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1 Introduction

I am in the middle of Manhattan and I am lost. I approach a likely stranger
on the road and ask him, pointing to the right: “Is this the way to the railway
station?” Discounting for a moment the possibility that I will be ignored and
that the stranger will continue on his way (of which the—trivial—game move
equivalent would be “I prefer not to answer the question”), I will now get one
of three possible answers: “Yes,”, “No,”, and “I don’t know.” Each answer is
informative. After the third answer I may ask the same question to someone else.
Questions and answers can be analyzed in dynamic epistemic logic, and right
questions and right answers in game theory. We focus on dynamic epistemic logic
and not on game theory, and our main contribution is a novel link between the
two. In this introduction we now first address the question, then the answer, and
lastly the game wherein such questions and answers figure. The railway example
misses that game aspect, but now consider having to decide between asking the
conference chair “Are the outcomes of the submissions already known?” or “Is
my submission accepted?” What the best question is to ask, also depends on the
answers you may expect or fear.

Question Suppose I am a, you are b, and that p is the atomic proposition that
the railway station is to the right. The other direction, to the left, is therefore
represented by —p. There are several pragmatic preconditions for the agent ask-
ing the question ‘p?’. She should not know the truth about p, i.e., she does not
know p, and she does not know —p. We are assuming a multi-agent epistemic
logic to model questions, where the expression K,p stands for ‘a knows p,” and
where the epistemic modality K, is interpreted with an equivalence relation ~,.
This pragmatic constraint therefore amounts to the precondition =KypA—K,—p.
The agent asking the question also has expectations about the agent that will
answer the question, and that constitutes another pragmatic precondition. She
considers it possible that he knows the answer, i.e., =K,—(Kpp V Kp—p). (She



also comnsiders it likely that he knows the answer, i.e., she believes that tenta-
tively, Ba(Kpp V Kyp—p), where belief and knowledge are combined as in [8]; we
may also see that as a combination of preferences and knowledge [13].)

A question ¢? splits the domain in the set of states [¢] where ¢ is true and
the set of states [-¢] where ¢ is false, i.e., the question induces a dichotomy on
the domain of the model. In the approach by van Benthem and Minica [14], a
question or issue ¢? is represented by the issue relation ~,. Such issue relations
go back to [3, 6].

Answer As said, there are three possible answers: ‘Yes’, ‘No’, and ‘I don’t know’.
(A fourth possible answer would be: ‘I decline to answer the question’.) Such a
response is not more informative than required. For example, assume a deal of
cards over players. If I were to ask you “Do you have card 0” and you answer
me “Yes, I have 0, 1, and 2” then you give me more than I asked for. You
could have answered “Yes,” i.e., “Yes, I have 0.” If your answer to the question
p? is ‘yes’, you confirm that you know that ¢, and nothing more than that is
required. This means that your answer corresponds to the (unique) largest union
of (b) equivalence classes representing your knowledge that is contained in the
p-states of the model. This is of course exactly the denotation of the formula
Kpp. Your answer is therefore the public announcement Kpp! [11]. (We assume
that the questions are answered truthfully.) Similarly, if your answer is “No, I
don’t,” this is an announcement of the formula Ky—¢ and its denotation is the
complement of the (unique) smallest union of equivalence classes that contains
the -states. If you answer is “I don’t know” you get the remainder, i.e. the
union of all ~, classes that properly intersect with ~,.

This in fact shows that answers to question can be seen as rough sets [10].
Given the set [¢] (i.e., the subset of the domain consisting of the p-states), in
rough set terms known as the target, take the lower and upper ~p approximation
of the target, i.e., ~p([¢]) and ~p([¢]). If the answer to the question is ‘yes’, the
actual state is in the lower approximation. If the answer is ‘no’, the actual state
is in the complement of the upper approximation. If the answer is ‘don’t know’,
the actual state is in the upper approximation minus the lower approximation.

In dynamic epistemic logic, a public announcement is interpreted as a model
restriction. Therefore, answering the question can be seen as executing one of
three possible such restrictions, a non-deterministic program so to speak. Alter-
natively (and equivalently!), we can see answering the question as a refinement
of the equivalence classes for all agents (and not just of the agent asking the
question) with the issue relation ~,, i.e., for all agents a, ~, = ~, N~ [14].

Game If we want to play a game with questions and answers, to start with it
whould be clear what we are playing for. What are the goals of the players? In the
case of me asking for the right way to the railway station, my goal is knowledge
about p: K,pV K,—p. But in this case it is not so clear who I am playing against.
Clearly not against the stranger I am addressing with this question. He has no
interest. He answers the question, but he does not play a game.



This is different in case you and I are both spies after a particular secret.
The secret is the truth about p. Your goal is to get to know it before me and
my goal is to get to know it before you. I.e., each agent has a goal, and ~, =
(KopV Kp—p) — (KapV Ka—p) whereas 74 = (KapV Ka—p) — (KppV Kp—p). In
other words, I don’t care if you know it, as long as I already know it, and vice
versa. The result of questions and answers is an information state wherein we
can check for each player whether his goals are fullfilled and that determines a
payoff function and thus the outcome of the game.

So in order to play a game with questions and answers the players need a
goal, and that goal can be an epistemic formula. Why should a player answer
a question if that means giving away information that may make him lose the
game? He has no reason whatsoever. However, just like in real life, if you wish the
other person to loosen his information strings, you may only expect to obtain that
by giving away some information yourself as well. The proceduralized version
of this expectation, that we will apply in this contribution, is a game where
each player may choose between different questions to ask but where the other
player addressed by that question is obliged to answer. The information content
of questions is a standard topic in the analysis of multi-player games, such as
Mastermind [2,7] (and related to information theory and entropy). Such games
do not necessarily involve strategic response to questions chosen by other agents.
We aim to integrate such analyses in game theory. Relations between game
theory and pragmatic phenomena like the information content of questions are
also studied in [18].

Simplifications In the remaining discussion, we make some simplifications for
concreteness.

— We disregard pragmatic constraints of questions. You may ask a question
to which you already know the answer. In other words, the question 7 is
not also an informative update / public announcement of (=K, A—=K,—p) A
- K, (KppVEK,—p). Note that incorporating such constraints is quite doable.
It merely restricts the players’ strategies.

— Avoiding to answer the question is not modelled as a move in the game.
However, it is not problematic, as that response can be modelled as the
trivial announcement.

— There are two players only, that ask each other questions. If there are more
than two players, one has specify who is addressed by the question. Again,
this is doable, and an answer to the question would still be a public an-
nouncement.

— The most natural interaction between players involving questions and an-
swers is where they ask each other questions in turn, such that a question
is answered before the next question is asked. Extensive game forms for im-
perfect information games, with sequential equilibria, are harder to analyze
than one-shot games in strategic form [4]. For now, we assume that the two
players ask each other a single question, and that they ask the question at
the same time; say, by writing down the question on a piece of paper, putting



it in an envelope, and then exchanging envelopes. For the answer, they again
exchange envelopes.

Consider a game where a strategy does not consist of choosing which question
to ask to another player but choosing which announcement to make yourself.
The different questions for me to ask are exactly the different announcements
for the respondent to make—the analysis must be similar. Such games have
been coined public announcement games in [1]. Our work merges their approach
with the analysis of question dynamics in [14]. Somewhat similarly to public
announcement games, the knowledge games in [15,16] treat the more general
case where the question is public but the answer may be semi-public: the other
players know what the question is, but may only partially observe the answer.
E.g., the question may be to show a card only to the requesting player but there
is common knowledge of some card being shown; the alternatives are the different
cards to be shown; [16] contains summary game theoretical results.

Summarizing, the motivation for our research is to model conversation includ-
ing the dynamics of questions and answers, to provide new links between game
theory and dynamic logics of information, and to exploit the dynamic/strategic
structure that, we think, lies implicitly inside epistemic models for epistemic
languages, and to make that structure an explicit subject of logical study. The
novel contributions that we present in this extended abstract are the notion of a
two-person question-answer game with information goals, the existence and com-
putation of Bayesian equilibria for these games, and novel connections between
logic and game theory such as the existence of equilibria (subject to restrictive
conditions) for positive goal formulae. A technical appendix defines the logical
and game theoretical terminology used in the continuation.

2 Question-answer games

2.1 Pointed and induced question-answer games

Given two agents a and b, an epistemic model M = (S, ~,, ~p, V) encodes their
uncertainty about facts and about each other; Two formulas 7, and - in the
logical language express what they wish to achieve by their questions. In order
to achieve their goals, agent a asks a question ¢? to agent b, to which b is obliged
to respond with ‘yes’ (I know that ¢), ‘no’ (I know that —p), or ‘don’t know’ (I
don’t know whether ¢). “And similarly for b asking a question to a:” we don’t
want to keep saying that all the time, so from now on we may refer to the two
agents as ¢ and j, where i # j, and ¢ may be either a or b. We assume both agents
ask their question simulaneously, and that subsequently both agents answer the
question simultaneously. (Of course, more realistic communicative settings would
allow for agents to ask questions and respond to them in any order, but such
generalizations are harder to model as strategic games.) The question formulas
can be thought of as defining the strategies for the agents.



Executing the strategy ¢ for agent ¢ can be thought of as follows. Agent ¢
asks ¢? to j. If M, s |= K;¢, then j answers (announces) “Yes, I know that ¢”.
If M,s = K;j—p, then j answers “No, I know that —¢”. Otherwise, j answers
“I don’t know whether ¢”. The resulting model restriction depends on both
answers, e.g., if a asks p? to which b responds K,p! and b asks 9? to which
a responds K,—!, the result is the restricted model M|(Kpp A Ky—1)). We
can capture these alternatives with a construct K;yp, for ‘agent i answers the
question ¢?’, defined as follows. Given an epistemic model M and a state s € M,
if M,s = K;p, then K;o = K;p; if M, s |= K;=p, then K;p = K;—; and else
Kip =-(K;pV K;=). This is reminiscent of the resolution on ¢ in [14].

Alternatively, we can represent the question by an issue relation ~, and the
public announcement of answering the question in the link-cutting way of [13,
14]. As we combine a question and the answer to it into a single strategy in this
simplified question-answer game, we do not need this more detailed formaliza-
tion.

We associate two different strategic games with these questions (and their
answers) and goals: pointed question-answer games and not-pointed question-
answer games. Both are needed: a player may not know what the actual state is,
and therefore not know which game he is playing. Except for the more complex
payoff function of the pointed game, these definitions are elementary adaptations
of similar concepts in [1].

Definition 1 (Pointed question-answer game). The state game or pointed
question-answer game G((M, s),7va, 1) associated with state s € M of goals v,
and v, for agents a and b respectively, is the strategic game defined by

— N ={a,b};

— fori=a,b, A; ={p?|peL};

T s _J1if M, s = (Koo A Ka))yi
fori=a,b, ui(p,¥) = {0 otherwise

Note that the set of strategies A; is the same in all states. As a state independent
perspective on question-answer games we propose the following definition. It can
be easily shown that this corresponds to a Bayesian game [4], in the sense that
it has the same Nash equilibria; we will address that below. In Definition 2, a
strategy a; for player i is uniform iff for all s,t € S: s ~; t implies a;(s) = a;(t).

Definition 2 (Question-answer game). Given state games G((M, s),Va, )
for each s € M, the induced game or question-answer game G(M, v, V) =
(N, {A] 1€ N},{u; : i € N}) is the strategic game defined by

— N ={a,b};
— fori=a,b, A is the set of uniform functions from S to A;;

. o I o Pees Ui (a;(s),a5(s))
— fori=a,b, a},a, € A}, u;(a,,af,) = === i .

As there are many formulas in the language, and possibly many states in a
model, this seems like a lot of strategies, but we can make some major simplifi-
cations.



Two strategies ¢? and ¢? are the same for agent i if M = K;p < K;¢. (If
K;p < Kji is a model validity, then it is also common knowledge to a and b
that this is a model validity, i.e., it is common knowledge to a and b whether two
strategies are the same.) Subject to that identification, the number of strategies
for ¢ is a function of the number of the equivalence classes for agent j in the
model M. In practice we will use just any questions (strategies) that have our
fancy and that are equivalent to Kj, i.e., if a knows that either Kypp or Kp—p,
then she considers strategy (question) p?.

Also, given the requirement of uniform strategies in the induced game, instead
of seeing a strategy in the induced game as a function from states to formulas, we
can also see such a strategy for agent i as a function from i-equivalence classes
to formulas, and therefore, to make life simpler, as a function from formulas
characterizing i-equivalence classes to formulas.

With these simplifications there are fewer strategies. (See the example, later.)
If the strategies for ¢ have the form K;p?, there are only two and not three an-
swers, namely only ‘yes’ and ‘no’. If strategies are required to have this form
for both agents, we call this a dichotomous question-answer game. The num-
ber of strategies is now even lower. It can be counted as follows. (The count
is only meaningful on {a, b}-connected models.) Assume that player ¢ has m;
equivalence classes and player j has m; equivalence classes. Then player i has
2mimi—™mi pure strategies. This we can see as follows. There are 2™ 1 differ-
ent dichotomies for player j (i.e. coursenings of player j’s partition), and for
each of m; different equivalence classes for the requesting player i, she may

choose one of those questions, therefore the total number of pure strategies is
(Qmjfl)mi — QMmjmi—m;

Ezample 1. Consider a three-state model where a knows the truth about p and
b knows the truth about ¢. (For the state where p is true and ¢ is false we write

pq, etc.)

_ a b _

qap ap ap
If p and ¢ are both true, player a is uncertain about ¢, and b is uncertain about
p, if p is true and ¢ is false, b knows that ¢ is false, but a is uncertain about ¢; etc.
Given state gp, player a has two strategies, namely asking for the truth about ¢,
the strategy ¢7, or asking the trivial question, T?. Only, a does not know that
this is the actual state! For the induced game, a has four strategies, namely, in
words: ‘If I know p then I ask ¢7, otherwise I ask ¢?’, ‘If I know p then I ask ¢7,
otherwise I ask T7?’, ‘If I know p then I ask T7, otherwise I ask ¢7’, ‘If I know p
then I ask T7, otherwise I ask T7. If we see a strategy, that is a function from
states to questions, as a set of pairs, the second strategy of a corresponds to the
strategy {(gp, q?), (qp, q?), (¢b, T?)}, etc. Figure 1 contains a sweeping overview
of a question-answer game for that model, for the goal formulas Kpp — K,q for
i, and K,—q for b. For goal formulas v, = (Kpp V K,—p) — (K,p V K,—p) and
W = (Kap V K3—p) — (Kpp V Kp—p) as in the introduction, we get (of course)
another strategic game form for the induced game. Note that in this simple
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A, = {ap,al,a3,a3} ‘ Ap = {ad,a%, a3, a3}

={@p, T, (ap, T?), (a0, T} | ag = {(ap, T?), (ap, T?), (qp, T?)}
? {@p, T?),(ap, T?), (4P, a?)} | &} = {(@p, T?), (ap, T?), (gD, p?)}
a3 = {(@p,q?), (qp,q?), (g, TN} | a5 = {(gp,p?), (ap,p?), (qP, T?)}
a3 = {(qp,q?), (qp,q?), (4B, q?)} | a8 ={(@p,p?), (ap,p?), (4P, p?)}

(aa, an) |gp gp qp|M (aa, an) |gp gp qp|M
ad,ag)|00 10 10[20 a3,ad)|00 10 10]20
0, %0 0
(ad,a2)[00 10 10|20 (a3,a%)|00 10 10|20
(ad,a8)|00 00 10|10 (a3, a8)|00 00 10|10
(ad,a$)|00 00 10|10 (a3,a$)|00 00 10|10
(aa, an) |gp gp qp|M (aa, a) [Gp qp qp|M
(a3,ad)|01 10 10[21 (a3, ad)|01 10 10[21
(a3,a2)[01 10 10|21 (ad,a%)|01 10 10|21
(a3,a8)|01 10 10[21 (a3,a8)|01 10 10|21
(a3,a%)|01 10 10[21 (a3,a$)|01 10 10|21

ag af a3 af

320 20 10 10
a3[20 20 10 10
a3(21 21 21 21
a321 2121 21

Fig. 1. Agents a and b play a question-answer game. The goal formulas are Kpp — Kaq
for a, and K,—q for b. The dotted lines connect states to the strategic game forms for
the three state games. The dashed lines connect states to the model restriction resulting
from the answers to the questions labeling the lines. At the bottom is the strategic game
form for the induced game—the payoffs are not divided by 3, e.g., 21 stands for an
expected payoff of (0.66,0.33). The Nash equilibria are underlined. E.g., in the induced
game (a3, ag) is a Nash equilibrium wherein both players always ask the real and not
the trivial question.



example, we cannot get three answers to a question: that requires at least three
equivalence classes for the responding agent.

2.2 Bayesian games

The induced game is a Bayesian game. (The proof outline repeats the result in
[1].) A signal ¢; for player i corresponds to an i-equivalence class. In a Bayesian
game, the combination of a player ¢ and a signal ¢; defines a virtual player (i, ¢;),
who has the same strategies a; € A; at his disposition. But this amounts to the
same as our definition involving the same players i employing uniform (across
equivalence classes!) strategies a) that are conditional from states to strategies
a; € A;, and therefore can be seen as conditional from equivalence classes to
strategies a;.

In our simplified modelling, all states in a given Kripke model get equal
a priori probability of ﬁ, i.e., uniform over the entire domain. A more general
approach would have a given probability distribution as a parameter in the mod-
elling of the game. However, a uniform distribution is a reasonable assumption
from the perspective of the observer or modeller of such a multi-agent system:
given common knowledge of the structure of the model, as usual in multi-S5
conditions, there is no reason to prefer one state over another one. For example,
if the Kripke model represents uncertainty about card deals, and the cards are
shuffled and drawn blindly from the pack by the players, there is no reason to
consider any given card deal (possible world / state) more likely than any other
card deal.

After receiving their signal, each agent conditionalizes the probability mass
over its equivalence class, i.e., Pr(s) = ﬁ for each state inside the class, and
0 outside. For example, continuing our paréllel with card games, after the cards
have been dealt and a player has picked up his cards, the agent only considers
card deals possible wherein she holds that hand of cards, but no longer any of
the remaining card deals. Further to this, in the absence of information to the
contrary (i.e., assuming ‘fair play’) each of the possible deals of cards wherein
she holds that hand of cards are considered equally likely.

This provides the key to view an induced question-answer game as a Bayesian
game. In induced games the payoff for agent i is computed as

2ses i (a5(5); ay(s))
5]

ui(a;’ a/b) =

whereas for a Bayesian game, one would get a sum (see [1])

S Pris. (6 (s)ah(e)) = 3 06l

seS seS

Although these sums may be different, they induce the same order on payoffs and
thus they induce the same Nash equilibria. This justifies the following proposi-
tion.



Proposition 1 ([1]). An induced question-answer game corresponds to a Bayesian
game with the same Nash equilibria.

2.3 Positive goals

Consider the fragment of the positive formulae of L:

pu=plpleneleVel| Kellole

where p € ©. This notion of positive formulae is found in [17], which is an exten-
sion of several such notions going back to [12] who observed that purely epistemic
(without announcement operators) positive formulae are preserved under sub-
models. We can now observe that, if both players have goal formulae that are
positive, every pointed question-answer game has a Nash equilibrium. We can
easily grasp why this is true. Let s be the actual state of Kripke model, for
which we play the game. If player ¢ asks a question to player j that makes j
reveal all he knows, either i’s goal is now realized, or there is no way she can
realize that goal. This is because if there were a weaker announcement by j also
realizing that goal, a further model restriction would preserve the goal, as it is
positive. Therefore, asking that question is a weakly dominant strategy for 4, for
the pointed question-answer game for state s. And as this holds for both players,
that must be a Nash equilibrium of the pointed question-answer game for state
s. As s was arbitrary, this holds for all pointed games. Unfortunately, the players
may not know what that question is... We can therefore call this a de dicto Nash
equilibrium.

Proposition 2. If both players’ goals are positive formulae, each pointed question-
answer game has a Nash equilibrium.

This result makes for a real difference between public announcement games and
question-answer games. From a player’s perspective, there is such a thing as a
most informative announcement (tell them all you know). But the question that
elicits the most informative answer from another player cannot be called the most
informative question from the questioning player’s point of view. In a different
state in the same equivalence class for that player, the question to elicit the
most informative answer may be a different question, as the responding player
may be in a different equivalence class there. Indeed, in public announcement
games the strategy profile consisting of maximal informative announcements is
a de re Nash equilibrium, but this does not translate into a similar equilibrium
in a question-answer game. (The de dicto/de re distinction is well known in the
knowledge and action literature [5].)

3 Further research

We have shown how epistemic models come with natural games that model
interesting phenomena, and suggest interesting logical questions. Our games are
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very simple, but this starting point itself is an advantage, since well-chosen simple
games are the way to go in our view. Nevertheless, it is now time to add some
urgent further structure. Most natural from the viewpoint of our general aims
are a few extensions on which we will present initial results:

— model theory and axioms for appropriate logics describing our games; in-
cluding issues like bisimulation invariance and fixed-point definability;

— extensive games with longer sequences of moves, and logics for and sequential
equilibria of such extensive games;

— a richer account of questions as possible moves of inquiry;

— connections with existing approaches to logics of inquiry and learning;

— non-uniform probability distributions;

— multiple goals per agent (in fact any partial order on the set of all pointed
model restrictions of the initial model), instead of a single goal;

— more than two agents, in scenarios where questions are adressed to one in a
group and where strategic answers also depend on further questions expected
from others in the group;

— games where the trivial answer (‘I decline to answer the question’ / an-
nouncement of T) is always allowed; or games where this is outruled.

Extensive games come into the picture if we consider a game wherein players
may ask questions to each other in turn and respond to those questions in turn.
We now get an extensive game consisting of several moves. If we assume the
pragmatic precondition that the answer to the question should not yet be known,
that was mentioned in the introductory section, asking the question is a different
move from answering the question. Now, the analysis in [14] becomes essential
to properly model these games. Subject to a number of reasonable restrictions,
such as that trivial questions are not permitted, a question-answer game consists
of a finite number of such moves. The number is indeed finite: the initial model
is finite, and therefore there is only a finite number of proper model restrictions;
on condition that all announcements are really informative, there are therefore
only a finite number of moves in the game.
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Technical appendix

Public Announcement Logic The language £ of public announcement logic [11]
over a set of agents N = {1,...,n} and a set of primitive propositions © is
defined as follows, where i is an agent and p € ©: p :=p | K;p | 7@ | 1 A @2 |
[1!] 2. We write (¢1!)¢@s resp. Ko for the duals —[¢1!]-@s and —K;—p.

A Kripke structure or epistemic model over N and © is a tuple M = (5, ~
s+ +y~n, V) where S is a set of states, ~; C S xS is an epistemic indistinguisha-
bility relation that is assumed to be an equivalence relation for each agent ¢, and
V : © — S assigns primitive propositions to the states in which they are true. A
pointed Kripke structure is a pair (M, s) where s is a state in M. In this paper
we will assume that Kripke structures are finite.
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The interpretation of formulae in a pointed Kripke structure is defined as
follows (the other clauses are defined in usual truth-functional way): M, s = K;p
iff for every ¢ such that s ~; ¢, M,t = p; and M, s = [p!]¢ iff M, s |= ¢ implies
that M|y, s = ¢, where M| = (S',~4,...,~},V’) such that ' = {s' € S :
M,s' = ¢}, ~ =~ NS xS, and V'(p) =V(p)NS".

Strategic Game A strategic game is a triple G = (N, {A; : i € N},{u; : i €
N}) where: N = {1,...,n} is the finite set of players; for each i € N, A;
is the set of strategies (or actions) available to i. A = X;cnA; is the set of
strategy profiles; and for each ¢ € N, u; : A — R is the payoff function for 1,
mapping each strategy profile to a number. Notation (ay,...,ay)[a;/a;] stands
for the profile wherein strategy a; is replaced by a. A strategy profile is a (pure
strategy) Nash equilibrium if every strategy is the best response of that agent
to the strategies of the other agents, i.e., if the agent can not do any better
by choosing a different strategy given that the strategies of the other agents
are fixed. Formally, a profile (ay,...,a,) is a Nash equilibrium if and only if
for all ¢ € N, for all a # a;, u((a1,...,an)[a;/a;]) < u(ai,...,a,). A strategy
for an agent is weakly dominant if it is at least as good for that agent as any
other strategy, no matter which strategies the other agents choose. Formally, a

strategy a; for agent i is weakly dominant if and only if for all agents j, for all

aj, u(ay, ..., ay) <u((ay, ..., a,)ai/ail).

Bayesian game The most common model of strategic games with imperfect
information is the Bayesian game [4]. Our presentation of Bayesian games is as
in [9]. A Bayesian strategic game BG = (N,S,{A; :i € N},{T;:i € N},{Pr;:
i€ N},{ri : i € N},{u; : i € N}) has the following components: N is the
set of players; S is the finite set of states s modelling the players’ uncertainty
about each other; and for each i € N: A; is the set of strategies; T; is the set of
signals t; that may be observed by player ¢, 7; : S — T; is the signal function of
player ; Pr; is a probability measure on S (the prior belief of player ¢) such that
Pri(r=(t;)) > 0 for all t; € T, i.e., each player’s signal is correct with strictly
positive probability; and finally u; is a payoff function on the set of probability
measures over A x S (instead of a payoff function on the set of action profiles

A).



