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ABSTRACT
We explore some recent directions for the logical foundations
of social action that emerge from contacts between logic,
game theory, philosophy, and computer science.1

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic

General Terms
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1. LOGIC OF SOCIAL ACTION
The traditional focus of logic has been on activities of

single agents, but social action is now widely seen as essen-
tial. Rational - or reasonable - agency involves interaction
over time in a balance between information and evaluation
of states of the world. There are many strands to this that
invite logical analysis, and we may be just at the start.

2. LOGIC AND GAME THEORY
Many issues in the logic of social action become sharper

when thinking about games. This lecture will take its exam-
ples mainly from that interface, though we make no claims
about how much good that will do for game theory (or for
logic) per se. Moreover, no exhaustive survey is intended:
cf. [8, 32] for more.

1What follows is an extended abstract for the TARK lecture,
not a full paper.

ACM COPYRIGHT NOTICE. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
TARK 2011, July 12-14, 2011, Groningen, The Netherlands.
Copyright c©2011 ACM. ISBN 978-1-4503-0707-9, $10.00.

3. BACKWARD INDUCTION REVISITED
Like the Muddy Children puzzle, Backward Induction keeps

suggesting new logical perspectives, being a miniature of
non-trivial rational agency:
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Are the bold-face moves the ‘rational outcome’? Reason-
ing underpinning this involves action, preference, knowledge,
belief, conditionals (all of philosophical logic in one tree).

4. DELIBERATION CREATES BELIEFS
In the spirit of logical dynamics [27], we put the spotlight

on the BI algorithm rather than its outcomes, as a deliber-
ation procedure producing initial expectations when a game
starts. These expectations are encoded in a plausibility or-
dering of the endpoints of the game, which gets updated step
by step in a systematic way. These updates may be viewed
as steps of belief revision during deliberation:
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Definition 1. Move x dominates sibling move y in beliefs
if the most plausible end nodes reachable after x along any
path in the game tree are all better for the active player than
all most plausible end nodes reachable after y. The assertion
of rationality-in-beliefs (rat) says at a node that no player
has played a move in the past that was dominated in beliefs.

Definition 2. Given a proposition P , the operation of rad-
ical upgrade ⇑P changes a current plausibility model M
to M⇑P : all P -worlds are now better than all ¬P -worlds;
within zones, the old order remains.

Theorem 1. On finite trees, the Backwards Induction
strategy is encoded in the limit plausibility order for leaves
created by iterated upgrade ⇑rat with rationality-in-belief.



In the limit of this procedure, players have acquired com-
mon belief in rationality.

Encoding strategies as plausibility relations [5] Each subre-
lation R of the move relation induces a total plausibility
order ord(R) on leaves x, y of the game tree: x ord(R) y iff,
at the first node z where the histories of x, y diverged, if x
was reached via an R move from z, then so is y. Conversely,
every such ‘tree-compatible’ total order ≤ on leaves of the
game also induces a subrelation rel(≤) of the move relation
via an obvious stipulation.

5. EQUILIBRIA AND FIXED-POINT LOGIC
The outcome of this dynamic analysis is a relational strat-

egy σ that can be defined in standard logical systems, namely
first-order fixed-point logic:

Theorem 2. BI is the largest subrelation σ of the move
relation in a finite game tree satisfying

(a) the relation has a successor at each intermediate node,

(b) a Confluence property for all players i at all nodes:
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Inspecting the syntax of CF, we can use the language of
first-order fixed-point logic LFP(FO):

Theorem 3. The BI relation is definable in LFP(FO).

The same analysis works for other variants of BI, with
definability in inflationary fixed-point logic (for details, see
[29]). This is just the start of exploring general connections
between game-theoretic equilibrium and fixed-point logics.

6. ZOOMING IN OR ZOOMING OUT:
MODAL LOGIC OF BEST ACTION

Fixed-point logics describe detailed mechanics of game so-
lution. Practical reasoning can also zoom out, hiding details:

Can we axiomatize the modal logic of finite game trees
with a move relation (plus move∗), turns and preference for
players, and a new relation best computed by Backward In-
duction? We need a preference modality 〈pref i〉ϕ: i prefers
some node with ϕ to the current one.

Fact 1 ([31]). Confluence corresponds to the following
modal axiom, for all propositions p - viewed as sets of nodes
- and for all players i:`

turni ∧ 〈best〉 [best∗] (end→ p)
´

→ [move−i] 〈best∗〉 (end ∧ 〈pref i〉 p)

Does Rationality, meant to make behavior predictable, ac-
tually make game logic complex? In modal logics of action
and knowledge, Perfect Recall can cause Π1

1-completeness by
grid encoding [15]. Rationality, too, forces grid-like patterns,
cf. the picture for CF.2

7. LOGIC OF LIMIT PHENOMENA
The above scenario is driven by iterated upgrade with one

particular formula ϕ that can be true or false at nodes of a
game tree. Let us look further.

Iterated public announcement This drives Muddy Children
puzzles, or game solution procedures that announce ratio-
nality, pruning the initial game until a first fixed-point [26].

Definition 3. The update limit (ϕ,M)] is the first model
reached by iterated announcements !ϕ in M that no longer
changes. If this model is non-empty, ϕ holds in all nodes:
common knowledge results (self-fulfilling) - if empty, ¬ϕ was
common knowledge (self-refuting). Rationality assertions
rat are self-fulfilling, the ignorance statement for the Muddy
Children is self-refuting.3

Fact 2. Limit update models for ‘positive-existential’
modal formulas ϕ are definable in the modal µ-calculus.
Arbitrary formulas require inflationary µ-calculus.

Why is rationality self-fulfilling? And why is disagreement
in beliefs self-refuting [11]?

Open Problem 1. Characterize the self-fulfilling and self-
refuting formulas syntactically.4

Theorem 4 ([20]). PAL plus iteration is Π1
1-complete.

All these questions also make sense for first-order logics
of game trees, as used above.

Iterated upgrade of plausibility order More complex [4]: cy-
cles, new logics. Links with learning theory: [13].

General logic of protocols For a more general program in the
background, see [12, 28, 33].

8. PARADOX OF BACKWARD INDUCTION
Is the analysis stable under inversion [6]? After deliber-

ation, we observe the actual play of the game. Do players
now get cold feet?
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2Complexity of a logic is not task complexity for agents: [9].
3This is the global version, we discuss local versions with an
actual world in the full paper.
4For many relevant results about the non-limiting case,
see several recent papers by W. Holliday, T. Hoshi & Th.
Icard, Stanford Logical Dynamics Lab: http://stanford.
edu/~thoshi/ldl/Home.html
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Backward Induction says that A will go left at the start,
on the basis of logical reasoning available to both players.
But if A plays right, what should E conclude? Perhaps A
is not following the BI reasoning, and all bets are off as to
what he will do later on - especially in long games?

Many theorems characterizing BI assume common knowl-
edge [2] or true common belief in rationality. A richer anal-
ysis would take in revision policies by players learning a fact
contradicting their beliefs in the course of a game [23]. These
may stay close to rationality, or reflect other hypotheses. E
might think: (a) ‘A is telling me that he is willing to take
risks’, (b) ‘A is an automaton with a general rightward ten-
dency’, and so on.

Conclusion: One should not just analyze games, but also
the styles of the agents playing them.

9. RATIONALIZATION
Rationality is a ‘bridge law’ relating observable and postu-

lated theoretical properties like Newton’s laws in mechanics.
It is interesting to hold on to it for a while:

Rationalize By playing a move, a player gives
information about her beliefs. These beliefs are
such as to rule out that her actual move is strictly
dominated-in-beliefs.5
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The play in Game (a) is rational by ascribing a belief to E
that choosing left would result in outcome 1. Game (b) may
be rationalized by ascribing a belief to E that the game will
now reach 3. Game (c) suggests that E thinks she will reach
3, while she would have reached 2 if she had gone right.6

The point is not that one rule now replaces Backward
Induction by ‘forward induction’ [7]. It is rather that the
past is informative, telling us which choices players made in
coming here. Here is an example adapted from [22]:
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The most rational thing to do for E when A plays Right is
to go Right as well. Perea’s more general algorithm raises
interesting logical issues, for which we refer to our full paper.

5Stronger rationality assertions will be discussed in the full
paper. Also, the scenarios to follow assume that players see
one unique most plausible history: but this can be relaxed.
6Beliefs of a player E do double duty here. Connected to a
turn for the other player A, they correspond to expectations
about what A will do. But with a turn for E herself, they
are more like intentions.

10. NEW LOGICAL ISSUES
Games must now have a distinguished point s, encoding

the position where the actual play stands:

• s

x y

Players can let their choice depend on (a) the remaining
game, (b) what players did so far in the larger game. While
BI created one uniform plausibility relation x ≤ y among
histories x, y, we now get a ternary plausibility relation ≤s

xy. This allows for differences between what players expect
hypothetically if another move had been played than the
actual one (say, that would have been a ‘stupid move’) and
how they would feel if that move were actually played.

Thus, rationalization algorithms need not produce uni-
form expectations, not even going down one history.7 To
describe this in logic, we may need to ‘lift’ game trees to
more complex standard models for games, since beliefs need
not have a simple encoding any more as with BI.8 In dy-
namic logics for plausibility upgrade, we then need to allow
world-dependent relations (like in conditional logic). Behind
any specific rationalization algorithms, there is a general is-
sue here of developing the dynamic (limit) upgrade logic for
ternary plausibility models.

11. PREFERENCE CHANGE AND
GAME CHANGE

Folklore results make sense of almost any observed behav-
ior - if we can construct preferences on the fly. Any strategy
against the strategy of another player with known prefer-
ences can be rationalized by assigning suitable preferences.

The background to such algorithms are dynamic logics
of preference change [18, 14] describing evaluation changes
triggered by observing moves of a game.

Players need not even know precisely which game they are
playing: a reality of social life. And even if they do know
the game, they may want to change it. Dynamic-epistemic
logics of game change have been proposed e.g. for modeling
promises that change strategic equilibria [25] or for adding
players.9 But we need more ‘cross-game logic’.10

12. THEORY OF PLAY
There is no unique way of defining ‘best action’. The miss-

ing ingredient is information about the types of agent we are
interacting with. The structure of a game by itself does not
provide this, unless we make strong uniformity assumptions.
We need more input.

The term coined for this perspective in [30] is Theory of
Play. To make sense of what happens in a game, we must

7Backward Induction might be the only uniform and mono-
tonic algorithm creating expectations.
8This need for ‘lifting’ is known for reasoning about strate-
gies, cf. Ch. 10 of [27].
9[21] discusses agents manipulating knowledge during play.

10Recall our analogy with mechanics. Why is postulating a
force function behind observed particle behavior more than
an ad-hoc device? This function still makes sense when we
change the physical situation, adding or removing objects.
Getting to grips with such uniformities is a major challenge.



combine information about game structure plus the agents
in play. Game theory allows each player her own preferences,
but the Backward Induction algorithm assumes uniformity
on how players think and act, witness the symmetries. But
we need much more variety: in computational limitations,
belief revision policies, etc. 11

At present, there is no Theory of Play in my sense of the
term: only interesting bits and pieces that might help us
create one. Here is what I see as some relevant tasks.

Taxonomy of players. In principle, there can be huge spaces
of possible hypotheses concerning players. We need to con-
strain these to small sets of relevant options - and much
literature has relevant proposals. These options seem to
come in several different kinds. One is processing properties
of agents: what are their powers of memory, observation, or
even of inference? Another is update policies of agents: how
will they revise their beliefs, or more generally, what learn-
ing methods do they follow? And a third dimension might
be called balance types between information and evaluation:
agents can be more optimistic or pessimistic in pursuing
their goals, and so on.

Where to locate the diversity. One way of implementing such
a taxonomy would be in an explicit model of agents, say us-
ing a class of automata endowed with beliefs and preferences.
But diversity also lives elsewhere. Dynamic-epistemic log-
ics of knowledge or belief change have no explicit agents,
but they highlight diversity of observational access or plau-
sibility shift in different signals (technically, ‘event models’)
and the updates produced by these.12 Of course, in doing
so, they may still have hidden presuppositions that can be
brought out, and then varied. Here is a result from [28]:

Theorem 5. An imperfect information game arises from
iterated epistemic DEL update iff players have Perfect Mem-
ory and No Miracles (all learning is by observation).13

As to possible variations, there are also natural DEL-style
update rules for memory-bounded agents.

Objection: messiness. Theory of Play comes at the cost of
a large space of hypotheses about agents, with models that
can be much more complex than game trees.14 We need to
find simple taxonomies. Also, logical systems acknowledg-
ing variety tend to get complex. But this may be a matter
of choosing the right architecture. Consider belief revision.
Prima facie, it dissolves into many policies for relational up-
date, with complete dynamic logics for each [24]. But [3]
lets event models encode the variety, leaving only one rule
of Priority Update with simple axioms. The challenge for
a Theory of Play is acknowledging diversity, while letting
logic do its usual job of abstraction and idealization.

11[17] has a suggestive map of agent diversity from the stand-
point of dynamic-epistemic logic.

12E.g., it is not the agent that is ‘radical’, but a current way
of taking an input signal may be radical.

13The cited paper suggests that synchronicity is also built in,
but cf. [10] for an alternative analysis.

14‘Worlds’ might be nodes in game trees, histories in game
trees, or even thicker possible worlds that encode games,
strategy profiles, and other features. Theory of Play seems
to need all three levels.

13. REPERCUSSIONS
Bringing in agent diversity and theory of play is something

that happens in many disciplines. Consider results on game
play in computer science in terms of ‘positional strategies’
scenarios where simple memory-free agents can do an opti-
mal job [1]. Or consider empirical results on actual behavior
in auctions [19]. These illustrate the earlier mismatch be-
tween deliberative rationality and actual play, where prefer-
ences may change in the heat of battle. Theory of play may
even affect philosophy. What is ‘fair play’ in ethics given the
undeniable diversity of agents? Are uniformity assumptions
the greatest justice, or the greatest injustice? There seem
to be no easy answers.15

Theory of Play might even reach logic itself. What about
a Theory of Inference describing human or computational
agents engaging in deduction and other activities, and their
different styles of doing so? Say, finite automata doing first-
order proof or competing in logic games? Can logic get
closer to actual reasoning if we relax its standard uniformity
assumptions?
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