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Abstract

Previous research has shown that a trade-off between simplicity and informative-
ness can explain the semantic typology of various semantic domains of content
words, such as color, kinship and folk biology (Kemp, Xu & Regier, 2018). In
this thesis, I investigate whether this trade-off extends to quantifiers, a domain of
function words with a well-established semantic typology. In particular, I develop
measures of simplicity (based on logical description length) and informativeness
(based on communicative use) of individual quantifiers and quantifier languages
and I investigate the relation between properties of natural languages, such as
monotonicity, to optimality with respect to the trade-off. Results show that lan-
guages of natural quantifiers perform better than random languages, and that
monotonicity correlates with how optimal a language is.
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Chapter 1

Introduction

Human language both reflects and shapes human culture and cognition (Tomasello,
2009).

A major field that endeavors to understand culture and cognition through lan-
guage is that of Semantic Typology, the study of word meanings in the languages
of the world (Evans, 2010). The meanings that are expressed in our languages are
not random; rather, they may be the result of millennia of cultural evolution and
cognitive influence, and may reflect constraints shaped by biological evolution
(Scott-Phillips, 2014). Which of these may have caused our semantic typology,
and to what extent, is exactly the main question asked in this field.

Kemp, Xu, and Regier (2018) have reviewed a recent focus on the influence
of a trade-off between simplicity and informativeness on the typology of various
semantic domains such as kinship, color and folk biology. The idea is that the
lexicalization of meanings is governed by a pressure to, on the one hand, be as
simple as possible—such that languages are easy to understand—and on the other
hand, be as informative as possible—such that communication may be successful.
This pressure could occur for various reasons: perhaps there is mental pressure,
evolutionary pressure, or cultural pressure causing this optimization. But current
research does not yet attempt to explain the source of this pressure. Instead, it
focuses on evaluating whether or not natural languages are optimized with respect
to the trade-off.

Kemp, Xu, and Regier (2018) argue that this trade-off has significant influence
on the semantic typology of kinship, color and folk biology. In this thesis I evalu-
ate whether this view extends to the semantic domain of quantifiers. Quantifiers
are an interesting case study because they are function words as opposed to con-
tent words. This means, roughly, that they only become meaningful when placed
in a sentence, since their meaning is abstract. For example, ‘all’ does not refer
to concrete entities in the world, but ‘All dogs bark’ is an informative sentence.
‘Brother’, on the other hand, refers to concrete entities and is thus a content
word. For more detail on categories of content words and function words, see
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8 CHAPTER 1. INTRODUCTION

Baker (2003) and Ouhalla (2003) respectively. Quantifiers being function words
makes the measuring of their complexity and informativeness more challenging,
since their meaning is less clear-cut. However, the semantic typology of quan-
tifiers is well-studied (Szymanik, 2016, Van Benthem, 1986), providing a clear
direction for said measures.

Thus, Quantifiers are an interesting case study for two reasons: (i) Unlike the
domains studied before, they are function words and (ii) they have a well-studied
semantic typology.

On top of extending the simplicity/informativeness research to quantifiers,
I provide two methodological additions. Firstly, I provide a single, numerical
measure of optimality with respect to the trade-off. Secondly, I have performed
hypothesis testing using said measure of optimality, providing a statistical answer
to the research questions at hand. This is an improvement to the field; while e.g.
Kemp and Regier (2012) have convincing graphs, they lack statistical analysis to
back up their claims.

In Chapter 2, I go into the necessary background information: previous re-
search on the simplicity/informativeness trade-off and the semantic typology of
quantifiers. In Chapter 3, I evaluate the trade-off for individual quantifiers, com-
paring lexicalized English quantifiers to logically possible ones. In Chapter 4,
I extend this approach to whole languages, testing hypotheses using a regres-
sion analysis on the optimality of natural versus logically possible languages. In
Chapter 5, I provide some future directions and Chapter 6 concludes.



Chapter 2

Simplicity, Informativeness and
Quantifiers

In this chapter, I will first explain the basis of evaluating the simplicity/informa-
tiveness trade-off, alongside some prominent examples. Then, I will go into the
semantic typology of quantifiers; I will cover the main framework for abstractly
representing the meaning of quantifiers and I will cover the knowledge that is
currently available about quantifiers in various languages throughout the world.
Finally, I will consider how I extend research on the simplicity/informativeness
trade-off to the semantic domain of quantifiers.

2.1 Simplicity vs. Informativeness

Languages need to facilitate efficient communication. To facilitate efficient com-
munication, they need to be informative on the one hand, allowing for conveying
information with reasonable accuracy, and simple on the other, keeping the cog-
nitive load within reasonable limits.

One can see quickly how these two principles trade off against one another.
Consider the two following examples:

1. L1 has one word for every possible piece of information one may want to
convey. It has a word for “The red coffee cup on the table in the Master
of Logic study room”, as well as a word for “The feeling of excitement
I felt yesterday when giving a presentation”, and so on. Thus it allows
those communicating using this language to communicate every situation
perfectly using only a single word, but this comes at the cost of an infinite
lexicon.

2. L2 only contains the word ‘everything’. This language requires little to no
cognitive effort, but does not allow its users to transmit any meaningful
information.

9



10 CHAPTER 2. SIMPLICITY, INFORMATIVENESS AND QUANTIFIERS

Figure 2.1: Possible solutions to a multi-objective optimization problem. The
blue dots from the Pareto Front. From Kemp, Xu, and Regier (2018)

These two examples illustrate that these two objectives have the key prop-
erties of a trade-off: maximizing informativeness necessarily implies sub-optimal
simplicity (as in L1), and maximizing simplicity necessarily implies sub-optimal
informativeness (as in L2).

2.1.1 Multi-objective optimization

A problem where one tries to optimize for multiple objectives is a multi-objective
optimization problem (Deb, 2014). If the two objectives are competing, there can
be many possible solutions to such a problem. A solution is called dominant or
Pareto optimal if there is no solution that performs better at all objectives. The
set of such Pareto optimal solutions is called the Pareto front. Figure 2.1 gives
an idea of what such a front looks like.

The simplicity/informativeness trade-off is thus a multi-objective optimization
problem with simplicity and informativeness as its objectives. Research regarding
the trade-off considers whether or not natural languages lie at or close to the
Pareto front said problem. If so, then that implies that the trade-off is a factor
in shaping language.

The large variety of solutions at the Pareto front—from very informative and
not very simple to very simple but quite uninformative—is generally considered
to account for the differences between natural languages. Cultures that place
more emphasis on the semantic domain in question are expected have languages
that lie more to the extreme ends of the Pareto front than those for cultures that
lack such emphasis (Kemp, Xu, and Regier, 2018).
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2.1.2 Measuring simplicity and informativeness

In this section, I discuss the general strategies used to measure simplicity (or
complexity) and informativeness (or communicative cost).

Simplicity

Simplicity is generally measured in terms of the mental representation of the
words in a language. If we know how the words are encoded mentally, we can
make claims about the complexity thereof. Commonly, mental representations
are built up as logical formulas in a predefined Language of Thought (Piantadosi
and Jacobs, 2016), and language complexity can then be expressed as logical
description length of some form. Kemp and Regier (2012) apply such a measure
for kinship; I discuss how in the next subsection.

Alternatively, complexity can be measured using information-theoretic mini-
mal codings (Carr et al., 2018); the length of these codings can point towards a
complexity measure. These minimal codings are based on the extension, not on
some separate mental representation. Thus the minimal codings are the mental
representation used by this measure.

In the present research, I opt for the former approach, since it fits better with
the current view of the semantic typology of quantifiers.

Informativeness

Informativeness is generally measured on the basis of probability of communica-
tive success. This depends on the extensions of the words in the language; the
things, be they abstract or not, that the words denote. Informativeness measures
can be motivated from information theory (Carr et al., 2018) or from game-
theoretic linguistics, drawing upon signalling games (Jäger, 2008, Huttegger and
Zollman, 2011). The latter approach is adopted here, using the following com-
munication game:

• S = a set of possible states of the world

• M = {m1, ...,mn}, a set of messages

• L : M → P(S) is the language, mapping messages to sets of possible states.

With the following rules:

1. A sender perceives a state s ∈ S of the world (from some distribution P (S)).

2. The sender chooses m such that s ∈ L(m).

3. A receiver perceives message m.
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4. The receiver infers some s′ such that s′ ∈ L(m).

The utility u : S×S → [0, 1] of this game can be 1 if and only if s = s′ for perfect
accuracy, or can model similarity between s and s′ to allow for more vagueness.
If we define σ(s) = {m : s ∈ L(m)}, then the overall utility of the language is

u(L) =
∑
s∈S

∑
m∈M

∑
s′∈S

P (s)P (m|s)P (s′|m) · u(s, s′)

This is the probability that the sender successfully uses the language to commu-
nicate an arbitrary state. This utility is the measure of informativeness.

2.1.3 Kinship

Kemp and Regier (2012) have shown that the trade-off between simplicity and
informativeness is a major factor shaping languages in the semantic domain of
kinship. Figure 2.2 (Kemp, Xu, and Regier, 2018) depicts a communicative sce-
nario where ambiguity of a word reduces informativeness—‘Brother’ can mean
both Older brother and Younger brother, so when it is uttered, the listener has
incomplete information. Figure 2.3 shows the kinship category systems of En-
glish and Norther Paiute. There one can easily see that Northern Paiute has
more categories, but also more specific categories, and indeed, the latter has
higher informativeness but lower simplicity.

Informativeness was measured using information-theoretic communicative cost
based on the extensions of the words in the family trees seen in figure 2.3. Sim-
plicity was measured in the form of complexity, based on the minimum number of
formulas required to describe every word in a language using a logical Language
of Thought with predicates such as PARENT(x,y), OLDER(x,y) and MALE(x,y).
Sampled, logically possible languages were compared to the kinship systems ac-
tually attested in natural languages. This yielded the results seen in Figure 2.4:
natural languages (black) lie relatively close to the Pareto frontier, compared to
logically possible languages (grey). This result implies that the trade-off is a
major factor in shaping natural languages within the domain of kinship; natural
languages are clearly relatively optimized with respect to the trade-off.

2.2 The Semantic Typology of Quantifiers

2.2.1 Generalized quantifier theory

Quantifiers are generally represented in terms of generalized quantifier theory
(Szymanik, 2016). Within this theory, quantifiers talk about three sets: A,B ⊆
M , where M is the universe of objects. For example, in the case of ‘All dogs bark’,
A is the set of dogs, B is the set of things that bark. In generalized quantifier
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Figure 2.2: A communicative scenario where information is lost due to the fact
that the word ‘brother’ is ambiguous. The speaker perceives the state ‘older
brother’ and communicates said state using the word ‘brother’. The receiver
cannot retrieve the exact information state of the sender due to the ambiguity of
‘brother’. From Kemp, Xu, and Regier (2018)

Figure 2.3: Category systems for kinship in English and Northern Paiute, from
both a male and female speaker. The colors denote different categories. From
Kemp, Xu, and Regier (2018).
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Figure 2.4: The complexity and communicative cost of natural languages (black)
versus logically possible languages (grey). From Kemp and Regier (2012).

theory, ‘all’ is then equated with the set of all models (M,A,B) such that “All
A’s are B” holds. Such quantifiers can be described using logical formulas. In
the current research, instead of equating quantifiers with the set of models where
they are true, I equate them with such formulas. Thus,

all := λM.λA.λB.A ⊆ B

I omit the λM.λA.λB. throughout the rest of the thesis.
The set of models where this formula is true is then the extension of the

quantifier:

JφK = {(M,A,B) : φ(M,A,B)}
JallK = {(M,A,B) : A ⊆ B}

Analyzing quantifiers in these terms allows one to discern formal properties
that may hold for some quantifiers but not for others. Some of these properties
are relatively universal; that is to say, they are true for almost all quantifiers
that occur in natural language. Four such properties discovered are the following
(Barwise and Cooper, 1981, Van Benthem, 1986, Szymanik, 2016):

Extensionality A quantifier Q is extensional iff:

If M ⊆M ′ and (M,A,B) ∈ JQK, then (M ′, A,B) ∈ JQK (EXT)

This means that the truth-value of Q depends only on A and B, and not on M .
This excludes e.g. ‘|M | > 5’.

Isomorphism Invariance A quantifier Q is isomorphism invariant (or topic
neutral) iff:
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If (M,A,B) ∼= (M ′, A′, B′), then (M,A,B) ∈ JQK⇔ (M ′, A′, B′) ∈ JQK
(ISOM)

where isomorphism means that there is a one-to-one mapping between the models
that preserves set cardinalities. This implies topic neutrality : instead of depend-
ing on the specific objects in the sets, isomorphism-invariant quantifiers depend
only on the cardinalities |A−B|, |A∩B|, |B−A| and |M − (A∪B)| (Szymanik,
2016). This excludes, for example, Jack ∈ A ∩B.

Conservativity A quantifier Q is conservative iff:

(M,A,B) ∈ JQK⇔ (M,A,A ∩B) ∈ JQK (CONS)

This property has the effect that the truth-value of the quantifier only depends
on the elements of A. This excludes, for example, |B−A| > 0, since that depends
on elements of B − A, which are not in A.

Monotonicity A quantifier Q is upward-right monotone iff:

If B ⊆ B′ ⊆M and (M,A,B) ∈ JQK, then (M,A,B′) ∈ JQK (MON↑)

upward-left monotone iff:

If A ⊆ A′ ⊆M and (M,A,B) ∈ JQK, then (M,A′, B) ∈ JQK (↑MON)

downward-right monotone iff:

If B ⊆ B′ ⊆M and (M,A,B′) ∈ JQK, then (M,A,B) ∈ JQK (MON↓)

and downward-left monotone iff:

If A ⊆ A′ ⊆M and (M,A′, B) ∈ JQK, then (M,A,B) ∈ JQK (↓MON)

Most natural language quantifiers are monotone in one way or another.
For example, ‘all’ is downward-left monotone:

All instruments produce music⇒ All guitars produce music

since instruments ⊇ guitars. Simultaneously, ‘all’ is upward-right monotone:

All instruments produce music⇒ All instruments produce sound

since music producers ⊆ sound producers.
The reader can verify that ‘no’ is downward-monotone in both arguments, and

‘most’ is upward-monotone in the right argument, but not monotone in the left.
Clearly there is a large diversity with respect to monotonicity, but no lexicalized
quantifiers are completely non-monotone. This universal rules out quantifiers like
λM.λA.λB.|A ∩ B| = 5. That quantifier is only expressed in e.g. English as
‘exactly 5’, and is thus not lexicalized since it cannot be conveyed with a single
word.
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Quantifier Pressuposition Assertion
both |A| = 2 A ⊆ B

the |A| = 1 A ⊆ B
neither |A| = 2 |A ∩B| = 0

Table 2.1: English quantifiers with presupposition

2.2.2 Presupposition

Piantadosi, Goodman, and Tenenbaum (2013) express some English quantifiers
terms of logical formulas, noting that many quantifiers also have a presupposition
(Beaver, 1997). These presuppositions can also be expressed as logical formulas.
For some English examples, see Table 2.1.

2.2.3 Natural languages

To get a full view of the semantic typology of Quantifiers, cross-linguistic analysis
is also required. The Handbook of Quantifiers in Natural Language (Keenan
and Paperno, 2012), henceforth the Handbook, contains a survey of quantifiers
in various natural languages. Keenan and Paperno identify three main cross-
linguistic semantic categories of quantifiers, expressed in generalized quantifier
theory:

1. Generalized Existential Quantifiers, such as ‘no’, which talk about |A∩B|.
This also includes numbers (e.g. 5 := |A ∩B| ≥ 5)

2. Generalized Intersective Quantifiers, which talk about |A−B|. An example
is ‘all’ (|A−B| = 0)

3. Proportional quantifiers, talking about |A−B|/|A|, such as ‘many’.

And they survey whether and how these types of quantifiers are expressible
within the languages covered in the Handbook. Lexicalized quantifiers - those
that are only a single word - are seemingly restricted to these three categories
across languages. The main difference to be found is in the syntactic role of the
quantifiers; but that is outside of the scope of the present research.

2.3 Simplicity vs. Informativeness for Quanti-

fiers

Generalized quantifier theory provides us with both an extension and a mental
representation of quantifiers in the form of a logical Language of Thought. The
extension, when combined with communication games, can yield a measure of
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informativeness. The mental representation points to measures of logical com-
plexity, such as total formula length.

In addition, the four semantic universals and universal categories from the
Handbook provide properties of natural languages. I will investigate the relation
between these properties and the simplicity/informativeness trade-off.





Chapter 3

Individual quantifiers

The simplicity/informativeness trade-off has been researched in a variety of se-
mantic domains, but such research has mainly been focused on languages as a
whole. However, individual words are also cognitive entities used for commu-
nication, and may therefore also be subject to the trade-off. In this chapter
I investigate whether we can identify such a trade-off for individual quantifiers
and, if it exists, whether English quantifiers are optimized with respect to said
trade-off. For the sake of detail at the level of individual quantifiers, I consider
both quantifiers with and without presupposition in this chapter.

The first section covers the measures that are used, along with their motiva-
tion. The second section covers the experiments: how quantifiers are generated,
from which grammars, and how they perform compared to English quantifiers.
The third section provides some points of discussion and the fourth concludes.

3.1 Measures

In this section, I cover the measures used for simplicity (or complexity) and
informativeness (or communicative cost).

3.1.1 Complexity

The measure of complexity is based on the mental representation of quantifiers
given by Generalized Quantifier Theory. For some φ expressed in logical language
L (to be defined in the experiments):

comp(φ) =

{
basecomp(f) +

∑k
i=1 comp(ψi) if φ = f(ψ1, ..., ψk), f ∈ O

basecomp(φ) otherwise

Where basecomp: L → [0, 1] captures the complexity of the operators.

19



20 CHAPTER 3. INDIVIDUAL QUANTIFIERS

This measure can also be extended to quantifiers with a presupposition. To
combine the the complexity of an assertion and a presupposition, I simply take
the average, for a quantifier φψ with presupposition ψ and expression φ:

comp(φψ) =
comp(φ) + comp(ψ)

2

In the experiments in this Chapter, all quantifiers, whether they have a pre-
supposition or not, are measured using this measure (where comp(ψ) = 0 if the
quantifier does not have a presupposition).

Choice of operators

What can be noted about quantifier representations using logical formulas, is
that the choice of primitives heavily influences what the formulas look like. For
example, ’all’ may be written as A ⊆ B, |A − B| = 0 or is empty(A − B),
depending on what is allowed in the formulas.

Thus the measure of complexity has become heavily dependent on the opera-
tors that we use. This makes the choice of operators all the more important - a
rather problematic fact, because choosing appropriate operators is not at all an
easy task. There is as of yet no clear reason why we should, for example, include
an is empty predicate or simply introduce ‘=’ and ‘∅’, or even introduce ‘| · |’,
‘=’ and ‘0’.

To mitigate this problem somewhat, I use 3 different sets of operators in the
experiments.

3.1.2 Informativeness

To measure informativeness, I draw upon the communication-based measure for
languages introduced in Section 2.1, assuming u(s, s′) = 1 if s = s′, 0 otherwise.
This simplifies the utility:

U(L) =
∑
s∈S

∑
m∈M

P (s)P (m|s)P (s|m)

What remains is to reduce this measure to a measure for individual words.
A first attempt is to simply restrict the game to using only a single message m′.
In that case, P (m|s) = 1 only if m = m′, and 0 otherwise. Also, s can only be
conveyed if s ∈ L(m′). Thus we can reduce the utility to:

U(L) =
∑

s∈L(m′)

P (s)P (s|m′)

Assuming that both the world and the language are uniformly distributed,
this yields
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U(L) =
∑

s∈L(m′)

1

|S|
1

|L(m′)|
=

1

|S|

Thus the utility of the language is completely invariant to the actual meaning
of the word. This can be attributed to the fact that when using only a single
word, the objectives of covering the meaning space and having specific meanings
start to compete.

Therefore it seems that this simplification is not adequate. Another possibility
is to consider the possible ways in which individual words can drive up the utility
of the entire language regardless of other words. This mainly seems to be by
keeping P (s|m) large, and thus by keeping the meanings small. Assuming a
uniform distribution, this yields us the following measure of informativeness:

inf(m′) =
1

|L(m′)|

For the purposes of the experiment, I change it to a measure for communicative
cost, normalizing with respect to the state space:

communicative cost(m′) =
|L(m′)|
|S|

Matching the conception of word information in possible word semantics (Stal-
naker, 1978). Thus, for any possible quantifier representation, if we know its
extension, we can measure its informativeness.

Presupposition

Quantifiers that consist of both an assertion and a presupposition make this
measure a little more difficult.

The ‘successful communication’ principle points towards a relative measure:
I measure the specificity of the assertion relative to the presupposition. This
matches the idea that presuppositions form common ground between speakers.

Thus, if a word m contains an assertion meaning L(m) and a presupposition
meaning Lp(m), where L(m) ⊂ Lp(m) then its communicative cost will be:

communicative cost(m) =
|L(m)|
|Lp(m)|

Defining truth of a quantifier in model s as follows:

JφψKs =

{
∗ if JψKs = 0

JφKs otherwise
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where JφKS = {s ∈ S : JφKs = 1}, JφKs = 1 if φ is true in s, 0 otherwise, the final
measure of communicative cost becomes:

communicative cost(φψ) =
|{s ∈ S|JφψKs = 1}|

|JψKS|

This is the measure used in the experiments.

Specification of the state space

In order to define the state space, I look towards Generalized Quantifier Theory.
A generalized quantifier model (M,A,B) consists of a universe M , and two

subsets A,B ⊂ M . A generalized quantifier is then a mapping from the set of
models M to truth-values {0, 1}.

For computational purposes I assume a single universe of objects M of 10
elements. By leaving M out of the grammar of the quantifiers generated, this
does not become a problem, although it does build the semantic universal of
extensionality into the model.

While the most straightforward option is to let the meaning space S ′ =
{(M,A,B)|A,B ⊂ M}, further restriction is needed to allow for easier com-
putation. I do not allow any direct object referencing (through e.g. ∈) in the

quantifiers, rendering them isomorphism invariant. Thus we can let S = S ′�∼=,
significantly decreasing the size of possible meanings.

I implement this quotient by considering models based only on the numerosi-
ties of A, B and A ∩ B (all other relevant numerosities can then be derived).
Thus S = {(nA, nB, nA∩B) : (nA + nB − nA∩B) ≤ |M |, nA∩B ≤ nA, nA∩B ≤ nB}

3.2 Experiments

In this section, I consider an expression to be a single logical formula, and I
consider a quantifier to be a combination of an assertive expression and possibly
a presupposition expression.

I run two experiments. Both consists of the following steps:

1. Generate possible expressions E up to length n given logical language L.

2. Compose quantifiers from the set of expressions.

3. Calculate the communicative cost and complexity of both the generated
and lexicalized quantifiers (as seen in Table 3.1)

The code for the experiments can be found at https://github.com/wouterposdijk/
SimInf Quantifiers.

In this section, I first cover which expressions are generated. Next, I explain
how these expressions are combined into quantifiers. Then I provide a quick recap

https://github.com/wouterposdijk/SimInf_Quantifiers
https://github.com/wouterposdijk/SimInf_Quantifiers
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Quantifier Presupposition Assertion
all none A ⊆ B
both |A| = 2 A ⊆ B
the |A| = 1 A ⊆ B
most none |A ∩B| > |A−B|
a none |A ∩B| > 0
many none |A ∩B|/|A| > .25
no none |A ∩B| = 0
neither |A| = 2 |A ∩B| = 0

Table 3.1: The lexicalized quantifiers used in the experiment.

of the measures used, after which I discuss the parameter assignments of the two
experiments. Finally, I discuss the results of the experiments.

3.2.1 Expression generation

The input parameters for expression generation are the set of operators O, the
meaning space S, and the largest expression length n.

The set of all expressions up to length n is

E = {φ ∈ Form(L)|len(φ) ≤ n}

where

len(φ) =

{
1 +

∑k
i=1 len(ψi) if φ = f(ψ1, ..., ψk)

1 otherwise

and
L = {A,B} ∪ {0, 2, ..., 10} ∪ {0.1, 0.2, ..., 1.0} ∪ {>,⊥} ∪ O

Then the desired set of expressions is the restriction of E to the lowest possible
complexity:

E∗ = {φ|∀ψ ∈ Form(L) : JψKS = JφKS → comp(φ) ≤ comp(ψ)}

This ‘shortening’ removes for example ‘|A|−|A−B| = 0’ in favor of ‘is empty(A∩
B)’ (depending on the allowed operators and their base complexity). This way,
there are no expressions that are more complex than they need to be.

3.2.2 Quantifier generation

Quantifiers, consisting of a presupposition and and a primary expression, were
generated simply by taking all possible combinations of boolean expressions (ex-
cept ⊥), and then removing any combination that has an extensionally equivalent
simpler combination.
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operator type
| · | set → int
⊂ set2 → bool
∩ set2 → set
∪ set2 → set
−s set2 → set
−n int2 → int
+ int2 → int
>n int2 → bool
≥n int2 → bool
>q float2 → bool
=n int2 → bool
=q float2 → bool
/ int2 → float
∧ bool2 → bool
∨ bool2 → bool
¬ bool → bool

Table 3.2: The basic operators used in the experiments.

3.2.3 Measuring

This subsection contains a quick recap of the measures covered above. The com-
plexity and communicative cost of quantifiers φψ are measured as follows:

comp(φψ) =
comp(φ) + comp(ψ)

2

communicative cost(φψ) =
|{s ∈ S|JφψKs = 1}|

|JψKS|

3.2.4 Parameters

Both experiments were run with universe size 10. The first experiment considers
only quantifiers without presupposition, with an assertion up to length 12. The
second considers quantifiers with assertions and presuppositions up to length 7.

Operators

Both experiments were ran for three sets of operators. See the basic operators
used in Table 3.2, and the more complicated ones defined in their terms in Table
3.3.

The latter do not actually increase expressive power overall, but do allow for
more expressive power at lower levels of complexity.

The operator sets used are the following:
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operator meaning
is empty(X) |X| = 0

is nonempty(X) |X| > 0
proportion>=(X, Y, q) |X|/|Y | ≥ q

Table 3.3: The more complex operators used in the experiments.

• Onumerical = {| · |,⊂,∩,∪,−s,−n,+, >n,≥n, >q,=n,=q, /}

• Ological = {| · |,⊂,∩,∪,−s,−n,+, >n,≥n, >q,=n,=q, /,∧,∨,¬}

• Oextended = {| · |,⊂,∩,∪,−s,−n,+, >n,≥n, >q,=n,=q, /,∧,∨,¬,
is empty, is nonempty, proportion>=}

3.2.5 Results

See the outcomes of the experiments in Figure 2.1 and 2.2. It is hard to detect any
form of a Pareto front in the result graphs, both with and without presupposition.
It seems that, especially as complexity ranks up, all levels of informativeness
are possible. Naturally we see this phenomenon at lower complexities with the
extended primitive list.

3.3 Discussion

The main implication of the results seems to be that there is no trade-off between
simplicity and informativeness at the individual word level. Different primitive
sets yield no tangible differences, and neither does adding presuppositions.

Reduction of informativeness measure The lack of a trade-off corresponds
to the fact that we could not reduce the game-theoretic measure of informativeness
for whole languages to individual words - the informativeness measure might
simply not correspond strongly enough to the informativeness of whole languages.
At the whole-language level a pressure to keep the amount of words down might
keep the specificity of those words low - a factor that is not at all present when
only considering individual words.

No optimization with respect to complexity Still, it is quite striking that
the lexicalized individual words are not even remotely optimized with respect
to complexity in logical terms. Perhaps there are factors at the whole language
level that warrant this lack of specificity (such as there being too much overlap
between the various simpler quantifiers), but another real possibility is that the
measure of complexity is simply not very accurate; We have little knowledge of
the ‘actual’ set of operators, let alone how complex they are in themselves.
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(a) Numerical (b) Logical

(c) Extended

Figure 3.1: The results of the first experiment, generating quantifiers up to length
12 in a universe of size 10, and measuring them according to the measures speci-
fied.
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(a) Numerical (b) Logical

(c) Extended

Figure 3.2: The results of the second experiment, generating quantifiers up to
length 7 and combining them into all possible combinations of assertion and
presupposition.



28 CHAPTER 3. INDIVIDUAL QUANTIFIERS

Thus, for lack of a detailed complexity measure, the biggest contender for
complexity at the language level ought to be word count ; a factor that is obviously
completely absent in the individual-word approach.

3.4 Conclusion

Even under varying circumstances, there is no Pareto front to be found for in-
dividual quantifiers. The way informativeness scales down to individual words
combined with proportional and comparative quantifiers makes for a picture that
tells us little about the semantic typology of quantifiers. It seems that, for in-
dividual words, there is no trade-off between simplicity and informativeness as
interpreted here.



Chapter 4

Quantifier Languages

While a trade-off at the level of individual words seems unlikely, whole languages
(considered in this thesis to be sets of expressions, not including quantifiers with
presupposition) can still be expected to trade off. The example given in section
2.1—one word for everything versus one word for each thing—serves to show that
having multiple words provides more ways to trade off simplicity and informa-
tiveness. This leads to the belief that, although individual words do not seem to
follow any trade-off pattern, languages may still do so.

The key question answered in this chapter is thus the following: is there a
trade-off between simplicity and informativeness at the level of whole languages,
and if so, do natural languages optimize for this trade-off?

To answer this question, I first discuss measures for the simplicity and infor-
mativeness of quantifier languages. Secondly, I identify the trade-off at the level
of whole languages. Then I introduce a measure of optimality with respect to the
trade-off based on multi-objective optimization literature—a novel approach to
evaluating the simplicity/informativeness trade-off. In the fourth and fifth sec-
tion, I discuss my two approaches towards naturalness: sampling from natural
categories of quantifiers and measuring the agreement of a language to semantic
universals, respectively. In the sixth section I provide the setup of two exper-
iments that investigate the relation between these measures of naturalness and
optimality. The results are validated statistically, through a t-test and regression
analysis, which is another novel contribution to the field. Afterwards, I provide
some points of discussion and in the final section I conclude the chapter.

4.1 Simplicity and Informativeness for Languages

4.1.1 Simplicity

Like in the previous chapter, I define a complexity measure instead of a simplicity
measure. This measure has two key desiderata:

29
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1. More words means higher complexity

2. More complex words means higher complexity

These two desiderata are easily captured by a sum, normalized by the maxi-
mum amount of words:

complexity(L) =
∑
φ∈L

complexity(φ)/max words

4.1.2 Informativeness

The measure for informativeness builds on the intuition introduced in the section
2.1—the idea that the informativeness of a language is the probability that said
language can be used to communicate a random state of the world:

U(L) =
∑
s∈S

∑
φ∈L

∑
s′∈JφKS

P (s)P (φ|s)P (s′|φ) · u(s, s′)

The interpretation of u was assumed to be equality before, but in the context
of whole languages that seems hardly accurate; very rarely do we communicate
exact states of the world. More often are words used to transfer a meaning
roughly. Jäger (2008) models this ‘rough’ communication in sim-max communi-
cation games (where sim-max stands for similarity-maximization). These games
differ from ‘exact’ communication in that the utility is not just based on equality,
but is inversely proportional to the distance (or dissimilarity) between the two
states.

The interpretation of that inverse proportion used throughout this thesis is
the following:

u(s, s′) =
1

dist(s, s′) + 1

where
dist(s, s′) =

∑
X∈{A−B,A∩B,B−A,M−A∪B}

max{0, sX − s′X}

Which can be interpreted as ‘the amount of elements that have moved to a
different set’, measured as the amount that set numerosities have decreased (and
not increased, since that would count every element twice).

As an example, take s = (7, 6, 4) and s′ = (6, 7, 4) (recall that models are
triplets (nA, nB, nA∩B)). See these two models in Figure 4.1. Then sA−B =
7− 4 = 3, whereas s′A−B = 6− 4 = 2, so the “A− B” summand in the measure
will be 1. So an element of A−B has moved to one of the three other sets. In this
case, sB−A− s′B−A = −1, so we can say that the element in question has ‘moved’
to B − A. However, we do not want to count it twice, so we only measure the
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(a) s (b) s′

Figure 4.1: The models s = (7, 6, 4) and s′ = (6, 7, 4) in terms of the four separate
areas of relevance.

decrease in numerosities, not the increase. That way, dist(s, s′) = 1, not 2 (the
other two zones also contribute 0 to the measure, since they do not change).

The measure for informativeness that results captures three key aspects of
informativeness:

1. Higher coverage of the meaning space increases informativeness.

2. Higher individual word specificity increases informativeness.

3. Overlapping words decrease increase informativeness (in part since the words
would be more specific if they did not overlap).

4.2 Identifying the trade-off

To identify whether there is a trade-off, I sampled languages of 1–10 words, with
2000 samples per word amount. In Figure 4.2, see the complexity and informative-
ness of these languages. This figure implies that complexity and communicative
cost trade off at the level of whole languages, forming a curved Pareto front as
expected.

4.3 Measuring Optimality

In order to consider the influence of various factors on the optimality of languages,
it is very useful to have a single measure of optimality. However, the very nature
of trade-offs makes this a difficult task. Many measures exist (Tan, Lee, and
Khor, 2002), but there is still no clear consensus as to the best possible measure.
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Figure 4.2: 2000 random languages for each word amount from 1 through 10.



4.3. MEASURING OPTIMALITY 33

The measure used here is one of the simplest, as mentioned by Deb and Jain
(2002), the minimum Euclidian distance to the Pareto front:

optimality(L) = min
L∗∈P ∗

√
(complexity(L)− complexity(L∗))2+

(communicative cost(L)− communicative cost(L∗))2

While many multi-objective optimization problems are concerned with both con-
vergence (being as close to the frontier as possible) and diversity (covering as
much of the frontier as possible), we are only concerned with the former. The
minimum Euclidian distance is a simple and elegant way of capturing conver-
gence, and operates on a single-point level, which allows for relation to other
factors through statistical analysis.

4.3.1 Estimating the Pareto front

The measure mentioned requires knowledge of the actual Pareto front. Since the
space of possible languages is too large to enumerate, it is impossible to know
the exact Pareto front. Thus, we need an approximation of sorts. Thankfully,
a slightly sub-optimal Pareto set can still function adequately for the optimality
measure; being closer to the sub-optimal front also means being closer to the
actual Pareto front.

I approximate the Pareto front as follows:

1. Find well-performing languages using a genetic algorithm.

2. Combine these languages with the sampled languages, and take the non-
dominated ones.

3. Fill up the gaps between the points on the frontier using linear interpolation.

Step 1: Find well-performing languages using a genetic algorithm Ran-
dom sampling does not guarantee any kind of optimality among languages (es-
pecially if the density of languages close to the frontier is small). Instead, I use
one of the standard ways to find good solutions to a multi-objective optimization
problem: a genetic algorithm. Such algorithms emulate evolution in a sense; they
generate an initial ‘population’ of solutions, pick the ‘fittest’ solutions, and let
these fittest solutions ‘reproduce’, by generating various slightly changed versions
of each solution. This process repeats for a predefined amount of generations or
until some convergence criterion is reached. The specific algorithm used can be
seen in Listing 4.1.

See the outcome of this algorithm compared to the results of random sampling
in Figure 4.3a.
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l anguages = sample languages (2000)
for i in 1 . . . num generat ions :

dominant languages = f ind dominant languages ( languages )
o f f s p r i n g = sample mutated ( dominant languages , 2000)
languages = o f f s p r i n g

return l anguages

def mutate ( language ) :
mutated language = language
mutation amount = choose random ( [ 1 , 2 , 3 ] )
for i in 1 . . . mutation amount :

mutation = choose random (
[ add quant i f i e r ,
r emove quant i f i e r ,
i n t e r c h a n g e q u a n t i f i e r ] )

mutated language = mutation ( mutated language )
return mutated language

Listing 4.1: The evolutionary algorithm. Function sample mutated generates
2000 mutated languages from the pool of dominant languages, giving each lan-
guage an equal amount of offspring.
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(a) Step 1: Find good languages by run-
ning an evolutionary algorithm.

(b) Step 2: Find the non-dominated points
when combining the evolutionary outcome
with the experiment outcome.

(c) Step 3: Apply linear interpolation.

Figure 4.3: The three steps in finding the approximate Pareto front. The red
dots are the result of Experiment 2, as seen in Section 4.6. The black dots are
the result of each respective step.
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Step 2: combine with sampled languages and take the non-dominated
points This results in the frontier seen in Figure 4.3b.

Step 3: Fill in the gaps using linear interpolation If the Pareto frontier
consists of a small number of points with many gaps between them, a Euclidean
distance measure seems hardly accurate. A point can then be very close to the
frontier in theory, but simply because there is no point close to it on the frontier
score badly on the metric. Thus, I interpolate the front linearly with a very
small fixed distance of .001 (to approximate a line but avoid large computational
overhead). This results in the Pareto front seen in figure 4.3c.

4.4 Naturalness of Languages

It is very difficult to find the right translation of natural languages to the rep-
resentation language. Whereas research in other domains generally relies on big
data sets which outline specifically which meanings have been lexicalized in which
language (see e.g. Kemp and Regier, 2012), such data is not available when it
concerns quantifiers. While the Handbook provides guidance, it does not pro-
vide the level of detail required for languages to be measured with respect to the
trade-off.

As an alternative to translating languages, I use two approached: Firstly,
as covered in this section, I define a broad set of quasi-natural quantifiers, and
sample random quasi-natural languages with quantifiers from that set. In the
next section I cover the other approach: measuring the degree to which logically
possible languages agree to semantic universals.

As seen in section 2.2, the handbook identifies three main categories of quan-
tifiers:

• Generalized Existential Quantifiers, such as ‘no’, which talk about |A∩B|.
This also includes numbers (e.g. 5 := |A ∩B| ≥ 5)

• Generalized Intersective Quantifiers, which talk about |A−B|. An example
is ‘all’ (|A−B| = 0)

• Proportional quantifiers, talking about |A−B|/|A|, such as ‘many’.

The set of quasi-natural quantifiers used is thus the following:

N = {|X ∩ Y | ∗ n, |X − Y | ∗ n, |X ∩ Y |/|X| ∗ q

: X, Y ∈ {A,B}, X 6= Y, n ∈ {0, 2, ..., 10}, q ∈ {0, .1, ..., 1}, ∗ ∈ {=, >,<}}

All these quantifiers are shortened with respect to the grammar used (e.g.
|A−B| = 0 is shortened to A ⊆ B if ‘⊆’ is in the grammar)
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Using this set of quasi-natural quantifiers, I define the naturalness of a lan-
guage as the proportion of words in the language that are quasi-natural:

naturalness(L) =
|L ∩N|
|L|

4.5 Semantic Universals

Along with naturalness as sampled from the quasi-natural set, we can also con-
sider properties that natural languages tend to have—so-called semantic univer-
sals. (Szymanik, 2016) mentions four main semantic universals, as seen in Section
2.2. Since (ISOM) and (EXT) are already built into our model and grammar,
there is only variance when it comes to (CONS) and (MON). Thus these are the
two properties of languages that I measure. While these properties are boolean in
principle, one can measure the degree to which a quantifier agrees to a semantic
universal through the information-theoretic concept of conditional entropy, which
measures how much knowledge one gains about a random variable given knowl-
edge of another. This concept was first applied in research regarding quantifiers
by Carcassi, Steinert-Threlkeld, and Szymanik (2019) to measure monotonicity.
I extend this approach to the specific models used in the present research, and I
extend it to conservativity.

4.5.1 Monotonicity

The monotoncity of a language is simply the mean of the monotoncities of the
words in that language:

monotonicity(L) =

∑
φ∈L monotonicity(φ)

|L|
The monotonicity of each word is measured using an adjusted version of the

gradual entropy-based measure introduced by Carcassi, Steinert-Threlkeld, and
Szymanik (2019).

To define this measure, we first need a notion of submodel in terms of the
model used in the present research. In terms of standard set-based models, the
definition of B-submodel would be the following:

(M,A,B) �B (M,A′, B′) iff A = A′ and B ⊆ B′

This translates to the present numerosity-based models as follows:

s ≺B s′ iff sA = s′A and sB−A ≤ s′B−A and sA∩B ≤ s′A∩B

Resulting in a partial order. The definition of A-submodel is as expected:

s �A s′ iff sB = s′B and sA−B ≤ s′A−B and sA∩B ≤ s′A∩B
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Using this definition of submodel, I measure the monotonicity of quantifiers
based on how much information about the truth in a given model one gets based
on whether there is truth in any submodel. This can be measured in information-
theoretic terms using conditional entropy.

For e.g. right-upward monotonicity, this requires two random variables: 1φ,
the truth-value of φ given a model, and 1�B

φ , whether or not a model has a
B-submodel (or itself) where φ is true.

Monotonicity is then measured as follows, given the Shannon-entropy function
H (Shannon, 1948):

mon↑(φ) = 1−
H(1φ|1�B

φ )

H(1φ)

mon↓(φ) = 1−
H(1φ|1�B

φ )

H(1φ)

↑mon(φ) = 1−
H(1φ|1�A

φ )

H(1φ)

↓mon(φ) = 1−
H(1φ|1�A

φ )

H(1φ)

These four measures are combined into one as follows:

monB(φ) = max(mon↑(φ), mon↓(φ))

monA(φ) = max(↑mon(φ), ↓mon(φ))

monotonicity(φ) = avg(monA(φ), monB(φ))

4.5.2 Conservativity

I extend this line of thought to conservativity in much the same way, showcasing
the flexibility of conditional entropy to gradually measure adherence to condi-
tions such as the semantic universals. Instead of the partial order seen before,
conservativity depends on a functional relation, the conservation of a model:

conB(s) = (sA, sA∩B, sA∩B)

conA(s) = (sA∩B, sB, sA∩B)

Note that conservativity is generalized here to work both in A and in B. The
random variable 1conB

φ models whether there is truth in the conservation of a
model, and conservativity can be defined as:

conB(φ) = 1−
H(1φ|1conB

φ )

H(1φ)
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Mean SD
natural 0.0530 0.0276
random 0.0750 0.0262

Table 4.1: Mean and standard deviation of optimality for the two sampled sets.

conA(φ) = 1−
H(1φ|1conA

φ )

H(1φ)

conservativity(φ) = max(conA(φ), conB(φ))

and the conservativity of a language is simply the mean of the conservativities of
the words in the language:

conservativity(L) =

∑
φ∈L conservativity(φ)

|L|

4.6 Experiments

In this section, I will cover two experiments. The first concerns comparing ran-
dom versus natural sampling, evaluating which leads to higher optimality. The
second concerns sampling languages of various degrees of naturalness, and finding
relations between optimality and the measures of naturalness, monotonicity and
conservativity.

The code for the experiments can be found at https://github.com/wouterposdijk/
SimInf Quantifiers.

4.6.1 Experiment 1: Random vs. Natural sampling

In the first experiment, I have sampled 40000 languages, uniformly distributed
over 1-10 words (4000 per word amount), 2000 per word amount from the set of
quasi-natural quantifiers and 2000 per word amount from all generated quantifiers
up to length 12, using the following operator set:

O = {| · |,⊂,∩,∪,−s,−n,+, >n,≥n, >q,=n,=q, /,∧,∨,¬,%}

Figure 4.4 showcases the results. This figure gives the impression that the
quasi-natural languages perform much better regarding the trade-off than the
completely random languages. The mean optimality and standard deviation can
be seen in Table 4.1.

Their means are significantly different (p ≈ 0.000, t(37271) = −79.82). This
implies that natural languages are, in general, better optimized with respect to
the simplicity/informativeness trade-off than completely random languages.

https://github.com/wouterposdijk/SimInf_Quantifiers
https://github.com/wouterposdijk/SimInf_Quantifiers
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Figure 4.4: The communicative cost and complexity of the languages sampled in
Experiment 1.



4.6. EXPERIMENTS 41

Language Complexity Comm. cost
|A ∩ B|/|A| > .4, |A|/|B| = .7, |A ∩ B|/|A| <
.7, |A∩B| > |B−A|, |A∩B|/|A| > .3, |B−A| >
2, |A ∩ B| > 6, |A − B| < 10, |A ∩ B|/|A| >
.1, |A ∩B| = 6

0.566 0.748

|A ∩ B|/|B| = .6, |A ∩ B|/|A| > .7, |A ∩
B|/|A| < .8, |A − B| = 4, |B − A| = 10, |A ∩
B| = 6

.35 .758

|A−B| = 8, |A−B| < 8, |A ∩B| > 6 .15 .773

Table 4.2: Some examples of dominating languages from the sampled quasi-
natural languages.

Some examples of dominating languages from the sampled quasi-natural lan-
guages can be seen in Table 4.2.

4.6.2 Experiment 2: Gradual naturalness

In the second experiment, I have sampled 80000 languages, uniformly distributed
over 1-10 words (8000 per word amount), with the amount of natural quantifiers
sampled from a uniform distribution; that is to say, when sampling a language of
e.g. 7 words, the amount of quantifiers that come from the quasi-natural set is
sampled from a uniform distribution over 0 through 7.

I have measured all six properties mentioned in this chapter for all these
languages:

• Complexity

• Communicative Cost

• Optimality

• Naturalness

• Monotonicity

• Conservativity

See the complexity and communicative cost of these languages in Figure 4.5.
In Figure 4.6, see the average naturalness, monotonicity and conservativity in

various areas of the graph. The figures imply that monotonicity and naturalness
are major factors pushing toward the frontier, and conservativity is not. Inter-
estingly, high monotonicity mainly seems to be prevalent at the bottom front,
whereas high naturalness seems prevalent both bottom and left.
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Figure 4.5: The communicative cost and complexity of the languages sampled in
Experiment 2.
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(a) Naturalness (b) Monotonicity

(c) Conservativity

Figure 4.6: The average values of naturalness, monotonicity and conservativity
in various ranges of complexity and communicative cost.



44 CHAPTER 4. QUANTIFIER LANGUAGES

factor coef. p ∆R2

Intercept .0828 0
naturalness -.0168 .0000 .040

monotonicity -.0270 .0000 .013
conservativity .0106 .0000 .005

Table 4.3: The results of a linear regression predicting optimality based on nat-
uralness, monotonicity and conservativity in the sampled set of languages for
Experiment 2. The ∆R2 indicates how much R2 increases upon adding that
factor to a model with only the other two. Total R2 of the model is .103

A proper way to verify the influence of these factors on optimality is through
linear regression. See in Table 4.3 the effects of naturalness, monotonicity and
conservativity on optimality. Naturalness and monotonicity have significant neg-
ative effects on the optimality, implying that they make languages more optimal.
See in the rightmost column the increment in R2 that adding each parameter to
the model yields. This shows that, while monotonicity has a larger coefficient
than naturalness, naturalness explains a larger portion of the variance.

4.7 Discussion

The results seem to imply that both quasi-naturalness and monotonicity predict
better optimality than complete randomness. This implies that natural languages
are indeed a relative optimization with respect to this trade-off. Indeed, the
hypothesis testing done confirms this idea. In this section, I provide some points
of discussion: strengths and weaknesses of the measures used and experiments
shown in this chapter.

More sets of operators For this experiment, only a single set of operators
was used. Using various sets of operators could provide a more complete picture.
There are two possible problems with using only a single grammar. On the
one hand, there is the desideratum of expressivity : the grammar needs to be
able to express an adequate range of quantifiers to be an appropriate arena for
evaluating the trade-off. On the other hand, there is the desideratum of cognitive
representativeness.

Expressivity is not a problem; the setup used leaves space for adequate vari-
ance in communicative cost, complexity, monotonicity, conservativity and quasi-
naturalness. It is cognitive representativeness and the consequent measure of
complexity used that may form a problem—for example, one may wonder whether
it is right to incur the same complexity for use of % as for use of ∩. For that
reason, it would be good to see more verifications of the research results with
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different sets of operators, or different inherent complexities among the operators
used.

Relatively close does not mean optimal Natural quantifiers lie closer to
the Pareto front than completely random quantifiers. This does not imply that
natural languages are optimal with respect to the trade-off, but it does imply
that languages are optimized. There may be other factors at play, but natural
language are certainly more optimized than completely random languages.

Simplicity is easier to achieve randomly than informativeness Many
sampled languages, natural or random, are relatively uninformative and very
simple. This can be attributed to the fact that languages were sampled uni-
formly across word count—supplying many languages of size 1 and 2, which are
otherwise uncommon due to the combinatorial explosion of options as language
size increases. This leads to a rather large area, rather close to the frontier, being
populated by both quasi-natural and random languages. This might point to
natural languages in general requiring a minimum level of informativeness.

Only quasi-natural languages While the examples of non-dominated quasi-
natural languages seen in Table 4.2 look natural in principle, they are unlikely to
match any languages actually attested in the world. However, this is not really
problematic: the specific languages that end up the best in this mere approxi-
mation of real life interaction were never expected to be real natural languages.
Indeed, since all our measures are mere approximations, it is sensible to stay
focused on the general performance of general properties with respect to the
trade-off, as was done in the experiments.

Conservativity is not related to optimality Although conservativity, one
of the major semantic universals, does not make languages more optimal, this is
not problematic for the hypothesis. If some aspects of natural languages improve
the trade-off, that is already a strong enough result. Languages may be con-
servative for some other reason than optimizing the simplicity/informativeness
trade-off. Steinert-Threlkeld and Szymanik (2018) have found a similar discrep-
ancy between the results of conservativity and other universals in their research
on the learnability of quantifiers. The current research further strengthens the
idea that conservativity is of a very different nature than monotonicity.

4.8 Conclusion

It seems that out of the three properties of natural languages considered, two,
namely naturalness and monotonicity, optimize with respect to the simplicity/in-
formativeness trade-off. These results point towards a pressure for languages to
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optimize with respect to the simplicity/informativeness trade-off in the semantic
domain of quantifiers.



Chapter 5

Future Directions

In this chapter, I discuss possible future directions that may build upon the
present research. First, I discuss which computational restrictions applied in the
present research may be alleviated. Second, I discuss how analysis of dynamics
can provide more insight in the process at which languages optimize for the trade-
off. Third, I discuss how the model may be extended to include pragmatics.
Finally, I discuss how learnability may provide an alternative to the complexity
measures used in the present research.

5.1 Computational Restriction

Perhaps the most obvious way to build upon the present research is alleviating
some of the computational restrictions, such as the fact that the integers allowed
in the grammar were limited, and that some semantic universals were built into
the model and grammar.

All integers For computational reasons, the grammars used contained only
even integers. Although I believe that the results attested in the experiments are
representative for a scenario where all possible integers are considered, it would
be good to verify that scenario using better computational means.

Extensionality and isomorphism invariance Another computational re-
striction built in the semantic universals extensionality and isomorphism invari-
ance. This means that the results attested here measure the optimality of nat-
uralness, monotonicity and conservativity given (EXT) and (ISOM). It remains
to be seen whether this effect holds if these two factors are removed. In addition,
these two factors, being semantic universals, are predicted to provide languages
with relative optimality as well—although (EXT) is quite similar to conservativ-
ity, in that it considers a part of the model irrelevant, an may thus not provide
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much of an effect. This is something to be investigated. I suspect that grad-
ual entropy-based measures can be developed for both (EXT) and (ISOM) with
relative ease.

5.2 Dynamics

Kemp, Xu, and Regier (2018) mention the need for a more dynamic approach
in the area of research: once one finds out that natural languages are optimized
with respect to the simplicity/informativeness trade-off, a good next step is to
figure out how that may have come to be. What are evolutionary paths from
non-optimized languages to optimized languages? And do such paths ends up
at natural languages per se? Such questions can be investigated by considering
evolutionary algorithms, such as the one used to estimate the Pareto front, in
more detail. For example, one may build in mutations that focus on naturalness,
or one may compare convergence speed between the algorithm run with arbitrary
sampling vs. natural sampling. Such approaches can provide more insight into
the process that leads to the optimization witnessed.

5.3 Pragmatics

Although the results are already promising, one very important part of commu-
nication has not yet been included: pragmatics (Grice, Cole, and Morgan, 1975).
Since pragmatics constitute a sizeable part of communication, and the measures
for informativeness are based on the idea of efficient communication, incorporat-
ing pragmatics could greatly increase the accuracy of the measures. There are
several forms of pragmatics that could be incorporated.

For one, scalar implicature (Carston, 1998) can be incorporated. Franke
(2018) has modeled scalar implicature in quantifier languages using the Ratio-
nal Speech Act framework (Goodman and Frank, 2016). I believe that this could
be extended to the current model with relative ease. Scalar implicature can
be expected to improve the informativeness of languages with overlap, since it
effectively counteracts overlap. This might be more advantageous for natural lan-
guages than for random languages, which would further strengthen the results.

In addition, the maxim of quantity (the idea that one should not provide
more information than needed) can be incorporated somehow—considering that
oftentimes context dictates that people purposefully convey vague information,
since more detail would not be relevant. A possible way to incorporate this
would be to consider the informativeness of a language given various amounts of
sim-max payoff. Alternatively, this can be incorporated by including a Question
Under Discussion (Beaver et al., 2017) in the game, which must be answered with
as little information as possible.
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In short, pragmatics provide exciting extensions for the models used so far;
it would be very interesting to see whether or not they strengthen the advantage
natural languages have over random languages.

5.4 Learnability

Aside from the simlicity/informativeness trade-off as seen in this thesis, another
possible factor in the shaping of the semantic typology of quantifiers is learnabil-
ity: the idea that our languages are optimized to be easy to learn (note that this
interpretation is rather recent and not to be confused with learnability in Uni-
versal Grammar (Pinker, 2009)). Steinert-Threlkeld and Szymanik (2018) have
used this principle to explain the prevalence of several semantic universals among
quantifiers.

Learnability is very related to simplicity (Gibson et al., 2019). Learnability
implies simplicity, just as simplicity implies learnability. Thus, frameworks for
measuring the learnability of a word or language may be used to measure the
simplicity thereof. Steinert-Threlkeld and Szymanik (2018) use neural networks
to investigate the learnability of quantifiers—this could lead to a measure of
complexity therefor. Such an approach can likely be extended to whole languages
as well. An obvious advantage of such an approach is that it does not depend on a
Language of Thought and thus does not depend on the specific choice of operators.
There are, of course, choices to be made in the form of the learning model used,
but those choices are less domain-specific, allowing them to be motivated from
general neuro- and cognitive science.

Thus, learnability provides a way to measure simplicity with fewer direct
assumptions, providing exciting next steps in simplcity/informativeness research.





Chapter 6

Conclusion

In this thesis, I have developed measures of simplicity and informativeness for
both individual quantifiers and quantifier languages, despite the fact that quanti-
fiers are function words. This shows that the general approach applied to content
words extends to function words as well. In addition, I have developed various
ways to approach properties of natural quantifier languages, through either con-
sidering categories of words, or by measuring semantic universals gradually. By
developing a measure of the optimality of languages, I have been able to relate
said optimality to properties of natural languages through statistical analysis,
providing a good view of the influence of the trade-off.

While there does not seem to be a trade-off at the level of individual quan-
tifiers, a trade-off can certainly be identified at the level of quantifier languages.
Statistical tests verify that monotonicity and naturalness improve the optimality
of languages, implying that there are properties of natural languages that make
them more optimized with respect to the trade-off than arbitrary, logically possi-
ble ones. This supports the hypothesis that the trade-off is an important factor in
shaping the semantic typology of quantifiers. This is despite the fact that quan-
tifiers are function words, strengthening the hypothesis that the trade-off shapes
the semantic typology of all semantic domains.

Still, much can be done to strengthen this result further, by alleviating com-
putational restrictions, analyzing dynamics, and incorporating pragmatics and
learnability, not to mention extension to other domains of function words. These
are all exciting directions sure to increase the knowledge about the nature and
influence of the simplicity/informativeness trade-off.
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