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Abstract. Current methods for solving games embody a form of “procaldationality” that in-
vites logical analysis in its own right. This paper is a bigake study of Backward Induction for
extensive games, replacing earlier static logical defingiby stepwise dynamic ones. We consider
a number of analysis from recent years that look differemiceptually, and find that they are all
mathematically equivalent. This shows how an abstractligierspective can bring out basic in-
variant structure in games. We then generalize this to altoeadion of fixed-point logics on finite
trees that best fit game-theoretic equilibria. We end withesopen questions that suggest a broader
program for merging current computational logics with no# and results from game theory. This
paper is largely a program for opening up an area: an extevetsin of the technical results will
be found in the forthcoming dissertation [26].
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1. Game solution as rational procedure

Logic and games form a natural combination. On the one hhedg aire “logic games” that analyze basic
notions such as truth, proof, or model comparison, whileherother hand, standard logical systems have
proved applicable to many basic issues in the foundatiogsuie theory (cf. [5], [37]). This paper will
concentrate on the second aspect.
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Logics that describe games In recent years, many logical analyses have been given bfditegic
and extensive games, through introducing formal langu#tggtsdescribe game structure while raising
logical questions of definability and axiomatization ([1{4], [19], [29]). A benchmark for logics in this
tradition has been the definition 8ackward Induction(“BI” for short), the most common method for
solving finite extensive games of perfect information ([34P]). In this same arena, basic foundational
results have been obtained in epistemic game theory, enddvare games with epistemic assumptions
about players. A pilot result was the characterization efBhoutcome in terms of assuming common
knowledge, or common true belief, in rationality, meanihgttplayers choose those actions that they
believe to be best for themselves ([1]).

Analyzing solution procedures Recently, [9] has suggested that the main focus here sheidtified:
away from a static assumption of known or believed ratidpadi the underlying “procedural rationality”

of plausible procedurethat players engage in when analyzing and playing a gamethangay these
result in stable limit models where rationality becomes gwn knowledgé. Thus, [4] shows how
game-theoretic equilibrium fits with the computationalgperctive of fixed-point logics, and [11] gives
several dynamic procedures that analfge This paper will analyze these proposals further, and find
their common mathematical background. This will then be starting point for suggesting a more
general line of investigation.

Basics of extensive gamesWe assume some basic game theory, and we will work fivitte extensive
gamesof perfect information, i.e., finite trees with labelled msd where each node is either an end
node, or an intermediate node that represents the turn oigaeiplaye? We will mostly think of 2-
player games, though much of what we say generalizes to nayerp. While game trees with moves
are simple computational structures, the essence of edtamtion arises with the way players evaluate
outcomes. Thus, there is also a furtpezference relatiorior each player between end nodes (encoding
complete histories) that we will take to be a total order iis fhaper, though this requirement could
be generalized. Equivalently, such total evaluation araeay be represented in the form of numerical
utility values for players at end nodes.

Backward induction We now define our basic procedure in a bit more detail:

Definition 1.1. (BI procedure for “generic” extensive games)
We call a gameenericwhen, for each player, distinct end nodes have differefityutialues. On such
gamesBackward Inductions this inductive algorithm:

“At end nodes, players already have their values markeduritiér nodes, once all daughters
are marked, the player to move gets her maximal value thatre@n a daughter, while the
other, non-active player gets his value on that maximal fiode

A strategyfor a player is a map that selects one move at each turn fopthger. It is easy to see
that Bl generates a strategy for each player at her turns: go to toessor node that has your highest

!Note that even the common word “solution” has an ambiguitywben a procedure (“Solution is not easy”) and a static prbdu
of such a procedure (“Show me your solution”).
20nly towards the end, we will briefly consider games with infipet information.
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value. The resulting set of strategies is ti8# butcome”, that leads to a unique play of the game. We
will call the set-theoretic union of all these strategietll(a function on nodeshi. The Bl procedure
seems obvious, telling us players’ best course of actiond yat, it is packed with assumptions about
how players behave that are worth high-lighting. For nost piote that the algorithm subtly changes its
interpretation of values on the way. At leaves, these vatuende plain utilities or preferences, but at
nodes higher up in the game tree, Blevalues clearly mix in additional considerations of plai#ip
incorporating beliefs about what others will do.

Delicate cases Bl can produce debatable outcomes, as in the next illustration

Example 1.1. (A simpleBI outcome)

In the following game, players’ preferences are encodedilitywalues, as pairs (value fgk, value for
E). Backward Induction tells playét to turn left at her turn, which give& a belief that this will happen,
and so, based on this belief about his counter-plafeshould turn left at the start, making both worse
off than they might have beeh:

10/A\E
| RN

0,100 99,99 4

The fact that théI prediction or recommendation is not always intuitive hasivated much logical
analysis of the procedure and the reasoning underpinnirig this paper, we will not enter this debate.
We neither endorse nor reject Backward Induction, but weeiyeake it as our point of entry into
the logic of game solution procedures. Our starting poietthree different proposals for explaining
what makesBlI tick, that we will explain in due course. But before gettitprie, let us first make a
generalization of what we mean by Backward Induction.

2. From functional to relational strategies

Strategies as subrelations of thenove relation A game-theoretic strategy is usually taken to be a
function on nodes in a game tree, yielding a unique recomat@ardfor play there. But in many set-
tings, it makes more sense to think of strategies as nomdetistic binary subrelationsof the total
relationmove(the union of all labelled actions in the game) that merelyst@in further moves by se-
lecting one or more as admissible. This is in line with thdamplial use of the term “strategy”, it also
reflects a common view of plans for action, and technicallfgdilitates logical definitions of strategies
in propositional dynamic logic [10].

3People sometimes defend this outcome by saying that the gaume is “competitive” — but that amounts to giving inforioat
about the players that is not explicit in the game tree. lhsextra information is relevant to solution, we may need heic
notion of game from the start. We will return to this issue @cton 10 below.

4Frankly, we have dramatized things a bit here to catch tiderésaattention. Since the numbers just encode ordinagpeates,
the same point might have been made with values 2 and3. But the undesirable point remains that the computed outcom
is not Pareto-optimal.
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Relational B, first version Indeed, one common numerical formulationBifalready has this rela-
tional flavor. We now drop the assumption that games are gener

Definition 2.1. (Relational Backward Induction, first version)
Starting from the leaves, one now assigns values for plataredes using the rule:

Suppose thdE is to move at a node, and all values for daughters are knowaENalue is
the maximum of all thé&e-values on the daughters, while thevalue is the minimum of the
A-values at alE-best daughters.

The relationbi arising from this algorithm connects nodes to all daughtétls maximal values for
the active player, of which there may be more than one. Thibodgfocuses on minimal values that can
be guaranteed when doing the best within one’s power.

Solution algorithms make assumptions about players But while this looks like an obvious numerical
rule, it does embody special assumptions about playersarticplar, taking the minimum value is a
worst-case assumption that my counter-player does noabarg my interests after her own are satisfied.
But we might also assume that she does, choosing among heanorexnodes one that is best for me. In
that case, the second numerical value in the algorithm weeila maximum rather than a minimum. And
other options are possibfeThis variety of relational versions of game solution is npt@blem. It rather
highlights an important feature of game theory: matheraht®olution methods” are not neutral, they
encode significant assumptions about players. But thetyatimes suggest that we first find a general
base version Bl that is not too specific:

A minimal notion of rationality: avoid stupid moves Here is one logical analysis of the variety for
relational versions oBI. Let us first view matters from a somewhat higher standpdduppose that |
need to compare different moves of mine, each of which, gitierrelational nature of the procedure,
still allows for many leaves (end nodes) that can be reackeélxther bi-play.” A minimal notion of
Rationalitywould then say that

| do not play a move when | have another move whose outcopreser.

A source of variety: different set preferences This seems plausible, but what notion of preference is
involved here? It is easy to see that, in the above first vieigidhe Bl algorithm, the following choice is
made. Playei preferred a seY” of leaves reachable by furthbi-play to another seX if the minimum

of its values fori is higher. That is, we have the following pattern for set preferende:

VyeYdreX:z<;y

5The dual calculation for values Afs turns is completely analogous.

50f course, one might view such alternatives as calling fohange in players’ utilities. We will not get into this peréain
issue of game preference transformations here.

"In this perspective with total outcomes of the game, we makhifa from the original version of th&l algorithm, which
looked at daughters of the current node only.

8Given that we have finite total orders, we could also replaisehy

dJre XVyeY x<;y
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But clearly, staying with the same over-all notion of Ratility, there are several alternatives for
comparisons between reachable sets of outcomes. One conwtion of preference fo¥” over X in
the logical literature ([43], [34]) is theV stipulation that

VyeYVereX:z<;y

Relational backward induction, second version Clearly, avoiding moves that shouldn't be taken un-
der this stronger preference is a weaker constraint on b@haf/players. Still, it fits with a minimal
game-theoretic solution procedure for strategic gamdsdcca@liminating strictly dominated strategies
([35]). We will take this second relational version of Baad Induction as our running example:

Definition 2.2. (Relational Backward Induction, second vesion)

First, mark all moves as “active”. Call a move to a naddominatedif x has a sibling from which all
reachable endpoints via active moves are preferred by thiertiplayer to all reachable endpoints via
active moves fromx itself. The second version of thi& algorithm works in stages:

At each stage, it marks dominated moves inthiesense of set preference as “passive”, leav-
ing all others active. In this preference comparison betvgets of outcomes, the “reachable
endpoints” by an active move are all those that can be readhedsequence of moves that
are still active at this stage.

In another well-known terminology, this says that playdes/@m “best response”.

Henceforth, we will usaBl to refer to this algorithm, and the subrelation of the totaverelation
produced by it at the end. It is a cautious notion of game moluhaking fewer assumptions about the
behavior of other agents than the earlier version. Of cotinggtwo versions agree on generic games, for
which the subset of the move relation obtained as outputiayed a function.

Example 2.1. (Some comparisons)
Consider the following two games, where the values inditate utilities for playeA. For simplicity,
we assume that play& has no preference between her moves:

A A
E/ \E l/ \E
1/ \.. 2/ \3 1/ \_1

In the game to the left, our first version of Backward InduttinakesA go right, since the minimurg
is greater than thé on the left. But our cautiouBl will accept both moves foA, as no move strictly
dominates the other.

Moreover, both versions will accept all moves in the gamehtright. This may seem strange,
since most players would probably go right at the start: theye nothing to lose, and a lot to gain. But
analyzing all variants for preference comparisons betvests of outcomes is not our focus here. We
will return to the issue of further possible solution cortsdap later sections.
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Important remark  Our style of analysis chooses one particular line towarceg#izing Backward
Induction to non-generic games. But others make senseasoppinted out by Cédric Dégremont. For
instance, if one thinks of strategy profiles in Nash equitlibor, the following game would have two:

N
7 N

3.0 0,0

1,0

Both profiles(a, d) and (b, ¢) are in equilibrium. But our algorithm will leave both opt®ifor E,
and tellA to go left. This paper will not address the alternative asialpf theBl-output in terms of sets
of strategy profiles, leaving this as a challenge to fixeavploigics over richer models.

3. Defining Bl as a unique static relation

Many definitions for theBI relationbi on generic games have been published by logicians and game-
theorists (cf. the survey in [30]). Our point of departureenis a version involving a modal language of
(a) labelled moves, i.e., binary transition relationen nodes with matching modalitiés), plus (b) a
modal preference operator interpreted as follows at noflagjame tree:

(pref;)¢: playeri prefers some node whegeholds to the current one

The original result Here is a result from [13]:

Theorem 3.1. On generic games, tHal strategy is the unique functiansatisfying the following modal
axiom for all proposition® - viewed as sets of nodes - for all playérs

(turn; A (o*)(end A p)) — [movel(c™)(end A (pref;)p)

For a proof (a laborious but straightforward induction oritéiriree depth), we refer to the cited
paper. Here we just concentrate on the meaning of the cragiam, that may be brought out by a
standard modal frame correspondence, where frame trutitifies universally over all sets of objects
for proposition letters ([16]). The frames here are gamésnaled with one more binary relation What
we find is a notion oRationalitylike before:

Fact 3.1. An extended game makésurn; A (c*)(end A p)) — [move](c*)(end A (pref;)p) true for
all i at all nodes iff it has this property for ali

RAT-1: No other available move for the current playsjields a set of outcomes by further
play usingo that has a higher minimal value forthan the outcomes of playing all the
way down the tree from the current node.

Proof:
This is a standard modal correspondence argument that wte Dimai correspondence language uses the
reflexive-transitive closure of the relation but this is a simple extension of known techniques ([7]1
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The typical picture to keep in mind here, and also later othiss

v i
/i \ /A
via o = Vi o

RAT-1 is equivalent to thigonfluence propertfor action and preference:

CF1: A\, Va(turni(x) — Yy(o(z,y) — (move(z,y) A Yu((end(u) A o*(y,u))
— Vz(move(z, z) — Jv(end(v) A o*(z,v) Av <; u))))))®

This Vvv43 form is a comparison between sets of outcomes that negatearksr notion of preference:
the minimum valueon the reachable endpoints afteis not larger than that aftey. It is easy to show
that any relatiorr with this property matches tH&! solution level by level on generic games.

Capturing Bl in logical terms But now let us look at our favored relational generalizatidiBl. First,
we reformulate the stated non-dominance property:

RAT-2. No alternative move for the current playeguarantees outcomes via further play
usingo that are all strictly better forthan all outcomes resulting from starting at the current
move and then playing all the way down the tree.

A logical formula defining this has the followirngv3d form:

CF2: A\, VaVy((turn;(z) A o(x,y)) — (move(x,y) A Vz(move(z, z)
— Juv(end(u) A end(v) A o*(y,v) A o*(z,u) Au <; v))))

Theorem 3.2. Bl is the largest subrelation of thmoverelation in a finite game tree satisfying the two
properties thata) the relation has a successor at each intermediate nodébe@&2 holds?°

Proof:

First, the given algorithm clearly leaves at least one acthove at each node, by the definition of
preference. Moreover, at the final state, when no more desictis occurCF2 must hold: there are no
more dominated moves, and that is what it says.

°One could change the formal language@#¥1 here to a more technical first-order one avoiding the clospegator — but for
our main points, such variations are not important.

we say “largest” in this formulation because in the presasfamore than one best successor, different subrelationiseof t
moverelation might satisiCF2. Note that there need not be a largest relation satisfyingemgtructural property, but in this
particular case, it does.
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That the relation defined in this way is maximal may be seeolbsifs. If we reactivate anywhere a
move that is inactive, that move had disappeared at some Btaguse it was dominated there by another
move. But then it would still be dominated in the whole treetly same move. For, all that can have
happened in the further stages of the algorithm is that femdpoints have become reachable through
active paths from the two moves, and th&it-dominance relationship then persists.

Conversely, if we have any subrelation of tmeverelation with the given two properties, it is easy
to see by induction on the depth of subtrees that all its meuedve each stage of the above m8ih
procedure, by the definition of the elimination step. O

We now make these same points about the procedure more tigaitgcby inspecting the syntax of
CF2. We can restate this in terms of a well-known formalism: th&t-frder fixed-point logit. FP(FO)
(cf. [24]):2

Theorem 3.3. TheBl relation is definable ib.FP(FO).

Proof:

Indeed, the definition involves just ogesatest fixed-point addition to the transitive closure operations.
This fixed-point is in the language bP(FO): all occurrences of the predicate symisoi the relevant
formula are positive:

Bl(z,y) = vS, zy.(move(x,y) A N\, (turn;(z) — Vz(move(z, z)
— JuIv(end(u) A end(v) A S*(y,v) A S*(z,u) Au <; v))))*? O

This definition will be our point of reference in what followsiterestingly, it is both a static descrip-
tion of theBlI relation and also a definition of a procedure computing it, We can now use the standard
defining sequence for a greatest fixed-point, starting floetotalmoverelation, and see that its suc-
cessive decreasing approximation stagksre exactly the “active move stages” of the above algorithm.
We will refer to these stageS” at several places in what follows. In our view, fixed-poingits are
attractive since they analyze both the statics and dynaofiigame solution.

In the following sections, we extend this theme by lookingwad further logical ways of construing
the Backward Induction procedure that have been proposextént years.

4. A dynamic-epistemic scenario: iterated announcement aghtionality

Here is another procedural line on Backward Induction agiara process. [9] proposed an analysis
in the spirit of currendynamic-epistemic logicthat describe acts of information flow, such as public
announcements or observations ([23], [12]). The follonwanglysis ofBl takes it to be a process of prior
off-line deliberation about a game by players whose mindsged in harmony - though they need not
communicate in reality*3

"I terms of [6], the syntax o€F2 has dual PIA form”, guaranteeing that the union of all relations safisflyCF2 exists,
while a small extra argument gives the existence.

12We can also replace the reflexive transitive closutedy definitions inLFP(FO).

13Compare also the dynamic agreement procedures studiefl]in [2
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Solving games by announcements of rationality The following analysis uses the dynamic epistemic
logic of public announcementg saying that some proposition is true. These transform a current
epistemic modeMt into its submodeft|¢ whose domain consists of just those worldSJirthat satisfy

¢. [9] makes the solution process of extensive games itselfdbus of aPAL style analysis:

Definition 4.1. (Node rationality)

As before, at a turn for player a move to a node is dominatedby a move to a sibling of x if every
history throughr: ends worse, in terms 6% preference, than every history throughNow rat says that
“at the current node, no player has chosen a strictly domdihatove in the past coming here”.

This makes an assertion about nodes in a game tree, viz. hiatdid not arise through playing a
dominated move. Some nodes will satisfy this, others mayMote that we do not say that every node
in the game satisfiesmt: we merely say that it is an informative property of nodesug;tannouncing
this formula as a fact about the players of a game is infokmatind it will in general make the current
game tree smaller.

But then we get a dynamics as in famous puzzles like the Mudiild@n, wheragepeated assertions
of ignorance eventually produce enough information toesdhe whole puzzle. In our case, in the new
smaller game tree, new nodes may become dominated, and &encencingat again (saying that it
still holds after this round of deliberation) makes sense, and sélis process of iterated announcement
must always reach a limit, that is, a smallest subgame wher®de is dominated any more:

Example 4.1. (Solving games through iterated assertions &ationality)
Consider a game with three turns, four branches, and payf@ff, E in that order:

A
le/ \ :
0?5/ N
z / \ u
6,4 5,5
StageD of the procedure rules out point(the only point where Rationality fails), Stagjeules outz and

the node above it (the new points where Rationality failsjl Stage rules outy and the node above it.
In the remaining game, Rationality holds throughout:

A A

RN PN /

1,0 E 10 : 10
, / \ , / ,
y A y
0,5 / 0,5
z
6,4
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In such generic games, th solution emerges step by step. [9] shows that the actualvizgarck
Induction path for extensive games is obtained by repeatedumcement of the assertiaat to its limit.
We repeat some relevant notions from dynamic-epistemic:log

Definition 4.2. (Announcement limit)

For each epistemic mod&it and each propositiog that is true or false at points in the model, the
announcement limi¢p, )7 is the first model reached by successive announcengémist no longer
changes after the last announcement is made.

That such a limit exists is clear for finite models, since #guence of submodels is weakly decreadfhg.
There are two possibilities for the limit model. Either inigsn-empty, in which case holds in all nodes,
meaning that it has become common knowledge g#iEfulfilling case), or it is empty, meaning that the
negation—¢ has become common knowledge (the self-refuting case). &uthr in concrete puzzles,
though generally speaking, rationality assertions lietend to be self-fulfilling, while the ignorance
statement that drives the Muddy Children is self-refutiagithe end, it holds nowhere.

Capturing BI by iterated announcements With general relational strategies, the iterated annocunce
ment scenario produces the earki&t33 version of Backward Induction:

Theorem 4.1. In any game tre@n, (rat, M)# is the actual subtree computed By

This can be proved directly, but it also follows from our nekkervations. For a start, it turns out
easier to change the definition of the driving assertaina bit. We now only demand that the current
node was not arrived at directly via a dominated move for dne players. This does not eliminate
nodes further down, and indeed, announcing this repeateitlynake the game tree fall apart into a
forest of disjoint subtrees — as is easily seen in the aboamples. These record more information.

Sets of nodes as relations Here is an obvious fact about game trees. Each subrel&tiohthe total
moverelation has an obvious unique corresponding set of noeles:( R) consisting of the set-theoretic
range ofR plus the root of the tree (we add the latter for convenienée)d vice versa, each séf of
nodes induces a unique corresponding subrelation ohtheerelationrel(X') consisting of all moves in
the tree that end iX.

With this simple connection, we can link the earlier appnoaiion stage®I* for Backward In-
duction (i.e., the successive relations computed by odieeqarocedure) and the stages of our public
announcement procedure. They are in harmony all the way:

Fact 4.1. For eachk, in each game modé&h, BI* = rel((rat)*, 9t).

Proof:

By induction onk. The base case is obviou®t is still the whole tree, and the relatid®i® equalsmove
Next, consider the inductive step. If we announaeagain, we remove all points reached by a move that
is dominated for at least one player. These are preciselgnthes cancelled by the corresponding step
of the Bl algorithm. 0

¥Announcement limits also exist in infinite models, takintgmsections at limit ordinals.
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It follows also that, for each stade
reach(BI¥) = ((rat)®, o).

Either way, we conclude that the earlier algorithmic fixeiiap definition of theBl procedure and van
Benthem’s iterated announcement procedure amount to the #ang.°

Thus, one might say that the deliberation scenario is jusiyaaf “conversationalizing” the underly-
ing mathematical fixed-point computation. Still, it is ofénest in the following sense. Viewing a game
tree as an epistemic model with nodes as worlds, we see haatezp announcement of Rationality
eventually makes this property true throughout the remgitimit model: in this way, it has made itself
into common knowledge

5. Another dynamic scenario: beliefs and iterated plausibity upgrade

Next, in addition to knowledge, consider the equally fundatal notion ofbelief Many foundational
studies in game theory (cf. the extensive discussion amdenrtes for belief-based game theory in [45])
view Rationality as choosing a best actiginen what one believesbout the current and future behavior
of the players. Indeed, this may be the most widely adopted df game solution in the epistemic
foundations of game theory today. We will first state a lolg@mslysis of game solution in these terms,
and then relate it to our earlier account of Backward Induncti

Backward Induction in a soft light An appealing take on thBl strategy in terms of beliefs uses “soft
update” that does not eliminate worlds as above for annguants!¢, but rearranges the plausibility
order between worlds ([8]). A typical example is thaical upgradef ¢ that makes all currenp-
worlds best, and then puts allp-worlds underneath, while keeping the old ordering instisée two
zones. Now recall our earlier observation that Backwarddtidn really createsxpectationgor players.
All the essential information produced by the algorithmhsrt in the binanplausibility relationsthat

it creates inductively for players among end nodes in theegatanding for complete histories. To see
this, consider our running example once more:

Example 5.1. (The debatabldB| outcome, hard and soft)

The hard scenario in terms of eveniat'removes nodes from the tree that are reached via moves which
are strictly dominated by moves to siblingsafis long as this can be done, resulting in the following
sequence of stages:

10/A\E
BN /

0,100 99,99 0,100

10/A\E /

1,0

5We leave the technical question open to which extent thisiisiee general technical method for switching between difier
types of predicate arities with fixed-points.
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By contrast, a soft scenario does not remove nodes but medlifeeplausibility relation. We start
with all endpoints of the game tree incomparable (otheriwasswould have them equiplausible). Next,
at each stage, we compare sibling nodes, using this notion:

Definition 5.1. (Rationality in beliefs)

A move to a node: for playeri: dominatesa move to a sibling of x in beliefs if the most plausible end
nodes reachable afteralong any path in the whole game tree are all better for theeaptayer than all
the most plausible end nodes reachable in the gameaftRationality* (at*) is the assertion that no
player plays a move that is dominated in beliefs.

Now we perform a relation change that is like a radical upgradat*®:

If a move to a node dominates a move to a siblingof = in beliefs, we make all end nodes reachable
from = more plausible than those reachable frgnkeeping the old order inside these zones.

This changes the plausibility order, and hence the domagattern, so that belief statements can
change their truth values — and a genuine iteration can stare are the stages for this procedure in the
above example, where we use the letters, z to stand for the end nodes or histories of the game:

A A A
,0 E 0 E 0 E
VRN VRN VRN
0,100 99,99 0,100 99,99 0,100 99,99
X ) z T Yy > z x > U > z

1 1, 1,

In the first game tree, going right is not yet dominated inddelfor A by going left. rat* only has
bite atE’s turn, and an upgrade takes place that mgRe$00) more plausible thaf99, 99). After this
upgrade, however, going right has now become dominatedlieffieand a new upgrade takes place,
makingA'’s going left most plausible.

Here is a result stated without proof in [11]:

Theorem 5.1. On finite trees, the Backward Induction strategy is encodetie final plausibility order
for end nodes created by iterated radical upgrade withrrality in belief.

At the end of this procedure, players have acquaeshmon belief in rationalityLet us now prove
the result, using an idea from [3].

Strategies as special plausibility relations We first observe that each subrelatiBrof the totalmove
relation induces a total plausibility orderd(R) on leavest, y of the tree.

Definition 5.2. (Leaf order from a sub-move relation)
We putzord(R)y iff, looking upward at the first node where the histories of, y diverged, ifz was
reached via a® move fromz, then so igy.

18We omit technical details here: plausibility upgrades naketplace in subtrees, and hence one needs to work with seitsnod
of the whole set of histories. Cf. [26] for details.
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It is easy to see by inspection of trees that:

Fact 5.1. The relationord(R) is a total order on leaves.

Moreover, this total order on leavestise-compatiblemeaning that, for any two leavesy, if z is
the first splitting node above, y as before, all leaves’ reached by taking the move towardat » stand
in the relationord(R) to all leaves)’ reached by taking the move towaydAs an example, there can be
no criss-crossing as in the following tree:

A
kot \\

VANEVAN

y u

withz <y <z<u

Definition 5.3. (Relational strategies from leaf order)

Conversely, any tree-compatible total orgeon leaves induces a subrelatiei( <) of themoverelation,
defined by selecting just those available moves at a adHat have the following property: their further
available histories lead only to-maximal leaves in the total set of leaves that are reactiedie .

Together, the two map®l andord give a precise meaning to the sense in which [3] can say that
“strategies are the same as plausibility relatiotfs”.

Now we can relate the computation in our upgrade scenaribdlef and plausibility to the earlier
relational algorithm foBI. Things turn out to be in harmony stage by stage:

Fact 5.2. For any game tre® and anyk, rel((1} rat*)*, o)) = BI*.

Proof:

The key point is as demonstrated in the earlier example oépwsseBI solution procedure. When
computing a next approximation for thé-relation according tacCF2, we drop those moves that are
dominated by another available one. But this has the sametef§ making the leaves reachable from
dominated moves less plausible than those reachable fronvieg moves. And that was precisely the
earlier upgrade step. O

We conclude that the algorithmic analysis of Backward Iiduncand its procedural doxastic analysis
in terms of forming beliefs amount to the same thing. Stdlyath the iterated announcement scenario,
the iterated upgrade scenario also has some interestingdeaof its own. One is that, for logicians,
it yields fine-structure to the plausibility relations there usually treated as primitives in models for
doxastic logic. Thus games provide an underpinning foriptessvorlds semantics of belief that seems
of interest per se.

17[44] relates our dynamic analysis to achieving the sufficiemdition for the Backward Induction outcome given in [3].
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Remark on syntax While we have stated the operatioasd andrel purely semantically, they can
obviously also be formulated as syntactic translationd,than the various logical definitions for Back-
ward Induction given in this and preceding sections can lagsdirectly transformed into each other. As
before, we refer to [26] for details.

6. Midway conclusion: the stability of Backward Induction

Extensional equivalence, intensional difference We have now seen how three different approaches to
analyzing Backward Induction turn out to amount to the samregt To us, this means that the notion is
stable, and that, in particular, its fixed-point definitiancserve as a normal form. This motivates taking
a closer look at fixed-point logics for game solution. Of c@jras we have observed, extensionally
equivalent definitions can still have interesting intensidifferences in terms of what they suggest. For
instance, we see the above analysis of strategy creatioplamsibility change as one more concrete case
study for a general conceptual issue: the fact that ageeli€fb and rational action are deeply entangled
in the conceptual foundations of decision and game theory.

Dynamic instead of static foundations for game theory As we also said already, one key feature of
our dynamic announcement and upgrade scenarios is thidqieltetms of [9], they arself-fulfilling:
ending in non-empty largest submodels where players bhawemon knowledge or common belief of
rationality.1® 19 Thus, this dynamic style of game analysis is a big change fremusual static charac-
terizations of Backward Induction in the epistemic fouimlz of game theory. Common knowledge or
belief of rationality is not assumed, bptoducedby the logic.

6.1. Test case: variants of Backward Induction

Are the preceding results just special effects for the motibBl chosen here? As a test case, one can
also look at the variarBl’ considered in Section 2, where preference between setstcbmes referred
to ensuring a greater minimal value. This variant is studhiedktail in the extended version of this paper
(cf. [26]). We merely list some salient facts.

First, theVvVv3-type syntactic definitiorCF1 can no longer be used for an immediate fixed-point
definition inLFP(FO). We would get

move(z,y) A N\, (turn;(z) — Yu((end(u) A S*(y,u))
— Vz(move(zx, z) — Jv(end(v) A S*(z,v) Av <; w))))

where not all occurrences of the relation symBdare positive. Still, we get

Theorem 6.1. The relationalBI'-strategy is definable in the first-order inflationary fixgdint logic
IFP(FO) using simultaneous fixed-points.

18we forego the issue of logical languages for explicitgfiningthe limit submodel.

®Wwe also forego the further analysis of the limit behavior pfade actions on game models. For general models, [2] finds
some curious phenomena, such as plausibility cycles, andptove a general result stating when at least absolutefeli
stabilize in the limit.
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For details on first-order and modal inflationary fixed-pdagfics, we refer to [24], [20F° 2*

[26] also shows how the earlier iterated public announceéreanario for game solution and the
iterated plausibility upgrade scenario both apphBtg this time, with driving assertions derived from
the conditionCF1. Thus we find the same stability in approaches that we savinéoearlier case dil.

7. Fixed-point logic of game solution: general issues

Which fixed-point logic? The preceding analysis raises the issue which of the marg-finet logics
known for computation best fit game solution methods. Caatdilare the earlier-mentioned first-order
logic with fixed-pointsLFP(FO) or the inflationary variantFP(FO). These are general languages for
recursion that work on any model. This generality is ativactsince we may want to investigate game
solution procedures that are quite different from Backwadiliction.

But an alternative take is also possible. One major featigarae solution procedures like Backward
Induction is their exploiting the inductive structure oftemsive games, via theell-founded tree dom-
inance ordertoward the leave&? Such orderings allow for recursive definitions that yieldqueness
even without positive occurrence:

Example 7.1. (Fixed-points in modal provability logic ([18))

On finite trees, any equivalence of the fopm— ¢(p) wherep occurs only “guarded” (that is, in the
scope of at least one modality) in the formuladefines a unique propositign One proves this by
induction on the well-founded tree order.

This includes examples that are not obviously in ordinargdipoint logics:

Example 7.2. (Broader well-founded recursion)
Consider the definitiop < —Op. There is no obvious definition in the modalcalculus, and not even
in its inflationary variant. Indeed, on3anodes linear order

1 2 3

starting from any set as a value fpy this will stabilize withp = {2}. But it is easy to see that an
inflationary bottom-up procedure for this formula stopshe pre-fixed poin{1, 2}, and the deflationary
top-down procedure stops in the post-fixed pdintNeither of these is even a fixed-point. What one
can see more precisely in the straightforward approximapimcedure, without forcing increasing or
decreasing sets, is this: starting the iteration from amjalrset will gradually get the predicate right,
successively, at all nodes lying at increasing height froenl¢aves?

2This is interesting, since [9] already observed how thetéirof iterated public announcement procedures on modal inade
definable inlFP(FO), and in fact, usually in the modal inflationary calculus, éxtension of the modal-calculus by means
of inflationary fixed-points ([20]).

2rrom the preceding fact, we can conclude (using [27], [38]) there is an equivalent definition B in LFP(FO) after alll,
though the latter may involve extra predicates, with a caiapon no longer matching the natural stages of our algorith
22But other recursions are possible, too. Both finite and itfitiees allow for recursive definitions over the well-foaddree
order in the oppositpast directiontoward the root.

ZBalder ten Cate observes that the unigueith p < —Op is definable in the modal inflationary calculus ([20]) extedd
with simultaneous fixed-points, one for the ambignand one for the currently already stable subpredicaje ®¥e actually
construct the formula defining tH&l’ strategy (see Theorem 6.1) using the same idea.
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Of course, our analysis for Backward Induction did not ugséhsimple modal languages, nor did it
just use the simple tree dominance order. Still, it is easetwby inspection of our earlier formulas and
arguments that the following result holds

Fact 7.1. Stated as an equivalence, the Rationality principf2 defines a unique subrelation of the
moverelation by recursion on a well-founded order on finite tregs. the composition of the relations
sibling anddominance

And this unigue relation may also be computed@dt1 and other versions that lack positive syntax but
do descend along the well-founded order. One can start wittsabrelation of thenoverelation, and
then compute according to the given instruction. At anyestagthe fixed-point relation stabilizes at
points of distance< k to the leaves.

Example 7.3. (Computing a fixed-point forCF1)
Consider this game, with values on leaves written as (valug fvalue forA):

/\

1.1 4.3

Let R be the wholenoverelation. ThenR! is marked in black below:

/\

/\.

1, 1.3 3.2 3.?

]

This still gets the fixed-point relation wrong at the roott tsuthe next stage we get the stable solution:

/E\ /I

1.1 4,3 3.2 3.2 2.3

This suggests the introduction of a logical formalism fomgs that can access this order directly,
generalizing modal syntaxX* We will not do so here, but refer to [26] for a more abstractiysis of
conditions under which such recursions are successful.

Fragments of fixed-point logics Of course, game solution procedures need not use the fukipofv
logical languages that can define recursive proceduress, Thare is a questiowhich fragmentsare
needed in our analysis. It might make sense to look at deleidedgments such as timeodal i:-calculus
- and indeed, [9] points out how the latter suffices, e.g.,defining the game solutions needed for
Zermelo’s Theorem. This may look too poor, since we oftentviamlefine relations on trees, and not

%Relevant proposals in the literature include the “non monetinductive definitions” of [22].
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just unary predicates. But we have already seen how subfits moverelation are encoded by unary
predicates, so a lot can be done in this way. Still, the iotrig issue is this. Crucially, game solution
intertwines two different relations on trees: tin@verelation and thereferencerelations for players on
endpoints. And the question is what happens to the knownreptiep of computational logics when we
add such preference relations. In particular, the follgairtriguing issue then arises.

Potential problem: the complexity of rationality In logics ofactionandknowledgeit is well-known
that apparently harmless assumptions such as Perfectl Readents make the bimodal logic undecid-
able, and sometimes evél}-complete ([28]). The reason is that these assumptionsgeneommuting
diagrams for actionmoveand epistemic uncertainty satisfying a “confluence” property

VaVy((move(x,y) Ny ~ z) — Ju(z ~ u A move(u, z))

that can serve as the basic grid cells in encodings of Tilmadplems in the logic. Thus, the logical theory
of games with players that have perfect memory is more coxtpkn that of forgetful agents ([14]).

But now consider the non-epistemic propertyRationality that mixes action and preference. The
earlier propertieCF1, CF2 have a similar flavor: they express the existence of a cordludiagram
involving action and preference links. For instanC&1 said this:

VaVy((turn;(z) A o(z,y)) — Yz(move(x, z) —
— Yu((end(u) A o*(y,u)) — Jv(end(v) A o*(z,v) Av <; u))))

So, what is the complexity of fixed-point logics for playerghathis kind of behavior? Can it be
that Rationality, a widely used property meant to make biehaimple and predictable, actually makes
its logical theory complex? Concrete instances of this gpeiblem arise once we fix a sufficiently
expressive logical language over trees: see bé&ow.

Language design and game equivalenceAs a final perspective, we mention that the choice of a
best language for games is also correlated with the choiaa optimal notion otructural equivalence
between games ([4]). The richer the equivalence, the strahg language needed to capture its invariant
properties. The options for languages that we have disdusse may also reflect the fact that there is
no consensus yet on what such a structural notion of gameagenice should be.

8. The gist of it all: modal logics of best action

We have made a plea for analyzing game solution procedup@®idly in rich logics. This follows the
program ofmaking strategies explickdvocated in [10]. But while this is useful in some casesiethe
is also the opposite direction of judiciously hiding infation about the machinery of strategies when
it is not needed. In practical reasoning, we are often onfgrasted in oubest actionswithout all
details of their justification. Game solution procedurdeta model with actions and preferences, and

ZModel-checking complexity and definability on finite tre@alder ten Cate has reminded us of the potential usesériptive
complexity theory([31]) for studying finite games. First, checking for gaméusions is related to model checking logical
formulas, say, stating the intended effects of playersitegies. As an example, since bathP(FO) andIFP(FO) capture
PTIME on finite models (given an enumeration order on the treehatisl be close to defining all “testable” properties of
games. And other results in descriptive complexity theoay e game-theoretically relevant as well.
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then compute a new relation of best action. As a mathematlzstraction, it would be good to extract
a simple surface logic (a small modal fragment of complexdfigeint logics) for reasoning with best
actions, while hiding most of the machinery:

Open problem Can we axiomatize the modal logic of finite game trees withaverelation and its
transitive closure, turns argreferencerelations for players, and a new relatibestas computed by
Backward Induction?

We conjecture that we get a simple modal logic for the movessé exist) plus a basic preference
logic, while the modality(best) satisfies some obvious base laws plus one major bridge akiahwe
already encountered earli€t:

Fact 8.1. The following modal axiom corresponds @2 by standard techniques:
(turn; A (best)[best*](end — p)) — [move|(best™)(end A (pre f;)p)

In this concrete setting, the earlier problem returns thatRationality assumption built into this
logic may be a grid property leading to undecidability. le thodal logic of best action decidable?

9. Further issues and extended game logics

There are many further lines for investigation following ap our stray observations. For instance, we

want a more general view of possible representation laregjamnd on the notions of set preference that

determine the dominance relation defining rationality. &generally, it would be of interest to connect

our style of analysis for game solution more systematicaith that found in epistemic game theory,

where epistemic models are added describing what players &nbelieve about the course of the game.
In addition, some extensions to the games themselves sdamlna

Infinite games Can we extend our analysis to deal wiitifinite game® A transition to infinite ordinal
sequences is easy to add to our iterated announcement @dapgcenarios. Also, our general fixed-
point definitions still make sense in this setting, though $pecial recursion over a well-founded tree
dominance relation is no longer available. But there may beento this generalization. Typically, in
infinite trees, the reasoning changes direction, from “back” to “forward”. Here is an illustration:

Example 9.1. (Weak Determinacy)
The following principle holds in all infinite game trees, famy conditiong on histories:

If player E has no strategy forcing at some stage of the game, the has a strategy for
achieving a set of runs fromduring all of whichE never has a strategy forcingfor the
remaining game from then on.

In the notation of temporal game logics wittrcing modalities{ }, this says

{E}o Vv {A}JG-{E}o

26[36] has some related thoughts on “logics of solved games”.
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Here the reasoning is a typical inverse of Backward InduactiSuppose that{E}¢. A’s strategy
then arises as follows. E is to move, then no successor available to her can guarantéee aince she
has no winning strategy now - and Accan just “wait and see”. IA is to move, then there must be at
least one possible move leading to a state wkehas no winning strategy: otherwide has a winning
strategy right now after all. Continuing this walyjis bound to produce runs of the kind descriBéd.

How would our earlier analysis extend to a setting like thikere infinite histories themselves are
the outcomes of the game, and players try to achieve globakpties of these?

Dynamics in games with imperfect information Moreover, many if not most games haweperfect
information with uncertainties for players where they are in the garee.tThink of card games, or
other games with restricted observation. Can't our angligsi extended to this area, where in general,
Backward Induction no longer works? We merely illustrate tdsk ahead with two simple scenarios for
the reader to ponder:

Example 9.2. (Strategic reasoning in imperfect informatio games)
In the following games, outcome values are written in theepftA-value,E-value™):

_A A
.f.--'/-...f \ //” HHH‘“—»
E E E 9.9 ~E
SN 7N > \\
1.1 0,0 0.1 2.0 A A A
7o P
3,2 1.0 0,1 2,2 28

The game to the left seems a straightforward extension bhtgaes for removing dominated moves,
but that to the right raises tricky issues of whatvould be tellingE by moving right. We leave the
question what should or will happen in both games to the reg@i&], [45] have more discussic.

10. Coda: alternatives to Backward Induction and true game gnamics

Finally, we return to our running example of Backward Indluet It has been claimed that its very style
of reasoning is incoherent (cf. [15]):

The paradox of Backward Induction

Example 10.1. (The “Paradox of Backward Induction”)
Recall the style of reasoning toward a Backward Inductidatim, as in:

2’This argument has eo-algebraicflavor, cf. [42], that we do not pursue here.

ZThe tree to the right is adapted from an example in an inviéetlte by Robert Stalnaker at the Gloriclass Farewell Event
ILLC Amsterdam, January 2010.

2Further challenges to our analysis include equilibria withlitionsof players, angimultaneous moveslothing in our logics
prevent this: it has just not been done yet.
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Backward Induction tells us tha#t will go left at the start, on the basis of logical reasoningttis
available to both players. But then,Afplays right (see the black line) what sholddconclude? Does
not this mean thaA is not following theBI reasoning, and that all bets are off as to what he will do later
on in the game? It seems that the very basis for the above datiggucollapses.

Responses to this conceptual difficulty vary - and many aattioubt that there is a genuine paradox
here. The characterization result of [1] assumes that pagmow that rationality prevails throughout,
something that [38] calls “rationality no matter what”, aitdborn unshakable belief that players will
act rationally later on, even if they have not done so up uatit3° [3] essentially take the same tack,
deriving theBI strategy from an assumption of “stable true belief” in Radility, a gentler form of
stubbornness stated in terms of dynamic-epistemic logic.

Logics of actions, preference, and agent typesPersonally, we are more inclined toward another anal-
ysis, in line with [41]. A richer game analysis should add ancant of the types of agent that play a
game. In particular, we need to representtibtef revisionpolicies by the players, that determine what
they will do when making a surprising observation contrdictheir beliefs in the course of a game.
There are many different options for such policies in thevatexample, such as

- “It was just an error, ané\ will go back to being rational”,
- “Alis inviting me to go right, and | will be rewarded for that”,

- “Ais an automaton with a general rightward tendency”, and sa o%

Our logical analysis so far omits this type of informatioroabplayers of the game, since our algo-
rithms make implicit uniform assumptions about what theygwing to do as the game proce&ds

Belief revision policies are not an explicit part of our mizdgo far. Thus, our fixed-point logics tell
only a limited story. Eventually, we may need a richer matagral model for game solution, that can
also deal with the dynamics of how players update knowledgerevise beliefs as a game unfolds.

300ne can defend this by assuming that the other player onlesniaklated “mistakes”.

310ne reaction to these surprise events might even be a switah éntirely new reasoning style about the game. That might
require more finely-grainesyntax-basediews of revision.

%2Some ideas in this direction occur in the area of computeregamalysis, in the form of "opponent modeling™: [32].



J. van Benthem and A. Gheerbrant/ Game Solution, Epistegmiamics and Fixed-Point Logics 21

11. Conclusion and general outlook

We have shown how standard logical fixed-point languagesdedine game solution procedures and
their resulting relations of “best action”. We think thaistlis a good format for more general studies of
game-theoretic notions, including finding alternativesuarently received views. But also, we hope to
have shown that the game arena poses interesting problemagisting logics of computation, as one
adds further structure that is typical for agents: prefegeinformation, and eventually, even “processing
types” for agents. All these contacts may eventually leddgiiimate children of logic and game theory.

References
[1] Aumann, R.: Backward Induction and Common Knowledge afiéhality, Games and Economic Behavjior
8, 1995, 6-19.

[2] Baltag, A., Smets, S.: Group Belief Dynamics under IltedaRevision: Fixed-Points and Cycles of Joint
UpgradesProceedings of TARK 2002009, 41-50.

[3] Baltag, A., Smets, S., Zvesper, J.: Keep “Hoping” for iBaality: A Solution to the Backward Induction
Paradox Synthesgl692), 2009, 301-333.

[4] van Benthem, J.: Extensive Games as Process Modelgrnal of Logic, Language and Informatiphl,
2001, 289-313.

[5] van Benthem, J.: Games in Dynamic Epistemic Lo@ialletin of Economic Research3(4), 2002, 219-248.

[6] van Benthem, J.: Minimal Predicates, Fixed-Points, Batinability, Journal of Symbolic Logi&Z((3), 2005,
696-712.

[7] van Benthem, J.: Modal Frame Correspondences and Fxaats, Studia Logica83(1), 2006, 133—-155.

[8] van Benthem, J.: Dynamic Logic of Belief Revisiodpurnal of Applied Non-Classical Logic7(2), 2007,
129-155.

[9] van Benthem, J.: Rational Dynamics and Epistemic LogiGames, International Game Theory Review
(IGTR), 09(01), 2007, 13-45.

[10] van Benthem, J.: In Praise of Strategies, to appearvardEijck and R. Verbrugge, eds., Games, Actions
and Social Software, College Publications, London, 2008.

[11] van Benthem, J.: The Logic of Rational Agency, Inviteztture, Third Indian ICLA Winter School, Chennai,
20009.

[12] van Benthem, JLogical Dynamics of Information and InteractipBambridge University Press, Cambridge,
2010.

[13] van Benthem, J., van Otterloo, S., Roy, Mpdality Matters: Twenty-Five Essays in Honour of Krister
Segerbergvol. 53 of Philosophical Studieshapter Preference Logic, Conditionals, and Solutiondgpts
in Games, Lagerlund, Lindstrom and Sliwinski, Uppsal®d&®1-76.

[14] van Benthem, J., Pacuit, E.: The Tree of Knowledge indkgtProceedings Advances in Modal Logi906,
87-106.

[15] Bicchieri, C., Schulte, O.: Common Reasoning about fsibility, Erkenntnis45, 1997, 229-325.
[16] Blackburn, P., de Rijke, M., Venema, Yodal Logic Cambridge University Press, Cambridge, 2000.



22 J. van Benthem and A. Gheerbrant/ Game Solution, Epistegmaimics and Fixed-Point Logics

[17] Bonanno, G.: The Logic of Rational Play in Games of Parfaformation, Economics and Philosophy,
1991, 37-65.

[18] Boolos, G.:The Logic of Provability Cambridge University Press, Cambridge, 1993.

[19] de Bruin, B.: Explaining Games: on the Logic of Game Theoretic ExplamatioPh.D. Thesis, ILLC,
University of Amsterdam, 2004.

[20] Dawar, A., Gradel, E., Kreutzer, S.: Inflationary FixBoints in Modal Logic, ACM Transactions on Com-
putational Logi¢ 5, 2004, 282—-315.

[21] Dégremont, C.:The Temporal Mind. Observations on the Logic of Belief Cleainginteractive Systems
Ph.D. Thesis, ILLC, University of Amsterdam, 2010.

[22] Denecker, M., Ternovska, E.: A Logic of Nonmonotoneuntive Definitions,ACM Trans. Comput. Logic
9(2), 2008, 1-52.

[23] van Ditmarsch, H., van der Hoek, W., Kooi, BDynamic-Epistemic Logjc Cambridge University Press,
Cambridge, 2007.

[24] Ebbinghaus, H.-D., Flum, JEinite Model Theory Springer, Berlin, 1995.

[25] Geanakoplos, J., Polemarchakis, H.: We Can’t Disag@ever, Journal of Economic Theoryp8, 1982,
192-200.

[26] Gheerbrant, A.Fixed-Point Logics on Tree$>h.D. Thesis, ILLC, University of Amsterdam, 2010.

[27] Gurevich, Y., Shelah, S.: Fixed-Point Extensions ab#Drder Logic, Annals of Pure and Applied Logic
32,1986, 265-280.

[28] Halpern, J., Vardi, M.: The Complexity of Reasoning abknowledge and Time, I: Lower Bound3ournal
of Computer and System Scien@&&1), 1989, 195-237.

[29] Harrenstein, P.Logic in Conflict Ph.D. Thesis, Institute of Computer Science, Universitytecht, 2004.

[30] van der Hoek, W., Pauly, M.: Modal Logic for Games andohnmfiation, in: Handbook of Modal Logic
(P. Blackburn, F. Wolter, J. van Benthem, Eds.), Elseviensterdam, 2006, 1077-1148.

[31] Immermann, N.Descriptive ComplexitySpringer, Berlin, 1999.

[32] lida, H., Uiterwijk, J.W.H.M., Herik, H.J. van den, arderschberg, 1.S. (1993). Potential Applications of
Opponent-Model Search. Part 1: The Domain of ApplicabilBCA Journal, Vol. 16, No. 4, pp. 201-208.

[33] Kreutzer, S.: Expressive Equivalence of Least and tiofi@ry Fixed-Point Logic, Annals of Pure and
Applied Logi¢ 130(1-3), 2004, 61-78.

[34] Liu, F.: Changing for the Better, Preference Dynamics and AgentrSitye Ph.D. Thesis, llic, University of
Amsterdam, 2008.

[35] Osborne, M., Rubinstein, AA Course in Game Thearyhe MIT Press, Cambridge (Mass.), 1994.
[36] van Otterloo, S.A Strategic Analysis of Multi-Agent ProtocpBh.D. Thesis, ILLC, Amsterdam, 2005.

[37] Pacuit, E., Roy, O.: Interactive Rationality, Lectsiriotes, University of Groningen and University of
Tilburg, 2010.

[38] Samet, D.: Counterfactuals in Wonderlagames and Economic Behav,ibi(2), 1997, 537-541.

[39] Selten, R.: Spieltheoretische Behandlung eines @bdrmodells mit Nachfragetragheifeitschrift fir die
gesamte Staatswissenschaftl, 1965, 301-324.



J. van Benthem and A. Gheerbrant/ Game Solution, Epistegmiamics and Fixed-Point Logics 23

[40] Selten, R.: Reexamination of the Perfectness ConaeEduilibrium Points in Extensive Gamelterna-
tional Journal of Game Theoyry, 1975, 25-55.

[41] Stalnaker, R.: Extensive and Strategic Form: Gameshmdels for Games,research in Economi¢c$3,
1999, 293-319.

[42] Venema, Y.: Algebras and Coalgebras, idandbook of Modal Logi¢P. Blackburn, F. Wolter, J. van
Benthem, Eds.), Elsevier, 2006, 331-426.

[43] von Wright, G. H.:The Logic of PreferenceEdinburgh University Press, Edinburgh, 1963.
[44] zvesper, J.: Arriving at the Bl Condition, Manuscriftxford Computing Lab, Oxford University, 2010.
[45] Zvesper, J.Playing with Information Ph.D. Thesis, ILLC, University of Amsterdam, 2010.



