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Abstract

Information control has been subject of investigation in the fields of informa-
tion theory and social network analysis. Gatekeepers play a central role, as
they are the agents that can manipulate the information flow between groups
of agents. In this thesis, we present a formal model, which captures the es-
sential properties of gatekeepers in a network. Firstly, we use graph theory
to explore the structural dimension of gatekeepers. Secondly, we use notions
from Dynamic Epistemic Logic and Coalition Logic to model the dynamism of
their informational capabilities. We find that gatekeepers can be categorized
in three distinct subclasses, which differ in terms of their structural properties,
or type of information control. This approach contributes both to the field
of information theory and communication science, by providing insights on
which agents can exert information control and of what type, and to the ’logic
in the community’ agenda, by investigating an intersection between logic and
the social sciences.
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1 Introduction

In early 2018, the Facebook-Cambridge Analytica scandal erupted. It came out
that personal data of almost 90 million Facebook users have been harvested,
largely without permission [1], and strategically used to design several political
campaigns around the world. These included Donald Trump’s campaign for
the presidential elections of 2016 [2] and the Brexit referendum [3]. Facebook
controlled the harvesting of information, and its strategic use was allowed by
Cambridge Analytica, which constructed psychographic profiles of Facebook
users out of it [4]. Alexander Nix, head of Cambridge Analytica, stated that with
such profiles it is possible to achieve microtargeted persuasion and manipulate
voters decision making [5][4].

This is a case of unregulated information control, where access to personal
data of millions of people were used to sway voters and direct their choices
to a desired outcome. Before the revelation of data misuse, Facebook users
around the world were hardly aware that their private information could be
so deployed, and what consequences the control of such a huge amount of
information could have. And as important as knowing that information can be
strategically controlled in such negative ways, is to know exactly who can do
so, i.e. who controls the gates where this information flows. Only knowing
who these agents are we can limit their power and protect our personal data
from being illicitly used.

In the literature, agents that have the power to control the information flow
between two groups of agents are called gatekeepers [6][7][8], and in this the-
sis we focus on them. The notion was crafted in the mid-twentieth century
by the psychologist Kurt Lewin, who conceptualized gatekeeping as “includ-
ing all form of information control” [9]. Since then, the concept has been
applied to very distinct fields, ranging from chemistry and biology [10] to po-
litical science [11], sociology [12], or management and technology theories [13].
However, Barzilai-Nahon [6] shows that the systematic study of such concept
remains compartmentalized, namely the “discourse on the topic of gatekeeping
is conducted within each discipline, in relative isolation”. This results in the
concept of gatekeeper lacking a full theoretical status [6]. Consequently, she
worked towards a generalization of the gatekeeping theory, aiming to achieve
a discipline-neutral framework that encompasses all the different applications
of the notion [7]. In order to achieve this generalization, she proposes to take
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the perspective of networks and information societies.

In this thesis, we aim at contributing to Barzilai-Nahon’s project, by provid-
ing a formalization of the gatekeeper phenomenon in social networks. While
Barzilai-Nahon concentrates on the role of the gated, we will focus on network
gatekeepers themselves and on the analysis of their informational capabilities.
We will propose a distinction internal to the notion of gatekeeper, namely the
distinction between its positive power to enable the information flow and its
negative power to block it. We will show that the positive and negative ca-
pabilities can be described in terms of graph theoretical properties of social
networks, and that they capture the necessary or sufficient conditions to either
enable or block the information flow between two groups. By combining or
generalizing these properties, we will construct distinct versions of network
gatekeepers. Notably, the distinction between positive and negative capabil-
ities, of necessary and sufficient conditions to control the flow, as well as of
kinds of gatekeepers, are captured for the first time in this work. We believe
that this provides insightful theoretical specifications, that will contribute to the
understanding of which agents in the network can exert information control,
and to what extent.

To this structural and graph theoretical analysis of gatekeepers, the logical
and informational ones will follow. Through suitably defined logics, we will
represent the informational capabilities that gatekeepers have, and thus the
correspondence between their structural and informational properties. We will
use modal languages to characterize the network structure and the structural
notions that we will introduce. In particular, we will use an hybrid version of
propositional dynamic logic (PDL) to express some basic network properties,
such as the existence of paths from a particular node to another. The logic
we will use for this part resembles a non-epistemic form of Facebook logic, as
proposed by Seligman et al. [14], and it is based on Social Network Models, as
in Smets et al. [15]. We will then move to describe the informational capabilities
that each kind of gatekeeper possesses, by means of a mixture of different logics.
We will use notions from dynamic epistemic logic [16] to model the dynamics of
posting actions. The framework that will result similar to the public broadcast
network as proposed by Roelofsen [17], in that every agent can only publicly
address the rest of her friends as a whole. This kind of communicative action
will be used as a model transformer, introducing dynamism to network logic.
In addition, we will use notions from coalition logic [18] [19], or STIT logic [20],
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to express that gatekeepers can force an outcome, namely enabling or blocking
the information flow, if working together as a coalition.

Note that the logic part of this thesis (chapter 5 and 6) intends to investigate the
relationships between the informational dynamics, and the social structures in
which these take place, from a logic perspective. Then, while on the one hand
this work advances the understanding of the gatekeeping dynamics, on the
other it also contributes to van Benthem [21] or to Seligman et al. [22] agenda
of exploring the intersections between logic and the social sciences.

To conclude the introductory part, let us see the structure of this thesis. In the
second chapter, we will firstly present some of the literature on gatekeeping
theory, and secondly some notions of graph theory that will be taken for granted
in what will follow. In the third chapter, we will introduce the structural notions
that will then be used to construct the three versions of gatekeepers in social
networks. The latter will compose the fourth chapter. In the fifth chapter, we
will introduce network logic and provide the characterization of the structural
notions in this logic. In the sixth chapter, we will introduce the coalition logic
for posting action, and then use it to capture the informational capabilities of
gatekeepers. We will conclude with the seventh chapter, by suggesting possible
future directions of the present work.

2 Preliminaries

2.1 Gatekeepers in the literature

The concept of gatekeeper has spawned an extensive and diverse literature. In
all such literature, the notion is used as a metaphor, referring to objects or agents
that control the passage of some other objects, of some other agents, or simply
of some information, through a gate. In this brief overview, we will focus on
the branches of this literature that apply the metaphor to settings that are both
social and informational, i.e. to agents and their interactions, for this is the topic
of the present thesis. We will see how (1) communication theory, (2) sociology
or anthropology, and (3) economics or business theory use the notion, and what
aspects of gatekeeping they focus on. Note that the perspective we will take
in this thesis will differ from the ones taken there, as we will not study the
concept as applied to some particular field or phenomena. Rather, we will take a
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more abstract perspective, even though still social and informational, and study
gatekeepers as (unspecified) agents entertaining determinate central positions
in a social network. As said in the introduction, Barzilai-Nahon [6] already
paved the way for this kind of study. Then, after having briefly presented
the three branches mentioned above, we will also see the core elements of
Barzilai-Nahon’s network gatekeeping theory. Note that we mainly consider
Barzilai-Nahon’s work, as it is the most systematic analysis of gatekeepers in
social networks to date. However, the concept has been studied from the same
social network perspective also by other scholars, and so we will mention also
the definition of gatekeeper that has been put forward by them.

(1) Communication Theory: In this field, the gatekeeping metaphor is mainly
applied to editors and journalist, namely to those agents that decide what
information is closed off from media attention and what information
can instead pass through the gate. This literature analyses the process
through which the information is selected and shaped, underlying ”how
even single, seemingly trivial gatekeeping decisions can come together
to shape an audiences view of the world” [8]. Hence, the primary focus
here is on the selection process that the gatekeeping activity involves, in
particular on the biases that it introduces in the information system.

(2) Sociology and Anthropology: In these fields, the focus is rather on the fact
that gatekeepers have access to qualitative information that is unavailable
to some other agents. The gatekeeping metaphor is used, for example, to
refer to key informants, who are essential parts of ethnographic fieldwork.
In this kind of investigation, the researcher lives in a community or a
tribe and documents her findings. A key informant is a member of the
community that has extensive and specialized knowledge about it, and
is willing to share it with the researcher [12]. Hence, the primary focus
here is on the access to reliable information that gatekeepers can make
available to the researcher.

(3) Economics or Business Theory: These fields use the gatekeeping metaphor
in yet another sense. They apply it to traders or brokers, namely to agents
who connect mutually disconnected parts of the community and thereby
have access to the heterogeneous information residing there [12]. This ac-
cess is described as an informational advantage, for the information they
have access to is used to come up with new ideas and thus to obtain new
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gains. Hence, the primary focus here is on the capability of gatekeepers
to combine the diversified information they have access to, and the gains
they derive from them.

These three examples briefly illustrate how the notion is used in the literature.
Let us now see the main elements of Barzilai-Nahon’s Network Gatekeeping The-
ory, which relates more closely to the present work. This theory is divided in
two parts: network gatekeeping identification, and network gatekeeping salience. The
identification part is a descriptive theory and it systematizes the answer to the
question: “who are network gatekeepers and what constitutes network gate-
keeping and its mechanisms?”. The salience part is instead a normative theory,
aimed at explaining to whom and to what gatekeepers should pay attention.
Since this thesis will concentrate on the description and representation of the
notion of gatekeeper in networks, we will consider only the first and not the
second part of the theory.

The descriptive theory introduces the basic definitions of network gatekeepers
and of their capabilities. Its primitive constructs are the following:

- Network gatekeeper, defined as “an entity (people, organizations, or gov-
ernments) that has the discretion to exercise gatekeeping through a gate-
keeping mechanism in networks, and can choose the extent to which to
exercise it contingent upon the gated standing”;

- Gatekeeping, defined as “the process of controlling information as it moves
through a gate”;

- Gatekeeping mechanism, defined as the “tool, technology or methodology”
through which these activities are performed;

- Gated are the agents that are subject to the gatekeeping;

- Gate is the channel through which the controlled information passes.

In this thesis, we will mainly focus on the first two primitive constructs. By tak-
ing ”control” to mean both enabling and blocking the information flow, we will
contribute to Barzilai-Nahon’s study and specify what network gatekeepers are
from a purely structural or graph theoretical perspective.

Note that Barzilai-Nahon’s definition of network gatekeeper does not explicitly
mention the structural properties that these agents must have. However, by
equating gatekeepers to agents that can perform a set of specific actions in
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networks, she must be implicitly assuming that for an agent to be a gatekeeper,
he must occupy a particular position in the network, i.e. he must satisfy some
particular structural properties. In fact, other authors represent gatekeepers
as agents that have specific properties in the network. For example, D. Easley
and J. Keinberg represent gatekeepers in terms of structural properties [25].
They define gatekeepers as those agents that lie in every path between other
two distinct agents. We will see below that this is their global version of the
gatekeeper, but they also distinguish a local version of it.

2.2 Graph Theory for Social Networks

As mentioned above, social network structures can be represented through
graph theoretical means. In this section, we will introduce the basic notions
from graph theory that will be used in this work.

A graph is defined as a pair composed by a set of nodes and a set of edges
[26].

Definition 2.1. (Graph). We say that a graph N is a pair N = (A,R), whereA is
a non-empty and finite set of nodes and R is a relation between them.

We define a social network as a graph where nodes are interpreted as agents and
edges as relations between them. The graph is meant to represent a snapshot of a
social network in time, so to capture its configuration in a given moment. Then,
the set of agents is finite and the relations between them fixed. The relations
represent social relations as friendships or acquaintanceships. These are two-
directional relations, in the sense that the agents can exchange information in
both directions. Since we are interested in modelling the interaction between
agents, we consider only relationships between distinct agents, and exclude
reflexive relationships as well as solitary agents (agents not related with any
other agent). Such properties are represented by symmetric relationships, with
no self-loops and where every agent has at least a friend or acquaintance in the
network.

Definition 2.2. (Network). We say that a network N is a pair N = (A,R), where
A is a non-empty and finite set of agents and R is a relation such that for every
a ∈ A

(a, a) < R (Irreflexivity);
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for every b ∈ A, if a , b, then (a, b) ∈ R iff (b, a) ∈ R (Symmetry);

there exists at least a b ∈ A such that (a, b) ∈ R. (Seriality);

Given a network, we introduce the notion of path, taken from the literature on
graph theory [26], which will be used extensively in this thesis.

Definition 2.3. (Path). Let N = (A,R) be a social network and consider some
a, b ∈ A. We say that P ⊆ N is a path iff it is a sequence of agents that links a to
b, i.e. P := (aRx1R . . .RxnRb), with xi ∈ A.

To express that an agent a lies on a path P, we will say that a ∈ P. This is a
little abuse of notation, as paths are sets of ordered pairs, but we are confident
that the reader will not be mislead by it. Similarly, we will say that a set of
agents A ⊆ A is a path, when actually it is the case that the agents in A form a
path.

The next definitions capture the notion of non-redundant and minimal paths
belonging to a social network N = (A,R).

Definition 2.4. (Non-Redundant Path). Let a, b be two agents and P := (aRx1R . . .RxnRb)
be a path linking them. We say that P is a non-redundant path between a, b iff
for every xi, x j ∈ P we have xi , x j.

The non-redundancy of a path implies that no agent belonging to it appears
more than one time, thereby avoiding cycles. Also minimal paths avoid circles,
but for another reason. Let us see their definition.

Definition 2.5. (Minimal Path). Let a, b be two agents and P be a path linking
them. We say that P is a minimal path between a, b iff for every P′ ⊂ P, P′ is not
a path linking a, b.

Minimal paths are minimal connections between two points, so they can contain
no cycle. Note that minimality does not coincide with non-redundancy. The
following example shows it.

Example 2.6. Let N = (A,R) be the network represented in Figure 1. We claim
that there exists a minimal and non-redundant path between two agents, and a
non-redundant but not minimal path in it, thus the two notions do not coincide.

Let P := (aRbRcRdReR f ) and P′ := (aRbReR f ). Note that in P′ there exists no
subset that is a path linking a, f , thus P′ is a minimal path between the two
agents. Moreover, note that P′ ⊂ P, so P is not a minimal path connecting
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a b

c d

e f

Figure 1

a, f . However, P is a non-redundant path between them, as there is no agent
that appears two times in the path. Hence, we can conclude that there exists
paths that are non-redundant but not minimal and that the two notions do not
coincide.

However, the minimality of a path implies its non-redundancy, as the next
proposition shows.

Proposition 2.7. For any path P linking two agents a, b in a social network N =

(A,R), if P is a minimal path between a, b then P is a non-redundant path between a, b.

Proof. Let N = (A,R) be a social network. We proceed by contraposition.
Consider some a, b ∈ A and let P be a redundant path between a, b. Since R
is not reflexive, then the redundancy of P implies that at least two agents are
repeated in the path, i.e. P := (aR . . .RxiRx j . . .RxiRx j . . .Rb). Consider P′ ⊂ P
such that P′ := (aR . . .RxiRx j . . .Rb), i.e. P′ does not contain the repetition of
xi, x j. The sub-path P′ still links a, b. By definition this means that P is not
minimal. We can conclude that for any path P linking two agents a, b, if P is a
minimal path between a, b then P is a non-redundant path between a, b. �

3 Structural Notions

In this chapter, we introduce the structural definitions that will be used later
for the construction of gatekeepers in social networks. We distinguish five
notions that capture the sufficient conditions for sets of agents to either enable
or block the information flow between groups in the network. Not many of
these notions will have the property of being necessary to enable or block the
information flow. This property will instead belong to gatekeepers, which will
result from the interplay between notions that we will introduce here.
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The chapter is structured as follows. For each notion, we firstly provide the
definition, an example illustrating it and its property of being a set of agents
that is sufficient to enable or block the information flow. Subsequently, we
uncover some other properties of the notion, in particular those that will be
relevant for our subsequent discussion. We start with the definition of group of
agents, disconnected groups and connector between them. Then, we propose
the notions of bridge and bridging set between them. All these notions will be
shown sufficient to enable the information flow. Lastly, we introduce the defi-
nitions of blocking set and its minimal version, which will be shown sufficient
to block the information flow between the groups.

3.1 Groups

Social networks were formally discussed in the preliminary chapter. In the
same section we introduced the notion of connected network, namely a network
where for every two agents there exists at least a path that links them. If that
happens, then the agents in the network are closed under communication flow.
This means that the information can spread among the agents, as there exists
at least one channel through which the information can circulate. The notion
of group we propose is meant to capture the notion of being closed under
communication flow.

Note that in what follows, we will use the convention that lower case letters rep-
resent agents, while upper case letters represent sets or groups of agents.

Definition 3.1. (Group). Let G be any non-empty G ⊆ A of a network N =

(A,R), and consider some distinct a, b ∈ G. We call G a group iff there exists a
path P := (a = a0Ra1R . . .Ran = b), such that for every ai ∈ P, we have ai ∈ G.

In other words, a group is a set of connected agents. Importantly, the exis-
tence of a path between two agents is a sufficient condition for the information
to flow among those agents. In every definition we will introduce below, re-
member that when the agents form a group, then they satisfy this sufficiency
condition.

Note that not every set of agents forms a group. By definition, if a set of agents
G is not a group, then for every two agents g, g′ in G there is no path connecting
them and the information flow between them is blocked. Generalized for two
distinct groups G,G′ instead of single agents, this amounts to say that there is
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no agent g ∈ G and no agent g′ ∈ G′ such that (g, g′) ∈ R. In other words, the
union of G,G′ does not form a group.

Definition 3.2. (Disconnected Groups). Let G,G′ be two distinct groups. We say
that G,G′ are disconnected groups iff G ∪ G′ is not a group.

The notion of disconnected groups is central in our discussion. In this the-
sis, we focus on the power that gatekeepers have to control the information
flow between two groups of agents. Then, the two groups must not be directly
connected to each other, as otherwise they would be capable of direct communi-
cation and no control of the flow by external agents would be possible. Clearly,
this also implies that another important notion is the one defining the agents
that connect two disconnected groups, which we call the connector.

Definition 3.3. (Connector). Let G,G′ be two disconnected groups. We say that
B ⊂ A is a connector between G,G′ iff G ∪ G′ ∪ B is a group.

This notion will be particularly relevant in the definitions that follow. Essen-
tially, it is the set of agents that allows two disconnected groups to be closed
under communication flows, i.e. that connects them. Since it allows the set to
form a group, then a connector is sufficient to enable the information flow be-
tween them. However, connectors might contain agents that are not sufficient
nor necessary to connect the groups, and thus to enable the flow. The example
below will clarify this, as well as the distinctions between groups, connectors
and disconnected groups.

Example 3.4. Let G,G′,G′′ be the three distinct sets of agents represented in
Figure 2. We claim that (i) G is a group, while G′,G′′ are not; (ii) for any two
of these groups, they are disconnected; (iii) {d, b} is a connector between {a},{c},
and {l} is a connector between {m}, {i}.

Proof. (i) Consider G = {a, b, c, d}. Since G , ∅ and for every x, y ∈ G there
exists a path P := (x = x0Rx1R . . .Rxn = y), such that for every xi ∈ P, we
have xi ∈ G, then by definition of group G is a group.

Consider G′ = {e, f , g, h}. There exists an agent, namely e, such that for any
x ∈ G′ such that x , e there is no path P such that P := (x = x0Rx1R . . .Rxn =

e). So G′ does not satisfy the definition of group.

Consider G′′ = {l,m,n}. In G′′ there exists an agent, namely n, such that
for any path P := (x = x0Rx1R . . .Rxk = n), P contains an agent not in G′′,
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namely i. Then, G′′ does not satisfy the definition of group.

(ii) Consider G,G′. There exists no g ∈ G and g′ ∈ G′ such that (g, g′) ∈ R.
Thus, G,G′ are disconnected. Analogous reasoning holds for G,G′′ and
G′,G′′.

(iii) Consider {d, b}. Note that {a} and {c} are trivially groups and that {a} ∪ {c}
is not a group, i.e. {a} and {c} are disconnected. We showed above that G
is a group, then {d, b} is a connector between {a} and {c}.

Consider {l}. Note that {i} and {m} are trivially groups and that {i} ∪ {m}
is not a group, i.e. they are disconnected. Since {l} ∪ {i} ∪ {m} is a group,
then {l} is a connector between {i} and {m}. �

Part (iii) of this example helps us appreciating the distinction between the
necessary and sufficient sets of agents to enable the information flow. The
set of agents {d, b} is necessary and sufficient to enable the information flow
between a and c. Necessary, because without it the information would not
flow; Sufficient, because with it the information can flow. If we go at the
level of agents, every agent in the set is sufficient, but not necessary for the
information to flow, as the reader can easily verify. Instead, the set and the
agent in the set {l} are both necessary and sufficient to enable the flow between
i and m.

Properties of groups, disconnected groups and connectors

The first property we show is about existence and (non) uniqueness of groups.
Clearly, the notion of group is not unique, as there might be distinct connected
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sets in a network. Moreover, recall that in the definition of social networks, we
excluded the existence of solitary agents. Then, there always exists at least a
set of two connected agents, i.e. for every network there always exists at least
one group.

The second property we show is about disconnected groups, and it is almost
immediate from their definition. It says that if two groups of agents are discon-
nected then they can have no agents in common. This is because otherwise the
groups will be connected through those common agents.

Proposition 3.5. For any two distinct groups G,G′, if they are disconnected, then
G ∩ G′ = ∅.

Proof. Let G,G′ be two distinct and disconnected groups. Suppose towards
contradiction that G∩G′ = {g0, . . . , gn}. Since G,G′ are distinct, then there exist
a gi ∈ G and a distinct g j ∈ G′ such that (gi, g j) ∈ R, by definition of group. This
contradicts the assumption that G,G′ are disconnected. Hence, G ∩ G′ = ∅. �

We now turn to the existence and non-emptyness of connectors between two
groups. The non-emptyness depends on the fact that we assume to be working
in a connected component of the network.

Proposition 3.6. For any two disconnected groups G,G′ in the same connected com-
ponent N of the network, there exists a connector C between them.

Proof. Let G,G′ be two disconnected groups in the same connected component
N of the network. Consider N′ = N \ (G ∪ G′). Since G ∪ G′ is not a group, but
(G∪G′) ⊂ N and N is connected, i.e. a group, then G∪G′∪N′ must be a group.
This means that N′ is a connector between G,G′. �

Proposition 3.7. For any two disconnected groups G,G′ in the same connected com-
ponent N of the network, and for every connector C between them, we have C , ∅.

Proof. Let G,G′ be two disconnected groups in the same connected component
N of the network and let C be an arbitrary connector between them. Suppose
towards contradiction that C is empty. Then G ∪ G′ ∪ ∅ = G ∪ G′ is a group,
which contradicts the assumption that G,G′ are disconnected. Thus, C , ∅.
Since C and G,G′ were chosen arbitrarily, this holds for every two disconnected
groups and for every connector between them. �
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Note that connectors are not unique, as it is clearly possible to define two sets
of agents B,B′ that connect the disconnected groups.

3.2 Bridge

A bridge is the minimal set of agents that connects two disconnected groups. It
is minimal, as each member of the bridge has the property of being necessary
for the two groups to be connected through the bridge itself. However, we show
that a bridge is not necessarily the only connection between two disconnected
groups. Multiple bridges can connect two groups at the same time, i.e. the
notion of bridge is not unique. Moreover, we show that a bridge is a linear path
and a minimal connector between two disconnected groups, and that its agents
form a group. The realistic exemplification of this notion will come after the
analysis of local gatekeepers.

Definition 3.8. (Bridge). Let G,G′ be two disconnected groups and consider
some B ⊂ A. We say that B is a bridge between G,G′ iff

(B+) B is a connector between G,G′;

(B-) for every b ∈ B, B \ {b} is not a connector between G,G′.

Recall that by definition of connector between two disconnected groups, clause
(B+) means that G ∪ G′ ∪ B is a group. Then bridges are set of agents that are
sufficient to enable the information flow between the groups. Moreover, by
clause (B-), every agent in a bridge is necessary for the connection of the two
groups through the bridge itself.

Note that bridges might contain just one agent. When this will be the case, we
will call the bridge single-agent bridge. We will apply the same terminological
rule for every notion we will introduce from now on.

Let us see an example of what a bridge is and what it is not.

Example 3.9. Let N = (A,R) be the network represented in Figure 3, and let
G,G′ be the two disconnected groups in it. We claim that B = {a, b} is a bridge
between G,G′, but B′ = {a, b, c} is not.

Proof. Consider B = {a, b}. All the agents in B are connected by a path, i.e. B
is a group. Note that a is connected to group G and b is connected to group
G′. Then, the set G ∪ G′ ∪ B is a union of groups connected to each others,
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i.e. it is a group itself. Then, B is a connector between G,G′ and satisfies
(B+). Moreover, G ∪ G′ ∪ (B \ {a}) is not a group, as G is disconnected from
(B \ {a})∪G′. Analogously for b. This amounts to say that for every agent x ∈ B,
G ∪ G′ ∪ (B \ {x}) is not a group, i.e., B satisfies (B-) as well. Thus, B is a bridge
between G,G′.

Consider B′ = {a, b, c}. The set {a, b, c} connects the two otherwise disconnected
groups G,G′. Then, G ∪ G′ ∪ {c} is a group, i.e. B′ is a connector between G,G′

and it satisfies (B+). But G ∪ G′ ∪ (B′ \ {c}) = G ∪ G′ ∪ B and we saw that B is a
connector between G,G′. This means that B′ does not satisfy (B-). Thus, B′ is
not a bridge between G,G′. �

Properties of Bridges

The first two properties we introduce are existence and non-uniqueness of
bridges between two groups.

Proposition 3.10. For every connected component N of a social network, for every
two disconnected groups G,G′ in N, and for every connector C between G,G′, there
exists a bridge B ⊂ C between G,G′ such that B , ∅.

Proof. Let G,G′ be two disconnected groups in the same connected network
N = (A,R). Consider a connector C ⊂ A between them. Since N is connected,
by Proposition 3.6, there exists at least one connector C such that C , ∅. If C is
a bridge, then we are done. If not, then it means that there exists some b ∈ C
such that G ∪ G′ ∪ (C \ {b}) is still a group. So consider C′ = C \ {b}. We know
that G ∪ G′ ∪ C′ is a group. If C′ is a bridge, then we are done. If not, then it
means that there exists some b′ ∈ C′ such that G∪G′ ∪ (C′ \ {b′}) is still a group.
Repeat the procedure till you get to some Cn such that G ∪ G′ ∪ (Cn

\ {bn
}) is
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not a group anymore. Then Cn is a bridge between G,G′. Since G,G′ and C
were chosen arbitrarily, we can conclude that for any G,G′ ⊆ A that are two
disconnected groups in the same connected component N of the network, and
for any connector C between them, there exists a bridge C between G,G′. �

To ensure existence of the notions that we are going to introduce from now on,
let us assume that the network where they lie is connected.

Example 3.11. (Non-uniqueness of bridges). Let N = (A,R) be the network rep-
resented in Figure 4, and let G,G′ be the two disconnected groups represented
in it. We claim that B and B′ are bridges between G,G′.

G!� G� a b 

c 

B� 

B!� 

Figure 4

Proof. Consider B = {a, b}. All the agents in B are connected by a path, i.e. B
is a group. Note that a is connected to group G and b is connected to group
G′. Then, the set G ∪ G′ ∪ B is a union of groups connected to each others,
i.e. it is a group itself. Then, B is a connector between G,G′ and satisfies
(B+). Moreover, G ∪ G′ ∪ (B \ {a}) is not a group, as G is disconnected from
(B \ {a})∪G′. Analogously for b. This amounts to say that for every agent x ∈ B,
G ∪ G′ ∪ (B \ {x}) is not a group, i.e., B satisfies (B-) as well. Thus, B is a bridge
between G,G′.

Consider B′ = {c}. The set {c} connects the two otherwise disconnected groups
G,G′. Then, G ∪ G′ ∪ {c} is a group, i.e. B′ is a connector between G,G′ and it
satisfies (B+). Moreover, G∪G′∪(B\{c}) = G∪G′. Since G∪G′ are disconnected,
then G∪G′ is not a group. This means that B satisfies (B-) as well. Thus, B′ is a
bridge between G,G′.

We can conclude that between the same two groups G,G′ there can be more
than one bridge. Hence, bridges are not unique. �
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We now move to show a minimality property of bridges. Because of clause
(B-), bridges are minimal connectors between the groups.

Proposition 3.12. For any two disconnected groups G,G′ and for any connector
B ⊂ A between them, the following are equivalent:

(1) B satisfies (B-);

(2) B satisfies (B-)’: for every B′ ⊂ B, B′ is not a connector between G,G′.

Proof. Let B ⊂ A be a connector between two disconnected groups G,G′ .

(1) ⇒ (2). Let B satisfy (B-). By definition, B is then a bridge between
G,G′. By Proposition 3.10 we know that B , ∅, so let B = {b1, . . . , bn} for
some arbitrary n. We proceed by induction on the cardinality of B′ ⊂ B,
with B′ , ∅. We show that for every m, there does not exist any B′, with
|B′| = m and 0 < m < n, such that G ∪ G′ ∪ (B \ B′) is a group.

- Base Case: Let m = 1. Then |B′| = 1 and B′ = {b1} for some b1 ∈ B.
By (B-) definition of bridge, G∪G′ ∪ (B \ {b1}) is not a group. Hence,
when m = 1, G ∪ G′ ∪ (B \ B′) is not a group.

- Induction step: Assume that the induction hypothesis holds for m,
i.e. there exists no B′ ⊆ B, with |B′| = m, such that G ∪ G′ ∪ (B \ B′)
is a group. For simplicity, let us call Bm the sets with m elements,
and Bm+1 the sets with m + 1 elements. Now we want to show
that for Bm+1 too it is the case that for every Bm+1 ⊆ B, we have
G ∪ G′ ∪ (B \ Bm+1) is not a group. Suppose towards contradiction
that this is not the case. Then, there exists at least one Bm+1 ⊆ B,
such that G ∪ G′ ∪ (B \ Bm+1) is a group. Consider the Bm such that
Bm ⊂ Bm+1. Then (B \ Bm) = (B \ Bm+1) ∪ {bi} for some bi ∈ B. By
induction hypothesis we know that G ∪ G′ ∪ (B \ Bm+1) ∪ {bi} is not
a group, and by assumption we know that G ∪ G′ ∪ (B \ Bm+1) is a
group. Now suppose that bi is connected to either G,G′ or (B \Bm+1).
Then G ∪ G′ ∪ (B \ Bm+1) ∪ {bi}would be a group, which is not. So bi

must be disconnected from G∪G′ ∪ (B \ Bm+1). But bi ∈ B, and B is a
bridge. By (1) above we know that B is a group, so for no bi ∈ B it can
be the case that bi is disconnected from some other b j ∈ B. We know
that at least one b j ∈ B such that b j , bi exists, as Bm ⊂ Bm+1 ⊆ B and
each of them is non-empty, which means that |B| ≥ 2. Contradiction.
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Thus, for every Bm+1 ⊆ B, we have G∪G′ ∪ (B \ Bm+1) is not a group.

We can conclude that for every m, there does not exist any B′, with |B′| = m
and 0 < m < n, such that G ∪ G′ ∪ (B \ B′) is a group. Since n was chosen
arbitrarily, this holds for every n such that B = {b1, . . . , bn}. Moreover, let
B′′ = (B \ B′). Since for every B′ we have that B′ ⊂ B, then our result is
equivalent to saying that for every B′′, we have that B′′ ⊂ B and G∪G′∪B′′

is not a group, i.e. B satisfies (B-)’.

(2)⇒ (1). Assume that (B-)’ holds for B, i.e. assume that for every B′ ⊂ B,
G∪G′∪B′ is not a group. Consider an arbitrary b ∈ B and let B′ = (B\{b}).
Since B′ ⊂ B then G∪G′ ∪ B′ is not a group. By definition, B satisfies (B-).

We can conclude that for any two disconnected groups G,G′ and for any con-
nector B ⊂ A between them, B satisfies (B-) iff B satisfies (B-)’. �

The above proposition shows that clause (B) of definition of bridge is equivalent
to clause (B’). The latter clause says that bridges are minimal connectors between
the two groups, and that they can be equivalently defined in terms of minimal
connectors. We now show another way in which bridges can be equivalently
defined, namely as minimal paths between the groups. This result also follows
from the proposition just proved.

Proposition 3.13. For any two disconnected groups G,G′ and for any B ⊂ A, the
following are equivalent.

(1) B is a bridge between G,G′;

(2) B is a minimal path between some g ∈ G and some g′ ∈ G′.

Proof. Let G,G′ be two disconnected groups and consider some B ⊂ A. B is a
minimal path between some g ∈ G and g′ ∈ G′ iff there exists no B′ ⊂ B such
that G ∪ G′ ∪ B′ is a group iff B is a minimal connector between G,G′ iff B is a
bridge between G,G′, by Proposition 3.12.

We can conclude that B is a bridge between G,G′ iff B is a minimal path between
some g ∈ G and some g′ ∈ G′. �

By Proposition 2.7, if a path between two agents is minimal, then it is also
non-redundant. Therefore, this proposition implies that bridges are also non-
redundant paths between two agents in the groups.
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Proposition 3.14. For any B ⊂ A, if B is a bridge between two disconnected groups
G,G′, then (1) B , ∅; (2) (G ∪ G′) ∩ B = ∅; (3) B is a group.

Proof. Let B ⊂ A be a bridge between two disconnected groups G,G′.

(1) By definition of bridge, B is a connector between G,G′. Then, by Propo-
sition 3.7, B , ∅.

(2) Suppose towards contradiction that (G ∪G′) ∩ B = B′ and let B′′ = B \ B′.
Clearly, B′′ ⊂ B and G∪G′∪B′′ is a group, which contradicts the minimality
of bridges. Hence (G ∪ G′) ∩ B = ∅.

(3) By Proposition 3.10 we know that B , ∅. So let B = {b1, . . . , bn} for some
arbitrary n. We proceed by induction on the cardinality of B. We prove
that for every n, B is a group.

- Base Case: If B = {b1} then B is trivially a group.

- Induction step: Assume that the induction hypothesis holds for n,
i.e. that B′ = {b1, . . . , bn} is a group. Now we want to show that
B = B′ ∪ {bn+1} is a group too.
Suppose towards contradiction that B is not a group. Since by in-
duction hypothesis B′ is a group, the only agent in B disconnected
from the other members of B must be bn+1. Since B is a bridge be-
tween G,G′, then by (B+) we know that G∪G′ ∪ B is a group. Then,
three cases: (i) there exists some g ∈ G and some g′ ∈ G′ such that
(g, bn+1) ∈ R and (bn+1, g′) ∈ R; (ii) there exists some g ∈ G such that
(g, bn+1) ∈ R; (iii) there exists some g′ ∈ G such that (bn+1, g′) ∈ R.
In each of the three cases, G ∪ G′ ∪ (B \ {bn+1}) is a group, which
contradicts (B-) of bridge definition. Hence, B = {b1, . . . , bn, bn+1} is a
group.

We can conclude that for every n, B = {b1, . . . , bn} is a group.

�

Linearity of the Bridge

In this subsection, we show that bridges are linear sets of agents connecting
two groups, i.e., paths that do not branch. To explain this, we introduce the
definition of linearity. Recall that social networks are based on a relation R that
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is defined as irreflexive and symmetric. For such a relation, linearity amounts
to saying that every agent a, if a is in a bridge B, then a has at most two other
friends in B.

Definition 3.15. (Linear Order.) For every B ⊆ A, B is linearly ordered iff for
every a ∈ B there exist at most two other b, c ∈ B such that (a, c) ∈ R and (a, b) ∈ R.

Proposition 3.16. For any B ⊂ A, if B is a bridge between some disconnected groups
G,G′, then B is linearly ordered.

Proof. Let B ⊂ A be a bridge between some disconnected groups G,G′. Suppose
towards contradiction that B is not linearly ordered, i.e. there exists some a ∈ B
such that for three distinct agents b, c, d ∈ B, (distinct both from a and between
each others), we have (a, b) ∈ R, (a, c) ∈ R, (a, d) ∈ R. By (B+) and Proposition
3.14, B is a group that connects G to G′, and G ∪ G′ are not connected. But
a, b, c, d are distinct agents, so that in B there exist at least two distinct paths
P1,P2, such that G∪G′ ∪ P1 is a group and G∪G′ ∪ P2 is a group. We consider
two cases: (i) |P1| > |P2| or |P1| < |P2| but not both; (ii) |P2| = |P1|. Suppose (i),
then there exists some P ⊂ B, namely P1 or P2, but not both, such that G∪G′∪P
is a group. This contradicts the minimality of bridges. Now consider (ii). Since
P2 , P1 then |B| > |P2| = |P1|. But then there exists some P ⊂ B, namely P1 or P2

such that G ∪ G′ ∪ P is a group, which contradicts the minimality of bridges.

Since there are no other options, we can conclude that for every B ⊂ A, if B is a
bridge between two disconnected groups G,G′, then B is linearly ordered. �

To clearly see what we mean with linearity, we propose the following exam-
ple.

Example 3.17. Let N = (A,R) be the network represented in Figure 5, and let
G,G′ be the two disconnected groups represented in it. We claim that (i) the
set {a, b} is a bridge between G,G′, thus also linearly ordered; (ii) the set {a, b, c}
is linearly ordered, but not a bridge between G,G′; (iii) the set {a, b, c, d} is not
linearly ordered, thus not a bridge between G,G′.

Proof. Consider the set {a, b} and call it B. In Example 3.9, we showed that B is
a bridge between G,G′. Then by Proposition 3.16, B must be linearly ordered.
In fact, note that the only agent in B to which a is connected is b, and the only
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agent in B to which b is connected is a. Since a, b are the only elements in B,
then B is linearly ordered.

Consider the set {a, b, c} and call it B′. In B′, every agent is connected to at
most two other agents. So B′ is linearly ordered. But B′ is not a bridge, as
G∪G∪ (B′ \ {c}) is a group, which contradicts clause (B-) of definition of bridge.

Consider the set {a, b, c, d} and call it B′′. In B′′, there exists an agent who is
connected to three other agents, namely b. So B′′ is not linearly ordered. By
Proposition 3.16, B′′ is not a bridge between G,G′. In fact, G∪G′ ∪ (B \ {d}) is a
group, which contradicts clause (B-) of definition of bridge. Analogously if we
use c instead of d. �

3.3 C-Local Gatekeeper

In this section, we introduce a notion to represent the agents belonging to
bridges. We call every such agent a C-local gatekeeper. It is a C−local gatekeeper
and not simply a local gatekeeper, because we define it relative to the connector
C to which the bridge belongs. In this way, it will later be simpler to characterize
the notion in the logic.

Definition 3.18. (C-Local Gatekeeper). Let G,G′ be two disconnected groups and
let C ⊂ A be a connector between G,G′. We say that an agent c ∈ C is a C-local
gatekeeper between G,G′ iff there exists a bridge B ⊆ C with c ∈ B.

This notion takes inspiration from the definition of local gatekeeper given by
Easley and Kleinberg in [25].

[F]or X to be a local gatekeeper, there should be two nodes Y and Z
such that Y and Z each have edges to X, but not to each other. (our
italics).
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This kind of gatekeeper, call it NCM local gatekeeper, differs from the C-local
gatekeeper in two ways. Firstly, it is a gatekeeper between two agents, whereas
the C-local gatekeeper is between two groups. Secondly, local gatekeepers have
direct relations with the two agents they locally gatekeep, whereas for C-local
gatekeepers this is not necessarily the case. This, because the latter belong to
bridges, which might not be single-agent bridges. Indeed, the next proposition
shows that the definitions of C-local gatekeeper and NCM local gatekeeper
express the same notion, when the C-local gatekeeper belongs to a single-agent
bridge.

Proposition 3.19. For every C ⊂ A that is a connector between some disconnected
groups G,G′, b is a C-local gatekeeper between G,G′ iff there exists some g, g′ ∈ A,
such that b is an NCM local gatekeeper between g, g′.

Proof. Let C ⊂ A be a connector between some disconnected groups G,G′ and
consider some b ∈ C.

(⇒) Assume that b is a C-local gatekeeper between G,G′ and suppose towards
contradiction that there exists no g, g′ ∈ A, such that b is an NCM local
gatekeeper between them. This means that for every g, g′ ∈ A such that
(g, g′) < R we have (g, b) < R and (b, g′) < R. But b is a C-local gatekeeper
between G,G′, so there exists a bridge B ⊆ C between G,G′ such that
b ∈ B. By (B+) of definition of bridge, B is a connector between G,G′ so
G ∪ G′ ∪ B is a group. Since G,G′ are disconnected by definition, then B
must be connected with both of them. Then we distinguish two cases:
(1) B = {b}; (2) B = {b1, . . . , bn, b}. If (1) then there are some g ∈ G and
g′ ∈ G′ such that (g, b) ∈ R and (b, g′) ∈ R, otherwise B would not be a
connector between G,G′. But we assumed that for every g, g′ ∈ A such
that (g, g′) < R we have (g, b) < R and (b, g′) < R. Contradiction. So
consider (2). Since by Proposition 3.14, B is a group, then either there
exists some distinct bi, b j such that (bi, b) ∈ R and (b, b j) ∈ R, or there
exists some g ∈ G or g′ ∈ G′, such that (g, b) ∈ R or (g′, b) ∈ R. But we
assumed that for every g, g′ ∈ A such that (g, g′) < R we have (g, b) < R
and (b, g′) < R. Contradiction. We can conclude that if b is a C-local
gatekeeper between G,G′, then that there exists some g, g′ ∈ A, such that
b is an NCM local gatekeeper between them.

(⇐) Assume that there exists some g, g′ ∈ A, such that b is an NCM local
gatekeeper between them. To prove that b is a C-local gatekeeper we
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need to prove that there exists a bridge B ⊆ C between G,G′ such that
b ∈ B. Since b is an NCM local gatekeeper between g, g′, then {g}∪{g′}∪{b}
is a group and (g, g′) < R, by definition. Then {b} satisfies both clauses of
definition of bridge, i.e. it is a bridge between {g}, {g′}. Since g ∈ G and
g′ ∈ G′, {b} is a bridge between G,G′. Thus, b belongs to a bridge between
G,G′.

Hence, if B is a bridge between some disconnected groups G,G′, then for
every b ∈ B, b is a C-local gatekeeper between G,G′ iff b is an NCM local
gatekeepers. �

We conclude the sections about bridges and C-local gatekeepers with a realistic
example that illustrates the two notions.

Example 3.20. (Citizen-Mayor Bridges). Imagine the situation in which Ann, a
citizen of a metropolis, wants to communicate an information to her mayor.
Suppose that Ann is neither a friend nor an acquaintance with her mayor and
that there are only two ways in which Ann can achieve her communicative
goal. One of them is by sending an email to Bob, the mayor’s secretary, who
will then pass it on to the mayor. Bob constitutes a bridge between Ann and
the mayor, as he connects them (thus {Bob} satisfies (B+)), and if he decides to
block the information, the mayor does not receive it (thus {Bob} satisfies (B-)).
Then, Bob is a local gatekeeper between Ann and the mayor, as he belongs to
a bridge between them. Note that if Bob decides not to communicate Ann’s
information to the mayor, then it is not the case that the mayor cannot receive the
information at all, but rather that she will not receive it from Bob. This, because
Ann can try to achieve her goal following the other available way. This is by
sending the information through a public organization that deals with matters
of the same nature as the information Ann is interested in communicating. Ann
can contact one of the members of the organization, Chen, who is in contact
with Margit, who is the mayor’s counselor regarding those matters. Margit
often shares dinners with the mayor, and they discuss the same kind of issues
that Ann wants to communicate. Chen and Margit form a bridge between
Ann and the mayor. They together have the capability to communicate Ann’s
information to the mayor. However, if each of them decides to block it, then
the information does not go through.

In this example, Bob on the one hand, Chen and Margit on the other, form
two bridges between Ann and the mayor, who represent the two disconnected
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single-agent groups.

3.4 Bridging Set

Bridging sets are connectors containing only C-local gatekeepers between two
otherwise disconnected groups of agents. Recall that a C-local gatekeeper is
an agent lying on a bridge. We will see that this implies that bridging sets are
formed only by bridges, which is why, stretching the English language a little
bit, we call them bridging sets. The notion of bridging set is an important notion,
because each kind of gatekeeper we will introduce below is a particular case
of bridging set. We will show that bridging sets always exist, but they are not
unique.

Definition 3.21. (Bridging Set). Let G,G′ be two disconnected groups and
consider some C ⊂ A such that C is a connector between G,G′. We say that C is
a bridging set between G,G′ iff for every c ∈ C, c is a C-local gatekeeper between
G,G′.

Since bridges are connectors between two disconnected groups, then these sets
are sufficient to enable the information flow between the groups.

To give a clearer picture of the notion, we immediately show that bridging sets
are composed only by bridges, i.e. a bridging set is a union of some bridges
between those groups.

Proposition 3.22. For any two disconnected groups G,G′, and for any C ⊂ A the
following are equivalent:

(1) C is a bridging set between G,G′;

(2) C is the union of some bridges B1, . . . ,Bn between G,G′, i.e. C =

n⋃
i=1

Bi, with

1 ≤ i ≤ n.

Proof. Let G,G′ be two disconnected groups and consider some C ⊂ A. The set
C is a bridging set between G,G′ iff every c ∈ C is a C-local gatekeeper between
the groups, by definition of bridging set. This is the case iff for every c ∈ C,
there exists a bridge B ⊆ C between G,G′ and c ∈ B, by definition of C-local
gatekeeper. Let us call B1, . . . ,Bn, with n ≥ 1, the bridges between G,G′, such
that for every c ∈ C, c ∈ Bi with 1 ≤ i ≤ n. Then by definition of union we
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have that C =

n⋃
i=1

Bi. We can conclude that A is a bridging set between G,G′ iff

C =

n⋃
i=1

Bi, where B1, . . . ,Bn are some bridges between G,G′. �

We now move to illustrate the notion with an example. The example also
shows the differences and similarities between bridging sets and connectors.
They both are sets of agents that connect the two groups and they both can
contain several bridges. However, bridging sets have the additional property
to be formed just by bridges, whereas connectors are sets of agents that simply
to connect two other disconnected groups.

Example 3.23. Let N = (A,R) be the network represented in Figure 6, and let
G,G′ be the two disconnected groups represented in it. We claim that (i) C is a
connector between G,G′ and a bridging set between G,G′; (ii) C′ is a connector
between G,G′ but not a bridging set between them.

G!G a b

c
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Figure 6

Proof. Consider C = {a, b, c}. Since for some agent g ∈ G and some g′ ∈ G′, we
have (g, a) ∈ R, (b, g′) ∈ G′, then G∪G′∪{a, b} is a group. By the same reasoning,
G∪G′∪{c} is a group. Note that G,G′ are disconnected, then (B+) holds for {a, b}
and for {c}. Then G ∪G′ ∪ {a, b} ∪ {c} is a group and since C = {a, b} ∪ {c}, then C
is a connector between G,G′. Moreover, G∪G′ ∪ ({a, b} \ {a}) is not a group, and
thus ({a, b} \ {a}) is not a connector between G,G′. The same holds for {b}. Since
G∪G′ ∪ ({c} \ {c}) = G∪G′ and G,G′ are disconnected, then G∪G′ ∪ ({c} \ {c}) is
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not a group, i.e. ({c} \ {c}) is not a connector between G,G′. Thus, (B-) holds for
{a, b} and for {c}, i.e. they are two bridges between G,G′. Since C = {a, b} ∪ {c},
then C is also a bridging set between G,G′.

Now consider C′ = {a, b, c, d}. Since C′ = C ∪ {d}, and (d, c) ∈ R then G ∪ G′ ∪ C′

is a group and C′ is a connector between G,G′. But G∪G′ ∪ (C′ \ {d}) is a group,
and thus (C′ \ {d}) is a connector between G,G′. This means that {d} does not lie
on any bridge between G,G′. Thus, C′ is not a bridging set between G,G′.

We can conclude that C is a connector between G,G′ and a bridging set between
G,G′, while C′ is a connector between G,G′, but not a bridging set between
them. �

Note that the example also shows that bridging sets are not necessarily groups.
This is because they are formed by bridges that do not always intersect.

Properties of Bridging Sets

The first property we show is that bridging sets between disconnected groups
always exist when the network is connected. This is immediately derivable
from the existence of bridges, of which bridging sets are composed.

Proposition 3.24. For any two disconnected groups G,G′, there exists a bridging set
B between G,G′.

Proof. Let G,G′ be two disconnected groups. By Proposition 3.10 we know that
there always exists a bridge B between G,G′. By Proposition 3.22, a bridging set
is a union of bridges, i.e. B is a bridging set. We can conclude that for any two
disconnected groups G,G′ in N, there exists a bridging set B between G,G′. �

Recall that bridges between two given disconnected groups are not unique.
This implies that bridging sets between two groups are not unique too.

Example 3.25. (Non-uniqueness of Bridging Sets). To show the non-uniqueness of
bridging sets, we recall Figure 3 above. There, B and B′ are two bridges between
two otherwise disconnected groups G,G′. Since bridges are connectors and
then each of them contains only C-local gatekeepers. This means that both B
and B′ satisfy the definition of bridging sets, i.e. the example in Figure 3 shows
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the existence of two bridging sets. We can conclude the non-uniqueness of the
notion.

We conclude the section with a realistic example of bridging sets that exempli-
fies the properties that they have.

Example 3.26. (Citizen-Mayor Bridging sets). Recall Example 3.20 above. In
that example we considered a citizen, Ann, who wants to communicate an
information to her mayor. We assumed that there are just two paths that Ann
can use to achieve her communicative goal: Bob forms the first, and Chen
and Margit the second. We showed that they are both bridges, which means
that each of these agents belongs to some bridge between Ann and the mayor.
Hence, each of them is a C-local gatekeeper and forms a bridging set between
Ann and the mayor. By the same reasoning, also the set comprising Bob, Chen
and Margit together forms a bridging set.

3.5 Blocking Set

Blocking sets are sets of agents that are capable to block the information flow
between two otherwise disconnected groups of agents. They have such capac-
ity, because every connection between the two groups passes through them.
Note that this notion is of fundamental interest to this thesis, as we ultimately
aim at modeling the capacity that some agents have to control the information
flow,where blocking is the negative side of this capacity. We show that block-
ing sets between two agents in a connected component of the network always
exists, but they are not unique. Moreover, their agents relate with the definition
of global gatekeeper given by the social network literature [25].

Definition 3.27. (Blocking Set). Let G,G′ be two disconnected groups and
consider some A ( A such that A ∩ (G ∪ G′) = ∅. We say that A is a blocking set
between G,G′ iff every connector C between G,G′ contains an element of A, i.e.
for all C ⊂ A, if G ∪ G′ ∪ C is a group, then C ∩ A , ∅.

Thus, blocking sets are sufficient to block the information flow between two
groups, as they contain at least one agent in every connector between them,
which is sufficient to block every connection. However, blocking sets might not
contain entire connections between the groups, as entire connectors, bridges or
bridging sets. Then, they are not always sufficient to enable the information
flow.
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To better see what this definition amounts to, let us consider the following
example.

Example 3.28. Let N = (A,R) be the network represented in Figure 7, and let
G,G′ be the two disconnected groups represented in it. We claim that A and A′

are blocking sets between G,G′.

G!� G� a 

b 

A� 

A!� 

Figure 7

Proof. For a set of agents to be a blocking one between two disconnected groups
G,G′, the set must intersect every connectors between G,G′ and be disjoint from
the groups. The only connectors are A and A′.

Consider A = {a}. Clearly, A ∩ (G ∪ G′) = ∅, and A ∩ A , ∅. Moreover, A ⊂ A′,
then A′ ∩ A , ∅. Thus, A is a blocking set between G,G′.

Consider A′ = {a, b}. Clearly, A′ ∩ (G∪G′) = ∅ and since A′ ∩A′ , ∅. Moreover,
A′ ∩ A , ∅. Thus, A′ is a blocking set between G,G′.

Since A′ , A, we can conclude that there exist two blocking sets between G,G′

and that blocking sets are not unique. �

Properties of Blocking Sets

Blocking sets between two groups are defined on the assumptions that the
groups are disconnected and lie in a connected component of the network.
These assumptions imply that a blocking set between them always exists and
it is never empty.

Proposition 3.29. For any two disconnected groups G,G′, there exists a blocking set
B between them.
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Proof. Let G,G′ be two disconnected groups in the same connected component
N = (A,R) of the network and consider C = A\ (G∪G′). Since N is connected,
then C is a connector between G,G′ and C , ∅, as otherwise G ∪ G′ would be
a group, which contradicts their disconnectedness. Moreover, for every other
connector C′ between G,G′, we have C′ ∩ C , ∅. Thus, C is a non-empty
blocking set between G,G′. �

Example 3.30. (Non-uniqueness of Blocking Sets). Recall Example 3.28 above. Let
N = (A,R) be the network in Figure 7, and let G,G′ be the two disconnected
groups represented in it. In that example, we showed that A and A′ are blocking
sets between G,G′. Therefore, we proved the existence of two distinct blocking
sets between the same groups, i.e. the non-uniqueness of the notion.

Recall that in this thesis we are interested in modelling the agents that are
necessary and sufficient to enable and block the information flow between two
disconnected groups. For the blocking part, these agents are represented by the
ones which, if removed from the network, would cut the connections between
the groups. Then, Figure 7 shows that blocking sets do not capture all and
only the agents that are necessary and sufficient to cut such connections. For
example, agent b is neither necessary nor sufficient to block the flow between
the groups. To illustrate, compare it with agent a. If we remove a from the
network, there is no connection left between G,G′, so that then G,G′ become
two disconnected components of the network. This means that a is sufficient
to cut the connections between G,G′ and therefore to block the information
flow. Moreover, a is also necessary to that goal, as if a is not removed, then the
connection between the groups remains uncut. However, this does not hold
for agent b. If we remove agent b from the network, the two groups remain
connected through agent a. This implies that b is neither necessary nor sufficient
to block the flow. Despite that, in the example above we showed that A = {a}
and A′ = {a, b} are both blocking sets. This means that the notion of blocking set
also captures agents that are not relevant with respect to blocking (or enabling)
the information flow between two disconnected groups.

The next proposition is about the relations between blocking and bridging sets.
It shows that every bridging set between two otherwise disconnected groups
must have some elements in common with every blocking set between the two
groups. This result will be useful later, as we will build one of the definitions
of gatekeepers on the notions of blocking sets and bridging sets.
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Proposition 3.31. For any two disconnected groups G,G′, and for any A ⊂ A such
that A ∩ (G ∪ G′) = ∅, the following are equivalent

(1) A is a blocking set between G,G′;

(2) For every bridging set B between G,G′, we have B ∩ A , ∅.

Proof. Let G,G′ be two disconnected groups and consider some arbitrary A ⊂ A
such that A , ∅ and A ∩ (G ∪ G′) = ∅.

(1)⇒ (2) Assume that A is a blocking set between G,G′ and consider an arbitrary
bridging set B between G,G′. Suppose towards contradiction that B∩A =

∅. Since by assumption A ∩ (G ∪ G′) = ∅, then A ∩ (G ∪ G′ ∪ B) = ∅. By
definition of bridging set, G∪G′∪B is a group. Since (G∪G′) ⊂ (G∪G′∪B),
then, by definition of blocking set, (G ∪ G′ ∪ B) ∩ A , ∅. So we have
A ∩ (G ∪ G′ ∪ B) = ∅ and (G ∪ G′ ∪ B) ∩ A , ∅. Contradiction. Then
B ∩ A , ∅. Since B was chosen arbitrarily, this holds for every bridging
set B between G,G′.

(2)⇒ (1) Assume that for every bridging set B between G,G′, we have B ∩ A , ∅.
Suppose towards contradiction that A is not a blocking set, i.e. there exists
a connector C between G,G′ such that C ∩ A = ∅. By Proposition 3.10,
we know that there exists a bridge C′ ⊂ C between G,G′. By definition
of bridging set, we know that C′ is a bridging set between G,G′. Then,
C′ ∩ A , ∅. But we assumed that for every bridging set B between G,G′,
we have B ∩ A , ∅. Contradiction. We can conclude that A is a blocking
set between G,G’.

We can conclude that for any two disconnected groups G,G′, and for any A ⊂ A
such that A ∩ (G ∪ G′) = ∅, we have (1) iff (2). �

Let us now see an interesting relation of the notion of blocking set with another
notion in the literature on social networks.

Blocking sets in the literature

The interesting connection is between the notion of blocking sets and the def-
inition of global gatekeeper that Network, Crowds and Markets (NCM) [25] pro-
vides. The two notions are equivalent, when the blocking set is a single agent.
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This, because D.Easley and J.Kleinberg define global gatekeepers as the follow-
ing:

We say that a node X is a [global] gatekeeper if, for some other two
nodes Y and Z, every path from Y to Z passes through X.

They define the global gatekeeper as the single agent that belongs to every path
connecting other two agents in the network. In that sense, the notion coincides
to our notion of blocking set, as by definition also the blocking set belongs
to every path that connects the two groups. Note that global gatekeepers are
agents with properties that are distinct from local gatekeepers that we discussed
above. This notion has a global flavor, as it refers to every path between two
agents, while the local version of it just refers to the paths between two agents
passing through a given third agent. Then, global gatekeepers are also local
gatekeepers, but not vice versa. In more formal terms, the definition of global
gatekeeper is the following.

Definition 3.32. (Global Gatekeeper). Given two disconnected agents a, b ∈ A,
such that there exists at least a path P := (a = x1Rx2R, . . . ,Rxn = b), we say that
a node c ∈ A is the global gatekeeper between a, b iff for every such path P, we
have c ∈ P.

Note that in this definition we added some conditions that were not present
in the original NCM definition. One such condition is the existence of a path
connecting a, b. If no such path exists, then a, b are not connected and thus no
gatekeeper c can exist between them. Moreover, we added the condition that
the agents a, b are disconnected. Recall that this means that {a} ∪ {b} is not a
group. If it were a group, then it would be the case that (a, b) ∈ R, so that
again there could not exist any gatekeeper belonging to every path between
them.

We now prove that in some cases, global gatekeepers are equivalent to blocking
sets. Since global gatekeepers are single agents, then, if any equivalence be-
tween the two is possible, it must be one in which blocking sets are singletons.
The following proposition shows that in that case the equivalence holds.

Proposition 3.33. For any two disconnected G,G′ and any a ∈ A such that {a} ∩
(G ∪ G′) = ∅, the following are equivalent:

(1) a is a global gatekeeper between every g ∈ G and every g ∈ G′;
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(2) A = {a} is a blocking set between G,G′.

Proof. Let G,G′ be two disconnected groups and consider some a ∈ A such that
{a} ∩ (G ∪ G′) = ∅. Call A = {a}.

(1)⇒ (2) Assume that a is a global gatekeeper between some arbitrary g,∈ G and
g′ ∈ G′. By definition of global gatekeeper, for every path P := (g =

x1Rx2R, . . . ,Rxn = g′), we have a ∈ P. By definition of group, the agents
in every such path form a group. Then, every set G′′ = (G ∪ G′ ∪ P) is a
group, as it is a union of connected groups. Clearly, for every such G′′,
we have that (G ∪ G′) ⊂ G′′. Since for every P, a ∈ P, then {a} ∩ G′′ , ∅.
Thus, {a} is a blocking set between G,G′.

(2)⇒ (1) Assume that A is a blocking set between G,G′. Then, for every G′′ such
that (G ∪ G′) ⊂ G′′, we have that A ∩ G′′ , ∅. Let g, g′ be two arbitrary
agents in G,G′ respectively. By definition of group, we have that for every
path P := (g = x1Rx2R, . . . ,Rxn = g′), we have A ∩ P , ∅. Since A = {a},
this means that a ∈ P for every such path. Thus, a is a global gatekeeper
between g, g′, by definition. Since g, g′ were chosen arbitrarily, this holds
for every g ∈ G and g′ ∈ G′.

We can conclude that a is a global gatekeeper between some g ∈ G and some
g′ ∈ G′ iff A = {a} is a blocking set between G,G′. �

This is a rather interesting equivalence, as it reveals a fundamental distinction
between our and NCM’s understanding of the notion of gatekeeper. For them,
a gatekeeper is necessary and sufficient to block the information flow between
two groups, but only necessary to enable it. The global gatekeeper might not
be sufficient for the enabling. This, because by definition it is an agent that
belongs to every path between the groups, but this does not mean that there
is no other agent that is necessary as well to enable the information flow. The
perspective under which gatekeepers are agents that only have the capacity
to block the information flow is different from the perspective we take in this
thesis. We understand gatekeepers as agents that have the power both to
block and to enable the information flow between two groups, i.e. gatekeepers
control the information flow between them. As we saw in the preliminaries, this
perspective aligns with the one of other scholars, in particular Barzilai-Nahon
(2008) [27].
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Moreover, note that Proposition 3.33 provides further insights about the fact
that global gatekeepers differ from the local ones (C-local gatekeepers). One
of them is that a C-local gatekeeper is not always a blocking set. To see this,
recall Example 3.11. There, we showed that a bridge is not necessarily the
unique connection between two disconnected groups. Therefore, there exist
connections (groups) that a C-local gatekeeper does not intersect or block. This
amounts to say that it is not always a blocking set.

Example 3.34. (Citizen-Mayor Blocking Sets). Recall Example 3.20 above. We
assumed that there are just two bridges between Ann and the mayor: Bob, and
Chen and Margit. Now, a blocking set is at least composed by one agent for
every bridge, as it must block every connection. Then, Bob must be in every
blocking set between Ann and the mayor. Otherwise he alone would form a
connection between them, i.e. a group that in this case would not intersect
the blocking set. Moreover, either Chen or Margit (or both) must belong to
the blocking set too. If none of them belongs to it, then they would form an
unblocked connection. So the blocking set must contain Bob and either Chen
or Margit. Indeed, if they all decide to block the information, then Ann does
not have any other way to communicate with the mayor, and the information
flow between them is blocked.

4 The Gatekeepers

In this chapter, we construct the definitions of gatekeepers in social networks.
Informally, we define gatekeepers as agents that have the power to enable or
block the information flow between two disconnected groups. We represent
them formally through structural properties of the network in which they are
embedded. In particular, by combining or generalizing the notions introduced
thus far, we can define gatekeepers as sets of agents that are necessary and
sufficient to enable and block the information flow between the groups.

The chapter is structured similarly to the previous one. This means that for each
of the distinct kind of gatekeeper we introduce, we propose its formal definition
together with a picture to exemplify it (for the first and the third notions, the
definition will be followed by a proposition that gives a clear intuition of what
the notions amounts to) and the illustration of why it is sufficient and necessary
to enable or block the information flow. Then, we show which properties the
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notion has, and conclude its analysis by providing a realistic example.
We start with the introduction of the gatekeeping set. This kind of gatekeeper
combines the definition of blocking set with the definition of bridging set.
Then, we will introduce the gatekeeping bridge, which is a special case of
the definition of bridge and of gatekeeping set. Lastly, the notion of grand
gatekeeper, which is an extension of the notion of bridging set. We will conclude
the section with a diagram that summarizes all the notions introduced in chapter
3 and 4, and highlights the relationships they entertain with each other.

4.1 Gatekeeping Set

The notion of gatekeeping set is grounded on the notion of bridging set and
blocking set. This implies that it can enable and block the information flow
between two given groups. We show that it is a union of bridges, but that the
agents it contains do not necessarily form a group. The gatekeeping set always
exists, but it is not unique. In the later sections, we will show that every other
kind of gatekeepers are special cases of this one.

Definition 4.1. (Gatekeeping Set). Let G,G′ be two disconnected groups. We say
that A ⊂ A is a gatekeeping set between G,G′ iff

(GS+) A is a bridging set between G and G′;

(GS-) A is a blocking set between G and G′.

Recall that bridging sets between two groups are sufficient to enable the infor-
mation flow between the groups, whereas blocking sets are sufficient to block
that flow. Since gatekeeping sets are defined as bridging and blocking sets, then
they are sufficient to enable and block the information flow. Moreover, each of
them is also necessary to enable and block the information flow between the
groups. This comes from the fact that they are a special kind of bridging set,
namely such that they are also blocking sets (or a special kind of blocking set,
i.e. they are such that they are also bridging sets). Then, if they do not block
the information flow, their bridging capacity is sufficient to allow the flow be-
tween the groups; vice versa if they do not enable the information to flow, their
blocking capacity is sufficient to block the flow between the groups.

Before proceeding with an illustrative example, we show that gatekeeping
sets are unions of some bridges. This is immediate from their definition, in
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particular from the fact that they are bridging sets between G,G′.

Proposition 4.2. For any two disconnected groups G,G′, if A ⊂ A is a gatekeeping
set between G,G′, then A is a union of some bridges B1, . . . ,Bn between G,G′, i.e.

A =

n⋃
i=1

Bi, with 1 ≤ i ≤ n.

Proof. Let G,G′ be two disconnected groups and let A ⊂ A be a gatekeeping set
between G,G′. By definition, A is a bridging set between G,G′. By Proposition

3.22, A =

n⋃
i=1

Bi, where B1, . . . ,Bn are some bridges between G,G′. �

Note that the above proposition does not show an equivalence between gate-
keeping sets and union of bridges. This is because not every union of bridges
is also a blocking set. The following example illustrates this and the notion of
gatekeeping set itself.

Example 4.3. Let N = (A,R) be the network represented in Figure 8. We claim
that A is a gatekeeping set between G,G′, but A′ = {a, d} is not.

G!G
a d

b

A

c

Figure 8

Proof. Consider A = {a, b, c, d}. It is a bridging set between G,G′, because every
agent in it lies on a bridge between G,G′, i.e. every agent is an A-local gatekeeper
between G,G′. Moreover, for every bridge B between G,G′, we have B ⊂ A.
Since it is clearly the case that A ∩ A , ∅, then by definition of blocking set, A
is a blocking set between G,G′. It follows that A is a gatekeeping set between
G,G′.

Now consider A′ = {a, d}. is a bridge between G,G′, so it contains only A′-local
gatekeepers. By definition of bridging set, we know that A′ is a bridging set
between G,G′. However, A′ is not a blocking set between G,G′, as it does not
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intersect A′′ = {b, c}, which is a bridge between G,G′, thus also a bridging set
between them. This means that A′ is not a gatekeeping set between G,G′. �

Note that the agents in the gatekeeping set represented in the example above
do not form a group, but that it can also be otherwise. Moreover, this examples
makes clear that the agents in a gatekeeping set are neither necessary nor
sufficient to enable or block the information flow between the groups. This is
because in such gatekeeper there might exist several disjoint and disconnected
paths between the groups.

Properties of Gatekeeping Set

Gatekeeping sets always exist and they are not unique.

Proposition 4.4. For any two disconnected groups G,G′, there exists a gatekeeping
set A ⊂ A between them.

Proof. Let G,G′ be two disconnected groups. By Proposition 3.24, there exists
a bridging set B ⊂ A between G,G′. Consider all the bridging sets B1, . . . ,Bn

between G,G′. Call A the union of all of them, i.e. A =

n⋃
i=1

Bi, where B1, . . . ,Bn

are all the bridges between G,G′. By definition, for every bridging set Bi

between G,G′, Bi is a connector, i.e. G ∪ G′ ∪ Bi is a group. This implies that

G∪G′∪
n⋃

i=1

Bi is a group too, and that A is a connector between G,G′. Since A is

a union of bridging sets, then by definition of bridging set, for every a ∈ A there
exists a bridge B ⊆ A between G,G′ such that a ∈ B. By definition of C-local
gatekeeper, this means that for every a ∈ A, a is an A-local gatekeeper between
G,G′. By definition of bridging sets, this amounts to say that A is a bridging
set between G,G′. Then, we can use Proposition ?? to get that (G∪G′)∩A = ∅.
Moreover, we clearly have that for every bridging set Bi between G,G′, A∩B,∅,

as A =

n⋃
i=1

Bi , ∅. So we can use Proposition 3.31 to conclude that A is a blocking

set between G,G′. Since at least one bridging set exists, then A , ∅. �

Example 4.5. (Non-Uniqueness Gatekeeping set). Let N = (A,R) be the network
represented in Figure 9. We claim that both A,A′ are gatekeeping sets between
G,G′, and thus that the notion of gatekeeping set is not unique.
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Proof. Consider A = {e, b, d}. Since G ∪ G′ ∪ A is a group, then A is a connector
between G,G′. This means that A satisfies clause (B+) of definition of bridge.
Moreover, G∪G′∪(A\{e}) is not a group anymore, i.e. (A\{e}) is not a connector
between G,G′. The same holds if we substitute b or d to e. Then, for every agent
x in A it is the case that (A \ {x}) is not a connector between G,G′. This means
that A satisfies also clause (B-) of definition of bridge, i.e. A is a bridge between
G,G′. Then, every agent in A is an A-local connector between G,G′, i.e. A is a
bridging set. Now, there are two connectors between G,G′, either A or A′. Since
A ∩ A = A and A ∩ A′ = {b}, then for every connector C between G,G′ we have
that A ∩ C , ∅. By definition of blocking set, this means that A is a blocking
set between G,G′. Since A , ∅, we can conclude that A is a gatekeeping set
between G,G′, by definition of gatekeeping set.

Now consider A′ = {a, b, c}. Since G ∪ G′ ∪ A′ is a group, then A′ is a connector
between G,G′, i.e. A′ satisfies clause (B+) of definition of bridge. Moreover, for
every x ∈ A′, (A′ \ {x}) is not a connector between G,G′, as G ∪ G′ ∪ (A′ \ {x})
is not a group anymore. It follows that A′ is a bridge between G,G′. Since
A′ ∩ A′ = A′ and A′ ∩ A = {b}, then for every connector C between G,G′ we
have that A′ ∩ C , ∅. Thus A′ is a blocking set between G,G′. Since A′ , ∅, we
can conclude that A′ is a gatekeeping set between G,G′.

Since A , A′, we can conclude that the notion of gatekeeping set is not unique.
�

In the example above, note that A∪A′ is a gatekeeping set too. This is because
A∪A′ is a union of bridges, thus a bridging set by Proposition 3.22. Moreover,
it clearly intersects every connector between G,G′, as the only connectors are
A and A′. It follows that A is a gatekeeping set, by definition 4.1. This shows

36



another property of gatekeeping sets, namely that they might contain other
gatekeeping sets in them.

The last property of gatekeeping set we show is also another consequence of
their being defined as bridging sets: they have no agents in common with the
groups that they connect.

Proposition 4.6. For any A ⊂ A, if A is the gatekeeping set between two distinct
groups G,G′, then A ∩ (G ∪ G′) = ∅.

Proof. Let A ⊂ A be the gatekeeping set between some distinct groups G,G′.
By clause (GS-) of definition of gatekeeping set, A is a blocking set between
G,G′. By definition of blocking set, A ∩ (G ∪ G′) = ∅. �

Before concluding the section about gatekeeping sets, we propose a realistic
example of the notion, taken from Italian politics.

Example 4.7. (Berlusconi and his Gatekeeping set). Imagine the following situa-
tion. We are in Italy, year 1994. Berlusconi just became the prime minister. In
that position, he gained control over the three public television channels, and
since he already owned the other three major channels, plus several newspa-
pers, the Italian public information and media space were in his hands. As it
was later established [28][29], at that time he was entertaining close relation-
ships with members of ”Cosa Nostra”, one of the Italian mafia clans. Now
imagine that Marco, an independent journalist, has gotten in possession of
some information about these relationships and wanted to inform the popu-
lation about it through the public television channels. He contacts Carlo and
Diana, two workers for one of the public televisions. Carlo is thrilled by the
news and wants to spread it as soon as possible. Diana instead is not, and sug-
gests to ignore it. In fact, Diana is a member of Cosa Nostra, so spreading that
information is not in her interests. She immediately gets in touch with Berlus-
coni, who indeed decides to block it. Carlo is powerless. He cannot choose
to spread it, as such decision would anyway have to pass through Berlusconi,
who now controls the media space. Thanks to the power he has, Berlusconi
can decide to block that information and spread its opposite, namely that he is
instead trying to fight mafia. So he instructs his most loyal employees Diana
and Elmo to spread it, and the result is that a big portion of population receives
that false information.
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The situation just described is represented in Figure 9, where G′ = {Marco},
G = {the public}, Diana is d, Carlo is c, Berlusconi b and Elmo e. Berlusconi,
Diana ed Elmo can both block the information about the relationships between
Berlusconi and members of the mafia (indeed, Berlusconi alone can achieve
that), and they can also enable the flow of false information. This means that
they are a blocking set and a bridging set between the public and the mafia, i.e.
they form a gatekeeping set.

4.2 Gatekeeping Bridge

Gatekeeping bridges are a special case of gatekeeping sets. They are the min-
imal connectors and blocking sets between two groups, and they are unique,
but not always existing. We show that they are gatekeeping sets and bridges,
but that vice versa does not hold. In addition, we show that we can draw an
interesting relationship between them and the notion of global gatekeeper in
the literature.

Definition 4.8. (Gatekeeping Bridge). Let G,G′ be two disconnected groups. We
say that A ⊂ A is the gatekeeping bridge between G,G′ iff

(B+) A is a connector between G,G′;

(GB-) for all A′ ⊂ A, if A′ is a connector between G,G′, then A ⊆ A′.

By this definition, a gatekeeping bridge is a connector. We saw in Chapter
3 that connectors are sufficient to enable the information flow between the
groups they connect. Then, gatekeeping bridges are sufficient to enable it too.
Moreover, they are also necessary for that, as we will see below that they are
the unique sets of agents that connect the groups. Then, if they do not enable
it nobody else can. By the same reasoning, they are necessary and sufficient to
block the information flow.

Example 4.9. Let N = (A,R) be the network represented in Figure 10. We claim
that B is the unique connector between G,G′ which is also a gatekeeping bridge
between G,G′.

Proof. Consider B = {a, b, c}. We first show that B is a gatekeeping bridge
between G,G′ and then show that for any other connector between G,G′, this is
not a gatekeeping bridge. Clearly, B is a connector between G,G′, as G∪G′ ∪ B

38



G!G B

a b c

d

Figure 10

is a group. So A satisfies clause (B+) of definition of gatekeeping bridge. Note
that the only connector B′ ⊂ A between G,G′ such that B′ , B is B′ = {a, b, c, d}.
Since A ⊂ A′, then A satisfies also clause (GB-) of definition of gatekeeping
bridge. Thus A is a gatekeeping bridge between G,G′.

Now note that the only other connector B′ is not a gatekeeping bridge between
G,G′. This is because there exists a connector, namely B, such that B′ * B, i.e. B′

does not satisfy clause (GB-) and is not a gatekeeping bridge between G,G′. �

Properties of Gatekeeping Bridge

The first property of gatekeeping bridges we show is that they do not always
exist. To show this we use one of the examples we introduced above.

Example 4.10. (Non-Existence of Gatekeeping Bridge). Consider the example
proving the non-uniqueness of gatekeeping sets, namely Example 4.5. Let
N = (A,R) be the network represented in Figure 9. We claim that neither A nor
A′ are a gatekeeping bridge between G,G′, and thus that a gatekeeping bridge
between two disconnected groups G,G′ does not always exist.

Proof. In Example 4.5 we have that G∪G′ ∪A and G∪G′ ∪A′ are both groups.
This means that A and A′ are two connectors between G,G′, and that they
satisfy (B+) of definition of gatekeeping bridge. But neither of them satisfy
clause (GB-). Consider A. For A this is because there exists a connector A′

between G,G′ such that A * A′. Analogously for A′. Thus, neither A not A′

are a gatekeeping bridge between G,G′. We can conclude that a gatekeeping
bridge between two disconnected groups G,G′ does not always exist. �

So gatekeeping bridges between two disconnected groups do not always exist.
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However, when they do they are unique.

Proposition 4.11. For any A ⊂ A, if A is the gatekeeping bridge between G,G′, then
A is unique.

Proof. Consider some A ⊂ A such that A is the gatekeeping bridge between
some G,G′. We want to prove that for any A′ ⊂ A, if A , A′ then A′ is not
the gatekeeping bridge. Consider some arbitrary A′ ⊂ A such that A′ , A. We
have two cases, either A′ is not a connector between G,G′, or it is. In the first
case, A′ does not satisfy clause (B+), so A′ is not a gatekeeping bridge between
G,G′. So consider the second case. Note that A is the gatekeeping bridge, so by
clause (GB-) of its definition we get A ⊆ A′. Since by assumption A , A′ then
A ⊂ A′. So we have that G ∪ G′ ∪ A is a group and A′ * A, which means that
clause (GB-) of definition of gatekeeping bridge does not hold for A′. Thus A′

is not the gatekeeping bridge. Since A′ was chosen arbitrarily, we can conclude
that for any A′ ⊂ A, if A , A′ then A′ is not the gatekeeping bridge. Hence, A
is unique. �

The next proposition shows that gatekeeping bridges between two discon-
nected groups are in fact bridges between the two groups.

Proposition 4.12. For any A ⊂ A, if A is the gatekeeping bridge between two
disconnected groups G,G′, then A is a bridge between G,G′.

Proof. Let A ⊂ A be the gatekeeping bridge between G,G′. By definition of
gatekeeping bridge, we know that A , ∅, and A is a connector between G,G′.
Now consider some arbitrary a ∈ A. Let A′ = A \ {a}. Clearly A * A′, so by
the contrapositive of (GB-) we know that A′ is not a connector between G,G′,
i.e., (A \ {a}) is not a connector between G,G′. Since a was chosen arbitrarily,
then the result holds for every a ∈ A. Thus, A satisfies (B+) and (B-). We can
conclude that if A is a gatekeeping bridge between some disconnected G,G′,
then A is a bridge between G,G′. �

Since they are (unique) bridges, gatekeeping bridges have all the properties
that (unique) bridges have.

Proposition 4.13. For any A ⊂ A, if A is the gatekeeping bridge between some
disconnected groups G,G′, then (1) (G∪G′)∩A = ∅; (2) A is a group; (3) A is linearly
ordered; (4) A is the minimal set of agents such that A is a connector between G,G′.
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Proof. Let A ⊂ A be the gatekeeping bridge between G,G′.

(1) By Proposition 4.12, we know that A is a bridge between G,G′. By Propo-
sition 3.14, we know that (G ∪ G′) ∩ A = ∅.

(2) By Proposition 4.12, we know that A is a bridge between G,G′. By Propo-
sition 3.14, we know that bridges are groups. Thus A is a group too.

(3) By Proposition 4.12, we know that A is a bridge between G,G′. By Propo-
sition 3.16, we know that bridges are linearly ordered. Thus A is linearly
ordered too.

(4) Consider an arbitrary A′ ⊂ A and suppose that A′ ⊂ A. By Proposition
4.12, A is a bridge between G,G′, so we can use Proposition 3.12 to get
that A′ is not a connector between G,G′. Since A′ was chosen arbitrarily,
then for every A′ ⊂ A such that A′ ⊂ A we have that A′ is not a connector
between G,G′. This amounts to say that A is the minimal set of agents
such that A is a connector between G,G′. �

Gatekeeping bridges are not only a special case of bridges. They are also a
special case of gatekeeping sets.

Proposition 4.14. For any A ⊂ A, if A is a gatekeeping bridge between some discon-
nected G,G′, then A is a gatekeeping set between G,G′.

Proof. Let A ⊂ A be the gatekeeping bridge between G,G′. By definition of
gatekeeping bridge, A , ∅ and A is a connector between G,G′. By (GB-), for
every A′ ⊆ A, if A′ is a connector between G,G′, then A ⊆ A′. This implies that
for every connector A′ between G,G′, we have that A ∩ A′ , ∅. By definition
3.27, A is a blocking set between G,G′, i.e. A satisfies (GS-) of definition of
gatekeeping set. Moreover, by Proposition 4.12, A is itself a bridge. This
means that every a ∈ A is an A-local connector between G,G′. By definition of
bridging set, we have that A is a bridging set between G,G′. This amounts to
say that A satisfies (GS+) of definition of gatekeeping set and thus also that A
is a gatekeeping set between G,G′. We can conclude that if A is a gatekeeping
bridge between some disconnected G,G′, then A is a gatekeeping set between
G,G′. �

Notably, the two propositions above show that for every set A, if A is a gate-
keeping bridge between two disconnected groups G,G′, then A is both a bridge
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and a gatekeeping set between the groups. However, the other way around
does not hold, i.e. if A is a gatekeeping set and a bridge between two discon-
nected groups G,G′, then A is not always a gatekeeping bridge. To illustrate,
consider the following example.

Example 4.15. (Gatekeeping Set + Bridge , Gatekeeping Bridge). Consider again
the example we used to prove the non-uniqueness of gatekeeping sets, i.e.
Example 4.5. Let N = (A,R) be the network represented in Figure 9. We claim
that A and A′ are both gatekeeping sets and bridges between G,G′, but not
gatekeeping bridges between G,G′.

Proof. In Example 4.5, we showed that A and A′ are both bridges and gate-
keeping sets between G,G′. Instead, in Example 4.10 we showed that A and A′

are not gatekeeping bridges between G,G′. Thus, we can conclude that A and
A′ are both gatekeeping sets and bridges between G,G′, but not gatekeeping
bridges between G,G′. �

Gatekeeping Bridge and the Literature

In this subsection, we discuss a relationship between the proposed definition
of gatekeeper and the one of global gatekeeper, as proposed by Easley and
Kleibnerg [25]. Recall that given two agents, a global gatekeeper is an agent
that lies in every path connecting them. Since a gatekeeping bridge is the
unique set of agent that connects two disconnected groups, then it must be
the case that it lies in every path connecting the two groups. To show this,
we generalize the definition of global gatekeeper, lifting it from being defined
between two agents to being defined between two groups.

Definition 4.16. (Global Gatekeeper between two Groups). Given two disconnected
groups G,G′, such that for every agent g ∈ G and g′ ∈ G′ there exists a path
P := (g = x1Rx2R, . . . ,Rxn = g′), we say that an agent c is a global gatekeeper
between G,G′ iff for every such path P, we have c ∈ P.

Given this notion, we can now show that a gatekeeping bridge between two
groups G,G′ is equivalent to the set of global gatekeepers between G,G′.

Proposition 4.17. For any two disconnected groups G,G′, and for any A ⊂ A, the
following are equivalent:

(1) A is the gatekeeping bridge between G,G′;
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(2) A is the set of all global gatekeepers between two groups G and G′.

Proof. Let G,G′ be two disconnected groups and consider some A ⊂ A.

(1) ⇒ (2). Assume that A is the gatekeeping bridge between G,G′. By
definition of gatekeeping bridge, for every A′ ⊂ A, we have that A ⊆ A′.
It follows that for every path P between any g ∈ G and g′ ∈ G′ we have
that A ⊆ P. This means that for every agent a ∈ A, a ∈ P, and that every
agent in A is a global gatekeeper between G,G′. Now suppose towards
contradiction that there exists a global gatekeeper a between G,G′ such
that a < A. By definition of global gatekeeper between groups, this means
that a belongs to every path between G,G′. But by Proposition 4.11 the
only connector between G,G′ is A. Since a < A then a does not belong to
every path between G,G′. Contradiction. We can conclude that A is the
set of all global gatekeepers between G,G′.

(2) ⇒ (1). Assume that A is the set of all global gatekeepers between
G,G′. Suppose towards contradiction that A is not the gatekeeping bridge
between G,G′. This means that for some A 1 A′, A′ is a connector between
G,G′. Call A′′ = A \ A′. Clearly A′′ ⊆ A and A′′ ∩ A′ = ∅. Since A′ is
a connector between G,G′ then G ∪ G′ ∪ A′ is a group, i.e. there exists a
path connecting G,G′ passing for the agents in A′. Then, for at least some
a ∈ A′′, there exists some path P between G,G′ such that a < P. Since
a ∈ A′′ then a ∈ A. Since for all a ∈ A, a is a global gatekeeper between
G,G′ then for every path P between G,G′ a ∈ P. Contradiction. We can
conclude that A is the gatekeeping bridge between G,G′.

Since G,G′ and A were chosen arbitrarily, we can conclude that for any two
disconnected groups G,G′, and for any A ⊂ A,A is the gatekeeping bridge
between G,G′ iff A is the set of all global gatekeepers between two groups G
and G′. �

Proposition 4.17 shows that gatekeeping bridges generalize the notion of global
gatekeeper between groups. If the global gatekeeper between two groups
was itself a generalization of the global gatekeeper between agents, then the
gatekeeping set is yet another kind of generalization of the same notion.
This, because gatekeeping bridges are sets of agents lying on every path be-
tween groups, and not only a single agent, as in the definition of global gate-
keeper.
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Moreover, note that the fact that a gatekeeping bridge is composed only by
global gatekeepers means that each of them is sufficient to block the informa-
tion flow between the groups, as each of them lies in every path that exists
between the groups. However, it is not necessary, as every other member of the
gatekeeping bridge can block it as well. On the other hand, global gatekeep-
ers are necessary to enable the information flow between the groups, but not
sufficient to that, as the reader can immediately verify.

To conclude the discussion of gatekeeping bridges, let us now consider a real-
istic example of them.

Example 4.18. (Reporting to the General Secretary). Imagine to be Aikilah, a
young and talented social researcher working for the Dutch Minister for Social
Affairs and Employment. Among Aikilah’s tasks, there is the one to find the
newest and most interesting reports about relevant social research, and inform
the General Secretary about it. The Secretary does not have much time to read
the very long reports that social researchers write, so Aikilah needs to make
a very condensed summary of them. To check that the report that she will
write complies with the standards, it will have to go through several steps. In
each of these steps, a different employee will check whether the requirements
of brevity and clarity are satisfied, and pass it on to the next. Only if all of
the checking agents approve it, the report will arrive to the General Secretary;
otherwise it will be blocked and sent back to Aikilah.

The situation can be represented by Figure 10. There, we have G = {Aikilah},
G′ = {The General Secretary}, and a, b, c are three agents that control Aikilah’s
report and eventually block it and send it back. These agents form a gatekeeper
between Aikilah and the General Secretary, as any other path that will lead her
report to its goal, has to pass through them.

4.3 Grand Gatekeeper

The notion of grand gatekeeper extends the definition of bridging set between
two disconnected groups of agents, making it maximal. This is one of the
reasons why we call it grand gatekeeper, since it contains all the bridges and
bridging sets between two groups, thus also all the agents that, together, can
control or gatekeep the information flow. Moreover, it coincides with the
maximal gatekeeping set. We show that the grand gatekeeper is particularly
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well-behaved, as it always exists (recall that we assume to be working in a
connected network) and it is unique. In addition, we show that it is a blocking
and a gatekeeping sets, but that vice versa does not always hold. Lastly, we
prove that every gatekeeping bridge is a grand gatekeeper, and that grand
gatekeepers contain all local gatekeepers between two groups.

Definition 4.19. (Grand Gatekeeper). Let G,G′ be two disconnected groups. We
say that A ⊂ A is the grand gatekeeper between G,G′ iff A is a maximal bridging
set, i.e.

(i) A is a bridging set between G,G′;

(ii) for every A′ ⊂ A such that A ⊂ A′, A′ is not a bridging set between G,G′.

Grand gatekeepers are thus defined as bridging sets. We saw above that bridg-
ing sets are sufficient to enable the information flow between the groups they
connect. Then, grand gatekeepers are sufficient to enable it too. In addition, the
fact that they are unique implies that they are also necessary for that (we will
see the proof of their uniqueness below). This, because if they do not enable the
information to flow then nobody else can. This is the same reasoning we used
for gatekeeping bridges, and can be used also to show that they are necessary
and sufficient to block the information flow.

In the previous chapter we introduced bridging sets between two groups, and
we showed that they are the union of some bridges between them. The following
proposition proves that the grand gatekeeper between two groups is the union
of all the bridges between them.

Proposition 4.20. For any G,G′ that are two disconnected groups in the same con-
nected component of the network, and for any A ⊂ A the following are equivalent:

(1) A is the grand gatekeeper between G,G′;

(2) A is the union of all the bridges B1, . . . ,Bn between G,G′, i.e. A =

n⋃
i=1

Bi, with

1 ≤ i ≤ n.

Proof. Let G,G′ be two disconnected groups in the same connected component
of the network N and consider some A ⊂ A.

Then A =

n⋃
i=1

Bi, where B1, . . . ,Bn are all the bridges between G,G′ iff for every

a ∈ A, we have a ∈ A′ ⊆ A such that A′ is a bridge between G,G′, i.e., clause (i)
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of Definition 4.19 holds.

Moreover, A =

n⋃
i=1

Bi, where B1, . . . ,Bn are all the bridges between G,G′ iff for

all sets B j ⊂ A such that B j < A, B j is not a bridge between G,G′ iff B j ∪A is not
a bridging set between G,G′ iff clause (ii) of Definition 4.19 holds.

Therefore we have A =

n⋃
i=1

Bi, where B1, . . . ,Bn are all the bridges between

G,G′ iff clause (i) and (ii) of Definition 4.19 hold, i.e., A is the grand gatekeeper
between G,G′. �

Example 4.21. Let N = (A,R) be the network represented in Figure 10. We
claim that the set A = {a, b, c, d} is the grand gatekeeper between G,G′.

G!G
a b

c

A
d

Figure 11

Proof. In order for A to be a grand gatekeeper between G,G′, it should be a
bridging set, and contain all the bridges between G,G′. Clearly, B = {d} is a
bridge between G,G′, as (B \ {d}) is not a connector between G,G′, while B is.
Also the set B′ = {a, b} is a bridge, as (B′ \ {a}) or (B′ \ {b}) are not connectors
between G,G′, while B′ is. Moreover, the set B′′ = {c} is a bridge too, as (B′′ \ {c})
is not a connector between G,G′, while B′′ is. Therefore, all the agents in A lie on
bridges between G,G′, i.e. they are A-local gatekeepers between G,G′. Then, A
is a bridging set between G,G′. Note that there exist no other bridge between
G,G′. Thus, A contains all the bridges between G,G′, i.e. it is the union of all of
them. By Proposition 4.20, this amounts to say that A is the grand gatekeeper
between them. �

In this example, we can appreciate the fact that the agents in a grand gate-
keeper are neither necessary nor sufficient to enable or block the information
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flow between the groups. As for the gatekeeping set, this depends on the
fact that several disjoint paths connecting the groups can coexist in a grand
gatekeeper.

Properties of Grand Gatekeeper

The first property we show is that the grand gatekeeper between two discon-
nected groups always exists.

Proposition 4.22. For any two disconnected groups G,G′, there exists a grand gate-
keeper A ⊂ A between G,G′.

Proof. Let G,G′ be two disconnected groups. By Proposition 4.20, we know
that for any grand gatekeeper A between two disconnected groups, we have

A =

n⋃
i=1

Bi, where B1, . . . ,Bn are all the bridges between G,G′. By Proposition

3.10 we know that there always exists at least one bridge between G,G′. Hence,
there always exists a grand gatekepeer between G,G′. �

Proposition 4.23. For any two disconnected groups G,G′, the grand gatekeeper
A ⊂ A between G,G′ is unique.

Proof. Let G,G′ be two disconnected groups. By Proposition 4.22 we know there
exists a grand gatekeeper B between them. Suppose towards contradiction
that there exists another grand gatekeeper A′ between them. By Proposition

4.20, A =

n⋃
i=1

Bi, where B1, . . . ,Bn are all the bridges between G,G′. Moreover,

A′ =

n⋃
i=1

Bi too. Therefore, A = A′, which contradicts that A and A′ are distinct

sets. We can conclude that for any two disconnected groups G,G′, the grand
gatekeeper A between G,G′ is unique. �

For what concerns the relationships between grand gatekeepers and the other
notions we introduced so far, we now show that a grand gatekeeper is a blocking
set and thus also a gatekeeping set between the groups. However, vice versa
does not hold, namely a gatekeeping set is not always a grand gatekeeper.

Proposition 4.24. For any A ⊂ A, if A is the grand gatekeeper between some discon-
nected groups G,G′, then A is a blocking set between G,G′.
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Proof. Let G,G′ be two disconnected groups and suppose that A ⊂ A is the

grand gatekeeper between them. By Proposition 4.20, A =

n⋃
i=1

Bi, where

B1, . . . ,Bn are all the bridges between G,G′. By definition, A is a bridging
set, thus a connector between G,G′. Then, for all the A-local gatekeepers a
between G,G′, we have that a ∈ A. Since bridging sets are formed by local
gatekeepers, it follows that for every bridging sets B′ between G,G′, we have
A ∩ B , ∅. Then we can use Proposition 3.31 to get that A is a blocking set
between G,G′. �

Proposition 4.25. For any A ⊂ A, if A is the grand gatekeeper between some discon-
nected groups G,G′, then A is a gatekeeping set between G,G′.

Proof. Let G,G′ be two disconnected groups and suppose that A ⊂ A is the
grand gatekeeper between them. By definition, a grand gatekeeper is a bridging
set. By Proposition 4.24, A is a blocking set between G,G′. Thus, A satisfies both
clauses of definition of gatekeeping set, and since by definition of gatekeeping
set we have that A , ∅, we can conclude that A is a gatekeeping set between
G,G′. �

Example 4.26. (Gatekeeping Sets , Grand Gatekeepers). Consider again the ex-
ample we used to prove the non-uniqueness of gatekeeping sets, i.e. Example
4.5. Let N = (A,R) be the network represented in Figure 9. We claim that both
A and A′ are gatekeeping sets between G,G′, but neither is a grand gatekeeper
between G,G′.

Proof. In Example 4.5, we showed that A and A′ are both gatekeeping sets and
bridges between G,G′. By Proposition 4.20, a grand gatekeeper is the union of
all bridges between G,G′. But neither A nor A′ contain the other, so neither of
them is the grand gatekeeper between G,G′. �

Even if the notion of gatekeeping set does not coincide with the one of grand
gatekeepers, the following proposition shows that if we consider the maximal
gatekeeping set between two groups, then the two notions coincide.

Proposition 4.27. For any two disconnected groups G,G′, and for any A ⊂ A, the
following are equivalent:

(1) A is the grand gatekeeper between G,G′.
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(2) A is a maximal gatekeeping set between G,G′, i.e. A is a gatekeeping set and for
any A ⊂ A′, A′ is not a gatekeeping set between G,G′.

Proof. Let G,G′ be two disconnected groups and consider some A ⊂ A.

(1)⇒ (2). Let A be the grand gatekeeper between G,G′. By Proposition
4.27, we know that A is a gatekeeping set between G,G′. Consider an
arbitrary A ⊂ A′. Since A is the grand gatekeeper between G,G′, then
by Proposition 4.20, A contains all the bridges B1, . . . ,Bn between G,G′,

i.e. A =

n⋃
i=1

Bi. This means that A′ contains some agents a such that there

exists no bridge B′ between G,G′ with a ∈ B′. Then, A′ is not a bridging
set between G,G′, by definition of bridging set. This amounts to say that
A′ is not a gatekeeping set between G,G′, by definition of gatekeeping set.
Since A′ was chosen arbitrarily, we can conclude that for every A′ such
that A ⊂ A′, A′ is not a gatekeeping set between G,G′. We can conclude
that if A is the grand gatekeeper between G,G′, then A is the maximal
gatekeeping set between G,G.

(2) ⇒ (1). Let A be the maximal gatekeeping set between G,G′. By
Proposition 4.22, we know that the grand gatekeeper A′ between G,G′

exists. By the first part of this proof, we know that it is the maximal
gatekeeping set, i.e. A = A′. We can conclude that if A is the maximal
gatekeeping set between G,G′, then A is the grand gatekeeper between
G,G′.

We can conclude that for any two disconnected groups G,G′, and for any A ⊂ A,
A is the grand gatekeeper between G,G′ iff A is the maximal gatekeeping set
between G,G′. �

Another relation between grand gatekeepers and the notions we introduced so
far is with the gatekeeping bridge.

Proposition 4.28. For any A ⊂ A, if A is the gatekeeping bridge between some
disconnected groups G,G′, then A is the grand gatekeeper between G,G′.

Proof. Let G,G′ be two disconnected groups and suppose that A ⊂ A is the
gatekeeping bridge between them. By definition of gatekeeping bridge, A is a
connector between the groups. By Proposition 4.11, A is the unique gatekeeping
bridge between G,G′, and by Proposition 4.12, A is a bridge between G,G′. It
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follows that A is the unique bridge between G,G′. Then, for every A′ ⊂ A such
that A ⊂ A′, A′ is not a bridging set between G,G′. For suppose not. Then there
is some A′-local gatekeeper a between G,G′ such that a ∈ A′ but a < A′. This
implies that there exists a bridge B ⊂ A′ between G,G′ such that B , A, which
contradicts the uniqueness of A. Hence, we can conclude that A is the maximal
bridging set between G,G′, i.e. A is the grand gatekeeper between them. �

Grand Gatekeeper and the Literature

In this subsection, we draw a connection between grand gatekeepers and the
notion of C-local gatekeeper. Recall that this notion is inspired by Easley and
Kleinberg [25] and it represents the agents belonging to bridges between two
groups, in a given connector between the groups. We now show that the grand
gatekeeper between two disconnected groups is the set that contains all the
local gatekeepers between the groups. We achieve this result by taking the
connector on which the local gatekeepers lie as the whole social network. It is
possible to see the network as a connector because we assume to be working in
a connected network. A connected network is in fact a set of agents such that
there exists at least a path connecting all of them, so also the ones belonging
to any two disconnected groups. Then, the set of all agents in the network is a
connector between the groups.

Proposition 4.29. For any two disconnected groups G,G′ in a connected network
N = (A,R), and for any A ⊂ A, the following are equivalent:

(1) A is the grand gatekeeper between G,G′;

(2) A is the set of all theA-local gatekeepers between G,G′.

Proof. Let G,G′ be two disconnected groups and consider some A ⊂ A.

(1) ⇒ (2). Assume that A is the grand gatekeeper between G,G′ and
suppose towards contradiction that there exists an A-local gatekeeper a
between G,G′ such that a < A. This is equivalent to say that there exists a
bridge B ⊂ A between G,G′ such that for some a ∈ B, a < A, i.e. B * A.

But by Proposition 4.20, A =

n⋃
i=1

Bi, for all the bridges B1, . . . ,Bn between

G,G′. So for every Bi between G,G′, we have Bi ⊆ A. Contradiction. We
can conclude that A is the set of all theA-local gatekeepers between G,G′.
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(2) ⇒ (1). Assume that A is the set of all A-local gatekeepers between
G,G′. This means that for every b ∈ A such that for any bridge B between
G,G′, it is the case that b ∈ B, we have b ∈ A. It follows that for every

bridge B1, . . . ,Bn between G,G′, we have Bi ⊆ A, i.e. A =

n⋃
i=1

Bi. By

Proposition 4.20, we can conclude that A is the grand gatekeeper between
G,G′.

Since G,G′ and A were chosen arbitrarily from a connected network N, we can
conclude that for any two disconnected groups G,G′ in a connected network
N = (A,R), and for any A ⊂ A, A is the grand gatekeeper between G,G′ iff A is
the set of all the N-local gatekeepers between G,G′. �

With this proposition we conclude the analysis of the grand gatekeepers’ prop-
erties. As it is by now become usual, to conclude the whole section about grand
gatekeepers, we propose an example illustrating how this notion is instantiated
in the real world.

Example 4.30. (The Grand Gatekeeper between Citizen-Mayor). In one of the
examples above, we have already seen a realistic example of grand gatekeeper.
Consider again Example 3.26. There we said that the set comprising Bob, Chen
and Margit forms a bridging set between Ann and the mayor. Since this set
contains all the minimal connections (bridges) existing between the two, then
it is the grand gatekeeper between them.

4.4 Diagram of the structural notions

So far we have introduced many structural notions. To provide the reader with
a clearer picture of them and of the relations they entertain with each other, we
propose the diagram in Figure 12 below. It is to be read as a Venn diagram,
as the relations between the mentioned notions are set theoretical relations. To
give an example of how to read it, the gatekeeping bridge is represented as a
subset of bridge, blocking set, grand gatekeeper, gatekeeping set, bridging set,
and connector.

Since the relationships between notions in the graph are set theoretical ones,
then, if a notion is a subset of another one, it shares all the properties of its
superset. This means that through this diagram we can also represent the
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Figure 12

relationships between the notions and the properties of being necessary or
sufficient to enable or block the information flow. To illustrate, recall that a
connector has the property of being sufficient to enable the information flow
between the groups. Then, every notion represented as a subset of connectors
has this property too, e.g. bridges and bridging sets are sufficient to enable the
flow between the groups they bridge. Moreover, recall that blocking sets are
sufficient to block the flow. Then, since gatekeeping set, grand gatekeeper, and
gatekeeping bridge lie at the intersection between blocking sets and connectors,
this means they are sufficient to enable and block the information flow between
the groups. For what concerns the necessity property, recall that connectors,
bridging sets, bridges and blocking sets are not always necessary to enable or
block the information flow between the groups. However, we showed that
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their interplay in the notion of gatekeeping set makes the latter necessary both
to enable and to block the information flow between the groups. Then, grand
gatekeeper and gatekeeping bridge are necessary to enable and block it too, for
they are subsets of the gatekeeping set.

Importantly then, the three kinds of gatekeepers coincide on the property of
being necessary and sufficient to block and enable the information flow between
the groups, i.e. on the fact that they can control the information flow between
them. Recall that Barzilai-Nahon defined gatekeepers as agents that control the
information flow as it moves through the gate [7]. Then, by taking the gated as
the groups that the gatekeeper controls, and the gate the relationships between
the gated and the gatekeeper itself, we obtain that the three kinds of gatekeeper
all satisfy the unique definition that Barzilai-Nahon provides.

5 Network Logic

Network logic is a hybrid version of propositional dynamic logic (PDL) that
we will use to model social networks. As we said in the introduction, similar
network logics have already been introduced. However, each of these logics
contain elements that we do not need. For example, Smets et al. [15] or
Christoff et al. [30] propose a static social network logic, but they introduce
it together with propositional variables to express agents’ personal features.
Also Seligman et al. [14] propose a network logic, but an epistemic version
of it. We need neither feature variables, as we do not need to qualify the
properties of agents’ in the network, nor epistemic operators, as we do not
discuss knowledge or belief. For the scope of this thesis, all we need is a
logic that represents the network structure and the notions we introduced so
far. Then, the network logic we propose is simpler than the two above, and
essentially amounts to the one proposed by Smets et al. or Christoff et al., but
without the propositional variables expressing agents’ features. We will see that
this simple logic is sufficient to represent almost all the notions we introduced.
This logic will be based on social network models, which is a setting already
introduced and used by Smets et al. [15].

The structure of this chapter is quite simple. After having briefly presented
PDL and hybrid logic, we will introduced the syntax and semantics of network
logic. Then, we will characterize the structural notions in this logic.
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5.1 Syntax and Semantics of Network Logic

The network logic we are going to introduce is an hybrid version of PDL,
which is a branch of modal logic [31]. The peculiarity of PDL is that it allows
the construction of modalities from basic programs π. For example, [π] is a
modality constructed from program π, and [π]φ is to be read as ”for every
execution of program π we will reach a state where φ is true”. In addition,
complex programs can be constructed from basic programs, by combining the
latter with each other through some operation. The operations we will use
below are choice (if π1 and π2 are programs, then so is π1 ∪ π2), composition
(if π1 and π2 are programs, then so is π1;π2), iteration (if π is a program, then
so is π∗), test (if φ is a formula, then ?φ is a program). When providing the
definition of the network language satisfaction, we will also see what these
programs mean.

In this basic version of PDL, one cannot call single agents or states in the
network. Considering an hybrid version of PDL then means adding expressive
power to PDL to allow it. We add expressing power by introducing a new set
of propositional variables, the nominals Nom = {g, i, j, . . . } and by expanding
the valuation function in the models so to bind these new variables with fixed
agents. Note that we add only the nominals for some of the agents in the
network, and not all of them. This is because networks might be composed
by millions of agents, but not all such agents are relevant for the purposes of
analyzing network gatekeepers.
In addition to nominals that call single agents, we introduce also a second sort
of propositional variables G, I, J, . . . that denote groups. This is a novelty of
this thesis. We call NomG = {g, i, j, . . . ,G, I, J, . . . } the new set of propositional
variables for both types of nominals. Moreover, we also introduce to the
language a set D of propositional variables D = {d, d′, . . . }, which represents
data-bits, namely information that agents exchange.

Definition 5.1. (Static Network Language). Let NomG = {g, i, j, . . . ,G, I, J, . . . } be
a non-empty set of propositional variables for nominals, and letD = {d, d′, . . . }
be a set of propositional variables for data-bits, disjoint from NomG. We define
the static network language over NomG

∪D as follows:

φ ::= g | G | d | ¬φ | φ ∨ ψ | ∃φ | [π]φ.

π ::= R | ?φ | π1 ∪ π2 | π1;π2 | π∗.

54



with {g,G} ⊆ NomG, d ∈ D.

We define the ¬,∨ as usual. The intuitive meaning of the existential modality
∃φ is ”there exists an agent that satisfies φ”. We have seen above the intuitive
meaning of [π]φ.

Definition 5.2. (Static Network Model). A static network model for social networks
is a tuple, M = (A,R,V), where (A,R) is a social network as in Definition 2.2,
and V : NomG

∪ D → P(A) is a valuation function. The valuation function V
satisfies the following conditions:

- for all propositional variables for data-bits d ∈ D, V(d) = B ⊆ A, such that
for every b ∈ B, M, b � d;

- for all nominal variables for single agents g ∈ NomG, V(g) = B ⊆ A, where
B is a singleton subset ofA, e.g., B = {b}, such that M, b � g;

- for all nominal variables for groups G ∈ NomG, V(G) = B ⊆ A, where B is
a group, such that for every connected b ∈ B, M, b � G;

Definition 5.3. (Static Network Language Satisfaction). Let M = (A,R,V) be a
static network model and consider some agent a ∈ A. Then we define:

M, a � d iff a ∈ V(d), where d ∈ D;
M, a � g iff V(g) = {a}, where g ∈ NomG;
M, a � G iff a ∈ V(G), where G ∈ NomG;
M, a � ¬φ iff M, a 2 φ;
M, a � φ ∨ ψ iff M, a � φ or M, a � ψ;
M, a � ∃φ iff there exists an a′ ∈ A such that M, a′ � φ ;
M, a � [π]φ iff for every b ∈ A, if aRπb then M, b � φ.

Where Rπ is defined inductively as follows:

RR = {(x, y)|(x, y) ∈ R}
R?φ = {(x, y) | x = y and y � φ}
Rπ1∪π2 = Rπ1 ∪ Rπ2 = {(x, y) | xRπ1 y or xRπ2 y}
Rπ1;π2 = Rπ1 ◦ Rπ2 = {(x, y) | there exists z ∈ A such that (x, z) ∈ Rπ1 and (z, y) ∈ Rπ2 }

Rπ∗ = (Rπ)∗ = reflexive and transitive closure of Rπ.

Abbreviations. We use the following abbreviations:
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[R]φ iff [RR]φ;
[R]∗φ iff [Rπ∗ ]φ;
∀φ iff ¬∃¬φ;
〈π〉φ iff ¬[π]¬φ;
�φ iff [R]φ;
^φ iff 〈R〉φ.

We define validity in a model (M � φ) and truth at a state in a model (M, a � φ)
as usual.

5.2 Logical Characterizations of Structural Notions

We now use the static network language to give a characterization of connec-
tors, bridges, local gatekeepers, bridging sets and blocking sets, as well as a
characterization of the first two notions of gatekeepers we presented in chapter
4.

A preliminary note. In the following, we will use indexes from N to merely
distinguish the agents involved, being their particular order irrelevant.

5.2.1 Connector

Recall that a connector is a set that connects two disconnected groups. It allows
the existence of a path between the two groups, therefore also the communica-
tion between them.

Definition 5.4. (Abbreviation for Connector). Let Connector(G1, b1, . . . , bn,G2) be
the abbreviation for the following formula:

(G1 ∧ [?G1; R]∗¬G2)→ 〈?(G1 ∨

n∨
i=1

bi); R〉∗G2)

Meaning: To explain the meaning, we split the formula in antecedent and
consequent.

- Antecedent: (G1 ∧ [?G1; R]∗¬G2). From any agent in G1, for every path of
agents all belonging to G1, this does not lead to an agent in G2.
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- Consequent: 〈?(G1 ∨

n∨
i=1

bi); R〉∗G2). Assuming the antecedent true, from

any agent in G1, call it x, there exists a path of agents belonging to G1 or
to the connector, that links x with an agent in G2.

We now prove that the truth of the formula in a model corresponds to the
existence of a connector between two disconnected groups in the model.

Proposition 5.5 (Characterization of Connector). Let M = (A,R,V) be a static
network model, let b1, . . . , bn be nominals for distinct single agents and G1,G2 be dis-
tinct group nominals. Then {V(b1), . . . ,V(bn)} is a connector between the disconnected
groups V(G1) and V(G2) iff M � Connector(G1, b1, . . . , bn,G2).

Proof. Let M = (A,R,V) be a static network model and consider an arbitrary

x ∈ A. We want to prove that M, x � (G1 ∧ [?G1; R]∗¬G2)→ 〈?(G1 ∨

n∨
i=1

bi); R〉∗G2

iff {V(b1), . . . ,V(bn)} is a connector between V(G1) and V(G2), which are two
disconnected groups.

Suppose that M, x � (G1 ∧ [?G1; R]∗¬G2). This is the case iff M, x � G1 and
M, x � [?G1; R]∗¬G2. By M, x � [?G1; R]∗¬G2 we know that for every y ∈ A such
that xR(G1;R)∗ y, we have M, y 2 G2. Since by definition R(G1;R)∗ = (R(G1;R))∗, then
this is the case iff for every finite path P := (xRz0R . . .Rzn = y), such that for
every zk with 0 ≤ k < n, we have M, zk � G1, it is the case that M, y 2 G2. This
holds iff for every zk, with 0 ≤ k < n, in every such path P, we have zk ∈ V(G1)
and zn < V(G2), i.e. V(G1)∪V(G2) is not a group. By definition, this means that
V(G1),V(G2) are disconnected groups.

We now show that M, x � 〈?(G1∨

n∨
i=1

bi); R〉∗G2 iff {V(b1), . . . ,V(bn)} is a connector

between the disconnected V(G1) and V(G2).

For simplicity, let us call π = (?(G1 ∨

n∨
i=1

bi); R). Then, M, x � 〈π〉∗G2 iff there

exists some y ∈ A such that xRπ∗y and M, y � G2. Since Rπ∗ = (Rπ)∗, then
this is the case iff there exists a finite path P := (x = z0Rπz1Rπ . . .Rπzn = y)

with all zi ∈ A and M, y � G2. Since π = (?(G1 ∨

n∨
i=1

bi); R) then the finite path

P is such that for all zk, with 0 ≤ k < n, we have M, zk � (G1 ∨

n∨
i=1

bi) and

zkRzk+1 and M, y � G2. This means that P is such that for all zk ∈ P, either we
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have zk ∈ V(G1), or zk ∈ {V(b1), . . . ,V(bn)} (but not both) and zn = y ∈ V(G2).
Therefore, there exists a path such that for all its elements they belong to
V(G1)∪{V(b1), . . . ,V(bn)}∪V(G2), i.e. V(G1)∪{V(b1), . . . ,V(bn)}∪V(G2) is a group.
Since we proved that V(G1),V(G2) are disconnected groups, this amounts to say
that {V(b1), . . . ,V(bn)} is a connector between V(G1),V(G2). �

5.2.2 Bridge

Recall that a bridge is a minimal connector between two disconnected groups,
by Proposition 3.12. Let us now see their characterization in network logic.

Definition 5.6. (Abbreviation for Bridge). Let Bridge(G1, b1, . . . , bn,G2) be the
abbreviation for the following formula:

Connector(G1, b1, . . . , bn,G2) ∧ (G1 →

n∧
i=1

[?(
n∨

j=1, j,i

b j); R]∗¬G2)

Meaning: The two conjuncts represent the clauses composing the definition of
bridges: the first represents (B+), the second (B-). Since the first was explained
above, we focus on the second one.

(B-): (G1 →

n∧
i=1

[?(
n∨

j=1, j,i

b j); R]∗¬G2). From any agent in G1 there exists no path

of agents that passes from all the agents b1, . . . , bn in the bridge except one
and reaches G2.

Proposition 5.7 (Characterization of Bridge). Let M = (A,R,V) be a static network
model, let b1, . . . , bn be nominals for distinct single agents and G1,G2 be distinct
group nominals. Then {V(b1), . . . ,V(bn)} is a bridge between V(G1) and V(G2) iff
M � Bridge(G1, b1, . . . , bn,G2).

Proof. Let M = (A,R,V) be a static network model. In what follows we will
prove the equivalence for each of the two conjuncts separately.

(1) We want to prove that M � Connector(G1, b1, . . . , bn,G2) iff {V(b1), . . . ,V(bn)}
satisfies (B+) of definition of bridges. That clause exactly says that
{V(b1), . . . ,V(bn)} is a connector. We proved in Proposition 5.5 that the
equivalence holds.
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(2) We want to prove that M � (G1 →

n∧
i=1

[?(G1∨

n∨
j=1, j,i

b j); R]∗¬G2) iff {V(b1), . . . ,V(bn)}

satisfies (B-) of definition of bridges.

Consider an arbitrary x ∈ A and suppose that M, x � G1. Take an arbitrary

1 ≤ i ≤ n and define πi = (?(G1 ∨

n∨
j=1, j,i

b j); R). Then M, x � [πi]∗¬G2 iff for

every y ∈ A such that xRπ∗i y we have M, y 2 G2. Since Rπ∗i = (Rπi )
∗, then

this is the case iff for every finite path P := (x = z0Rπi z1Rπi . . .Rπi zm = y)
with all zi ∈ A we have M, y 2 G2. By definition of πi, this means
that for every path P such that for all zk, with 0 ≤ k < m, it is the

case that M, zk � G1 ∨

n∨
j=1, j,i

b j, for some arbitrary 1 ≤ i ≤ n, we have

M, zm 2 G2. This is the case iff every P is such that for all zk ∈ P, either
we have zk ∈ V(G1), or zk ∈ ({V(b1), . . . ,V(bn)} \ V(bi)) (but not both) and
zm < V(G2), which is equivalent to say that every path such that all its
agents belong to V(G1) ∪ ({V(b1), . . . ,V(bn)} \ V(bi)) does not reach V(G2),
i.e. V(G1) ∪ ({V(b1), . . . ,V(bn)} \ V(bi)) ∪ V(G2) is not a group. Since i
was chosen arbitrarily, this holds for all 1 ≤ i ≤ n, i.e. for every V(bi) ∈
{V(b1), . . . ,V(bn)}, we have that V(G1)∪ ({V(b1), . . . ,V(bn)} \V(bi))∪V(G2)
is not a group. This means that (B-) holds for {V(b1), . . . ,V(bn)} and
V(G1),V(G2).

Hence, M, x � G1 → [πi]∗¬G2 for some arbitrary 1 ≤ i ≤ n, iff (B-) holds for

{V(b1), . . . ,V(bn)}. Since πi = (?(G1 ∨

n∨
j=1, j,i

b j); R), and since i was chosen

arbitrarily, then this holds for all 1 ≤ i ≤ n i.e. M, x � G1 →

n∧
i=1

[?(G1 ∨

n∨
j=1, j,i

b j); R]∗¬G2) iff (B-) holds for {V(b1), . . . ,V(bn)} and V(G1),V(G2).

Since also x was chosen arbitrarily this holds for all agents in A, i.e.,

M � (G1 →

n∧
i=1

[?(G1 ∨

n∨
j=1, j,i

b j); R]∗¬G2) iff (B-) holds for {V(b1), . . . ,V(bn)}

and V(G1),V(G2).

By putting the two conjuncts together we obtain M � Connector(G1, b1, . . . , bn,G2)∧

(G1 →

n∧
i=1

[?(G1∨

n∨
j=1, j,i

b j); R]∗¬G2) iff {V(b1), . . . ,V(bn)} satisfies clauses (B+) and
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(B-) of definition of bridge, i.e. {V(b1), . . . ,V(bn)} is a bridge between V(G1) and
V(G2). �

5.2.3 Local Gatekeeper

Local gatekeepers are agents that belong to bridges. They are defined using
the notion of connector, namely the bridge they belong to is part of a connector
between two disconnected groups.

Definition 5.8. (Abbreviation for C-Local Gatekeeper). Given a connector C =

{V(c1), . . . ,V(cn)}, with n ≥ 0 between V(G1),V(G2), let C− LocalGtkpr(G1, b,G2),
be the abbreviation for the following formula:∨
{Bridge(G1, c1, . . . , cn,G2) | n ≥ 0 with c1, . . . , cn all distinct and such that ci =

b for some 1 ≤ i ≤ n}

Meaning: This is a disjunction of formulas representing bridges between the
groups G1,G2. The bridges are formed by subsets of agents in the connector
C, and the C-local gatekeeper is then one of the agents belonging to one of the
bridges.

Proposition 5.9 (Characterization of C-Local Gatekeeper). Let M = (A,R,V)
be a static network model, let C = {V(c1), . . . ,V(cn)} be a connector between V(G1)
and V(G2), and let c1, . . . , cn, b be nominals for single agents, while G1,G2 be group
nominals. Then, {V(b)} is a C-local gatekeeper between V(G1) and V(G2) iff M �

LocalGtkpr(G1, b,G2).

Proof. Let M = (A,R,V) be a static network model and consider an arbitrary x ∈
A. Then we have M, x � LocalGtkpr(G1, b,G2) iff M, x � Bridge(G1, c1, . . . , cn,G2)
for some distinct c1, . . . , cn and such that ci = b for some 1 ≤ i ≤ n. By Proposition
5.7, this is the case iff there exists a bridge {VM(c1), . . . ,VM(cn)} between VM(G1)
and VM(G2), for some distinct c1, . . . , cn and such that ci = b for some 1 ≤ i ≤ n.
This amounts to say that there exists a bridge {VM(c1), . . . ,VM(cn)} between
VM(G1) and VM(G2), for some distinct c1, . . . , cn, such that for some VM(ci), with
1 ≤ i ≤ n, we have VM(ci) = VM(b). Since C = {V(c1), . . . ,V(cn)} is a connector
between V(G1) and V(G2), by definition of C-local gatekeeper, this means that
VM(b) is a C-local gatekeeper between V(G1) and V(G2).
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We can conclude that M � LocalGtkpr(G1, b,G2) iff given a connector C =

{V(c1), . . . ,V(cn)} between V(G1) and V(G2), {V(b)} is a C-local gatekeeper be-
tween V(G1) and V(G2). �

5.2.4 Bridging Set

A bridging set between two disconnected groups is a set containing only bridges
between these groups.

Definition 5.10. (Abbreviation for Bridging Set). Let BridgSet(G1, b1, . . . , bn,G2),
where n ≥ 1 be the abbreviation for the following formula:

n∧
i=1

(bi → C − LocalGtkpr(G1, bi,G2)

Meaning: Every agent bi in the bridging set is a C-local gatekeeper. Recall
that this means that there exists a bridge in the connector C

Proposition 5.11 (Characterization of Bridging Set). Let M = (A,R,V) be a static
network model and let b1, . . . , bn be nominals for single agents and G1,G2 be group
nominals. Then {V(b1), . . . ,V(bn)} is a bridging set between V(G1) and V(G2) iff
M � BridgSet(G1, b1, . . . , bn,G2)

Proof. Let M = (A,R,V) be a static network model and consider an arbitrary
x ∈ A. Suppose that M, x � bi for some arbitrary 1 ≤ i ≤ n. Then M, x �
C − LocalGtkpr(G1, bi,G2) iff V(bi) is a C-local gatekeeper between G1,G2, by
Proposition 5.9. Since i was chosen arbitrarily, this means that for all 1 ≤ i ≤ n
we have that V(bi) is a C-local gatekeeper between G1,G2. By definition of
bridging set, {V(b1), . . . ,V(bn)} is a bridging set between V(G1) and V(G2). �

5.2.5 Blocking Set

A blocking set between two disconnected groups is a set that intersects every
connector between the two groups.

Definition 5.12. (Abbreviation for Blocking Set). Let BlockSet(G1, b1, . . . , bn,G2),
where n ≥ 1 be the abbreviation for the following formula:

61



((G1 ∧ [?G1 : R]∗¬G2)→ [R; ?
n∧

i=1

¬bi]∗¬G2)

Meaning: The antecedent has the same meaning as the antecedent of the
definition of connector. Then, assuming the antecedent true, the consequent
says from any agent in G1, every path that does not pass through any agent
V(bi) in the blocking set, does not reach G2.

Proposition 5.13 (Characterization of Blocking Set). Let M = (A,R,V) be a
static network model, let b1, . . . , bn be nominals for single agents and G1,G2 be group
nominals. Then {V(b1), . . . ,V(bn)}, with {V(b1), . . . ,V(bn)} ∩ (V(G1)∪V(G2)) = ∅, is
a blocking set between V(G1) and V(G2) iff M � BlockSet(G1, b1, . . . , bn,G2).

Proof. Let M = (A,R,V) be an static network model. Consider an arbitrary x ∈
A and suppose that M, x � G1∧ [?G1; R]∗¬G2. In the proof of Proposition 5.5, we
showed that M, x � [?G1; R]∗¬G2 iff V(G1) and V(G2) are disconnected groups.
So we can conclude this being the case here too, and move to show that M �

[R; ?
n∧

i=1

¬bi]∗¬G2 iff {V(b1), . . . ,V(bn)} is a blocking set between V(G1),V(G2).

For simplicity, define π = (R; ?
n∧

i=1

¬bi). Then M, x � [π]∗¬G2 iff for every y ∈ A

such that xRπ∗y we have M 2 G2. Since Rπ∗ = (Rπ)∗, then this is the case iff
for every finite path P := (x = z0Rπz1Rπ . . .Rπzm = y) with all zk ∈ A we
have M, y 2 G2. By definition of π, this means that for every path P such

that for all zk, with 0 ≤ k < m, it is the case that M, zk �
n∧

i=1

¬bi, we have

M, zm 2 G2. For each P, the agents in it form a distinct group, which we call
P′. Then the above is equivalent to say that for every group P′ such that
(P′ ∩ V(G1)) , ∅, if (P′ ∩ {V(b1), . . . ,V(bn)}) = ∅ then P′ ∩ V(G2) = ∅, thus also
V(G2) 1 P′. This is equivalent to its contrapositive, namely for any group
P′ such that (P′ ∩ V(G1)) , ∅, if V(G2) ⊂ P′ then (P′ ∩ {V(b1), . . . ,V(bn)}) , ∅.
Now consider any group G3 such that P′ ⊆ G3 and V(G1) ⊂ G3. It is the
case that if V(G2) ⊂ P′ then (P′ ∩ {V(b1), . . . ,V(bn)}) , ∅ iff if V(G2) ⊂ P′ then
(V(G3) ∩ {V(b1), . . . ,V(bn)}) , ∅. It follows that for any group V(G3) such that
(V(G1) ∪V(G2)) ⊆ V(G3) we have (V(G3) ∩ {V(b1), . . . ,V(bn)}) , ∅. By definition
of blocking set this means that {V(b1), . . . ,V(bn)} is a blocking set between V(G1)
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and V(G2).

Hence, M, x � ((G1∧ [?G1; R]∗¬G2)→ [π]∗¬G2), iff {V(b1), . . . ,V(bn)} is a blocking

set between V(G1) and V(G2). Since π = (R; ?
n∧

i=1

¬bi), then M, x � ((G1 ∧

[?G1; R]∗¬G2)→ [R; ?
n∧

i=1

¬bi]∗¬G2) iff {V(b1), . . . ,V(bn)} is a blocking set between

V(G1) and V(G2).

Since x is chosen arbitrarily, this holds for all agents in A, i.e. M � ((G1 ∧

[?G1; R]∗¬G2) → [R; ?
n∧

i=1

¬bi]∗¬G2) iff the set {V(b1), . . . ,V(bn)} is a blocking set

between V(G1) and V(G2). �

5.2.6 Gatekeeping Set

A gatekeeping set between two groups is defined as being both a bridging set
and a blocking set. Then, it can be expressed as a conjunction of the formulas
characterizing the bridging and blocking sets.

Definition 5.14. (Abbreviation for Gatekeeping Set). Let GtkpSet(G1, b1, . . . , bn,G2),
where n ≥ 1 be the abbreviation for the following formula:

BlockSet(G1, b1, . . . , bn,G2) ∧ BridgSet(G1, b1, . . . , bn,G2)

The meaning of the formula is quite clear, so we skip the explanation of it and
move to the proof of equivalence.

Proposition 5.15 (Characterization of Gatekeeping Set). Let M = (A,R,V) be
a static network model and let b1, . . . , bn be nominals for single agents and G1,G2

be group nominals. Then {V(b1), . . . ,V(bn)} is a gatekeeping set between V(G1) and
V(G2) iff M � GtkpSet(G1, b1, . . . , bn,G2).

Proof. Let M = (A,R,V) be a static network model. By Proposition 5.13 we
know that M � BlockSet(G1, b1, . . . , bn,G2) iff {V(b1), . . . ,V(bn)} is a blocking set
between V(G1) and V(G2). By Proposition 5.11 know that M � BridgSet(G1, b1, . . . , bn,G2)
iff {V(b1), . . . ,V(bn)} is a bridging set between V(G1) and V(G2). By defini-
tion of gatekeeping set, {V(b1), . . . ,V(bn)} is a gatekeeping set between V(G1)
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and V(G2) iff it is a bridging set between V(G1) and V(G2) and it is a block-
ing set between V(G1) and V(G2). Hence, M � BlockSet(G1, b1, . . . , bn,G2) ∧
BridgSet(G1, b1, . . . , bn,G2) iff {V(b1), . . . ,V(bn)} is a gatekeeping set between
V(G1) and V(G2). �

5.2.7 Gatekeeping Bridge

As in the other cases, in the following characterization each conjunct of the for-
mula represents the clauses defining gatekeeping bridges: the first represents
(B+) and the second (GB-).

Definition 5.16. (Abbreviation for Gatekeeping Bridge). Let GtkpBridge(G1, b1, . . . , bn,G2)
be the abbreviation for the following formula:

Connector(G1, b1, . . . , bn,G2) ∧ (G1 → (
n∧

i=1

[?(¬bi); R]∗¬G2))

Meaning: The formula is a conjunction, where the meaning of the first con-
junct is clear. The second conjunct means that every path starting from any
agent that satisfies G1, and not passing from any agent bi in the gatekeeping
bridge, does not arrive to G2.

Proposition 5.17 (Characterization of Gatekeeping Bridges). Let M = (A,R,V)
be a static network model and let b1, . . . , bn be nominals for single agents and G1,G2 be
group nominals. Then {V(b1), . . . ,V(bn)} is a gatekeeping bridge between V(G1) and
V(G2) iff M � GtkpBridge(G1, b1, . . . , bn,G2).

Proof. Let M = (A,R,V) be a static network model. As we did in the previous
proof, in what follows we will prove the equivalence for each of the three
conjuncts separately.

(1) We want to prove that M � Connector(G1, b1, . . . , bn,G2) iff {V(b1), . . . ,V(bn)}
satisfies (B+) of definition of gatekeeping bridge. This is the case iff
{V(b1), . . . ,V(bn)} is a connector between V(G1) and V(G2). By Proposition
5.5, we know that M � Connector(G1, b1, . . . , bn,G2) iff {V(b1), . . . ,V(bn)} is
a connector between V(G1) and V(G2).
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(2) We want to prove that M � (G1 → (
n∧

i=1

[?(¬bi); R]∗¬G2)) iff {V(b1), . . . ,V(bn)}

satisfies (GB-) of definition of gatekeeping bridge. Consider an arbitrary
x ∈ A and suppose that M, x � G1. For simplicity, define πi = (?(¬bi); R).

Then M, x �
n∧

i=1

[πi]∗¬G2 iff for every 1 ≤ i ≤ n we have M, x � [πi]∗¬G2.

Consider an arbitrary 1 ≤ i ≤ n. Then the above is the case iff for every
y ∈ A such that xRπ∗i y we have that M, x 2 G2. Since Rπ∗i = (Rπi )

∗, then this
is the case iff for every finite path P := (x = z0Rπi z1Rπi , . . . ,Rπi zm = y) with
all zk ∈ A, we have M, y 2 G2. By definition ofπi, this means that for every
path P such that for all zk, with 0 ≤ k < m, it is the case that M, zk � ¬bi, we
have M, zm 2 G2. For each such P, the agents in it form a group, which we
call P′. Consider an arbitrary such P′. The above is then equivalent to say
that if for every zk ∈ P′, we have M, zk � ¬bi, then for no zk ∈ P′, we have
zk � G2, i.e. then P′ is not a connector between G1,G2. Note that for every
zk ∈ P′ it is the case that M, zk 2 bi iff {V(b1), . . . ,V(bn)} 1 P′. Then again
the above is equivalent to say that if {V(b1), . . . ,V(bn)} 1 P′, then P′ is not
a connector between G1,G2. By taking its contrapositive, this amounts to
say that if P′ is a connector between G1,G2 then {V(b1), . . . ,V(bn)} ⊂ P′.
Since P′ was chosen arbitrarily, this holds for every set of agents. This
means that (GB-) holds for {V(b1), . . . ,V(bn)} and V(G1),V(G2).

Hence, M, x � G1 → [πi]∗¬G2, for some arbitrary 1 ≤ i ≤ n iff (GB-
) holds for {V(b1), . . . ,V(bn)} and V(G1),V(G2). Since πi = (?(¬bi); R),
and since i was chosen arbitrarily, then this holds for all 1 ≤ i ≤ n,

i.e. M, x � G1 → (
n∧

i=1

[?(¬bi); R]∗¬G2) iff (GB-) holds for {V(b1), . . . ,V(bn)}

and V(G1),V(G2).

Since x was chosen arbitrarily this holds for all agents, i.e., M � G1 →

(
n∧

i=1

[?(¬bi); R]∗¬G2) iff (GB-) holds for {V(b1), . . . ,V(bn)} and V(G1),V(G2).

Then, by putting the two conjuncts together, we have M � Connector(G1, b1, . . . , bn,G2)∧

(G1 → (
n∧

i=1

[?(¬bi); R]∗¬G2)) iff {V(b1), . . . ,V(bn)} satisfies (B+) and (GB-) of defini-

tion of gatekeeping bridge iff {V(b1), . . . ,V(bn)} is a gatekeeping bridge between
V(G1) and V(G2). �
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This proposition concludes the proofs about the characterizations of structural
notions in the logic. We have characterized the notion of connectors, bridges,
bridging sets, gatekeeping bridge, and gatekeeping sets. As the reader will
have noticed, the characterization of one of the notions is missing.

Open Question: characterization of the grand gatekeeper between two discon-
nected sets.

We conjecture that this characterization can only be given by introducing names
for all the agents in the network, so only by switching from a network model to
what Seligman et al. call a named agent model [22]. This would allow to express
the maximality condition that characterizes the grand gatekeeper.

6 Logic for Communicative Actions

In the previous chapters, we introduced several structural notions, which we
used them to construct the definitions of gatekeepers. Then, we showed that
almost all the notions can be characterized using network logic, which is a
static logic. Yet, we have not discussed the other fundamental part of the gate-
keeper phenomenon, namely its informational dimension and the capability
of gatekeepers to control the information flow. Only representing the dynam-
ics of the information flow of between the groups we can fully capture this
phenomenon.

In this chapter we do just that, i.e. we represent the power gatekeepers have to
block or enable the flow. We will base the representation on network models,
in which we will define the actions that agents in the network can perform.
To represent the gatekeeper phenomenon, it will be sufficient to represent the
situation in which agents have the binary choice of posting the information they
have gathered from other agents or not to post it. Here, posting information
means that agents make it available to all the friends they have. This kind of
communication has then a public dimension, meaning that once an agent posted
some information, all of her friends receive it. The posting actions are relatable
to those allowed in the virtual social network Facebook, or Twitter, where
agents can post information on their profile and all of their friends can read it.
Relatable, but not precisely the same kind of actions, and in the next sections
we will see why. More generally, posting actions are comparable to all the
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communicative actions which reach all the agents related to the communicator,
at the same time. In this sense, they can be compared to public broadcasting
models, as proposed by Roelofsen [17]. This, because also in those models
agents can only publicly address the a set of agents as a whole.

The presence of gatekeepers in the network can impact the effectiveness of the
communication, as they can control it. By ’control’ we mean the capability
of agents to force a particular event to happen. Gatekeepers then control the
information flow in the sense that they have the capability to force the groups
they gatekeep to receive or not some information. However, recall that in this
thesis we assume that gatekeepers can be composed by more than one agent,
and that in some cases one single agent might be sufficient to block or enable
the information flow. Then, to see to it that an event will occur, the members
of a gatekeeper sometimes need to join their forces and cooperate towards that
outcome.

To provide a suitable representation for this kind of communicative actions and
for the gatekeepers’ capabilities, we will combine some notions from different
logics of actions [32]. For example, we will use the notion of dynamic model
update from Dynamic Epistemic Logic (DEL) [16], and the notion of coalition
and of forcing an outcome from Coalition logic [18] and STIT logic [20].

The structure of this chapter is the following. In section 6.1, after having briefly
introduced DEL, we will see the definitions required to model the dynamics of
posting actions in network models. In section 6.2, again we will briefly discuss
Coalition logic and STIT logic, to then we introduce the syntax and semantics
of coalition logic for posting actions. In section 6.3, we will use the new logic
to show the informational capabilities of gatekeepers.

6.1 Communication via Posting Actions

In this section, we represent the dynamics of information flow induced by
the posting action. To achieve the representation, we introduce three distinct
notions. First, we introduce a global action function, which maps every agent
to a set of data, representing the action that each agent chooses to do, i.e. the
information that each agent chooses to share. It has a global dimension, because
it is defined for every agent in the model. Then, we introduce the notion of
executability of global actions at a model. It provides the conditions under which
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an agent can share some information. The condition for an agent to post data
d is that at least one of the agent’s friends has previously posted d herself. This
implicitly requires that, if some agent posts an information, then she makes it
available to all of her friends. Then, the definition of executability of an action
implicitly represents not only the conditions under which agents can post data,
but also the public dimension of the action. The executable actions are used
as model updates. Every such action induces a distinct update of the model.
The definition of model update through a global action represents this, and it thus
encodes the communicative dynamics.

The notion of model update, or information update, is taken from DEL. This
is a branch of modal logic, which studies the dynamics occurring when an
epistemic action takes place in a given model. To represent such dynamics,
DEL adds to the modal language a new set of modalities describing the model-
transforming actions [16]. For example, suppose that A is an epistemic action,
namely such that it transforms the informational state of some agents. Then
we can add to the language the model-transforming modality [A]. To illustrate
how the model-transformer works, also in this thesis, consider a network model
M. We have that [A]φ is true for an agent a in M iff in the updated model (M)A,
we have φ true at a, i.e. M, a � [A]φ iff (M)A, a � φ. Note that not every action
A can be executed. For example, if an agent does not have an information d,
she cannot communicate d to other agents. Then, for every agent to be able to
communicate d, she must satisfy some requirements. In DEL these are usually
called the preconditions of an action. Only if the preconditions are satisfied, then
an action is executable and the model can be updated through that action.
For what concerns DEL, these basic notions should be sufficient for the reader
to understand what follows.

The definitions we introduce in this section are based on network models, as in
Definition 5.2. However, we now keep track, in the valuation function, of the
model to which it belongs, i.e. instead of V, we write VM. This is because we
will encode the dynamics of the model in the update of the valuation function.
It is this function that keeps track, for each model, of which agent receives
which new information. Then, the valuation of data may vary from model to
model.

Definition 6.1. (Global Action Function) Given a network model M, A global
action α : A→ P(D) is a function that maps each agent to a set of data.
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Definition 6.2. (Executability of Global Actions at a Model). Given a network
model M, we call a global function α executable at M iff for all a ∈ A, we have

α(a) ⊆ {d ∈ D | there exists b such that aRb and b ∈ VM(d)}

Informally, this notion says that for every agent a, a can perform an action
post(d) at model M if and only if at M agent a is informed of d, i.e. some
of a’s friends posted it (preconditions of an action). We assume that every
agent who has a friend that posted some data d automatically receives it and
is thus automatically informed of it. Note that ’being informed of d’ is not
here intended as ’knowing that d’ or as ’believing that d. Instead, we take it as
simply meaning that the agent possesses data d.

For convenience, we introduce also the notion of global action set GActM. This
contains all the actions executable at M.

Definition 6.3. (Global Actions Set) We call GActM the set containing every global
action function that is executable at model M, i.e.,

GActM = {α | for all a ∈ A, α(a) is executable at M}

Now, given a static network model M, every α ∈ GActM induces a distinct
model update (M)α, as the following definition states.

Definition 6.4. (Model Update through Executable Actions). The update of the
network model M = (A,R,VM) through the global action α executable at M, is
the network model (M)α = (A,R,V(M)α ), where V(M)α is given by:

V(M)α (d) = {a ∈ A | d ∈ α(a)} ∪ VM(d) for d ∈ D;

V(M)α (G) = VM(G) for G ∈ NomG.

The model update defines how a model is transformed, according to a global
action α. If in model M agent a chooses to perform some executable global
action α, such that d ∈ α(a), then in the updated model (M)α the agent displays
information d in her website. By definition of executable actions, it follows that
she has made d available to all her friends, that can now spread the information
themselves. This clarifies why our notion of posting action relates, but does
not coincide to the Facebook or Twitter one. Since the relations between them
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will illustrate some specificities of our posting action, let us briefly consider
them. On the one hand, it does align, as we also define it as having a public
dimension. However, it does not completely align to it, because (i) the agents
are allowed to post information just in case their friends have already posted
it. This means that the action shares information that someone else already
included in the system; (ii) we do not allow agents to explicitly avoid receiving
posted information, which in Facebook is always possible; (iii) we do not allow
agents to un-post information, as the set of data agents has posted cannot
decrease, but only increase. In Facebook instead, one can always eliminate
information from its own wall.

Note that for each action α, a distinct model update takes place. This represents
the intuition that each executable global action α leads to a different outcome.
By interpreting models as moments in time, we can read each executable action
α as giving rise to a different history. Then, a branching time structure unfolds,
where every branch represent the output of a global action, i.e. of the sum of
individual choices to post or not to post data.

The two definitions that follow, will be useful in the next section, when we
will use Coalition or STIT logics to define that a set of agents can force some
outcome.

Definition 6.5. (Global Action Equivalence). Given a network model M, two
global actions α, β in GActM, and a A ⊆ A, we say that α ∼A β if and only if for
all a ∈ A, α(a) = β(a).

This notion states that the global actions α, β agree on some local information,
namely there exists some set of agents A ⊆ A for which α, β coincide. Then,
this definition does not concern the other agents in the network. They instead
can decide to take any action they like.

Definition 6.6. (Communication Sequence). Let M = (A,R,VM) be a network
model. The communication sequence SQM is the sequence of network models

〈M0 = M,M1 = (M0)α
M0 ,M2 = (M1)α

M1 , . . . ,Mn+1 = (Mn)α
Mn
, . . . 〉

such that for any n ∈N, Mn = (A,R,VMn ), where VMn is given by VMn (d) :

VM0 (d) = VM(d) and VMn+1 (d) = V(Mn)α
Mn

(d).
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This definition just represents what a sequence of repeated updates amounts
to.

We now move to illustrate the above definitions through two examples. For
simplicity, we will assume that the agents are each time sharing only one single
data bit d. In the figures, the gray color represents the valuation of d.

Example 6.7. (Citizen-Mayor via Facebook). Consider again the situation in which
Ann wants to communicate information d to her mayor. Recall that Ann is
a citizen of a metropolis, and she is not in direct contact with the mayor.
Contrarily to the strategy she used in the examples above, this time Ann tries
to communicate information d in another way. Since the information is about
an issue that many of her fellow citizens feel as needing urgent addressing, she
decides to spread it among her Facebook friends. She is sure that they will
spread it as well and that ultimately also the mayor will receive and share it
herself with all of her contacts.
Let M = (A,R,VM) be the network model represented in Figure 13 on the left,
and let a represent Ann. Node a is gray, which means that Ann has posted data
d.

a b c a b c a b c

M M! M!!

Figure 13

By posting information d, Ann has made it available to her friends, i.e. to
Beatrix b. Since it is the case that a ∈ R[b], and a ∈ VM(d), then by definition of
executable action, we have α ∈ GActM, with d ∈ α(b). This means that Beatrix
can now repost d herself, which she actually does. Then, in the updated model
M′ = (M)α we have b ∈ V(M)α (d). Now it is Beatrix who has made information
d available to all of her friends, namely to the mayor c. At model (M)α then,
the mayor receives d and Ann realizes her communicative goal. Moreover, the
mayor too posts d on her wall, and in model M′′ = (M)α

′

we have b ∈ V(M)α
′

(d).

Example 6.8. (Multiple Citizen-Mayor via Facebook). Now consider the following
adaptation of Example 6.7. There are two citizens, Ann a and Eliver e, who do
not know each other, but who share the aim of spreading information d via
Facebook. They hope to make more people aware of it and to ultimately reach
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the mayor, who will eventually take action and share the information herself.
Let M = (A,R,VM) be the network model represented in Figure 14 on the left.

a

c

e

b f

a

c

e

b f

a

c

e

b f

M! M!!M

Figure 14

At M both Ann and Eliver posted d. Now Beatrix b and Fiona f , who are
friends of Ann and Eliver respectively, received the information, so we have
α ∈ GActM, with d ∈ α(b) and α ∈ GActM, with d ∈ α(e). This means that Beatrix
and Fiona can repost the information themselves. However, Fiona is rather
agnostic about that sort of issues, so she does not report d in her Facebook wall.
Notice that by definition of executability of an action at a model, every agent at
every model can perform the null-action, i.e. not spread any information with
her friends. It follows that there exists some β ∈ GActM such that β( f ) = ∅, and
d ∈ β(b). At model M′ = (M)β we have f < V(M)β (d) and b ∈ V(M)β (d). Then,
at model (M)β, the mayor receives d even if Fiona did not post it, as we have
b ∈ R[c], namely Beatrix is one of the mayor’s friends. So at model M′, we have
β′ ∈ GActM′ such that d ∈ β′(c). This means that the mayor has the possibility
to post the information herself, which again she actually does. Then, at model
M′′ = (M)β

′

, we have c ∈ V(M)β
′

(d).

6.2 Coalition logic for Posting Actions: Syntax and Seman-
tics

In this section, we introduce coalition logic for posting actions. The language is
an extension of the static network language of Definition 5.1, to which we add
the coalition modality 〈〈A〉〉, for some A ⊆ A. This modality is used to express
that if the agents in A perform the same action, they can force an outcome.
When agents perform the same action, we say that they form a coalition.
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Coalition logic is another branch of modal logic, firstly introduced by Pauly to
express what a set of agents can achieve if working as a coalition [18]. There
exist many variations of Coalition logic, e.g. [33][34]. Broersen et al. showed
that this logic can be translated into a discrete-time version of STIT logic [35],
which is another kind of action logic to express that agents can See To It That
something will happen.
Coalition logic adds a coalition modality [C] to the basic modal language. Then
[C]φ is to be read ”coalition C can achieve outcome φ”, or ”coalition C can force
outcomeφ”. However, in Pauly version this is combined with games structures,
which we do not need. Rather, we will combine a coalition modality with the
equivalence relation for global actions we defined in the previous section. This
strategy is inspired by STIT logic [20],[36], where a set of agents sees to it that
φ iff for every choice the agents can make, φ will be the case.1

Note that the notion of coalition we adopt is a rather broad one. We assume
that a coalition is not necessarily formed by an explicit agreement between the
actors. It might happen by chance that they act in the same way and, if by doing
so they enforce some outcome, we will still say that they form a coalition.

Definition 6.9. (Coalition Language). Let NomG
∪ D be the set of atoms. We

define the coalition language over NomG
∪D as follows:

φ ::= g | G | d | ¬φ | φ ∨ ψ | ∃φ | [π]φ | 〈〈A〉〉φ.

π ::= R | ?φ | π ∪ π | π;π | π∗

for some {g,G} ⊆ NomG, d ∈ D and A ⊆ A.

We read 〈〈A〉〉φ as ”the agents in A force φ to happen”. The other symbols
are to be read as in definition 5.1. However, the intuitive interpretation of the
satisfaction of data-bits d is now a more specific one. To illustrate, given a static
network model M and an agent a, the intuitive interpretation of M, a � d is
“agent a has made d available to all her friends”. This represents the intuition
that agent a posted data d on her website. Recall that having some information
is not intended as believing or knowing that data, but just possessing such
data.

The satisfaction definition of the new coalition modality 〈〈A〉〉 is based on
the notion of equivalence ∼A between actions in GActM performed by some

1The semantics is more interesting and complex that this. The interested reader can find a
comprehensive analysis in [20].
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A ⊆ A.

Definition 6.10. (Coalition Language Satisfaction). Let M = (A,R,V) be a network
model and consider some agent a ∈ A. Then the satisfaction definition is the
same as 5.3 with the following clause added:

M � 〈〈A〉〉φ iff there exists a sequence of actions α1, . . . , αn in GActM1 , . . . ,GActMn such that
for all β1, . . . , βn in GActM1 , . . . ,GActMn , if α1 ∼A β1, . . . , αn ∼A βn

then (M)β1,...,βn � φ.

Example 6.11. Consider Example 6.7 and the related Figure 13. Let M =

(A,R,VM) be the model represented there, and let the letters in the nodes be
both the nominals associated with the agents, and the agents in A. We claim
that M � 〈〈A〉〉∃(c ∧ d), with A = {a, b}.

Proof. In Example 6.7, we showed that since M, a � d and a ∈ R[b], then we
have α ∈ GActM, with d ∈ α(b), by definition of executability of α. Then, call
(M)α = M′. By definition of model update through α, at M′ we have b ∈ VM′ (d)
and since b ∈ R[c], then we also have α′ ∈ GActM′ , with d ∈ α′(c), by definition of
executability ofα′ at M′. Now, call M′′ = (M′)α′ . Then we obtain M′′, c � d. Since
VM(c) = c then M′′, c � c∧ d. By semantics of ∃, this amounts to M′′, c � ∃(c∧ d).
It follows that for any other sequence of actions β, β′ in GActM and GAct(M)β ,
such that α ∼{a,b} β, α′ ∼{a,b} β′ we have (M)β,β

′

, c � ∃(c ∧ d). By semantics of
coalition modality, this means that M � 〈〈A〉〉∃(c ∧ d), with A = {a, b}. �

Example 6.12. Now consider the other example above, namely Example 6.8,
and its related Figure 14. Let M = (A,R,VM) be the model represented there,
and let the letters in the nodes be both the nominals associated with the agents
and the agents inA. We claim that M � 〈〈A〉〉∃(c ∧ ¬d), with A = {b, f }.

Proof. As we already mentioned above, every agent in every model has the
possibility to remain silent and perform the null-action. This is because by
definition of executability of global action at a model, there always exists some
α ∈ GActM, such that α(b) = ∅ = α( f ). Then, call (M)α = M′. By definition of
model update through α, at M′ we have b, f < VM′ (d) and thus also c < VM′ (d).
This means that M, c � c ∧ ¬d. By semantics of ∃, M′′, c � ∀(c ∧ ¬d). Since
b, f are the only agents related to c and from which then c can get to know
d, this means that for every other action β in GActM, such that α ∼{b, f } β we
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have (M)β, c � ∃(c ∧ ¬d). By semantics of coalition modality, this means that
M � 〈〈A〉〉∃(c ∧ ¬d), with A = {b, f }. �

6.3 Capturing the Informational Capabilities of Gatekeepers

In this section, we use coalition logic for posting actions to prove the capabilities
of the structural notions to enable or block the information flow between the
disconnected groups. We start by proving the capability of bridges, connectors,
and bridging sets to enable the flow between the groups. Then, we prove that
blocking sets can block it. Lastly, we prove that gatekeepers can control the
information flow between the groups, i.e. both enable and block it.

Bridges

Proposition 6.13. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is a bridge between two disconnected groups VM(G1) and VM(G2) then

M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Proof. Let M be a network model. Assume that {VM(b1), . . . ,VM(bn)} is a bridge
between two disconnected groups VM(G1) and VM(G2). By definition of bridge,
{VM(b1), . . . ,VM(bn)} is a connector between VM(G1) and VM(G2). By definition
of connector, this means that VM(G1)∪VM(G2)∪{VM(b1), . . . ,VM(bn)} is a group.
Since VM(G1) and VM(G2) are otherwise disconnected, there must exist some
VM(bi) ∈ {VM(b1), . . . ,VM(bn)} such that for some agent g1 ∈ VM(G1), we have
(g1,VM(bi)) ∈ R. Assume that M � (G1 → d). Since g1 ∈ VM(G1), then M, g1 � G1.
By our assumption this implies M, g1 � d, i.e., g1 ∈ VM(d). Then, by (g1,VM(bi)) ∈
R and definition of executable action, we know there exists a global function
α1 ∈ GActM such that d ∈ α1(VM(bi)).

Now we have two cases: either (i) VM(bi) is the only agent in {VM(b1), . . . ,VM(bn)}
or (ii) it is not.

(i) VM(bi) is the only agent in {VM(b1), . . . ,VM(bn)}. By definition of bridge,
there exists some g2 ∈ A such that M, g2 � G2 and (VM(bi), g2) ∈ R. By
d ∈ α1(VM(bi)) we get Mα1 ,VM(bi) � d. Then Mα1 , g2 � G2 ∧ ^d. By
semantics of ∃, this implies that Mα1 � ∃(G2 ∧ ^d). Then, there exists a
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sequence of actionsα1 in GActM such that if for any other action β ∈ GActM,
we have that α1 ∼VM(bi) β, then Mβ � ∃(G2 ∧^d). By semantics of coalition
modality 〈〈bi〉〉, this amounts to M � 〈〈bi〉〉(∃(G2 ∧^d)). Therefore we can
conclude that M � (G1 → d)→ 〈〈bi〉〉(∃(G2 ∧^d)).

(ii) VM(bi) is not the only agent in {VM(b1), . . . ,VM(bn)}. Say the other agents
are b1, . . . , bm.

Claim: since {VM(b1), . . . ,VM(bn)} is a bridge between VM(G1),VM(G2), and
we know that (g1,VM(bi)) ∈ R, then there exists at most one other agent bk

among b1, . . . , bm such that bk ∈ {VM(b1), . . . ,VM(bn)} and (bk,VM(bi)) ∈ R.

Suppose not. Then there exists at least one more b′ with b′ , bk, such
that b′ ∈ {VM(b1), . . . ,VM(bn)} and (b′,VM(bi)) ∈ R. By definition of
bridge, VM(G1) ∪ VM(G2) ∪ {VM(b1), . . . ,VM(bn)} is a group, and we have
(g1,VM(bi)) ∈ R, (bk,VM(bi)) ∈ R, and (b′,VM(bi)) ∈ R. It follows that
there exist at least two paths P1,P2, with bk ∈ P1 and b′ ∈ P2, such
that VM(G1) ∪ VM(G2) ∪ P1 is a group and VM(G1) ∪ VM(G2) ∪ P2 is a
group. This means that there exist some B ⊂ {VM(b1), . . . ,VM(bn)} such
that VM(G1)∪VM(G2)∪ {VM(b1), . . . ,VM(bn)} \ B is a group, which contra-
dicts the minimality of bridges. We can conclude that there exists at most
one agent bk such that bk ∈ {VM(b1), . . . ,VM(bn)} and (bk,VM(bi)) ∈ R.

Recall that there exists an α1 ∈ GActM such that d ∈ α1(VM(bi)). Then, by
(bk,VM(bi)) ∈ R and definition of executable action, we know there exists a
global functionα2 ∈ GActMα1 such that d ∈ α2(bk). Since {VM(b1), . . . ,VM(bn)}
is a bridge, then by Proposition 3.16 and (VM(bi), bk) ∈ R, we know that
there exists at most another agent b j among b1, . . . , bm with bk , b j such
that (bk, b j) ∈ R. Then by d ∈ α2(bk) and definition of executable action,
we know there exists an α3 ∈ GActMα3 such that d ∈ α3(b j). By iterating
analogous reasoning for all the agents in {VM(b1), . . . ,VM(bn)}, we get that
there exists a sequence of actions α1, . . . , αn in GActMα1 , . . . ,GActMαn such
that {VM(b1), . . . ,VM(bn)} ⊂ VMαn (d). By definition of bridge there exists
some g2 ∈ A such that M, g2 � G2 and some b ∈ {VM(b1), . . . ,VM(bn)}
such that (b, g2) ∈ R. Since b ∈ VMαn (d) then Mαn , g2 � G2 ∧ ^d. By
semantics of ∃, this implies that Mαn � ∃(G2 ∧ ^d). Then, there ex-
ists a sequence of actions α1, . . . , αn in GActMα1 , . . . ,GActMαn such that
if for any other action β1, . . . , βn in GActMβ1 , . . . ,GActMβn , we have that
α1 ∼{VM(b1),...,VM(bn)} β1, . . . , αn ∼{VM(b1),...,VM(bn)} βn, then Mβ1,...,βn � ∃(G2 ∧ ^d).
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By semantics of coalition modality 〈〈b1, . . . , bn〉〉, this amounts to M �

〈〈b1, . . . , bn〉〉(∃(G2 ∧ ^d)). Therefore we can conclude that M � (G1 →

d)→ 〈〈b1, . . . , bn〉〉(∃(G2 ∧^d)). �

Connector

Proposition 6.14. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is a connector between two disconnected groups VM(G1) and VM(G2) then

M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Proof. Let M be a network model. Suppose that {VM(b1), . . . ,VM(bn)} is a con-
nector between two disconnected groups VM(G1),VM(G2). By Proposition 3.10,
we know that in every connector there exists a bridge. Then we can apply
Proposition 6.13 to get that M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Hence, if {VM(b1), . . . ,VM(bn)} is a connector between two disconnected groups
VM(G1) and VM(G2) then M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d). �

Bridging Sets

In Proposition 3.22, we showed that bridging sets between two disconnected
groups are union of some bridges between them. Then, they can enable the
information flow between them and to show it we will use the result about
capabilities of bridges above. Since they are not the union of all bridges (as the
grand gatekeeper is), they cannot also block the information flow.

Proposition 6.15. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals
for distinct single agents and G1,G2 be two group nominals. If {VM(b1), . . . ,VM(bn)}
is a bridging set between two disconnected groups VM(G1) and VM(G2) then

M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Proof. Let M = (A,R,VM) be a network model. Assume that {VM(b1), . . . ,VM(bn)}
is a bridging set between two disconnected groups VM(G1) and VM(G2). By
Proposition 3.22, we know that {VM(b1), . . . ,VM(bn)} is a union of bridges be-
tween VM(G1) and VM(G2). Since by definition of bridging set {VM(b1), . . . ,VM(bn)} ,
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∅, then there exists at least one such bridge in {VM(b1), . . . ,VM(bn)}. So we can
apply Proposition 6.13, to get that M � (G1 → d)→ 〈〈b1, . . . , bn〉〉

∗
∃(G2 ∧^d).

Hence, if {VM(b1), . . . ,VM(bn)} is a bridging set between two disconnected
groups VM(G1) and VM(G2) then M � (G1 → d)→ 〈〈b1, . . . , bn〉〉

∗
∃(G2 ∧^d). �

Blocking sets

Proposition 6.16. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is a blocking set between two disconnected groups VM(G1) and VM(G2) then

M � (d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 → ¬^d).

Proof. Let M be a network model. Suppose that {VM(b1), . . . ,VM(bn)} is a block-
ing set between two disconnected groups VM(G1),VM(G2) and assume that
M � (d → G1). Consider an arbitrary b ∈ A such that b ∈ VM(G2), i.e.
M, b � G2. Since VM(G1) and VM(G2) are disconnected groups, then for all
a ∈ A, if (a, b) ∈ R, then we have a < VM(G1), i.e. M, a � ¬G1. By our initial
assumption, we get M, a � ¬d. By semantics of�, this implies M, b � �¬d, which
is equivalent to M, b � ¬^d. So for every b ∈ A it holds that if M, b � G2 then
M, b � ¬^d. Thus M � G2 → ¬^d.

By definition of global action α : A → P(D) and executable action, there
exists an action α ∈ GActM such that for every VM(bi) ∈ {VM(b1), . . . ,VM(bn)}we
have d < α(VM(bi)), namely α(VM(bi)) = ∅. Consider an arbitrary other action
β ∈ GActM and suppose that α ∼{VM(b1),...,VM(bn)} β.

Claim: Since M � G2 → ¬^d, then also Mβ � G2 → ¬^d.

For suppose not, i.e. Mβ 2 G2 → ¬^d. This means that there exists some a ∈ A,
such that Mβ, a � G2 ∧ ^d. Then a ∈ VM(G2) and there exists some b ∈ A such
that (a, b) ∈ R and b ∈ VMβ

(d). By definition of model update, this is the case
iff d ∈ β(b). By assumption β ∈ GActM, so β is executable at M. By definition
of executable functions, d ∈ β(b) iff there exists some c ∈ A such that (b, c) ∈ R
and c ∈ VM(d). Since in M we had M � (d→ G1), then c ∈ VM(G1). So we have
(a, b) ∈ R, (b, c) ∈ R and c ∈ VM(G1), a ∈ VM(G2) and b ∈ VMβ

(d).
Since V(G1) and V(G2) are disconnected groups, this means that {b} is a con-
nector between them. Then, by definition of blocking set, we must have
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{VM(b1), . . . ,VM(bn)} ∩ {b} , ∅. This means that {VM(b1), . . . ,VM(bn)} ∩ {b} = {b}
and {b} ⊆ {VM(b1), . . . ,VM(bn)}. Recall that we had α(VM(bi)) = ∅ for every
VM(bi) ∈ {VM(b1), . . . ,VM(bn)}, and that α ∼{VM(b1),...,VM(bn)} β. By definition of
∼, it follows that β(VM(bi)) = ∅ for every VM(bi) ∈ {VM(b1), . . . ,VM(bn)}. Then,
β(b) = ∅, i.e. for every d ∈ D, we have b < VMβ

. But we had b ∈ VMβ
. Contradic-

tion. Hence, if M � G2 → ¬^d, then also Mβ � G2 → ¬^d.

Therefore, there exists an action α such that if for every other action β we have
α ∼{VM(b1),...,VM(bn)} β then Mβ � G2 → ¬^d. By semantics of coalition modality
〈〈b1, . . . , bn〉〉, this amounts to M � 〈〈b1, . . . , bn〉〉(G2 → ¬^d). So we can conclude
that M � (d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 → ¬^d).

Hence, if {VM(b1), . . . ,VM(bn)} is a blocking set between two disconnected
groups VM(G1) and VM(G2) then M � (d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 → ¬^d). �

Gatekeeping Bridge

Proposition 6.17. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is a gatekeeping bridge between two disconnected groups VM(G1) and VM(G2) then

M � ((G1 → d) → 〈〈b1, . . . , bn〉〉∃(G2 ∧ ^d)) ∧ ((d → G1) → 〈〈b1, . . . , bn〉〉(G2 →

¬^d)).

Proof. Let M be an network model. Assume that {VM(b1), . . . ,VM(bn)} is the
gatekeeping bridge between two disconnected groups VM(G1) and VM(G2). By
Proposition 4.12, we know that {VM(b1), . . . ,VM(bn)} is a bridge. So we can use
Proposition 6.13, to get that the positive part of gatekeeping bridge’s capability,
i.e., M � (G1 → d)→ 〈〈b1, . . . , bn〉〉

∗
∃(G2 ∧^d).

Now assume that M � (d → G1). By the fact that VM(G1) and VM(G2) are
disconnected groups, and by applying exactly the reasoning we used for in the
proof of Proposition 6.16, we obtain M � G2 → ¬^d.

By definition of global action α : A → P(D) and executable action, there
exists an action α ∈ GActM such that for every VM(bi) ∈ {VM(b1), . . . ,VM(bn)}we
have d < α(VM(bi)), namely α(VM(bi)) = ∅. Consider an arbitrary other action
β ∈ GActM and suppose that α ∼{VM(b1),...,VM(bn)} β.

Claim: Since M � G2 → ¬^d, then also Mβ � G2 → ¬^d.
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For suppose not, i.e. Mβ 2 G2 → ¬^d. This means that there exists some a ∈ A,
such that Mβ, a � G2 ∧ ^d. Then a ∈ VM(G2) and there exists some b ∈ A such
that (a, b) ∈ R and b ∈ VMβ

(d). By definition of model update, this is the case iff
d ∈ β(b). By definition of executable function β, this is the case iff there exists
some c ∈ A such that (b, c) ∈ R and c ∈ VM(d). Since in M we had M � (d→ G1),
then c ∈ VM(G1). So we have (a, b) ∈ R, (b, c) ∈ R and c ∈ VM(G1), a ∈ VM(G2)
and b ∈ VMβ

(d).
Since V(G1) and V(G2) are disconnected groups, this means that {b} is a con-
nector between them. Then, we must have {VM(b1), . . . ,VM(bn)} ⊆ {b}, by def-
inition of gatekeeping bridge. Since by definition, a gatekeeping bridge is not
empty, then {VM(b1), . . . ,VM(bn)} = {b}. Now recall that α(VM(bi)) = ∅ for every
VM(bi) ∈ {VM(b1), . . . ,VM(bn)} and that α ∼{VM(b1),...,VM(bn)} β. Then, β(b) = ∅, i.e.
for every d ∈ D, we have b < VMβ

(d). But we had that b ∈ VMβ
(d). Contradiction.

Hence, if M � G2 → ¬^d, then also Mβ � G2 → ¬^d.

Therefore, there exists an action α such that if for every other action β we have
α ∼{VM(b1),...,VM(bn)} β then Mβ � G2 → ¬^d. By semantics of coalition modality
〈〈b1, . . . , bn〉〉, this amounts to M � 〈〈b1, . . . , bn〉〉(G2 → ¬^d). So we can conclude
that M � (d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 → ¬^d).

Hence, by putting together the two conjuncts we obtain that if {VM(b1), . . . ,VM(bn)}
is a gatekeeping bridge between two disconnected groups VM(G1) and VM(G2)
then M � ((G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2∧^d))∧((d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 →

¬^d)). �

Gatekeeping Sets

Proposition 6.18. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is a gatekeeping set between two disconnected groups VM(G1) and VM(G2) then

M � ((G1 → d) → 〈〈b1, . . . , bn〉〉∃(G2 ∧ ^d)) ∧ ((d → G1) → 〈〈b1, . . . , bn〉〉(G2 →

¬^d)).

Proof. Let M = (A,R,VM) be a network model. Assume that {VM(b1), . . . ,VM(bn)}
is a gatekeeping set between two disconnected groups VM(G1) and VM(G2). By
definition of gatekeeping set, A is a bridging set between VM(G1) and VM(G2),
and by Proposition 3.22 we know that A is a union of bridges between VM(G1)
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and VM(G2). Since by definition of gatekeeping set {VM(b1), . . . ,VM(bn)} , ∅,
then {VM(b1), . . . ,VM(bn)} is composed by at least one such bridge. So we can
apply Proposition 6.13, to get that M � (G1 → d)→ 〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Moreover, by definition, a gatekeeping set between two groups is a blocking
set. So we can apply Proposition 6.16, and derive that M � ((d → G1) →
〈〈b1, . . . , bn〉〉(G2 → ¬^d)).

Hence, by combining the two conjuncts we obtain that if {VM(b1), . . . ,VM(bn)}
is a gatekeeping set between two disconnected groups VM(G1), VM(G2) then
M � ((G1 → d) → 〈〈b1, . . . , bn〉〉∃(G2 ∧ ^d)) ∧ ((d → G1) → 〈〈b1, . . . , bn〉〉(G2 →

¬^d)). �

Grand Gatekeeper

Proposition 6.19. Let M = (A,R,VM) be a network model, b1, . . . , bn be nominals for
distinct single agents and G1,G2 be distinct group nominals. If {VM(b1), . . . ,VM(bn)}
is the grand gatekeeper between two disconnected groups VM(G1) and VM(G2) then

M � ((G1 → d) → 〈〈b1, . . . , bn〉〉∃(G2 ∧ ^d)) ∧ ((d → G1) → 〈〈b1, . . . , bn〉〉(G2 →

¬^d)).

Proof. Let M = (A,R,VM) be a network model. Assume that {VM(b1), . . . ,VM(bn)}
is the grand gatekeeper between two disconnected groups VM(G1) and VM(G2).
By Proposition 4.20, A is the union of all the bridges between VM(G1) and
VM(G2). By Proposition 3.10, there exists at least a bridge between them and it
is non-empty. So we can apply Proposition 6.13, to get that M � (G1 → d) →
〈〈b1, . . . , bn〉〉∃(G2 ∧^d).

Moreover, by Proposition 4.24, a grand gatekeeper between two groups is a
blocking set between them. So we can apply Proposition 6.16, and derive that
M � ((d→ G1)→ 〈〈b1, . . . , bn〉〉(G2 → ¬^d)).

Hence, by combining the two conjuncts we obtain that if {VM(b1), . . . ,VM(bn)}
is a gatekeeping set between two disconnected groups VM(G1), VM(G2) then
M � ((G1 → d) → 〈〈b1, . . . , bn〉〉∃(G2 ∧ ^d)) ∧ ((d → G1) → 〈〈b1, . . . , bn〉〉(G2 →

¬^d)). �

The following interesting fact is to be noted. When proving that a gatekeeper
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can both enable and block the information flow, we are implicitly also proving
that a gatekeeper can decide to allow just a subset of the information to flow,
while blocking its complement. Then, the propositions above show that the
control the gatekeeper can exercise also comes in the form of shaping the
information the groups receive. In gatekeeping theory, this is taken to mean
that gatekeepers, as editors of newspapers or journals, do not merely block or
enable the information to flow. By doing so, they actually construct the social
reality.

(..) the gatekeeping process is also thought of as consisting more
than just selection. In fact, gatekeeping in mass communication can
be seen as the overall process through which social reality transmit-
ted by the news media is constructed, and is not just a series of in
and out decisions. (Barzilai-Nahon, [6])

7 Conclusion and Future Works

In this section, we summarize what this thesis has achieved, and then discuss
in which directions this work can be further developed.

We provided a formalization of the gatekeeper phenomenon in social networks.
In chapter 1 and 2, we introduced the topic and the preliminaries that were
necessary to motivate and introduce the rest of the work. In chapter 3, we pro-
vided a graph-theoretical representation of some structural notions that were
later used to construct the gatekeepers. Important notions, were the connector,
bridging set and blocking set. Chapter 4 contained the graph-theoretical rep-
resentation of gatekeepers, each constructed out of some of the three notions
above mentioned. In chapter 5, we used an hybrid version of PDL to character-
ize the notions of gatekeeper. We left as open question whether it was possible
to characterize the grand gatekeeper with that logic. We think it is not, as to
achieve that, one should add to the language an infinite amount of nominals,
which we did not. In chapter 6, we expanded the network logic, making it
dynamic. We defined a set of actions that we used as dynamic updates of the
network models. This was encoded in the language through a coalition modal-
ity, which also expressed the capability that some agents have to force some
outcomes.
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From here, there are many paths that open up. We propose two of them.

Concerning the graph-theoretical part, it would be interesting to generalize the
structural notions. All of them are now defined for two disconnected groups
G,G′, but they could be easily extended to n groups. Such generalizations could
represent notions as the star network that Bruggeman describes [12]. To give
an example of what this could look like, we provided a generalization of the
gatekeeping set.

Definition 7.1. (Gatekeeping Hub). Let G1,G2, . . . ,Gn be disconnected groups
and consider some A ⊂ A such that A , ∅. We say that A is the gatekeeping
hub between disconnected G1,G2, . . . ,Gn iff

(GH-) for every A′ ⊂ A, if
n⋃

i=1

Gi ∪ A′ is a group, then A ∩ A′ , ∅;

(GS+) for every Gi,G j, with 1 ≤ i < j ≤ n, there exists some A′ ⊆ A that is a
bridging set between Gi,G j.

This notion has similar properties to the ones we showed for the other notions,
but generalized to n groups. For example, if A is the gatekeeping hub between

some disconnected groups G1,G2, . . . ,Gn, then: (1)
n⋃

i=1

Gi ∪ A is a group; (2)

G j ∩ Gk = ∅; (3) A , G j and A , Gk; (4) A * G j ∪ Gk; (5) A *
n⋃

i=1

Gi.

The other interesting direction would be to introduce more features to network
models and represent more kinds of communication. For example, the posting
action does not capture the directionality of exchanges of information, as it
directs the posted message to every friend one has. One possibility would
then be to define the sending action, a directed version of the posting action.
This action could direct the message to a set of agents, namely a subset of
one’s friends. Then, also in this case, the sending action could be used as a
model transformer and the update be again encoded in the valuation function
VM.
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