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Abstract. Current methods for solving games embody a form of “procedural rationality” that in-
vites logical analysis in its own right. This paper is a briefcase study of Backward Induction for
extensive games, replacing earlier static logical definitions by stepwise dynamic ones. We consider
a number of analysis from recent years that look different conceptually, and find that they are all
mathematically equivalent. This shows how an abstract logical perspective can bring out basic in-
variant structure in games. We then generalize this to an exploration of fixed-point logics on finite
trees that best fit game-theoretic equilibria. We end with some open questions that suggest a broader
program for merging current computational logics with notions and results from game theory. This
paper is largely a program for opening up an area: an extendedversion of the technical results will
be found in the forthcoming dissertation [26].
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1. Game solution as rational procedure

Logic and games form a natural combination. On the one hand, there are “logic games” that analyze basic
notions such as truth, proof, or model comparison, while on the other hand, standard logical systems have
proved applicable to many basic issues in the foundations ofgame theory (cf. [5], [37]). This paper will
concentrate on the second aspect.
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Logics that describe games In recent years, many logical analyses have been given of both strategic
and extensive games, through introducing formal languagesthat describe game structure while raising
logical questions of definability and axiomatization ([17], [4], [19], [29]). A benchmark for logics in this
tradition has been the definition ofBackward Induction(“BI” for short), the most common method for
solving finite extensive games of perfect information ([39], [40]). In this same arena, basic foundational
results have been obtained in epistemic game theory, endowing bare games with epistemic assumptions
about players. A pilot result was the characterization of the BI outcome in terms of assuming common
knowledge, or common true belief, in rationality, meaning that players choose those actions that they
believe to be best for themselves ([1]).

Analyzing solution procedures Recently, [9] has suggested that the main focus here should be shifted:
away from a static assumption of known or believed rationality to the underlying “procedural rationality”
of plausible proceduresthat players engage in when analyzing and playing a game, andthe way these
result in stable limit models where rationality becomes common knowledge.1 Thus, [4] shows how
game-theoretic equilibrium fits with the computational perspective of fixed-point logics, and [11] gives
several dynamic procedures that analyzeBI. This paper will analyze these proposals further, and find
their common mathematical background. This will then be ourstarting point for suggesting a more
general line of investigation.

Basics of extensive gamesWe assume some basic game theory, and we will work withfinite extensive
gamesof perfect information, i.e., finite trees with labelled nodes, where each node is either an end
node, or an intermediate node that represents the turn of a unique player.2 We will mostly think of 2-
player games, though much of what we say generalizes to more players. While game trees with moves
are simple computational structures, the essence of rational action arises with the way players evaluate
outcomes. Thus, there is also a furtherpreference relationfor each player between end nodes (encoding
complete histories) that we will take to be a total order in this paper, though this requirement could
be generalized. Equivalently, such total evaluation orders may be represented in the form of numerical
utility values for players at end nodes.

Backward induction We now define our basic procedure in a bit more detail:

Definition 1.1. (BI procedure for “generic” extensive games)
We call a gamegenericwhen, for each player, distinct end nodes have different utility values. On such
gamesBackward Inductionis this inductive algorithm:

“At end nodes, players already have their values marked. At further nodes, once all daughters
are marked, the player to move gets her maximal value that occurs on a daughter, while the
other, non-active player gets his value on that maximal node.”

A strategyfor a player is a map that selects one move at each turn for thatplayer. It is easy to see
thatBI generates a strategy for each player at her turns: go to the successor node that has your highest

1Note that even the common word “solution” has an ambiguity between a procedure (“Solution is not easy”) and a static product
of such a procedure (“Show me your solution”).
2Only towards the end, we will briefly consider games with imperfect information.
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value. The resulting set of strategies is the “BI outcome”, that leads to a unique play of the game. We
will call the set-theoretic union of all these strategies (still a function on nodes)bi. TheBI procedure
seems obvious, telling us players’ best course of action. And yet, it is packed with assumptions about
how players behave that are worth high-lighting. For now, just note that the algorithm subtly changes its
interpretation of values on the way. At leaves, these valuesencode plain utilities or preferences, but at
nodes higher up in the game tree, theBI values clearly mix in additional considerations of plausibility,
incorporating beliefs about what others will do.

Delicate cases BI can produce debatable outcomes, as in the next illustration:

Example 1.1. (A simpleBI outcome)
In the following game, players’ preferences are encoded in utility values, as pairs (value forA, value for
E). Backward Induction tells playerE to turn left at her turn, which givesA a belief that this will happen,
and so, based on this belief about his counter-player,A should turn left at the start, making both worse
off than they might have been:3

A

1, 0 E

0, 100 99, 99 4

The fact that theBI prediction or recommendation is not always intuitive has motivated much logical
analysis of the procedure and the reasoning underpinning it. In this paper, we will not enter this debate.
We neither endorse nor reject Backward Induction, but we merely take it as our point of entry into
the logic of game solution procedures. Our starting point are three different proposals for explaining
what makesBI tick, that we will explain in due course. But before getting there, let us first make a
generalization of what we mean by Backward Induction.

2. From functional to relational strategies

Strategies as subrelations of themove relation A game-theoretic strategy is usually taken to be a
function on nodes in a game tree, yielding a unique recommendation for play there. But in many set-
tings, it makes more sense to think of strategies as nondeterministic binary subrelationsof the total
relationmove(the union of all labelled actions in the game) that merely constrain further moves by se-
lecting one or more as admissible. This is in line with the colloquial use of the term “strategy”, it also
reflects a common view of plans for action, and technically, it facilitates logical definitions of strategies
in propositional dynamic logic [10].

3People sometimes defend this outcome by saying that the given game is “competitive” – but that amounts to giving information
about the players that is not explicit in the game tree. If such extra information is relevant to solution, we may need a richer
notion of game from the start. We will return to this issue in Section 10 below.
4Frankly, we have dramatized things a bit here to catch the reader’s attention. Since the numbers just encode ordinal preferences,
the same point might have been made with values0, 1, 2 and3. But the undesirable point remains that the computed outcome
is not Pareto-optimal.
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Relational BI, first version Indeed, one common numerical formulation ofBI already has this rela-
tional flavor. We now drop the assumption that games are generic:

Definition 2.1. (Relational Backward Induction, first version)
Starting from the leaves, one now assigns values for playersat nodes using the rule:

Suppose thatE is to move at a node, and all values for daughters are known. TheE-value is
the maximum of all theE-values on the daughters, while theA-value is the minimum of the
A-values at allE-best daughters.5

The relationbi arising from this algorithm connects nodes to all daughterswith maximal values for
the active player, of which there may be more than one. This method focuses on minimal values that can
be guaranteed when doing the best within one’s power.

Solution algorithms make assumptions about players But while this looks like an obvious numerical
rule, it does embody special assumptions about players. In particular, taking the minimum value is a
worst-case assumption that my counter-player does not careabout my interests after her own are satisfied.
But we might also assume that she does, choosing among her maximum nodes one that is best for me. In
that case, the second numerical value in the algorithm wouldbe a maximum rather than a minimum. And
other options are possible.6 This variety of relational versions of game solution is not aproblem. It rather
highlights an important feature of game theory: mathematical “solution methods” are not neutral, they
encode significant assumptions about players. But the variety does suggest that we first find a general
base version ofBI that is not too specific:

A minimal notion of rationality: avoid stupid moves Here is one logical analysis of the variety for
relational versions ofBI. Let us first view matters from a somewhat higher standpoint.Suppose that I
need to compare different moves of mine, each of which, giventhe relational nature of the procedure,
still allows for many leaves (end nodes) that can be reached via furtherbi-play.7 A minimal notion of
Rationalitywould then say that

I do not play a move when I have another move whose outcomes Iprefer.

A source of variety: different set preferences This seems plausible, but what notion of preference is
involved here? It is easy to see that, in the above first version of theBI algorithm, the following choice is
made. Playeri preferred a setY of leaves reachable by furtherbi-play to another setX if the minimum
of its values fori is higher. That is, we have the following∀∃ pattern for set preference:8

∀y ∈ Y ∃x ∈ X : x <i y

5The dual calculation for values atA’s turns is completely analogous.
6Of course, one might view such alternatives as calling for a change in players’ utilities. We will not get into this perennial
issue of game preference transformations here.
7In this perspective with total outcomes of the game, we make ashift from the original version of theBI algorithm, which
looked at daughters of the current node only.
8Given that we have finite total orders, we could also replace this by

∃x ∈ X ∀y ∈ Y : x <i y

.
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But clearly, staying with the same over-all notion of Rationality, there are several alternatives for
comparisons between reachable sets of outcomes. One commonnotion of preference forY overX in
the logical literature ([43], [34]) is the∀∀ stipulation that

∀y ∈ Y ∀x ∈ X : x <i y

Relational backward induction, second version Clearly, avoiding moves that shouldn’t be taken un-
der this stronger preference is a weaker constraint on behavior of players. Still, it fits with a minimal
game-theoretic solution procedure for strategic games called eliminating strictly dominated strategies
([35]). We will take this second relational version of Backward Induction as our running example:

Definition 2.2. (Relational Backward Induction, second version)
First, mark all moves as “active”. Call a move to a nodex dominatedif x has a sibling from which all
reachable endpoints via active moves are preferred by the current player to all reachable endpoints via
active moves fromx itself. The second version of theBI algorithm works in stages:

At each stage, it marks dominated moves in the∀∀ sense of set preference as “passive”, leav-
ing all others active. In this preference comparison between sets of outcomes, the “reachable
endpoints” by an active move are all those that can be reachedvia a sequence of moves that
are still active at this stage.

In another well-known terminology, this says that players play a “best response”.
Henceforth, we will useBI to refer to this algorithm, and the subrelation of the totalmoverelation

produced by it at the end. It is a cautious notion of game solution making fewer assumptions about the
behavior of other agents than the earlier version. Of course, the two versions agree on generic games, for
which the subset of the move relation obtained as output is always a function.

Example 2.1. (Some comparisons)
Consider the following two games, where the values indicated are utilities for playerA. For simplicity,
we assume that playerE has no preference between her moves:

In the game to the left, our first version of Backward Induction makesA go right, since the minimum2
is greater than the1 on the left. But our cautiousBI will accept both moves forA, as no move strictly
dominates the other.

Moreover, both versions will accept all moves in the game to the right. This may seem strange,
since most players would probably go right at the start: theyhave nothing to lose, and a lot to gain. But
analyzing all variants for preference comparisons betweensets of outcomes is not our focus here. We
will return to the issue of further possible solution concepts in later sections.
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Important remark Our style of analysis chooses one particular line toward generalizing Backward
Induction to non-generic games. But others make sense, too,as pointed out by Cédric Dégremont. For
instance, if one thinks of strategy profiles in Nash equilibrium, the following game would have two:

Both profiles(a, d) and(b, c) are in equilibrium. But our algorithm will leave both options for E,
and tellA to go left. This paper will not address the alternative analysis of theBI-output in terms of sets
of strategy profiles, leaving this as a challenge to fixed-point logics over richer models.

3. DefiningBI as a unique static relation

Many definitions for theBI relationbi on generic games have been published by logicians and game-
theorists (cf. the survey in [30]). Our point of departure here is a version involving a modal language of
(a) labelled moves, i.e., binary transition relationsa on nodes with matching modalities〈a〉, plus(b) a
modal preference operator interpreted as follows at nodes of a game tree:

〈prefi〉φ: playeri prefers some node whereφ holds to the current one

The original result Here is a result from [13]:

Theorem 3.1. On generic games, theBI strategy is the unique functionσ satisfying the following modal
axiom for all propositionsp - viewed as sets of nodes - for all playersi:

(turni ∧ 〈σ∗〉(end ∧ p)) → [move]〈σ∗〉(end ∧ 〈prefi〉p)

For a proof (a laborious but straightforward induction on finite tree depth), we refer to the cited
paper. Here we just concentrate on the meaning of the crucialaxiom, that may be brought out by a
standard modal frame correspondence, where frame truth quantifies universally over all sets of objects
for proposition letters ([16]). The frames here are games extended with one more binary relationσ. What
we find is a notion ofRationalitylike before:

Fact 3.1. An extended game makes(turni ∧ 〈σ∗〉(end ∧ p)) → [move]〈σ∗〉(end ∧ 〈prefi〉p) true for
all i at all nodes iff it has this property for alli:

RAT-1: No other available move for the current playeri yields a set of outcomes by further
play usingσ that has a higher minimal value fori than the outcomes of playingσ all the
way down the tree from the current node.

Proof:
This is a standard modal correspondence argument that we omit. The correspondence language uses the
reflexive-transitive closure of the relationσ, but this is a simple extension of known techniques ([7]).⊓⊔
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The typical picture to keep in mind here, and also later on, isthis:

RAT-1 is equivalent to thisconfluence propertyfor action and preference:

CF1 :
∧

i
∀x(turni(x) → ∀y(σ(x, y) → (move(x, y) ∧ ∀u((end(u) ∧ σ∗(y, u))
→ ∀z(move(x, z) → ∃v(end(v) ∧ σ∗(z, v) ∧ v ≤i u))))))9

This ∀∀∀∃ form is a comparison between sets of outcomes that negates anearlier notion of preference:
theminimum valueon the reachable endpoints afterz is not larger than that aftery. It is easy to show
that any relationσ with this property matches theBI solution level by level on generic games.

Capturing BI in logical terms But now let us look at our favored relational generalizationof BI. First,
we reformulate the stated non-dominance property:

RAT-2. No alternative move for the current playeri guarantees outcomes via further play
usingσ that are all strictly better fori than all outcomes resulting from starting at the current
move and then playingσ all the way down the tree.

A logical formula defining this has the following∀∀∃∃ form:

CF2 :
∧

i
∀x∀y((turni(x) ∧ σ(x, y)) → (move(x, y) ∧ ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧ σ∗(y, v) ∧ σ∗(z, u) ∧ u ≤i v))))

Theorem 3.2. BI is the largest subrelation of themoverelation in a finite game tree satisfying the two
properties that(a) the relation has a successor at each intermediate node, and(b) CF2 holds.10

Proof:
First, the given algorithm clearly leaves at least one active move at each node, by the definition of
preference. Moreover, at the final state, when no more deactivations occur,CF2 must hold: there are no
more dominated moves, and that is what it says.

9One could change the formal language forCF1 here to a more technical first-order one avoiding the closureoperator – but for
our main points, such variations are not important.
10We say “largest” in this formulation because in the presenceof more than one best successor, different subrelations of the
moverelation might satisfyCF2. Note that there need not be a largest relation satisfying a given structural property, but in this
particular case, it does.



8 J. van Benthem and A. Gheerbrant / Game Solution, Epistemic Dynamics and Fixed-Point Logics

That the relation defined in this way is maximal may be seen as follows. If we reactivate anywhere a
move that is inactive, that move had disappeared at some stage because it was dominated there by another
move. But then it would still be dominated in the whole tree bythe same move. For, all that can have
happened in the further stages of the algorithm is that fewerendpoints have become reachable through
active paths from the two moves, and their∀∀-dominance relationship then persists.

Conversely, if we have any subrelation of themoverelation with the given two properties, it is easy
to see by induction on the depth of subtrees that all its movessurvive each stage of the above mainBI
procedure, by the definition of the elimination step. ⊓⊔

We now make these same points about the procedure more syntactically, by inspecting the syntax of
CF2. We can restate this in terms of a well-known formalism: the first-order fixed-point logicLFP(FO)
(cf. [24]):11

Theorem 3.3. TheBI relation is definable inLFP(FO).

Proof:
Indeed, the definition involves just onegreatest fixed-pointin addition to the transitive closure operations.
This fixed-point is in the language ofLFP(FO): all occurrences of the predicate symbolS in the relevant
formula are positive:

BI(x, y) = νS, xy.(move(x, y) ∧
∧

i
(turni(x) → ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧ S∗(y, v) ∧ S∗(z, u) ∧ u ≤i v))))12
⊓⊔

This definition will be our point of reference in what follows. Interestingly, it is both a static descrip-
tion of theBI relation and also a definition of a procedure computing it. For, we can now use the standard
defining sequence for a greatest fixed-point, starting from the totalmoverelation, and see that its suc-
cessive decreasing approximation stagesSk are exactly the “active move stages” of the above algorithm.
We will refer to these stagesSk at several places in what follows. In our view, fixed-point logics are
attractive since they analyze both the statics and dynamicsof game solution.

In the following sections, we extend this theme by looking attwo further logical ways of construing
the Backward Induction procedure that have been proposed inrecent years.

4. A dynamic-epistemic scenario: iterated announcement ofrationality

Here is another procedural line on Backward Induction as a rational process. [9] proposed an analysis
in the spirit of currentdynamic-epistemic logicsthat describe acts of information flow, such as public
announcements or observations ([23], [12]). The followinganalysis ofBI takes it to be a process of prior
off-line deliberation about a game by players whose minds proceed in harmony - though they need not
communicate in reality.13

11In terms of [6], the syntax ofCF2 has dual “PIA form”, guaranteeing that the union of all relations satisfying CF2 exists,
while a small extra argument gives the existence.
12We can also replace the reflexive transitive closuresS∗ by definitions inLFP(FO).
13Compare also the dynamic agreement procedures studied in [25].
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Solving games by announcements of rationality The following analysis uses the dynamic epistemic
logic of public announcements!φ saying that some propositionφ is true. These transform a current
epistemic modelM into its submodelM|φ whose domain consists of just those worlds inM that satisfy
φ. [9] makes the solution process of extensive games itself the focus of aPAL style analysis:

Definition 4.1. (Node rationality)
As before, at a turn for playeri, a move to a nodex is dominatedby a move to a siblingy of x if every
history throughx ends worse, in terms ofi’s preference, than every history throughy. Now rat says that
“at the current node, no player has chosen a strictly dominated move in the past coming here”.

This makes an assertion about nodes in a game tree, viz. that they did not arise through playing a
dominated move. Some nodes will satisfy this, others may not. Note that we do not say that every node
in the game satisfiesrat: we merely say that it is an informative property of nodes. Thus, announcing
this formula as a fact about the players of a game is informative, and it will in general make the current
game tree smaller.

But then we get a dynamics as in famous puzzles like the Muddy Children, whererepeated assertions
of ignorance eventually produce enough information to solve the whole puzzle. In our case, in the new
smaller game tree, new nodes may become dominated, and henceannouncingrat again (saying that it
still holds after this round of deliberation) makes sense, and so on. This process of iterated announcement
must always reach a limit, that is, a smallest subgame where no node is dominated any more:

Example 4.1. (Solving games through iterated assertions ofRationality)
Consider a game with three turns, four branches, and pay-offs for A, E in that order:

A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

Stage0 of the procedure rules out pointu (the only point where Rationality fails), Stage1 rules outz and
the node above it (the new points where Rationality fails), and Stage2 rules outy and the node above it.
In the remaining game, Rationality holds throughout:

A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

A

x
1, 0

E

y
0, 5

A

z
6, 4

A

x
1, 0

E

A

z
6, 4
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In such generic games, theBI solution emerges step by step. [9] shows that the actual Backward
Induction path for extensive games is obtained by repeated announcement of the assertionrat to its limit.
We repeat some relevant notions from dynamic-epistemic logic:

Definition 4.2. (Announcement limit)
For each epistemic modelM and each propositionφ that is true or false at points in the model, the
announcement limit(φ,M)# is the first model reached by successive announcementsφ! that no longer
changes after the last announcement is made.

That such a limit exists is clear for finite models, since the sequence of submodels is weakly decreasing.14

There are two possibilities for the limit model. Either it isnon-empty, in which caseφ holds in all nodes,
meaning that it has become common knowledge (theself-fulfilling case), or it is empty, meaning that the
negation¬φ has become common knowledge (the self-refuting case). Bothoccur in concrete puzzles,
though generally speaking, rationality assertions likerat tend to be self-fulfilling, while the ignorance
statement that drives the Muddy Children is self-refuting:at the end, it holds nowhere.

Capturing BI by iterated announcements With general relational strategies, the iterated announce-
ment scenario produces the earlier∀∀∃∃ version of Backward Induction:

Theorem 4.1. In any game treeM, (!rat,M)# is the actual subtree computed byBI.

This can be proved directly, but it also follows from our nextobservations. For a start, it turns out
easier to change the definition of the driving assertionrat a bit. We now only demand that the current
node was not arrived at directly via a dominated move for one of the players. This does not eliminate
nodes further down, and indeed, announcing this repeatedlywill make the game tree fall apart into a
forest of disjoint subtrees – as is easily seen in the above examples. These record more information.

Sets of nodes as relations Here is an obvious fact about game trees. Each subrelationR of the total
moverelation has an obvious unique corresponding set of nodesreach(R) consisting of the set-theoretic
range ofR plus the root of the tree (we add the latter for convenience).And vice versa, each setX of
nodes induces a unique corresponding subrelation of themoverelationrel(X) consisting of all moves in
the tree that end inX.

With this simple connection, we can link the earlier approximation stagesBIk for Backward In-
duction (i.e., the successive relations computed by our earlier procedure) and the stages of our public
announcement procedure. They are in harmony all the way:

Fact 4.1. For eachk, in each game modelM, BIk = rel((!rat)k,M).

Proof:
By induction onk. The base case is obvious:M is still the whole tree, and the relationBI0 equalsmove.
Next, consider the inductive step. If we announcerat again, we remove all points reached by a move that
is dominated for at least one player. These are precisely themoves cancelled by the corresponding step
of theBI algorithm. ⊓⊔

14Announcement limits also exist in infinite models, taking intersections at limit ordinals.
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It follows also that, for each stagek,

reach(BIk) = ((!rat)k,M).

Either way, we conclude that the earlier algorithmic fixed-point definition of theBI procedure and van
Benthem’s iterated announcement procedure amount to the same thing.15

Thus, one might say that the deliberation scenario is just a way of “conversationalizing” the underly-
ing mathematical fixed-point computation. Still, it is of interest in the following sense. Viewing a game
tree as an epistemic model with nodes as worlds, we see how repeated announcement of Rationality
eventually makes this property true throughout the remaining limit model: in this way, it has made itself
into common knowledge.

5. Another dynamic scenario: beliefs and iterated plausibility upgrade

Next, in addition to knowledge, consider the equally fundamental notion ofbelief. Many foundational
studies in game theory (cf. the extensive discussion and references for belief-based game theory in [45])
view Rationality as choosing a best actiongiven what one believesabout the current and future behavior
of the players. Indeed, this may be the most widely adopted view of game solution in the epistemic
foundations of game theory today. We will first state a logical analysis of game solution in these terms,
and then relate it to our earlier account of Backward Induction.

Backward Induction in a soft light An appealing take on theBI strategy in terms of beliefs uses “soft
update” that does not eliminate worlds as above for announcements!φ, but rearranges the plausibility
order between worlds ([8]). A typical example is theradical upgrade⇑ φ that makes all currentφ-
worlds best, and then puts all¬φ-worlds underneath, while keeping the old ordering inside these two
zones. Now recall our earlier observation that Backward Induction really createsexpectationsfor players.
All the essential information produced by the algorithm is then in the binaryplausibility relationsthat
it creates inductively for players among end nodes in the game, standing for complete histories. To see
this, consider our running example once more:

Example 5.1. (The debatableBI outcome, hard and soft)
The hard scenario in terms of events !rat removes nodesx from the tree that are reached via moves which
are strictly dominated by moves to siblings ofx as long as this can be done, resulting in the following
sequence of stages:

A

1, 0 E

0, 100 99, 99

A

1, 0 E

0, 100

A

1, 0 E

0, 100

15We leave the technical question open to which extent this is amore general technical method for switching between different
types of predicate arities with fixed-points.
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By contrast, a soft scenario does not remove nodes but modifies the plausibility relation. We start
with all endpoints of the game tree incomparable (other versions would have them equiplausible). Next,
at each stage, we compare sibling nodes, using this notion:

Definition 5.1. (Rationality in beliefs)
A move to a nodex for playeri dominatesa move to a siblingy of x in beliefs if the most plausible end
nodes reachable afterx along any path in the whole game tree are all better for the active player than all
the most plausible end nodes reachable in the game aftery. Rationality* (rat∗) is the assertion that no
player plays a move that is dominated in beliefs.

Now we perform a relation change that is like a radical upgrade⇑ rat∗16:

If a move to a nodex dominates a move to a siblingy of x in beliefs, we make all end nodes reachable
from x more plausible than those reachable fromy, keeping the old order inside these zones.

This changes the plausibility order, and hence the dominance pattern, so that belief statements can
change their truth values – and a genuine iteration can start. Here are the stages for this procedure in the
above example, where we use the lettersx, y, z to stand for the end nodes or histories of the game:

A

1, 0 E

0, 100 99, 99

x y z

A

1, 0 E

0, 100 99, 99

x y > z

A

1, 0 E

0, 100 99, 99

x > y > z

In the first game tree, going right is not yet dominated in beliefs forA by going left. rat∗ only has
bite atE’s turn, and an upgrade takes place that makes(0, 100) more plausible than(99, 99). After this
upgrade, however, going right has now become dominated in beliefs, and a new upgrade takes place,
makingA’s going left most plausible.

Here is a result stated without proof in [11]:

Theorem 5.1. On finite trees, the Backward Induction strategy is encoded in the final plausibility order
for end nodes created by iterated radical upgrade with rationality in belief.

At the end of this procedure, players have acquiredcommon belief in rationality. Let us now prove
the result, using an idea from [3].

Strategies as special plausibility relations We first observe that each subrelationR of the totalmove
relation induces a total plausibility orderord(R) on leavesx, y of the tree.

Definition 5.2. (Leaf order from a sub-move relation)
We putxord(R)y iff, looking upward at the first nodez where the histories ofx, y diverged, ifx was
reached via anR move fromz, then so isy.

16We omit technical details here: plausibility upgrades may take place in subtrees, and hence one needs to work with submodels
of the whole set of histories. Cf. [26] for details.
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It is easy to see by inspection of trees that:

Fact 5.1. The relationord(R) is a total order on leaves.

Moreover, this total order on leaves istree-compatible, meaning that, for any two leavesx, y, if z is
the first splitting node abovex, y as before, all leavesx′ reached by taking the move towardx atz stand
in the relationord(R) to all leavesy′ reached by taking the move towardy. As an example, there can be
no criss-crossing as in the following tree:

with x < y < z < u

Definition 5.3. (Relational strategies from leaf order)
Conversely, any tree-compatible total order≤ on leaves induces a subrelationrel(≤) of themoverelation,
defined by selecting just those available moves at a nodez that have the following property: their further
available histories lead only to≤-maximal leaves in the total set of leaves that are reachablefrom z.

Together, the two mapsrel andord give a precise meaning to the sense in which [3] can say that
“strategies are the same as plausibility relations”.17

Now we can relate the computation in our upgrade scenario forbelief and plausibility to the earlier
relational algorithm forBI. Things turn out to be in harmony stage by stage:

Fact 5.2. For any game treeM and anyk, rel((⇑ rat∗)k,M)) = BIk.

Proof:
The key point is as demonstrated in the earlier example of a stepwiseBI solution procedure. When
computing a next approximation for theBI-relation according toCF2, we drop those moves that are
dominated by another available one. But this has the same effect as making the leaves reachable from
dominated moves less plausible than those reachable from surviving moves. And that was precisely the
earlier upgrade step. ⊓⊔

We conclude that the algorithmic analysis of Backward Induction and its procedural doxastic analysis
in terms of forming beliefs amount to the same thing. Still, as with the iterated announcement scenario,
the iterated upgrade scenario also has some interesting features of its own. One is that, for logicians,
it yields fine-structure to the plausibility relations thatare usually treated as primitives in models for
doxastic logic. Thus games provide an underpinning for possible worlds semantics of belief that seems
of interest per se.

17[44] relates our dynamic analysis to achieving the sufficient condition for the Backward Induction outcome given in [3].
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Remark on syntax While we have stated the operationsord and rel purely semantically, they can
obviously also be formulated as syntactic translations, and then the various logical definitions for Back-
ward Induction given in this and preceding sections can alsobe directly transformed into each other. As
before, we refer to [26] for details.

6. Midway conclusion: the stability of Backward Induction

Extensional equivalence, intensional difference We have now seen how three different approaches to
analyzing Backward Induction turn out to amount to the same thing. To us, this means that the notion is
stable, and that, in particular, its fixed-point definition can serve as a normal form. This motivates taking
a closer look at fixed-point logics for game solution. Of course, as we have observed, extensionally
equivalent definitions can still have interesting intensional differences in terms of what they suggest. For
instance, we see the above analysis of strategy creation andplausibility change as one more concrete case
study for a general conceptual issue: the fact that agents’ beliefs and rational action are deeply entangled
in the conceptual foundations of decision and game theory.

Dynamic instead of static foundations for game theory As we also said already, one key feature of
our dynamic announcement and upgrade scenarios is this. In the terms of [9], they areself-fulfilling:
ending in non-empty largest submodels where players havecommon knowledge or common belief of
rationality.18 19 Thus, this dynamic style of game analysis is a big change fromthe usual static charac-
terizations of Backward Induction in the epistemic foundations of game theory. Common knowledge or
belief of rationality is not assumed, butproducedby the logic.

6.1. Test case: variants of Backward Induction

Are the preceding results just special effects for the notion of BI chosen here? As a test case, one can
also look at the variantBI’ considered in Section 2, where preference between sets of outcomes referred
to ensuring a greater minimal value. This variant is studiedin detail in the extended version of this paper
(cf. [26]). We merely list some salient facts.

First, the∀∀∀∃-type syntactic definitionCF1 can no longer be used for an immediate fixed-point
definition inLFP(FO). We would get

move(x, y) ∧
∧

i
(turni(x) → ∀u((end(u) ∧ S∗(y, u))

→ ∀z(move(x, z) → ∃v(end(v) ∧ S∗(z, v) ∧ v ≤i u))))

where not all occurrences of the relation symbolS are positive. Still, we get

Theorem 6.1. The relationalBI’-strategy is definable in the first-order inflationary fixed-point logic
IFP(FO) using simultaneous fixed-points.

18We forego the issue of logical languages for explicitlydefiningthe limit submodel.
19We also forego the further analysis of the limit behavior of upgrade actions on game models. For general models, [2] finds
some curious phenomena, such as plausibility cycles, and they prove a general result stating when at least absolute beliefs
stabilize in the limit.
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For details on first-order and modal inflationary fixed-pointlogics, we refer to [24], [20].20 21

[26] also shows how the earlier iterated public announcement scenario for game solution and the
iterated plausibility upgrade scenario both apply toBI’, this time, with driving assertions derived from
the conditionCF1. Thus we find the same stability in approaches that we saw for the earlier case ofBI.

7. Fixed-point logic of game solution: general issues

Which fixed-point logic? The preceding analysis raises the issue which of the many fixed-point logics
known for computation best fit game solution methods. Candidates are the earlier-mentioned first-order
logic with fixed-pointsLFP(FO) or the inflationary variantIFP(FO). These are general languages for
recursion that work on any model. This generality is attractive, since we may want to investigate game
solution procedures that are quite different from BackwardInduction.

But an alternative take is also possible. One major feature of game solution procedures like Backward
Induction is their exploiting the inductive structure of extensive games, via thewell-founded tree dom-
inance ordertoward the leaves.22 Such orderings allow for recursive definitions that yield uniqueness
even without positive occurrence:

Example 7.1. (Fixed-points in modal provability logic ([18]))
On finite trees, any equivalence of the formp ↔ φ(p) wherep occurs only “guarded” (that is, in the
scope of at least one modality) in the formulaφ, defines a unique propositionp. One proves this by
induction on the well-founded tree order.

This includes examples that are not obviously in ordinary fixed-point logics:

Example 7.2. (Broader well-founded recursion)
Consider the definitionp ↔ ¬2p. There is no obvious definition in the modalµ-calculus, and not even
in its inflationary variant. Indeed, on a3-nodes linear order

1 2 3

starting from any set as a value forp, this will stabilize withp = {2}. But it is easy to see that an
inflationary bottom-up procedure for this formula stops in the pre-fixed point{1, 2}, and the deflationary
top-down procedure stops in the post-fixed point∅. Neither of these is even a fixed-point. What one
can see more precisely in the straightforward approximation procedure, without forcing increasing or
decreasing sets, is this: starting the iteration from any initial set will gradually get the predicate right,
successively, at all nodes lying at increasing height from the leaves.23

20This is interesting, since [9] already observed how the limits of iterated public announcement procedures on modal models are
definable inIFP(FO), and in fact, usually in the modal inflationary calculus, theextension of the modalµ-calculus by means
of inflationary fixed-points ([20]).
21From the preceding fact, we can conclude (using [27], [33]) that there is an equivalent definition forBI’ in LFP(FO) after all,
though the latter may involve extra predicates, with a computation no longer matching the natural stages of our algorithm.
22But other recursions are possible, too. Both finite and infinite trees allow for recursive definitions over the well-founded tree
order in the oppositepast directiontoward the root.
23Balder ten Cate observes that the uniquep with p ↔ ¬2p is definable in the modal inflationary calculus ([20]) extended
with simultaneous fixed-points, one for the ambientp, and one for the currently already stable subpredicate ofp. We actually
construct the formula defining theBI’ strategy (see Theorem 6.1) using the same idea.
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Of course, our analysis for Backward Induction did not use these simple modal languages, nor did it
just use the simple tree dominance order. Still, it is easy tosee by inspection of our earlier formulas and
arguments that the following result holds

Fact 7.1. Stated as an equivalence, the Rationality principleCF2 defines a unique subrelation of the
moverelation by recursion on a well-founded order on finite trees: viz. the composition of the relations
sibling anddominance.

And this unique relation may also be computed forCF1 and other versions that lack positive syntax but
do descend along the well-founded order. One can start with any subrelation of themoverelation, and
then compute according to the given instruction. At any stage k, the fixed-point relation stabilizes at
points of distance≤ k to the leaves.

Example 7.3. (Computing a fixed-point forCF1)
Consider this game, with values on leaves written as (value for E, value forA):

Let R0 be the wholemoverelation. ThenR1 is marked in black below:

This still gets the fixed-point relation wrong at the root, but in the next stage we get the stable solution:

This suggests the introduction of a logical formalism for games that can access this order directly,
generalizing modal syntax.24 We will not do so here, but refer to [26] for a more abstract analysis of
conditions under which such recursions are successful.

Fragments of fixed-point logics Of course, game solution procedures need not use the full power of
logical languages that can define recursive procedures. Thus, there is a questionwhich fragmentsare
needed in our analysis. It might make sense to look at decidable fragments such as themodalµ-calculus
- and indeed, [9] points out how the latter suffices, e.g., fordefining the game solutions needed for
Zermelo’s Theorem. This may look too poor, since we often want to define relations on trees, and not

24Relevant proposals in the literature include the “non monotone inductive definitions” of [22].
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just unary predicates. But we have already seen how subsets of the moverelation are encoded by unary
predicates, so a lot can be done in this way. Still, the intriguing issue is this. Crucially, game solution
intertwines two different relations on trees: themoverelation and thepreferencerelations for players on
endpoints. And the question is what happens to the known properties of computational logics when we
add such preference relations. In particular, the following intriguing issue then arises.

Potential problem: the complexity of rationality In logics ofactionandknowledge, it is well-known
that apparently harmless assumptions such as Perfect Recall for agents make the bimodal logic undecid-
able, and sometimes evenΠ1

1-complete ([28]). The reason is that these assumptions generate commuting
diagrams for actionsmoveand epistemic uncertainty∼ satisfying a “confluence” property

∀x∀y((move(x, y) ∧ y ∼ z) → ∃u(x ∼ u ∧ move(u, z))

that can serve as the basic grid cells in encodings of Tiling Problems in the logic. Thus, the logical theory
of games with players that have perfect memory is more complex than that of forgetful agents ([14]).

But now consider the non-epistemic property ofRationality that mixes action and preference. The
earlier propertiesCF1, CF2 have a similar flavor: they express the existence of a confluence diagram
involving action and preference links. For instance,CF1 said this:

∀x∀y((turni(x) ∧ σ(x, y)) → ∀z(move(x, z) →
→ ∀u((end(u) ∧ σ∗(y, u)) → ∃v(end(v) ∧ σ∗(z, v) ∧ v ≤i u))))

So, what is the complexity of fixed-point logics for players with this kind of behavior? Can it be
that Rationality, a widely used property meant to make behavior simple and predictable, actually makes
its logical theory complex? Concrete instances of this openproblem arise once we fix a sufficiently
expressive logical language over trees: see below.25

Language design and game equivalenceAs a final perspective, we mention that the choice of a
best language for games is also correlated with the choice ofan optimal notion ofstructural equivalence
between games ([4]). The richer the equivalence, the stronger the language needed to capture its invariant
properties. The options for languages that we have discussed here may also reflect the fact that there is
no consensus yet on what such a structural notion of game equivalence should be.

8. The gist of it all: modal logics of best action

We have made a plea for analyzing game solution procedures explicitly in rich logics. This follows the
program ofmaking strategies explicitadvocated in [10]. But while this is useful in some cases, there
is also the opposite direction of judiciously hiding information about the machinery of strategies when
it is not needed. In practical reasoning, we are often only interested in ourbest actionswithout all
details of their justification. Game solution procedures take a model with actions and preferences, and

25Model-checking complexity and definability on finite trees.Balder ten Cate has reminded us of the potential use ofdescriptive
complexity theory([31]) for studying finite games. First, checking for game solutions is related to model checking logical
formulas, say, stating the intended effects of players’ strategies. As an example, since bothLFP(FO) and IFP(FO) capture
PTIME on finite models (given an enumeration order on the tree), it should be close to defining all “testable” properties of
games. And other results in descriptive complexity theory may be game-theoretically relevant as well.
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then compute a new relation of best action. As a mathematicalabstraction, it would be good to extract
a simple surface logic (a small modal fragment of complex fixed-point logics) for reasoning with best
actions, while hiding most of the machinery:

Open problem Can we axiomatize the modal logic of finite game trees with amoverelation and its
transitive closure, turns andpreferencerelations for players, and a new relationbestas computed by
Backward Induction?

We conjecture that we get a simple modal logic for the moves (these exist) plus a basic preference
logic, while the modality〈best〉 satisfies some obvious base laws plus one major bridge axiom that we
already encountered earlier:26

Fact 8.1. The following modal axiom corresponds toCF2 by standard techniques:

(turni ∧ 〈best〉[best∗](end → p)) → [move]〈best∗〉(end ∧ 〈prefi〉p)

In this concrete setting, the earlier problem returns that the Rationality assumption built into this
logic may be a grid property leading to undecidability. Is the modal logic of best action decidable?

9. Further issues and extended game logics

There are many further lines for investigation following upon our stray observations. For instance, we
want a more general view of possible representation languages, and on the notions of set preference that
determine the dominance relation defining rationality. More generally, it would be of interest to connect
our style of analysis for game solution more systematicallywith that found in epistemic game theory,
where epistemic models are added describing what players know or believe about the course of the game.

In addition, some extensions to the games themselves seem natural:

Infinite games Can we extend our analysis to deal withinfinite games? A transition to infinite ordinal
sequences is easy to add to our iterated announcement or upgrade scenarios. Also, our general fixed-
point definitions still make sense in this setting, though the special recursion over a well-founded tree
dominance relation is no longer available. But there may be more to this generalization. Typically, in
infinite trees, the reasoning changes direction, from “backward” to “forward”. Here is an illustration:

Example 9.1. (Weak Determinacy)
The following principle holds in all infinite game trees, forany conditionφ on histories:

If player E has no strategy forcingφ at some stages of the game, thenA has a strategy for
achieving a set of runs froms during all of whichE never has a strategy forcingφ for the
remaining game from then on.

In the notation of temporal game logics withforcing modalities{}, this says

{E}φ ∨ {A}G¬{E}φ

26[36] has some related thoughts on “logics of solved games”.



J. van Benthem and A. Gheerbrant / Game Solution, Epistemic Dynamics and Fixed-Point Logics 19

Here the reasoning is a typical inverse of Backward Induction. Suppose that¬{E}φ. A’s strategy
then arises as follows. IfE is to move, then no successor available to her can guarantee awin, since she
has no winning strategy now - and soA can just “wait and see”. IfA is to move, then there must be at
least one possible move leading to a state whereE has no winning strategy: otherwise,E has a winning
strategy right now after all. Continuing this way,A is bound to produce runs of the kind described.27

How would our earlier analysis extend to a setting like this,where infinite histories themselves are
the outcomes of the game, and players try to achieve global properties of these?

Dynamics in games with imperfect information Moreover, many if not most games haveimperfect
information, with uncertainties for players where they are in the game tree. Think of card games, or
other games with restricted observation. Can’t our analysis be extended to this area, where in general,
Backward Induction no longer works? We merely illustrate the task ahead with two simple scenarios for
the reader to ponder:

Example 9.2. (Strategic reasoning in imperfect information games)
In the following games, outcome values are written in the order (“A-value,E-value”):

28

The game to the left seems a straightforward extension of techniques for removing dominated moves,
but that to the right raises tricky issues of whatA would be tellingE by moving right. We leave the
question what should or will happen in both games to the reader: [21], [45] have more discussion.29

10. Coda: alternatives to Backward Induction and true game dynamics

Finally, we return to our running example of Backward Induction. It has been claimed that its very style
of reasoning is incoherent (cf. [15]):

The paradox of Backward Induction

Example 10.1. (The “Paradox of Backward Induction”)
Recall the style of reasoning toward a Backward Induction solution, as in:

27This argument has aco-algebraicflavor, cf. [42], that we do not pursue here.
28The tree to the right is adapted from an example in an invited lecture by Robert Stalnaker at the Gloriclass Farewell Event,
ILLC Amsterdam, January 2010.
29Further challenges to our analysis include equilibria withcoalitionsof players, andsimultaneous moves. Nothing in our logics
prevent this: it has just not been done yet.
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A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

Backward Induction tells us thatA will go left at the start, on the basis of logical reasoning that is
available to both players. But then, ifA plays right (see the black line) what shouldE conclude? Does
not this mean thatA is not following theBI reasoning, and that all bets are off as to what he will do later
on in the game? It seems that the very basis for the above computation collapses.

Responses to this conceptual difficulty vary - and many authors doubt that there is a genuine paradox
here. The characterization result of [1] assumes that players know that rationality prevails throughout,
something that [38] calls “rationality no matter what”, a stubborn unshakable belief that players will
act rationally later on, even if they have not done so up untilnow.30 [3] essentially take the same tack,
deriving theBI strategy from an assumption of “stable true belief” in Rationality, a gentler form of
stubbornness stated in terms of dynamic-epistemic logic.

Logics of actions, preference, and agent typesPersonally, we are more inclined toward another anal-
ysis, in line with [41]. A richer game analysis should add an account of the types of agent that play a
game. In particular, we need to represent thebelief revisionpolicies by the players, that determine what
they will do when making a surprising observation contradicting their beliefs in the course of a game.
There are many different options for such policies in the above example, such as

- “It was just an error, andA will go back to being rational”,

- “A is inviting me to go right, and I will be rewarded for that”,

- “A is an automaton with a general rightward tendency”, and so on. . .31

Our logical analysis so far omits this type of information about players of the game, since our algo-
rithms make implicit uniform assumptions about what they are going to do as the game proceeds32.

Belief revision policies are not an explicit part of our models so far. Thus, our fixed-point logics tell
only a limited story. Eventually, we may need a richer mathematical model for game solution, that can
also deal with the dynamics of how players update knowledge and revise beliefs as a game unfolds.

30One can defend this by assuming that the other player only makes isolated “mistakes”.
31One reaction to these surprise events might even be a switch to an entirely new reasoning style about the game. That might
require more finely-grainedsyntax-basedviews of revision.
32Some ideas in this direction occur in the area of computer game analysis, in the form of ”opponent modeling”: [32].
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11. Conclusion and general outlook

We have shown how standard logical fixed-point languages candefine game solution procedures and
their resulting relations of “best action”. We think that this is a good format for more general studies of
game-theoretic notions, including finding alternatives tocurrently received views. But also, we hope to
have shown that the game arena poses interesting problems for existing logics of computation, as one
adds further structure that is typical for agents: preference, information, and eventually, even “processing
types” for agents. All these contacts may eventually lead tolegitimate children of logic and game theory.
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