpt. 3] for more
information). It can be shown that both these definitions of TpM are equivalent,
so for the purposes of this thesis it doesn’t really matter.

9 In the velocity-vector construction of TpM , the differential dfp maps the derivative
of the curve γ in M to the derivative of the composite curve f ◦ γ in N . In the
derivation construction of TpM , the map dfp maps a derivation v to the derivation
dfp(v) such that v(g) = dfp(v)(g ◦ f).
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forms a basis for the vector space TpM (where here ϕi is the ith component
function of a local expression ϕ of p). We also have the following facts about
dfp.

Proposition A.10 (Facts about dfp). Let f : M → N and g : N → L be
smooth maps. Then:

1. dfp : TpM → Tf(p)N is a linear map
2. d(idM )p = id(TpM)

3. d(g ◦ f)p = dgf(p) ◦ dfp
4. If f is a diffeomorphism then dfp is an isomorphism for each p, and

(dfp)
−1 = d(f−1)f(p)

Proof. See [20, Prop. 3.6]. ⊓⊔

We finish this section by remarking that all of this discussion is done at the
local level, so tangent spaces and pointwise differentials can also be defined in
the case where M is not Hausdorff.

p
f(p)

v

dfp(v)
TpM

Tf(p)N

f

dfp

M
N

Fig. A.1: The differential of f at p.

A.1.4 Embedded Submanifolds

Now that we have introduced the pointwise differential dfp of a smooth map,
we can make precise the notion of a smooth embedding.10 These are defined
as follows.

Definition A.11. A smooth map f : M → N is called a smooth embedding if
it is a topological embedding and the maps dfp are injective for every p in M .

10 In most literature, smooth embeddings are usually referred to as simply “embed-
dings”. However, since we are working with embeddings on different structures,
we can not use this convention.
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Note that the requirement that dfp be injective is needed to ensure that the
image f(M) is a smooth submanifold of N . We will call a subset A of a
smooth manifold M an embedded submanifold whenever A is equipped with
the subspace topology and a smooth structure such that the inclusion map
ι : A → M is a smooth embedding.11 We finish this section with a character-
isation of smooth embeddings.12

Lemma A.12. Let f : M → N be a smooth map. Then the following are
equivalent.

1. f is a smooth embedding.
2. f(M) is an embedded submanifold of N , and f acts as a diffeomorphism

from M to f(M).

A.2 Vector Bundles

A vector bundle E over a smooth manifold M is a collection of vector spaces
Ep, one for each point p in M , that is endowed with a smooth structure,
effectively turning E into a smooth manifold in its own right. Each vector
space Ep is referred to as a fibre of E, and there is a natural projection map
π : E → M sending every vector in Ep to p. Vector bundles are comprised
of vector spaces, and as such are not only locally-Euclidean, but also locally
equal to a product manifold. Figure A.2 depicts the intuition behind a vector
bundle.

We will start by introducing the formal definition of a vector bundle, as
well as its morphisms and sections. After this, we will discuss some particular
bundles used in this thesis – namely the tangent bundle, the bundle of bilinear
forms, pullback bundles, and restricted bundles.

A.2.1 Basic Notions

The formal definition of a vector bundle may seem obscure at first, but it
essentially all that is required to formally capture the intuition described in
Fig. A.2. The definition is as follows.

Definition A.13. A vector bundle of rank k is a tuple (E, π,M), where E
and M are smooth manifolds, and π : E → M is a smooth, surjective map
satisfying the following properties.

11 It does not have to be the case that A is of the same dimension as M . The
difference in dimensions of A and M is known as the codimension of A, i.e.
codim(A) = dim(M) − dim(A). It should come as no shock that the open sub-
manifolds are the embedded submanifolds of codimension 0 (see [20, Prop 5.1] for
the proof of this).

12 Lemma A.12 is analogous to the topological result that a topological embedding
f : X → Y acts as a homeomorphism from X to f(X).
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M

E

q

Eq

π

p

Ep

r

Er

Fig. A.2: A vector bundle E over a smooth manifold M

1. For each p in M , the pre-image π−1(p) ⊂ E is a k-dimensional real valued
vector space, and

2. For every p in M there is a neighbourhood U of p and a diffeomorphism
Φ : π−1(U) → U ×R such that the following diagram commutes (where p1

is the map that projects onto the first factor),

π−1(U) U × Rk

U U

π

Φ

p1

and for each q ∈ U , the restriction Φ|q : Eq → {q}×Rk is an isomorphism
of vector spaces.

The map Φ is known as a local trivialisation, and allows us to compute a local
expression of objects of E in terms of vector spaces. These are analogous to
the open charts of a smooth manifold, and there is also an associated notion
of compatibility between local trivialisations. Suppose that we have two local
trivialisations (Uα, Φα) and (Uβ , Φβ) such that the intersection Uα ∩ Uβ is
non-empty. We then have the following diagram,

Uαβ × Rk π−1(Uαβ) Uαβ × Rk

Uαβ Uαβ Uαβ

p1

Φβ◦Φ−1

α

π

Φα Φβ

p1
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where we have used Uαβ as a shorthand for the intersection Uα ∩ Uβ . Since
both Φ’s are diffeomorphisms, the map Φβ ◦ Φ−1

α is well-defined, and sends
(u, r) 7→ (u, gαβ(u)(r)), where the map gαβ maps each element u of Uαβ to
some linear transformation13 on Rk. The maps gαβ are known as transition
functions, and are similar to the transition maps of compatible charts of a
smooth manifold (cf. Def. A.1). We also have the following useful result, which
allows to construct vector bundles from local data.

Lemma A.14 (Bundle Chart Lemma). Let M be a smooth manifold, and
suppose that for each p in M we are given a real-valued vector space Ep of
some fixed dimension k. Let E :=

⊔

pEp, and let π : E → M be the map
that takes each element of Ep to the point p. Suppose furthermore that we are
given the following data:

1. an open cover {Uα}α∈A of M
2. for each α ∈ A, a bijection Φα : π−1(Uα) → Uα × Rk whose restriction to

each Ep is a vector space isomorphism from Ep to {p} × Rk

3. for each α, β ∈ A with Uαβ 6= ∅, a smooth map gαβ : Uαβ → GLk(R) such
that the map Φα ◦ Φ−1

β from Uαβ to itself has the form Φα ◦ Φ−1
β (p, v) =

(p, gαβ(p)(v)).

Then E has a unique topology and smooth structure making it into a vector
bundle over M , with π as its projection map, and (Uα, Φα) as local trivialisa-
tions.

Proof. See [20, Lem. 10.6] for the full proof. Note that nowhere is the Haus-
dorff property used (except when it is shown that E is Hausdorff, provided
M is). ⊓⊔

We will now define the notion of a section of a bundle. This is fairly
straightforward – a section of a vector bundle E is formed by smoothly choos-
ing a single element from each fibre Ep, as in Figure A.3. Formally, sections
are defined as follows.

Definition A.15. Let E be a vector bundle over M . A section is a smooth
map s : M → E such that π ◦ s = idM . We denote the space of all sections of
E by Γ (E).

A section is essentially a smooth right-inverse of the projection map π.
This means that it assigns to every p in M some vector v in Ep, in a smooth
manner. Sections are pretty useful objects, we will see that they can be used
to define smooth fields of objects on a manifold.

13 Actually, it is a map gαβ : Uαβ → GLk(R), where GLk(R) is the general linear

group of degree k over R. This is the set of all invertible k×k matrices with entries
in R, and is a Lie group. The Lie group associated to the maps gαβ is known as
the structure group of the bundle E.
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M

E

q

Eq

s

p

Ep
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Er

s(M)

Fig. A.3: A smooth section s of E

We complete this section by discussing what it means for a map between
bundles to be structure-preserving. Such maps are called bundle morphisms,
and are defined as follows.

Definition A.16. Let f : M → N be a smooth map, and let (E, πE ,M) and
(F, πF , N) be vector bundles. A smooth map g : E → F is said to be a bundle
morphism covering f iff the diagram

E F

M N

πE

g

πF

f

commutes, and g is a fibrewise linear map.

Observe that a bundle morphism is a smooth map (i.e. a morphism of mani-
folds) and a linear map (i.e. a morphism of vector spaces) once restricted to
fibres. The requirement that the map covers f amounts to requiring that g
maps each fibre Ep to Ff(p). We say that g is a bundle isomorphism iff it is
bijective, and its inverse map g−1 is also a bundle morphism. We have the
following useful condition for identifying bundle isomorphisms.

Lemma A.17. Let E and F be vector bundles over the same base manifold
M , and f : E → F be a bundle morphism. If f is bijective, then f is a bundle
morphism.

Proof. Lee leaves this as an exercise (see [20, Prop. 10.26]), and the full proof
can be found in [31, Lem. 5.3.12]. ⊓⊔

A.2.2 The Tangent Bundle

We saw earlier that the tangent space to M is well-defined at every point. It
is possible to define a vector-bundle structure on the set
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TM :=
⊔

p∈M

TpM.

Lee proves this in the Hausdorff case (see [20, Prop. 3.18]), though at no point
is the Hausdorff property used in the proof (except when it is shown that TM
is Hausdorff whenever M is). As such, tangent bundles can still be constructed
without assuming the Hausdorff property.

We should comment on the local trivialisations of the bundle TM . We saw
in Section 5.1.3 that the tangent spaces TpM have as bases the directional
derivatives of the components of a coordinate representation. This allows us
to express the local trivialisations as follows. Suppose we have some point p
in M and a chart (U,ϕ) for M at p, and consider the coordinate functions
ϕi : U → R. The map Φ : π−1(U) → U × Rn is defined by

Φ(v) = Φ

(

vi
∂

∂ϕi

)

= (p, v1, ..., vn).

In fact, we can go one step further and use the map Φ to describe a chart for
TM using π−1(U), by mapping (p, vi

∂
∂ϕi ) 7→ (ϕ1(p), ..., ϕn(p), v1, ..., vn).

It is also possible to define the differential of a smooth map f : M → N
using the pointwise differentials dfp. The differential of f is denoted by df ,
and is defined as

df(p, v) = (f(p), dfp(v)).

We have the following useful facts about the differential map.

Proposition A.18. Let f : M → N and g : N → L be smooth maps. Then

1. df : TM → TN is a bundle morphism covering f
2. d(g ◦ f) = dg ◦ df
3. If f is a diffeomorphism then df is a bundle isomorphism, with (df)−1 =
d(f−1).

4. If f : M → N is a diffeomorphism then df : TM → TN is a bundle
isomorphism.

Proof. See [20, Prop. 2.12] and thereafter. ⊓⊔

A.2.3 The Bundle of Bilinear Forms

Recall that a bilinear form on a real-valued, k-dimensional vector space V is
a binary map α : V × V → R, such that:

α(u+ v, w) = α(u,w) + α(v, w)

α(u, v + w) = α(u, v) + α(u,w)

α(r · u, v) = r · α(u, v) = α(u, r · v)
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for every u,w, v ∈ V and r ∈ R. We will denote the space of all bilinear forms
on V by T 2(V ∗).14 The space T 2(V ∗) can be turned into a vector space using
the operations of pointwise addition and scalar multiplication of functions.15

The dimension of the space T 2(V ∗) is equal to k2, with a natural basis given
by the collection {ǫi ⊗ ǫj | i, j ≤ n}, where {ǫi}

n
i=1 forms a basis for the dual

space V ∗.16

In order to eventually define what it means for a smooth manifold M to
be a spacetime, we will need to discuss the bilinear forms built from elements
TM . In this case, we can use the fibres T 2(T ∗

pM) and apply the Bundle chart
lemma to equip the set

T 2(T ∗M) :=
⊔

p∈M

T 2(T ∗
pM)

with a vector bundle structure. The exact details of this construction are
not too important for our purposes, though we will remark that the local
trivialisations of T 2(T ∗M) are given by:

Φ(p, α) = Φ(p, rijdϕ
i ⊗ dϕj) = (p, r11, ..., r1n, ..., rn1, ..., rnn),

where we here we denote by dϕi the dual-basis element associated to the
directional derivative ∂/∂ϕi. Local charts of the bundle T 2(T ∗M) are then
given by:

π−1(U) 7→ U × Rn
2

7→ ϕ(U) × Rn
2

in the obvious way, and the resulting space T 2(T ∗M) becomes a vector bundle
of rank n2 over M .17

Given a smooth map f between smooth manifolds M and N , there is a
natural sense in which (some of) the bilinear forms on N can be transferred
to M . Suppose we have some element of the form (f(p), α) in T 2(T ∗

f(p)N). We

can then define the object f∗α in T 2(T ∗
pM) by:

f∗α(v, w) = α(dfp(v), dfp(w))

for all v, w ∈ TpM . Observe that since f is smooth, by Proposition A.10.4 the
images of v and w under the differential dfp are indeed elements of Tf(p)N ,
so this definition makes sense. Moreover, the form f∗α inherits its bilinearity
from α, so (p, f∗α) lies in the fibre T 2(T ∗

pM). We will refer to the object f∗α
as the (pointwise) pullback of α under f .18

14 This space is also commonly denoted as V ∗ ⊗ V ∗, or T (0,2)V , or T 0
2 (V ).

15 That is, we define (α+β)(v, w) := α(v, w)+β(v, w) and (r ·α)(v, w) = r ·α(v, w).
16 The dual space for a vector space V is the set of all linear maps α : V → R. If

{ei} is a basis for V , then the collection {ǫi} of maps defined by ǫi(ej) = 1 iff
i = j and ǫi(ej) = 0 iff i 6= j forms a basis for V ∗.

17 When viewed as a smooth manifold, T 2(T ∗M) is of dimension n+ n2.
18 There is a sense in which fields of bilinear forms (and in general, covariant tensor

fields) can be pulled back along a smooth map – see [20] Chpt. 12 for more details.
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There is also a sense in which the pointwise pullback has a restricted dual.
In the case where M and N have the same dimension and f is a smooth
embedding (which by Lemma A.12 means that M and f(M) are diffeomor-
phic), we can also push bilinear forms of M forward into N . Given some
(p, β) ∈ T 2(T ∗

pM), we can define the map f∗β to act as:

f∗β(v, w) = β(v′, w′), where v = dfp(v
′) and w = dfp(w

′).

Observe that whenever f is a diffeomorphism, the pointwise differential dfp is
a bijection (see Prop. A.10.4), and since f(M) is a submanifold of the same
dimension as N , we can use the maps as in the proof of Lemma A.12 to
conclude that every element of the tangent space Tf(p)N is of the form dfp(v)
for some vector v in TpM , and thus f∗β is a well-defined bilinear form that
lives in the fibre T 2(T ∗

f(p)N). We have the following facts about pointwise
pullbacks and pushforwards.

Lemma A.19. Let f : M → N and g : N → P be smooth embeddings, with
dim(M) = dim(N) = dim(P ), and let α, β and δ be elements of the fibres
T 2(T ∗

pM), T 2(T ∗
f(p)N) and T 2(T ∗

g◦f(p)P ) respectively.

1. (idM )∗α = (idM )∗α = α
2. f∗α = (f−1)∗α
3. f∗β = (f−1)∗β
4. (f∗ ◦ g∗)δ = (g ◦ f)∗δ
5. f∗(f∗α) = α
6. g∗ ◦ f∗(α) = (g ◦ f)∗α

We saw in Proposition A.18 that whenever f : M → N is a smooth map,
the map df (defined fibrewise as the pointwise differential maps dfp) becomes
a smooth bundle morphism from TM to TN . Similarly, we can also define a
map that acts on fibres as the pointwise pullback (pushforward) does. Just as
the differential map associated to a diffeomorphism is a bundle isomorphism
between tangent bundles, there is an associated result for the bundle of bilinear
forms.

Lemma A.20. If f : M → N is a diffeomorphism, then the bundles T 2(T ∗M)
and T 2(T ∗N) are isomorphic.

We remark that in the proof of the above result, the isomorphism is given by
the map ξ : T 2(T ∗M) → T 2(T ∗N) defined by ξ−1(p, α) = (f(p), f∗α). This
will be important in Section 7.1, when we adjoin bundles of bilinear forms.

A.2.4 Restrictions and Pullbacks

We saw in the previous section that in some cases, it is possible to transfer
some objects from bundle-to-bundle along a smooth map between the base
manifolds. This idea can be taken a step further, and we can actually transfer
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(part of a) vector bundle’s structure along a smooth map. Given a smooth
map f : M → N and a vector bundle (F, πF , N), we can define a new bundle
over M by restricting the structure of F to the fibres that cover f(M). This
is called a pullback bundle, and is commonly denoted by f∗F . The fibres are
given by (f∗F )p = Ff(p). The formal definition is as follows.

Definition A.21. Let f : M → N be a smooth map and (F, πF , N) a vector
bundle. The pullback bundle has as elements:

f∗F := {(m,u) ∈ M × F | f(m) = πF (u)},

and the projection map of f∗F is given by the projection onto the first factor.

We also make the following useful observation.

Proposition A.22. Let f : M → N be a smooth map, and (F, πF , N) a
vector bundle. The map p2 : f∗F → F is a bundle morphism, and p2 is an
isomorphism whenever f is a diffeomorphism.

It can also be shown (see Prop. A.14) that every bundle morphism g : E → F
that covers the map f has to factor through the pullback bundle f∗F , i.e. for
every such g there is a unique morphism h : E → f∗F such that the following
diagram commutes.

E f∗F F

M M N

πE

g

h

p1

p2

πF

f

Given a vector bundle (E, π,M) and an embedded submanifold A of M ,
we can restrict the bundle E to A by pulling E back along the inclusion map
ι : A → M (which is smooth by definition). We will denote this bundle by E|A,
instead of ι∗E. The bundle (E|A, π|A, A) is then called a restricted bundle. In
the special case that A is an open submanifold of M , we have the following
useful observation.

Lemma A.23. If A is an open submanifold of M and E a vector bundle over
M , then the restricted bundle E|A is an open submanifold of E.

The next result will be needed in Chapter 6, when we glue tangent bundles
together.

Proposition A.24 (†). If M is Hausdorff and A an open submanifold, then
TA is isomorphic to TM |A.

Proof. The full argument can be found as [20, Prop. 3.9], and is proved using
partitions of unity, so we will not assume that the same result holds in the
non-Hausdorff case. ⊓⊔
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We will also follow the convention of Lee and identify the bundles TA and
TM |A whenever A is an open submanifold of M (and when M and A are
Hausdorff, of course). Our final result of this section is a generalisation of
Lemma A.17.

Lemma A.25. If g : E → F is a bijective bundle morphism covering a dif-
feomorphism f : M → N , then g is a bundle isomorphism.

A.3 Lorentzian Manifolds and Spacetimes

We complete this chapter by defining just what it means for a smooth manifold
to be a spacetime. We will start by defining Lorentzian metrics on a manifold.
After this we will define time-orientations and spacetimes, and finally we will
discuss some elements of causality theory.

A.3.1 Lorentzian Manifolds

We will first define what it means for a smooth manifold to be Lorentzian. In
order to do this, we need to define a pseudometric field on M which locally
mimics the behaviour of the pseudometric η. We saw back in Section 1.1 that
η is a symmetric, non-degenerate bilinear form that acts on elements x and y
of Mn as

η(x, y) = −x0y0 + x1y1 + ...+ xn−1yn−1.

Although we didn’t mention it at the time, the metric η is actually acting on
the tangent vectors of Mn, but since each tangent space TxR

n is canonically
isomorphic to Rn, the identification TxR

n ∼= Rn is implicitly made. Observe
that the pseudometric η has a signature of (−,+, ...,+).19

A Lorentzian metric is a generalisation of η to the smooth-manifold setting.
Intuitively speaking, Lorentzian metrics are defined to be a smooth field of bi-
linear forms, that possess the same local properties as η. Formally, Lorentzian
metrics are defined as follows.

Definition A.26. A Lorentzian metric on a smooth manifold M is a section
g of the bundle T 2(T ∗M) that is everywhere symmetric and non-degenerate,
with signature (−,+, ...,+).

19 Recall that the signature of a matrix B is the tuple consisting of the signs of the
non-zero entries of the diagonalised version of B. In the case of η, the matrix
representation is

η =









−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1









and thus the signature of η is (−,+, ...,+).
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It can be shown that the signature of a Lorentzian metric g is constant
throughout the manifold.20 We will typically denote Lorentzian manifolds by
(M, g), though we will abbreviate this to simply M where the context is clear.
We will also causally refer to the metric g as the “Lorentzian structure” of M .

We will now discuss the embeddings of the Lorentzian world. For a map
f : M → N between Lorentzian manifolds to be structure preserving, it has
to preserve topological and smooth structures of M , as well as the behavior
of the Lorentzian metric g. Such maps are called isometric embeddings, and
they are defined as follows.

Definition A.27. Let (M, gM ) and (N, gN ) be Lorentzian manifolds. A map
f : M → N is called an isometric embedding iff f is a smooth embedding and
additionally

gM (v, w) = gN (dfp(v), dfp(w))

for every v, w in TpM and p in M .

In the case that f is a diffeomorphism from M to N , then f is called an
isometry, and we will refer to M and N as isometric. We finish this section
with the following observation, which will be useful in Chapter 7.

Lemma A.28. Isometries preserve the signature of metrics.

Proof. Suppose that f : M → N is an isometry, and let (U,ϕ) be a chart of
M at p. As in the proof of Lemma A.20, since f is a diffeomorphism we can
always pick a local representation of gM and gN that have the same coefficient
matrix. Since the signature of these metrics is independent from the choice of
local expression, we are done. ⊓⊔

A.3.2 Time-Orientations

We will now define what it means for a Lorentzian manifold to be time-
oriented. We start by fixing a Lorentzian manifold (M, gM ), and an element
p in M . In a manner similar to Definition 1.1, we define a tangent vector v in
TpM to be:

• timelike iff gM (v, v) < 0,
• lightlike iff gM (v, v) = 0, and
• spacelike iff gM (v, v) > 0.

We can then define two timecones of TpM , by considering an arbitrary timelike
vector v and defining the sets:

C(v) := {u ∈ TpM | gM (u, u) < 0 and gM (v, u) < 0}

20 This is a consequence of Sylvester’s Theorem, which says that the signature of a
matrix is invariant under change of basis. See [20, Pg. 343] for more.
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C(−v) := {u ∈ TpM | gM (u, u) < 0 and gM (v, u) > 0}

It can be shown (e.g. [32, Pg. 143-5]) that the set of timelike vectors of TpM
is equal to the disjoint union of these two sets.21

Denote by MT the collection of all timecones of all elements of M , and
suppose we have some map τ : M → MT such that for each p in M , the map
τ chooses one of the timecones of TpM . We will call this choice smooth if for
every p ∈ M , there is some neighbourhood U and a vector field X on U such
that X(q) ∈ τ(q) for every q ∈ U . A time-orientation is then defined to be a
smooth choice of timecone at each point p in M . We also have the following
equivalent characterisation.

Lemma A.29 (†). Let M be a Hausdorff manifold. Then M is time-oriented
iff there exists a globally-defined timelike vector field X on M .

Proof. See [32, Lem. 32] for the proof. The direction from right-to-left is
straightforward, but the other direction is an argument involving a parti-
tion of unity, so the same result may not hold in general for non-Hausdorff
manifolds. ⊓⊔

Given the above result, some authors simply define a time-orientation to
be the globally-defined timelike vector field. However in the non-Hausdorff
case, it might not true that such an equivalence holds. This will cause a slight
inconvenience in Section 7.1 when we define a time orientation on our adjoined
manifolds.

One might be wondering how isometries interact with time-orientations.
It is not true in general that isometries preserve time-orientations.22 This
motivates the following definition.

Definition A.30. Let f : M → N be an isometry between time-oriented
Lorentzian manifolds. We say that f preserves time-orientation if for every p
in M , the differential dfp maps τM (p) to τN (f(p)).

Remark A.31 (†). Suppose we have two time-oriented, Hausdorff Lorentzian
manifolds M and N , with time-orientations τM and τN respectively. We know
from Lemma A.29 that a time-orientation can be characterised by a globally-
defined timelike vector field, so there are vector fields X on M and Y on N
characterising τM and τN resp. If f : M → N preserves time-orientation, the
differential df maps τM (p) to τN (f(p)). Since f is a diffeomorphism, we can
define the pushforward f∗X by:

21 We have seen this before – in the case of Minkowski spacetime, the timecone is
simply the interior of the lightcones pictured in Fig. 1.1.

22 As a counterexample, consider the map that takes each element (x0, x1, ..., xn−1)
of Mn to (−x0, x1, ..., xn−1). This map is clearly an isometry, but it reverses the
time-orientation of Mn.
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f∗X(p) = dfp(X(p)),

and this is a globally-defined vector field on N . Since f is an isometry, f∗X
is timelike in N . So, if f preserves time-orientation, then at every point in N ,
the pushforward f∗X lies in the same timecone as Y . Figure A.4 depicts this
idea.

p

Xp

f(p)

f

dfp

M
N

Yf(p) f∗(Xp)

Fig. A.4: An isometry f : M → N that preserves time-orientation. At every
point p, the vector f∗(Xp) lies in the same timecone as Yf(p).

We are now in the position to fix a definition of a spacetime.

Definition A.32. A spacetime is a Lorentzian manifold (M, g) that is con-
nected and time-oriented.

The requirement that M be connected is used as an enjoyable convention,
and we see no reason to neglect it. Before moving on to causal properties
of spacetimes, we will briefly mention what it means for a spacetime to be
locally flat. Roughly speaking, in the same way that smooth manifolds are
locally Euclidean, locally flat spacetimes are Lorentzian manifolds that are
locally Minkowskian, as pictured in Figure A.5. This means that at every
point p in a locally-flat spacetime (M, g), there is a chart (U,ϕ) such that
ϕ : U → Mn is an isometric embedding that preserves time-orientations.23

Elements of Causality Theory

We will finish this chapter with a brief introduction of causality theory, which
deals with the causal properties of spacetimes. Of course, there is a large
amount that we simply cannot cover – the interested reader is invited to look

23 This is found as [33, Def. 2.1], and is defined for Hausdorff spacetimes, however
the same definition also works for our not-necessarily-Hausdorff spacetimes.
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(M, g)
(Mn, η)

Fig. A.5: The intuition behind a locally-flat spacetime (M, g).

at the excellent survey by Minguzzi and Sanchez [23] for more information on
causality theory. Most of our definitions are taken directly from this paper,
and some from the first few chapters of [22]. Throughout this section we will
assume that (M, g) is a spacetime.

We start by defining the causal orderings of (M, g), as we did for Minkowski
spacetimes in Section 1.1. Given two points p and q in M , we say that p
causally (temporally) precedes q, written p ≤g q (p ≪g q), if there is a future-
directed, causal (timelike) curve γ connecting p to q. Clearly p ≪g q implies
that p ≤g q. We can then define the causal future/past of a point/set as in
Definition 1.2.

Definition A.33. Let p be a point in M , and S ⊆ M .

• The causal future of p is the set J+(p) := {q ∈ M | p ≤g q},
• The temporal future of p is the set I+(p) := {q ∈ M | p ≪g q},
• The horismotic future of p is the set E+(p) := J+(p)\I+(p),
• The causal future of S is the set J+(S) := {q ∈ M | ∃p ∈ S(p ≤g q)},
• The temporal future of S is the set I+(S) := {q ∈ M | ∃p ∈ S(p ≪g q)},
• The horismotic future of S is the set E+(S) := J+(S)\I+(S).

We define the causal, temporal and horismotic past analogously, and denote
them by J−(·), I−(·) and E−(·) respectively.

We will now show that any isometry f : M → N that preserves time
orientation will also preserve the causal orders of M and N .

Lemma A.34. If an isometry preserves time-orientation, then it preserves
the causal ordering.

Proof. let f : M → N be an isometry that preserves time-orientation, and
suppose that p ≤M q. Then there is a future-directed, timelike curve γ :
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[0, 1] → M . Thus f ◦ γ : [0, 1] → N is a curve connecting f(p) to f(q). Since
f preserves time-orientation, the curve f ◦ γ is future-directed. Since f is an
isometry, f ◦ γ is also timelike. Indeed, let f(r) ∈ f ◦ γ. Then:

gN ((f ◦ γ)′(t), (f ◦ γ)′(t)) = gN (df(γ′(t)), df(γ′(t))) = gM (γ′(t), γ′(t))

A symmetric argument proves the other direction. ⊓⊔

We will finish our discussion by introducing some causally well-behaved
spacetimes. There are a number of conditions one might impose on a class of
spacetimes in order to manage causal properties. These are known as causality
conditions, and as it turns out these conditions form a hierarchy. We will fo-
cus on three causality conditions, namely causality, stable causality and global
hyperbolicity.

We say that a spacetime (M, g) is causal if it contains no closed timelike
curves.24 Observe that this is equivalent to asserting that the causal order
≤g is anti-symmetric. Roughly speaking, a spacetime (M, g) is stably causal
iff it is causal, and for every Lorentzian metric g′ “close” to g, the spacetime
(M, g′) is also causal.25 This means that the lightcones of a stably-causal
spacetime can be continuously deformed by a small amount, and the resulting
cones will still contain no CTCs. The precise formulation of stable causality is
not too important for us, so we will focus on the characterising property that
stably-causal spacetimes possess a global time function. These are defined as
follows.

Definition A.35. Let (M, g) be a spacetime and f : M → R a smooth func-
tion. Then f is called a global time function if it is monotone with respect to
the temporal ordering ≪g, that is, if p ≪g q, then f(p) ≤ f(q) in R.

It can be show (see [23, Thm. 3.56]) that in the Hausdorff setting, stable
causality is equivalent to the existence of a global time function.26 Our final
causality condition is global hyperbolicity, which is defined as follows.

Definition A.36. A spacetime (M, g) is called globally-hyperbolic iff it is
causal, and the causal diamonds J+(p) ∩ J−(q) are all compact.

Famously, Geroch [34, Thm. 11] showed that global hyperbolicity is equiva-
lent to the existence of a Cauchy surface, which is a spacelike hypersurface that

24 Here by “closed” we mean a curve γ : [0, 1] → M whose endpoints are mapped to
the same point p in M .

25 This proximity of Lorentzian metrics is defined by topologizing the space Lor(M)
of Lorentzian metrics on M .

26 Actually, Minguzzi/Sanchez prove this result for “temporal functions”, which are
defined to be smooth functions whose gradient is everywhere past-directed and
timelike (see [23, Def 3.48]). However, as the remarks after Def 3.48 confirm, these
temporal functions are also global time functions.



A.3 Lorentzian Manifolds and Spacetimes 117

is deterministic in the sense that from the initial conditions on the Cauchy sur-
face, one can determine the past and future of the whole spacetime uniquely.
We finish this chapter with a celebrated result regarding global hyperbolicity,
namely Geroch’s Splitting Theorem, which connects the causal structure of M
to its global topological structure (see [34, Prop. 7] for the proof).

Theorem A.37 (Geroch’s Splitting Theorem). Let (M, g) be a globally-
hyperbolic (Hausdorff) spacetime. Then M is homeomorphic to the product
S × R, where S is a Cauchy surface of M .
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Appendix: Proofs

B.1 Proofs from Section 3.1

B.1.1 Proof of Lemma 3.4

Proposition B.1. φX is injective iff f is injective.

Proof. Suppose that f is injective, and let x, x′ ∈ X be distinct. Without
loss of generality we can assume that x, x′ are elements of A, since otherwise
the result is trivial1. Since f is injective it has a right inverse, i.e. a map
f−1 : f(A) → A such that f−1(f(a)) = a for each a in A. Following the
description of the equivalence classes given above, for each a ∈ A, the mapping
under φX is given by:

φX(a) = [a, 1] = {(a, 1), (f(a), 2)}

It is not hard to see that any distinct element a′ cannot be mapped to this
equivalence class.

For the converse direction, suppose that f is not injective. Then there is
some a, a′ such that f(a) = f(a′). Hence:

φX(a) = [a, 1] = {(a, 1), (a′, 1), (f(a), 2)} = [a, 2] = φX(a′)

It follows that φX is also not injective. By contraposition our result follows.
⊓⊔
⊓⊔

Lemma B.2. If A is open in X then φY is an open map.

Proof. Let U be open in Y . From the previous proposition we know that
φY (U) is open in X ∪f Y iff both φ−1

X (φY (U)) and φ−1
Y (φY (U)) are open in

X and Y respectively. The latter is open, since φY is always an injection, we

1 If x ∈ X\A then φX(x) = [x, 1] = {(x, 1)}
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have that φ−1
Y (φY (U)) = U . So, it suffices to show that φ−1

X (φY (U)) is an
open subset of X. It is not hard to see2 that:

φ−1
X (φY (U)) = {x ∈ X | φX(x) ∈ φY (U)} = {a ∈ A | f(a) ∈ U}

Put differently, φ−1
X (φY (U)) = f−1(U). Since f is a continuous map and

U open, the set f−1(U) is open in A. Since A is equipped with the subspace
topology, this is the case iff f−1(U) = A ∩ V where V is some open set in X.
By assumption, A is open in X and thus f−1(U) is the intersection of open
subsets of X, so is also open in X. It follows that φY (U) is open in X ∪f Y .
Since U was arbitrary, we can conclude that φY is an open map. ⊓⊔

Lemma B.3. If A is open in X and f is an open map, then φX is an open
map.

Proof. Let U be an open subset of X, and consider φX(U) ⊂ X ∪f Y . As in
the previous lemma, in order to show that φX(U) is open in the adjunction
space, it suffices to show that the preimages of φX(U) under φX and φY are
open in their respective spaces.

Consider first φ−1
X (φX(U)). Observe3 that:

φ−1
X (φX(U)) = {x ∈ X | φX(x) ∈ φX(U)}

= U ∪ {a ∈ A | ∃u ∈ U ∩A(f(u) = f(a)}

= U ∪ f−1(f(A ∩ U))

We show that f−1(f(A ∩ U)) is open in X. Observe that since U is open
in X, the set A ∩ U is open in A. By assumption, f is an open map, hence
f(A∩U) is open in Y . Since f is continuous, f−1(f(A∩U)) is open in A, i.e.
f−1(f(A ∩ U)) = A ∩ V for some V open in X. By assumption, A is open in
X and thus f−1(f(A ∩ U)) is open in X. We can conclude from all this that
φ−1
X (φX(U)) is open in X.

Consider now the set φ−1
Y (φX(U)). Observe4 that:

2 Something like: a ∈ f−1(U) implies f(a) ∈ U so φX(a) = φY (f(a)) implies that
φX(a) ∈ φY (U), hence a ∈ φ−1

X (φY (U)). Conversely, x ∈ φ−1
X (φY (U)) implies

that φX(x) ∈ φY (U), so there is some u ∈ U such that φX(x) = φY (u), and this
is only the case if x ∈ A and f(x) = u, i.e. x ∈ f−1(u) ⊆ f−1(U).

3 If x ∈ φ−1
X (φX(U)) then φX(x) = φX(u) for some u ∈ U . If x /∈ U , this can

only be the case if x and u are in A and f(x) = f(u), i.e. x ∈ f−1(f(u)). Since
u ∈ A∩U , we get that x ∈ f−1(f(A∩U)). Conversely, x ∈ f−1(f(A∩U)) implies
that f(x) = f(u) for some u ∈ A∩U . Hence [x, 1] = {(f(x), 2)} ∪ {(a, 1) | f(a) =
f(x)} = [u, 1], hence φX(x) = φX(u) and thus x ∈ φ−1

X (φX(u)) ⊆ φ−1
X (φX(U)).

4 If y ∈ φ−1
Y (φX(U)) then φY (y) = φX(u) for some u ∈ U , which can only be the

case if u ∈ A and u ∈ f−1(y). Hence f(u) = y and y ∈ f(A∩U). Conversely, y ∈
f(A∩U) implies there is some u ∈ A∩U such that f(u) = y. In particular, u ∈ A,
hence φX(u) = φY (f(u)) = φY (y). So since φY is injective, y = φ−1

Y (φX(u)) ⊆
φ−1

Y (φX(U)).
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φ−1
Y (φX(U)) = {y ∈ Y | ∃u(u ∈ U ∧ φY (y) = φX(u))}

= {y ∈ Y | ∃u(u ∈ U ∩A ∧ f(u) = y)}

= f(A ∩ U)

Since U is open in X, the set U ∩A is open in A. By assumption, f is an open
map, hence f(A ∩ U) is an open set in Y .

We can conclude that φX(U) is open in X ∪f Y , and thus φX is an open
map. ⊓⊔

Lemma B.4. If f is injective and open, then φX is open.

Proof. Let U ⊆ X and consider φX(U). Since f is injective, it follows from
Prop. A.1 that φX is also injective, and thus φ−1

X (φX(U)) = U , which is clearly
open in X. Consider now φ−1

Y (φX(U)). We can as in the previous lemma to
conclude that φ−1

Y (φX(U)) is open. It follows that φX is an open map. ⊓⊔

Lemma B.5. φY is always a topological embedding.

Proof. Since φY is injective, the restriction to its image is a bijection. Simi-
larly, the restriction of a continuous map to its image is also continuous5 and
thus it suffices to show that φY is homeomorphic onto it’s domain, i.e. the
map φY : Y → φY (Y ) is open.

Let U be an open subset of Y . Since φY (Y ) is equipped with the subspace
topology, in order to show that φY (U) is open in φY (Y ), we need to show that
φY (U) = φY (Y )∩V , where V is some open subset of X ∪f Y . Observe that U
is open in Y and f is continuous, so the preimage f−1(U) is open in A. Since
A is equipped with the subspace topology, this means that f−1(U) = A∩W ,
where W is some open set in X.

We now argue that the set φX(W ) ∪ φY (U) suffices as our choice for V .
Note first that:

φY (Y ) ∩ (φX(W ) ∪ φY (U)) = (φY (Y ) ∩ φX(W )) ∪ (φY (Y ) ∩ φY (U))

= (φY (Y ) ∩ φX(W )) ∪ φY (U)

Let z ∈ φX(W )∩φY (Y ). Then z = φX(w) for some w ∈ W , and z = φY (y)
for some y ∈ Y . This can only be the case if w ∈ A and f(w) = y. Since
w ∈ A, it follows that w ∈ A ∩ W = f−1(U), hence f(w) ∈ U , and thus
z = φY (y) = φY (f(w)) ∈ U . We can conclude that φX(W ) ∩φY (Y ) ⊆ U , and
thus (φY (Y ) ∩ φX(W )) ∪ φY (U) = φY (U) as required.

We now show that the set φX(W ) ∪ φY (U) is open in X ∪f Y . Observe
first that:

5 Let f : X → Y be any continuous map between topological spaces, and consider
f |X : X → f(X). Let U ⊆ f(X) be open in the subspace topology. Then U =
f(X) ∩V where V is open in Y . The preimage is then (f |X)−1(U) = f−1(f(X) ∩
V ) = X ∩ f−1(V ) = f−1(V ) which is open in X since f is continuous.
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φ−1
X (φX(W ) ∪ φY (U)) = φ−1

X (φX(W )) ∪ φ−1
X (φY (Y ))

= (W ∪ f−1(U)) ∪ f−1(U)

= W

φ−1
Y (φX(W ) ∪ φY (U)) = φ−1

Y (φX(W )) ∪ φ−1
Y (φY (Y ))

= f(W ∩A) ∪ U

= U

Since W and U are open sets of X and Y respectively, it follows from Prop. 3.2
that φX(W )∪φY (U) is open in X ∪f Y . We may thus conclude that φY (U) =
φY (Y ) ∩ (φX(W ) ∪φY (U)) is open in the subspace topology φY (Y ). Since we
picked an arbitrary open set U of Y , it follows that the map φY : Y → φY (Y )
is an open map, and thus is a homeomorphism as required. ⊓⊔

Lemma B.6. If f is an injective open map, then φX is a topological embed-
ding.

Proof. Note first that since f is by assumption an injection, it follows from
Prop. A.1 that φX is also injective. Since φX is continuous, it is continuous
once restricted to its image. So, it suffices to show that φX is homeomorphic
onto its image.

Let U ⊆ X be an open set. We want a set V such that φX(U) = φX(X)∩V .
The set V := φX(U) ∪ φY (f(U ∩A)) will suffice. Observe first that:

φX(X) ∩ (φX(U) ∪ φY (f(U ∩A))) = ... = φX(U) ∪ (φX(X) ∩ φY (f(U ∩A)))

Let z ∈ φX(X) ∩ φY (f(U ∩ A)). Then there is some x ∈ X and some
y ∈ f(U ∩ A) such that φX(x) = z = φY (y). This can only be the case if
f(x) = y and since y ∈ f(U ∩ A), it must be the case that x ∈ U . It follows
that z ∈ φX(U) and thus φX(X) ∩ φY (f(U ∩ A)) is a subset of U , whence
φX(U) = φX(X) ∩ V .

We now show that V is open in X ∪f Y , i.e. φ−1
X (V ) and φ−1

Y (V ) are open
in X and Y respectively.

Consider first φ−1
X (V ). Observe:

φ−1
X (φX(U) ∪ φY (f(U ∩A))) = φ−1

X (φX(U)) ∪ φ−1
X (φY (f(U ∩A)))

= U ∪ f−1(f(A ∩ U))

= U ∪ (A ∩ U)

= U

Where in the second and third lines we use that φX and f are injective. Since
U is open, we may conclude that φ−1

X (V ) is open. Now observe that:

φ−1
Y (φX(U) ∪ φY (f(U ∩A))) = φ−1

Y (φX(U)) ∪ φ−1
Y (φY (f(U ∩A)))

= f(A ∩ U) ∪ f(A ∩ U)

= f(A ∩ U)
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Since U is open, the set A∩U is an open set the subspace topology on A. Since
we assumed that f is an open map, it follows that the set f(A∩U) = φ−1

Y (V )
is open in Y .

We may conclude that V is open in X∪f Y , and since φX(U) = V ∩φX(X),
it follows that φX(U) is open in φX(X) equipped with the subspace topology.
As such, φX is an open map onto φX(X), and thus φX : X → X ∪f Y is a
topological embedding. ⊓⊔

B.1.2 Proof of Lemma 3.6

Proposition B.7. Let BX and BY be bases for X and Y respectively. If
φX and φY are open maps, then the collection B = {φX(U) | U ∈ BX} ∪
{φY (V ) | V ∈ BY } forms a basis for the adjunction topology τA.

Proof. It suffices to show that B consists of open sets, and that every open
set in X ∪f Y can be represented as a union of elements of B. To see that
B consists of open sets, we can appeal to our assumption that the canonical
maps φX and φY are open. Since every element U of BX is open in X, it
follows that φX(U) is open in X ∪f Y . The case for Y is similar. Thus B
consists of open sets.

Suppose now that W is an open set in X ∪f Y . By Prop. 3.2, the sets
φ−1
X (W ) and φ−1

Y (W ) are open in X and Y , respectively. As such, these preim-
ages can be represented as unions of basis elements, i.e.

φ−1
X (W ) =

⋃

i∈I

Ui and φ−1
Y (W ) =

⋃

j∈J

Vj

where each Ui ∈ BX and each Vj ∈ BY . Since for any6 subset Z ⊆ X ∪f Y it
is the case that Z = φX(φ−1

X (Z)) ∪ φY (φ−1
Y (Z)), it follows that:

W = φX(φ−1
X (W )) ∪ φY (φ−1

Y (W ))

= φX

(

⋃

i∈I

Ui

)

∪ φY





⋃

j∈J

Vj





=

(

⋃

i∈I

φX(Ui)

)

∪





⋃

j∈J

φY (Vj)





and thus W is a union of members of B. We can conclude that B is indeed a
basis. ⊓⊔

6 Since X ∪f Y = φX(X) ∪ φY (Y ), any subset Z of X ∪f Y can be represented as
Z = (Z ∩ φX(X)) ∪ (Z ∩ φY (Y )). Since φX is a surjective map once restricted
to its image, it has a right-inverse φ−1

X . In this case, φX(φ−1(W )) = W for
any subset W ⊆ φX(X). In particular, Z ∩ φX(X) is a subset of φX(X), so
Z ∩ φX(X) = φX(φ−1

X (Z ∩ φX(X))) = ... = φX(φ−1
X (Z)) ∩ φX(φ−1

X (φX(X))) =
φX(φ−1

X (Z)) ∩φX(X) = φX(φ−1
X (Z)). The case for φY is similar, and we then get

Z = (Z ∩ φX(X)) ∪ (Z ∩ φY (Y )) = φX(φ−1
X (Z)) ∪ φY (φ−1

Y (Z)).
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Lemma B.8. If X,Y are connected and A is non-empty, then X ∪f Y is
connected.

Proof. Suppose towards a contradiction that X∪f Y is disconnected, i.e. there
exist disjoint open sets U, V of X∪f Y such that U, V are both non-empty and
cover X ∪f Y . Consider φ−1

X (U) and φ−1
X (V ). By assumption, these sets are

open in X, and since pre-images preserve disjointedness7, they are disjoint.
It is also the case that they cover8 X, in order to preserve the connectedness
of X, it must be the case that either φ−1

X (U) or φ−1
X (V ) is empty. Without

loss of generality suppose that φ−1
X (U) = ∅. It follows from φ−1

X (V ) = X that
φX(X) ⊆ V and, since φX(A) = φY (f(A)), that f(A) ⊆ φ−1

Y (V ). Since we
have assumed that A is non-empty, this means that φ−1

Y (V ) is also non-empty.
However, in order to preserve the connectedness of Y , it cannot be the case
that φ−1

Y (U) is also non-empty. We have thus arrived at our contradiction -
if φ−1

Y (U) = ∅, then φY (Y ) ⊆ V , and thus X ∪f Y = φX(X) ∪ φY (Y ) ⊂ V ,
contradicting U as a non-empty set9. ⊓⊔

Lemma B.9. If both X and Y are compact, then so is X ∪f Y .

Proof. It is well-known that the disjoint union of two (or, finitely-many) com-
pact spaces is again compact, and that the quotient of a compact space is
compact10. In our context, this means that X⊔Y is compact and thus X∪f Y
is also compact. ⊓⊔

B.2 Proofs from Appendix A

Lemma B.10 (Lemma 5.11). Let f : M → N be a smooth map. Then the
following are equivalent.

1. f is a smooth embedding.
2. f(M) is an embedded submanifold of N , and f acts as a diffeomorphism

from M to f(M).

Proof. The proof of (1 ⇒ 2) is found as [20, Prop 5.2], and the reader may
verify that the Hausdorff property is not used. So, we show (2 ⇒ 1). To begin
with, we denote by g the map from M to f(M). By assumption g : M → f(M)
is a diffeomorphism, so in particular it is a homeomorphism. Also, f is smooth,
thus it is continuous. Hence f : M → N is a topological embedding. It suffices
to show that the maps dfp : TpM → Tf(p)N are all injective. So, let p be
arbitrary, and consider dfp := d(ι ◦ g)p. Since the map g : M → f(M) is

7 Simple enough - φ−1
X (U) ∩ φ−1

X (V ) = φ−1
X (U ∩ V ) = φ−1

X (∅) = ∅
8 φ−1(U) ∪ φX(V ) = φ−1

X (U ∪ V ) = X
9 This proof is a bit weak at the end - we want to say that X ∪f Y = V and thus
U = ∅.

10 This is a corollary of [26, Thm. 3.2.3.].
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a diffeomorphism, by Prop. A.10.4 it follows that dgp : TpM → Tf(p)f(M)
is an isomorphism of vector spaces. In particular, it is injective. Since f(M)
is an embedded submanifold, the inclusion map ι : f(M) → N is a smooth
embedding. Then dfp = d(ι ◦ g)p = dιf(p) ◦ dgp is a composition of injective
maps, so is also injective. Thus f is a smooth embedding. ⊓⊔

Lemma B.11 (Lemma 5.18). Let f : M → N and g : N → P be smooth
embeddings, with dim(M) = dim(N) = dim(P ), and let α, β and δ be ele-
ments of the fibres T 2(T ∗

pM), T 2(T ∗
f(p)N) and T 2(T ∗

g◦f(p)P ) respectively.

1. (idM )∗α = (idM )∗α = α
2. f∗α = (f−1)∗α
3. f∗β = (f−1)∗β
4. (f∗ ◦ g∗)δ = (g ◦ f)∗δ
5. f∗(f∗α) = α
6. g∗ ◦ f∗(α) = (g ◦ f)∗α

Proof. It should be noted from the outset that most of these results follow
immediately from the properties of the pointwise differential maps (cf. Prop.
A.10).

1. (idM )∗α(v, w) = α(d(idM )p(v), d(idM )p(w)) = α(v, w)
2. This is immediate from the definition of the pushforward. Indeed, f∗α(v, w) =
α(v′, w′) where v = dfp(v

′) and w = dfp(w
′). Since f is a diffeomorphism

onto its image, the differential dfp is a bijection, with inverse equal to
(df−1)f(p). This means that v′ = (df−1)f(p)(v) and w′ = (df−1)f(p)(w).
Hence (f−1)∗α(v, w) = α((df−1)f(p)(v), (df−1)f(p)(w)) = α(v′, w′) =
f∗α(v′, w′) as required.

3. By the previous item, (f−1)∗β = ((f−1)−1)∗β = f∗β.
4. For any v, w ∈ TpM , we have:

(f∗ ◦ g∗)δ(v, w) = g∗δ(dfp(v), dfp(w))

= δ(dgf(p) ◦ dfp(v), dgf(p) ◦ dfp(w))

= δ(d(g ◦ f)p(v), d(g ◦ f)p(w))

= (g ◦ f)∗δ

where we have used A.10.3 in the fourth line.
5. f∗(f∗α) = f∗ ◦ (f−1)∗α = (f−1 ◦ f)∗α = id∗

Mα = α.
6. g∗ ◦ f∗ = (g−1)∗ ◦ (f−1)∗ = (f−1 ◦ g−1)∗ = ((g ◦ f)−1)∗ = (g ◦ f)∗

⊓⊔

Lemma B.12 (Lemma 5.19). If f : M → N is a diffeomorphism, then the
bundles T 2(T ∗M) and T 2(T ∗N) are isomorphic.

Proof. We define the map ξ : T 2(T ∗N) → T 2(T ∗M) fibrewise by (q, α) 7→
(p, f∗α), where p = f−1(q) and f∗α is the element of (T 2(T ∗M))p such that
f∗α(v, w) = α(dfp(v), dfp(w)) for all v, w ∈ TpM . It should be clear that the



B.2 Proofs from Appendix A 125

element f∗α is unique, from which we can conclude that ξ is a well-defined
function that covers the inverse map f−1. We will now show that ξ is a smooth,
bijective bundle morphism, since the result will then follow from Lemma A.25.

We start by showing that ξ is a linear map once restricted to fibres. This
is fairly routine – for any two elements β1 and β2 in Tf(p)N , we have:

ξ(β1 + β2)(v, w) = f∗(β1 + β2)(v, w)

= (β1 + β2)(dfp(v), dfp(w))

= β1(dfp(v), dfp(w)) + β2(dfp(v), dfp(w))

= f∗β1(v, w) + f∗β2(v, w)

= ξ(β1)(v, w) + ξ(β2(v, w)

and similarly, for the scalar multiplication we have:

ξ(r · β)(v, w) = f∗(r · β)(v, w) = (r · β)(dfp(v), dfp(w))

= r · (β(dfp(v), dfp(w))) = r · (f∗β(v, w)) = r · ξ(β)(v, w)

for each r ∈ R and β ∈ Tf(p)N .
To see that ξ is injective, suppose that we have two distinct elements α

and β in (T 2(T ∗N))q. If α and β are distinct, then there is are two elements
v′, w′ ∈ TqN such that α(v′, w′) 6= β(v′, w′). Since f is a diffeomorphism, by
Prop. A.10 the differential dfp is a bijection, and thus v and w are of the
form v′ = dfp(v) and w′ = dfp(w) where v, w ∈ TpM . Then: f∗α(v, w) =
α(v′, w′) 6= β(v′, w′) = f∗β(v, w), and thus ξ is injective.

To show surjectivity, suppose that we have some element (p, α) in the fibre
(T 2(T ∗M))p.We define the map β : TqN × TqN → R by β(v′, w′) = α(v, w)
where v′ = dfp(v) and w′ = dfp(w). Note that this is well-defined since the
differential dfp is bijective, and β inherits its bilinearity from α. It is not
hard to see that f∗β = α. Indeed, for arbitrary v, w ∈ TpM , we have that:
f∗β(v, w) = β(dfp(v), dfp(w)) = α(v, w). It follows from this that ξ(q, β) =
(p, f∗β) = (p, α) as required.

So far we have shown that ξ is a well-defined, bijective map that acts
linearly on fibres. We finish the proof by showing that ξ is a smooth map. So,
let p ∈ M and q ∈ N be arbitrary such that f(p) = q. Let (U,Φ) be a local
trivialisation of T 2(T ∗M) at p that is small enough11 so that U also forms a
chart for M . Since f : M → N is a diffeomorphism, the tuple (f(U), ϕ ◦ f−1)
forms a chart for N at q. Without loss of generality we can pick a local
trivialisation (V, Ψ) of T 2(T ∗N) at q such that V = f(U).12 The expression
of ξ in local trivialisations can be computed by using Φ ◦ ξ ◦Ψ−1. This can be
computed as:

11 This is always possible – we can pick some chart (U ′, ϕ) of M at p, and then take
the intersection U ∩ U ′ and restrict Φ and ϕ accordingly.

12 Again, pick any local trivialisation (V, Ψ) at q and intersect it with the chart
(f(U), ϕ ◦ f−1).
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Φ ◦ ξ ◦ Ψ−1(q, r11, ..., rnn) = Φ ◦ ξ(rijdψ
i ⊗ dψj))

= Φ(rijd(ψi ◦ f) ⊗ d(ψj ◦ f))

= Φ(rijd(ϕi ◦ f−1 ◦ f) ⊗ d(ϕj ◦ f−1 ◦ f))

= Φ(rijdϕ
i ⊗ dϕj)

= (p, r11, ..., rnn).

Thus locally, we can pick a coordinate representation of ξ in which the com-
ponent maps are equal to (f−1, idR, ..., idR).13 This map is smooth, since f−1

is smooth. Since we chose q arbitrarily, it follows that for any point in N ,
the map ξ has a local representation which is smooth in the Euclidean sense.
Thus ξ is smooth.

Since ξ is a bijective bundle morphism covering a diffeomorphism f−1,
we can then (albeit prematurely) apply Lemma A.25 to conclude that ξ is a
bundle isomorphism. ⊓⊔

Proposition B.13 (Prop. 5.21). Let f : M → N be a smooth map, and
(F, πF , N) a vector bundle. The map p2 : f∗F → F is a bundle morphism,
and p2 is an isomorphism whenever f is a diffeomorphism.

Proof. This result and the next are standard facts about the pullback bundle.
See Hatcher [35, Sec. 1.2] (particularly Prop. 1.5) for the proofs. ⊓⊔

Proposition B.14. If g : E → F is a bundle morphism covering f , then
there is a unique morphism h : E → f∗F such that the following diagram
commutes.

E f∗F F

M M N

πE

g

h

p1

p2

πF

f

Lemma B.15 (Lemma 5.23). If A is an open submanifold of M and E a
vector bundle over M , then the restriction bundle E|A is an open submanifold
of E.

Proof. We will only provide a sketch, since the argument contains some no-
tions that we have not introduced. It is known that every open submanifold
is an embedded submanifold of codimension 0 (cf [20, Lem. 5.1]). It can also
be shown that the projection map π : E → M is a submersion, and thus π is
transverse to every embedded submanifold of M (cf. [20, Ex. 10.1]). It can be

13 Actually, we are implicitly assuming that we can diffeomorphically send

U × Rn2

to ϕ(U) × Rn2

by using the map (p, r11, ..., r1n, ..., rn1, ..., rnn) 7→
(ϕ1(p), ..., ϕn(p), r11, ..., r1n, ..., rn1, ..., rnn).
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shown whenever a smooth map is transverse, the preimage of an embedded
submanifold of codimension k is an embedded submanifold of codimension k
(cf. [20, Cor. 6.1]). Thus π−1(A) := E|A is a submanifold of codimension 0 in
E, and hence E|A is an open submanifold of E. ⊓⊔

Lemma B.16 (Lemma 5.24). If g : E → F is a bijective bundle morphism
covering a diffeomorphism f : M → N , then g is a bundle isomorphism.

Proof. We can use the fact that a pullback along a diffeomorphism turns the
projection map p2 : f∗F → F into a bundle isomorphism. Then the map g :
E → F factors through the pullback f∗F , so there is some bundle morphism
h : E → f∗F such that g = p2 ◦ h. Since g is bijective, the map h must also
be bijective. Since h is a bijective bundle morphism between two bundles over
M , we can apply A.17 to conclude that it is a bundle isomorphism. Then g is
a composition of bundle isomorphisms, so is also a bundle isomorphism. ⊓⊔
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