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Abstract. We define analogues of modal Sahlqvist formulas for the modal mu-calculus,

and prove a correspondence theorem for them.

1. Introduction

The modal mu-calculus provides a perspicuous way of isolating essential laws
of induction and recursion generalizing computational logics such as PDL,
CTL, and CTL*. This paper adds one more strand to its exploration, going
back to a traditional modal concern: frame correspondence theory. It was
observed in [5] how the usual method for obtaining frame correspondents for
Sahlqvist-type axioms can be applied to non-first-order axioms like Löb’s
Axiom whose antecedents have a special ‘PIA syntax’ supporting a minimal
valuation that is definable in the classical fixed-point language FO+LFP. It
is then natural to look for a balance on both sides, in terms of generalized
Sahlqvist forms in the language of the modal mu-calculus that support this
style of analysis. Such a generalization is found in this paper, by employing
additional notions and techniques from [6]. We will use only semantic stan-
dard models here, but the latter paper also considers generalized models for
the mu-calculus with restrictions on the predicates that are available in the
process of fixed-point approximation.

We will not look into completeness versions of Sahlqvist’s Theorem in this
paper, except for a few remarks on the existence of proof systems that match
semantic frame correspondence arguments. However, this research is part of
a larger project on analyzing special-purpose logics based on the modal mu-
calculus, and finding general techniques for their completeness proofs, which
are still lacking today. An important bridge in obtaining completeness from
correspondence results for Sahlqvist axioms has been the celebrated Esakia
Lemma [11] tying modal semantics to topological spaces. This is just one of
the many strategic points in research on modal logic and beyond where Leo
Esakia has shown the way to so many of us. We are happy to dedicate this
article to the memory of this great teacher, colleague, and friend.
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2. Preliminaries

Before we start, we briefly go through the background material and notation
needed for the paper. Our terseness is due to lack of space, not of respect.

2.1. Modal mu-calculus

We fix disjoint sets P of propositional atoms and V of fixed point variables.
We write p, q, s, . . . for propositional atoms, and X,Y, Z, . . . for fixed point
variables.

Any element of P ∪ V is a modal mu-formula, as are >,⊥. If ϕ,ψ are
modal mu-formulas then so are ϕ ∧ ψ, ϕ ∨ ψ, ♦ϕ, �ϕ, and if X ∈ V and
every free occurrence of X in ϕ is positive (in the scope of an even number of
negations), then µXϕ and νXϕ are modal mu-formulas. We use the usual
abbreviations →,↔. An occurrence of X in ϕ is said to be bound if it is in
the scope of a µX or νX, and free, otherwise. For convenience, occurrences
of propositional atoms will also be called ‘free’ occurrences. A sentence is a
modal mu-formula with no free fixed point variables.

We write ϕ(p1, . . . , pn, X1, . . . , Xm) to indicate that the atoms and free
variables in ϕ are among p1, . . . , pn and X1, . . . , Xm, respectively. It will
be implicit that p1, . . . , pn, X1, . . . , Xm are pairwise distinct. For modal mu-
formulas ϕ and ψ, and ξ ∈ P ∪ V, ϕ(ψ/ξ) denotes what we get by replacing
all free occurrences of ξ in ϕ by ψ.

A frame is a pair F = (W,R), where W is a non-empty set and R ⊆
W×W . An assignment into F is a map h : P∪V → ℘(W ). For ξ ∈ P∪V and
U ⊆ W , we write hUξ for the assignment that agrees with h on all symbols
other than ξ and whose value on ξ is U . We define [[ϕ]]h ⊆W by induction on
ϕ; the frame F is implicit in the notation. For ϕ ∈ P∪V we put [[ϕ]]h = h(ϕ).
[[>]]h = W , and [[⊥]]h = ∅. We put [[¬ϕ]]h = W \ [[ϕ]]h, [[ϕ∧ψ]]h = [[ϕ]]h∩ [[ψ]]h,
[[ϕ ∨ ψ]]h = [[ϕ]]h ∪ [[ψ]]h, [[♦ϕ]]h = {a ∈ W : ∃b(R(a, b) ∧ b ∈ [[ϕ]]h)}, and
[[�ϕ]]h = {a ∈ W : ∀b(R(a, b) → b ∈ [[ϕ]]h)}. Finally, for a mu-formula ϕ
and X ∈ V with only positive free occurrences in ϕ, we note that the map
f : ℘(W )→ ℘(W ) given by f(U) = [[ϕ]]hUX

is monotonic (this can be proved

by induction on ϕ), and define

[[µXϕ]]h =
⋂
{U ⊆W : [[ϕ]]hUX

⊆ U},
[[νXϕ]]h =

⋃
{U ⊆W : [[ϕ]]hUX

⊇ U}.

By the Knaster–Tarski theorem [21], these are (respectively) the least and
greatest fixed points of f . As alternative notation, for a mu-formula ϕ we
write (F , h), a |= ϕ iff a ∈ [[ϕ]]h.
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Let ϕ be any modal mu-formula. It can be checked by induction that if
S ⊆ P∪V and no ξ ∈ S occurs free in ϕ, then [[ϕ]]g = [[ϕ]]h for all assignments
g, h into the same frame that agree except perhaps on symbols in S. We say
that ϕ is positive (negative) if every atom and free fixed point variable in ϕ
occurs under an even (odd) number of negations. Suppose that π is positive
and ν negative. It can be checked by induction that π is monotonic and ν
is antimonotonic: that is, if h, h′ are assignments into the same frame and
h(ξ) ⊆ h′(ξ) for all ξ ∈ P ∪ V, then [[π]]h ⊆ [[π]]h′ and [[ν]]h′ ⊆ [[ν]]h.

We say that ϕ is valid in a frame F = (W,R) if [[ϕ]]h = W for every
assignment h into F , and valid if it is valid in every frame. We let ‘≡’
denote logical equivalence: ϕ ≡ ψ iff ϕ↔ ψ is valid.

The dual operators to ∧,∨,�,♦, µ, ν are ∨,∧,♦,�, ν, µ, respectively. As
well as the usual ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ, ¬�ϕ ≡ ♦¬ϕ, etc, it can be checked
that ¬µXϕ(X) ≡ νX¬ϕ(¬X/X) and ¬νXϕ(X) ≡ µX¬ϕ(¬X/X).

2.2. First-order logic plus fixed points (FO+LFP)

We will be very brief here, since first-order logic plus fixed point operators
is a well known and well understood system. We refer the reader to [10] for
much more information on it. We will use ‘FO+LFP’ to stand for first-order
logic augmented by least and also greatest fixed point operators. We work
in the signature with a binary relation symbol R and unary relation symbols
P,X for each p ∈ P and X ∈ V. The atomic formulas of FO+LFP are
x = y, R(x, y), >, ⊥, P (x), and X(x), for any variables x, y, and p ∈ P,
X ∈ V. If ϕ,ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∀xϕ, and
∃xϕ. If ϕ is a formula, x a variable, and S a unary relation symbol (arising
either from P or V) all of whose free occurrences in ϕ are positive, then
[LFP (S, x)ϕ] and [GFP (S, x)ϕ] are formulas with the same free first-order
variables as ϕ, but in which S is now bound. The semantics is as usual;
in particular, if all free occurrences of S in ϕ(x, y1, . . . , yn, S) are positive,
then M |= [LFP (S, x)ϕ](a, b1, . . . , bn) iff a is in the least fixed point of the
(monotone) map f : ℘M → ℘M given by f(U) = {c ∈M : M |= ϕ(c, b1, . . . ,
bn, U)}. Semantics of [GFP (S, x)ϕ] are defined similarly, using greatest fixed
points. Occasionally we will take fixed points of higher-arity relations.

As in the mu-calculus, ≡ will denote the relation of logical equivalence.
Any formula positive in P is monotonic in P as well.
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2.3. Standard translations

For a first-order variable x, every modal mu-formula ϕ(p1, . . . , pn, X1, . . . ,
Xm) has a standard translation STx(ϕ): a formula ϕ′(x, P1, . . . , Pn, X1, . . . ,
Xm) of FO+LFP defined as follows:

1. STx(p) = P (x), STx(X) = X(x), STx(>) = >, and STx(⊥) = ⊥,

2. STx(¬ϕ) = ¬STxϕ, etc.,

3. STx(♦ϕ) = ∃y(R(x, y) ∧ STy(ϕ)), for some variable y 6= x,

4. STx(�ϕ) = ∀y(R(x, y)→ STy(ϕ)), for some variable y 6= x,

5. STx(µXϕ) = [LFP (X,x)STxϕ],

6. STx(νXϕ) = [GFP (X,x)STxϕ].

For any frame F = (W,R), any assignment h into F , any a ∈ W , and
any modal mu-formula ϕ(p1, . . . , pn, X1, . . . , Xm) with STxϕ = ϕ′(x, P1, . . . ,
Pn, X1, . . . , Xm), we have (F , h), a |= ϕ iff F |= ϕ′(a, h(p1), . . . , h(pn), h(X1),
. . . , h(Xm)). We remark that if ϕ is positive in pi then STx(ϕ) is positive
in Pi.

3. Sahlqvist’s theorem and the mu-calculus

Here we will describe the existing work that led us to the position recorded
in this paper.

3.1. Classical Sahlqvist correspondence

Sahlqvist formulas originated in [19]. In spite of (or perhaps because of) their
importance in modal logic today, there seems to be no universally agreed
modern definition of them. We will adopt the following simple definition.

DEFINITION 3.1. [Sahlqvist formula]

1. Any positive formula is a Sahlqvist formula.

2. Any formula of the form ¬�ns (a negated ‘boxed atom’) is a Sahlqvist
formula, where n ≥ 0, �0ϕ = ϕ, �n+1ϕ = �(�nϕ), and s is a proposi-
tional atom.

3. If ϕ,ψ are Sahlqvist formulas then so are ϕ ∨ ψ and �ϕ.
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Many commonly arising modal axioms are equivalent to Sahlqvist for-
mulas. To illustrate, the formula �p→ p is equivalent to ¬�p ∨ p, which is
constructed from the negated boxed atom ¬�p (clause 2) and the positive
formula p (clause 1) using ∨ (clause 3). It is common to include ϕ ∧ ψ in
clause 3 above — for example, the definition of Sahlqvist formulas in [7,
definition 3.51] boils down to this. We do not allow ∧ in clause 3 for two
reasons. First, any formula obtained by adding ∧ to clause 3 is in any case
equivalent to a conjunction of Sahlqvist formulas as defined above, because
any occurrence of ∧ can be moved up through the ∨s and �s using distribu-
tivity. Second, the argument coming up in a moment is simpler without ∧
in clause 3. But when we come to Sahlqvist mu-formulas, we will want to
include ∧.

Sahlqvist formulas have two key properties:

Correspondence. For any Sahlqvist formula ϕ, there is a first-order sen-
tence χϕ, called the frame correspondent of ϕ, that is true in an arbitrary
Kripke frame iff ϕ is valid in that frame. Moreover, χϕ can be computed
from ϕ by a simple algorithm.

Completeness. For any Sahlqvist formula ϕ, the basic modal logic K aug-
mented with ϕ as an extra axiom is sound and complete for the class of
frames defined by χϕ.

The properties are of course related, and further algebraic properties have
been established (e.g., [14]). The celebrated ‘Esakia lemma’ [11] is used in
a key step in the proof of completeness (e.g., [20]). In this paper we are
concerned only with correspondence, and we confine our discussion to that
topic. There are several proofs of Sahlqvist correspondence in the literature:
e.g., [19, 2, 20, 7]. But the idea can be simply explained, as follows. It will
be familiar to many readers, but we (briefly) go through the steps because
we intend to generalise them later.

Let ϕ be a Sahlqvist formula and F = (W,R) a Kripke frame.

Step 1. Assume that ϕ is not valid in F . This says that there is a model
M = (F , h), for some assignment h of atoms into F , and some world a ∈W ,
such thatM, a |= ¬ϕ. Now ¬ϕ is plainly equivalent to a formula of the form

σ(ν1, . . . , νm, β1, . . . , βn), (1)

where σ(p1, . . . , pm, q1, . . . , qn) is a formula made from distinct atoms p1, . . . ,
pm q1, . . . , qn using only ∧ and ♦ (the duals of the operations in clause 3
of definition 3.1); each of q1, . . . , qn occurs exactly once in σ; ν1, . . . , νm are
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negative formulas; β1, . . . , βn are boxed atoms; and (1) is shorthand for the
result

σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn)

of uniformly replacing each atom pi in σ by νi and each qj by βj . So ϕ is
not valid in F iff there are a, h with

(F , h), a |= σ(ν1, . . . , νm, β1, . . . , βn). (2)

Step 2. Now we observe the following critical fact. Let x be any first-order
variable.

LEMMA 3.2. The standard translation STx(σ(p1, . . . , pm, q1, . . . , qn)) of σ
is equivalent to a formula ψ(x, P1, . . . , Pm, Q1, . . . , Qn) of the form

∃y1 . . . yn
(
ψ(x, P1, . . . , Pm, ȳ) ∧

∧
1≤j≤n

Qj(yj)
)
, (3)

for some first-order formula ψ(x, P1, . . . , Pm, ȳ) positive in each of P1, . . . ,
Pm, where ȳ = (y1, . . . , yn) is a tuple of distinct variables different from x.

The proof is a simple induction on the structure of σ, and it can be done
precisely because (as a result of clause 3 of definition 3.1) σ only involves ∧
and ♦, and each qj occurs exactly once in σ. If we allowed ∧ in clause 3, ψ
would be more complicated: a disjunction of formulas of the form (3).

With (3) at hand, we see that (2) literally says that for some a, h,

(∗) there are b1, . . . , bn ∈W , standing in a certain relation to a and to each
other specified by ψ (formally, by F |= ψ(a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn))
and such that (F , h), bj |= βj for each 1 ≤ j ≤ n.

Step 3. The next critical step is to observe that without loss of generality
we can replace h by a ‘minimal assignment’ h◦, satisfying h◦(s) ⊆ h(s) for
every atom s occurring in ϕ. In fact, h◦ is the assignment where each h◦(s)
is as small as possible subject to the condition that (F , h◦), bj |= βj for
1 ≤ j ≤ n. The definition of h◦ is uniform in b1, . . . , bn.

To find h◦, for each atom s we collect up all the boxed atoms βj involving
s. To illustrate, suppose that there are just two of them: β3 = �2s, and
β7 = �0s = s. (So β1, β5, etc., are boxed atoms involving other atoms than
s.) Then (∗) states that (F , h), b3 |= �2s and (F , h), b7 |= s. This will be
preserved if we replace h by an assignment g with g(s) = {w ∈ W : F |=
∃z(R(b3, z) ∧ R(z, w))} ∪ {b7}. This is the ‘minimal’ assignment satisfying
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(F , g), b3 |= �2s and (F , g), b7 |= s. Any assignment g′ making β3 true at
b3 and β7 at b7 must plainly satisfy g(s) ⊆ g′(s), and in particular, we have
g(s) ⊆ h(s). Let h◦ be the ‘minimal assignment’ that assigns the minimal
value g(s) to each atom s as just explained. If s does not occur in any βj
then h◦(s) = ∅.

Now h◦(s) ⊆ h(s) for all atoms s. Consequently, by antimonotonicity of
negative formulas, [[νi]]h ⊆ [[νi]]h◦ for i = 1, . . . ,m. Since P1, . . . , Pm occur
only positively in ψ, the truth of ψ(a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn) in (∗) is
unaffected by our replacing h by h◦.

So if (∗) holds for some assignment h, then it holds for h◦. Since if (∗)
holds for h◦ then it certainly holds for some h, we conclude that ϕ is not
valid in F iff (∗) holds for some a and for h◦.

We now make one final observation: it is automatic that (F , h◦), bj |= βj
for each 1 ≤ j ≤ n, since h◦ is defined precisely to achieve this. We conclude
that ϕ is not valid in F iff:

(∗∗) there are a, b1, . . . , bn ∈ W with F |= ψ(a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn),
where h◦ is defined as above.

Step 4. The final critical step is to notice that for each atom s, the value
h◦(s) is first-order definable with the parameters b1, . . . , bn. We have

h◦(s) = {c ∈W : F |= δs(c, b1, . . . , bn)},
where δs(x, y1, . . . , yn) is a certain first-order formula in the frame language,
and one that we can explicitly construct. In the example above, we had
h◦(s) = {c ∈ W : F |= ∃z(R(b3, z) ∧ R(z, c))} ∪ {b7} — this is definable as
{c ∈W : F |= δs(c, b1, . . . , bn)}, where

δs(x, y1, . . . , yn) = ∃z(R(y3, z) ∧R(z, x)) ∨ x = y7.

Summing up. In the light of (∗∗) and step 4, we see that ϕ is not valid
in F iff

F |= ∃xȳ θ(x, ȳ), (4)

where θ denotes the result of replacing each subformula of ψ(x, P1, . . . , Pm, ȳ)
of the form Pi(t) (for some 1 ≤ i ≤ m and some variable t) by: the formula
obtained from STt(νi) by replacing each subformula S(v) (for an atom s
and a variable v) by δs(v/x, y1, . . . , yn) (which is the definition of h◦(s)).
By construction, (4) means exactly the same as (∗∗) and is equivalent to
ϕ’s failing to be valid in F . Consequently, the negation ∀xȳ¬θ(x, ȳ) of the
first-order sentence in (4) is our desired frame correspondent for ϕ.

We would like to generalise this argument, eventually to the mu-calculus.
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3.2. PIA formulas

In [4], van Benthem showed how to generalise steps 3 and 4 to a wider class
of modal formulas than boxed atoms, at the cost of ending up with a frame
correspondent not in first-order logic but in FO+LFP: first-order logic plus
the least and greatest fixed point operators.

What step 3 needs is the existence of a minimal assignment that makes
a formula β true at a given world y of a Kripke frame, given that there
exists at least one assignment making β true at y. As we saw, if β is a
boxed atom �ds then there is indeed a minimal assignment to s, namely,
{w ∈ W : F |= Rd(y, w)}, where R0(y, w) is y = w and Rd+1(y, w) is
∃z(R(y, z) ∧Rd(z, w)).

[4] studied first-order sentences ϕ(S) (for a unary relation symbol S
corresponding to the atom s) that admit such a minimal assignment, in the
sense that in any first-order structure M there is a minimal S ⊆ M with
M |= ϕ(S). It was shown that a sufficient condition for ϕ(S) to admit a
minimal assignment is that it has the intersection property (IP): namely,
that for any M , index set I, and subsets Si ⊆ M (i ∈ I), if M |= ϕ(Si) for
each i ∈ I then M |= ϕ(

⋂
i∈I Si). The minimal assignment to S that makes

ϕ(S) true is then simply
⋂
{S ⊆ M : M |= ϕ(S)}. It was also proved that

ϕ(S) has IP iff it is equivalent to a sentence of the form

∀y(ψ(S, y)→ S(y)),

where ψ(S, y) is positive in S. Such sentences have the form ‘positive implies
atomic’, or for short, ‘PIA’.

This is for first-order logic, and no similar characterisation of the modal
version of IP was given. Nonetheless, [4] did exhibit a modal analogue of ‘PIA
implies IP implies minimal assignment exists’. This arises by considering
modal formulas ϕ(s) that we will call semantically PIA formulas, whose
standard translations STx(ϕ(s)) are equivalent to PIA formulas of the form

∀y(ψ(S, x, y)→ S(y)), (5)

for ψ positive in S. Boxed atoms are examples: STx(�ds) ≡ ∀y(Rd(x, y)→
S(y)), which is of the required form (5). But there are many more. First,
any atom s is a semantically PIA formula, since its standard translation
STx(ϕ) is S(x) — this is equivalent to ∀y(y = x → S(y)), which is of the
form (5). Second, it can be verified that the semantically PIA formulas ϕ(s),
for a fixed atom s, are closed under ∧ and � (though not under ∨). Third,
if ϕ(s) is semantically PIA and π(s) is positive in s then π(s)→ ϕ(s) is also
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semantically PIA. Since for Sahlqvist purposes we would like a syntactically
defined class of semantically PIA formulas, we say that a modal formula
ϕ(s) is syntactically PIA if it is obtained from atoms by applying ∧, �, and
π(s)→ ·, where π(s) is positive in s. Boxed atoms are plainly (very) special
cases of syntactically PIA formulas. Any syntactically PIA formula, and
indeed any semantically PIA formula, admits a minimal assignment to s as
required by step 3 of the correspondence proof in section 3.1.

For step 4, we also need that the minimal assignment is definable in first-
order logic. The minimal S satisfying (5) need not be first-order definable.
However, it is definable in FO+LFP. This is because the minimal S sat-
isfying (5) (in a frame F = (W,R), for a given x ∈ W ) is the intersection
of all S satisfying (5). By the Knaster–Tarski theorem, this intersection is
the least fixed point of the monotone map fψ,x : ℘(W ) → ℘(W ) given by
fψ,x(S) = {a ∈ W : F |= ψ(S, x, a)}, for S ⊆ W . It is therefore defined by
the FO+LFP-formula [LFP(S, y)ψ](x, y).

The astute reader will have noticed that step 3 also required that we
can take the union of the minimal assignments to a given atom s from all
of the boxed atoms βj involving s, obtaining a single (definable) minimal
assignment that still satisfies all these βj . This is true for syntactically
PIA formulas, for much the same reason that they are closed under ∧, but
properly it is a consideration for the ‘clause 3’ structure of the Sahlqvist
formula.

We conclude that we can allow negated syntactically PIA formulas in
clause 2 of definition 3.1, if we do not mind the frame correspondent being
in FO+LFP instead of first-order logic.

3.3. PIA mu-calculus formulas

The main contribution of the current paper now begins. As suggested in
[4], if we are willing to admit frame correspondents in FO+LFP, why not
go further and consider formulas of the modal mu-calculus, whose standard
translations automatically lie in this language? Let us say that a modal mu-
calculus formula β(s) is semantically PIA if its standard translation STx(β)
is equivalent to a FO+LFP-formula of the form

∀y(ψ(S, x, y)→ S(y)), (6)

where ψ is positive in S. There will always be a FO+LFP-definable minimal
assignment to s making β true at a world a in a frame F , namely, {c : F |=
ψ′(a, c)}, where ψ′(x, y) = [LFP (S, y)ψ](x, y).
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This definition of PIA formula is semantic. As before, we now have the
problem of defining a wide syntactic class of semantically PIA mu-formulas.
Starting from an atom s and fixed-point variables, we can close under ∧,
�, and π(s)→ · as before, where π(s) is now a modal mu-sentence positive
in s. It turns out that we can also close under the greatest fixed point
operator ν. This will be seen in section 4. Any sentence ϕ(s) obtained in
this way admits a minimal assignment to s that makes ϕ true at a world x
of a frame; the minimal assignment is definable in FO+LFP. So we could
allow the negations of such formulas in clause 2 of definition 3.1.

3.4. Clause 1

In step 3 of the correspondence proof, we noted that the negative formu-
las kept their truth values when we replaced the original assignment h by
the minimal one, h◦. All that was needed for this was antimonotonicity,
which still holds if we allow positive mu-calculus formulas in clause 1 of
definition 3.1.

3.5. Clause 3

Sahlqvist formulas were defined as the closure of positive formulas and
negated boxed atoms under ∨,�. We have seen how we can generalise
boxed atoms (to PIA mu-formulas) and positive formulas (to positive mu-
calculus formulas). Now we would like to generalise the ‘clause 3’ structure:
the closure operations ∨,�.

All we required of these operations was that, when dualised to ∧,♦, they
allow lemma 3.2 to be proved. If we include ∨ here as well, a form of the
lemma involving a disjunction of formulas of the form (3) can be proved.
We would like to add µ, and to leverage this powerful operator we would
like to have both ∧ and ∨ available. (For example, we can already express
♦(p ∧ q) using ∧ and ♦, so we would like to express its ‘transitive closure’
version ♦∗(p ∧ q), by σ1(p, q) = µX((p ∧ q) ∨ ♦X). This requires ∧ and ∨.)

It turns out that a disjunctive form of lemma 3.2 can be proved for any
formula σ(p1, . . . , pm, q1, . . . , qn) built using only ∨,♦, µ, where the formula
ψ in (3) is now in FO+LFP of course.

To allow ∧ as well, we have to make restrictions. For example, the
standard translation STx(σ2) of the formula σ2(q1, q2) = µX(q1∨(q2∧♦X)),
expressing ‘q2 until q1’, is not equivalent to a disjunction of formulas of the
form ∃y1y2(ψ(x, y, z)∧Q1(y1)∧Q2(y2)) given in (3). A sufficient restriction is
to allow σ∧τ only if (i) σ and τ have no atoms from q1, . . . , qn (corresponding
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to the boxed atoms) in common, and (ii) if either has a free fixed point
variable then the other is a sentence not involving q1, . . . , qn. This restriction
allows σ1 but not σ2.

Now lemma 3.2 was only a tool for the correspondence proof. What is
the effect of the restrictions on ∧ in σ on actual Sahlqvist formulas? The
effect of (i) is nil, since we can meet it by using fresh atoms in τ — this
doesn’t matter since in (1) we substitute formulas for the atoms of σ. The
effect of (ii) is that for ϕ∨ψ to be a Sahlqvist formula, if one of ϕ,ψ is not a
sentence then the other must be a sentence not involving any negated boxed
atoms — i.e., a positive sentence.

The ‘reason’ why lemma 3.2 can be proved for such formulas σ is that
they are completely additive in each qk. Formally, if F is a frame and hi
(i ∈ I 6= ∅) are assignments into F that agree on all atoms other than qk,
and h is the assignment given by h(p) =

⋃
i∈I hi(p) for each atom p, then

for any world a of F we have (F , h), a |= σ iff (F , hi), a |= σ for some i ∈ I.
The restrictions on ∧ are to ensure that this holds.

Suppose for example that σ only involves the atom q, and STx(σ) =
ψ(x,Q), say. Let ψ0(x), ψ1(x, y) denote the result of replacing each subfor-
mula Q(v) of ψ by ⊥ and v = y, respectively. Then by complete additivity,

STx(σ) ≡ ψ0(x) ∨ ∃y(ψ1(x, y) ∧Q(y)).

This form is close enough to (3) for the correspondence proof to work. If σ
involves multiple atoms, the argument can be iterated. So we can replace
clause 3 of definition 3.1 by a construction allowing (the duals of) ∨,♦, µ,
and the restricted ∧ as just explained.

The trouble-maker is clearly ∧. If σ(p1, . . . , pm, q1, . . . , qn) does not in-
volve ∧ then we can prove a stronger form of complete additivity. Passing
to the dual operations ∧,�, ν, this becomes a strong form of ‘complete mul-
tiplicativity’ analogous to the intersection property (IP), which we will use
to show that ∧,�, ν and POS → · can be applied to PIA formulas while
preserving the existence of a definable minimal assignment.

3.6. Sahlqvist formulas in the mu-calculus

Let us formalise the position we have arrived at. All formulas below are of
the modal mu-calculus.

DEFINITION 3.3. [PIA formulas] Let s be an atom. We define the syn-
tactically PIA formulas β(s) involving only the atom s, as follows.

1. s is a syntactically PIA formula.
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2. Any fixed point variable X is a syntactically PIA formula.

3. If β(s), γ(s) are syntactically PIA formulas then so are β ∧ γ, �β, and
νXβ (for any fixed point variable X).

4. If β(s) is a syntactically PIA formula and π(s) is any modal mu-sentence
positive in s and involving no other atoms than s, then π(s)→ β(s) is a
syntactically PIA formula.

In the end we are only interested in syntactically PIA sentences. These may
not look of the form ‘positive implies atomic’, but we will see that their
standard translations are equivalent to formulas of this form, so we feel the
term ‘PIA’ is justified.

DEFINITION 3.4. We also define the compound PIA formulas, which may
involve more than one atom:

1. Any syntactically PIA formula is a compound PIA formula.

2. Any fixed point variable X is a compound PIA formula.

3. If ϕ,ψ are compound PIA formulas then so are ϕ∧ψ, �ϕ, and νXϕ (for
any fixed point variable X).

Again, we are only interested in compound PIA sentences.

DEFINITION 3.5. [Sahlqvist mu-formula]

1. Any positive sentence is a Sahlqvist mu-formula.

2. Any negated compound PIA sentence is a Sahlqvist mu-formula.

3. Any fixed point variable is a Sahlqvist mu-formula.

4. If ϕ,ψ are Sahlqvist mu-formulas then so are ϕ ∧ ψ, �ϕ, and νXϕ (for
any fixed point variable X).

5. If ϕ,ψ are Sahlqvist mu-formulas, and if one of them is not a sentence
then the other is a positive sentence, then ϕ∨ψ is a Sahlqvist mu-formula.

A Sahlqvist mu-sentence is a Sahlqvist mu-formula that is a sentence.

In summary, a Sahlqvist mu-sentence is any sentence obtained by ap-
plying ∧,�, and ν to fixed point variables, positive sentences, and negated
compound PIA sentences; ∨ can also be applied so long as if one of the
disjuncts is not a sentence then the other is a positive sentence. In the next
section we will prove a correspondence theorem for Sahlqvist mu-sentences.
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4. Correspondence theorem

This section contains the formal proofs of the paper. We will prove a cor-
respondence theorem for Sahlqvist mu-sentences (theorem 4.14 below). The
initial sections contain preliminaries.

4.1. Skeletons

Our main technical tool will be formulas that we call skeletons, because they
will support the negative formulas and compound PIA formulas (generalis-
ing the boxed atoms) in Sahlqvist formulas, as in (1). (In this role, they
are analogous to the universal prefix that is extracted in the ‘Sahlqvist–van
Benthem algorithm’ in [7]. Skeletons allow a richer Sahlqvist syntax, includ-
ing, for example, negative formulas in antecedents — ♦(¬p ∧ �p) → · · · is
fine.) We will also use them to show that PIA and compound PIA formulas
really are semantically PIA.

Recall that P is the ambient set of atoms, and V the set of fixed point
variables.

DEFINITION 4.1. [Q-skeleton] Let Q ⊆ P be arbitrary.

1. Any atomic mu-formula (i.e., an atom, a fixed point variable, >, or ⊥)
is a Q-skeleton.

2. If σ, τ are Q-skeletons then so are σ ∨ τ , ♦σ, and µXσ (for any fixed
point variable X).

3. If σ is a Q-skeleton and τ is a positive sentence involving no atoms from
Q, then σ ∧ τ and τ ∧ σ are Q-skeletons.

REMARK 4.2. Any Q-skeleton is a Q′-skeleton for every Q′ ⊆ Q: in-
creasing Q strengthens the restrictions on Q-skeletons. However, if σ is a
Q-skeleton and Q′ is a set of atoms not occurring in σ, a simple induction
shows that σ is a Q∪Q′-skeleton.

The main semantic property of skeletons is a form of complete additivity,
as we will see in proposition 4.4. Fix a frame F = (W,R).

DEFINITION 4.3. Let H be a set of assignments into F .

1. Write
⋃
H for the assignment g given by g(ξ) =

⋃
{h(ξ) : h ∈ H} for

each atom or fixed point variable ξ.

2. Let Q ⊆ P be a set of atoms. We say that H is Q-variant if h(p) = h′(p)
for all atoms p ∈ P \ Q and all h, h′ ∈ H. (Important: there are no
restrictions on the values of h ∈ H on fixed point variables.)
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PROPOSITION 4.4. Fix Q ⊆ P. Let σ be a Q-skeleton and H a non-empty
Q-variant set of assignments into F . Then [[σ]]⋃H =

⋃
{[[σ]]h : h ∈ H}.

Proof. We prove the proposition by induction on σ. We write g =
⋃
H.

If σ ∈ P ∪ V then [[σ]]g = g(σ) =
⋃
{h(σ) : h ∈ H} =

⋃
{[[σ]]h : h ∈ H}.

If σ = ⊥, the result is trivial. If σ = >, then because H 6= ∅ we have
[[>]]g =

⋃
{[[>]]h : h ∈ H}.

We pass to the inductive steps. First suppose that σ = τ ∨ ξ, where
τ, ξ are Q-skeletons. Then [[σ]]g = [[τ ]]g ∪ [[ξ]]g. By the induction hypothesis,
[[τ ]]g ∪ [[ξ]]g =

⋃
{[[τ ]]h : h ∈ H} ∪

⋃
{[[ξ]]h : h ∈ H} =

⋃
{[[τ ]]h ∪ [[ξ]]h : h ∈

H} =
⋃
{[[σ]]h : h ∈ H}.

Next let σ = ♦τ for some Q-skeleton τ . Let w ∈ W . Then w ∈ [[σ]]g =
[[♦τ ]]g iff there is v ∈ [[τ ]]g with R(w, v). Inductively, [[τ ]]g =

⋃
{[[τ ]]h : h ∈ H}.

So the above holds iff there are h ∈ H and v ∈ [[τ ]]h with R(w, v). This is
iff there is h ∈ H with w ∈ [[♦τ ]]h = [[σ]]h: i.e., iff w ∈

⋃
{[[σ]]h : h ∈ H}, as

required.

Next suppose that σ = τ∧ξ for some Q-skeleton τ and positive1 sentence
ξ involving no atom in Q (the case ξ ∧ τ is handled similarly). As H is Q-
variant, for each h ∈ H, g, h agree on all free symbols in ξ, and so [[ξ]]g = [[ξ]]h
for each h ∈ H. Now [[σ]]g = [[τ ]]g ∩ [[ξ]]g. By the induction hypothesis, this is
equal to

⋃
{[[τ ]]h : h ∈ H} ∩ [[ξ]]g =

⋃
{[[τ ]]h ∩ [[ξ]]g : h ∈ H} =

⋃
{[[τ ]]h ∩ [[ξ]]h :

h ∈ H} =
⋃
{[[σ]]h : h ∈ H}.

Finally, suppose that σ = µXτ . By monotonicity it is plain that [[σ]]g ⊇
[[σ]]h for each h ∈ H, so we have [[σ]]g ⊇

⋃
{[[σ]]h : h ∈ H}. For the converse,

we recall that

[[σ]]g =
⋂
{U ⊆W : [[τ ]]gUX

⊆ U}

and ⋃
h∈H

[[σ]]h =
⋃
h∈H

⋂
{U ⊆W : [[τ ]]hUX

⊆ U}.

Let y ∈ W and suppose that y /∈
⋃
h∈H[[σ]]h. Then for each h ∈ H there

exists Uh ⊆ W such that [[τ ]]
h
Uh
X

⊆ Uh and y /∈ Uh. Let H′ = {hUh
X : h ∈ H}

and g′ =
⋃
H′. Clearly, H′ is also Q-variant. So by the induction hypothesis,

we obtain [[τ ]]g′ =
⋃
{[[τ ]]h′ : h′ ∈ H′}. As [[τ ]]

h
Uh
X

⊆ Uh for each h ∈ H, we

have
⋃
{[[τ ]]h′ : h′ ∈ H′} ⊆

⋃
h∈H Uh = V , say. But plainly, g′ = gVX . Thus,

we obtained that [[τ ]]gVX
⊆ V . Now y /∈ V , as y /∈ Uh for each h ∈ H. Thus,

y /∈
⋂
{U ⊆W : [[τ ]]gUX

⊆ U} = [[σ]]g.

1This assumption is not used here.
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A related theorem was proved using games in [13, proposition 5.5.4]. We
will see that proposition 4.4 has consequences for standard translations of
Q-skeletons.

NOTATION 4.5. We will frequently be working with skeletons of the form

σ(p1, . . . , pm, q1, . . . , qn),

and the following notation will be repeatedly useful. We will write N =
{1, . . . , n}. Fix distinct first-order variables x, y1, . . . , yn. For U ⊆ V ⊆ N ,
we will write

σU/V (x, yi, P1, . . . , Pm, Qj : i ∈ U, j ∈ N \ V ) (7)

for the FO+LFP-formula obtained from STx(σ) by replacing every atomic
subformula Qk(v) (where k ∈ V and v is a variable) by the formula{

v = yk, if k ∈ U,
⊥, otherwise.

Note that σU/V is a FO+LFP-formula, not a mu-formula.

COROLLARY 4.6. Let Q = {q1, . . . , qn} and let σ(p1, . . . , pm, q1, . . . , qn)
be a Q-skeleton sentence. Then STx(σ) is logically equivalent to

σ∗ = σ∅/N (x, P1, . . . , Pm) ∨
∨

1≤k≤n
∃yk
(
σ{k}/N (x, yk, P1, . . . , Pm) ∧Qk(yk)

)
.

Proof. Let F = (W,R) be a frame, and take any assignment g into F , and
a ∈W . It is enough to show that

a ∈ [[σ]]g ⇐⇒ F |= σ∗(a, g(p1), . . . , g(pm), g(q1), . . . , g(qn)). (8)

Let H be the set of all assignments h into F such that for some k ∈ N :

• h(qk) ⊆ g(qk) and |h(qk)| ≤ 1,

• h(ql) = ∅ for l ∈ N \ {k},
• h(ξ) = g(ξ) for every ξ ∈ (P ∪ V) \ Q.

Note that H 6= ∅, H is Q-variant, and
⋃
H = g. Now we prove (8). The

right-hand side holds iff F |= σ∅/N (a, g(p1), . . . , g(pm)) or there are k ∈ N
and b ∈ g(qk) with F |= σ{k}/N (a, b, g(p1), . . . , g(pm)). By definition of σU/V
and H, this is iff a ∈ [[σ]]h for some h ∈ H. By proposition 4.4, this is iff
a ∈ [[σ]]⋃H = [[σ]]g, as required.
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Corollary 4.6 will be useful for PIA formulas, but to rewrite Sahlqvist
formulas as we did in (1), we need to extend it to formulas that may not
be {q1, . . . , qn}-skeletons, but are only {qi}-skeletons for i = 1, . . . , n. Be-
cause of this weaker assumption, we have to settle for a more complicated
conclusion, but the family resemblance should be clear.

COROLLARY 4.7. Suppose that σ(p1, . . . , pm, q1, . . . , qn) is a {qi}-skeleton
for each i = 1, . . . , n. Then STx(σ) is logically equivalent to

σN = ∃y1 . . . yn
∨
U⊆N

(
σU/N (x, y1, . . . , yn, P1, . . . , Pm) ∧

∧
k∈U

Qk(yk)
)
.

We remark that if σ is normal in qk — that is, σ(p1, . . . , pm, q1, . . . , qk−1,
⊥/qk, qk+1, . . . , qn) ≡ ⊥ — then all disjuncts with k /∈ U are equivalent to
⊥ and can be deleted.

Proof. The proof is by induction on n. The case n = 0 is vacuously true,
since then, σN = σ∅/∅ = STx(σ). Let n > 0 and assume the result for n− 1.
Treating Qn as a P and applying the inductive hypothesis to the atoms
q1, . . . , qn−1, with N ′ = {1, . . . , n− 1}, shows that STx(σ) is equivalent to

σN
′

= ∃y1 . . . yn−1
∨

U⊆N ′

(
σU/N ′(x, y1, . . . , yn−1, P̄ , Qn) ∧

∧
k∈U

Qk(yk)
)
, (9)

where we write P̄ for (P1, . . . , Pm). As σ is a {qn}-skeleton, corollary 4.6 tell
us that STx(σ) is also equivalent to

σ∅/{n}(x, P̄ ,Q1, . . . , Qn−1)∨∃yn
(
σ{n}/{n}(x, yn, P̄ , Q1, . . . , Qn−1)∧Qn(yn)

)
.

Using (9) and the definitions of σ∅/{n} and σ{n}/{n}, the first disjunct of this
is equivalent to

∃y1 . . . yn−1
∨
U⊆N
n/∈U

(
σU/N (x, y1, . . . , yn−1, P̄ ) ∧

∧
k∈U

Qk(yk)
)
,

and the second to

∃y1 . . . yn
∨
U⊆N
n∈U

(
σU/N (x, y1, . . . , yn, P̄ ) ∧

∧
k∈U

Qk(yk)
)
.

STx(σ) is equivalent to the disjunction of these, and so to σN , which com-
pletes the induction.



Sahlqvist correspondence for modal mu-calculus 17

4.2. Skeletons and PIA formulas

In this section we will prove that any syntactically PIA sentence has a stan-
dard translation equivalent to a ‘genuine’ PIA (positive implies atomic) for-
mula of FO+LFP, and so is semantically PIA. For compound PIA sentences,
we will get a conjunction of FO+LFP PIA formulas, one for each atom.

DEFINITION 4.8. Let Q ⊆ P and let σ be a Q−skeleton.

1. σ is said to be normal if the formula obtained by replacing every free
occurrence of every ξ ∈ Q ∪ V in σ by ⊥ is logically equivalent to ⊥.
(Q is understood tacitly here. Atoms in P \ Q are not altered in σ.)

2. We write σQ (the ‘dual’ of σ) for the formula obtained from ¬σ by
replacing each free occurrence of each ξ ∈ Q∪ V by ¬ξ. Atoms in P \Q
are unchanged.

The following is as we would expect when taking duals.

LEMMA 4.9. Let σ, σ1, σ2 be Q-skeletons. Then

1. (σ1 ∨ σ2)Q ≡ σQ1 ∧ σ
Q
2 ,

2. (♦σ)Q ≡ �σQ,

3. (µXσ)Q ≡ νXσQ.

Proof. We prove only the last case. Let σ(p̄, q̄, X, Ȳ ) be given, where
p̄ are atoms not in Q, q̄ are atoms in Q, and X, Ȳ are fixed point vari-
ables. Then in the obvious notation, (µXσ)Q = ¬µXσ(p̄,¬q̄, X,¬Ȳ ) ≡
νX¬σ(p̄,¬q̄,¬X,¬Ȳ ) = νXσQ.

This gives us the following alternative view of syntactically PIA formulas.
In the lemma, formulas may have free fixed point variables but we do not
display them.

LEMMA 4.10. Let β(s) be a syntactically PIA formula. Fix an atom q 6= s.
Then β(s) ≡ σ{q}(s/q, s), for some normal {q}-skeleton σ(q, s).

Proof. By induction on β. We have s = σ{q}(s/q) where σ = q (a normal
{q}-skeleton). For a fixed point variable X, X = σ{q}(s/q) where σ = X

(again, X is a normal {q}-skeleton). Suppose that β1(s) ≡ σ
{q}
1 (s/q, s) and

β2(s) ≡ σ{q}2 (s/q, s), for normal {q}-skeletons σ1(q, s), σ2(q, s).

• Let σ(q, s) = σ1(q, s) ∨ σ2(q, s) — plainly a normal {q}-skeleton. By

lemma 4.9, β1 ∧ β2 ≡ σ
{q}
1 (s/q, s) ∧ σ{q}2 (s/q, s) ≡ (σ1 ∨ σ2){q}(s/q, s) =

σ{q}(s/q, s).
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• By lemma 4.9, �β1 ≡ �σ{q}1 (s/q, s) ≡ (♦σ1){q}(s/q, s), and ♦σ1 is nor-
mal.

• Let σ(q, s) be the {q}-skeleton µXσ1(q, s). It is clearly normal. By

lemma 4.9, νXβ1 ≡ νXσ{q}1 (s/q, s) ≡ σ{q}(s/q, s).
• Finally, suppose that π(s) is any sentence positive in s and involving

no other atoms than s. Then σ(q, s) = π(s) ∧ σ1(q, s) is a normal {q}-
skeleton, and σ{q}(q, s) ≡ ¬(π(s) ∧ ¬σ{q}1 (q, s)) ≡ π(s) → σ

{q}
1 (q, s). So

π(s)→ β1(s) ≡ σ{q}(s/q, s).

This completes the induction and the proof.

LEMMA 4.11. Let s be an atom and β(s) a syntactically PIA sentence.
Then STx(β(s)) is equivalent to a ‘PIA’ formula of FO+LFP of the form

∀y(ξ(x, y, S)→ S(y)),

where ξ(x, y, S) is positive in S.

Proof. By lemma 4.10 we have β(s) ≡ σ{q}(s/q, s) for some normal {q}-
skeleton sentence σ(q, s). By corollary 4.6, STx(σ(q, s)) ≡ ∃y(ξ(x, y, S)
∧ Q(y)), where ξ(x, y, S) is obtained from STx(σ) by replacing every sub-
formula Q(t) by t = y. (By normality, the disjunct σ∅/N in the corollary is
equivalent to ⊥ and we can dispense with it.) So

STx(β(s)) ≡ STx(σ{q}(s/q, s))

≡ ¬∃y(ξ(x, y, S) ∧ ¬S(y)) ≡ ∀y(ξ(x, y, S)→ S(y)).

By definition, σ(q, s) is positive in s, so ξ is positive in S.

We now extend this to compound PIA sentences.

PROPOSITION 4.12. Let ϕ(s1, . . . , sm) be a compound PIA sentence.
Then STx(ϕ) is equivalent to a formula of the form∧

1≤k≤m
∀y(ψk(x, y, Sk)→ Sk(y)),

where each ψk(x, y, Sk) is a FO + LFP -formula positive in Sk.

Proof. Much as in lemma 4.10, it can be shown by induction on ϕ that

ϕ(s1, . . . , sm) = σQ(β1(p1)/q1, . . . , βn(pn)/qn)
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for some n, where q1, . . . , qn are distinct atoms, Q = {q1, . . . , qn}, σ(q1, . . . ,
qn) is a normal Q-skeleton sentence, β1(p1), . . . , βn(pn) are syntactically PIA
formulas, and p1, . . . , pn ∈ {s1, . . . , sm} are not necessarily distinct.

For each l = 1, . . . , n, let χl(x, z) = σ{l}/N (x, z/yl). It follows from
corollary 4.6 that

STx(σQ(q1, . . . , qn)) ≡
∧

1≤l≤n
∀z
(
χl(x, z)→ Ql(z)

)
,

because by normality, the disjunct σ∅/N in the corollary is equivalent to ⊥
and can be omitted. By lemma 4.11, we also have

STz(βl(pl)) ≡ ∀y(ξl(z, y, Pl)→ Pl(y)),

for some FO+LFP-formula ξl(z, y, Pl) positive in Pl. For k ∈ {1, . . . ,m}, let
L(k) = {l : 1 ≤ l ≤ n, pl = sk}. Then

STx(ϕ) ≡ STx(σQ(β1(p1)/q1, . . . , βn(pn)/qn))

≡
∧

1≤l≤n
∀z(χl(x, z)→ STz(βl(pl)))

=
∧

1≤l≤n
∀z
(
χl(x, z)→ ∀y[ξl(z, y, Pl)→ Pl(y)]

)
≡

∧
1≤l≤n

∀y
(
∃z(χl(x, z) ∧ ξl(z, y, Pl))→ Pl(y)

)
≡

∧
1≤k≤m

∧
l∈L(k)

∀y
(
∃z(χl(x, z) ∧ ξl(z, y, Sk))→ Sk(y)

)
≡

∧
1≤k≤m

∀y
( [ ∨

l∈L(k)

∃z(χl(x, z) ∧ ξl(z, y, Sk))
]

︸ ︷︷ ︸
ψk(x,y,Sk)

→ Sk(y)
)
,

as required. Clearly, the indicated ψk(x, y, Sk) is positive in Sk. (If L(k) = ∅
then ψk ≡ ⊥.)

We conclude from proposition 4.12 that the standard translation of a
compound PIA sentence ϕ(s1, . . . , sm) is equivalent to a conjunction of
FO+LFP-formulas in PIA form, one for each atom s1, . . . , sm.
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4.3. Skeletons and Sahlqvist formulas

The definition of Sahlqvist formula is chosen so that we can view Sahlqvist
formulas in terms of skeletons, by the following analogue of lemma 4.10.

LEMMA 4.13. Let ϕ be a Sahlqvist formula. Then there are a formula
σ(p1, . . . , pm, q1, . . . , qn, X1, . . . , Xt) that is a {qi}-skeleton for each i = 1,
. . . , n, negative sentences ν1, . . . , νm, and compound PIA sentences β1, . . . ,
βn (not necessarily distinct), such that

ϕ ≡ ¬σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn,¬X1/X1, . . . ,¬Xt/Xt). (10)

Proof. By induction on ϕ. If ϕ is a positive sentence then ϕ ≡ ¬σ(¬ϕ/p)
where σ = p. If ϕ is a negated compound PIA sentence ¬β then ϕ ≡ ¬σ(β/q)
where σ = q. If ϕ is a fixed point variable X, then ϕ ≡ ¬σ(¬X/X) for
σ = X. Assume (10); then (10) holds with ϕ replaced by �ϕ and σ by ♦σ.
Also, taking νX1 as an example,

νX1ϕ
≡ νX1¬σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn,¬X1/X1, . . . ,¬Xt/Xt)
≡ ¬µX1σ(ν1/p1, . . . , βn/qn, X1,¬X2/X2, . . . ,¬Xt/Xt),

which is of the form (10).
Suppose in the obvious notation that

ϕ ≡ ¬σ(ν̄/p̄, β̄/q̄,¬X̄/X̄),
ϕ′ ≡ ¬σ′(ν̄ ′/p̄′, β̄′/q̄′,¬X̄ ′/X̄ ′),

where σ(p̄, q̄, X̄) is a {q}-skeleton for every q in q̄, and σ′(p̄′, q̄′, X̄ ′) is a {q′}-
skeleton for every q′ in q̄′. We can suppose without loss of generality that no
atom in q̄ occurs in σ′ and no atom in q̄′ occurs in σ. By remark 4.2, σ, σ′,
and hence σ ∨ σ′ are {q}-skeletons and {q′}-skeletons for every q in q̄ and q′

in q̄′, and clearly, ϕ ∧ ϕ′ ≡ ¬(σ ∨ σ′)(ν̄/p̄, ν̄ ′/p̄′, β̄/q̄, β̄′/q̄′,¬X̄/X̄,¬X̄ ′/X̄ ′)
as required. This covers the case ϕ ∧ ϕ′.

Now suppose that ϕ ∨ ϕ′ is a Sahlqvist formula. Certainly, ϕ ∨ ϕ′ ≡
¬(σ ∧ σ′)(ν̄/p̄, ν̄ ′/p̄′, β̄/q̄, β̄′/q̄′,¬X̄/X̄,¬X̄ ′/X̄ ′). But we need to check that
(σ ∧ σ′)(p̄p̄′, q̄q̄′, X̄X̄ ′) is an {x}-skeleton for each atom x in q̄q̄′.

If ϕ,ϕ′ are both sentences, then so are σ, σ′. For each atom q in q̄ (resp.,
q′ in q̄′), it is plain that σ′ (resp. σ) is a positive sentence not involving it.
So σ ∧ σ′ is an {x}-skeleton for each x in q̄q̄′.

Suppose instead that ϕ is not a sentence (the other case is similar).
Then (see definition 3.5) ϕ′ is a positive sentence and consequently does not
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involve any negated compound PIA sentences. So we may assume that q̄′

is empty. Now for each q in q̄, σ′ is a positive sentence not involving q, so
(σ ∧ σ′)(p̄p̄′, q̄, X̄X̄ ′) is a {q}-skeleton. This completes the proof.

4.4. Sahlqvist correspondence for mu-calculus

We are now ready to prove our main result.

THEOREM 4.14. Any Sahlqvist mu-sentence ϕ(s1, . . . , st) has a FO+LFP
frame correspondent — a sentence χϕ of FO+LFP with the property that for
any frame F , we have F |= χϕ iff ϕ is valid in F . The correspondent χϕ
can be computed from ϕ by a simple2 algorithm.

Proof. We follow the same steps as in our original account in section 3.
Let F = (W,R) be any Kripke frame.

Step 1. Assume that ϕ is not valid in F . This is the case iff there are an
assignment h into F and a ∈W with (F , h), a |= ¬ϕ. Now by lemma 4.13,

¬ϕ ≡ σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn),

where σ(p1, . . . , pm, q1, . . . , qn) is a sentence that is a {qi}-skeleton for each
1 ≤ i ≤ n, and ν1, . . . , νm are negative sentences and β1, . . . , βn compound
PIA sentences written with the atoms s1, . . . , st. So

(F , h), a |= σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn). (11)

Step 2. By corollary 4.7, STx(σ(p1, . . . , pm, q1, . . . , qn)) is logically equiv-
alent to

∃y1 . . . yn
∨
U⊆N

(
σU/N (x, P1, . . . , Pm, y1, . . . , yn) ∧

∧
k∈U

Qk(yk)
)
.

So by (11), we see that ϕ is not valid in F iff there are an assignment h into
F , a, b1, . . . , bn ∈W , and U ⊆ N with

F |= σU/N (a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn) and
∧
k∈U

(
bk ∈ [[βk]]h

)
. (12)

2Well, fairly simple.
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Step 3. We now plan to replace h by a ‘minimal’ assignment h◦, preserving
(12). This assignment will depend uniformly on b1, . . . , bn, as before, and it
will also depend on U .

Each βk(s1, . . . , st) (1 ≤ k ≤ n) is compound PIA, so by proposition 4.12
its standard translation STyk(βk) is equivalent to a FO+LFP-formula of the
form ∧

1≤l≤t
∀y(ψkl (yk, y, Sl)→ Sl(y)), (13)

where each ψkl is positive in Sl. So the last part of (12) says precisely that

(F , h(sl)) |= ∀y(ψkl (bk, y, Sl)→ Sl(y)) (14)

for each l = 1, . . . , t and each k ∈ U . This condition is plainly equivalent to
(F , h(sl)) |=

∧
k∈U ∀y(ψkl (bk, y, Sl)→ Sl(y)) for each 1 ≤ l ≤ t, and so to:

(F , h(s)) |= ∀y(ρsU (y, b1, . . . , bn, S)→ S(y)) (15)

for each atom s ∈ P, where

ρsU (y, y1, . . . , yn, S) =
∨{

ψkl (yk, y, S) : k ∈ U, 1 ≤ l ≤ t, s = sl
}
. (16)

If s /∈ {s1, . . . , st} then ρsU ≡ ⊥.
Now each ρsU is positive in S. So (15) is in PIA form, and a minimal

assignment to each s exists. Call this assignment h◦. As we said, it depends
on b1, . . . , bn, and U . For s /∈ {s1, . . . , st} we have h◦(s) = ∅.

If we replace h by h◦ in (12), the condition bk ∈ [[βk]]h◦ for each k ∈ U is
automatic — h◦ is by definition the minimal assignment that ensures this.
Moreover, h◦(s) ⊆ h(s) for all atoms s. By antimonotonicity, [[νl]]h ⊆ [[νl]]h◦

for each 1 ≤ l ≤ m. As σU/N is positive in P1, . . . , Pm, we have F |=
σU/N (a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn).

We conclude from (12) that ϕ is not valid in F iff there are a, b1, . . . ,
bn ∈W , and U ⊆ N such that with the above h◦,

F |= σU/N (a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn). (17)

Step 4. Moreover, for each atom s, the minimal assignment h◦(s) that
satisfies (15) is definable in FO+LFP: it is given by the set of all c in F that
satisfy the FO+LFP-formula ηsU (c, b1, . . . , bn), where

ηsU (y, y1, . . . , yn) = [LFP (S, y)ρsU (y, y1, . . . , yn, S)](y, y1, . . . , yn). (18)

This is a well formed FO+LFP-formula, since ρsU is positive in S.



Sahlqvist correspondence for modal mu-calculus 23

Summing up. Let ωU (x, y1, . . . , yn) be the formula obtained as follows.
We take σU/N (x, P1, . . . , Pm, y1, . . . , yn) and replace each atomic subformula
Pl(t) (1 ≤ l ≤ m, t a variable) by the formula obtained from STt(νl) by
replacing each atomic subformula S(z) (for some atom s and variable z) by
ηsU (z/y, y1, . . . , yn) from (18) (the parts of ηsU are given in (16) and (13)).
Then (17) is equivalent to

F |= ωU (a, b1, . . . , bn),

and ϕ is not valid in F iff there are a, b1, . . . , bn ∈W and U ⊆ N such that
this holds. We conclude that the original statement that ϕ is not valid in F
is equivalent to

F |= ∃xy1 . . . yn
∨
U⊆N

ωU (x, y1, . . . , yn).

Thus we obtain our correspondent χϕ as the negation of this.

5. Examples

We will now give a few examples concerning frame correspondents. We
explained the algorithm that constructs the correspondents in full detail in
section 4, and in spirit in section 3. In the examples, we will take an informal
approach true to the spirit of the algorithm. The reader may like to apply
the algorithm to the examples following the precise steps of the preceding
section.

5.1. Löb’s formula, �(�p→ p)→ �p

We simply state the correspondence: F , x |= �(�p → p) → �p iff (1)
R is transitive from x, and (2) R is conversely well-founded at x. Note
that the antecedent �(�p → p) is PIA, and we can see that its minimal
valuation stated as a fixed-point by our general procedure amounts to the
set {y : ∀z(R∗yz → Rxz)∧ no infinite sequence starts from y}. Substituting
this into the consequent gives the above frame-equivalent.

Now that we have PIA forms, we can go back to earlier work on non-first-
order correspondence and see what was going on. For instance, the modal
axiom (♦p∧�(p→ �p))→ p discussed in [3] has a PIA conjunct �(p→ �p)
in its antecedent. Its corresponding frame property is easily determined.
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5.2. Axioms of propositional dynamic logic (PDL)

Consider the axioms of PDL, treating complex program expressions as new
relation symbols. For instance, the characteristic axiom for composition,
[a; b]p ↔ [a][b]p, may be viewed as [c]p ↔ [a][b]p. This axiom consists of
two implications that are clearly Sahlqvist forms. Computing their frame
equivalents via the usual algorithm yields Rc = Ra ◦ Rb, where ◦ is com-
position of binary relations. Now consider the two axioms for Kleene star:
(i) [a∗]p → p ∧ [a][a∗]p, (ii) p ∧ [a∗](p → [a]p) → [a∗]p. These may be
viewed as (i) [b]p → p ∧ [a][b]p, (ii) p ∧ [b](p → [a]p) → [b]p. Of these, the
first is standard first-order Sahlqvist. What it says is that Id ⊆ Rb and
Ra ◦ Rb ⊆ Rb. The second principle has an antecedent that is PIA by the
rules of our syntax. Suppressing a precise calculation here, in conjunction
with the preceding two inclusions it says that the relation Rb is equal to the
reflexive-transitive closure R∗a.

5.3. ϕ1 = �+s→ s

Here, �+s abbreviates νX�(s ∧ X), which defines the ‘transitive closure’
of �. We could treat ϕ1 as a classical Sahlqvist formula in a modal signature
with the box �+ with accessibility relation R+, calculate its correspondent
by the classical method (§3.1) as ∀xR+(x, x), and then replace R+(x, x) by
its FO+LFP definition [LFP (S, x, y) . R(x, y)∨∃z(R(x, z)∧R+(z, y))](x, x).
Note that this requires a binary LFP operation.

Alternatively, we can use our algorithm. Written out in the mu-calculus,
ϕ1 is νX�(s ∧X)→ s. It is valid in a frame F at a world x iff (F , h), x |=
νX�(s ∧X)→ s for all assignments h into F .

Let H be the set of assignments h (into F) with (F , h), x |= νX�(s∧X).
We will show that there is a ‘smallest’ h◦ (with minimum h(s)) in H. Then
ϕ1 is valid in F iff (F , h), x |= s for all h ∈ H. Since s is positive, this holds
iff (F , h◦), x |= s.

We calculate h◦ using PIA methods. Clearly, νX�(s∧X) ≡ [¬µX♦(s∨
X)](¬s/s). As µX♦(s ∨ X) is normal and completely additive in s, its
standard translation STx at x is equivalent to ∃v(λ(v, x) ∧ S(v)), where

λ(v, x) = [LFP (X,x) .∃y(R(x, y) ∧ (y = v ∨X(y))](v, x).

So
STx(νX�(s ∧X)) ≡ ∀v(λ(v, x)→ S(v)). (19)

This is in PIA form. The minimal assignment to s with respect to x is given
by LFP (S, v) applied to the antecedent λ(v, x). This is equivalent to λ(v, x),
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as S does not occur free in λ. ((19) is ‘CIA’ — ‘constant implies atomic’.)
The ‘minimal’ h◦ ∈ H is now given by h◦(s) = {v ∈ F : F |= λ(v, x)}.

So ϕ is valid in F at x iff (F , h◦), x |= s, iff F |= λ(x/v, x). So ϕ1 is valid in
a frame F iff F |= ∀xλ(x/v, x): i.e.,

F |= ∀x
(
[LFP (X,x) . ∃y(R(x, y) ∧ (y = x ∨X(y))](x)

)
.

This is our frame correspondent. It uses only unary least fixed points, as do
all correspondents obtained with our algorithm.

5.4. ϕ2 = s→ νX
(
�(X ∧ ¬s′) ∨ (♦s ∧ ♦s′)

)
This can be checked to conform to definition 3.5, if we replace the initial
‘s→ ’ by ‘¬s∨ ’. The skeleton associated with ϕ1 above was just p∧ q. For
ϕ2, the skeleton is nontrivial: ϕ2 is equivalent to the Sahlqvist mu-formula

¬σ(η/p, s/q, s′/q′),

where (clearly) s, s′ are PIA formulas, η = ¬(♦s ∧ ♦s′) is negative, and

σ(p, q, q′) = q ∧ µX(p ∧ ♦(q′ ∨X))

is a {q}-skeleton and a {q′}-skeleton. It is not a {p}-skeleton, because in
p ∧ ♦(q′ ∨ X), the right-hand conjunct is not a sentence but the left-hand
one involves p. The second conjunct of σ is equivalent to a strict form of
pUq′. So ϕ ≡ s→ ¬([¬(♦s ∧ ♦s′)]Us′).

We calculate the frame correspondent of ϕ2. We will suppress some
parentheses to aid readability. Note that σ is normal in q and q′, so (as we
mentioned after the statement of corollary 4.7) STx(σ) is equivalent to the
rather simple formula

∃yy′
(
x = y ∧ [LFP (X,x) . Px ∧ ∃z(Rxz ∧ (z = y′ ∨Xz))]

∧Qy ∧Q′y′
)
. (20)

We now take STx(η) = ¬(∃v(Rxv ∧ Sv) ∧ ∃v(Rxv ∧ S′v)) and replace ref-
erences to S, S′ by the minimal valuations for them, which are {y}, {y′},
respectively. We obtain ¬(∃v(Rxv ∧ v = y) ∧ ∃v(Rxv ∧ v = y′)), which sim-
plifies to ¬(Rxy∧Rxy′). This is substituted for Px in (20) and the conjuncts
Qy,Q′y′ are deleted since they will automatically be true under the minimal
assignment. We obtain

∃yy′
(
x = y ∧ [LFP (X,x) .¬(Rxy ∧ Rxy′) ∧ ∃z(Rxz ∧ (z = y′ ∨Xz))]),
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and this holds at a world x iff ϕ2 is not valid at x. So our frame correspondent
for ϕ2 expresses the negation of the above for all x, which boils down to:

∀xyy′
(
x = y → GFP [X,x]

[
∀z(Rxz → (z 6= y′ ∧Xz)) ∨ (Rxy ∧Rxy′)

])
.

The correspondent plainly ‘says’ that for any path x = x0Rx1R . . . Rxn = y
in the frame, with n > 0, there is i with 0 ≤ i < n such that Rxix and Rxiy.

This raises some interesting connections with PDL. We do not believe
that there is any PDL formula without tests that is valid in the same frames
as ϕ2, but ϕ2 is valid in the same frames as

ϕ3 = p ∧ 〈(?q ; a)∗〉p′ → 〈(?q ; a)∗〉(♦p ∧ ♦p′),

where q is a new atom and a is a program with accessibility relation R. The
idea is roughly that if (F , h), x |= p∧ 〈(?q ; a)∗〉p′, then there is y with R∗xy
at which p′ holds, and a path from x to y along which q holds. The minimal
values of p, p′, q are now x, y, and the path, respectively. The consequent
now states that some world t on the path is R-related to worlds satisfying
these minimal values of p, p′ : i.e., Rtx and Rty.

In general, the minimal value of q (the path) is not unique, and consider-
ing automorphisms shows that it is not going to be definable in terms of x, y
in any logic at all. So such PDL-formulas seem to be (possibly much) more
powerful than Sahlqvist mu-formulas. On the other hand, Sahlqvist mu-
formulas allow rather free use of fixed points, and in expressive power may
go beyond even PDL-formulas with tests. Consider for example µX�X. As
is well known, this defines the well-founded part of any model. This property
appears not to be definable in PDL. The exact relationship between the two
formalisms is to be the object of further study.

5.5. McKinsey’s axiom: �♦p→ ♦�p

Of course, not every modal mu-formula, or even every modal formula, has a
frame correspondent in FO+LFP. It was mentioned in [4] that McKinsey’s
axiom ϕ = �♦p → ♦�p has no such correspondent and that this can be
proved using the Löwenheim–Skolem property for LFP (joint work by van
Benthem and Goranko).

Here, we give a little more detail of the proof. It is based on [2]; see
also [1, theorem 21] and [15, theorem 2.2]. Note first that ϕ is equivalent
to ♦(�p ∨ �¬p). Let F be the frame whose set of worlds consists of three
disjoint parts: a root r; the natural numbers; and the infinite sets X of
natural numbers. The accessibility relation R of F relates r to every X,
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X to every member of X, and each natural number to itself; these are the
only instances of R. It can be verified that ϕ is valid in F , because for any
assignment of p into F , there must be an infinite set X of natural numbers
all having the same truth value for p, and �p∨�¬p is consequently true at
such an X. Hence ♦(�p ∨�¬p) is true at the root. Truth of ϕ at all other
worlds of F is easy to check.

Suppose for contradiction that χ is a (global) frame correspondent of ϕ
in FO+LFP, so that F |= χ. It follows from the proof of the downward
Löwenheim–Skolem property for FO+LFP in [17, theorem 2.4] that there
is a countable elementary substructure F0 � F containing all the natural
numbers and with F0 |= χ, and so ϕ is valid in F0. To see that this is
impossible, enumerate the sets of natural numbers in F0 as X0, X1, . . . , and
select by induction distinct natural numbers x0, y0, x1, y1, . . . in such a way
that xn, yn ∈ Xn for each n (this is possible because Xn is infinite). Now
assign p to {x0, x1, . . .}. Every set Xn in F0 contains a point (xn) satisfying
p and a point (yn) satisfying ¬p, so �p ∨ �¬p is false at every Xn. Hence,
ϕ is false at the root.

6. Coda: proof-theoretic aspects of correspondence argu-
ments

As we observed, our proof gives a constructive algorithm for computing frame
equivalents of modal axioms having the required syntax. There is more here
than meets the eye. For a start, the equivalents computed by the algorithm
need not be the standard formulations one would expect. This is already true
for first-order equivalents of basic modal axioms. For instance, the modal
axiom p→ �♦p gets a computed correspondent ∀y(Rxy → ∃z(Ryz∧z = x)),
and this only reduces to the natural version ∀y(Rxy → Ryx) (symmetry)
after transformation into a logical equivalent. This ‘simplification’ phase can
be still more drastic for fixed-point formulas. For instance, the description
that we gave of the minimal valuation for the antecedent of Löb’s Axiom
was not the fixed-point produced directly by our general algorithm, but a
simplification reached by analyzing that predicate. And likewise, when we
substitute that simplified predicate into the consequent of Löb’s Axiom, we
have to perform one more simplification to see that ∀y(Rxy → ∀z(R∗yz →
Rxz)) is equivalent to ∀y(Rxy → ∀z(Ryz → Rxz)), and that ∀y(Rxy → ‘no
infinite sequence starts from y’) is equivalent to ‘no infinite sequence starts
from x’. What this shows in general is that optimizing correspondence may
involve some manipulation in the logic of the correspondence language.
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This observation raises another, and more important issue, namely, find-
ing syntactic completeness versions of semantic correspondence results. The
point is that correspondence arguments are proofs, but the issue is where.
[3] already proved the following

Theorem. The correspondence arguments for first-order Sahlqvist
axioms in the basic modal language can all be formalized in a weak
monadic second-order logic with comprehension (universal instantia-
tion for second-order quantifiers) only for first-order definable sets in
the vocabulary {R,=} plus unary predicate parameters.

This is a very weak formalism, and it shows that Sahlqvist’s Theorem has
a very constructive proof. We do not give details of the proof of this result,
but the following may be noted. Substituting first-order definable minimal
predicates is the mentioned universal instantiation. What also needs to be
proved is a syntactic version of the semantic monotonicity of the consequent,
using the syntactic positive occurrence of its proposition letters.

What is the corresponding result for our arguments? This time, the
formalism can again be the mentioned second-order logic, but now we also
allow definable predicates in FO+LFP. Again we have to show that all
steps in the proof go through. Note that this is much weaker than using all
validities of FO+LFP, whose logic is highly complex and non-axiomatizable.
By the way, the same may be true for ‘simplification’ of correspondents like
that for Löb’s Axiom in FO+LFP. We seem to need only a small part of all
the validities of that language, say just the obvious fixed-point axioms and
rules.

In this light, what is the point of the usual modal completeness versions
of the Sahlqvist Theorem? What these show is that for extracting purely
modal consequences, we do not need the full language of correspondence
proofs, but only a purely modal sublanguage. The usual incompleteness
proofs in modal logic [12] then show that this only goes so far, as this can
fail for relatively simple modal axioms. We do not investigate this here,
but we do have one telling example. [9] shows that the following variant of
Löb’s Axiom is frame-incomplete: �(�p ↔ p) → �p. This formula defines
the same class of frames as Löb’s Axiom, but it fails to derive the latter.
What is significant here is that it does have PI form for its antecedent, so
our algorithm would treat it just like Löb’s Axiom itself.

But we end with an observation about strength of modal deduction.
Sometimes, the mu-calculus seems strong enough to prove exact analogues
of our correspondence arguments! Löb’s Axiom itself is a good example.
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For instance, the second ‘simplification’ stated above is just the provable
fixed-point principle �µp(�p↔ µp�p). Next, here is a result from [5]:

FACT 6.1. Löb’s Logic is equivalently axiomatized by the two principles (a)
�p→ ��p, (b) µp�p.

Proof. From Löb’s Logic to (a) is a purely modal deduction. Next, (b) is
derived as follows. By the fixed-point axiom of the mu-calculus, �µp(�p→
µp�p). So it suffices to get �µp�p. Now Löb’s Axiom implies �(�µp�p→
µp�p)→ �µp�p, and the antecedent of this is derivable by modal Necessi-
tation from the mu-calculus fixed-point axiom. Conversely, assume (a) and
(b). We show that, in the modal logic K4, µp�p→ (�(�q → q)→ �q). The
derivation rule for smallest fixed-points proves µp�p → α for any formula
α if �α → α is proved. But K4 proves �(�(�q → q) → �q) → (�(�q →
q)→ �q).

While we have not given any deep results, we have hopefully shown how
correspondence arguments have interesting proof-theoretic aspects.

7. Conclusions and future work

We conclude with a discussion of some possible directions for future work.

Multiple recursions. In this paper we defined Sahlqvist mu-formulas and
proved that they have FO+LFP-correspondents. Here, in defining the cru-
cial syntactic notion of a PIA-formula, we allowed only one atom. Can we
also allow several atoms, while still obtaining mu-formulas that have FO+
LFP-correspondents? This question is related to the ‘inductive formulas’ of
Goranko and Vakarelov [16], which are more general than Sahlqvist formu-
las and admit minimal valuations constructed step-by-step for each atom.
A generalization of Sahlqvist mu-formulas to allow several atoms in PIA-
formulas may require combining our approach with the one of [16].

Strengthening the modal base. In this paper we only consider the ba-
sic modal language extended with fixed point operators. However, there
is room for further expansions involving hybrid modal languages, or the
Guarded Fragment with fixed point operators. Extensions of classical Sahl-
qvist correspondence to these languages have already been studied in, e.g.,
[8]. We think our approach can be generalized in the same way.

Fragments of the mu-calculus. One can also look into an opposite direc-
tion, at languages weaker than mu-calculus, and examine the consequences
of the Sahlqvist correspondence developed in this paper. One obvious candi-
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date is propositional dynamic logic (PDL), which has already played a large
role in our examples.3

The fixed-point correspondence language. We now turn to the other end
of our Sahlqvist correspondence: the logic FO+LFP. It is of course of
interest to know how much power of this logic we are really using. In other
words, in what subfragment of FO+LFP do the correspondents of Sahlqvist
mu-formulas ‘land’? For the classical Sahlqvist correspondence this question
has been answered by Kracht [18, 7]. But for the modal mu-calculus this
question is wide open.4

Further questions. Of course one could also ask for analogues of other fa-
mous definability results for the mu-calculus, such as the Goldblatt–Thoma-
son theorem, which gives necessary and sufficient condition for a class of
frames to be modally definable. Another example is Fine’s theorem, which
states that every elementarily definable modal logic is canonical. There are
different ways to formulate canonicity for modal mu-logics, and a useful
framework for this might be the admissible semantics of modal mu-calculus
used in [6].

To sum everything up, we hope to have shown that the mu-calculus
provides a natural new take on many traditional issues in modal definabil-
ity, and that there is a lot of interesting syntactic and semantic structure
awaiting further exploration.

References

[1] Balbiani, P., V. Shehtman, and I. Shapirovsky, ‘Every world can see a Sahlqvist

world’, in G. Governatori, I. Hodkinson, and Y. Venema, (eds.), Proc. Advances in

Modal Logic, College Publications, 2006, pp. 69–85.

[2] Benthem, J. van, ‘A note on modal formulas and relational properties’, Journal of

Symbolic Logic, 40 (1975), 1, 55–58.

[3] Benthem, J. van, Modal logic and classical logic, Bibliopolis, Naples, 1985.

[4] Benthem, J. van, ‘Minimal predicates, fixed-points, and definability’, J. Symbolic

Logic, 70 (2005), 696–712.

[5] Benthem, J. van, ‘Modal frame correspondences and fixed-points’, Studia Logica,

83 (2006), 133–155.

[6] Bezhanishvili, N., and I. Hodkinson, ‘Sahlqvist theorem for modal fixed point

logic’, (2010). Submitted.

3Fontaine [13, §5.5] characterizes PDL-formulas (with the restriction that these formu-
las may contain only one atom) as a certain subfragment of the mu-calculus.

4Mu-calculus formulas retain all the bisimulation-induced key semantic properties of
modal ones, such as preservation under generated subframes, p-morphic images, disjoint
unions. Can we find some further syntax restrictions?



Sahlqvist correspondence for modal mu-calculus 31

[7] Blackburn, P., M. de Rijke, and Y. Venema, Modal logic, Tracts in Theoretical

Computer Science, Cambridge University Press, Cambridge, UK, 2001.

[8] Cate, B. ten, M. Marx, and P. Viana, ‘Hybrid logics with Sahlqvist axioms’, Logic

J. IGPL, 13 (2005), 293–300.

[9] Cresswell, M., ‘An incomplete decidable modal logic’, J. Symbolic Logic, 49 (1984),

520–527.

[10] Ebbinghaus, H-D., and J. Flum, Finite model theory, 2nd edn., Perspectives in

mathematical logic, Springer-Verlag, New York, 1999.

[11] Esakia, L. L., ‘Topological Kripke models’, Soviet Math. Dokl., 15 (1974), 147–151.

[12] Fine, K., ‘An incomplete logic containing S4’, Theoria, 40 (1974), 23–29.

[13] Fontaine, G., Modal fixpoint logic: some model theoretic questions, Ph.D. thesis,

ILLC, Amsterdam, 2010. ILLC Dissertation Series DS-2010-09.

[14] Givant, S., and Y. Venema, ‘The preservation of Sahlqvist equations in completions

of Boolean algebras with operators’, Algebra Universalis, 41 (1999), 47–84.

[15] Goldblatt, R., and I. Hodkinson, ‘The McKinsey–Lemmon logic is barely canon-

ical’, Australasian J. Logic, 5 (2007), 1–19.

[16] Goranko, V., and D. Vakarelov, ‘Elementary canonical formulae: extending

Sahlqvist’s theorem’, Ann. Pure. Appl. Logic, 141 (2006), 180–217.
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