
 1

DYNAMIC LOGIC IN NATURAL LANGUAGE

1 Dynamic perspectives in natural language

Truth-conditional semantics Standard first-order logic defines truth in a three-part scheme:

a language, structures D of objects with relations and operations, and maps from language to

structures that drive semantic evaluation. In particular, “interpretation functions” I map

predicate letters to real predicates, while variable assignments s map individual variables to

objects. Logicians often lump D and I together into a “model” M, and then interpret formulas:

 formula ϕ is true in model M under assignment s (M, s |= ϕ)

with a recursive definition matching syntactic construction steps with semantic operations for

connectives and quantifiers. This pattern has been applied to natural language since Montague

1974, stating under which conditions a sentence is true. Compositional interpretation in

tandem with syntactic construction works even beyond logical and natural languages: it is also

a well-known design principle for programs (van Leeuwen ed. 1990). And the paradigm finds

an elegant mathematical expression in algebra and category theory.

From products to activities Still, the above semantics merely describes a static relationship

between sentences and the world. But truth is just one aspect of natural language, perhaps not

even its crux. What makes language constitutive of human life seem dynamic acts of

assertion, interpretation, or communication. In recent years, such acts have entered logical

theory, from interpretation to speech acts and discourse. This is often considered pragmatics –

but often, the natural semantic meaning is the use. In a maxim from mathematics and

computer science: ‘never study representation without transformation’. We cannot understand

the static structure of a language without studying the major processes it is used for. Our very

lexicon suggests a duality between product and process views. “Dance” is both a verb and a

noun, “argument” is an activity one can pursue and its product that logicians write down.

Concrete dynamic systems There are many sources for current dynamic semantics of natural

language. One is the seminal work of Kamp and Heim on anaphoric interpretation of

pronouns as creating discourse representation structures that get modified as speech

proceeds, and that can be matched against reality when the need arises. But the most incisive

example has been “dynamification” of existing logics. First-order logic is a pilot for static

truth conditions, but it can also model essentials of the process of evaluation. The latter

 2

involves shifting relationships between variables and objects (Groenendijk and Stokhof 1991).

Consider the truth condition for an existential quantifier:

 M, s |= ∃x ϕ iff there is an object d in M such that M, s[x:=d] |= ϕ.

Intuitively, this calls for a search through available objects d in M for the variable x until we

hit the first d for which ϕ holds. The latter object is then available for further reference, as it

should, say, in little texts like “∃xPx. Qx” (“A man came in. He whistled.”) that support

anaphoric reference between the two occurrences of x across sentence boundaries.

Dynamic ideas work much more widely, with temporal expressions as a major paradigm (ter

Meulen 1995). As for sentence-level processes, sentences can change information states of

hearers by elimination of all models from a current set that do not satisfy the formula. This

folklore idea of range-with-elimination underlies the account of conversation in Stalnaker

1978, or the “update semantics” of Veltman 1996, where meanings are potentials for changing

information states. Thus, dynamic linguistic acts come into the scope of logic, making them

amenable to the compositional analysis that has served truth-conditional views in the past.

Richer versions: social dynamics and games Classical semantics has no actors, since it is

about bare relationships with reality. Dynamic semantics is about single agents that compute

on discourse structures, or change single minds. But language is about speakers and hearers

that create shared meanings, and over that channel, engage in meaningful activities, coope-

rative or competitive. This requires a study of information flow in multi-agent communication

where “social” knowledge about what others know and mutual expectations are crucial. And

beyond single speech acts, there is a longer-term strategic aspect. I choose my words toward

an end, depending on how I think you will take them, and next, so do you. Such behavior over

time is the realm of game theory. Dynamic logics and games will be discussed below.

Literature For dynamic semantics, see Dekker 2008, Groenendijk, Stokhof and Veltman

1996, and for discourse representation theory, Kamp and Reyle 1993. Other sources include

speech act theory (Searle and Vanderveken 1985) and “score-keeping games” (Lewis 1979).

The “Dynamics” chapter in van Benthem and ter Meulen eds. 1997 (updated in 2010 with an

appendix on “Information Dynamics”) adds links to dynamic logics, artificial intelligence,

and computational linguistics. Kamp and Stokhof 2007 has extensive philosophical reflection.

 3

2 Parallels with computer languages and computation

The unity of languages Philosophy has long known a tension between formal and natural

language methods, with Russell’s “Misleading Form Thesis” claiming that natural language

obscures the logical form of statements. By contrast, Montague proclaimed the unity of

formal and natural languages in their design principles and theoretical properties. Later

authors tested “Montague's Thesis” on programming languages: formally designed, but

driving a real communicative practice between humans and machines. They found striking

analogies with natural language, from category structure to paradoxes of intensionality.

Semantics of programs: computing change A major challenge in logics of computation is

giving a meaning to imperative programs. These are not propositions that are true or false, but

instructions for changing states of a computer, or indeed any process. As it turns out, first-

order assignment semantics is a great fit here, allowing for a compositional definition of the

relation of successful transition between assignments for program execution:

 s1 [[π]]M s2: there is a successful execution of program π starting in s1 and ending in s2.

Here the assignments s, originally an auxiliary device, become important in their own right, as

memory states of a computer. A typical case are atomic programs x:=t, where the assignment

s1 changes to one with all values for variables the same, except that x is now set to [[t]]M
s1, the

value of the term t in M under the old assignment s1. In a picture, we now view meanings in

terms of transition arrows between states:

 π
 s1 s2

Thus, action is identified with pairs <input state, output state>. There are richer process views

in computer science, but we will use this simple extensional format in what follows.

Compositional structure Like propositions, programs have complex syntactic structure, and

their interpretation proceeds inductively: we match them with semantic ones. Here are three

basic operations (the textbook Harel 1987 explains them with kitchen recipes):

Sequential composition π1 ; π2

Guarded choice IF ϕ THEN π1 ELSE π2

Iteration WHILE ϕ DO π

 4

For instance, the semi-colon ; denotes sequential composition of relations: its transitions arise

from first making a successful transition for π1, and then one for π2. The WHILE loop is

unbounded, we make a computer run for as long as it takes to achieve ¬ϕ.

Logics of programs The oldest computational program logic is Hoare calculus of correctness

assertions that express what a given program does in terms of standard propositions:

{ϕ} π {ψ} "after every successful execution of program π starting from

 a state where precondition ϕ holds, postcondition ψ holds":

Note the co-existence of programs π and propositions ϕ: there is no conflict between statics

and dynamics. Also, non-determinism is allowed: a program may have several executions.

Now we can do program logic, much as rules for connectives analyze static propositions:

Example Rules of the Hoare Calculus.

 {ϕ} π1 {ψ} {ψ} π2 {χ}

 {ϕ} π1 ; π2 {χ} composition

 {ϕ ∧ χ} π1 {ψ} {ϕ ∧ ¬χ} π2 {ψ}

 {ϕ} IF χ THEN π1 ELSE π2 {ψ} guarded choice

 {ϕ} π {ϕ}

 {ϕ} WHILE ψ DO π {ϕ ∧ ¬ψ} iteration

Checking soundness of these rules will make you understand a lot about the logic of change.

From programs to general actions The preceding describes a logic of action for any dynamic

event, not just shifts in variable assignments or states of a computer. Logics like this have

been applied to natural language, as we shall see, but also to conversation, strategies in games,

and quantum-mechanical measurements that change a physical system. In this process, a

reversal of perspective has occurred. Thinking of all the dynamic effects of using language,

we might consider the computational stance as primary. Van Benthem 1996 even claims that

natural language is a programming language for cognitive actions.

3 Technical background: dynamic logic of action

Behind program semantics lies a logic familiar to philosophers studying intensional notions.

Modal logics of process graphs Consider process graphs M = (S, {Ra}, V) with a set of states

S, a family of binary transition relations Ra for basic actions (sometimes written →a), and a

 5

valuation V interpreting proposition letters p as local properties of states. Over such models,

one can interpret a language with labeled modalities over “action-accessible states”:

 M, s |= [a]ϕ iff M, t |= ϕ for all t with s Ra t.

The dual existential modality <a>ϕ is defined as ¬[a]¬ϕ. Hoare correctness statements are

modal implications ϕ → [π]ψ. (A good textbook is Blackburn, de Rijke and Venema 2000.)

Major uses of modal logic today are action and knowledge, a notion that will return later.

Complex actions: propositional dynamic logic The same formalism can deal with complex

actions. The language now has components, one of programs (P) and one of formulas (F):

 F := atomic propositions | ¬F | (F∧F) | [P]F

 P := atomic actions | (P;P) | (P∪P) | P* | F?

For elegance and sweep, program operators are now the regular operations of composition,

Boolean choice, Kleene iteration, and tests for formulas. The semantics matches the mutual

recursion in the syntax. M, s |= φ says that φ is true at state s, while M, s1, s2 |= π says the

transition from s1 to s2 is a successful execution of program π. Here are a few key clauses:

 • M, s |= [π]φ iff for all s' with M, s, s' |= π, we have M, s' |= φ

 • M, s1, s2 |= a iff (s1, s2) ∈ Ra

 M, s1, s2 |= π1;π2 iff there is an s3 with M, s1, s3 |= π1 and M, s3, s2 |= π2

 M, s1, s2 |= π1∪π2 iff M, s1, s2 |= π1 or M, s1, s2 |= π2

 M, s1, s2 |= π* iff some finite sequence of π–transitions in M

 connects the state s1 with the state s2

 M, s1, s2 |= φ? iff s1 = s2 and M, s1 |= φ

Axiomatic system Propositional dynamic logic has a natural proof system PDL. We give it

here to show how logics of action and change can be designed just like classical logics:

 • All principles of the minimal modal logic for all modalities [π]

 • Computation rules for decomposing program structure:

 [π1;π2]φ ↔ [π1][π2]φ

 [π1∪π2]φ ↔ [π1]φ ∧ [π2]φ

 [φ?]ψ ↔ (φ → ψ)

 [π*]φ ↔ φ ∧ [π][π*]φ

 • The Induction Axiom (φ ∧ [π*](φ → [π]φ)) → [π*]φ.

 6

PDL can derive all Hoare rules, while generalizing modal logic and relational algebra. All its

theorems are valid, and there is a nice completeness proof. And in all this, PDL is decidable.

PDL distils the “essence of computability”: cf. Harel, Kozen and Tiuryn 2000.

Process theories: the larger picture The above suggests a study of process equivalences, as

processes have many natural levels of detail. Also, the decidability of PDL suggests a balance

between the expressive power of a logic and the computational complexity of its laws. This

balance is also crucial to understanding natural language. Finally, PDL only studies sequential

operations on programs, while parallel composition is the reality in network computing. This

deep subject is pursued in Lambda Calculus, a system close to Montague’s work, and Process

Algebra (Bergstra et al. 2001). Parallel computation is simultaneous action, which can also be

modeled by games (Abramsky 2008). Interestingly, our linguistic performance, too, is a

parallel composition of grasping meanings and engaging in discourse at the same time.

4 Dynamic semantics of natural language sentences

Many systems of interpretation highlight actions that deal with anaphora, temporality, and

many other expressions. A major paradigm is Discourse Representation Theory (Kamp and

Reyle 1993), but we present an approach due to Groenendijk and Stokhof 1991.

Translation lore Dynamic predicate logic (DPL) “dynamifies” first-order logic. Here is why.

One is usually taught some folklore to make first-order formulas fit actual linguistic forms:

 1 A man came in. He whistled. The two underlined phrases can co-refer.

 2 * No man came in. He whistled. The two underlined phrases cannot co-refer.

 3 * He whistled. A man came in. The two underlined phrases cannot co-refer.

 4 If a man came in, he whistled. The two underlined phrases can co-refer.

The obvious translation ∃x Cx ∧ Wx for 1 does not give the right scope, and one uses a bracket

trick: ∃x (Cx ∧ Wx). The translation for 2: ¬∃x Cx ∧ Wx does give the right scope, the

quantifier does not bind the free variable in Wx. The translation for 3: Wx ∧ ¬∃x Cx , too, is

correct. But the translation for 4: ∃x Cx → Wx has the wrong scope, and one uses brackets

plus a quantifier-change (though the sentence has → as its main operator): ∀x (Cx → Wx).

Dynamifying standard first-order semantics DPL assigns dynamic meanings without tricks.

It reinterprets first-order formulas φ as evaluation procedures, transition relations between

assignments like with programs:

 7

 Atoms as tests

 M, s1, s2 |= Px iff s1 = s2 and IM(P)(s1(x))

 Conjunction as composition

 M, s1, s2 |= φ ∧ ψ iff there is s3 with M, s1, s3 |= φ and M, s3, s2 |= ψ

 Negation as failure test

 M, s1, s2 |= ¬φ iff s1 = s2 and there exists no s3 with M, s1, s3 |= φ

 Existential quantification as random reset

 M, s1, s2 |= ∃x iff s2 = s1[x:=d] for any object d in the domain.

Example Dynamic evaluation and bindings explained.

(1) Evaluating ∃x Cx ∧ Wx composes a random reset with two successive test actions. This

moves from states s to states s[x:=d] where both C(d), W(d) hold. (2) Wx ∧ ∃x Cx composes a

test, a random reset, and one more test. This moves from states s where W(s(x)) holds to states

s[x:=d] where C(d) holds: no binding achieved. (3) The non-binding is explained by the

negation test, which leaves no new value for x to co-refer. (4) To get the implications right,

we define φ → ψ as ¬(φ ∧ ¬ψ). This works out to a new test: every successful execution of

φ can be followed by one for ψ. This does what it should for both implications. ■

Logic as evaluation algebra Conceptually, DPL makes predicate logic a theory of two basic

actions: variable resets and atomic tests. “Standard logic” then becomes a mix of general

relation algebra, at the level of the dynamic logic PDL, plus specific laws for reset actions on

first-order models. Thus we see an intriguing fact. The basic process logic of evaluation is

decidable – the undecidability of first-order logic arises from debatable special mathematical

features of assignments (van Benthem 1996). DPL views also apply to discourse, suggesting

notions of “dynamic inference”: cf. the mentioned sources.

We leave the reader with a thought. If meaning is dynamic, what computational process drives

natural language? Do typical program structures like WHILE and * iteration make sense?

5 Logical dynamics of conversation
We now move from sentences to discourse, and information flow in communication.

Example Cooperative questions and answers.

I ask you in Amsterdam: “Is this building the Rijksmuseum?”. You answer: “Yes”. This is a

simple thing we all do all the time, but subtle information flows. By asking the question, I tell

you that I do not know the answer, and that I think you may know. And by answering, you do

 8

not just convey a topographical fact – you also make me know that you know, and as a result,

you know that I know that you know, etc. ■

Common knowledge, at every depth of iteration, mixes factual information and social

information about what others know. The latter is the glue of communication, according to

philosophers, economists, and psychologists. Hence we need logics that treat information

flow with actors on a par. We do this by “dynamifying” the static logic of knowledge:

Epistemic logic The epistemic language EL extends propositional logic with modal operators

Kiφ (i knows that φ), for each agent i in a total group I, and CGφ: φ is common knowledge in

the subgroup G. The inductive syntax rule is as follows:

 p | ¬φ | φ∨ψ | Kiφ | CGφ

This language describes the Question/Answer scenario with formulas like

(i) ¬KQϕ ∧ ¬KQ¬ϕ (Q does not know whether ϕ),

(ii) ¬KQ¬(KAϕ ∨ KA¬ϕ) (Q thinks that A may know the answer).

After communication, we have KAϕ ∧ KQϕ, KQKAϕ ∧ KAKQϕ, and even C(Q, A}ϕ.

Formally, consider models M = (W, {~i | i∈G}, V), with worlds W, accessibility relations ~i

for agents i∈G between worlds, and V a valuation as usual. Pointed models (M, s) have an

actual world s for the true state of affairs (perhaps unknown to the agents). Here accessibility

no longer encodes actions, but information ranges: the options agents see for the actual world.

Further conditions on ~i encode special assumptions about agents’ powers of observation and

introspection. Very common are equivalence relations: reflexive, symmetric, and transitive.

Such “information diagrams” interpret the epistemic language. Here are the key clauses:

 M, s |= Kiφ iff for all t with s ~i t: M, t |= φ

 M, s |= CGφ iff for all t that are reachable from s by some finite

sequence of arbitrary ~i steps (i∈G): M, t |= φ

We draw one model for a simple question answer episode (omitting reflexive arrows). Agent

Q does not know if p, but A is informed about it:

 p Q ¬p

 9

In the actual world (the black dot), the following formulas are true: p, KAp, ¬KQp ∧ ¬KQ¬p,

KQ(KAp ∨ KA¬p), C(Q, A} (¬KQp ∧ ¬KQ¬p), C(Q, A} (KAp ∨ KA¬p). This is a good reason for Q to

ask A about p: he knows that she knows the answer.

After the answer “Yes”, intuitively, this model changes to the following one-point model:

 p

Now, common knowledge C{Q, A}p holds at the actual world.

Epistemic logic sharpens intuitive distinctions about information, especially levels of group

knowledge. Communication often turns implicit group knowledge into explicit knowledge.

Axiom systems for epistemic inference Complete logics capturing epistemic reasoning about

oneself and others are known (Fagin et al. 1995). The base system is a minimal modal logic.

Structural restrictions to equivalence relations add S5 axioms of introspection, while the

complete logic of common knowledge can be axiomatized with PDL-techniques.

A dynamic turn: public update by elimination Now for the logical dynamics of information

flow. A pilot system for exploring this starts from a folklore view: an event !P yielding the

information that P is true shrinks the current model to just those worlds that satisfy P. This is

called public hard information. More precisely, for any epistemic model M, world s, and P

true at s, the model (M|P, s) (‘M relativized to P at s’) is the sub-model of M whose domain is

the set {t∈M | M, t |=P}. Drawn in a simple picture, an update step then goes

 from M to M|P
 s s

 P ¬P

This mechanism models communication, but also acts of public observation. It has been

applied to games and other social scenarios. Crucially, truth values of formulas may change

after update: agents who did not know that P now do. We need a logic to keep things straight.

Dynamic logic of public announcement The language of public announcement logic PAL

adds action expressions to EL, plus matching dynamic modalities, defined by the syntax rules:

Formulas P: p | ¬φ | φ∨ψ | Kiφ | CGφ | [A]φ

Action expressions A: !P

 10

Here the semantic clause for the dynamic action modality “looks ahead” between models:

 M, s |= [!P] φ iff if M, s |= P, then M|P, s |= φ

A typical assertions here is [!P]Kiφ, which states what agent i will know after receiving hard

information that P. Reasoning about information flow revolves around a dynamic recursion

equation that relates new knowledge to old knowledge an agent had before:

 The following equivalence is valid for PAL: [!P]Kiφ ↔ (P → Ki(P → [!P]φ)).

The reader may find it helpful to prove this. The complete and decidable logic for knowledge

under public communication is well-understood. PAL is axiomatized by any complete

epistemic logic over static models plus recursion axioms

 [!P]q ↔ P → q for atomic facts q
 [!P]¬φ ↔ P → ¬[!P]φ

 [!P]φ∧ψ ↔ [!P]φ ∧ [!P]ψ

 [!P]Kiφ ↔ P → Ki(P → [!P]φ)

There is more here than meets the eye. The logic PAL uncovers many subtleties of natural

language. Suppose that in our question-answer episode, A had not said !P, but the equally true

“You don’t know that P, but it is true” (¬ KQP ∧ P). The latter “Moore sentence” achieves the

same update, but it has become false afterwards! Statements switching their own truth values

are essential in conversation, puzzles, and games (Geanakoplos and Polemarchakis 1982). For

much more about PAL and related systems, including links to epistemology, cf. Baltag, Moss

and Solecki 1998, van Ditmarsch, van der Hoek and Kooi 2007, van Benthem 2010.

Compared to dynamic semantics, logical dynamics of information flow has a discourse focus.

This is “pragmatics” – but from a logical point of view, the border with semantics is thin.

6 The logical dynamics of agency

Public announcement is just the start of a dynamics of interactive agency. We mention a few

dimensions of a richer picture of what language users are and do.

From knowledge to belief Language users do not just have knowledge, but also beliefs. What

they hear involves belief revision (Gaerdenfors 1988), and this process can be triggered by

information that is “soft” rather than hard, depending on the reliability of the source. Dynamic

logics for belief revision “dynamify” static doxastic logics, where agents believe what is true

in their “most plausible” worlds. This time, update does not eliminate worlds: it transforms

 11

the relative plausibility that agents assign to worlds. Forming and correcting beliefs is a

learning ability that is more essential to human intelligence than just recording hard

information. Rationality is not being correct all the time, but having a talent for correction.

Private information Information flow is driven by a differential: we do not all know the same

things. Dynamic epistemic logics can also model private communication in a group (think of

emails with bcc rather than cc), a phenomenon of high complexity. They even deal with lying

and cheating, a central topic in real language, since most communication is unreliable to some

extent. The usual Gricean focus on helpful truthful communication seems otherwordly.

Questions and issue management Questions do not just convey information, they also direct

discourse by raising and modifying topics. This is crucial to language, communication and

inquiry. A logical dynamics of questions must represent issues and actions modifying these.

Two recent flavors are Groenendijk 2009, van Benthem and Minica 2009.

Preference and evaluation dynamics Agency is not just information dynamics. Rational

decision and strategic interaction involve a balance of information and evaluation, encoded in

our preferences. Entanglement of information and evaluation, and preference change pervade

deontic logic (Gruene Yanoff and Hansen 2010) and games. But again natural language

remains close. We often change our evaluation of situations by speech acts such as

suggestions or commands from some moral or esthetic authority. Philosophers have also

drawn attention to the normative character of “discourse obligations” (Brandom 1994).

And beyond Further relevant features of agency studied in logic include trust, intentions and

commitments, but we the picture should be clear by now. Dynamic analysis of language may

at the same time have to be an analysis of the agents using that language.

7 Games in logic and natural language

Beyond logics of agency lies a world of games. Dynamic logics describe single update steps,

but the next level of language use is strategic behaviour over time. What I say now responds

to what you say, but it is usually directed toward a future goal, and part of a long-term plan.

We also saw that language involves iterated social knowledge of agents about each other and

multi-agent equilibrium. Both have received sophisticated treatments in game theory.

Evaluation games and “game-theoretic semantics” We ilustrate games for natural language

with a simple pilot system, again in terms of first-order logic (Hintikka and Sandu 1997).

 12

Evaluation of formulas φ can be cast as a game for two players. Verifier V claims that φ is true

in a model M, s, Falsifier F that it is false. Here are natural moves of defense and attack:

 atoms Pd, Rde,… V wins if the atom is true, F if it is false

 disjunction φ∨ψ V chooses which disjunct to play

 conjunction φ∧ψ F chooses which conjunct to play

 negation ¬φ role switch between the players, play continues with φ

 Next, the quantifiers make players look inside M's domain of objects:

∃x φ(x) V picks an object d, and play continues with φ(d)

∀x φ(x) the same move, but now for F

The game schedule is determined by the form of φ . Consider a model M with two objects s, t.

Here is the complete game for ∀x ∃y x≠y in M, pictured as a tree of possible moves:

 F
 x:= s x:= t
 V V

 y:= s y:= t y:= s y:= t

 loseV winV winV loseV

This is a game of perfect information: players know throughout what has happened. Branches

are the possible plays, with 2 wins for each player. But V is the player with a winning

strategy, she has a rule for always winning. For a more exciting example, look at a network

with arrows for directed communication links (all self-loops are present but not drawn):

 1 2

 3 4

 The formula ∀x ∀y (Rxy ∨ ∃z(Rxz and Rzy)) says that any two nodes can

 communicate in two steps. Just analyze the game and see who can win.

Logic and games The crucial fact about evaluation games is this equivalence:

 A formula is true iff Verifier has a winning strategy,

while it is false iff Falsifier has a winning strategy. This follows from Zermelo’s Theorem on

“determined games”, a tepping stone toward solution procedures for games with richer

preferences than winning and losing (“Backward Induction”). In evaluation games, logical

constants change from “control expressions” for procedures to game actions like making a

 13

choice or performing a role switch. Thus, at the heart of natural language, there is a multi-

agent game algebra of its users. Actually, in game theory, the norm is imperfect information:

players need not know exactly where they are in a game tree (think of card games). Hintikka

and Sandu 1997 claim that “branching patterns” of independence between quantifiers in

natural langage involve imperfect information about objects chosen by one’s opponent.

Evaluation games are not a realistic account of discourse, which is usually about consistency

rather than truth. But modern logic has many further games that are relevant.

“Logic games” Games in logic analyze argumentation (Lorenzen 1955), compare models

(Ehrenfeucht 1957), construct models (Hodges 1985), etc. In each case, winning strategies for

various agents encode basic notions. A winning argumentation strategy is a proof for the

claim, or if the opponent wins, a counter-model. Games are at the heart of modern logic, and

quantification is deeply tied to dependent action.

Signaling games for meaning A quite different use of games in language has emerged in

Parikh 2000, Jaeger and van Rooij 2007, and Gaerdenfors and Warglien 2006. These start

from the signaling games in Lewis 1969 that analyze basic lexical meanings. We have

situations and linguistic objects that can represent them. Agents might choose any association,

but stable conventions are Nash Equilibria in a game where a Sender chooses a coding

scheme and Receiver a decoding, with some plausible assumptions on their utility functions.

Thus meanings become equilibria in language games. Richer infinite “evolutionary games”

can even explain diachronic phenomena, or emergence of linguistic conventions, using

thought experiments in terms of fitness and stability against invaders.

Integrating different games Signaling games are very different from logic games, where

meanings are given. Integration of these perspectives on natural language is an open problem.

Logic and game theory We have discussed special games for linguistic and logical activities.

But there is also an interface of logic and general game theory, in the study of strategies,

information and reasoning of agents. This involves epistemic, doxastic and dynamic logics for

analysing rational play and game solution. This relates to the sense in which computer

scientists have embraced games in multi-agent systems (Shoham and Leighton-Brown 2008),

and philosophers in epistemology (Stalnaker 1999). While this interface is not disjoint from

language and logic games, we will not pursue it here: cf. van der Hoek and Pauly 2006.

 14

Coda: temporal perspective Lexical meaning assignment, evaluation, or argumentation are

special-purpose short-term processes. These run against the backdrop of an infinite linguistic

process over time: the “operating system” of natural language. Here language dynamics meets

with temporal logics (Parikh and Ramanujam 2003, Belnap, Horty and Xu 2001), learning

theory (Kelly 1996), and infinite computational processes (Graedel, Thomas and Wilke 2003).

8 Discussion: putting the dynamics together

Dynamic semantics versus dynamic logic Dynamics in this article has two different strands.

“Dynamic semantics” is a new account of meaning, replacing truth-conditional accounts, and

generating “nonstandard logics”. By contrast, dynamic logics of information update keep the

old language with its semantics and logic, but add dynamic events as a new layer. The former

approach is implicit: the dynamics “loads” the meaning of the old language, while the latter

approach is explicit, the dynamics occurs in operators extending the old language. The

implicit/explicit contrast occurs widely in logic – but what fits natural language best?

Combined architectures How can we turn our carrousel of dynamic activities and games into

one integrated story of language use? Combining logics can be tricky. Simple decidable logics

for knowledge and time combine into highly undecidable logics for agents with perfect

memory (Halpern and Vardi 1989). No integration is known for dynamics, and we may first

need an account of “linguistic agents”, the way Turing analyzed “computing agents”.

Cognitive realities Finally, natural language is an interface where logic meets reality – and so

dynamic logics meet cognitive science. Van Benthem 2010 proposes studying language in a

broad sense here, including “successful insertions” of new logic-inspired behavior.

9 Conclusion

We have shown how natural language meets with dynamic logics of meaning and agency,

leading to new interfaces between logic, linguistics, computer science and game theory.

10 References

Abramsky, S. (2008) ‘Information, Processes and Games’, in P. Adriaans and

 J. van Benthem (eds) Handbook of the Philosophy of Information,

 Amsterdam: Elsevier, 483–549.

Baltag, A, L. Moss and S. Solecki (1998), “The Logic of Public Announcements,

Common Knowledge and Private Suspicions”, in Proceedings TARK 1998,

 43–56, Los Altos: Morgan Kaufmann.

 15

Belnap, N., M. Perloff and M. Xu (2001) Facing the Future, Oxford: Oxford University Press.

Bergstra, J., A. Ponse and S. Smolka (eds) (2001) Handbook of Process Algebra,

 Amsterdam: Elsevier.

Blackburn, P., M. de Rijke and Y. Venema (2000) Modal Logic,

 Cambridge UK: Cambridge University Press.

Brandom, R. (1994) Making It Explicit: Reasoning, Representing,

 and Discursive Commitment, Cambridge MA: Harvard University Press.

Dekker, P. (2008) “A Guide to Dynamic Semantics”, Amsterdam:

 Institute for Logic, Language and Computation.

van Ditmarsch, H., W. van der Hoek and B. Kooi (2007)

 Dynamic Epistemic Logic, Dordrecht: Springer.

A. Ehrenfeucht, A. (1957) “Application of Games to Some Problems of

 Mathematical Logic”, Bulletin Polish Academy of Sciences Cl. III, 35–37.

Fagin, R., J. Halpern, M. Vardi and Y. Moses (1995) Reasoning about

 Knowledge, Cambridge MA: MIT Press.

Gaerdenfors, P. (1988) Knowledge in Flux, Cambridge MA: MIT Press.

Gaerdenfors, P. and M. Warglien (2006) “Cooperation, Conceptual Spaces, and

 the Evolution of Semantics”, in: P. Vogt et al. (eds) Symbol Grounding

 and Beyond, Heidelberg: Springer, 16–30.

Geanakoplos, J. and H. Polemarchakis (1982) “We Can’t Disagree Forever”,

 Journal of Economic Theory 28, 192–200.

Grädel, E., W. Thomas and Th. Wilke (eds) (2003) Automata, Logics,

 and Infinite Games, Heidelberg: Springer.

Groenendijk, J. (2009) “Inquisitive Semantics: Two Possibilities for Disjunction”,

 in P. Bosch, D. Gabelaia and J. Lang (eds) Proceedings Seventh Tbilisi

 Symposium on Language, Logic and Computation, Heidelberg: Springer, 80–94.

Groenendijk, J. and M. Stokhof (1991) “Dynamic Predicate Logic”, Linguistics

and Philosophy 14, 39–100.

Groenendijk, J., M. Stokhof and F. Veltman (1996), “Coreference and Modality”,

 in S. Lappin (ed.) Handbook of Contemporary Semantic Theory,

 Oxford: Blackwell, 179–216.

Grüne Yanoff, T. and S-O Hansen (2010) Preference Change, Dordrecht: Springer.

 16

Halpern, J. and M. Vardi (1989) “The Complexity of Reasoning about Knowledge

and Time”, Journal of Computer and System Sciences 38, 195–237.

Harel, D. (1987) Algorithmics: The Spirit of Computing, Reading MA: Addison-Wesley.

Harel, D., D. Kozen, and J. Tiuryn (2000) Dynamic Logic, Cambridge MA: MIT Press.

Hintikka, J. and G. Sandu (1997) “Game-Theoretical Semantics”, in: J. van Benthem

 and A. ter Meulen (eds) Handbook of Logic and Language, 361–410.

Hodges, W. (1985) Building Models by Games, Cambridge UK: Cambridge University Press.

Jaeger, G and R. van Rooij (2007) “Language Structure: Psychological and

 Social Constraints”, Synthese 159, 99–130.

Kamp, H. and U. Reyle (1993) From Discourse to Logic, Dordrecht: Kluwer.

Kamp, H. and M. Stokhof (2008) “Information in Natural Language,” in P. Adriaans

 and J. van Benthem (eds) Handbook of the Philosophy of Information,

 Amsterdam: Elsevier, 49–111.

Kelly, K. (1996) The Logic of Reliable Inquiry, Oxford: Oxford University Press.

Lewis, D. (1969) Convention, Cambridge MA: Harvard University Press.

Lewis, D. (1979) “Scorekeeping in a Language Game”, Journal of Philosophical Logic

 8, 339–359.

Meulen, A. ter (1995) Representing Time in Natural Language: The Dynamic.

 Interpretation of Tense and Aspect, Cambridge MA: MIT Press.

Montague, R. (1974) Formal Philosophy, New Haven: Yale University Press

 (edited by R. H. Thomason).

Parikh, P. (2000) The Use of Language, Stanford: CSLI Publications.

Parikh R. and R. Ramanujam (2003) “A Knowledge-Based Semantics of Messages”,

 Journal of Logic, Language and Information 12, 453–467.

Searle, J. and D. Vanderveken (1985) Foundations of Illocutionary Logic.

 Cambridge UK: Cambridge University Press.

Shoham Y. and K. Leyton-Brown (2008) Multiagent Systems: Algorithmic, Game

 Theoretic and Logical Foundations, Cambridge UK: Cambridge University Press.

Stalnaker, R. (1978) “Assertion”, in P. Cole (ed.) Syntax and Semantics 9,

 New York: Academic Press, 315–32.

Stalnaker, R. (1999) “Extensive and Strategic Form: Games and Models for Games”,

 Research in Economics 53, 293-291.

Van Benthem, J. (1996) Exploring Logical Dynamics, Stanford: CSLI Publications.

 17

Van Benthem, J. (1999) Logic in Games, Amsterdam: Institute for Logic, Language and

 Computation. To appear in Texts in Logic and Games, Springer.

Van Benthem, J. (2010) Logical Dynamics of Information and Interaction,

 Cambridge: Cambridge University Press.

Van Benthem, J. and A. ter Meulen, eds. (1997) Handbook of Logic and Language,

 Amsterdam: Elsevier Science Publishers.

Van der Hoek, W. and M. Pauly (2006) “Modal Logic for Games and Information”,

in P. Blackburn, J. van Benthem and F. Wolter (eds) Handbook of

Modal Logic, Amsterdam: Elsevier Science Publishers, 1077–1148.

Van Leeuwen, J. (ed.) (1990) Handbook of Theoretical Computer Science,

 Amsterdam: Elsevier.

Veltman, F. (1996), “Defaults in Update Semantics”, Journal of Philosophical

Logic 25 221–261.

