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Abstract

In this thesis, we investigate the expressive power of first-order logic and alternating

parity automata on unranked trees with no leaves. While the initial aim of this thesis

was to provide a full characterization of first-order logic as a class of automata, slightly

less is achieved. In particular, we introduce several closely related classes of alternating

parity automata and prove that they effectively bound the expressive power of first-order

logic over such structures. Inspired by automata-theoretic characterizations of first-order

logic over word structures, the automata classes considered in this thesis are obtained by

imposing weak acceptance conditions, antisymmetry of the reachability relation on states

(also known as aperiodicity), and what we call the path condition. The essence of the

latter is the semantic notion of complete additivity. In the final chapter, we investigate

the bisimulation-invariant subclass of the lower bound of the first-order ‘sandwich’ given

in this thesis using methods developed in the work of Janin and Walukiewicz.
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Chapter 1

Introduction

This thesis concerns problems arising at the interface of logic, automata theory, and

theoretical computer science. We will investigate an instance of the following problem:

given a logical language L and a class of structures K, provide a class A of automata

which is equivalent to L over K. In particular, we will explore the relative expressive

power of first-order logic with equality (FOE) and alternating parity automata over

infinite unranked trees with no leaves. In the sequel, we shall simply refer to such

structures as trees.

There are at least two notable motivations for such an investigation, both of which

are intimately related to one another. On the one hand, several results concerning the

connection between logical languages and automata have served as the key breakthrough

leading to the solution of interesting decidability problems arising in mathematical logic.

On the other hand, the connection between logical languages and automata has played

an important role in computer science; a point that will be developed further below.

An interesting open problem in mathematical logic is the following decision problem:

given as input a monadic second-order definable tree language (i.e. a class of trees)

T , decide whether T is first-order definable. In the context of finite word languages,

a positive solution to this problem was given through the joint efforts of Büchi [4],

Schützenberger [32], and McNaughton and Papert [28]. This was later extended to the

context of streams (i.e. ω-words) languages through the work of Perrin [29] using a

syntactic congruence introduced by Arnold [1]. This sequence of results is illustrative of

a beautiful harmony between logic, automata theory, and algebra. For a nice overview of

the principal results concerning first-order definable word languages, we refer the reader

to Diekert and Gastin [13].

Decidability questions concerning logical languages are particularly relevant for com-

puter scientists, notably in the area of formal verification. In this area, the structure of

non-terminating processes (viz. computer programs) are modelled as trees, and logical

formulas can therefore be used to encode their behaviour. Whenever a logical language

4



CHAPTER 1. INTRODUCTION 5

is known to be decidable, one can then ‘verify’ that their computer programs behave as

intended.

A vast sea of specification languages have been introduced to match the diversity

of specification problems arising in this manner. Each of these languages come with

their own flavour and qualities: ranging from temporal logics such as CTL [12] to clas-

sical logics such as first-order logic with a successor or descendant relation. With such

diversity, one naturally is interested in obtaining a better understanding of how these

languages relate to one another with respect to their expressiveness (i.e which properties

they define) on this-or-that class of structures. Automata have proven to be a successful

framework for addressing such questions. Namely, by answering questions of the general

form above.

As one may expect, the identification of a suitable class of automata for a given

logical language and class of structures is, in general, a non-trivial problem. For this

reason, one is often interested in this task for some rich “yardstick” formalism: given

that a logic L and a class A are effectively equivalent, there is a direct correspondence

between fragments of L and subclasses of automata from A. Monadic second-order logic

(MSO), the extension of first-order logic by quantifiers ranging over sets, is a very rich

framework for this purpose, and the automata theory of MSO has consequently been of

historical importance.

The automata theory of MSO was first considered in the influential work of Büchi

[5], where it was proven that a word language is accepted by a finite automaton if and

only if it is definable in monadic second-order logic. Soon after, Büchi [4] extended

this result to the case of streams (i.e. ω-words) by introducing automata with a Büchi

acceptance condition, nowadays called the Büchi automata. In both cases, the reduction

of monadic second-order formulas to automata was, in a sense, the key insight that was

needed in order to obtain the decidability of important mathematical theories over such

structures.

After the foundational work on words, results on more general structures began to

attract attention. The next major breakthrough emerged in the work of Rabin [31] where

it was shown that (tree) automata with a Muller acceptance condition [23] and MSO

are effectively equivalent on the infinite binary tree. A subtle but important distinction

arises whenever one passes from the setting of words to that of branching structures

such as trees: branching structures can either be ranked or unranked. Roughly, a tree

is ranked if it has a fixed branching degree. That is, each node has a fixed number of

successors. In these terms, Rabin’s work can be seen as the first breakthrough in the

automata theory of MSO on ranked trees. The transition from the context of ranked

trees to that of unranked trees did not happen for some time and required some new

ideas.

In the 1980’s, Chandra et. al [10] introduced a notion of alternation in the context
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of Turing machines which made the role of certain two-player infinite games explicit in

the operational semantics of such devices. In turn, Muller and Schupp [25] adapted the

notion of alternation to the setting of automata on (infinite) trees: these automata are

called alternating automata. This was an essential breakthrough in the automata theory

of MSO (and variants thereof). Shortly after, Muller, Saoudi, and Schupp [24] introduced

alternating automata for weak monadic second-order logic (WMSO) on ranked trees, a

variant of MSO in which set quantification is limited to finite sets.

In a more recent paper, Walukiewicz [36] extended Rabin’s Theorem to the setting

of unranked trees, where it is proven that alternating automata with a parity acceptance

condition and MSO are effectively equivalent over such structures. We call these MSO-

automata, and they will serve as an ambient class of automata from which all of the

automata considered in this thesis are situated. For a comprehensive survey on tree

automata and their relationship with logic, we refer the reader to [17].

Characterizations of logical languages in terms of automata over trees are in fact

sufficient for many applications in computer science, due to the fact that every tran-

sition system is bisimilar to such a structure, called its unravelling. Bisimulation is a

notion of behavioural equivalence between transitions systems (i.e. (labelled) directed

graphs). Intuitively, two transitions systems are bisimilar whenever they can not be

distinguished by external observers. This is an important notion in computer science

where, as mentioned, (non-)terminating processes are modelled as trees. From this per-

spective, the relevant properties (or specifications) of transition systems are those which

can not distinguish bisimilar processes.

A seminal result in the model theory of modal logic is van Benthem’s Theorem [2]

stating that the bisimulation-invariant fragment of first-order logic is precisely basic

modal logic. In this thesis, we will be particularly interested in the work of Janin

and Walukiewicz [19], where van Benthem’s Theorem was extended to the setting of

the modal µ-calculus1. In particular, they showed that the modal µ-calculus and the

bisimulation-invariant fragment of MSO coincide over arbitrary transition systems.

A novelty of the proof of Janin and Walukiewicz is that they reduced the question of

the bisimulation-invariant fragment of MSO to the question of the bisimulation-invariant

fragment of MSO-automata, providing an automata-theoretic approach to bisimulation-

invariance questions. Subsequently, this method has been fruitfully applied to obtain

various bisimulation-invariance results for monadic second-order logics (i.e. variants of

MSO), including the final chapter of this thesis. We proceed with a brief overview of

the content of this thesis, which may be viewed as consisting of the following three

components.

1The modal µ-calculus is a highly expressive–yet computationally well behaved– extension of modal

logic by unary fixpoint operators; we refer the reader to [35] for an introduction to the modal µ-calculus,

an interesting topic which lies outside the scope of this thesis.
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Weak Path Automata

In Chapter 3, we introduce several classes of automata which will be studied in the

remainder of the thesis, developing some of their model theory along the way. As men-

tioned, our chief interest lies in comparing the expressive power of first-order logic and

alternating parity automata over unranked trees. The problem of characterizing first-

order logic as a class of automata has been studied by Bojańczyk [3] and Potthoff [30] in

the context of finite trees. Bojańczyk introduced the concept of a wordsum automaton

together with a notion of cascade product on such automata (roughly: a composition for

such automata), and proved that cascade products of wordsum automata characterize

first-order logic over unranked finite trees. However, it remains an open problem to

characterize first-order logic as a subclass of Walukiewicz’s automata; this is the main

focus of this thesis.

As noted above, Muller, Saoudi, and Schupp [24] introduced alternating tree au-

tomata with a weak acceptance condition and proved that such automata correspond

to WMSO over ranked trees; we call these weak automata. Intuitively, weak automata

are limited to only finitely many alternations between accepting and rejecting while

processing a given structure. In fact, Mostowski [22] proved that there is an intimate

link between such alternations (in automata with weak acceptance conditions) and weak

quantifier alternations. More recently, a slight variation of MSO-automata with weak

acceptance conditions were studied by Carreiro et al. [9] where they were shown to

correspond to WMSO over unranked trees.

By combining the known relationship between weak acceptance conditions and weak

quantifiers with the observation that first-order quantification may be viewed as a special

type of weak quantification (i.e. singleton quantification), recognizability of a given tree

language by weak automata would seem to be a necessary condition for first-order de-

finability. Indeed, in the context of (infinite) word languages, a refinement of weakness–

known in the literature as aperiodicity–is known to characterize the expressiveness of

first-order logic over such structures [13]. We will call this condition antisymmetry.

Both weakness and antisymmetry are naturally viewed as restrictions on the graph

of an automaton. For instance, antisymmetric automaton may be thought of as those

automata which are based on a directed acyclic graph (DAG). Alternatively, one may

introduce semantic restrictions on automata by controlling the transition structure be-

tween states. An example of such a constraint is what we will call the (linked) path

condition.

At the heart of the path condition is the notion of complete additivity tracing back

to the work of Jónsson and Tarski [20] on algebraic logic. An easy observation from

their work is the close connection between this notion and singleton subsets of relational

structures. More recently, complete additivity was further investigated–among many

others–by Hollenberg [18] and brought into the automata-theoretic setting in the work
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of Fountaine & Venema [16]. More details concerning the role of complete additivity

will be supplied in the sequel. Finally, combining weakness (and variants thereof) with

the path condition one obtains what we we will call weak path automata (and variants

thereof).

Automata and first-order logic

In this chapter, we will compare the expressive power of logical formalisms and automata

via effectively defined translations. That is, for a fixed class K of structures, our inter-

ests will lie in providing an algorithm which transforms each formula ϕ of a logic L
into an equivalent automaton Aϕ over K. In the other direction, we provide algorithms

transforming each automaton A from a class A of automata into an equivalent formula

ϕA on K. We say that a logic L and class of automata A are effectively equivalent on K
whenever such translations exist in both directions.

While we do not succeed in characterizing first-order logic as a class of automata

over trees, we do prove a “sandwich theorem”, effectively bounding its expressive power

over such structures. Namely, we will prove the following.

Contribution 1. (Sandwich Theorem) We have the following results.

(i) For every linked antisymmetric path automaton A we can effectively obtain an

equivalent first-order formula ϕA (over trees).

(ii) For every first-order formula ϕ, we can effectively obtain an equivalent linked weak

path automaton Aϕ (on trees).

Expressive completeness modulo bisimilarity

In the final chapter, we explore the class of linked antisymmetric path automata modulo

bisimilarity. Our approach is standard and borrows many of its main ingredients from

the proof of the Janin-Walukiewicz Theorem, which provided a uniform method for

studying such questions for monadic second-order logics. Our main result is that their

proof restricts to the class of linked antisymmetric path automata. This has been shown

for the class of linked weak path automata already by Carreiro [6], where the main model-

theoretic tools that we will need were additionally developed. In particular, the novelty

in our work lies in showing that the relevant construction preserves antisymmetry. In

the notation introduced in the thesis, the main contribution is stated as follows:

Contribution 2. Aut lsa(FO1) ≡ Aut lsa(FOE1)/ ↔ .



Chapter 2

Preliminaries

2.1 General conventions

We fix a countable set Prop of propositional variables which are denoted by small Latin

letters p, q, r . . . and we typically confine our attention to a finite set P ⊆ Prop. We also

fix an ambient set iVar of individual variables which are denoted by the letters x, y, z, . . .

and we typically consider a (finite) subset X ⊆ iVar.

We use overlined boldface letters to denote sequences. That is, we write x to denote

the sequence x1, . . . , xk of variables. We sometimes blur the distinction between the

sequence T1, . . . , Tk and the set {T1, . . . , Tk}, writing Π ⊆ T to denote that the set Π is

a subset of {T1, . . . , Tk}. Given a (non-empty) finite sequence ρ, we let last(ρ) denote

the final element of ρ. That is, last(x1, . . . , xk) := xk.

For sets X and Y, a binary relation is simply a subset R ⊆ X × Y . We use the

following terminology for a binary relation R ⊆ X × Y. For each x ∈ X, we write R(x)

to denote the set {y ∈ Y | (x, y) ∈ R} of R-successors of x. For each y ∈ Y, we write

R−1(y) to denote the set {x ∈ X | (x, y) ∈ R} of R-predecessors of y. We write R+ and

R∗ to denote the transitive closure of the relation R and the reflexive-transitive closure

of the relation R, respectively. A relation R ⊆ X × X is well-founded if there are no

infinite R-descending sequences, i.e., no sequence (x0, x1, . . . ) such that (xi+1, xi) ∈ R
for each i ∈ ω.

Given sets X and Y we write X ] Y and X × Y to denote the disjoint union and

cartesian product of the sets X and Y, respectively. By X\Y we denote the set {x ∈ X |
x 6∈ Y }. In an effort to cut down on the number of parentheses throughout the thesis,

we will write ℘X rather than ℘(X). Finally, we write write both ω and N to denote the

set {0, 1, 2, . . . } of natural numbers.

9
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2.2 Transition systems and trees

Labelled Transition Systems

A (labelled) transition system (LTS) over a set P of propositional variables is a tuple

S = (S,R, κ, sI) consisting of a non-empty set S of nodes called the carrier of S, an

initial node sI ∈ S, a binary relation R ⊆ S × S, and a marking (or labelling function)

κ : S → ℘P. We say that S is p-free if p 6∈ P or if p 6∈ κ(s) for each s ∈ S. For each node

s ∈ S, we write S, s to denote the transition system (S,R, κ, s) which is identical to S
except the initial node is now s.

Markings and Valuations

Observe that we can alternatively view each marking κ : S → ℘P as the valuation

Vκ : P→ ℘S given by setting

Vκ(p) := {s ∈ S | p ∈ κ(s)}

for each p ∈ P. Conversely, we may view each valuation V : P → ℘S as the marking

mV : S → ℘P defined by putting

mV (s) := {p ∈ P | s ∈ V (p)}

for each s ∈ S. We will freely and frequently bounce between a valuation (respectively

marking) and its associated marking (respectively valuation).

Given a pair V, V ′ : P → ℘S of valuations and a set B ⊆ P, we write V ≤B V ′ if

V (p) ⊆ V ′(p) for every p ∈ B. We write V ≡B V ′ if V ≤B V ′ and V ′ ≤B V. That is,

V ≡B V ′ if V (p) = V ′(p) for each p ∈ B.

Variants of transition systems

Let S be a transition system over P. Given a subset Xp ⊆ S, we write S[p 7→ Xp] to

denote the transition system S = (S,R, κ′, sI) over P∪ {p} where κ′ : S → ℘(P∪ {p}) is

the marking given by putting κ′(s) := κ(s) ∪ {p} for each s ∈ Xp and κ′(s) = κ(s)\{p}
for each s 6∈ Xp. That is, S[p 7→ Xp] is the transition system obtained from S by first

‘erasing’ the colour p from each node and then colouring the nodes from Xp with p. We

call a transition system S′ a p-variant of the transition system S if S′ = S[p 7→ Xp] for

some set Xp ⊆ S. A p-variant of S is an atomic p-variant of S if Xp is a singleton.

Note that the notion of a p-variant makes sense regardless of whether or not p ∈ P.

In case p 6∈ P, note that κ′(s) = κ(s) for each s 6∈ Xp.
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Paths

Let S = (S,R, V, sI) be a transition system and let 0 ≤ k < ω. A (finite) path through S
is a finite (non-empty) sequence (s0, s1, . . . , sk) such that (si, si+1) ∈ R for each i such

that i + 1 < k. We write Pathss(S) to denote the set of paths through S beginning at

s ∈ S.

Trees

We will view trees as particular types of transition systems and, in this thesis, we work

with unranked, serial trees. Formally, a transition system S over a set of propositional

variables P is a (P-)tree if the following conditions are satisfied:

(i) for every t ∈ S, there is a unique finite path from sI to t and

(ii) R(t) 6= ∅ for every t ∈ S.

In the context of trees, we will call the initial node the root of the T. Observe that (i)

implies that R−1(sI) = ∅ and R−1(t) is a singleton for every t ∈ S such that t 6= sI . We

will treat the terms tree language and class of trees as synonyms.

Subtrees

Let T = (S,R, V, sI) be a P-tree. A P-tree T′ = (S′, R′, V ′, s′I) is a subtree of T if

S′ ⊆ S,R′ = R ∩ (S′ × S′), and V ′ = V ∩ (S′ × P). Observe that each tree T and each

node s ∈ S gives rise to a subtree, called the subtree generated by s, with carrier R∗(s)

and initial node s.

Expansions and unravellings

We will now introduce several salient constructions on arbitrary transition systems. We

begin by defining the tree unravelling of a transition system, an important tool in the

model theory of modal logics.

Definition 2.2.1. Let S be a transition system. The unravelling of S around s is the

transition system ~S = (Pathss(S), ~R, ~V , s) where

~R(s0, . . . , sk) := {(s0, s1, . . . , sk, t) | (sk, t) ∈ R}
m~V (s0, . . . , sk) := mV (sk).

We will now define the κ-expansion of a transition system S. Intuitively, the κ-

expansion of a transition system S is given as a transition system Sκ with the same

initial node as S and κ-many copies of every node except the initial node.
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Definition 2.2.2. Let S be a transition system and let 1 ≤ κ ≤ ω be a countable

cardinal. A κ-path through S is a finite sequence of the form s0k1s1k2s2 . . . knsn such

that 0 ≤ n, si+1 ∈ R(si) for each i < n, and ki < κ for each i. We write Pathsκs (S)

to denote the set of κ-paths through S beginning at s. We define the κ-expansion of S
around s is the transition system Sκ, s = (Pathsκs (S), Rκ, V κ, s) where

Rκ(sk1s1 . . . knsn) := {sk1s1 . . . knsnkt | (sn, t) ∈ R}
mV κ(sk1s1 . . . knsn) := mV (sn).

Remark 2.2.3. Note that the 1-expansion S1 of a transition system S has nodes of the

form sI0s10 . . . 0sk such that si+1 ∈ R(si) for each i < k < ω. With this in mind, it is

not hard to see that the 1-expansion of S can be identified with its unraveling. Note too

that if S is serial, then so is its κ-expansion for each 1 ≤ κ ≤ ω. In particular, it is not

hard to see that if S is serial, then its κ-expansion is a tree for each 1 ≤ κ < ω; we leave

the details to the reader.

2.3 Monadic second- and first-order logics

As mentioned in the introduction, we are broadly interested in the relative expressive

power of monadic second-order logics: extensions of first-order logic by set quantifiers.

A salient example of such a logic is monadic second-order logic (MSO), an extension

of first-order logic by quantification over unary relations (i.e. arbitrary subsets of the

domain). We will work with a slightly non-standard one-sorted version of MSO because

it is better suited for the automata framework. That is, our syntax will only involve

set variables rather than both individual variables and set variables. As observed by

Walukiewicz [36], quantification over individuals can be achieved in this language by

encoding each individual variable x as a singleton set variable px.

In this thesis, we are primarily interested in monadic first-order logic, a fragment

of MSO with only quantification over individuals. We introduce a one-sorted version of

first-order logic which we will call atomic second-order logic (AMSO)1. In turn, we will

introduce and briefly discuss the standard two-sorted version of first-order logic which

will additionally feature in this thesis.

Monadic second-order logic

Definition 2.3.1. The set MSO(<,P) of (one-sorted) monadic second-order formulas

over a set P of set variables is generated by the following grammar:

ϕ ::= p v q | p < q | ⇓p | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ
1This naming convention is inspired by the fact that there is a direct correspondence between singleton

subsets and the atoms in Boolean powerset algebras.
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where p, q ∈ P. Whenever the set P is clear from context, we omit it from the notation

and write MSO.

Definition 2.3.2. Given a transition system S over a set P, we define the semantics of

ϕ ∈ MSO in S as follows:

S |= p v q iff V (p) ⊆ V (q)

S |= p < q iff for each t ∈ V (p) there exists u ∈ V (q) with (t, u) ∈ R+

S |= ⇓p iff V (p) = {sI}
S |= ¬ϕ iff S 6|= ϕ

S |= ϕ ∨ ψ iff S |= ϕ or S |= ψ

S |= ∃p.ϕ iff S[p 7→ X] |= ϕ for some X ∈ ℘S.

In order to simulate first-order quantification in the language of MSO, we will cru-

cially use the following formulas:

empty(p) := ∀q(p v q)
sing(p) := ∀q(q v p→ (empty(q) ∨ p v q)).

It is straightforward to see that these formulas are satisfied in a transition system S iff

V (p) = ∅ and V (p) is a singleton, respectively. As such, we may now define a ‘first-order

quantifier’ by combining the MSO quantifier ∃p with the formula sing(p).

Definition 2.3.3. The language AMSO(<,P) of (one-sorted) atomic second-order logic

over a set P of set variables is given by the following grammar:

ϕ ::= p v q | p < q | ⇓p | ¬ϕ | ϕ ∨ ϕ | ∃p.sing(p) ∧ ϕ

where p, q ∈ P.

That is, AMSO is the fragment of MSO which only permits quantification of the

shape ∃p.sing(p) ∧ ϕ. Note that S |= ∃p.sing(p) ∧ ϕ iff S[p 7→ X] |= ϕ for some singleton

subset X ∈ ℘S.

Two-sorted monadic second-order logic

As noted above, the reader probably expected MSO to be defined as an extension of

first-order logic by set quantifiers ∃p/∀p with a syntax involving both individual and set

variables. This is what we call the two-sorted language of monadic second-order logic.

The syntax and semantics of this language are completely standard, but we give an

explicit formulation anyways.
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Definition 2.3.4. The set 2MSO(<,P, X) of two-sorted monadic second-order formulas

on a set P of set variables and a setX of individual variables, is generated by the following

grammar:

ϕ ::= p(x) | x < y | x ≈ y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃p.ϕ

where p ∈ P and x, y ∈ X. In case the sets P and X are clear from context, we will simply

write 2MSO(<). The set 2FOE(<,P, X) of two-sorted monadic first-order formulas with

order is obtained by the grammar above only now the clause allowing the set quantifier

∃p is excluded. That is, 2FOE(<,P, X) is generated by the following grammar:

ϕ ::= p(x) | x < y | x ≈ y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where p ∈ P and x, y ∈ X. We will omit the sets P and X from the notation whenever

they are clear from context.

Before introducing the (standard) semantics for this language, it will be useful to

first gather some basic definitions. A formula of 2MSO(<) is atomic if it has the shape

p(x), x ≈ y, or x < y. We denote by At(P, X) the set of atomic formulas of 2MSO(<).

We denote by FV (ϕ) and BV (ϕ), respectively, the set of free (individual) variables and

the set of bound (individual) variables occurring in ϕ, defined as expected. A formula

ϕ is a sentence if FV (ϕ) is empty. We follow the standard convention that the sets

FV (ϕ) and BV (ϕ) are disjoint–by renaming variables whenever it is necessary–so that

no individual variable occurs both bound and free in ϕ.

We assume that the reader is acquainted with basic syntactic notions such as sub-

formula and substitution. We write sform(ϕ) to denote the set of subformulas of the

formula ϕ. Concerning the latter, we will use the notation ϕ[ψ/p] to denote the formula

obtained from ϕ by substituting each occurrence of p in ϕ by the formula ψ.

We interpret formulas of 2MSO(<,P, X) in a transition system S over P equipped

with an interpretation (also: assignment) g : X → S which assigns to each individual

variable x ∈ X a node s ∈ S.

Definition 2.3.5. The semantics of ϕ ∈ 2MSO(<,P, X) are defined as usual for atomic

formulas of the shape p(x),¬p(x), x ≈ y, or x 6≈ y and as usual for the Boolean connec-

tives ∨ and ∧. The semantics of the quantifiers ∃x/∀x and ∃p/∀p and atomic formulas

of the shape x < y are defined as follows for each transition system S and each interpre-

tation g of the individual variables from X:

S, g |= x < y iff g(y) ∈ R+(g(x))

S, g |= ∃x.ϕ iff S, g[x 7→ s] |= ϕ for some s ∈ S
S, g |= ∀x.ϕ iff S, g[x 7→ s] |= ϕ for each s ∈ S
S, g |= ∃p.ϕ iff S[p 7→ X], g |= ϕ for some X ⊆ S
S, g |= ∀p.ϕ iff S[p 7→ X], g |= ϕ for each X ⊆ S
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Whenever S, g |= ϕ, we say that ϕ is true in S with g and that S is a model of ϕ.

Given a formula ϕ ∈ 2FOE(<), we denote by Mod(ϕ) and TMod(ϕ), respectively, the

class of models of ϕ and the class of tree models of ϕ. Given an assignment g : X → ℘S

and a set Y ⊆ X, we use the notation g[y 7→ sy|Y ] to denote the assignment given by

putting

g[y 7→ sy|y ∈ Y ](x) :=

{
g(x) if x 6∈ Y
sx if x ∈ Y.

for each x ∈ X. That is, g[y 7→ sy|Y ] is the assignment which agrees with g on each node

y 6∈ Y and ‘reinterprets’ each y ∈ Y as the node sy.

Remark 2.3.6. Note that for each transition system S we interpret the relational symbol

‘<’ in terms of the transitive closure of its accessibility relation R. In this sense, at least

whenever S is a tree, the relational symbol ‘<’ is best understood as a descendant relation.

It is well known that in the context of trees the binary relation R is first-order

definable in terms of its transitive closure. That is, there is a formula S(x, y) ∈ 2FOE(<)

such that for every tree T and every pair of nodes s, t ∈ S and every assignment g we

have S, g |= S(s, t) iff (s, t) ∈ R. Indeed, we define the formula S(x, y) by putting

S(x, y) := (x < y) ∧ ∀z(x < z → ¬(z < y)).

It easily follows from this definition that T, g |= S(x, y) if and only if g(x) ∈ R(g(y)).

In other words, for each tree T and each node s ∈ S we have R(s) = {t ∈ S | S(s, t)}.
That is, our first-order language is expressive enough to define properties of relations and

their transitive closure. This observation will be particularly useful in Chapter 4 when

we translate automata into (two-sorted) first-order formulas. On the other hand, it is

well known that the transitive closure of a binary relation is not first-order definable, in

general. In short, we have a gain in expressive power by interpreting ‘<’ via R+ rather

than interpreting it via the relation R itself.

Observe that if T is a tree, then there is either none or a unique path between any

two nodes. In other words, if π ∈ Pathst(T) leads to a node t′ ∈ S, then π is the unique

path with this property. Consequently, for each node s ∈ S such that s < t′, there is a

unique node s+ ∈ R(s) such that s+ is “the next node on the path π”. In fact, we can

define a formula Sxz(y) ∈ 2FOE(<) expressing this property. We do so by putting

Sxz(y) := S(x, y) ∧ y ≤ z.

The following proposition follows directly from this definition and the semantics of 2FOE.

Proposition 2.3.7. for every tree T, each pair of nodes t, t′ ∈ S such that t < t′, and

every interpretation g such that g(x) = t and g(z) = t′ we have

T, g |= Sxz(y) iff g(y) = t+.
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Equivalence of the AMSO and 2FOE(<)

We begin by defining a translation of models that will be needed in order to state the

equivalence of the one- and two-sorted versions of MSO. Namely, given a transition

system S := (S,R, V, sI) over a set P of propositional variables and an assignment

g : X → S of the individual variables in X, we define the transition system Sg :=

(S,R, V g, sI) over the set P]X where V g(p) := V (p) if p ∈ P and V g(x) := {g(x)} for

each x ∈ X.
The following proposition states that the languages MSO and 2MSO(<) are effec-

tively equivalent. We refer the reader to Venema [35] for a proof of this proposition.

Proposition 2.3.8 ([35], Proposition 9.5). The formalisms MSO and 2MSO(<) are

effectively equivalent. In particular, we have the following:

(i) There is an effective translation (·)′ : MSO(P)→ 2MSO(<,P, x) such that

S, s |= ϕ iff S |= ϕ′(s)

for every formula ϕ ∈ MSO(P), every transition system S, and every s ∈ S.

(ii) There is a translation (·)t : 2MSO(<, P, X)→ MSO(P]X) such that

S, g |= ϕ iff Sg |= ϕt

for every formula ϕ ∈ 2MSO(X, P), every transition system S and every assign-

ment g of the individual variables.

Corollary 2.3.9. The formalisms AMSO and 2FOE are effectively equivalent.

2.4 Graph games

We now introduce some basic terminology for the infinite graph games which will feature

in this thesis. The games that we consider involve two players named Éloise (∃) and

Abelard (∀), respectively. We will write Π to denote an arbitrary player from the set

{∃, ∀}. Also, given a set S, we write S∗ and Sω to denote the set of finite words and

infinite ω-words (or streams) over S, respectively.

Graph games

A graph game G is a triple (G,E,Win) which consists of a partitioned set G := G∃ ]G∀
(of positions) called the graph of G, a binary relation E ⊆ G×G specifying the legitimate

moves, and a winning condition Win ⊆ Gω. Each position u ∈ GΠ belongs to the player

Π.
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By an initialized graph game, we mean a pair (G, uI) such that G is a graph game

and uI ∈ G is the initial position of game. We write G@u to denote the graph game G
initialized at position u ∈ G. Given an initialized graph game G@u, the position u either

belongs to ∃ or it belongs to ∀. Whenever u ∈ GΠ, the player Π is supposed to begin the

game G@u.

Matches

A match of a graph game G@u is a path (ui)i<γ through the graph (G,E) of G where

γ ≤ ω and u0 = u. Given a finite match π = (ui)i≤k of G, we write last(π) := uk and

speak of the current position in the match π. If last(π) ∈ GΠ, then it is player Π’s turn

to play. Whenever it is player Π’s turn, it is the task of Π to continue the match π by

playing a legitimate move from E(last(π)). If it is player Π’s turn in the match π and

u ∈ E(last(π)), we write π · u to denote the match obtained by extending the match π

by the position u. Whenever last(π) ∈ GΠ and E(last(π)) = ∅, we say that the player

Π got stuck in π. A match π is full if π is infinite or π is finite and either ∃ or ∀ got

stuck. Otherwise, π is a partial match.

A full finite match π of G is a winning match for Π if Π’s opponent got stuck; a full

infinite match π is a winning match for ∃ if π ∈ Win and for ∀ if π 6∈ Win. Given a

graph game G and a player Π, we write PMG
Π to denote the set of partial matches of G

such that last(π) ∈ GΠ.

Strategies

A strategy for Π is a function f : PMG
Π → G. Given a strategy f for Π in G, we say

that the match π = (ui)i<γ is f -guided if for every i < γ such that ui ∈ GΠ we have

ui+1 = f(u0, . . . , ui).

Given a position u ∈ G and a strategy f for Π, we say that f is surviving if for each

f -guided partial match π of the game G@u, we have that f(π) is legitimate whenever

last(π) ∈ GΠ. Note that if Π has a surviving strategy f , then Π never gets stuck in an

f -guided match. A strategy f is called a winning strategy for Π in G@u if Π wins each

full f -guided match of G@u.

We write WinΠ(G) to denote the set of positions u ∈ G such that Π has a winning

strategy in the game G@u. Given a pair of positions u, u′ ∈ G, we say that the position

u′ is f -reachable from u if there is an f -guided partial match π = (ui)i<k in the game G
such that u0 = u and last(π) = u′.

Positional determinacy of parity games

In this thesis, we will be especially interested in a special class of graph games called

parity games. A game G is a parity game if its winning condition is induced by a priority
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function Ω : G→ N with finite range by setting

WinΩ := {g ∈ Gω | the maximum parity occurring infinitely often in g is even}.

If G is a parity game, we emphasize this by writing G = (G,E,Ω). Parity games are

particularly nice because they enjoy positional determinacy. This means that every

position is either a winning position for ∃ or a winning position for ∀ and every winning

strategy can be assumed to be positional. A strategy f is called a positional strategy

for Π in G if f(π) = f(π′) for every pair of partial matches π, π′ ∈ PMG
Π such that

last(π) = last(π′). In the context of a parity game G, we will therefore think about

strategies for player Π as functions fΠ : GΠ → G. The following theorem states the

positional determinacy of parity games.

Theorem 2.4.1 ([14], [22]). For every parity game G, there exist positional strategies

f∃ and f∀ for ∃ and ∀, respectively, such that for every position u ∈ G there is a player

Π such that fΠ is a winning strategy for Π in G@u.

2.5 One-step languages

We will now introduce the notion of a one-step language. The notion of a one-step

languages was first introduced in the context of coalgebra [11],[GY04]. For our purposes,

one-step languages will serve as the type of the transition map of alternating parity

automata. Automata based on one-step languages were first introduced by Venema [34];

subsequently, they have been fruitfully applied to obtain various automata-theoretic

characterizations of logical languages. See Carreiro [6] for a rich source of examples.

After introducing the general notion of a one-step language, we will turn our attention

towards the concrete one-step languages which will feature in this thesis. A one-step

language is a map L which assigns to each finite set A of labels a set L(A) of one-step

formulas over the set A. One-step languages are meant to be interpreted with a truth

relation |=1 between one-step formulas and one-step models.

Definition 2.5.1. A one-step model is a pair D = (D,V ) consisting of a set D, called

the domain of D, and a valuation V : A → ℘D assigning to each label a ∈ A a set

V (a) ∈ ℘D of nodes from D.

Given a one-step language L and a truth-relation |=1 between L-formulas and one-

step models, we call the pair (L, |=1) a one-step logic. Whenever D |=1 α, we say that α

is true in D; if D 6|=1 α, then we say that α is false in D.

Definition 2.5.2. Let L0 and L1 be a one-step languages and let A be a set. For each

pair of formulas (α, β) ∈ L0(A) × L1(A), we define α ≡ β if for every one-step model

(D,V : A→ ℘D) we have (D,V ) |=1 α iff (D,V ) |=1 β.
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We assume that each one-step L has a fragment L+, which we will call the positive

fragment of L characterizing the monotone formulas from L.

Definition 2.5.3. Let L be a one-step language and let A be a set. A one-step formula

α ∈ L(A) is monotone in B ⊆ A if for every one-step model (D,V ) such that (D,V ) |=1 α

we have (D,U) |=1 α for every valuation U : A → ℘D such that V ≤B U. We say that

α ∈ L(A) is monotone if α is monotone in each A.

Remark 2.5.4. Instead of the definition above, we could have said that α ∈ L(A) is

monotone if it is monotone in each a ∈ A. That is, we could have defined the notion

of monotonicity by demanding that α is monotone in {a} for each a ∈ A. These two

definitions are easily seen to be equivalent.

One-step languages will prove to be one of the most important ingredients of this

thesis because they determine the type of the transition map of alternating parity au-

tomata (cf. Section 2.6). Because of this, the model theory of one-step logics is a useful

tool in the theory of alternating parity automata. For example, in [21] it was shown that

the closure of a class of tree languages under complementation is related to the semantic

notion of Boolean duals; we will return to this point shortly. First, we introduce the

concrete one-step languages FOE1 and FO1 of one-step first order formulas with and

without equality, respectively.

First-order one-step languages

We will define one-step languages FOE1 and FO1 as special fragments of the language

2FOE(<). As an ambient language, we define the set FOE(A) of two-sorted monadic first-

order formulas over a set A of monadic predicates and a set X of individual variables

as follows:

α ::= a(x) | ¬a(x) | x ≈ y | x 6≈ y | α ∨ α | α ∧ α | ∃x.α | ∀x.α

where a ∈ A and x, y ∈ X.
Note that FOE is obtained by a grammar that is closely related to that of 2FOE(<).

The main differences are this: we have now excluded the clause permitting atomic

formulas of the shape x < y and we will always assume that each formula of FOE

is in negation normal form. That is, negations may only occur at the level of monadic

predicates. It is well known that we may do so without loss of generality because every

formula from 2FOE (i.e. the language obtained from 2FOE by omitting the clause for

<) is equivalent to a formula from 2FOE in negation normal form. In particular, we

import the semantics of FOE directly from the semantics of 2FOE(<).

Remark 2.5.5. As a convention, we will use the Greek characters α, β, . . . to denote

formulas from FOE and we will use the characters ϕ,ψ, . . . to denote formulas from

2FOE(<).
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The equality-free fragment FO of FOE is obtained from the grammar above by ex-

cluding the clauses for (in)equality. That is, the set FO(A,X) of equality-free monadic

first-order formulas over a sets A of labels and a set X of individual variables is generated

by the following grammar:

α ::= a(x) | ¬a(x) | α ∨ α | α ∧ α | ∃x.α | ∀x.α

where a ∈ A and x, y ∈ X.
For each language L ∈ {FOE,FO}, we define the positive fragment L+ of L as the

language generated by the grammar as L, only now the clause allowing formulas of the

shape ¬a(x) is excluded. That is, we define the positive fragment of monadic first-order

logic to be the set FOE+(A) of FOE-formulas generated by the grammar

α ::= a(x) | x ≈ y | x 6≈ y | α ∨ α | α ∧ α | ∃x.α | ∀x.α

where a ∈ A and x, y ∈ iVar. As before, we obtain the equality-free fragment, FO+,

of FOE+ by omitting the clauses for equality: “x ≈ y” and “x 6≈ y”. The following

theorem states that, indeed, these sets characterize the monotone fragments of monadic

first-order logic with and without equality, respectively. For a detailed proof of this fact,

we refer the reader to [[6], Lemma 5.1.25] and [[6], Lemma 5.1.29].

Theorem 2.5.6. Let L ∈ {FOE, FO}. For each set A and each formula α ∈ L(A), we

have that α is monotone in every a ∈ A if and only if α is equivalent to a formula of

L+(A).

Definition 2.5.7. The one-step languages FOE1 and FO1 of one-step first-order for-

mulas with and without equality consist of the positive sentences from FOE+ and FO+,

respectively.

For example, among the monadic first-order formulas ∃x.¬b(x) and b(x) ∨ ∀y.a(y),

only the latter belongs to the positive fragment FOE+ because the former has a negative

occurrence of the atomic formula b(x). Neither of these formulas belong to the one-step

language FOE1: the former because it is not monotone and the latter because it is not

a sentence. A typical example of a formula from FOE1 is ∃x.b(x) ∨ ∀y.a(y).

We will explicitly use the notion of a subformula of a monadic first-order formula in

order to define a graph structure on alternating parity automata. For this reason, we

give an explicit definition even though it is completely standard.

Definition 2.5.8. Let A be a finite set of monadic predicates. For each formula α ∈
FOE+(A), we define the set sform(α) of subformulas of α according to the following

induction on the structure of α. If α is atomic, then sform(α) := {α}. Inductively, we

define sform(α0 ? α1) := sform(α0) ∪ sform(α1) ∪ {α0 ? α1} for each ? ∈ {∨,∧} and

sform(Qx.β) := sform(β) ∪ sform(Q.β) for each Q ∈ {∃, ∀}.
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We will now develop some of the model theory of monadic first-order logic with(out)

equality. In particular, we will first provide normal form theorems for the one-step lan-

guages FOE1 and FO1 which will be very useful in our automata-theoretic investigations.

In turn, we will define the dual fragment of FOE.

Normal Forms for FO1

We will now present normal form results for the one-step languages FO(E)1. As far as

we can tell, these results are folklore. For a nice overview and proofs of these results, we

refer to [6] where some of the model theory of these languages is developed.

Definition 2.5.9. Given a set A of monadic predicates and a set B ⊆ A, the A-type

associated with B is the formula defined by putting

τB(x) :=
∧
a∈B

a(x) ∧
∧
a6∈B
¬a(x).

The positive A-type associated with B ⊆ A is the formula

τ+
B (x) :=

∧
a∈B

a(x)

expressing only the positive information of the A-type τB. If B = ∅, then we define

τ+
B (x) to be the formula x ≈ x.

Remark 2.5.10. Let D be a one-step model with marking m : D → ℘A, let d ∈ D,
and let B ⊆ A. The meaning of the full A-type τB and the positive A-type τ+

B in D is

expressed as follows:

• D |= τB(d) iff m(d) = B.

• D |= τ+
B (d), iff B ⊆ m(d).

Definition 2.5.11. A formula α ∈ FO(A), is in positive basic form if α has the shape

∇+
FO(T,Π) = ∃x1 . . . xk

∧
i≤k
∃x.τ+

Ti
(xi) ∧ ∀x

∨
B∈Π

τ+
B (x)

for some set T ⊆ ℘A and some set Π ⊆ T.

We have the following normal form theorem for positive sentences of monadic first-

order logic. Its proof is an application of the theory of Ehrenfeucht-Fräısse games. We

refer the reader to [[6], Corollary 5.1.26] for more detail.

Theorem 2.5.12. For each set A of propositional variables, there is an effective proce-

dure transforming each sentence of FO+(A) into an equivalent disjunction of sentences

in positive basic form.
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Normal forms for FOE1

As the reader might expect, the addition of the equality symbol into the language of

first-order logic yields a richer basic form due to its ability to ‘count types’. In order

to simplify notation, we first introduce an auxiliary formula π(x1, . . . , xn,Π) ∈ FOE(A)

where x1, . . . , xn are (individual) variables and Π ⊆ ℘A. To this end, we define

π(x1, . . . , xn,Π) := ∀z(diff(x1, . . . , xn, z)→
∨
B∈Π

τ+
B (z))

where diff(x1, . . . , xm) is the formula

diff(x1, . . . , xm) :=
∧

1≤j<j′≤m
xj 6≈ xj′

expressing that the variables x1, . . . , xm denote distinct nodes from the domain. Note

that π(x,Π) expresses that every node which is distinct from the interpretations of

the variables x1, . . . , xm has one of the types from the set Π. We can now provide the

analogue of Definition 2.5.11 for the language FOE+.

Definition 2.5.13. A formula α ∈ FOE(A), is in positive basic form if α has the form

∇+
FOE(T,Π) = ∃x1 . . . xk(diff(x) ∧

∧
i≤k

τ+
Ti

(xi) ∧ π(x,Π))

for some some sequence T = T1, . . . , Tk of A-types and some set Π ⊆ T.

Note that the formula ∇+
FOE(T,Π) expresses that there are distinct nodes d1, . . . , dk

of the domain realizing each of the positive A-types from the set {T1, . . . , Tk} and every

other node realizes one of the positive A-types from the set Π ⊆ T. That is, these

formulas partition the set into two parts: one part consisting of distinct witnesses for

each of the types in T and another part consisting of the remaining nodes, each labelled

by some type from the set Π.

The following theorem is a normal form result for positive sentences from monadic

first-order logic with equality. While this result seems to be folklore, a detailed proof

can be found in [[6], Theorem 5.1.12].

Theorem 2.5.14. For each set A of propositional variables, there is an effective proce-

dure transforming each sentence of FOE+(A) into an equivalent disjunction of sentences

in positive basic form.

Boolean duals

In this section we introduce the notion of a Boolean dual. Among other things, we will

use the closure of the one-step language FOE1 to prove complementation theorems for

several classes of automata.
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Definition 2.5.15. Let A be a set. The formulas α, β ∈ FOE(A) are each other’s

Boolean dual if for every one-step model (D,V ) and every assignment g of the individual

variables we have

(D,V ), g |= α if and only if (D,V c), g 6|= β

where the valuation V c is given by setting V c(a) := D\V (a) for every a ∈ A. We say

that a one-step language L is closed under Boolean duals if, for each set A, every formula

ϕ ∈ L(A) has a Boolean dual αδ ∈ L(A).

We will now define a dualization operator (·)δ providing, for each set A, a Boolean

dual αδ for each formula α ∈ FOE(A).

Definition 2.5.16. The Boolean dual αδ of α ∈ FOE(A) is defined by the following

induction on formulas from FOE :

(a(x))δ := a(x)

(x ≈ y)δ := x 6≈ y
(ϕ ∨ ψ)δ := ϕδ ∧ ψδ

(∃x.ψ)δ := ∀x.ψδ

(¬a(x))δ := ¬a(x)

(x 6≈ y)δ := x ≈ y
(ϕ ∧ ψ)δ := ϕδ ∨ ψδ

(∀x.ψ)δ := ∃x.ψδ

Observe that for each set A and each language L ∈ {FO,FOE}, we have that αδ ∈
L(A) if α ∈ L(A). Moreover, (·)δ preserves positivity of each monadic predicate. That is,

the positive fragment L+(A) of L is closed under (·)δ. We leave the proof of the following

proposition stating the formulas α and αδ are each others Boolean duals to the reader.

Proposition 2.5.17. Let L ∈ {FOE,FO}. For each set A and each formula α ∈ L(A),

the formulas α and αδ are each others Boolean duals. In particular, L is closed under

Boolean duals.

Proof. By a routine induction on the structure of α ∈ L(A).

2.6 Alternating parity automata

Alternating parity automata are simple finite-state devices that operate on (possibly)

infinite structures, such as directed graphs. In this section, we introduce parity automata

in a general setting; we will introduce various concrete classes of parity automata in

Chapter 3.

Formally, an (alternating) parity automaton based on the one-step language L and

alphabet C is a quadruple (A,Θ,Ω, aI) consisting of a finite set A of states, a distin-

guished state aI ∈ A called the initial state, a priority map Ω : A→ N, and a transition

function

Θ : A× C → L+(A).
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In practice, the alphabet will usually be a set C := ℘P where P is a set of propositional

variables and we will call c ∈ C a colour. We write Aut(L) to denote the class of parity

automata based on the one-step language L. Given an automaton A and a state a ∈ A,
we write A.a to denote the automaton (A,Θ,Ω, a) which is identical to A except now

the initial state is a. We call a state a ∈ A a µ-state (respectively ν-state) if Ω(a) is odd

(respectively even). And, for σ ∈ {µ, ν}, we write Aσ to denote the set of σ-states from

A.

Note that if A is a parity automaton based on the one-step language L, then the

codomain of the transition map Θ of A is the positive fragment L+(A) of L over the set

of states from A. In other words, states from A lead a double life as monadic predicates

which may occur positively in the transition formulas of A. Throughout this thesis, we

will always work with alternating parity automata A such that for each pair (a, c) ∈ A×C
the formula Θ(a, c) is a sentence.

Remark 2.6.1. Walukiewicz [36] introduced a class of alternating parity automata for

MSO over trees. As mentioned in the introduction, these automata form an ambient

class for the automata that we will investigate in the sequel. For this reason, we will

always assume that each automaton A is from this class unless mentioned otherwise.

Definition 2.6.2. An MSO-automaton is an a automaton from the class Aut(FOE1).

We will now fix some basic terminology for alternating parity automata. We will

begin by defining the graph of an automaton and, in turn, we define their operational

semantics via an infinite two-player parity game. Finally, we will develop some back-

ground regarding the relationship between complementation of tree languages and the

closure of one-step languages under Boolean duals.

The occurrence graph

We now introduce a natural graph structure on alternating parity automata which is

useful tool for better understanding their ‘dynamics’. We will first fix some basic termi-

nology.

Let A = (A,Θ,Ω, aI) ∈ Aut(FOE1) be an MSO-automaton on alphabet C. For each

pair of states a, b ∈ A, we say that b occurs in a iff b(x) ∈ sform(Θ(a, c)) for some

x ∈ iVar and some colour c ∈ C. We write /A to denote the transitive closure of the

occurrence relation. Whenever b /A a we say that b is active in a. Note that b is active

in a if there is a finite sequence a = a0, a1, . . . , ak = b of states such that 1 ≤ k < ω and

ai+1 occurs in ai for every i < k. Whenever the automaton A is clear from context, we

suppress the subscript and simply write “/” instead of “/A”. With this terminology now

in place, we can now define the graph of an MSO-automaton.
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Definition 2.6.3. Let A be an MSO-automaton. The (occurrence) graph of A is the

directed graph G(A) = (A,E) where (a, b) ∈ E iff b occurs in a. Observe that the

adjacency relation E is nothing more than the converse of the occurrence relation.

Observe that an arbitrary MSO-automaton A may contain states a, b ∈ A which are

distinct and active in one another. Intuitively, this situation corresponds to a ‘loop’ in

the graph of A. In Chapter 3, we will be most interested in the ‘maximal loops’ contained

in the graph of an automaton. We formalize this with the notion of a cluster.

Definition 2.6.4. Let A be an MSO-automaton. For each pair of states a, b ∈ A we

write a ./ b iff a / b and b / a. A cluster of A is an equivalence class of the smallest

equivalence relation containing ./ . A cluster is called degenerate if it is of the form {a}
for some a ∈ A such that a 6./ a. For each a ∈ A, we write Ca to denote the unique

cluster containing the state a.

Note that every MSO-automaton A only has finitely many clusters. We define the

relation @ on clusters of an MSO-automaton by putting C0 @ C1 iff C0 6= C1 and

there exists a0 ∈ C0 and a1 ∈ C1 such that a0 /a1. We say that C0 is above C1 whenever

C0 @ C1. For each MSO-automaton A, we define the cluster graph of A to be the directed

graph Clust(A) = (V,E) where V is the set of clusters of A and (C0, C1) ∈ @ iff C0 is

above C1.

In the sequel, it will be useful to fix the following terminology. For each MSO-

automaton A and each a ∈ A, we define the downset and upset of a to be the sets

↓a := {b ∈ A | b / a} and ↑a := {b ∈ A | a / b}, respectively. We will sometimes write

⇑a (respectively ⇓a) as a shorthand for the set ↑a ∪ {a} (respectively ↓a ∪ {a}). Note

that ⇓a coincides with ↓a whenever a is active in itself. Intuitively, ↓a is the set of nodes

that ‘sit below’ a in the occurrence graph G(A). Similarly, the set ↑a is the set of states

‘above’ a in G(A).

Acceptance game

The operational semantics of alternating parity automata are formalized via the following

infinite two-player parity game, presented as table.

Definition 2.6.5. Let S = (S,R, V, sI) be a transition system and let A = (A,Θ,Ω, aI)

be a parity automaton. The acceptance game A(A, S) associated with A and S is the

parity game given in the following table.

Position Player Admissible moves Priority

(a, s) ∈ A× S ∃ {V : A→ ℘R(s) | (R(s), V ) |= Θ(a, κ(s))} Ω(a)

V : A→ ℘R(s) ∀ {(b, t) | t ∈ V (b)} 0
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We say that the automaton A accepts the transition system S if the pair (aI , sI) is

a winning position for ∃ in the game A(A,S). That is, if she has a winning strategy in

the game A(A, S)@(aI , sI). Otherwise, we say that A rejects S. We call a positions of

the type (a, s) ∈ A× S are called basic positions.

Definition 2.6.6. Let A and A′ be alternating parity automata on the same alphabet

℘P. We say that A and A′ are equivalent and write A ≡ A′ if for every transition system

S over P we have that A accepts S iff A′ accepts S.

A match of the acceptance game A(A,T) for a parity automaton A and a transition

system S proceeds in rounds in which the players inspect a local area of S via one-step

formulas. In each round, it is the job of ∃ to demonstrate that the automaton A correctly

describes the current window of S from the perspective of the current state of A. We

will sometimes informally refer to a full match of the acceptance game as a run of the

automaton A on S.
More specifically, at a basic position (a, s) ∈ A×S, it is ∃’s turn to play. Her task is

to produce a valuation (or, equivalently, a marking) Va,s satisfying the one-step formula

Θ(a, κ(s)) in the set R(s) of successors of s. After she has chosen such a valuation, it is

∀’s turn to select the next basic position from the set {(b, t) ∈ A× S | t ∈ V (b)}.
Note that the formula Θ(a, κ(s)) may be unsatisfiable in the set R(s). For example,

if Θ(a, κ(s)) is the formula ∃x∃y.x 6≈ y∧b(x)∧a(y) and |R(s)| = 1, then clearly ∃ will be

stuck. On the other hand, if ∃ can play the empty marking (e.g. if Θ(a, c) = ∀x.x ≈ x),

then she wins immediately because ∀ will have an empty set of available moves. In short,

both players can get stuck in the acceptance game so an arbitrary match may be finite

or infinite.

Remark 2.6.7. A typical match π in the acceptance game A(A,S)@(a, s) initialized at

the basic position (a, s) follows the “move pattern” ∃∀. In other words, π has the shape

(a, s)V1(a1, s1)V2(a2, s2) . . .

where, for each i < ω, the basic position (ai+1, si+1) is such that si+1 ∈ R(si) and

si+1 ∈ Vai,si(ai+1). We will identify the match π with the sequence (a, s)(a1, s1) . . . of

basic positions which occur in it. Observe that this sequence contains all of the relevant

information for determining whether π is an accepting or rejecting ‘run’ of A on S.
Finally, observe that if π is finite, then the sequence (s, s1, . . . , sk) is nothing more

than a finite path through S whereas, if π is infinite, then (s, s1, . . . ) is a branch of S.
In this sense, we may think of each run of A on S as an instance of A ‘processing’ some

branch–i.e. an ω-path–or some path through S.

Proposition 2.6.8. Let A = (A,Θ,Ω, ai) and A′ = (A,Θ′,Ω, aI) be parity automaton

from Aut(L). Assume that Θ(a, c) ≡ Θ′(a, c) for each pair (a, c) ∈ A×℘P. Then A ≡ A′.
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Proof. It is straightforward to check that any winning strategy for ∃ in the game A(A,S)

is also a winning strategy for her in the game A(A′, S), and vice versa. We leave the

details to the reader.

Remark 2.6.9. Let A be a set and let α ∈ L(A) for some one-step language L. Note

that whenever b ∈ A does not occur in the one-step formula α, the meaning of α is

independent of the name b in the sense that for every domain D and every pair of

valuations V, V ′ : A→ ℘D such that V ≡A\{b} V ′, we have (D,V ) |= α iff (D,V ′) |= α.

Consequently, for each parity automaton A and each pair of states a, b ∈ A, if b does

not occur in a, then for each valuation V : A → ℘D and each colour c ∈ C, we have

(D,V [b 7→ ∅]) |= Θ(a, c) if (D,V ) |= Θ(a, c).

One consequence of the observation above is that an arbitrary strategy for ∃ in the

acceptance game may give ∀ a larger pool of available moves than is strictly necessary.

Obviously, we may always assume that ∃ plays according to a minimal strategy.

Definition 2.6.10. A strategy f for ∃ in the acceptance game A(A,S) is minimal if,

for every basic position (a, s) ∈ A×S, the valuation Va,s suggested by f at (a, s) is such

that

(R(s), V ) 6|= Θ(a, κ(s)) for every valuation V such that V <A Va,s.

That is, a strategy is minimal if it only suggests valuations Va,s which can not be

“shrunk” without compromising the truth of the one-step formula Θ(a, κ(s)) in the set

R(s). Due to the following fact, we will always assume that ∃ plays according to a

minimal strategy.

Fact 2.6.11. If ∃ has a winning strategy in the game A(A,S), then she has a minimal

winning strategy as well.

We will further develop the theory of minimal strategies throughout this thesis.

Namely, the shape of her minimal strategies varies significantly depending on the struc-

ture of automata from a class A. The existence and structure of her minimal strategies

will be particularly useful in Chapter 4 when we translate automata into formulas.

Closure under complementation

As mentioned before, many interesting questions in the theory of alternating parity

automata can be recast as questions about one-step language L. In this section, we

will see a concrete example of the interplay between alternating parity automata and

one-step model theory.

Based on ideas stemming from [25] and [21], complementation theorems for the class

Aut(L) of alternating parity automata can be proven through a combination of Boolean

duals and a “role swap” between the players ∃ and ∀ in the acceptance game. We will
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now develop the tools that we will need in order to apply this idea to the concrete classes

introduced in Chapter 3.

Definition 2.6.12. Let L be a one-step language and assume that there is a map

(·)δ : L → L which provides, for each set A, a Boolean dual αδ ∈ L(A) for each

α ∈ L(A). Given a parity L-automaton A = (A,Θ,Ω, aI), we define its complement Aδ

as the L-automaton (A,Θδ,Ωδ, aI) where Θδ(a, c) = (Θ(a, c))δ and Ωδ(a) = Ω(a) + 1 for

every a ∈ A and every c ∈ ℘P.

Proposition 2.6.13. Let L and (·)δ be as in the previous definition. For every automa-

ton A ∈ Aut(L) and every transition system S we have that

Aδ accepts S if and only if A rejects S.

Proof. We refer to [21] for a proof.

As a consequence of Proposition 2.6.13, the class Aut(L) is closed under comple-

mentation if the one-step language L is closed under Boolean duals. For example, the

language FOE+ is closed under Boolean duals (cf. Section 2.5) hence the class of tree

languages recognized by MSO-automata is closed under complementation. In Chapter

3, we will show that the same is true for special subclasses of MSO-automata.

2.7 Bisimulation

An important notion of behavioural equivalence between transition systems is that of

bisimulation. The aim of this section is to define and provide the relevant background

for this concept.

Definition 2.7.1. Let S = (S,R, κ, sI) and S′ = (S′, R′, κ′, s′I) be transition systems

over the same set P. A bisimulation is a relation Z ⊆ S × S′ satisfying the following

conditions for all (t, t′) ∈ Z :

(atom) p ∈ κ(t) iff p ∈ κ′(t′) for each p ∈ P;

(back) for each s′ ∈ R′(t′), there exists s ∈ R(t) such that (s, s′) ∈ Z;

(forth) for each s ∈ R(t), there exists s′ ∈ R(t′) such that (s, s′) ∈ Z.

We say that S and S′ are bisimilar (notation: S↔ S′) if there is a bisimulation Z ⊆ S×S′

such that (sI , s
′
I) ∈ Z.

Definition 2.7.2. Let A be a class of alternating parity automata. An automaton

A ∈ A is bisimulation-invariant if S ↔ S′ implies that A accepts S iff A accepts S′, for

each pair S,S′ of transition systems. A class A of automata is bisimulation-invariant if

each automaton A is bisimulation-invariant. We denote by A/ ↔ the class consisting

of those A ∈ A which are bisimulation-invariant.
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In Chapter 5, we will investigate the bisimulation-invariant fragments of various

classes of automata. An important tool in this investigation is the following fact, which

is fundamental in the model theory of modal logics.

Fact 2.7.3. For each transition system S and every 1 ≤ κ ≤ ω, we have that S and its

κ-expansion Sκ are bisimilar.



Chapter 3

Weak path automata

In this chapter, we introduce a variety of subclasses of alternating parity automata.

Namely, we will be interested in subclasses of what we will call weak path automata.

Weak path automata are obtained from a class Aut(L) of alternating parity automata

by combining a constraint on the parity map (weakness) with a constraint on the one-

step language L itself. That is, the path condition requires that transition formulas come

from a special fragment of L.
From now on–even though some of our definitions will be given for arbitrary transition

systems–we limit our discussion to trees because they are easier to visualize and build

intuition. We view trees as having essentially two ‘dimensions’: a horizontal dimension

and a vertical dimension. For example, a typical property of the horizontal dimension

of trees is “every node has exactly k successors”, whereas “along some path there is a

node labelled with p and q” expresses a property of the vertical dimension of trees. In

this light, weakness is best viewed as a restriction on the expressiveness of automata

when it comes to properties of the vertical dimension, while the path condition limits

the expressivity of automata in the horizontal dimension.

3.1 Weak automata

We will begin by introducing the notion of a weak alternating parity automata. The

notion of a weak acceptance condition goes back to the work of Rabin. In the context of

alternating automata on trees, weak acceptance conditions were introduced by Muller,

Saoudi, and Schupp [24]. For more details on weak automata, we refer to [17].

Definition 3.1.1. Let L be a one-step language. An automaton A ∈ Aut(L) is weak if

for each pair of states a, b ∈ A the following condition is satisfied:

(weakness) if a / b and b / a, then Ω(a) = Ω(b).

We write Autw(L) to denote the class of weak alternating parity automata.

30
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In words, weak automata are those automata such that every pair of states belonging

to the same cluster have the same priority. That is, we may associate a unique priority

to each cluster of a weak automaton. For this reason, we will take the liberty of speaking

of the priority of a cluster–in addition to the priority of a state–in the context of weak

automata. Namely, the priority of a cluster C of a weak automaton A is the unique

priority of the states contained in C.

In order to understand the intuition behind the weakness condition, we will first

make the following observation about arbitrary MSO-automata. Let f be a minimal

strategy for ∃ in the acceptance game G = A(A,T) for some MSO-automaton A and

some tree T. Recall that f always suggests valuations Va,s such that Va,s(b) = ∅ for each

b ∈ A that does not occur in a (cf. Remark 2.6.9). Consequently, for each full f -guided

match π = (a0, s0)(a1, s1) . . . we have that ai+1 occurs in ai for each i.

Now, let a be a state that occurs infinitely often and let i be the least index such

that ai = a. Note that for each j ≥ i, we have that aj / a. Furthermore, as a occurs

infinitely often, there exists k > j such that ak = a hence also a / ak. That is, a ./ aj so,

in particular, we have that aj ∈ Ca. Say that a cluster C appears infinitely often in the

match π if some state a ∈ C appears infinitely often in π. In these terms, we have just

shown that a cluster appears infinitely often iff it appears cofinally. In other words, each

full f -guided match stabilizes in some final cluster Cf . In the setting of weak automata,

this means that exactly one priority is seen infinitely often. Thus, the only thing that

really matters about the priority of a cluster is its parity.

Fact 3.1.2 ([27]). Every weak automaton A ∈ Autw(L) is equivalent to a weak automa-

ton A′ = (A,Θ,Ω′, aI) where Ω′ : A→ {0, 1}.

Proof. Define the map Ω′ : A→ {0, 1} by setting Ω′(a) = Ω(a) mod 2. It is straightfor-

ward to see that any winning strategy for ∃ in the game G = A(A,S) is also a winning

strategy for her in the game G′ = A(A′, S), and vice versa.

3.2 Weak path automata

We will now introduce and briefly discuss the class of alternating weak path parity au-

tomata. As mentioned above, this class is a refinement of the class of weak automata

obtained by imposing an additional constraint on the transition map corresponding to

a limitations on their expressivity about the ‘horizontal’ dimension of trees. We begin

by developing some of the basic model theory and notation surrounding the semantic

notion of complete additivity.
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One-step complete additivity

Recall that for a set B ⊆ A and a pair V, V ′ : A→ ℘D of valuations, we write V ≡B V ′

if V (b) = V ′(b) for each b ∈ B.

Definition 3.2.1. We say that a formula α ∈ L(A) is completely additive in a ∈ A if

α is monotone in a and, for every one-step model (D,V ) such that (D,V ) |= α, there

exists a valuation V ′ ≡A\{a} V such that (D,V ′) |= ϕ and either V ′(a) = ∅ or V ′(a)

is a singleton subset of V (a). We say that ϕ is completely multiplicative in a ∈ A if its

Boolean dual is completely additive in a.

In words, a formula α is completely additive in the propositional variable a if each

valuation making the formula α true can be ‘shrunk’ to a valuation assigning a to either

none or a unique node from the domain. That is, a formula is completely additive in a

if its meaning depends on at most one node being coloured with a. We lift the notion of

complete additivity in a propositional variable to that of being complete additivity in a

set of propositional variables as follows: α ∈ L(A) is completely additive in B ⊆ A if α

is monotone in each b ∈ B and, for each valuation V : A → ℘D such that (D,V ) |= α,

either

(i) (D,V [b 7→ ∅ | b ∈ B]) |= α or

(ii) (D,V [b∗ 7→ {t}, b 7→ ∅ | b ∈ B\{b∗}]) |= α for some b∗ ∈ B and t ∈ V (b∗).

Note that if a formula α is completely additive in a set B of colours, then the meaning

of α depends on at most one node being coloured with at most one colour from B. For

example, the formula ∃x∃y(x 6≈ y ∧ a(x)∧ b(y)) is completely additive in a (respectively

b) because its meaning only depends on one node being labelled with a. However, it is

not completely additive in {a, b} because its meaning depends on labelling two distinct

nodes with a and b, respectively. We will now define the completely additive fragments

of FOE+ and FO+.

Definition 3.2.2. Let A be a set of monadic predicates and let A′ ⊆ A. The set

ADDA′FOE+(A) of monadic first-order formulas which are completely additive in A′ ⊆ A
is generated by the following grammar:

α ::= β | a(x) | ∃x.α | α ∨ α | α ∧ β

where a ∈ A′ and β ∈ FOE+(A\A′). Note that the equality is included in β. The set

ADDA′FO+ of monadic first-order formulas without equality which are completely addi-

tive in A′ ⊆ A is generated by the same grammar except now β ∈ FO+(A\A′). We denote

the dual fragments (i.e. the completely multiplicative fragments) by MULA′FOE+(A)

and MULA′FOE+(A)



CHAPTER 3. WEAK PATH AUTOMATA 33

Theorem 3.2.3. Let A be a set and let L ∈ {FO+,FOE+}. For each subset A′ ⊆ A and

each formula α ∈ L(A), we have that α is completely additive in A′ iff it is equivalent to

a formula from ADDA′L(A).

Proof. We refer the reader to [[6], Theorem 5.1.45 and Theorem 5.1.49] for details.

Weak path automata

We will now define the class of alternating weak path parity automata.

Definition 3.2.4. The class Autwa(L) of weak path automata is given by the weak

parity automata A = 〈A,Θ,Ω, aI〉 from Autw(L) such that every cluster C of A satisfies

the following condition:

(path) Either Θ(a, c) ∈ ADDCFOE+(A) for every every pair (a, c) ∈ C × ℘P or

Θ(a, c) ∈ MULCFOE+(A) for every pair (a, c) ∈ C × ℘P.

While weakness imposes that states from the same cluster have a uniform priority,

the path condition requires that each cluster is either uniformly completely additive in

itself or uniformly completely multiplicative in itself. Note that this gives rise to four

types of clusters (respectively states). We will additionally be interested in the following

subclass of weak path automata obtained by linking the semantic notions of complete

additivity and complete multiplicativity with the parity of states.

Definition 3.2.5. The class Aut lwa(L) of linked weak path automata is given by the

weak path parity automata A = 〈A,Θ,Ω, aI〉 from Autwa(L) that satisfy the following

condition:

(linked path) For every state a ∈ A :

If a ∈ Aµ, then Θ(a, c) is completely additive in Ca, for each c ∈ ℘P

If a ∈ Aν , then Θ(a, c) is completely multiplicative in Ca, for each c ∈ ℘P.

Remark 3.2.6. Linked weak path automata were investigated in [6] (under the name

“additive-weak automata”) where it was shown that a tree language is recognized by

a linked weak path automaton based on FOE1 iff it is definable in weak chain logic,

a version of monadic second-order logic which quantifies over finite chains. See [[6],

Theorem 7.3.1] for details.

3.3 Antisymmetric path automata

We will now introduce the class of (alternating) antisymmetric path parity automata.

These automata are obtained from the class of weak path automata by requiring that

each cluster is a singleton.
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Definition 3.3.1. The class Autsa(L) of antisymmetric path automata is given by the

parity automata A = 〈A,Θ,Ω, aI〉 from Autwa(L) such that the relation /A is antisym-

metric (i.e. clusters are singletons).

Recall that clusters are essentially ‘maximal loops’ in the occurence graph of a parity

automaton. Intuitively, whenever an automaton A is antisymmetric, its occurrence graph

is ‘loop free’. That is, A is based on a directed acyclic graph (DAG). The following

proposition gives another useful way of thinking about antisymmetric automata, and will

be utilized when we translate linked antisymmetric automata into first-order formulas

in Chapter 4.

Proposition 3.3.2. An alternating parity automaton A is antisymmetric iff /A is well-

founded.

Proof. We leave the details to the reader.

As before, we will also be interested in the linked version of antisymmetric automata,

defined as before: the class Aut lsa(FOE1) of linked antisymmetric path automata consists

of those automata A from the class Autsa(FOE1) of antisymmetric path automata which

satisfy the linked path condition.

Remark 3.3.3. We will now investigate the effect of antisymmetry and the path condi-

tion on minimal winning strategies for ∃ in the acceptance game. We focus in particular

on a linked antisymmetric path automaton A and a state a ∈ Aµ. To this end, let T be

a tree and let f be a minimal winning strategy for ∃ in the game G = A(A,T). Finally,

let (a, s) ∈Win∃(G).

Because A satisfies the linked path condition, it follows that Θ(a, c) is completely

additive in a for every colour c ∈ C. Because of this, for each one-step model (D,V )

such that (D,V ) |= Θ(a, c), we can shrink the valuation V to a valuation V ′ such that

(D,V ′) |= Θ(a, c) and such that V ′(a) is empty or a singleton. Now, applying this

observation to the valuation Va,s suggested by her strategy f, it follows that Va,s(a) is

either a singleton or empty by minimality.

Recall that b ∈ ↑a if a/b. Now, if b ∈ ↑a and b 6= a, then antisymmetry ensures that b

does not occur in a. That is, for each one-step model (D,V ) such that (D,V ) |= Θ(a, c),

we have that (D,V [b 7→ ∅]) |= Θ(a, c) as well. Hence Va,s(b) = ∅ for each b ∈ ↑a
by minimality of her strategy f. In other words, antisymmetry ensures whenever a is

currently ‘activated’, only states which occur below a in the occurrence graph can be

‘activated’ in the future.

Based on these observations, we will now prove one of the main technical tools that

we will need concerning linked antisymmetric path automata. Following the observa-

tions above, the idea is this: whenever ∃ plays according to a minimal strategy in the
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acceptance game A(A,T)@(a, s) for a linked antisymmetric path automaton A, a tree

T, and a winning position (a, s) ∈ Aµ × S, her strategy guides her along a finite path.

Antisymmetry adds to this by ensuring that once the state a is ‘deactivated’, it will

never be activated again.

Proposition 3.3.4. Let A ∈ Aut lsa(FOE1) and let T be a tree. For each a ∈ Aµ and

each s ∈ S such that (a, s) ∈Win∃(A(A,T)), there exists a winning strategy fπ for ∃ in

the game G = A(A,T) such that there is a unique finite path π ∈ Pathss(T) satisfying

the following properties.

(i) For each (b, t) ∈Win∃(G) such that b/a, the valuation Vb,t suggested by fπ at (b, t)

is such that Vb,t(a
′) = ∅ for each a′ ∈ ⇑a.

(ii) For every i < length(π), the valuation Va,si suggested by fπ at position (a, si) is such

that Va,si(a) = {si+1}, and the valuation Va,last(π) is such that Va,last(π)(a) = ∅.

Proof. Let A ∈ Aut lsa(FOE1) and let T be a tree with labelling function κ : S → ℘P.

Suppose that (a, s) ∈ Aµ×S is a winning position for ∃ in the game G := A(A,T), and let

f be a minimal positional winning strategy for ∃ in G. For each position (b, t) ∈Win∃(G),

we write Vb,t to denote the valuation suggested by f at (b, t). We will show that f itself

satisfies (i) and (ii). In order to see that (i) holds, assume that (b, t) ∈Win∃(G) is such

that b / a. As A is antisymmetric, it follows that a does not occur in b. In particular, if

(R(t), Vb,t) |= Θ(b, κ(s)), then (R(t), Vb,t[a 7→ ∅]) |= Θ(b, κ(t)) as well. Then Vb,t(a) = ∅
because f is minimal. Hence f satisfies (i).

We now show that f satisfies (ii). To this end, note that Θ(a, c) is completely additive

in a for every colour c ∈ ℘P because a ∈ Aµ. By Remark 3.3.3, it then follows that for

each t ∈ S either

(1) Va,t(a) = ∅ or

(2) Va,t = {t+} for some t+ ∈ R(t).

In other words, for each node t ∈ S there is either none or a unique node t+ ∈ R(t)

such that (a, t+) ∈ Va,t. On these grounds, we inductively define a sequence ρ :=

(a, s0), (a, s1), . . . of basic positions by putting (a, s0) := (a, s) and (a, si+1) := (a, s+
i ) if

Va,si satisfies (1) and undefined otherwise. Note that ρ must be finite because otherwise

ρ is an infinite f -guided match in which every basic position has odd parity. That is,

because otherwise ∃ loses the f -guided match ρ in the game G@(a, s) in contradiction

with our assumption that (a, s) ∈Win∃(G). So, indeed, ρ is finite.

It easily follows from the definition of ρ that the sequence π := s0, s1, . . . is a finite

sequence satisfying (1). Moreover, π is uniquely determined by the strategy f and

position (a, s) because, by (2), for each i ∈ ω the position (a, si+1) is uniquely determined

by (a, si). Thus f satisfies (i) and (ii), as desired.
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Corollary 3.3.5. Let A ∈ Aut−sa(FOE1) and let T be a tree. For every winning position

(a, s) ∈ Aµ × S in the game G := A(A,T), the strategy fπ given by Proposition 3.3.4

for (a, s) satisfies the following for every t ∈ S : the position (a, t) is fπ-reachable in

G@(a, s) iff t = si for some i ≤ length(π).

We shall now show that the class of linked antisymmetric path automata is closed

under complementation.

Proposition 3.3.6. If A ∈ Aut lsa(FOE1), then Aδ ∈ Aut lsa(FOE1).

Proof. We begin by checking the path condition. To this end, note that if a ∈ (Aδ)µ,

then a ∈ Aν because Ωδ(a) = Ω(a) + 1. Thus Θ(a, c) is completely multiplicative in

a for each colour c ∈ ℘P. In particular, Θδ(a, c) is completely additive in a for each

colour c ∈ ℘P. Similarly, if a ∈ (Aδ)ν , then Θδ(a, c) is completely multiplicative in a

for each c ∈ ℘P. It remains to be seen that if A is antisymmetric, then so is Aδ. It is

straightforward to syntactically check that, for each a ∈ A and each one-step formula

α ∈ FOE1(A), we have that a occurs in α if and only if a occurs in αδ. In particular, Aδ

is antisymmetric if A is, as desired.



Chapter 4

Automata and first-order logic

In this Chapter, we provide effective bounds on the expressive power of first-order logic.

Namely, we prove the following ‘sandwich theorem’ for the expressiveness of FOE on

trees.

Theorem 4.0.1 (Sandwich Theorem). We have the following effective bounds on the

expressive power of first-order logic with equality on trees:

Aut lsa(FOE1) ≤ FOE(<) ≤ Aut lwa(FOE1).

To start, we will transform each linked antisymmetric path automata A ∈ Aut lsa(FOE1)

into an equivalent sentence ξA from 2FOE, showing that first-order logic is at least as

expressive as these automata. The underlying idea is to provide a sentence of two-sorted

first-order logic which successfully describes the behaviour of such automata over trees.

At the heart of the matter is Proposition 3.3.4 where the structure of minimal winning

strategies for such automata were clarified.

In turn, we translate each formula ϕ ∈ AMSO into an equivalent linked weak path

automata Aϕ ∈ Aut lwa(FOE1). We do so by induction on the structure of formulas from

AMSO; recall that this is the one-sorted version of first-order logic.

As is typical for alternating parity automata, proving that the class of tree languages

recognizable by linked weak path automat is closed under complementation and union–

the automata-theoretic analogues of negation and disjunction, respectively–is somewhat

straightforward. Most of our work will be devoted to closing that linked weak path

automata are closed under atomic projection, the automata analogue of first-order quan-

tification.

4.1 From antisymmetric path automata to 2FOE formulas

In this section, we will transform automata from Aut lsa(FOE1) into equivalent two-sorted

first-order formulas.

37
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Theorem 4.1.1. Given an automaton A ∈ Autlsa(FOE1) on P, we can effectively con-

struct an equivalent sentence ξA ∈ 2FOE(P).

We will prove Theorem 4.1.1 by induction on the well-founded relation /A. The crux

of the proof lies in obtaining a formula χA,a(x) ∈ FOE(P ] ↓a) (in one free variable x)

which describes the ‘behaviour’ of A.a and such that only states occurring strictly below

a in the occurrence graph of A may occur as monadic predicates. That is, we crucially

obtain a formula χA,a(x) which satisfies the following conditions:

(i) Each of the propositional variables occurring in χA,a(x) are from P ] ↓a;

(ii) (a, s) ∈Win∃(A(A,T)) iff T[b 7→ JA.bK | b ∈ ↓a] |= χA,a(s).

In fact, this is the key step required in order to handle the base case of the induction.

Indeed, it follows directly from (i) and (ii) that the formula χA,aI (x) itself contains only

propositional variables P and is such that the following holds on trees:

T |= χA,aI (sI) if and only if A accepts T. (∗)

That is, χA,aI (x) is equivalent to A over trees, at least whenever the variable x is inter-

preted as the root of the tree. In order to obtain a sentence, the only additional insight

that we will require is that 2FOE is expressive enough to define the root of a tree. This

is indeed the case: we define the formula

root(x) := ∀z(z ≤ x→ z = x)

expressing that the (interpretation of the) variable x is the root. On the basis of this

definition and the semantics of 2FOE, it is straightforward to prove the following propo-

sition.

Proposition 4.1.2. For every tree T and every interpretation g of the individual vari-

ables from iVar, we have the following equivalence:

T, g |= root(x) if and only if g(x) = sI .

Furthermore, obtaining the formula χA,a(x) will additionally serve as the key step in

the inductive step of the proof, only now the additional ‘insight’ that will be needed is a

suitable substitution of the sentences given by the inductive hypothesis. We defer these

details to later and turn our attention towards crafting the formula χA,a(x).

Recall that for each automaton A ∈ Aut lsa(FOE1) and each pair (a, c)∈A × ℘P

either a∈Aµ and Θ(a, c) is completely additive in a or a∈Aν and Θ(a, c) is completely

multiplicative in a. Due to the different behaviours exhibited by this variety of states,

the exact shape of the formula χA,a(x) will differ depending on whether a is µ- or a

ν-state. For now, we restrict our attention to constructing the formula χA,a(x) for each
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A ∈ Aut lsa(FOE1) and each a ∈ Aµ. In fact, this will be sufficient because of the dual

nature of these state types; we return to this in due time.

Linked antisymmetric path automata have a very special structure reflected in Propo-

sition 3.3.4. In fact, this proposition is the key insight that we will need in order to

provide the formula χA,a(x). Namely, it states that whenever (a, s) ∈Win∃(A(A,T)) for

some tree T, her minimal winning strategy guides her to a ‘final’ position (a, s∗) where

the state a will be needed by Proposition 3.3.4. Moreover, the automaton A never gets

‘stuck’ along the unique path π leading to s∗ because otherwise ∃ would lose. That is,

each of the requirements set by the transition formulas along π are met.

Due to these observations, most of our efforts lie in formalizing the following state-

ment for a winning position (a, s) ∈ Aµ × S : there is a node s∗ ∈ R+(s) satisfying the

following conditions:

(1) the state a is never needed while A processes the subtree T.s∗;

(2) for each node t such that s ≤ t ≤ s∗, each of the ‘requirements’ specified by the

transition formula Θ(a, κ(t)) are satisfiable in the set R(t).

We will view the node s∗ as an ‘exit’ from the state a. With this viewpoint in place,

one may interpret (2) as stating that the automaton ‘traces a (safe) path towards its

exit from a’. That is, as the automaton scans the tree T it never encounters a moment

where it gets stuck. We proceed to identifies nodes that serve as an escape from the state

a ∈ A. In turn, we will define a substitution on formulas which detect the next node on

the path towards an exit by using the formula Sxz(y) defined in Chapter 2. Finally, we

will put these pieces together to form the formula χA,a(x).

As a basis for both of these substitutions, we first a notion of relativization trans-

forming the ‘local’ perspective of one-step first-order logic into the ‘global’ perspective

of 2FOE, reminiscent of the standard translation of basic modal logic into first-order

logic.

Relativization

Recall that for a set A (of names) and a set X of individual variables, the language

FOE1(A,X) is the set of one-step formulas of first-order logic (with equality) in which the

names from A may occur positively as monadic predicates and only individual variables

from X may occur, free or bound. Also, recall that the set At(A,X) consists of the

atomic formulas over the sets A and X.

Definition 4.1.3. For each set A (of names), each set X ⊆ iVar , and each fresh indi-

vidual variable x, we define the relativization ρx : FOE1(A,X)→ 2FOE(A,X ] {x}) by

induction on the structure of α ∈ FOE1(A,X) as follows:
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• ρx(α) := α for each α ∈ At(A,X)

• ρx(α♥β) := ρx(α)♥ρx(β) for ♥ ∈ {∧,∨}

• ρx(¬α) := ¬ρx(α)

• ρx(∃x.α) := ∃x(S(z, x) ∧ ρx(α))

• ρz(∀x.ϕ) := ∀x(S(z, x)→ ρx(ϕ)).

Given an automaton A on alphabet ℘P and a state a ∈ A, the monadic predicates

occurring (if any) in the formula Θ(a, c) are always of the form b(x) where b ∈ ↓a. In

order to compare the ‘local’ meaning of the formula Θ(a, c), Thus, in order to compare

the meaning of one-step formula Θ(a, c)–which is evaluated ‘locally’ (i.e. at a node) in

a P-tree T–and its relativization, we will also ‘relativize’ the tree T by colouring a set

Sb ⊆ S with b for each b ∈ A. With this in mind, the next proposition states that the

semantic relationship between a one-step formula and its relativization is as expected.

Proposition 4.1.4. Let T be a tree. Assume that we are given a subset Sa ⊆ S for each

a ∈ A. Then, for each node s ∈ S and each assignment g : iVar → R(s), the following

are equivalent for every formula α ∈ FOE1(A,X\{z}) :

(i) (R(s), V ), g |= α for the valuation V : A → ℘R(s) given by V (a) = Sa ∩ R(s) for

each a ∈ A.

(ii) T[b 7→ Sb | b ∈ A], g[z 7→ s] |= ρz(α).

Proof. Let T′ denote the (P]A)-tree T[b 7→ Sb | b ∈ A] with labelling function κ′ : S →
℘(P]A). We proceed by induction on the complexity of α. It is not difficult to see that

the equivalence holds if ϕ ∈ {x ≈ y : x, y ∈ iVar} because α is z-free by assumption.

Suppose that α has shape b(x) for some b ∈ A. Assume (i) so that we have a valuation

V : A→ ℘R(s) such that (R(s), V ), g |= b(x) and V (a) = Sa∩R(s) for every a ∈ A. The

former implies that g(x) ∈ V (b) hence also g(x) ∈ Sb by the latter. Thus T′, g |= b(x).

As b(x) ∈ FOE1(A,X\{z}), we have that x 6= z whence T′, g[z 7→ s] |= b(x).

Now assume that T′, g[z 7→ s] |= b(x). Then we have that g(x) ∈ Sb. As the interpre-

tation g has type g : iVar → R(s), we also have g(x) ∈ R(s). Hence g(x) ∈ Sb ∩ R(s).

Define the required valuation V : A → ℘R(s) by setting V (a) = Sa ∩ R(s) for every

a ∈ A. Then (R(s), V ) |= b(x) since g(x) ∈ V (b), as required.

As the Boolean cases in which α is a disjunction or conjunction follow immediately

from the inductive hypothesis, we immediately focus on the case in which α is an exis-

tential formula. Assume that (R(s), V ), g |= ∃x.β for some valuation V as in (i). Then

there exists d ∈ R(s) such that (R(s), V ), g[x 7→ d] |= β. By the inductive hypothesis, it

follows that T′, g[x 7→ d] |= β. As d ∈ R(s), we also have T′, g[x 7→ d] |= S(s, d). Hence
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T′, g[x 7→ d] |= S(s, d)∧β. But this just means that T′, g |= ∃x(S(s, x)∧β). In particular,

T′, g[z 7→ s] |= ∃x(S(z, x) ∧ β) = ρz(β). This concludes our proof from (i) to (ii). The

direction from (ii) to (i) is handled completely analogously.

Identifying an exit

We will now introduce a substitution (·)[⊥/a] : 2FOE(P ] {a}) → 2FOE(P) on first-

order formulas. For an automaton A and a node s∗ in a tree T, we shall want that

T |= ρx(Θ(a, κ(s∗)))[⊥/a] exactly whenever “in the subtree T.s∗, the state a is no longer

needed”.

Definition 4.1.5. For each formula ϕ ∈ 2FOE(A,X) and each a ∈ A, we define the

formula

ϕ[⊥/a] := ϕ[a(x) 7→ x 6≈ x | x ∈ X].

That is, the formula ϕ[⊥/a] is the formula obtained from ϕ by substituting each occur-

rence of a(x) by the formula x 6≈ x.

The main result that we will need regarding this substitution is the following propo-

sition, which we view as the formal counterpart of the intuitive description given in

(1).

Proposition 4.1.6. Let T be a tree and let A be a set. Assume that for each a ∈ A
we are given a set Sa ⊆ S. Then, for every node s ∈ S, every assignment g : X →
R(s), and every a ∈ A, the following are equivalent for every one-step formula α ∈
FOE1(A,X\{z}):

(i) (R(s), V ), g |= ϕ for the valuation V : A → ℘R(s) such that V (b) = ∅ for each

b ∈ ⇑a and V (b) = Sb ∩R(s) for every b ∈ ↓a

(ii) T[b 7→ Sb | b ∈ ↓a], g[z 7→ s] |= ρz(ϕ)[⊥/a].

Proof. By a routine induction on the complexity of α ∈ MFOE+(A).

Tracing a path to an exit

We now turn our attention towards item (2) of the informal description. The situation

is this: we are in the acceptance game A(A,T)@(a, s) and the current position has the

shape (a, t) for some t < s∗. Because we have not yet arrived at the special node s∗

where a is no longer needed, the one-step formula Θ(a, κ(t)) requires that a be labelled

at exactly one node in the set R(t).

Now, ∃’s minimal strategy recommends a valuation Va,t such that Va,t(a) = {t+}
where t+ is the unique node from R(t) on the path from t to s∗. Recall that we introduced
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the formula Sxz(y) which, on trees, expresses that y is the unique successor on the path

from x to z (cf. Proposition 2.3.7). That is, it identifies where her minimal strategy will

use the colour a. This motivates the following definition.

Definition 4.1.7. Let P be a set of propositional variables and let X be a set of indi-

vidual variables. For each a ∈ P, each pair x, z ∈ X, and each formula ϕ ∈ FOE(P, X),

the formula ϕ[Sxz/a] is the formula obtained from ϕ by replacing each occurrence of

a(y) by Sxz(y), for every y ∈ X.

For example, the substitution ∃y∃y′(y 6≈ y′ ∧ a(y) ∧ b(y′))[Sxz/a] results in the for-

mula ∃y∃y′(y 6≈ y′ ∧ Sxz(y) ∧ b(y′)). The following proposition is the main result that

we will need concerning the substitution (·)[Sxz/a], stating that the meaning of such

substitutions is as intended.

Proposition 4.1.8. Let T be a tree. Assume that for each a ∈ A we are given a subset

Sa ⊆ S. Then for each a ∈ A, each pair of nodes s, s∗ ∈ S such that s∗ ∈ R+(s),

and each assignment g : iVar → R(s), the following are equivalent for each formula

α ∈ FOE1(A,X\{x, z}):

(i) (R(s), V ) |= α for the valuation V : A → ℘R(s) such that V (a) = {s+} and

V (b) = Sb ∩R(s) for each b ∈ A\{a}

(ii) T[b 7→ Sb | b ∈ ↓a], g[x 7→ s, z 7→ s∗] |= ρx(α)[Sxz/a].

Proof. Let T be a P-tree with labelling function κ : S → ℘P, let T′ denote the ↓a-variant

T[b 7→ Sb|b ∈ ↓a] of T, and let g′ := g[x 7→ s, z 7→ s∗]. Let s, s∗ ∈ S be given such that

s∗ ∈ R+(s), let A ∈ Aut lsa(FOE1), and let a ∈ A. We proceed by induction on the

structure of α ∈ MFOE+(A). First, we show that if α has the shape b(y) for some

b ∈ A, then the equivalence holds. We will distinguish two cases on the basis of whether

or not b = a.

(1) If b 6= a, then the substitution ρx(b(y))[Sxz/a] results in the formula b(y) itself

because relativization acts as the identity on atomic formulas and a does not occur

in b(y). Observe that (R(s), V ) |= b(y) iff g(y) ∈ V (b) = Sb iff T′ |= b(y) because

Vκ(b) = Sb. Hence the equivalence holds when b 6= a.

(2) If b = a, then the substitution ρx(b(y))[Sxz/a] results in the formula Sxz(y). We

begin by showing the implication from (i) to (ii); our goal is to show that T′, g′ |=
Sxz(y). As V (a) = {s+}, we have g(y) = s+. In particular, g(y) = g(x)+ whence

T′, g′ |= Sxz(y), as required. Conversely, assume that (ii) holds so that T′, g′ |=
Sxz(y). Then g(y) = s+ so that the valuation V ′ : A→ ℘D defined by V (a) = {s+}
and V (b) = ∅ for every b ∈ A\{a} is such that (D,V ′) |= a(y). By monotonicity,

it follows that (D,V ) |= a(y) as well. Thus the equivalence holds whenever b = a.
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The remaining atomic propositions either have the shape y1 ≈ y2 or y1 6≈ y2. Both

cases are handled in a manner completely analogous to the proof of (1) because rela-

tivization acts as the identity on atomic formulas and because a does not occur in the

formulas y1 ≈ y2 and y1 6≈ y2 (hence also the substitution acts as the identity). The

Boolean cases in which α has the shape α0 ∨ α1 or α0 ∧ α1 follow immediately from

the induction hypothesis because relativization and the substitution (·)[Sxz/a] respect

Booleans.

In order to conclude the proof, we now show that the equivalence holds for formulas of

the shape ∃y.β. Recall that the relativization of ∃y.β is the formula ∃y.(S(x, y)∧ρx(β)).

Thus we wish to show that (R(s), V ) |= ∃x.β iff T′, g′ |= ∃y.(S(x, y) ∧ ρx(β)[Sxz/a]).

Observe that we have the following chain of equivalences:

(R(s), V ), g |= ∃y.β ⇐⇒ (R(s), V ), g[y 7→ d] |= β for some d ∈ R(s)

⇐⇒ T′, g′[y 7→ d] |= ρx(β)[Sxz/a] (Ind. Hyp.)

⇐⇒ T′, g′[y 7→ d] |= S(x, y) ∧ ρx(β)[Sxz/a] (d ∈ R(s))

⇐⇒ T′, g′ |= ∃y.S(x, y) ∧ ρxβ[Sxz/a].

Thus, by induction, the equivalence holds for each formula α ∈ MFOE+(A). Hence also

the equivalence holds for each one-step formula α ∈ FOE1(A), as desired.

Putting the pieces together

Recall that for a set A of monadic predicates and a subset B ⊆ A, we write τB(x) to

denote the formula
∧
b∈B b(x)∧

∧
b6∈B ¬b(x). As an auxiliary formula, we define, for each

automaton A ∈ Aut lsa(FOE1) on alphabet ℘P and each a ∈ A, the formula

exitA,a(z) :=
∨
c∈℘P

(τc(z) ∧ ρz(Θ(a, c))[⊥/a]).

Finally, we define χA,a(x) to be the formula

∃z(x ≤ z ∧ exitA,a(z) ∧ ∀y(x ≤ y < z →
∨
c∈℘P

(τc(y) ∧ ρy(Θ(a, c))[Syz/a]))).

Proposition 4.1.9. For each automaton A ∈ Aut lsa(FOE1) and each a ∈ Aµ, the fol-

lowing are equivalent for every P-tree T and every node s in T :

(i) (a, s) ∈Win∃(A(A,T))

(ii) T[b 7→ JA.bKT | b ∈ ↓a] |= χA,a(s)

Proof. Let T be a P-tree with labelling function κ : S → ℘P and let T′ denote the

(P ] ↓a)-tree T[b 7→ JA.bKT | b ∈ ↓a] with labelling function κ′ : S → ℘(P ] ↓a). We will
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begin by showing the implication from (i) to (ii). To this end, suppose that s ∈ S is such

that T.s |= A.a. Our goal is to show that T′ |= χA,a(s). By inspection of the structure

of χA,a(x), we wish to show that there is a node s∗ ∈ R+(s) such that

(1) T′, g[z 7→ s∗] |= ρz(Θ(a, κ(s∗)))[⊥/a] and

(2) for each s ≤ t < s∗ we have T′, g[y 7→ t, z 7→ s∗] |= ρz(Θ(a, κ(t)))[Syz/a].

Since a ∈ Aµ and (a, s) ∈ Win∃(G) by assumption, there is a strategy fπ for ∃ in

the game G as in Proposition 3.3.4 for the position (a, s). We will prove that (1) and

(2) are satisfied by s∗ := last(π). In order to see that (1) holds, note that (a, s∗) is

a winning position because it is fπ-reachable from the winning position (a, s). Hence

(R(s∗), Va,s∗) |= Θ(a, κ(s∗)). Recall that the valuation Va,s∗ is such that Va,s∗(b) = ∅ for

each b ∈ ⇑a by Proposition 3.3.4(i) and Proposition 3.3.4(ii). Furthermore, Va,s∗(b) ⊆
JA.bKT∩R(s∗) for each b ∈ ↓a because fπ is a winning strategy for ∃. By monotonicity, it

follows that (R(s∗), V ) |= Θ(a, κ(s∗)) where V : A → ℘R(s∗) is the valuation described

in Proposition 4.1.6 for the sets Sb := JA.bKT. Thus T′, g[z 7→ s∗] |= ρz(Θ(a, κ(s∗)))[⊥/a].

We now proceed to show that (2) holds. We proceed just as before, only now we

will blend Proposition 3.3.4 together with Proposition 4.1.8. To this end, let t ∈ S be

such that s ≤ t < s∗. As the path from s to s∗ is unique, it follows that t = si for some

i < k. Hence (a, t) is f -reachable from position (a, s) by Corollary 3.3.5. In particular,

(a, t) ∈Win∃(G) so that (R(t), Va,t) |= Θ(a, κ(t)).By Proposition 3.3.4(ii), we have that

Va,t(a) = {t+}. As before, Va,t(b) ⊆ JA.bKT ∩ R(s) for each b ∈ ↓a since fπ is a winning

strategy for ∃. By monotonicity, it follows that (R(t), V ) |= Θ(a, κ(t)) for the valuation

V defined in Proposition 4.1.8(i). Hence (2) holds and we have now completed the proof

from (i) to (ii).

We now show the implication from (ii) to (i). To this end, assume that T′ |= χA,a(s).

Then there exists a node s∗ ∈ S such that s∗ ∈ R+(s) which satisfies (1) and (2). Let

(s0, . . . , sk) be the unique finite path from s = s0 to s∗ = sk in T. Our goal is to provide

a winning strategy f for ∃ in the game G@(a, s). Let f∃ be a fixed positional winning

strategy for ∃ in the game G guaranteed by the positional determinacy of parity games.

In order to define the strategy f, we distinguish the following cases for basic positions

(q, t) ∈ A× S.
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(A) If q = a and t = si for some i ≤ k, then we distinguish the following cases on the

basis of whether or not i = k :

(a) If i < k, let f suggest the valuation Vq,t : A → ℘R(t) defined by setting

V (a) = {t+} and V (b) = JA.bKT ∩ R(t) for each b 6= a. Note that f suggests

the valuation defined in Proposition 4.1.8(i) at (q, t).

(b) If i = k, we let f suggest the valuation Vq,t : A → ℘R(t) defined by setting

V (b) = ∅ for each b ∈ ⇑a and V (b) = JA.bKT ∩ R(t) for each b 6∈ ⇑a. Note

that f suggests the valuation defined in Proposition 4.1.6(i) at (q, t).

(B) If q ∈ ↓a and (q, t) ∈ Win∃(G), we let f suggest the same valuation Vq,t that her

positional winning strategy f∃ suggests.

(C) At all other positions, ∃ plays randomly.

The legitimacy of the valuations suggested by f at position described in A(a) and

A(b) follows immediately by (1) together with Proposition 4.1.8 and (2) together with

Proposition 4.1.6, respectively. Furthermore, the moves defined in B are legitimate for

f because they are legitimate for her winning strategy f∃. In order to show that f is in

fact a winning strategy for ∃ in G@(a, s), it suffices to show that any partial f -guided

match leads to a winning position (q, t) such that q ∈ ↓a.
Indeed, let π be an f -guided match. Due to the legitimacy of her moves, the strategy

f is surviving for ∃ so she wins every finite match. Now, assume that π = (a, s)(a1, s1) · · ·
is an infinite f -guided match. By the claim below, there is a winning position (ai, ti)

such that ai ∈ ↓a. Now, observe that π′ = (ai, ti)(ai+1, ti+1) · · · is an infinite f∃-guided

match in the game G@(ai, ti) by definition of the strategy f. As f∃ is a winning strategy,

it follows that π′ is a winning match for ∃. Hence also π is a winning match for ∃ because

the parity of the two matches disagree for only a finite initial segment of π. So, indeed,

the following claim concludes the proof.

Claim. For each n < ω and each partial f -guided match π = (a1, t1) · · · (an, tn) in the

game G@(a, s), either

(I) ai = a and ti = si for each i ≤ n or

(II) there exists j ≤ n such that (aj , tj) ∈Win∃(G), aj ∈ ↓a, and tj 6= si for each i ≤ j.

Proof. We proceed by induction on n ∈ ω. If n = 1, then π is the initialized match

consisting of the single position (a, s). Hence (II) is satisfied if n = 1. Now, induc-

tively assume that for each 1 ≤ n ≤ m we have that every partial f -guided match

(a1, t1) · · · (an, tn) satisfies either (I) or (II). Let π = (a1, t1) · · · (am+1, tm+1) be a partial
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f -guided match in G@(a, s); we aim to show that (I) or (II) obtains. Define πI to be

the partial f -guided match (a1, t1) · · · (am, tm) consisting of the first m rounds of π. By

the inductive hypothesis, the match πI satisfies either (I) or (II); we distinguish cases

on this basis.

If (II) is satisfied by πI , then it immediately follows that (II) is satisfied by π as well

because πI is an initial segment of π. Otherwise, the match πI satisfies (I). We further

distinguish two cases on the basis of whether m = k or m < k.

• If m = k, then (am, tm) = (a, s∗) by assumption. At position (a, s∗), the strategy

f suggests the valuation Va,s∗ defined in A(b). By definition, we have V (b) 6= ∅
only if b ∈ ↓a. Moreover, for each b ∈ ↓a we have Va,s∗(b) ⊆ JA.bKT. In particular,

the position (am+1, tm+1) is a winning position and am+1 ∈ ↓a. Finally note that

tm+1 6= si for any i ≤ k because tm+1 > sk. Hence (II) is satisfied.

• If m < k, then the valuation suggested by f at (am, tm) = (a, sm) was defined

in such a manner that if t ∈ Va,sm(b), then either b = a and t = sm+1 or b ∈ ↓a
and t ∈ JA.bKT. Note that this simply states that the position (am+1, tm+1) either

satisfies (I) or (II), as desired.

Hence, by induction, every f -guided partial match satisfies either (I) or (II), as claimed.

As a corollary, we obtain the analogue of this proposition for ν-states. The key

observation is that each ν-state a in an automaton A ∈ Aut lsa(FOE1) is a µ-state in the

complement Aδ.

Corollary 4.1.10. For each automaton A ∈ Aut lsa(FOE1) and each a ∈ A, the following

are equivalent for every P-tree T and every node s in T :

(a, s) ∈Win∃(A(A,T)) if and only if T[b 7→ JA.bKT|b ∈ ↓a] |= χA,a(s).

Proof. As mentioned, for each automaton A ∈ Aut lsa(FOE1) and each a ∈ Aν , we have

that a is a µ-state in the complement automaton Aδ by construction. By Proposition

3.3.6, it follows that Aδ ∈ Aut lsa(FOE1) as well. Thus, by Proposition 4.1.9, there is a

formula χAδ,a(x) ∈ FOE(P]↓a) such that the following chain of equivalences holds for

each tree T and each node s in T :

T.s |= A.a⇐⇒ T.s 6|= Aδ.a (Theorem 2.6.13)

⇐⇒ T[b 7→ JAδ.bKT|b ∈ ↓a] 6|= χAδ,a(s) (Proposition 4.1.9)

⇐⇒ T[b 7→ JAδ.bKT|b ∈ ↓a] |= ¬χAδ,a(s). (semantics of FOE)

Hence, for each A ∈ Aut lsa(FOE1) and each a ∈ Aν , there exists a formula χA,a(x) ∈
FOE(P]↓a) satisfying the equivalence in Proposition 4.1.9.
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The following simultaneous substitution of formulas will be utilized in the inductive

step of the proof of Proposition 4.1.1.

Definition 4.1.11. Let P be a set of propositional variables such that {a1, . . . , an} ⊆ P

and let {ψ1, . . . , ψn} ⊆ 2FOE(<,P) be a set of formulas. For each formula ϕ ∈ 2FOE(<

,P), we write ϕ[ψi/ai|i ≤ n] to denote the formula obtained from ϕ by replacing each

occurrence of ai(x) by the formula ψi for each i ≤ n.

Lemma 4.1.12. Let A = {a1, . . . , ak} be a set of monadic predicates and let {ψ1, . . . , ψk} ⊆
2FOE(<,P) be a set of formulas. For every formula ϕ ∈ 2FOE(<,P]A), we have

ϕ[ψi/ai | i ≤ n] ∈ 2FOE(<,P).

Proof. By induction on the complexity of the formula ϕ ∈ 2FOE(P ]A).

We have now gathered all of the ingredients to prove Theorem 4.1.1. Before we do

so, recall that A.b is the automaton (A,Θ,Ω, b) which is identical to A only now the

initial state is b ∈ A.

Proof of Theorem 4.1.1. For each automaton A ∈ Aut lsa(FOE1) on alphabet ℘P, we

provide an equivalent sentence ξA ∈ 2FOE(<,P). To this end, we proceed by induction

on the well-founded relation /A.

If ↓aI = ∅, then A consists of the single state aI . By Corollary 4.1.10, there exists

a formula χA,aI ∈ 2FOE(P ] ↓aI) such that for every tree T and every node s in T we

have

(aI , s) ∈Win∃(A(A,T)) if and only if T[b 7→ JA.bKT | b ∈ ↓a] |= χA,aI (s). (∗)

As ↓aI = ∅, we have that T[b 7→ JA.bKT | b ∈ ↓a] = T. Note that by taking the node s

to be the root sI of T in (∗), we have

T |= A if and only if T |= χA,aI (sI).

We define the sentence ξA := ∃x.root(x)∧χA,aI (x). As ↓aI = ∅, it follows that χA,aI (x) ∈
2FOE(P) hence also ξA ∈ 2FOE(P). That is, ξA has the right shape. Moreover, by

combining the semantics of root(x) with (∗), we have that T |= ξA iff A accepts T, as

required.

Now, inductively assume that for each b ∈ ↓a we are given a sentence ξA.b ∈ 2FOE(P)

which is equivalent to the automaton A.b. Again, let χA,aI (x) ∈ 2FOE(P ] ↓aI) be the

formula guaranteed by Proposition 4.1.9. We define the formula

ξA := ∃x.root(x) ∧ ψA,aI (x)[b 7→ ξA.b|b ∈ ↓a].

As χA,aI (x) contains only monadic predicates from P]↓aI and each of the sentences ξA.b
is A-free, it follows from Lemma 4.1.12 that ξA ∈ 2FOE(P). It follows immediately by

Proposition 4.1.9 that for every tree T we have A accepts T if and only if T |= ξA.
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4.2 From AMSO formulas to linked weak path automata

We will now provide an effective translation from AMSO formulas into parity-linked

weak-path automata.

Proposition 4.2.1. For every formula ϕ of AMSO(P) we can effectively construct an

equivalent automaton Aϕ ∈ Autlwa(FOE1) on alphabet ℘P.

We will prove this proposition by induction on the complexity of formulas. As men-

tioned in the introduction to this chapter, the most challenging part of this induction

lies in the inductive step corresponding to existential quantification. In order to sim-

ulate first-order quantification (i.e. quantification over singletons), we will provide a

construction ∃p.(−) : Aut lwa(FOE1) → Aut lwa(FOE1) such that for every automaton A
on alphabet ℘(P ] {p}) and every P-tree T, the following equivalence holds:

A accepts T iff ∃p.A accepts T[p 7→ {t}] for some t ∈ S.

We first recast this property as the closure under atomic projection of the class of tree

languages recognized by weak-path automata.

Closure of weak-path automata under atomic projection

Definition 4.2.2. Fix a set P of propositional letters. Let T be a tree language of

(P ] {p})-trees. The atomic projection of T over p is the tree language ∃p.T of P-trees

defined as

∃p.T := {T | T[p 7→ {t}] ∈ T for some t ∈ S}.

A class A of automata is closed under atomic projection if for each A ∈ A, there exists

A′ ∈ A such that TMod(A′) = ∃p.A′.

In words, the atomic projection of a tree language T over a propositional variable p is

the tree language containing precisely those trees T which admit some atomic p-variant

T′ ∈ T . We will now proceed to show that the class Aut lwa(FOE1) is closed under atomic

projection. To be precise, we will prove the following proposition.

Proposition 4.2.3. For each automaton A ∈ Aut lwa(FOE1) on alphabet ℘(P ] {p}) we

can effectively obtain an automaton ∃p.A ∈ Aut lwa(FOE1) on alphabet ℘P such that the

following are equivalent for every tree T:

(i) ∃p.A accepts T

(ii) A accepts an atomic p-variant of T.
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In other words, TMod(∃p.A) = ∃p.(TMod(A)).

That is, for each automaton A on alphabet P, we will provide an automaton ∃p.A on

P\{p} for each p ∈ P and, for each tree T, the automaton ∃p.A accepts T iff T admits

an atomic p-variant Tp which is accepted by A. In contrast with our previous work, note

that we now compare automata over different alphabets.

Intuitively, given a P\{p}-tree T, the automaton ∃p.A should behave as follows:

initially, ∃p.A will search for a node tp to colour with p–or, equivalently, a node tp
which it will treat as if it is already labelled with p. As soon as it chooses such a

node, it ‘switches’ into a final mode which corresponds to an acceptance game for the

automaton A and the subtree T.tp. In short, we will want to partition each match π of

the acceptance game A(∃p.A,T) into two parts, corresponding to a ‘search for p’ mode

and an ‘alternating mode’.

Based on ideas introduced by Facchini, Venema, and Zanasi ([37], [15]), a natural

first step towards such a division of ‘modes’ is to divide the carrier of ∃p.A into two

‘sorts’, which we will call macro-states (from ℘A) and states (from A), respectively.

That is, we will take that carrier of ∃p.A to be the set ℘A ]A where A is the carrier of

the automaton A. In order to simulate the intuitive behaviour of the automaton ∃p.A
sketched above, we will craft the transition map of the automaton ∃p.A in such a manner

that the following are satisfied:

• transitions ‘across’ sorts only occur from macro-states to states;

• for each pair of states a, b ∈ A, we have b /A a iff b /∃p.A a.

That is, the graph structure of A is preserved at the level of states in the automaton ∃p.A.
Combining these properties with an appropriate priority map will prove to be enough

to capture that the alternating mode occurs cofinally in each match of the acceptance

game.

However, we will require something slightly more about the ‘search mode’: the accep-

tance game A(∃p.A,T) admits numerous concurrent matches depending on the choices ∀
makes. In particular, distinct matches may suggest distinct atomic p-variants of a given

tree T, and these choices may be crucial. The point is this: we require a uniform choice

of which node to colour p across all matches. Fortunately, this is possible through the

notion of non-determinism.

Muller and Schupp [26] introduced an interesting approach to proving that a class

of automata is closed under such-and-such projection, called a simulation theorem. The

key observation is that, for special classes of automata, each automaton A can be effec-

tively transformed into an equivalent non-deterministic automaton ∃p.A. Intuitively, an

automaton A is non-deterministic if every winning strategy for ∃ in the game A(A,T)

may be reduced to a winning strategy which is functional in A.
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Definition 4.2.4. Given a parity automaton A and a transition system S, a strategy

f for ∃ in the initialized acceptance game A(A, S)@(a, t) is functional in B ⊆ A if for

every s ∈ S there is at most one b ∈ B such that (b, s) is a reachable position in an

f -guided match starting at (a, t).

In other words, an automaton A non-deterministic if, whenever ∀ has the choice

between playing the positions (a, s) and (b, s), we have that a=b. Zanasi ([37], Remark

3.5) observed that this construction does not preserve the weakness condition. The

good news is this: we only need the automaton ∃p.A to be non-deterministic while it

is in ‘search mode’ (i.e. ℘A). Keeping functionality in mind, we will now introduce a

transformation on one-step formulas that will be needed in order to define the transition

map. In essence, these formulas will ‘control’ the transitions between macro-states.

Additive liftings

In order to define the non-deterministic part of the automaton ∃p.A, we will now define

a translation (̂−) : MFOE+(A) → MFOE+(℘A ∪ A) which lifts each formula α ∈
MFOE+(A) to a formula α̂ ∈ MFOE+(℘A ∪A). Before we do so, we will briefly discuss

some properties that this translation ought to exhibit.

First, as we want the automaton ∃p.A to behave non-deterministically in ℘A, we will

want the lifting of a formula to be defined in such a manner that whenever the lifting

can be made true in some one-step model, it can be made true by assigning either none

or a unique macro-state to every node from the domain. We express this property of

formulas through the notion of separability.

Definition 4.2.5. Let A be a set with B ⊆ A. A valuation V : A→ ℘D is B-separating

if |mV (d)∩B| ≤ 1 for every d ∈ D. We say that a formula α ∈ FOE1(A) is B-separating

if α is monotone in B and for each one-step model (D,V ) such that (D,V ) |= α, there

exists a B-separating valuation V ′ : A→ ℘D such that V ′ 6B V and (D,V ′) |= α.

Now, we additionally want the automaton ∃p.A to stay in its non-deterministic mode

for only a finite initial part of each run. As such, we will assign each macro-state an odd

parity. In order to make sure that ∃p.A lands in the right class of automata, this means

that the formula Θ∃(B, c) should be completely additive in ℘A. Recall that, informally,

α is completely additive in a set A′ whenever any valuation making α true in some

domain can be shrunk to valuation assigning either none or a unique state some colour

from A′. With all of this being said, we now define the notion of the additive lifting of a

one-step formula, drawing inspiration from those developed by Carreiro et al. ([6], [7],

[8]).

Definition 4.2.6. For each formula α = ∇+
FOE(T,Π) ∈ FOE1(A) in positive basic form

where T = {T1, . . . , Tk}, the additive lifting of α is the formula α̂ ∈ FOE1(℘A ] A)
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defined as follows:

∃x1 . . . xk(diff(x) ∧ π(x,Π) ∧
∨
i≤k

(Ti(xi) ∧
∧
j 6=i

τ+
Tj

(xj)))

∨ ∃xxk+1(diff(x, xk+1) ∧ π(x, xk+1,Π) ∧
∧
i≤k

τ+
Ti

(xi) ∧
∨
B∈Π

B(xk+1)).

The following proposition states that additive liftings have the essence explained

above.

Proposition 4.2.7. Let α ∈ FOE1(A) be a sentence in positive basic form. For every

one-step model D = (D,V :℘A ] A → ℘D) such that D |= α̂, there exists a valuation

V s : ℘A ]A→ ℘D such that V s 6℘A V and such that

(i) (D,V s) |= α̂

(ii) there exists B ∈ ℘A such that V ′(B) is a singleton and V ′(B′) = ∅ for each

B′ ∈ ℘A such that B 6= B′.

In particular, α̂ is completely additive in ℘A and ℘A-separating.

Proof. Suppose that D |= α̂. We distinguish cases on the basis of which disjunct of α̂ is

true in D. We shall restrict our attention to showing that if

D |= ∃x1 . . . xk(diff(x) ∧ π(x,Π) ∧
∨
i≤k

(Ti(xi) ∧
∧
j 6=i

τ+
Tj

(xj))), (∗)

then there is a valuation V s 6℘A V with the properties (i) and (ii); the remaining case

in which the other disjunct of α̂ is true in D is a straightforward adaptation of the

following reasoning. Unwinding the meaning of (∗), it follows that there exist distinct

nodes d1, . . . , dk ∈ D such that, for some i ≤ k, the following properties are satisfied:

(1) Ti ∈ mV (di) for some i ≤ k;

(2) for every a ∈ Tj we have that a ∈ mV (dj) for each j ≤ k such that j 6= i;

(3) D |= π(d,Π).

We define the valuation V s : ℘A∪A→ ℘(D) in terms of its associated marking mV s

by setting

mV s(d) :=

{
mV (d) ∩A if d 6= di

{Ti} if d = di.

It is straightforward to check that the ‘shrinking’ valuation V s preserves (1), (2), and

(3) hence also (D,V s) |= α̂. It remains to be seen that (ii) is satisfied by V s. Simply note
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that if d 6= di, then mV s(d) ⊆ A whence, for every B ∈ ℘A, we have that d 6∈ V s(B).

Also note that di ∈ V s(B) iff B = Ti. Hence V s(Ti) is a singleton and V s(B) = ∅ for

each B ∈ ℘A such that B 6= Ti. In short, V s satisfies (i) and (ii). Now, in order to see

that α̂ is completely additive in ℘A and ℘A-separating, simply note that the valuation

V s is such that |V s(B)| ≤ 1 for every B ∈ ℘A.

We will now prove the following proposition stating that we may transform each

valuation making α true into a valuation making its additive lifting α̂ true in the same

set D.

Proposition 4.2.8. Let α ∈ FOE1(A) be in positive basic form and let (D,V : A→ ℘D)

be a one-step model such that (D,V ) |= α. Then, for each node d ∈ D, there exists a

valuation V ⇑d : (℘A ]A)→ ℘D such that

(i) (D,V ⇑d ) |= α̂;

(ii) for some set Bd ⊆ mV (d), we have V ⇑d (Bd) = {d} and for each B ∈ ℘A such that

B 6= Bd, we have V ⇑d (B) = ∅;

(iii) V ⇑d (a) ⊆ V (a) for each a ∈ A.

Proof. Suppose that α is a sentence in positive basic form and let (D,V : A→ ℘D) be

a one-step model such that (D,V ) |= α. Then there exist distinct nodes d1, . . . , dk ∈ D
such that

(1) for each i ≤ k, we have that Ti ⊆ mV (di) and

(2) (D,V ) |= π(d,Π).

For each d ∈ D such that d 6= di, let Td ∈ Π be such that Td ⊆ mV (d), and for each

di define Tdi = Ti. As a first step, we define a ‘shrinking’ U : A → ℘D of the valuation

V in terms of its associated marking: for each d ∈ D, we define mU (d) = mV (d) ∩ Td.
Note that, in fact, mU (d) = Td for each d ∈ D. Clearly, the one-step model (D,U) also

satisfies both (1) and (2) hence also (D,U) |= α. Now, let d ∈ D be fixed but arbitrary.

We define V ⇑d : A∃ → ℘D in terms of its associated marking as follows:

m
V ⇑d

(d) :=

{
mU (d′) if d′ 6= d

{mU (d′)} if d′ = d.

Items (ii) and (iii) both follow directly from the definition of V ⇑d . We proceed to

show that D⇑d := (D,V ⇑d ) |= α̂. In this direction, we distinguish cases on the basis of

whether or not d = di for some i ≤ k.
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If d = di for some i ≤ k, then Ti = mV (d) by (1). Hence Ti ∈ mV̂d
(d) = {mU (d)} =

{Ti}. Furthermore, for each j ≤ k such that i 6= j we have Tj = mU (dj) = m
V̂

(dj) by

definition of the valuation V̂d. Combining these observations, we have

D⇑d |= Ti(di) ∧
∧
i 6=j

τ+
Tj

(dj).

Similarly, it follows from (2) and the definition of V̂d that D⇑d |= π(d, z,Π). Hence D⇑d |= ϕ̂,

as required.

Now suppose that d ∈ D\{d1, . . . , dk}. Then D⇑d |= diff(d, d). By definition of the

valuation U, we have Td = mU (d) whence Td ∈ mV̂d
(d) by the definition of V̂d. Further-

more, for each i ≤ k, we have that Ti ⊆ mU (di) = m
V̂d

(di) by (1) and the definition of

U . Hence

D⇑d |=
∨
B∈Π

B(d) ∧
∧
i≤k

τ+
Ti

(di).

Just as before, (2) implies D⇑d |= π(d, d,Π). In short, D⇑d |= ϕ̂, as desired.

The atomic projection of an MSO-automaton

For each alternating parity automaton A and each set B ⊆ A of states, we define

Θ(B, c) :=
∧
a∈B

Θ(a, c).

We now have all of the information that will be needed to define the construction ∃p.(−).

Definition 4.2.9. Let A = 〈A,Θ,Ω, aI〉 be an MSO-automaton. Fix a colour c ∈ C

and a set B ⊆ A. By Theorem 2.5.14 there exists a sentence ψB,c ∈ FOE1(A) of the

form
∨
αi where each disjunct αi is of the form ∇+

FOE(T,Π) for some T ∈ ℘(A)k and

some Π ⊆ T, and such that ψB,c ≡ Θ(B, c). We define Θ̂(B, c) :=
∨
α̂i, where α̂i is the

additive lifting of αi as defined in Definition 4.2.6.

Note that Θ̂(B, c) ∈ FOE1(℘A ∪ A). We now define the atomic projection of an

MSO-automaton.

Definition 4.2.10. Let A = 〈A,Θ,Ω, aI〉 be an MSO-automaton on P ] {p}. The

atomic projection of A over p is the MSO-automaton ∃p.A := 〈A∃,Θ∃,Ω∃, a∃I 〉 on P

whose components are given as follows:

A∃ := ℘A ]A
a∃I := {aI}

Ω∃(a) := Ω(a)

Ω∃(B) := 1

Θ∃(a, c) := Θ(a, c)

Θ∃(B, c) := Θ̂(B, c) ∨Θ(B, c ∪ {p})
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where a ∈ A and B ∈ ℘A.

Proposition 4.2.11. If A ∈ Aut lwa(FOE1), then ∃p.A ∈ Aut lwa(FOE1).

Proof. Suppose that A ∈ Aut lwa(FOE1) and let ∃p.A be its atomic projection over the

propositional variable p. Our goal is to show that ∃p.A satisfies weakness and the parity-

linked path condition. We begin by showing that ∃p.(A) is weak.

To this end, first observe, for each state a ∈ A and each macro-state B ∈ ℘A, the

relation B/∃p.Aa does not hold because Θ(a, c) ∈ FOE1(A) for each colour c. This means

that for each cluster C of ∃p.A, either C ⊆ A or C ⊆ ℘A. Moreover, every cluster C ⊆ A
is also a cluster of A because Θ∃(a, c) = Θ(a, c) for every a ∈ A and every colour c.

Hence Ω∃(a) = Ω∃(b) for every cluster C ⊆ A of ∃p.A and each pair of states a, b ∈ C
because Ω∃(a) = Ω(a) for each a ∈ A and A is weak. For each cluster C ⊆ ℘A, the

weakness condition is trivially satisfied because Ω∃(B) = 1 for every B ∈ ℘A. In short,

∃p.A is weak.

We now show that ∃p.A satisfies the path condition. It is entirely straightforward to

see that for each state a ∈ A, the formula Θ∃(a, c) = Θ(a, c) is completely additive in a

whenever a ∈ (A∃)µ and completely multiplicative in a whenever a ∈ (A∃)ν because A
is a path automaton and Ω∃(a) = Ω(a). As B ∈ (A∃)µ for every macro-state B, it now

suffices to show that Ω∃(B) is completely additive in B for each macro-state B. Simply

note that Θ(B, c) is completely additive in B because it is ℘A-free by construction and

Θ̂(B, c) is completely additive in B by Proposition 4.2.12. Hence Θ∃(B, c) is completely

additive in B by the syntactic characterization given in Proposition 3.2.3, as desired.

Functionality

We will now show that the automaton A is in fact non-deterministic in ℘A. That is, we

will show that every winning strategy for ∃ in the acceptance game A(∃p.A,T) can be

transformed into a winning strategy which is functional in ℘A. Actually, we will prove

something a bit stronger than functionality in ℘A. In particular, we show that ∃ has a

winning strategy which “traces a finite ℘A-path” through T, as in the proposition below.

Note that this proposition states that the automaton ∃p.A has the essence described in

the introduction to this section.

Lemma 4.2.12. Let A ∈ Aut lwa(FOE1), let T be a tree, and let G = A(∃p.A,T) where

∃p.A is the atomic projection of A. For every B ∈ ℘A and every node s ∈ S such that

(B, s) ∈ Win∃(G), there is a winning strategy fπ for ∃ in the game G@(B, s) such that

there exists a unique finite path π ∈ Pathss(T) with the following properties.

(i) For each winning position (a, t) ∈ A × S, the valuation Va,t suggested by fπ from

position (a, t) is such that Va,t(Q) = ∅ for each Q ∈ ℘A.
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(ii) For each i < length(π) and each B ∈ ℘A such that (B, si) ∈Win∃(G), the valuation

VB,si suggested by fπ at the position (B, si) ∈ ℘A× S is such that VB,si(B
+) is a

singleton for some B+ ∈ ℘A and VB,si(Q) = ∅ for every Q∈℘A such that Q 6= B+.

If s=last(π), and (B, s) ∈Win∃(G), then VB,si(Q) = ∅ for every Q ∈ ℘A.

Proof. Suppose that (B, s) ∈ ℘A × S is a winning position and let f be a positional

winning strategy for ∃ in the game G. Without loss of generality, we assume that f is

in fact a minimal strategy. Our goal is to provide a winning strategy fπ for ∃ in the

game G@(B, s) which is functional in ℘A. As usual, we write Vq,t to denote the valuation

suggested by f at (q, t) ∈ A∃ × S. We define the strategy fπ according to the following

case distinction on basic positions (q, t) ∈ A∃ × S :

(1) If q ∈ A and (q, t) ∈ Win∃(G), we let fπ suggest the valuation V ′q,t : A∃ → ℘R(t)

defined as Vq,t[B 7→ ∅|B ∈ ℘A] at position (q, t).

(2) If q ∈ ℘A and (q, t) ∈Win∃(G), the valuation Vq,t is a legitimate move for ∃ hence

also (R(t), Vq,t) |= Θ∃(q, κ(t)). Recall that the formula Θ∃(q, κ(t)) is defined to be

the disjunction Θ̂(q, κ(t)) ∨ Θ(q, κ(t) ∪ {p}). We distinguish two additional cases

on the basis of whether or not (R(t), Vq,t) |= Θ(q, κ(t) ∪ {p}) :

(a) If (R(t), Vq,t) |= Θ(q, κ(t) ∪ {p}), we let fπ suggest the valuation V ′q,t defined

in (1).

(b) If (R(t), Vq,t) 6|= Θ(q, κ(t)∪{p}), then (R(t), Vq,t) |= Θ̂(q, c) since (R(t), Vq,t) |=
Θ∃(q, κ(t)). Thus (R(t), VB,t) |= ϕ̂ for some disjunct ϕ̂ of Θ̂(q, κ(t)). We let

fπ suggest the ℘A-separating valuation V s
q,t guaranteed by Proposition 4.2.7.

(3) In all other cases, ∃ plays randomly.

Note that the valuations suggested by fπ in clause (1) and clause (2)(a) are legiti-

mate because the formulas described in those clauses are ℘A-free; the valuation V s
q,t is

legitimate at each position (q, t) as described in (2)(b) by Proposition 4.2.7(i). To see

that fπ is in fact a winning strategy for ∃, simply note that fπ(q, t) ⊆ f(q, t) for each

winning position (q, t) ∈ A∃×S. In particular, this implies that every fπ-guided match in

the game G@(B, s) is also a f -guided match hence also each fπ-guided match is winning

for ∃ because (B, s) is a winning position and f is a winning strategy.

We now show that fπ has the properties (i) and (ii). As (i) is built directly into

(1) in the definition of fπ, we immediately proceed to show that fπ enjoys (ii). To this

observe that at each winning position (Q, t) ∈ ℘A× S, her winning strategy f suggests

only legitimate moves so that either (R(t), VQ,t) |= Θ(Q, κ(t) ∪ {p}) or (R(t), VQ,t) |=
Θ̂(Q, κ(t)). As f is minimal, the former implies that the valuation VQ,t is such that

VQ,t(Q
′) = ∅ for each Q′ ∈ ℘A because Θ(B, κ(t) ∪ {p}) is ℘A-free. If the latter holds,
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note that by Proposition 4.2.7 we have that VQ,t(Q
+) is a singleton for some Q+ ∈ ℘A

and VQ,t(Q
′) = ∅ for each Q′ ∈ ℘A such that Q′ 6= Q+. In short, for each winning

position (Q, t) ∈ ℘A × S, there is at most one pair (Q+, t+) ∈ ℘A × R(t) such that

(Q+, t+) ∈ VQ,t.
From this, we may inductively define a sequence ρ := (B0, s0), (B1, s1), . . . of basic

positions by putting (B0, s0) = (B, s), (Bi, si) and (Bi+1, si+1) := (B+
i , s

+
i ) if (B+

i , s
+
i ) ∈

VBi,si for some B+
i ∈ ℘A and undefined otherwise. It follows immediately from this

definition that if (Bi+1, si+1) is defined, then si+1 ∈ VBi,si(Bi+1).

Consequently, ρ must be finite because otherwise ρ is an infinite fπ-guided match of

in the game G@(B, s) in which every basic position has odd parity; a contradiction with

our assumption that (B, s) ∈ Win∃(G). As ρ is finite, it follows by construction that

last(ρ) is a basic position satisfying (1). That is, Vlast(ρ)(Q) = ∅ for every Q ∈ ℘A.
It is now straightforward to see that the sequence π := s0, s1, . . . is a finite sequence

satisfying (ii). To see that π is unique, observe that (2) expresses that for each i ∈ ω
the position (Bi+1, si+1) is uniquely determined by (Bi, si) hence also ρ is unique given

(B0, s0).

Corollary 4.2.13. Let (B, s) ∈ Win∃(A(∃p.A,T)) and let fπ be the strategy given in

Lemma 4.2.12. Then for every basic position (Q, t) ∈ ℘A×S is fπ-reachable from (B, s)

iff (Q, t) = (Bi, si) for some i. In particular, fπ is functional in ℘A.

Proof. Follows immediately from the uniqueness of the sequence ρ.

Proof of the main result

We are now well on our way to proving Proposition 4.2.3. Before we prove the proposi-

tion, we will first prove a sequence of lemmas stating how to transform legitimate moves

for the atomic projection construction into legitimate moves for the original automaton

and vice versa.

Lemma 4.2.14. Let A ∈ Aut lwa(FOE1) be on alphabet ℘(P ] {p}), let ∃p.A be its

atomic projection, let B ∈ ℘A be a macro-state, and let c ∈ ℘P be a colour. Assume that

(D,VB,c) |= Θ̂(B, c) for some set D and some valuation VB,c : A∃ → ℘D. Then there is

a valuation V ⇓B,c : A→ ℘D such that

(i) (D,V ⇓B,c) |= Θ(b, c) for each b ∈ B

(ii) for each node d ∈ D and each state a ∈ A, if d ∈ V ⇓B,c(a) then either d ∈ VB,c(a)

or d ∈ VB,c(Q) for some Q ∈ ℘A such that a ∈ Q.
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Proof. Suppose that (D,VB,c) |= Θ̂(B, c) for some valuation VB,c : ℘A ] A → ℘D. We

define V ⇓B,c : A→ ℘D by setting

V ⇓B,c(a) := VB,c(a) ∪
⋃
a∈Q

VB,c(Q)

for each a ∈ A. Note that item (ii) follows immediately from the definition of V ⇓B,c; we

proceed to show that (i) obtains as well. Our goal is to show that (D,V ∗) |= Θ(b, c) for

every b ∈ B. To this end, recall that the formula Θ̂(B, c) is defined to be the additive

lifting of the formula ψB,c and ψB,c is a disjunction
∨
i α̂i of sentences in positive basic

form which is equivalent to
∧
b∈B Θ(b, c). Due to the equivalence of

∧
b∈B Θ(b, c) and∨

i αi, it suffices to show that (D,V ∗) |= αi for some disjunct αi of ψB,c. Let α̂i be a

disjunct of Θ̂(B, c) such that (D,VB,c) |= ϕ̂. We proceed to show that (D,V ⇓B,c) |= α. To

this end, we distinguish cases on the basis of whether or not

(D,VB,c) |= ∃x1 . . . xk(diff(x) ∧ π(x,Π) ∧
∨
i≤k

(Ti(xi) ∧
∧
j 6=i

τ+
Tj

(xj))) (∗)

holds. If (∗) holds, there exist distinct nodes d1, . . . , dk ∈ D with the following properties.

(1) For some i ≤ k we have di ∈ VB,c(Ti).

(2) For each j ≤ k such that j 6= i, we have dj ∈ VB,c(a) for each a ∈ Tj .

(3) (D,VB,c) |= π(d,Π).

It follows directly from the observation that, for each a ∈ A, VB,c(a) ⊆ V ⇓B,c(a) that

(2) and (3) are preserved by replacing each instance of “VB,c” by “V ⇓B,c”. In order to

complete the proof, it suffices to show that for di ∈ V ⇓B,c(a) for each a ∈ Ti. This is also

immediate by the definition of V ⇓B,c : for each a ∈ Ti, observe that di ∈ VB,c(Ti) ⊆ V ⇓B,c(a).

Hence (D,V ⇓B,c) |= ϕ if (∗) holds. Now suppose that (∗) is not satisfied. Then, as

(D,VB,c) |= ϕ̂,

(D,VB,c) |= ∃x̄xk+1(diff(x̄, xk+1) ∧ π(x̄, xk+1,Π) ∧
∧
i≤k

τ+
Ti

(xi) ∧
∨
B∈Π

B(xk+1)) (∗∗)

Unwinding the meaning of (∗∗), we have that there exists distinct nodes d1, . . . , dk+1 ∈ D
with the following properties.

(1’) For each i ≤ k, we have that di ∈ VB,c(a) for each a ∈ Ti.

(2’) The node dk+1 is such that dk+1 ∈ VB,c(B∗) for some set B∗ ∈ Π.

(3’) (D,VB,c) |= π(d,Π).
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Just as before, it follows immediately from the definition of V ⇓B,c that both (2′)

and (3′) are preserved by V ⇓B,c. This time, we want to show that dk+1 ∈ V ⇓B,c(a) for

each a ∈ B∗. This follows from the same reasoning as in the previous case. That is,

(D,V ⇓B,c) |= ϕ, as desired.

Lemma 4.2.15. Let A ∈ Aut lwa(FOE1) be on alphabet ℘P and let B ⊆ A be a set of

states. Fix a colour c ∈ ℘P and assume that we are given a family {Vb,c : A→ ℘D | b ∈
B} of valuations such that (D,Vb,c) |= Θ(b, c) for each b ∈ B. Then for each node s ∈ D
there is a valuation V s

B,c : A∃ → ℘D such that

(i) (D,VB,c) |= Θ̂(B, c)

(ii) if s ∈ V s
B,c(q), then q ∈ ℘A;

(iii) for each d ∈ D, if d ∈ V s
B,c(a) for some a ∈ A, then d ∈ Vb,c(a) for some b ∈ B

(iv) for each d ∈ D, if d ∈ V s
B,c(Q) for some Q ∈ ℘A, then for every a ∈ Q there exists

b ∈ B such that d ∈ Vb,c(a).

Proof. We begin by defining a valuation U : A → ℘D which collects the information

contained in the family {Vb,c| b ∈ B} of valuations into a single map defined by setting

U(a) =
⋃
b∈B

Vb,c(a).

for each a ∈ A. Our goal is to define, for each s ∈ D, a valuation V s
B,c : A∃ → ℘D such

that (D,V s
B,c) |= Θ̂(B, c). To this end, recall that the formula ψB,c is defined to be a

disjunction
∨
αi of sentences in positive basic form which is equivalent to

∧
b∈B Θ(b, c)

and Θ̂(B, c) is the disjunction
∨
i ϕ̂i of their additive liftings. Thus, in order to satisfy

Θ̂(B, c), it suffices to satisfy one of its disjuncts.

Now, as (D,Vb,c) |= Θ(b, c) for each b ∈ B and Vb,c ⊆ U for each b ∈ B, it follows

that (D,U) |=
∧
b∈B Θ(b, c) by monotonicity of the formulas Θ(b, c). Hence also (D,U) |=

ψB,c. Let α be a disjunct of ψB,c such that (D,U) |= α. We will tailor the valuation VB,c
to make the additive lifting α̂ true in the set D. We define V d

B,c := U⇑d where U⇑d is the

valuation given by Proposition 4.2.8 for the valuation U and node d.

Indeed, note that (i) and (ii) follow directly from Proposition 4.2.8(i) and (ii), re-

spectively. To see that (iii) holds, simply note that if d ∈ U⇑s (a) for some a ∈ A, then

d ∈ U(a) by Proposition 4.2.8(ii). Hence, by definition of U, we have that d ∈ Vb,c for

some b ∈ B. Finally, to see that (iv) holds, assume d ∈ D is such that d ∈ U⇑s (Q) for

some Q ∈ ℘A. This can be so only if d = s by Proposition 4.2.8(ii). In fact, we also

have that Q ⊆ mU (d) by the same proposition. In other words, we have that d ∈ U(a)

for each a ∈ Q. By definition of U, it follows immediately that for each a ∈ Q we have

d ∈ Vb,c(a) for some b ∈ B, as desired.
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We have now gathered all of the ingredients that we will need in order to prove

Proposition 4.2.3.

Proof of Proposition 4.2.3. Our goal is to show that for each automaton A ∈ Aut lwa(FOE1),

the following are equivalent for every tree T :

(i) T |= ∃p.A

(ii) T[p 7→ {t}] |= A for some t ∈ S.

We shall begin by proving the implication from (i) to (ii): let A ∈ Aut lwa(FOE1) be an

automaton on alphabet ℘(P] {p}) and let T be a P-tree such that T |= ∃p.A. We begin

by defining an atomic p-variant Tp of T.

To this end, let f∃ be a positional winning strategy for ∃ in the game G∃ :=

A(∃p.A,T). As (a∃I , sI) ∈ Win∃(G∃), we may transform f∃ into a positional winning

strategy fρ for ∃ as in Lemma 4.2.12; for the position (a∃I , sI), we have that there is

a unique finite path ρ = (sI=s0, . . . , sk=s
∗) satisfying the properties laid out in that

lemma. With this in mind, we define

Tp := T[p 7→ {s∗}]

and we write κ′ : S → ℘(P]{p}) to denote its labelling function. Note that κ′(t) = κ(t)

if t 6= s∗ and κ′(s∗) = κ(s∗) ] {p}. Clearly Tp is an atomic p-variant of T. We will now

show that A accepts Tp. First, recall that by Corollary 4.2.13, for each node si on the

path ρ, there is a unique macro-state Bi such that (Bi, si) is fρ-reachable. Moreover, for

every node t such that t 6= si for every i, there is no such macro-state.

We define a strategy f for ∃ in the game G according to the following case distinction

on basic positions (a, s) ∈ A× S.

(1) If (a, s) ∈Win∃(G∃), then we make a further case distinction:

(a) if s such that s 6= si for every i ≤ k, then we let f suggest the same valuation

Va,s as her winning strategy fρ.

(b) if s = sk, let VQs,s be the valuation suggested at the unique position (Qs, s) ∈
℘A × S (guaranteed by Corollary 4.2.13) which is fρ-reachable from (a∃I , sI) in

the game G∃. We let f suggest the valuation VQs,s at position (a, s).

(c) if s = si for some i < k, let VBi,si be the valuation suggested by fρ at position

(Bi, si). We let f suggest the valuation V ⇓Bi,si at (a, s).

(2) At all other positions, ∃ plays randomly.

We will show that each of the moves suggested by f are legitimate in the game

G@(aI , sI) in stages, while playing an f -guided match π in the game G@(aI , sI). Along



CHAPTER 4. AUTOMATA AND FIRST-ORDER LOGIC 60

with the match π, we will maintain an fρ-guided shadow match π∃, carrying the following

inductive hypothesis from one round to the next.

(†) Where the current position of the match π is (a, s) ∈ A × S, one of the following

obtains:

(†.1) if s = si for some i ≤ k, then the current position in the match π∃ of the game G∃
has the shape (B, s) for some B ∈ ℘A such that a ∈ B.

(†.2) if s 6= si for every i ≤ k, then the current position in the match π∃ is the same

position (a, s) as the current position in the match π.

The matches π and π∃ initialize in position (aI , sI) and (a∃I , sI), respectively. As

a∃I = {aI}, we have that aI ∈ a∃I . Furthermore, the node sI is on the path ρ. Hence (†.1)

is maintained in the initial round. Now, inductively assume that we have maintained the

relation (†) between the partial fρ-guided matches π and π∃ in the games G@(aI , sI) and

G∃@(a∃I , sI), respectively. In order to show that we can carry (†) into the next round,

we make a case distinction on the basis of whether (†.1) or (†.2) currently holds.

If (†.2) holds, then the current position in both π and π∃ is the same position (a, s) ∈
A× S for some s such that s 6= si for every i ≤ k. Observe that this implies s′ is not on

the path π for every s′ ∈ R(s) as well. In other words, we aim to show that (†.2) can

be carried into the next round. This follows immediately from Proposition 4.2.12(i): we

have that Va,s(Q) = ∅ for every Q ∈ ℘A. Hence, if ∀ plays a position (q, t) ∈ Va,s, then

q ∈ A and this move can be matched in the shadow match π∃ because the strategy f

agrees with fρ on positions of the shape (a, s).

Otherwise, (†.1) is currently satisfied and the current position of the matches π and

π∃ are of the form (a, si) and (Q, si) for some Q ∈ ℘A such that a ∈ Q and some i ≤ k,

respectively. As fρ is winning for ∃ and (Q, si) is fρ-reachable, it follows that her strategy

suggests a legitimate move VQ,s from this position. That is, (R(si), VQ,s) |= Θ∃(Q, κ(si)).

We distinguish cases on the basis of whether i = k or i < k.

(i) If i < k, then p 6∈ κ′(s) so that κ(s) = κ′(s).Moreover, it follows from Lemma 4.2.12

that (R(t), VQ,t) |= Θ̂(Q, κ(t)). Then, by Lemma 4.2.14, the valuation V ⇓Q,t : A →
℘R(t) is such that (R(t), V ⇓Q,t) |= Θ(a, κ(t)) since a ∈ Q. Hence V ⇓Q,t is a legitimate

move for ∃ at position (a, t); we let g suggest V ⇓Q,t at (a, t). This valuation has the

property (Lemma 4.2.14) that for any d ∈ R(t) we have the following for every

b ∈ A: d ∈ V ⇓Q,t(a) if and only if (a) d ∈ VQ,t(a) or (b) d ∈ VQ,t(Q
′) for some

Q′ ∈ ℘A such that a ∈ Q′. We shall now show that (†) can be carried into the next

round. To this end, assume that ∀ plays the position (a′, s′) in the next round.

There are two possibilities: either s′ = si+1 or s′ is not on the path ρ. In either

case, it is straightforward to show that any move made by ∀ in the match π can
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be mirrored in the match π∃ using Proposition 4.2.12(ii).

(ii) If i = k, then VQ,t is such that VQ,t(Q
′) = ∅ for every Q′ ∈ ℘A by Proposition

4.2.12(ii). This implies that (R(t), VQ,t) |= Θ(Q, κ(t)∪{p}). As a ∈ Q, this implies

that (R(t), VQ,t) |= Θ(a, κ(t)∪{p}); since t = sk, we have κ′(t) = κ(t)∪{p}. Hence

the valuation VQ,t is a legitimate move for ∃ in π. We let g suggest the valuation

VQ,t in the match π as well. It is easy to see that any move made by ∀ in π can be

mirrored by ∃ in the shadow match π∃ in a manner that maintains (†).

With this special relationship between f and fρ now given, we proceed to show that

f is in fact a winning strategy for ∃ in G. To this end, suppose that π is a full f -guided

match of the game G. We have just shown that there exists an fρ-guided (shadow) match

π∃ in the game G∃ satisfying (†). The key observation is that a position of the type ℘A×S
may occur in at most the first k rounds of the shadow match π∃. Indeed, this follows

directly from Corollary ??. Then, in every round k′ such that k ≤ k′, it follows that

the current position in round k′ in the match π is identical to the current position in

round k′ in π∃. As Ω∃(a) = Ω(a) for every state a ∈ A and the match π∃ is guided by

the winning strategy fπ, it follows that π is a winning match for ∃. Hence f is a winning

strategy for ∃ in the game G@(aI , sI), as desired.

We will now show the implication from (ii) to (i). To this end, let Tp := T[p 7→ {t}]
be an atomic p-variant of T such that Tp |= A. Let ρ denote the unique finite path from

the root sI to the node t and, just as before, we denote the labelling functions of the

trees T and Tp by κ and κ′, respectively. Let f be a positional winning strategy for ∃
in the game G = A(A,Tp). We now provide ∃ with a winning strategy f∃ in the game

G∃ := A(∃p.A,T) (initiated at (a∃I , sI)) according to the following case distinction on

basic positions (q, s) ∈ A∃ × S :

(i) If (q, s) = (a, s) ∈ A× S is a winning position for ∃ in G and Tp.s is p-free, we let

f∃ suggest the same valuation Va,s that her winning strategy f suggests at (a, s).

(ii) If (q, s) = (Q, s) ∈ ℘A×S is such that s is on the path ρ and (a, s) ∈Win∃(G) for

every a ∈ Q, we further distinguish the following two cases:

(a) If s < t, then there is a unique node s+ ∈ R(s) such that s+ is on the path ρ.

In this case, we let f∃ suggest the valuation VQ,s given by Proposition 4.2.15

for the node s+ and the set {Va,s|a ∈ Q} containing, for each a ∈ Q, the

valuation Va,s suggested by f at (a, s).

(b) If s = t, we let f∃ suggest the valuation VQ,t :=
⋃
a∈Q Va,s.

(iii) At all other positions, ∃ plays randomly.

On the basis of Proposition 4.2.15 and the assumptions made in our case distinction,

it is straightforward to see that each of the moves suggested by f∃ in (ii) are legitimate.
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We will now show that for every f∃-guided partial match π∃ there is a ‘special’ set B

of f -guided partial matches in G by induction on the number of rounds. The inductive

hypothesis that we wish to carry from round to round is the following statement (†) :

If (q, s) ∈ A∃ × S is the current position in π∃, one of the following obtains:

†1 q = a ∈ A and the current bundle consists of a single f -guided partial match π

whose current position is also (a, s). Moreover, the subtree Tp.s is p-free.

†2 q = Q ∈ ℘A and, for every a ∈ Q, there is an f -guided partial match πa such that

the current position in πa is (a, s). Moreover, we have s ≤ t.

As the matches π∃ and π initialize, respectively, in the positions ({aI}, sI) and

(aI , sI), it follows immediately that (†2) is satisfied in the initial round. Now, inductively

assume that for every f∃-guided partial match with at most n rounds we have maintained

a bundle of f -guided partial (shadow) matches satisfying (†). In order to show that we

can carry (†) into the next round, we distinguish cases on the basis of whether †1 or †2
was met in the current round of π∃.

If the current position in π∃ has the shape (a, s) ∈ A × S, then the current bundle

consists of a unique f -guided match π whose current position is also (a, s) and the subtree

Tp.s is p-free. As f∃ suggests the same valuation at (a, s) as the strategy f, it follows that

any move made by ∀ in the game G∃ can be mirrored in the game G. That is, if the next

position in the match π∃ is the position (a′, s′) ∈ A×S, we take the bundle consisting of

the match π extended by the position (a′, s′) into the next round. Moreover, the subtree

T.s′ is p-free because the subtree T.s is p-free. Hence (†1) is satisfied in this case.

Otherwise, the current position of the match π∃ has the form (Q, s) ∈ ℘A × S for

some s ≤ t and, for each a ∈ Q, the current set B contains an f -guided shadow match

πa such that the current position of πa is (a, s). We distinguish cases on the basis of

whether s < t or s = t holds:

(i) If s = t, then f∃ suggests the valuation VQ,s =
⋃
a∈Q Va,t. Observe that VQ,s(Q

′) = ∅
for each Q′ ∈ ℘A so that each admissible move for ∀ at position VQ,s has the type

A × S. That is, in order to carry (†) into the next round we must satisfy (†1). To

this end, note that if ∀ picks the position (a′, s′) from VQ,s, then s′ ∈ Va,s(a
′) for

some a ∈ Q. In this event, we may take the set {πa · (a′, s′)} where πa · (a′, s′) is the

f -guided match πa extended by the position (a′, s′). Also, as t < s′ it follows that

Tp.s′ is p-free. Hence (†1) is satisfied.

(ii) If s < t, then f∃ suggests the valuation VQ,s given by Proposition 4.2.15. In order to

maintain (†), we distinguish cases based on the type of ∀’s next move.

(a) If ∀ picks (a′, s′) ∈ A × S, then this is legitimate so that s′ ∈ VQ,κ(s)(a). Then,
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by Lemma 4.2.15(ii), we have that s′ ∈ Vq,κ(s) for some q ∈ Q. In this event,

we carry the set {πa · (a′, s′)} where πa · (a′, s′) is the (partial) f -guided match

πa extended by the position (a′, s′). By Lemma 4.2.15(iii), we have that s′ 6= s+

because a 6∈ ℘A and s′ ∈ VQ,s(a). In other words, the node s′ is not contained

in the subtree Tp.t whence Tp.s′ is p-free. In short, (†1) is preserved.

(b) Now suppose that ∀ picks (Q′, s′) ∈ ℘A×S. Then, in order to preserve (†), we will

provide an f -guided match πa′ such that the current position in πa′ is (a′, s′) for

each a′ ∈ Q′. As (Q′, s′) is an admissible move for ∀, we have that s′ ∈ VQ,s(Q′).
As Q′ ∈ ℘A, for each b ∈ Q′ there exists a ∈ Q such that s′ ∈ Va,s(b) by Lemma

4.2.15(iv). That is, for each b ∈ Q, there is a state ab ∈ Q such that (b, s′)

is an admissible move for ∀ in the match πab contained in the current set of

shadow matches. With this on hand, we define the next set of matches to be

{πab · (b, s′) | b ∈ Q′}. Then (†2) is preserved.

Thus for every partial f∃-guided match π∃ there is a set of matches as in (†). We will

now use this to show that f∃ is in fact a winning strategy for ∃ in G∃. To this end, le π∃ be

a full f∃-guided match in the game G∃. As Vκ′(p) is a singleton, it follows that a position

as described in (†1) occurs after finitely many rounds in the match π∃. Furthermore,

every position thereafter also is described in (†1). But this just means that there is an

infinite final segment of π∃ which follows her winning strategy f whence π∃ is winning

for ∃, as desired.

From Formulas to Automata

In this section, we give an effective transformation of formulas from AMSO to automata

from Aut lwa(FOE1).

Proposition 4.2.16. For each formula ϕ of AMSO we can effectively construct an

equivalent automaton Aϕ ∈ Autlw.a.(FOE1).

We will prove Proposition 4.2.16 by induction on ϕ ∈ AMSO. In order to simulate

first-order quantification by means of automata, we will use the atomic projection con-

struction introduced in Definition 4.2.10. The Boolean cases in which ϕ is a disjunction

or a negated formula correspond, respectively, to the closure of the class of tree lan-

guages recognized by automata from Aut lw.a.(FOE1) under union and complementation;

we address these matters now.

Closure under Boolean operations

We will first show that the class of tree languages accepted by automata from Aut lw.a.(FOE1)

is closed under union. Recall that TMod(A) is the tree language of A and it consists of

those trees T such that A accepts T.
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Proposition 4.2.17. For each pair of automata A0,A1 ∈ Aut lw.a.(FOE1), there is an

automaton A ∈ Aut lw.a.(FOE1) such that TMod(A) = TMod(A0) ∪ TMod(A1).

Proof. Let A0 = (A0,Θ0,Ω0, ai,0),A1 = (A1,Θ1,Ω1, ai,1) ∈ Aut lw.a.(FOE1) on the alpha-

bets ℘P0 and ℘P1, respectively. We define A to be the automaton (A,Θ,Ω, ai) where

A = A0 ] A1 ] {ai} and the functions Ω : A → N and Θ : A × ℘(P0 ∪ P1) → FOE1(A)

are defined as follows, for every a ∈ A and every colour c ∈ ℘(P0 ∪ P1) :

Ω(a) :=


1 if a = ai

Ω0(a) if a ∈ A0

Ω1(a) if a ∈ A1

Θ(a, c) :=


Θ0(ai,0, c ∩ P0) ∨Θ1(ai,1, c ∩ P1) if a = ai

Θ0(a, c ∩ P0) if a ∈ A0

Θ1(a, c ∩ P1) if a ∈ A1.

It is straightforward to check that for every tree T we have A accepts T if and

only if A0 accepts T or A1 accepts T. To conclude the proof, we will show that A sits

in the class Aut lw.a.(FOE1). To this end, first note that every cluster C of A is such

that either C = {ai} or C is a cluster of Ai for some j ∈ {0, 1}. On the basis of this

observation, we have that A satisfies the weakness condition because C = {ai} is a

singleton and if C is a cluster of Aj for some j ∈ {0, 1}, then for each pair a, b ∈ C we

have Ω(a) = Ωj(a) = Ωj(b) = Ω(b) because Aj is weak.

It remains to be seen that A is a path automaton. To this end, observe that if C

is a µ-cluster of Aj , then for each a ∈ C and each colour c ∈ ℘(P0 ∪ P1), we have

Θ(a, c) = Θj(a, c ∩ Pj). Hence Θ(a, c) is completely additive in C for every colour c

because Aj is a path automaton; the case of ν-clusters follows similarly. Also, note that

Θ(ai, c) is {ai}-free whence Θ(ai, c) is completely additive in ai. In short, A is a path

automaton, as desired.

We will now show that the class of tree languages recognized by automata from

Aut lw.a.(FOE1) is closed under complementation. To this end, we will show that the

general results of Section 2.6 restrict to the class Aut lw.a.(FOE1).

Proposition 4.2.18. For each automaton A ∈ Aut lw.a.(FOE1), there is an automaton

A ∈ Aut lw.a.(FOE1) such that for each tree T we have A accepts T iff A rejects T.

Proof. By Proposition 2.6.13, it suffices to show that the automaton Aδ is a weak-path

automaton whenever A is.1 To this end, recall that the dualization operator (·)δ (on

formulas) acts as the identity on atomic formulas of the form a(x). Hence, for each a ∈ A
and each ϕ ∈ FOE1(A), we have that a occurs in ϕ if and only if a occurs in ϕδ. In other

words, for each pair of states a, b ∈ A and each colour c ∈ ℘P, we have that b occurs in

Θ(a, c) iff b occurs in Θ(a, c)δ. Thus C is a cluster of A iff C is a cluster of Aδ. But then

it is straightforward to see that Aδ is a weak-path automaton due to the dual nature

1Recall that for each a ∈ A and each colour c ∈ C, we defined Θδ(a, c) = Θ(a, c)δ and Ωδ(a) = Ω(a)+1
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of the notions of complete additivity and complete multiplicativity, together with the

parity ‘shift’ induced by the priority map Ωδ.

Proof of Main Result

Proof of Proposition 4.2.16. The proof is by induction on the structure of ϕ ∈ AMSO.

For the base case, we provide automata corresponding to the atomic formulas ⇓ p, p v q,
and p < q :

• We define A⇓p to be the automaton ({ai, a},Θ,Ω, aI) where Ω(ai) = 0 = Ω(a) and

Θ : {a} × C → FOE1(A) is defined by setting

Θ(ai, c) :=

{
∀x.a(x) if p ∈ c
⊥ if p 6∈ c

Θ(a, c) :=

{
∀x.a(x) if p 6∈ c
⊥ if p ∈ c.

• We define Apvq to be the automaton ({a},Θ,Ω, a) where Ω(a) = 0 and Θ : {a} ×
C → FOE1(A) is defined by setting

Θ(a, c) :=

{
⊥ if p ∈ c and q 6∈ c
∀x.a(x) otherwise.

• We define Ap<q := ({ai, a},Θ,Ω, ai) where Ω(ai) = 0,Ω(a) = 1, and the transition

map Θ : {ai, a} × C → FOE1(A) is defined by setting

Θ(ai, c) :=

{
∀x.ai(x) if p 6∈ c
∀x.(ai(x) ∧ a(x)) if p ∈ c

Θ(a, c) :=

{
∃x.a(x) if q 6∈ c
> if q ∈ c.

If ϕ = ψ0 ∨ ψ1, there exists automata Aψ0 and Aψ1 equivalent to ψ0 and ψ1, re-

spectively. Let Aψ0∨ψ1 be the automaton obtained from Proposition 4.2.17 applied to

the automata Aψ0 and Aψ1 . We have the following chain of equivalences showing that

Aϕ0∨ϕ1 ≡ ϕ0 ∨ ϕ1 (on trees):

Aϕ0∨ϕ1 accepts T⇐⇒ Aϕ0 accepts T or Aψ1 accepts T (Proposition 4.2.17)

⇐⇒ T |= ψ0 or T |= ψ1 (Inductive Hypothesis)

⇐⇒ T |= ψ0 ∨ ψ1. (Semantics of AMSO)

It is straightforward to check that these have the correct shape using the syntactic

characterization given in Theorem 3.2.3 and by noting that transitions only occur from

ai to a in the first and last case (weakness is trivial for the third case). The remaining

Boolean case in which ϕ = ¬ψ follows similarly by combining the induction hypothesis

with Proposition 4.2.18. Finally, if ϕ = ∃p.sing(p) ∧ ψ, there exists an automaton

Aψ ∈ Aut lw.a.(FOE1) which is equivalent to ψ (on trees) by the induction hypothesis.
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By Proposition 4.2.3, there is an automaton ∃p.Aψ such that, for every tree T, ∃p.AΨ

accepts T iff AΨ accepts T[p 7→ {t}] for some node t in T. In short, we have the following

chain of equivalences for each tree T:

T |= ∃p.Aψ ⇐⇒ T[p 7→ {t}] |= AΨ for some node t in T (Proposition 4.2.3)

⇐⇒ T[p 7→ {t}] |= ψ for some node t in T (Induction Hypothesis)

⇐⇒ T |= ∃p.sing(p) ∧ ψ. (Semantics of AMSO)



Chapter 5

Expressive completeness modulo

bisimilarity

In this chapter, we explore the expressiveness of Aut lsa(FOE1) and Autsa(FOE1) modulo

bisimulation. Until now, we have focused on alternating parity automata based on the

one-step language FOE1. However, the class Aut(FO1) is quite interesting in itself:

while the class of MSO-automata is a nice framework for studying monadic second-

order logics, the class Aut(FO1) is rather a framework for analyzing fragments of modal

fixpoint logics. Indeed, Janin and Walukiewicz [19] gave this a precise sense. They

showed the following equivalence:

Aut(FO1) ≡ µML (∗)

where µML denotes the modal µ-calculus, an expressive specification language extending

that of basic modal logic by least (and greatest) fixpoint operators. This equivalence is

effective and holds over arbitrary transition systems. We call automata from Aut(FO1)

modal automata. The equivalence (∗) was a crucial step in Janin and Walukiewicz

celebrated theorem, stating that every bisimulation-invariant formula of monadic second-

order logic is effectively equivalent to a formula of the modal µ-calculus (over arbitrary

transition systems):

µML ≡ MSO/ ↔ .

As a consequence, every modal automaton is bisimulation-invariant. One novelty of

their proof was that it supplied a systematic way of studying bisimulation-invariance

problems at the level of automata. The downside is of course that one must first obtain

automata-theoretic characterizations of logical languages; a non-trivial problems. As

mentioned, we will study the bisimulation-invariant fragment of (linked) antisymmetric

path automata based on FOE1. In particular, we will prove the following theorem.

Theorem 5.0.1. We have the following expressive completeness results: Aut lsa(FO1) ≡
Aut lsa(FOE1)/ ↔

67
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5.1 Linked antisymmetric path automata modulo bisimi-

larity

In this section, we investigate the class Aut lsa(FOE1) modulo bisimilarity. In particular,

we will prove the following equivalence:

Aut lsa(FO1) ≡ Aut lsa(FOE1)/ ↔ . (∗)

Moreover, we show that this equivalence is effective: we give translations in both di-

rections. The inclusion from left to right in (∗) is in fact quite straightforward: by the

Janin-Walukiewicz Theorem, every automaton A ∈ Aut lsa(FO1) is bisimulation-invariant

and Aut lsa(FO1) ⊆ Aut lsa(FOE1). In particular, we may take the translation from left to

right to be the identity map. We just proved the following proposition.

Proposition 5.1.1. There is an effective translation (·)′ : Aut lsa(FO1)→ Aut lsa(FOE1).

The interesting direction of this equivalence lies in showing that every bisimulation-

invariant automaton from Aut lsa(FOE1) is equivalent to an automaton from Aut lsa(FO1).

That is, the inclusion from right to left in (∗). An important step in the proof of Janin

and Walukiewicz [19] is to define a construction (−)H : Aut(FOE1) → Aut(FO1) such

that, for every automaton A, the equivalence

AH accepts S iff A accepts Sω.

holds for every transition system S and its ω-expansion Sω. From this, (∗) follows more

or less immediately due to the fact that every transition system is bisimulation to its

ω-expansion Sω. An interesting observation made by Venema [9] is that the construction

(·)H on automata is completely determined by a translation (·)H : FOE1 → FO1 at the

one-step level.

To be precise, we will need the following analogues of the normal form theorems (cf.

Theorem 2.5.14) for the one-step languages FOE1 and FO1, respectively. Recall that for

a set A of monadic predicates and a subset A′ ⊆ A, we write ADDA′FOE+(A) to denote

the set of monadic first-order formulas that are completely additive in A′.

Proposition 5.1.2. Let A be set of monadic predicates and let A′ ⊆ A. Then, for each

L ∈ {FOE+,FO+}, we have the following: for every formula α ∈ ADDA′L+(A) we can

effectively obtain an equivalent formula αc in the positive basic form
∨
i∇

+
L(T,Π) where

T ∈ (℘A)k for some k ∈ ω,Π ⊆ T, and the following holds for each disjunct: Π is

A′-free and there is at most one element of A′ contained in the concatenation of the lists

T1 · · ·Tk.

Proof. See [[6], Corollary 5.1.48(i), Corollary 5.1.54(i)] for details.
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Observe that whenever L = FO+, we view T as a set rather than as a list. We will

now define the translation (·)H described above.

Definition 5.1.3. Fix a setA of propositional variables. For each sentence∇+
FOE(T,Π) ∈

FOE1(A) in positive basic form we define

(∇+
FOE(T,Π))H := ∇+

FO(T,Π).

We lift this translation to disjunctions of positive basic forms by simply setting

(
∨
i

αi)
H :=

∨
i

αH
i .

By Proposition 2.5.14, we can extend this definition to a translation (−)H : FOE1(A)→
FO1(A). We call ϕH the associate of ϕ.

We now have all of the ingredients that are needed in order to define the construction

(−)H on MSO-automata.

Definition 5.1.4. Let A be an MSO-automaton. By Proposition 5.1.2, we may obtain

a formula ψa,c ≡ Θ(a, c) for each pair (a, c) ∈ A× ℘P which is a disjunction of positive

basic forms. We define the automaton AH := (A,ΘH,Ω, aI) by setting

ΘH(a, c) := ψH
a,c

for each (a, c) ∈ A× ℘P. Note that AH ∈ Aut(FO1) for each automaton A.

We will now prove that for each linked antisymmetric path automaton A, the au-

tomaton AH lands in the right fragment. That is, AH is also a linked antisymmetric path

automata.

Proposition 5.1.5. If A ∈ Aut lsa(FOE1), then AH ∈ Aut lsa(FO1).

Proof. Let A be an automaton from Aut lsa(FOE1). It follows directly from the definition

of ΘH that AH ∈ Aut(FO1); we proceed to show that AH is antisymmetric and satisfies

the linked path condition. We start by showing that (−)H preserves antisymmetry. To

this end, we will show that if b ∈ A occurs in ΘH(a, c), then b occurs in Θ(a, c) as well.

Indeed, if b occurs in ΘH(a, c), then b occurs in some disjunct (∇+
FOE(T,Π))H of ψH

a,c.

From this it easily follows that b occurs in Θ(a, c), as claimed. Thus AH is antisymmetric

if A is.

We will now show that AH satisfies the linked path condition. As the construction

(−)H preserves the parity of each state a ∈ A, we wish to show that if Θ(a, c) is com-

pletely additive (respectively multiplicative) in a, then ΘH(a, c) is completely additive

(respectively multiplicative) in a as well. To this end, note that if Θ(a, c) is completely

additive in a, then ψa,c has the form described in Theorem 5.1.2 (for L = FOE1).

From this, it easily follows that ψH
a,c has the form described in Theorem 5.1.2. Hence

ψH
a,c = ΘH(a, c) is completely additive in a, as required.
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In other words, the translation (−)H : Aut(FOE1)→ Aut(FO) restricts to a transla-

tion (−)H : Aut lsa(FOE1)→ Aut lsa(FO). This translation is also effective because it relies

only on the effective translation, given in Proposition 5.1.2 assigning each sentence in

FOE1(A) to an equivalent disjunction of sentences in positive basic form, and the trans-

lation on basic forms given in Definition 5.1.3. The following proposition states a well

known model-theoretic relationship–tracing back to the work of Janin and Walukiewicz

[19]–between the FOE basic form ϕ and its associate ϕH. In essence, it provides the key

link between these formulas that is needed in order to associate matches in two related

acceptance games arising in the standard proof of the Proposition 5.1.7 stated below.

Proposition 5.1.6. For each one-step formula α ∈ FOE1(A) in positive basic form and

each one-step model (D,V ) we have the following:

(i) If (D,V ) |= αH, then there is a valuation Vπ : A→ ℘(D × ω) such that

(a) (D × ω, Vπ) |= α, and

(b) (d, i) ∈ Vπ(a) implies d ∈ V (a).

(ii) If (D × ω,U) |= α, then there is a valuation Uπ : A→ ℘D such that

(a) (D,Uπ) |= αH.

(b) d ∈ Uπ(a) implies (d, i) ∈ U(a) for some i ∈ ω.

Proof. We begin by proving (i). To this end, let (D,V ) be a one-step model such that

(D,V ) |= αH. Define the valuation Vπ by setting

Vπ(a) := {(d, i) ∈ D × ω | d ∈ V (a)}

for each a ∈ A. As (i)(b) follows immediately from this definition, we turn our attention

towards (i)(a). By definition, the formula αH has the shape ∇+
FO(T,Π). Let d1, . . . , dk ∈

D be nodes satisfying the A-types T1, . . . , Tk, respectively. From the universal part of

the formula, it follows that for each d ∈ D there exists Td ∈ T such that d ∈
⋂
a∈Td V (a).

We will now use this information to the end of showing (i)(a). That is, we wish to

show that (D,Vπ) |= ∇+
FOE(T,Π). First, observe that (d1, 1), . . . , (dk, k) is a sequence

of k distinct nodes from D × ω. It follows immediately from the definition of Vπ that,

for each i ≤ k, we have that (di, i) satisfies the A-type Ti because, for each i ≤ k,

we have di ∈ V (a) for each a ∈ Ti. Moreover, for each node (d, j) ∈ D × ω which is

not among (d1, 1), . . . , (dk, k), we have that d satisfies one of the types from Π hence

also (d, j) satisfies some type from Π by definition of Vπ by the same reasoning. Hence

(D,Vπ) |= α, as desired.

We will now show that (ii) holds. To this end, suppose that (D × ω, V ) |= α. Define

the valuation Uπ : A→ D by setting

Uπ(a) := {d ∈ D | (d, i) ∈ V (a) for some i ∈ ω}.
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Again, item (ii)(b) follows directly from this definition so we turn our attention to-

wards (ii)(a). That is, we proceed to show that (D,Uπ) |= ∇+
FO(T,Π) if (D × ω,U) |=

∇+
FOE(T,Π). Observe that if (d1, n1), . . . , (dk, nk) ∈ D × ω are the distinct witnesses of

the A-types T1, . . . , Tk given by the existential part of ∇+
FOE(T,Π), then we have that

(di, ni) ∈
⋂
a∈Ti U(a) for each i ≤ k. That is, for each i ≤ k and each a ∈ Ti, we have

that (di, n) ∈ U(a) for some n ∈ ω hence also di ∈
⋂
a∈Ti U

π(a).

Now, from the universal part of ∇+
FOE(T,Π), we have that each node (d, i) ∈ D × ω

witnesses some type Td,i ∈ Π. Just as above, it follows that d witnesses Td,i in (D,Uπ).

In short, (D,Uπ) |= ∇+
FO(T,Π), as desired.

The following proposition states an important model-theoretic relationship between

a tree and its ω-expansion, and its statement is a key ingredient in the proof of Janin

and Walukiewicz’s celebrated theorem. Its statement is therefore well known and so we

opt to omit a proof and refer the interested reader to Venema [35] for the details.

Proposition 5.1.7. For every automaton A ∈ Autsa(FOE1) and every tree T we have

the following equivalence:

AH accepts T iff A accepts Tω.

We have now gathered all of the ingredients needed to prove the remaining inclusion

in the equivalence (∗) :

Proof of (∗). Suppose that A ∈ Autsa(FOE1)/ ↔ . Then, for every transition system S
we have the following chain of equivalences:

A accepts S iff A accepts Ŝω (A is bisimulation-invariant)

iff AH accepts Ŝ (Proposition 5.1.7)

iff AH accepts S. (AH is bisimulation-invariant)
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Conclusion

Let us briefly reflect on what was and what was not accomplished in this thesis.

Reflections on Automata and First-order Logic

In the second chapter, we introduced several classes of automata and paid particular

attention to the theory of linked antisymmetric path automata. We showed that the

combination of antisymmetry and path conditions are in fact related to finite paths

through trees: we showed that each winning position of a given acceptance game whose

first component is a µ-state may be identified with a unique finite path through the tree.

This essence was a key ingredient in the translation from automata from Aut lsa(FOE1)

into first-order formulas. Moreover, attempts to find a first-order definable tree language

which is not recognized by linked antisymmetric path automata have been in vain. For

this reason, I believe that this class remains a good candidate for capturing first-order

definability of tree languages. That is, we believe that the class of linked antisymmetric

path automata and first-order logic could in fact be effectively equivalent over trees.

However, several attempts at translating first-order formulas into such automata were

made in the writing of this thesis, each of which had their own issues.

Let me begin by discussing with the non-issues in these attempts. Just as in the

case of linked weak path automata, the closure of linked antisymmetric path recogniz-

able languages under complementation and union follow in a straightforward manner.

In fact, the astute reader might have noticed that the automata translations of atomic

formulas, disjunctions, and negations are in linked antisymmetric path automata them-

selves. The main issue arises when one wishes to show that this class is closed under

atomic projection. Two attempts were made in this direction.

First, as the two-sorted construction preserves the weakness condition, one may

naturally wonder whether this construction additionally preserves antisymmetry. Un-

fortunately, this is not the case. A counter-example can be given by an automaton with
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two states. Indeed, let A be the automaton ({a, b},Θ,Ω, a) where a is active in itself

(say, Θ(a, c) = ∃x.a(x) whenever p ∈ c and Θ(a, c) = ∃x.b(x) otherwise) and where the

transitions of b are given by putting Θ(b, c) = ∀x.x ≈ x for every colour c ∈ {p, q}; for

concreteness, the priority map may be given by Ω(a) = 0 = Ω(b). Observe that a / a

and b / a give a complete description of the relation /. It is now straightforward to check

that

(i) A is a linked antisymmetric path automaton;

(ii) the macro-states B0 = {a, b} and B1 = {a} form a cluster in the atomic projection

construction ∃p.A.

In short, the two-sorted construction considered in this thesis does not preserve anti-

symmetry. The second attempt failed for essentially the same reason. I think that the

moral is that antisymmetry is a difficult condition to preserve, and one would benefit

from a better understanding of exactly why the two-sorted construction and weakness

condition work so nicely together.

With all of this being said, I am very interested in whether or not the equivalence

Aut lsa(FOE) ≡ FOE holds on trees. Given the work in this thesis, a proof of this

equivalence boils down to providing an appropriate projection construction. It seems

that the nature of such a construction would require a very different flavour than the

two-sorted construction considered in this thesis. On the other hand, a counter-example

to this equivalence would also be satisfying. This would raise at least two interesting

questions.

(1) Which fragment of FOE does the class Aut lsa(FOE) correspond to on trees?

(2) Which class of alternating parity automata correspond to FOE on trees?

We will now shift our focus to reflections on the results related to linked weak path

automata based on FOE1. Notably, we proved that for every first-order formula ϕ

we can effectively obtain an equivalent linked weak path automaton Aϕ over trees. A

natural question following such a result is this: can we provide a translation in the other

direction? The author strongly believes that the answer to this question is ‘no’. This

is because one can provide a linked weak path automaton A such that A accepts T iff

there is a node at an even level of T coloured by p. A node t occurs at an even level

if the unique finite path from the root to t has odd length (e.g. the root occurs at an

even level). We explain only the essence of this construction: an automaton A with a

single cluster consisting of two nodes can ‘count’ modulo 2. There is a well known proof

(using Ehrenfeucht-Fräıssé games) that this is not a first-order definable property on

ω-streams. As ω-streams are a particular example of a tree, this argument applies to

trees as well.
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Reflections on Bisimulation-invariance

In the final chapter, we explored the bisimulation-invariant ‘fragment’ of Aut lsa(FOE1),

using the framework set up in the proof of the Janin-Walukiewicz Theorem and the

observation, this question boiled down to a question at the one-step level. We showed

that Aut lsa(FO1) ≡ Aut lsa(FOE1)/ ↔ .

Recall that we briefly discussed the relationship between the modal µ-calculus and

the class Aut(FO1). In particular, we discussed these automata as a fruitful ambient

class for studying fragments of modal fixpoint logics. One example of such a logic is the

so-called computation tree logic (CTL): an extension of modal logic by path quantifiers

∃Uϕψ and ∀Uϕψ expressing that there is a (respectively for every) finite path, beginning

at the current node, such that ψ is true until ϕ is true . While the quantifier ∃U is first-

order definable, it is known that the quantifier ∀U is not.

An automata-theoretic characterization of the expressive power of CTL was given

in [33] using automata with a Büchi acceptance condition. That is, parity games were

not used in the operational semantics of these automata. In order to capture precisely

CTL definability, two constraints were imposed on the automata there. First, the graph

structure of such automata was constrained to have only singleton clusters; this is clearly

what we call antisymmetry. Second, a notion of dominance (on clusters) was introduced.

We strongly believe that dominance is essentially what we call the path condition. It

would therefore be interesting to obtain effective translations between these automata.

Such translations would give a new perspective on CTL and raise interesting questions

on matters of size and complexity.
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[17] Eric Grädel, Wolfgang Thomas, and Thomas Wilke. Automata Logics, and Infinite

Games: A Guide to Current Research. Springer, 2002.

[18] Marco Hollenberg. “Logic and Bisimulation”. PhD Thesis. Zeno Institute of Phi-

losophy, Utrecht University, 1998.

[19] David Janin and Igor Walukiewicz. “On the Expressive Completeness of the Propo-

sitional mu-Calculus with Respect to Monadic Second-order Logic”. In: Proceedings

of the 7th Annual International Conference on Concurrency Theory (CONCUR

‘96). 1996, pp. 263–277.

[20] Bjarni Jonsson and Alfred Tarski. “Boolean Algebras with Operators. Part I”. In:

American Journal of Mathematics (1951), pp. 891–939.

[21] Christian Kissig and Yde Venema. “Complementation of Coalgebra Automata”.

In: Proceedings of the 3rd Conference on Algebra and Coalgebra (CALCO ‘09).

2009, pp. 81–96.

[22] Andrzej Mostowski. “Hierarchies of Weak Automata and Weak Monadic Formu-

las”. In: Theoretical Computer Science (1991), pp. 323–335.

[23] David Muller. “Infinite Sequences and Finite Machines”. In: Proceedings of the

Fourth Annual Symposium on Switching Circuit Theory and Logical Design (SWCT

‘63). 1963, pp. 3–16.



REFERENCES 77

[24] David Muller, Ahmed Saoudi, and Paul Schupp. “Alternating Automata, The

Weak Monadic Theory of the Tree, and its Complexity”. In: Proceedings of the In-

ternational Colloquium on Automata, Languages, and Programming (ICALP ‘86).

1986.

[25] David Muller and Paul Schupp. “Alternating Automata on Infinite Trees”. In:

Theoretical Computer Science (1987), pp. 267–276.

[26] David Muller and Paul Schupp. “Simulating Alternating Tree Automata by Non-

deterministic Automata: New results and New Proofs of the Theorems of Rabin,

McNaughton and Safra”. In: Theoretical Computer Science (1995), pp. 69–107.

[27] Jakub Neumann, Andrzej Szepietowski, and Igor Walukiewicz. “Complexity of

Weak Acceptance Conditions in Tree Automata”. In: Information Processing Let-

ters (2002), pp. 181–187.

[28] Robert McNaughton Seymour Papert. Counter-Free Automata (M.I.T. Research

Monograph No. 65). The MIT Press, 1971.

[29] Dominique Perrin. “Recent Results on Automata and Infinite Words”. In: Proceed-

ings of the 11th Annual Symposium on the Mathematical Foundations of Computer

Science (MFCS ‘84). 1984, pp. 134–148.

[30] Andreas Potthoff. “First-Order Logic on Finite Trees”. In: Proceedings of the 6th

Annual International Joint Conference on the Theory and Practice of Software

Development (TAPSOFT ‘95). 1995, pp. 123–139.

[31] Michael Rabin. “Decidability of Second-order Theories and Automata on Infinite

Trees”. In: Transactions of the American Mathematical Society 141 (1969), pp. 1–

35.

[32] Marcel Schützenberger. “On Finite Monoids Having Only Trivial Subgroups”. In:

Information and Control (1965), pp. 190–194.

[33] Sander in ’t Veld. “Temporal Logics, Automata, and the Modal µ-calculus”. MSc

Thesis. Institute for Logic, Language, and Computation, University of Amsterdam,

2016.

[34] Yde Venema. “Automata and Fixed Point Logic: A Coalgebraic Perspective”. In:

Information and Computation 204 (2006), pp. 637–678.

[35] Yde Venema. Lectures on the Modal µ-calculus. Lecture Notes. Dec. 2018.

[36] Igor Walukiewicz. “Monadic Second Order Logic on Tree-Like Structures”. In:

Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer

Science (STACS ‘96). 1996, pp. 401–413.



REFERENCES 78

[37] Fabio Zanasi. “Expressiveness of Monadic Second-order Logics on Infinite Trees

of Arbitrary Branching Degree”. MSc Thesis. Institute for Logic, Language, and

Computation, University of Amsterdam, 2012.


	Introduction
	Preliminaries
	General conventions
	Transition systems and trees
	Monadic second- and first-order logics
	Graph games
	One-step languages
	Alternating parity automata
	Bisimulation

	Weak path automata
	Weak automata
	Weak path automata
	Antisymmetric path automata

	Automata and first-order logic
	From antisymmetric path automata to 2FOE formulas
	From AMSO formulas to linked weak path automata

	Expressive completeness modulo bisimilarity
	Linked antisymmetric path automata modulo bisimilarity

	Conclusion

