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Analyzing the behavior of agents in a dynamic environment requires
describing the evolution of their knowledge as they receive new information.
But equally crucial are agents’ beliefs over time, since most of our decisions
and actions involve uncertainty, from going to work to selling shares. Beliefs,
too, are information-based, and when refuted, they have to be revised in
systematic ways.

These phenomena have been studied in many different formal frame-
works, including, game theory [14, 5], belief revision theory [1], and formal
learning theory [24, 22]. In this paper, however, we are concerned with
two logic-based approaches. One are dynamic logics for changing beliefs
that have been developed recently (van Benthem [7], Baltag and Smets [3])
using plausibility relations between worlds to represent agents’ beliefs and
conditional beliefs. An act of revision is then a single step of change in such
a relation, triggered by some new incoming, hard or soft, information. Of
course, such single steps can be iterated, leading to longer sequences. The
other approach that we consider are doxastic temporal logics (cf. Halpern
and Friedman [21], Bonanno [15]), representing time as a Grand Stage of
possible histories where informational processes unfold.

Dynamic and temporal logic seem the two major logical paradigms for
agency, and this paper is a contribution to clarifying their connections. In
doing so, we do not operate in a void. Similar questions have been solved
for knowledge in van Benthem and Pacuit [11], van Benthem, Gerbrandy,
Hoshi and Pacuit [10], in the form of representation theorems showing how
sequences of models produced by ‘product update’ in dynamic-epistemic
logic form a special subclass of epistemic temporal models in the sense of
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Fagin, Halpern, Moses and Vardi [20] and Parikh and Ramanujam [25]. In
particular, these are the temporal models for agents endowed with Perfect
Recall and ‘No Miracles’, learning by new observations only, possibly con-
strained by epistemic protocols. Our aim is to do the same for the dynamic
doxastic logic of plausibility change by ‘priority update’, relating them to
models of doxastic temporal logic. We will identify the crucial agent fea-
tures behind dynamic doxastic belief revision, and position them inside the
broader temporal setting. This is not just a simple generalization of the
epistemic case, but the benefits are similar: comparability of frameworks,
and interesting new research questions once they are merged. In this paper,
we concentrate on the representation aspect. Further development of the
merged theory of dynamic agents in a doxastic temporal language and logic
is found in the follow-up paper van Benthem and Dégremont [9].

We start in the next section with basic terminology and background on
earlier results for the epistemic setting. In Section 2 we introduce plausi-
bility models that model static multi-agent doxastic situations. We then
present the dynamic step by step approach to belief change (Section 3), in
particular, defining priority update. Next, the global temporal approach
to beliefs over time is presented in Section 4. In Section 5 we show how
step by step priority updates of a doxastic model, perhaps constrained by
a protocol, generate a doxastic temporal model. The key temporal dox-
astic properties that characterize priority updaters are then identified and
motivated in Section 6. In section 7 we prove our main result linking the
temporal and dynamic frameworks, for the special case of total pre-orders,
and then in general in Section 8. We discuss some variations and extensions
in Section 9. Finally, in a last section, we state our conclusions, mention
follow-up questions involving formal languages and complete logics, and
discuss possible applications to belief revision theory and learning theory.

1 Introduction: background results

Epistemic temporal trees and dynamic logics with product update are com-
plementary ways of looking at multi-agent information flow. Representation
theorems linking both approaches were proposed for the first time in [6]. A
nice presentation of these early results can be found in [23, ch5]. We briefly
state a recent version from [10], referring the reader to that paper for a
proof, as well as generalizations and variations.

Definition 1.1 (Epistemic and Event Models, Product Update).

• An epistemic model M is of the form 〈W, (∼i)i∈N , V 〉 where W 6= ∅,
for each i ∈ N , ∼i is a binary relation1 on W , and V : Prop → ℘(W ).

1 The ∼i are often taken to be equivalence relations, if only for convenience, but such
options are orthogonal to our main results.



Bridges between dynamic doxastic and doxastic temporal logics 3

• An event model ε = 〈E, (∼i)i∈N , pre〉 has E 6= ∅, and for each i ∈ N ,
∼i is a relation on E. Finally, there is a precondition map pre : E →
LEL, where LEL is the usual language of epistemic logic. We will
consider some generalizations of this precondition language later.

• The product update of an epistemic model M = 〈W, (∼i)i∈N , V 〉 with
an event model ε = 〈E, (∼ε

i )i∈N , pre〉 is the model M⊗ε whose states
are the pairs (w, e) such that w satisfies the precondition of the event
e and whose epistemic relations are defined as:

(w, e) ∼′
i (w′, e′) iff e ∼ε

i e′, w ∼i w′

and whose valuation is defined by

(w, e) ∈ V (p) iff w ∈ V (p)

An epistemic model describes what agents currently know, while prod-
uct update creates the new epistemic situation after some informational
event has taken place. Telling illustrations of the strength of this simple
mechanism can be found in [2].

Next we turn to epistemic temporal models, introduced by [25] as a
Grand Stage of unfolding informational events. In what follows, Σ∗ is the
set of finite sequences on any set Σ, which naturally forms a branching ‘tree’.

Definition 1.2 (Epistemic Temporal Models). An epistemic temporal model
(‘ETL model’) H is a tuple 〈Σ, H, (∼i)i∈N , V 〉 with Σ a finite set of events,
and H ⊆ Σ∗ closed under non-empty prefixes. For each i ∈ N , ∼i is a
binary relation on H , and there is a valuation V : Prop → ℘(H).

Here the set of histories H functions as a protocol defining all admissi-
ble trajectories of an informational multi-agent process. While such ETL

models are very general, many special constraints are possible. Some are
the usual assumptions in epistemic logic, like having accessibility be an
equivalence relation for S5-agents. But more important here are properties
connecting epistemic accessibility with flow of time, defining general prop-
erties of an informational process and the agents participating in it. Such
agents can have more idealized or more bounded powers of observation,
memory, and other cognitive features. In particular, the following epistemic
temporal properties drive the main representation theorem in [10]:

Definition 1.3 (Basic Agent Properties). Let H = 〈Σ, H, (∼i)i∈N , V 〉 be
an ETL model. H satisfies:

• Propositional stability Whenever h is a finite prefix of h′, then h

and h′ satisfies the same proposition letters.
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• Synchronicity Whenever h ∼i h′, we have len(h) = len(h′).

• Bisimulation Invariance Whenever h and h′ are epistemically bisim-
ilar, we have h′e ∈ H iff he ∈ H , for all events e.

• Perfect Recall Whenever ha ∼i h′b, we also have h ∼i h′ .

• Uniform No Miracles Whenever ga ∼i g′b then, for every h′a, hb ∈
H , we also have h′a ∼i hb. 2

Dynamic-epistemic logic has borrowed once crucial idea from epistemic
temporal logics. An epistemic protocol P maps states in an epistemic model
to sets of finite sequences of pointed event models closed under taking pre-
fixes. In general, this allows branching choices in a tree-like structure. This
again defines the admissible runs of some informational process: not every
observation may be available, or appropriate. More formally, let E be the
class of all pointed event models, having one ‘actual event’ marked. Then the
set of protocols is Prot(E) = {P ⊆ E∗ | P is closed under finite prefixes }.
Next comes the more general notion used in the recent literature:

Definition 1.4 (Local Protocols). Given an epistemic model M, a local
protocol for M is a function P : |M| → Prot(E). In the particular case
where the P is a constant function (mapping each world to the same set of
sequences), we call the protocol uniform. Finally when the local protocol
maps worlds to just a unique linear sequence of event models, we say that
it is a line protocol.

To avoid technicalities, in this paper we state results with uniform line
protocols. But our results generalize: see [10] for the epistemic case. Indeed,
under suitable renaming of events, making different event models disjoint,
line protocols even have the same expressive power as general branching
protocols.

Now, given an epistemic model M as our initial situation, plus a uniform
protocol P , we can define the resulting temporal evolution as an epistemic-
temporal model Forest(M, P ) =

⋃
~ε∈P M ⊗ ~ε, the ‘epistemic forest gener-

ated by’ M through sequential application of the pointed event models in
P using product update ⊗.

Finally, we can state what iterated dynamic-epistemic update means in
the broader setting of epistemic-temporal logic:

Theorem 1.1 (van Benthem et al. [10]). Let H be an arbitrary epistemic-
temporal ETL model. The following two assertions are equivalent:

2 This says essentially that agents only get new information by acts of observation.
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• H is isomorphic to the temporal evolution Forest(M, P ) of some epis-
temic model M and uniform line protocol P ,

• H satisfies Propositional Stability, Synchronicity, Bisimulation Invari-
ance, Perfect Recall, and Uniform No Miracles.

Thus, epistemic temporal conditions describing idealized epistemic agents
characterize just those trees that arise from performing iterated product up-
date governed by some protocol. [10] and [23, ch5] have details.

As stated in the Introduction, our paper extends this analysis to the
richer setting of belief revision, where plausibility orders of agents evolve
as they observe possibly surprising events. But to do so, we first need
appropriate belief models, plus an appealing systematic revision mechanism.

Important remark about languages. Before moving on, it is im-
portant to stress one feature of the preceding representation theorem and
results in its family. The precondition languages for event models should
exactly match the notion of bisimulation. This means that the language
should be invariant under such bisimulations, and also, that it should be
strong enough to characterize a pointed model up to such bisimulations.
Two technical observations follow from this:

1. To get the right definability, we should either restrict attention to
finitely branching ETL models (as in [10]), or alternatively, let the
precondition function of product models take values in an infinitary
epistemic logic.

2. These theorems can be parametrized , in the epistemic case, and even
more so, the doxastic setting. We stay at a semantic level in this
paper, and state our results up to language choice. 3

2 Plausibility models: static doxastic situations

As with knowledge, we first introduce static models that encode current
prior (conditional) beliefs of agents. These carry a pre-order ≤ between
worlds standing for a plausibility relation. Often this relation is taken to
be total, but when we think of beliefs in terms of multi-criteria decisions, a
pre-order allowing for incomparable situations may be all we get [19]. We
will thus state our results for both total and arbitrary pre-orders.

3 The issue of language choice returns briefly in Section 9 .The reader may also consult
our companion paper [9] for an extensive discussion of syntactic issues, including other
desiderata on the language, such as its expressive power for specifying the relevant
properties of informational processes and the agents involved in them.
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We write a≃b (‘indifference’) if a ≤ b and b ≤ a, and a < b if a ≤ b and
b 6≤ a. In what follows, N = {1, . . . , n} is a fixed finite set of agents.

The following definition is like the models in [14, 18, 3]:

Definition 2.1 (Doxastic Plausibility Model). A doxastic plausibility model
M = 〈W, (�i)i∈N , V 〉 has W 6= ∅, while, for each i ∈ N , �i is a pre-order
on W , and V : Prop → ℘(W ).

w ≤i w′ means that w is considered at least plausible as w′ by agent i.
Intuitively, the plausibility pre-orders encode current beliefs of agents. Here,
we have taken them to be binary for convenience, but such relations can
depend on states. An appealing intermediate case arises when we combine
plausibility with an epistemic relation encoding ‘hard information’:

Definition 2.2 (Doxastic Epistemic Model). A doxastic plausibility model
M = 〈W, (�i)i∈N , (∼i)i∈N , V 〉 has W 6= ∅, for each i ∈ N , �i is a pre-order
on W and ∼i is binary equivalence relation on W , and V : Prop → ℘(W ).

We write: Ki[w] = {v ∈ W | w ∼i v}.
A belief operator for i is really necessity with respect to the most plausi-

ble states (i.e. the ≤-minimal elements) of an information partition. Though
this paper does not discuss syntactic issues, it may help to state how models
like these support a natural epistemic-doxastic language:

M, w  Kiϕ iff ∀v with v ∈ Ki[w] we have M, v  ϕ

M, w  Biϕ iff ∀v with v ∈ Min≤i
(Ki[w]) we have M, v  ϕ

The setting also supports new modalities. In fact, the necessity operator for
≥ ∩ ∼ is a weakly defeasible (S4)-knowledge operator of ‘safe belief’ ([3]):

M, w  2iϕ iff ∀v with v ≤i w and w ∼i v we have M, v  ϕ

Remark: Alternatives. Some authors use models with just primitive
plausibility relations. One can then define epistemic accessibility for a single
agent as the union of that relation with its converse, accessing also less
plausible worlds. We return to this perspective briefly in Subsection 9.3.

In what follows, we concentrate on pure plausibility models of our sim-
plest sort, though our analysis will also work for more complex structures.
We must now consider how such models evolve as agents observe events.

3 Dynamic Logics of Stepwise Belief Change (DDL)

Just like epistemic models, doxastic plausibility models change when appro-
priate triggering events are observed. It has become clear recently that a
general mechanism for doing so works like the earlier product update ([3]).
We start with the structures that describe complex doxastic events, crucially
including the ways in which they appear to agents:
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Definition 3.1 (Plausibility Event Model). A plausibility event model (‘event
model’, for short) ε is a tuple 〈E, (�i)i∈N , pre〉 with E 6= ∅, each �i is a
pre-order on E, and pre : E → L, where L is the basic doxastic language.

As in the epistemic case, our analysis will work for various precondition
languages for doxastic events. One specific choice is found at the end of
Section 7. Combining perspectives, an ’epistemic plausibility event model’ is
a plausibility event model together with a collection of equivalence relations
(∼i)i∈N on E.

In the following update rule, a new event itself comes with instructions as
to how prior beliefs may be overridden. The principle is like that of ‘Jeffrey
Update’ for probabilities: we follow the preferences of the plausibility event
model, but if it leaves things open, we stick with prior preferences:

Definition 3.2 (Priority Update; [3]). Priority update of a plausibility
model M = 〈W, (�i)i∈N , V 〉 and an event model ε = 〈E, (�i)i∈N , pre〉 pro-
duces the plausibility model M⊗ ε = 〈W ′, (�′

i)i∈N , V ′〉 defined as follows:

• W ′ = {(w, e) ∈ W × E | M, w  pre(e)}

• (w, e) �′
i (w′, e′) iff either e≺ie

′, or e≃ie
′ and w �i w′

• V ′((s, e)) = V (s)

In the doxastic epistemic setting, Priority Update by epistemic plausibil-
ity event model combines the preceding mechanism with Product Update,
i.e. it has one more clause:

• (w, e) ∼′
i (w′, e′) iff w ∼i w′ and e ∼i e′

More motivation for this rule can be found in [3], and at the end of this
section. First here is a concrete example.

As mentioned doxastic plausibility models are naturally combined with
information partitions to describe scenarios involving both knowledge and
beliefs. In this case Priority Update is applied to the plausibility ordering
while product update is applied to information partition. We will discuss
this issue in connection with the temporal models in Section 9. Let us for
now present a concrete scenario that involves both knowledge and beliefs.

Reading the figures. In the following figures, the actual state (resp. event

taking place) is the shaded one. Epistemic equivalence classes are represented by

rectangles or ellipses. We use < to display the strict plausibility ordering within

such classes. Our example assumes that all agents have the same plausibility

ordering. i believes ϕ at w is interpreted as ϕ holds in the i-most plausible states

within i-information partition Ki[w]. An agent’s beliefs at the actual state are
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thus displayed by an arrow from the actual state to the ones she considers most

plausible, often just one. Thus, an arrow from x to y labelled by the agent Enzo

means that y is the ≤e-minimal state within Ke[x]. A similar convention applies

to the event-model. Finally, we omit reflexive arrows throughout.

Example 3.3. Failed invitation. Céline and Enzo would like to invite
to Denis to their Wii party. The party has been decided but none of them
has informed Denis yet. Denis considers it a priori more plausible that no
Wii party is taking place unless informed otherwise. This initial situation is
common knowledge between Céline and Enzo. In the following figures, plain
rectangles (or ellipses) will represent Denis’ epistemic partition, dashed ones
Enzo’s and dotted ones Céline’s. w and w are state names.

Denis

w:¬p < w:p

Figure 1. No Wii Party unless stated otherwise. Initial model.

The key event model. The telephone rings and Céline pick up the
phone. Enzo hears part of the conversation and concludes that Céline is
inviting Denis. In fact Céline is not on the phone with Denis. Céline think
it was clear from the conversation that she was not talking to Denis.

Enzo

g:p

Céline

< >f :⊤e:⊤

Figure 2. Event model of a misleading phone call.

We are now able to compute the new doxastic epistemic situation. The
misunderstanding is now complete. In fact one can check that Enzo wrongly
believes that it is now common knowledge between Céline and Denis that
there is a Wii party while Céline wrongly believes that it is common belief
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between her and Enzo that Denis still does know about the Wii party and
even that Denis still believes that there is no Wii party.

Denis
Enzo

Céline

wgwfwewfwe

Figure 3. Product model of a misunderstanding.

Remark. Priority Update. In AGM style belief revision theory [1],
new information is simply a new formula ‘to be believed’ by the agent. This
allows for many different ‘revision policies’, from radical to conservative –
a line also followed in a DDL setting by van Benthem [7]. It is important
to appreciate that Priority Update is not just one such policy among many,
but a general mechanism that can mimic many different policies depending
on the richer structure of its triggers, viz. the plausibility event models
[4]. If the event model has ‘strong views’, the update is radical, otherwise,
the update remains conservative. Interestingly, this mechanisms also shifts
the variety in belief revision away from fixed agent types, to case-by-case
decisions: I can be radical with one input, and conservative with another.

We feel that a logic should describe a ‘universal’ mechanism, instead of
a jungle of styles. This is why we have chosen Priority Update in this paper,
leading to one representation that covers all special cases.

4 Doxastic Temporal Models: the global view

We now turn to the temporal perspective on multi-agent belief revision,
as an informational process over time with global long-term features. The
following models are a natural doxastic enrichment of the temporal ETL

models of [25]. They are also close to the temporal doxastic models of
[15, 21]. First the doxastic temporal models:

Definition 4.1 (Doxastic Temporal Models). A doxastic temporal model
(‘DoTL model’ for short) H is of the form 〈Σ, H, (≤i)i∈N , V 〉, where Σ is
a finite set of events, H ⊆ Σ∗ is closed under non-empty prefixes, for each
i ∈ N , ≤i is a pre-order on H , and V : Prop → ℘(H).
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Doxastic Epistemic Temporal models (DETL models for short) are Dox-
astic Temporal models extended by a collection of epistemic equivalence
relations (∼i)i∈N on H .

Given some history h ∈ H and event e ∈ Σ, we let he stand for the
concatenation of h with e. Given that plausibility links are not themselves
events, the model H may again be viewed as a ‘forest’, a disjoint union
of event trees. We sometimes refer to DoTL models as doxastic temporal
forests. Figure 4 gives a concrete illustration of a practical setting with this
abstract format. It display the evolution of a doctor’s knowledge (dashed
rectangles) and belief (diagnosis) - about what is wrong with her patient -
as she performs medical tests and observe their positive or negative results
(labelled edges). An arrow towards a state labelled Environ means that at
this stage of the diagnostic process, the doctor think the patient’s symptoms
have an environmental cause. We omit reflexive and symmetric arrows.

Our models also gain concretenes by considering doxastic temporal lan-
guages interpreted on them. While these are the subject of our follow-up
paper [9], we display a few truth conditions:

H, h  〈e〉ϕ iff ∃h′ ∈ H with h′ = he and H, h′  ϕ

H, h  2iϕ iff ∀h ′ with h′ ≤i h and h ∼i h′ we have H, h′  ϕ

H, h  Kiϕ iff ∀h ′ with h ∼i h′ we have H, h′  ϕ

H, h  Biϕ iff ∀h ′ with h′ ∈ Min≤i
Ki[h] we have H, h′  ϕ

Dégremont [16] has comparisons of this framework with others, such as
‘belief functions’, or the models in [15].

5 From DDL Models To Doxastic Temporal Models

Now we come to the main question of this paper. Like AGM -style belief
revision theory, Dynamic Doxastic Logic analyses one-step update scenarios.
But unlike, AGM heory, it has no problem with iterating these updates to
form longer sequences. Indeed let us put Example 3.3 together: Figure
5 looks like a doxastic epistemic forest model already. We will make this
precies now, but as in the epistemic case, we need one more ingredient.

In many informational processes, such as learning, or belief revision in
games, the information that agents receive may be highly constrained. Thus,
there is crucial information in the set of admissible histories of the process,
its ‘protocol’. This notion can be defined formally just as before in Definition
1.4. Let E be the class of all pointed plausibility event models. The set of
protocols Prot(E) = {P ⊆ (E∗ | P is closed under finite prefixes}. What we
need is again a slightly more flexible version:

If we take a look at the figure describing Example 3.3 we see that it really
looks like an doxastic (epistemic) forest already. Actually we could continue
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Lupus Lupus
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Figure 4. A medical investigation over time.
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Figure 5. The Wii-party misunderstanding in temporal perspective.
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the story, and the further updates would generate a larger forest. More
generally, priority update of a plausibility model according to a protocol
generates a doxastic temporal forest.

Definition 5.1 (Doxastic Protocols). Given a doxastic plausibility model
M, a local protocol for M is a function P : |M| → Prot(E). If P is a
constant function, the protocol is called uniform. When P maps states to
a linear nested sequence of event models, we call it a line protocol.

In line with Section 1, we state our main theorems in terms of uniform
line protocols, leaving variations and extensions to [16].

Iterated Priority Update of a doxastic plausibility model according to
a uniform line protocol P generates a doxastic temporal forest model. We
construct the forest by induction, starting with the doxastic plausibility
model and and then checking which events can be executed according to
the precondition and to the protocol. Finally the new plausibility order is
updated at each stage according to Priority Update. Since Priority Update
describes purely doxastic, non-ontic change, the valuation stays the same as
in the initial model. (For ways of adding real factual change, cf. [12].) For
simplicity, we write P (w) = ~ε where ~ε is a finite sequence of event models.

Definition 5.2 (DoTL model generated by a sequence of updates). Each
initial plausibility model M = 〈W, (�i)i∈N , V 〉 and each sequence of plau-
sibility sevent models ~ε = (εj)j∈ω where εj = 〈Ej , (�

j
i )i∈N , prej〉 yields a

generated DoTL plausibility model 〈Σ, H, (≤i)i∈N ,V〉 as follows:

• Let Σ :=
⋃m

i=1
Ei.

• Let H1 := W , and for each 1 < n ≤ m, let Hn+1 := {(we1 . . . en) |
(we1 . . . en−1) ∈ Hn and M⊗ ε1 ⊗ . . . ⊗ εn−1  pren(en)}.

Finally let H =
⋃

1≤k≤m Hk.

• If h, h′ ∈ H1, then h ≤i h′ iff h �M
i h′.

• For 1 < k ≤ m, he ≤i h′e′ iff 1. he, h′e′ ∈ Hk, and 2. either e≺k
i e′, or

e≃k
i e′ and h ≤i h′.

• Finally, set wh ∈ V(p) iff w ∈ V (p).

Our task is to identify just when a doxastic temporal model is isomor-
phic to the ‘forest’ thus generated by a sequence of priority updates. In
particular, this will uncover the key doxastic properties of agents assumed
in this belief revision mechanism.
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6 Crucial Frame Properties for Priority Update

We first get a few more general properties of our information process out
of the way. The first of these merely says that in that process, the facts of
the world do not change, only agents’ beliefs about it:

Definition 6.1. Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL model. H satisfies
propositional stability if, whenever h is a finite prefix of h′, h and h′

satisfy the same proposition letters.

Note that this can be generalized to include real world change. Next
comes a basic property of the events that we allowed as revision triggers:

6.1 Bisimulation Invariance

Since the aim of this notion is to guarantee the existence of pre-conditions
behind events in some modal language. Depending on the language parame-
ter we choose, one has to choose the corresponding Bisimulation notion. As
mentioned in Section 1 we will state our results up to language choice, there-
fore we give an abstract definition of bisimulation below. We will however
give a concrete example of language instantation when stating a corollary
of our result for doxastic epistemic models.

Let τ be a finite collection of binary relations 〈R1, . . . , Rn〉 on H × H .

Definition 6.2 (τ -Bisimulation). Let H and H′ be two DoTL-models
based on the same alphabet Σ. A relation Z ⊆ H × H ′ is a τ -Bisimulation
if, for all h ∈ H , h′ ∈ H ′ and all Ri ∈ τ

(prop) h and h′ satisfy the same proposition letters,

(back) If hZh′ and hRij, then there is a j′ ∈ H ′ with jZj′ and h′R′
ij

′,

(forth) If hZh′ and h′R′
ij

′, then there is a j ∈ H with jZj′ and hRij.

If Z is a τ -bisimulation and hZh′, we say h and h′ are τ -bisimilar.

Definition 6.3 (τ -Bisimulation Invariance). A DoTL model H satisfies τ-
bisimulation invariance if, for all τ -bisimilar histories h, h′ ∈ H , and all
events e, h′e ∈ H iff he ∈ H .

Note that these definitions apply also to DETL models. Here is an
example. (∼i ∩ ≤i)i∈N -Bisimulation Invariance will leave all formulas of
the basic doxastic language with safe belief invariant, and hence our earlier
preconditions for events. If we want these preconditions to be richer, then
we need more clauses in the bisimulation – and the same is true if we want
the bisimulation to preserve explicit temporal formulas involving events.
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6.2 Agent-Oriented Properties

Now we come to the relevant agent properties. These depend on single
agents i only, and hence we will drop agent labels and prefixes “for each
i ∈ N” for the sake of clarity. Also, in what follows, when we write ha for
events a, we assume that ha ∈ H .

Definition 6.4. Let H = 〈Σ, H, (≤i)i∈N , V 〉 be a DoTL model. H satisfies:

• Synchronicity Whenever h ≤ h′, we have len(h) = len(h′).

This says intuitively that agents have a correct belief about the exact stage
the process is in. The following two properties trace the belief revising
behavior of priority-updating agents more precisely:

• Preference Propagation if ja ≤ j′b, then h ≤ h′ implies ha ≤ h′b.

• Preference Revelation If jb ≤ j′a, then ha ≤ h′b implies h ≤ h′.

What do the latter properties say? In the earlier epistemic representa-
tion theorems, the corresponding properties of Perfect Recall and No Mira-
cles described observational agents with ideal memory, the two basic features
behind the Product Update rule. Likewise, our new properties express the
two basic features ‘hard-wired into’ the Priority Update rule, its ‘radical-
ism’ and its ‘conservatism’. Preference Propagation says that, if the last-
observed events ever allowed a plausibility preference, then they always do
– or stated contrapositively, if they ever ‘over-rule’ an existing plausibility,
then they always do. This reflects the first radical clause in the definition
of Priority Update. Next, Preference Revelation says that when an agent
has no strict plausibility preference induced by two observed events, then
she will go with her prior plausibility. This reflects the second, conserva-
tive clause in Priority Update. As we have said before, this is a qualitative
description of a ‘Jeffrey-style’ updating agent in a probabilistic setting.

7 The Main Representation Theorem

Now we prove our main result relating DDL and DTL models, both with
total orders.

Theorem 7.1. Let H be any doxastic-temporal model with a total plausi-
bility order. Then the following two assertions are equivalent:

1. There exists a total plausibility model M and a sequence of total plau-
sibility event models ~ε such that H is isomorphic to the forest generated
by the Priority Update of M by the sequence ~ε.

2. H satisfies Propositional Stability, Synchronicity, Bisimulation Invari-
ance, Preference Propagation, and Preference Revelation.
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Proof. Necessity (1 =⇒ 2). We show that the given conditions are sat-
isfied by any DoTL model generated through successive priority updates
along some given protocol sequence. Here, Propositional Stability and Syn-
chronicity are straightforward from the definition of generated forests.

Preference Propagation. Assume that ja ≤ j′b (1). It follows from
either clause in the definition of priority update that a ≤ b (2). Now assume
that h ≤ h′ (3). It follows from (2), (3) and again priority update that
ha ≤ h′b.

Preference Revelation. Assume that jb ≤ j′a (1). It follows from the
definition of priority update that b ≤ a (2). Now assume ha ≤ h′b (3).
By the definition of priority update, (3) can happen in two ways. Case 1:
a < b (4). It follows from (4) by the definition of < that b 6≤ a (5). But (5)
contradicts (2). We are therefore in Case 2: a≃b (6), and so h ≤ h′ (7).

Note that we did not make use of totality in this direction of the proof.

Sufficiency (2 =⇒ 1). Given a DoTL model M satisfying the stated
conditions, we show how to construct a matching doxastic plausibility model
and a sequence of event models.

Construction Here is the initial plausibility model M0 = 〈W, (�i)i∈N , V̂ 〉:

• W := {h ∈ H | len(h) = 1}.

• Set h �i h′ iff h ≤i h′.

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

Now we construct the j-th event model εj = 〈Ej , (�
j
i )i∈N , prej〉:

• Ej := {e ∈ Σ | there is a history he ∈ H with len(h) = j}

• Set a�j
i b iff there are ha, h′b ∈ H such that len(h) = len(h) = j and

ha ≤i h′b.

• For each e ∈ Ej , let prej(e) be the formula that characterizes the set
{h | he ∈ H and len(h) = j}. By general modal logic, our condition
of Bisimulation Invariance guarantees that there is such a formula.
Again as mentioned at the end of Section 1 this sentence may be an
infinitary one in general (if we don’t assume the doxastic temporal
models to be finitely branching). We give a concrete instantiation
when we discuss the epistemic doxastic corollary of our result.

Now we show that the construction is correct in the following sense:
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Claim 7.1 (Correctness). Let ≤ be the plausibility relation in the given
doxastic temporal model. Let 4F

DDL be the plausibility relation in the for-
est model induced by priority update over the just constructed plausibility
model F and the constructed sequence of event models. We have:

h ≤ h′ iff h 4F
DDL h′.

Proof of the claim. The proof is by induction on the length of histories. The
base case is obvious from the construction of our initial model M0. Now
comes the induction step:

From DoTL to Forest(DDL). Assume that h1a ≤ h2b (1). It follows
that in the constructed event model a ≤ b (2).

Case 1: a < b. By priority update we have h1a 4F
DDL h2b, whatever

relationship held between h1 and H2 in F .

Case 2: b ≤ a (3). This means that there are h3b, h4a such that h3b ≤
h4a. But then by Preference Revelation and (1) we have h1 ≤ h2 in the
original doxastic temporal model M. It follows by the inductive hypothesis
that h1 4F

DDL h2. But then, since a and b are indifferent by (2) and (3),
priority update gives us h1a 4F

DDL h2b.

From Forest(DDL) to DoTL. Now let h1a 4F
DDL h2b. Again we follow

the two clauses in the definition of priority update:
Case 1: a < b. By definition, this implies that b 6≤ a. But then by

the above construction, for all histories h3, h4 ∈ H we have h3b 6≤ h4a. In
particular we have h2b 6≤ h1a. But then by totality(this is the only place
where we use this property), h1a ≤ h2b.

Case 2: a≃b (4) and h1 4F
DDL h2. For a start, by the inductive hy-

pothesis, h1 ≤ h2 (5). By (4) and our construction, there are h3a, h4b with
h3a ≤ h4b (6). But then by Preference Propagation, (5) and (6) imply that
we have h1a ≤ h2b. q.e.d.

Remark. Corollary for the Doxastic Epistemic case. We get a represen-
tation result for the doxastic epistemic case as an immediate corollary from
Theorem 7.1 and Theorem 1.1. Moreover we give a concrete instantiation
of this corollary by choosing the language of Safe Belief. In the result below
we refer to Priority Update as the results of applying Product update to
the epistemic relations and Priority Update to the plausibility orderings.

Corollary 7.2. Let H be any doxastic epistemic temporal model with a
total plausibility order. Then the following two assertions are equivalent:

1. There exists a total an epistemic plausibility model M and a sequence
of total epistemic plausibility event models ~ε taking preconditions in
the modal language of Safe Belief such that H is isomorphic to the
forest generated by the Priority Update of M by the sequence ~ε.
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2. H satisfies Propositional Stability, Synchronicity, Perfect Recall, Uni-
form No Miracles, (∼i ∩ ≤i)i∈N - Bisimulation Invariance, Prefer-
ence Propagation, and Preference Revelation.

This result shows how to find, inside the much broader class of all dox-
astic temporal models, those whose plausibility pattern was produced by a
systematic priority update process.

8 Extension to arbitrary pre-orders

The preceding result generalizes to the general case of pre-orders, allowing
incomparability. Here we need a new notion that was hidden so far:

Definition 8.1 (Accommodating Events). Two events a, b ∈ Σ are pairwise
accommodating if, for all ga, g′b: (g ≤ g′ ↔ ga ≤ g′b), i.e. a, b preserve and
anti-preserve plausibility.

We can now define our new condition on doxastic-temporal models:

• Accommodation Events a and b are accommodating in the sense of
Def. 8.1 if both ja ≤ j′b and ha 6≤ h′b for some j, j′, h, h′.

Accommodation is a uniformity property saying that, if two events al-
low both plausibility orders for histories, then they are always ‘neutral’ for
determining plausibility order.This property only comes into its own with
pre-orders allowing incomparable situations:

Fact 8.2. If ≤ is a total pre-order and H satisfies Preference Propagation
and Preference Revelation, then H satisfies Accommodation.

Proof. Assume that ja ≤ j′b (i) and ha 6≤ h′b. By totality, the latter implies
hb ≤ h′a (ii). Now let g ≤ g′. By Preference Propagation and (i), ga ≤ g′b.
Conversely, assume that ga ≤ g′b. By Preference Revelation, (i) and (ii),
we have g′ ≤ g. q.e.d.

We can also prove a partial converse without assuming totality:

Fact 8.3. If H satisfies Accommodation, it satisfies Preference Propagation.

Proof. Let ja ≤ j′b (1) and h ≤ h′ (2). Assume that ha 6≤ h′b. Then by
Accommodation, for every ga, g′b, g ≤ g′ ↔ ga ≤ g′b. So, in particular, h ≤
h′ ↔ ha ≤ h′b. But since h ≤ h′, we get ha ≤ h′b: a contradiction. q.e.d.

Finally, an easy counter-example shows that, even with ≤ total:

Fact 8.4. Accommodation does not imply Preference Revelation.
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Proof. Take a simplest model where the following holds: h′b ≃ ha ≃j′a ≃ jb

and h′ < h ≃ j′≃ j. q.e.d.

With arbitrary pre-orders we need to impose Accommodation:

Theorem 8.1. Let H be any doxastic-temporal model with a plausibility
pre-order. Then the following two assertions are equivalent:

1. There exists a plausibility model M, and a sequence of plausibility
event models ~ε such that H is isomorphic to the forest generated by
the Priority Update of M by the sequence ~ε.

2. H satisfies Bisimulation Invariance, Propositional Stability, Synchronic-
ity, Preference Revelation, and Accommodation.

By Fact 8.3, Accommodation also gives us Preference Propagation.

Proof. Necessity of the conditions. (1 =⇒ 2) Checking the conditions
in the Section 7 did not use totality. So we focus on the new condition:

Accommodation. Assume that ja ≤ j′b (1). It follows by the definition
of priority update that a ≤ b (2). Now let ha 6≤ h′b (3). This implies by
priority update that a 6< b (4). By definition, (2) with (4) imply that a≃b

(5). Now assume that g ≤ g′ (6). It follows from (5), (6) and priority
update that ga ≤ g′b. The other direction is similar.

Sufficiency of the conditions. (2 =⇒ 1) Given a DoTL model, we
again construct a DDL plausibility model plus a sequence of event models:

Construction The plausibility model M0 = 〈W, (�i)i∈N , V̂ 〉 is as follows:

• W := {h ∈ H | len(h) = 1},

• Set h �i h′ whenever h ≤i h′,

• For every p ∈ Prop, V̂ (p) = V (p) ∩ W .

We construct the j-th event model εj = 〈Ej , (�
j
i )i∈N , prej〉 as follows:

• Ej := {e ∈ Σ | there is a history of the form he ∈H with len(h) = j}

• For each i ∈ N , define a�j
i b iff either (a) there are ha, h′b ∈ H such

that len(h) = len(h) = j and ha ≤i h′b, or (b) [a new case] a and b

are accommodating, and we put a ≃ b (i.e., both a ≤ b and b ≤ a).

• For each e ∈Ej , let prej(e) be the basic doxastic formula character-
izing the set {h | he ∈ H and len(h) = j}. Bisimulation Invariance
guarantees that there is such a formula (maybe infinitary).



Bridges between dynamic doxastic and doxastic temporal logics 19

Again we show that the construction is correct in the following sense:

Claim 8.5 (Correctness). Let ≤ be the plausibility relation in the doxastic
temporal model M. Let 4F

DDL be the plausibility relation in the forest
F induced by successive priority updates of the plausibility model by the
sequence of event models we just constructed. We have:

h ≤ h′ iff h 4F
DDL h′.

Proof of the claim. We proceed by induction on the length of histories. The
base case is clear from our construction of the initial model M0. Now for
the induction step, with the same simplified notation as earlier:

From DoTL to Forest(DDL). We distinguish two cases.

Case 1. ha ≤ h′b, h ≤ h′. By the inductive hypothesis, h ≤ h′ implies
h 4F

DDL h′ (1). Since ha ≤ h′b, it follows by the construction that a ≤ b

(2). Then, by (1), (2) and priority update, we get ha 4F
DDL h′b.

Case 2. ha ≤ h′b, h 6≤ h′. Clearly, then, a and b are not accommodating
and thus the special clause has not been used to build the event model,
though we do have a ≤ b (1). By the contrapositive of Preference Revelation,
we also conclude that for all ja, j′b ∈ H , we have j′b 6≤ ja (2). Therefore,
our construction gives b 6≤ a (3), and we conclude that a < b (4). But then
by priority update, we get ha 4F

DDL h′b.

From Forest(DDL) to DoTL. We again distinguish two cases.

Case 1. ha 4F
DDL h′b, h 4F

DDL h′. By the definition of priority update,
ha 4F

DDL h′b implies that a ≤ b (1). There are two possibilities.

Case 1.1: The special clause of the construction has been used, and a,
b are accommodating (2). By the inductive hypothesis, h 4F

DDL h′ implies
h ≤ h′ (3). But (2) and (3) imply that ha ≤ h′b.

Case 1.2: Clause (1) holds because for some ja, j′b ∈ H in the DoTL

model, ja ≤ j′b (4). By the inductive hypothesis, h 4F
DDL h′ implies h ≤ h′

(5). Now it follows from (4), (5) and Preference Propagation that ha ≤ h′b.

Case 2. ha 4F
DDL h′b, h 64F

DDL h′. Here is where we put our new accom-
modation clause to work. Let us label our assertions: h 64F

DDL h′ (1) and
ha 4F

DDL h′b (2). It follows from (1) and (2) by the definition of priority
update that a < b (3), and hence by definition, b 6≤ a (4). Clearly, a and
b are not accommodating (5): for otherwise, we would have had a≃b, and
hence b ≤ a, contradicting (4).

Therefore, (3) implies that there are ja, j′b ∈ H with ja ≤ j′b (6). Now
assume for contradictio that (in the DoTL model) ha 6≤ h′b (7). It follows
from (6) and (7) by Accommodation that a and b are accommodating,
contradicting (5). Thus we must have ha ≤ h′b. q.e.d.
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Given a doxastic temporal model describing the evolution of the beliefs of
a group of agents, we have determined whether it could have been generated
by successive ‘local’ priority updates of an initial plausibility model.

9 More extensions and variations of the theorem

Several further scenarios can be treated in the same manner. In particular,
it is easy to combine the epistemic analysis in Section 1 with ours to include
agents having both knowledge and belief. Here are three more directions:

9.1 From uniform to local protocols

So far we have considered uniform line protocols. We have already sug-
gested that line protocols are powerful enough to mimic branching protocols
through renaming of events, and then taking a disjoint union of all branch-
ing alternatives. But uniformity is a real restriction, and it can be lifted.
Local protocols allow the set of executable sequences of pointed events mod-
els forming our current informational process to vary from state to state.
Indeed, agents need not even know which protocol is running. As was
done in [10] for the epistemic case, we can still get our representation theo-
rems, by merely dropping the condition of Bisimulation Invariance. While
this seems a simple move, local protocols drastically change the complete
dynamic-doxastic logic of the system (cf. [9] and [16] for details).

9.2 Languages and bisimulations

As we have noted in Section 4, our doxastic-temporal models support var-
ious languages and logics. These will be pursued in [9], but we do make a
few points here. One is that complete doxastic-temporal logics for the above
special model classes will have valid principles reflecting the reduction ax-
ioms of dynamic-doxastic logic. In fact, these doxastic-temporal correspond
to Preference Propagation and Preference Revelation in the sense of modal
correspondence theory. Thus, our structural analysis of priority-updating
agents extends to the level of valid reasoning.

Proposition 9.1. The following law is sound for plausibility change:

〈ε, e〉〈≤i〉ϕ ↔ (pre(e) ∧ (〈≤i〉
∨

{〈f〉ϕ : e≃if} ∨ E
∨

{〈g〉ϕ : e <i g}))

Analogies with recursion axioms One can understand the following
formal axioms in their original format with existential modalities by analogy
with the dynamic-doxastic recursion axiom for priority update just given:

• H satisfies Preference Propagation iff the following axiom is valid:

E〈a〉〈≤i〉〈b
−1〉⊤ → ((〈≤i〉〈b〉p ∧ 〈a〉q) → 〈a〉(q ∧ 〈≤i〉p)
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• H satisfies Preference Revelation iff the following axiom is valid:

E〈b〉〈≤i〉〈a
−1〉⊤ → (〈a〉〈≤i〉(p ∧ 〈b−1〉⊤) → 〈≤i〉〈b〉p)

In fact, a doxastic-temporal language has two main purposes in our
setting: (a) stating ‘local’ preconditions for events, (b) specifying ‘global’
properties of the temporal evolution of the current process. As is well-known
[13] a choice of language here corresponds with a choice of a semantic invari-
ance relation, usually some weaker or stronger variant of bisimulation. In
stating our results, we kept to the simplest version, of a modal bisimulation
adequate for the static language of safe belief. But this can be varied, and
one can also have stronger notions of bisimulation, respecting more struc-
ture, that work for more expressive doxastic languages, or for combined
doxastic-epistemic languages. If we add epistemic structure, the bisimula-
tion also needs back-and-forth clauses for the intersection of the epistemic
accessibility and doxastic plausibility relations.

For instance, if the precondition language contains a belief operator scan-
ning the intersection of a plausibility ≤i relation and an epistemic indis-
tinguishability relation ∼, then the back and forth clauses should not only
apply to ≤i and ∼i separately, but also to ≤i ∩ ∼i. (Indeed ∩ is not safe
for bisimulation.) And things get even more complicated if we allow tem-
poral operators in our languages (cf. [10]). We do not want to commit to
any specific choice here, since the choice of a language seems orthogonal to
our main concerns. Even so, we will discuss formal languages in the next
section, taking definability of our major structural constraints as a guide.

9.3 Alternative model classes

Finally, we mentioned in Section 4 that one can also work with a primitive
plausibility relation that merges epistemic indistinguishability and doxastic
plausibility. This is done for Priority Update in [3], and we indicate briefly
the notions involved in the corresponding results:

Definition 9.1. The priority update of a unified plausibility model M =
〈W, (�i)i∈N , V 〉 and a �-event model ε = 〈E, (�i)i∈N , pre〉 is the unified
plausibility model M⊗ ε = 〈W ′, (�′

i)i∈N , V ′〉 constructed as follows:

• W ′ = {(w, e) ∈ W × E | M, w  pre(e)},

• (w, a) �′
i (w′, b) iff either 1. a �i b, b 6�a and w � w′ ∨ w′ � w or 2.

a �i b, b � a and w � w′,

• V ′((s, e)) = V (s).

Here are our basic temporal doxastic agent properties in this setting:
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• �-Perfect Recall If ha � h′b we have h � h′ ∨ h′ � h.

• �-Preference Propagation If h�h′ and ja� j′b then also ha�h′b.

• �-Preference Revelation If ha � h′b ∧ jb � j′a, also h � h′.

• �-Accommodation If (ja� j′b, h′ �h and ha 6�h′b), for all ga, g′b ∈
H (g � g′ ↔ ga � g′b), and for all g′a, gb ∈ H (g � g′ ↔ gb � g′a).

[9, 16] show how these conditions drive a general representation theorem
similar to the one in Section 7 and 8.

10 Conclusion

Agents that update their knowledge and revise their beliefs leave an epis-
temic and doxastic ‘trace’ over time of epistemic and doxastic relations. We
have determined the special constraints that capture agents operating with
the ‘local updates’ of dynamic doxastic logic. This took the form of repre-
sentation theorems that state just when a general doxastic temporal model
is equivalent to the forest model generated by successive priority updates of
an initial doxastic model by a protocol sequence of event models.

DDL

DTL

Figure 6. DDL inside DTL

Thus, we have determined an area where the idealized belief changers
of dynamic-doxastic logic live. This identification becomes even stronger
through its axiomatization in suitable doxastic-temporal languages, as ex-
plored in our follow-up paper [9].

As for open problems, this paper has already indicated several technical
issues along the way. Here we list a few more:

• Languages and logics. There are many issues of expressive power of
different languages over our models and their complexity effects (cf.
[11] for the epistemic case). In particular, belief revision for individual
agents has a natural companion of belief merge for groups of agents,
and various update processes that might create common beliefs. These
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create complications in the epistemic case [12] and are even more chal-
lenging here. For all such languages, there are also natural questions
of complete axiomatization. Indeed, we have proved axiomatic com-
pleteness for the ‘protocol logic’ of revision processes in [9, 16]. This
is analogous to the epistemic theory of observation and conversation
protocols initiated in [10].

• Agent diversity. Beyond the realm of priority-updating agents studied
in this paper, there are also other zones of interest inside DTL models,
including processes involving agents with memory bounds, that may
revise beliefs in different ways, and may even see their knowledge fade
into belief, and finally, oblivion.

• Related Approaches. A comparison of our ‘constructive’ DDL-inspired
approach to DTL universes with the more abstract AGM -style pos-
tulational approach of [15] remains to be made.

• Concrete scenarios: game theory and learning theory. We intend to
take our analysis to knowledge and belief dynamics in the concrete
setting of extensive games, following up on the initial studies [8, 5].
It would also be of interest to link our doxastic-temporal models with
more concrete learning scenarios. In the temporal universes of formal
learning theory [22], learning rules are belief revision or plausibility
update rules producing the new hypothesis after the next observed
event. Dégremont and Gierasimczuk [17] is a first systematic attempt
at connecting this with DDL and DTL models.
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