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Abstract. We give alternative characterizations of exact, extendible and projective

formulas in intuitionistic propositional calculus IPC in terms of n-universal models. From

these characterizations we derive a new syntactic description of all extendible formulas of

IPC in two variables. For the formulas in two variables we also give an alternative proof

of Ghilardi’s theorem that every extendible formula is projective.

1. Introduction

Exactly provable formulas (exact formulas for short) were introduced in [14]
for Heyting arithmetic. These are the formulas that axiomatize propositional
theories of substitutions. The definition of exact formulas directly transfers
to the intuitionistic propositional calculus IPC (Definition 4.1). These for-
mulas are called exactly provable, because given such a formula ϕ, there
exists a substitution under which ϕ is provable, and also no propositional
formula stronger than ϕ is provable. (For example, a proper disjunction like
¬p ∨ ¬¬p can never be exactly provable because then, by the disjunction
property, one of its disjuncts would be provable as well, and these disjuncts
are clearly stronger than the original formula.) In IPC exact formulas also
admit an algebraic characterization - an exact formula is the least element
of the kernel of a homomorphism between free algebras. It follows from
Pitts’ uniform interpolation theorem [19] that in fact the theory of every
IPC-substitution is axiomatized by an exact formula. Thus, exact formu-
las are exactly those formulas that axiomatize the theories of substitutions.
This was first noted in [15]. De Jongh [14] described all (five up to equiva-
lence) exact formulas in one variable in Heyting arithmetic and consequently
in IPC. The characterization of exact formulas in two and more variables,
however, was left open. This is a more complex task as even for two variables
there are infinitely many non-equivalent exact formulas.
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In order to reason about exact formulas de Jongh and Visser [16] intro-
duced the notion of an extendible formula (Definition 4.7). They proved that
every exact formula is extendible and conjectured that the converse is true
as well. Unlike exact formulas, extendible formulas are defined semantically,
and thus are easier to work with. For example, as it is illustrated in this
paper, it is much easier to verify that a given formula is extendible than that
it is exact.

Ghilardi [10] motivated by the theory of unification introduced projec-

tive formulas (Definition 4.14). Projective formulas are those that admit the
most general unifiers. They are also closely connected to projective algebras
as the quotient of a free algebra by a principal filter generated by a pro-
jective formula is a projective algebra. It is not hard to observe that every
projective formula is exact and hence extendible. However, Ghilardi [10]
also proved that every extendible formula is projective, thus closing the cir-
cle and confirming the de Jongh and Visser conjecture. So the three notions
of exact, extendible and projective formulas coincide for IPC.

In this paper we discuss exact, extendible and projective formulas in the
context of n-universal models. These models are dual to free algebras. n-
universal models were thoroughly investigated by a number of authors [12],
[21], [2], [20] (see [6, Sec. 8] and [3, Sec. 3] for an overview). Every formula
in IPC corresponds to a particular subset of n-universal model, which we
call definable. The algebra of all definable subsets of the n-universal model is
isomorphic to the Lindenbaum-Tarski (free) algebra of IPC on n-generators.
n-universal models can also be seen as “upper parts” of the n-canonical
models of IPC.

We give alternative characterizations of exact, extendible and projective
formulas using n-universal models and definable p-morphisms between them.
For formulas in two variables this allows us to provide an alternative proof
of Ghilardi’s theorem that every extendible formula is projective. We also
give a complete description of definable sets corresponding to these formulas
in the 2-universal model, and as a result, derive a syntactic description of all
(infinitely many) exact, extendible and projective formulas in two variables.

Finally, we would like to mention that although Leo Esakia did not work
on the particular topics studied in this paper, the duality of Heyting algebras
developed by him is our crucial tool. One of the earliest works on dual char-
acterizations of finitely generated modal and Heyting algebras was [9]. This
paper gives a criterion for a Heyting or modal algebra to be finitely generated
in terms of their dual frames. These results together with [13] precede all the
forthcoming work on n-universal models and free Heyting algebras. Next to
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n-universal models, an important ingredient of our proofs throughout this
paper is a dual correspondence between substitutions (Heyting algebra ho-
momorphisms) and definable p-morphisms. This correspondence is also a
part of Esakia duality for Heyting algebras. Thus, our work essentially ap-
plies the ideas developed by Leo Esakia.

The paper is organized as follows: In Section 2 we recall the Kripke se-
mantics of IPC and basic operations on Kripke frames. In Section 3 we
recall the structure of n-universal models. We also overview the connection
between substitutions and definable p-morphisms. Section 4 gives charac-
terizations of exact, extendible and projective formulas in terms of universal
models. In Section 5 we give an alternative proof that every extendible
formula is projective for formulas in two variables and provide a syntactic
description of all extendible formulas in two variables. We finish the paper
with some concluding remarks.

2. Preliminaries

For the definition and basic facts about intuitionistic propositional calculus
IPC we refer to [6] or [7]. Here we briefly recall the Kripke semantics of
intuitionistic logic.

Let L denote a propositional language consisting of an infinite set Prop
of propositional variables (letters), the propositional connectives ∧, ∨, →
and a propositional constant ⊥. Formulas in L are defined as usual. Denote
by Form(L) (or simply by Form) the set of all well-formed formulas in the
language L. We assume that p, q, r, . . . range over propositional variables
and ϕ,ψ, χ, . . . range over arbitrary formulas. For every formula ϕ and ψ
we let ¬ϕ abbreviate ϕ → ⊥ and ϕ ↔ ψ abbreviate (ϕ → ψ) ∧ (ψ → ϕ).
We also let ⊤ abbreviate ¬⊥.

We now quickly recall the Kripke semantics for intuitionistic logic. Let
R be a binary relation on a set W . For every w, v ∈ W we write wRv if
(w, v) ∈ R and we write ¬(wRv) if (w, v) /∈ R.

Definition 2.1.

1. An intuitionistic Kripke frame is a pair F = (W,R), where W 6= ∅ and

R is a partial order; that is, a reflexive, transitive and anti-symmetric

relation on W .

2. An intuitionistic Kripke model is a pair M = (F, V ) such that F is an

intuitionistic Kripke frame and V is an intuitionistic valuation; that is,
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a map V : Prop → P(W ),1 satisfying the condition:

w ∈ V (p) and wRv implies v ∈ V (p).

The definition of the satisfaction relation M, w |= ϕ, where M = (W,R, V )
is an intuitionistic Kripke model, w ∈W and ϕ ∈ Form is given in the usual
manner (see e.g., [6] or [7]). We will write V (ϕ) for {w ∈W : w |= ϕ}. The
notions M |= ϕ and F |= ϕ (where F is a Kripke frame) are also introduced
as usual.

Let F = (W,R) be a Kripke frame. F is called rooted if there exists
w ∈W such that for every v ∈W we have wRv. It is well-known that IPC

is complete with respect to finite rooted frames; see, e.g., [6, Thm. 5.12].
Next we recall the main operations on Kripke frames and models. Let

F = (W,R) be a Kripke frame. For every w ∈ W and U ⊆ W let R(w) =
{v ∈ W : wRv}, R−1(w) = {v ∈ W : vRw}, R(U) =

⋃

w∈U R(w), and
R−1(U) =

⋃

w∈U R
−1(w). A subset U ⊆ W is called an upset of F if for

every w, v ∈ W we have that w ∈ U and wRv imply v ∈ U . A frame
F′ = (U,R′) is called a generated subframe of F if U ⊆ W , U is an upset of
F and R′ is the restriction of R to U , i.e., R′ = R ∩ U2. Let M = (F, V ) be
a Kripke model. A model M′ = (F′, V ′) is called a generated submodel of M

if F′ is a generated subframe of F and V ′ is the restriction of V to U , i.e.,
V ′(p) = V (p) ∩ U .

Let F = (W,R) and F′ = (W ′, R′) be Kripke frames. A map f :W →W ′

is called a p-morphism 2 between F and F′ if for every w, v ∈W and w′ ∈W ′:

1. wRv implies f(w)R′f(v),

2. f(w)R′w′ implies that there exists u ∈W such that wRu and f(u) = w′.

We call the conditions (1) and (2) the “forth” and “back” conditions, re-
spectively. We say that f is order-preserving if it satisfies the forth condi-
tion. It is easy to see that f is a p-morphism iff for each w ∈ W we have
f(R(w)) = R′(f(w)). If f is a surjective p-morphism from F onto F′, then
F′ is called a p-morphic image of F. Let M = (F, V ) and M′ = (F′, V ′)
be Kripke models. A map f : W → W ′ is called a p-morphism between M

and M′ if f is a p-morphism between F and F′ and for every w ∈ W and
p ∈ Prop:

M, w |= p iff M′, f(w) |= p.

If f is surjective, then M is called a p-morphic image of M′.
Next we recall the definition of general frames; see, e.g., [6, Sec. 8.1, 8.4].

1By P(W ) we denote the powerset of W .
2Some authors call such maps bounded morphisms [4] or reductions [6].
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Definition 2.2. An intuitionistic general frame or simply a general frame
is a triple F = (W,R,P), where (W,R) is an intuitionistic Kripke frame and

P is a set of upsets such that ∅ and W belong to P, and P is closed under

∪, ∩ and → defined by

U1 → U2 := {w ∈W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} =W −R−1(U1 − U2).

Note that every Kripke frame can be seen as a general frame where P is the
set of all upsets of F = (W,R,P). A valuation on a general frame is a map
V : Prop → P. The pair (F, V ) is called a general model. The validity of
formulas in general models is defined exactly the same way as for Kripke
models.

3. n-universal models of intuitionistic logic

In this section we recall (from e.g., [6, Sec. 8] and [3, Sec. 3]) the definition
of the n-universal models of IPC. For n∈ω let Ln be the propositional
language built on a finite set of propositional letters Propn= {p1, . . . , pn}.
Let Formn denote the set of all formulas of Ln. Let M = (F, V ) be a
(general) model.

Definition 3.1. With every point w of M, we associate a sequence i1 . . . in
such that for k = 1, . . . , n:

ik =

{

1 if w |= pk,

0 if w 6|= pk.

We call the sequence i1 . . . in associated with w the color of w, and denote it

by col(w).

We define an order on the set of colors of length n.

Definition 3.2. Let i1 . . . in and j1 . . . jn be two colors. We write

i1 . . . in ≤ j1 . . . jn iff ik ≤ jk for each k = 1, . . . , n.

We also write i1 . . . in < j1 . . . jn if i1 . . . in ≤ j1 . . . jn and i1 . . . in 6= j1 . . . jn.

Thus, the set of colors of length n ordered by ≤ forms a 2n-element Boolean
algebra. Let F = (W,R) be a frame, and let U be a subset of W . A point
x ∈ U is called U -maximal (U -minimal) if for every y ∈ W we have that
xRy (yRx) and x 6= y imply y /∈ U . W -maximal and W -minimal points
are simply called maximal points and minimal points. For every U ⊆W we
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Figure 1. The 1-universal model

let max(U) and min(U) denote the sets of all U -maximal and U -minimal
points of U , respectively.

For a frame F = (W,R) and w, v ∈ W , we say that a point w is an
immediate successor of a point v if vRw, w 6= v, and there are no intervening
points, i.e., for every u ∈W such that vRu and uRw we have u = v or u = w.
We call v an immediate predecessor of w if w is an immediate successor of
v. We say that a set A ⊆W totally covers a point v and write v ≺ A if A is
the set of all immediate successors of v. Note that ≺ is a relation relating
points and sets. We will use the shorthand v ≺ w for v ≺ {w}. Thus, v ≺ w
means not only that w is an immediate successor of v, but that w is the
only immediate successor of v. It is easy to see that if every point of W has
only finitely many successors, then R is the reflexive and transitive closure
of the immediate successor relation. Therefore, if (W,R) is such that every
point of W has only finitely many successors, then R is uniquely defined
by the immediate successor relation and vice versa. Thus, to define such a
frame (W,R), it suffices to define the relation ≺. A set A ⊆ W is called
an antichain if |A| > 1 and for each w, v ∈ A, w 6= v implies ¬(wRv) and
¬(vRw). We define the model U(n) = (U(n), R, V ) we will call n-universal
by defining the set U(n), the relation ≺ relating points and sets, and the
valuation V on U(n). Let P be a property of Kripke models. We say that a
model M is a minimal model with property P if M satisfies P and no proper
submodel of M satisfies P .

Definition 3.3. The n-universal model U(n) is the minimal model satis-

fying the following three conditions.
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1. max(U(n)) consists of 2n points of distinct colors.

2. For every w ∈ U(n) and every color i1 . . . in < col(w), there exists a

unique v ∈ U(n) such that v ≺ w and col(v) = i1 . . . in.

3. For every finite antichain A in U(n) and every color i1 . . . in with i1 . . . in
≤ col(u) for all u ∈ A, there exists a unique v ∈ U(n) such that v ≺ A
and col(v) = i1 . . . in.

The underlying frame of U(n) is called the n-universal frame.

It is well-known (see, e.g., [3, Thm. 3.2.2]) that for every n∈ω the n-universal
model of IPC exists and is unique up to isomorphism. In [8, Def. 8, Sec. 4]
a concise inductive definition is given by naming all elements of the model
using the concept of type. The 1-universal model of IPC is shown in Fig-
ure 1, where in addition col(w0) = 1 and col(wn) = 0 for each n > 0.
The 1-universal model or the corresponding frame is often called the Rieger-
Nishimura ladder.

There is a close connection between the universal models and the canon-
ical models of intuitionistic logic. In fact, the universal models are “upper
parts” of the canonical models. For the details see [6, Sec. 8.7] and [3, Sec.
3.2.2].

Next we recall the definition of depth of a frame and a point. Proofs
involving n-universal models often use inductive arguments on the depths of
points of the model.

Definition 3.4. Let F be a (general or Kripke) frame.

1. We say that F is of depth n < ω, denoted d(F) = n, if there is a chain

of n points in F and no other chain in F contains more than n points.

2. We say that F is of infinite depth, denoted d(F) = ω, if for every n ∈ ω,
F contains a chain consisting of n points. The frame F is of finite depth
if d(F) < ω.

3. The depth of a point w ∈W is the depth of the subframe of F generated

by w. We denote the depth of w by d(w).

The following properties of n-universal models are well-known see, e.g.,
[3, Thm. 3.2.16] and [6, Sec. 8.7].
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Lemma 3.5.

1. For every finite rooted model M for n propositional variables, there exists

a unique node w in U(n) such that the submodel of U(n) generated by w
is a p-morphic image of M.

2. For every finite frame F, there exists a valuation V on F and n ≤ |F|
such that (F, V ) is a generated submodel of U(n).

Let U be a subset of U(n). In the remainder of the paper we often use the
notation −U to denote U(n)− U .

Lemma 3.6. For every upset U ⊆ U(n) we have that U = −R−1(S), where
S = max(−U).

Proof. The result follows immediately from the fact that, by construction,
the n-universal model is dually well-founded.

Then next theorem has a simple algebraic explanation. Namely, the quotient
of the n-generated free Heyting algebra by a principle filter generated by one
of the generators is isomorphic to the n− 1-generated free Heyting algebra.
However, the reader can verify it just using the construction of universal
models.

Theorem 3.7. For each i ≤ n the generated submodel of U(n) based on the

upset V (pi) is isomorphic to U(n− 1).

The following result is the property that describes in which sense n-universal
models are universal. It is an immediate consequence of Lemma 3.5 and the
fact that IPC is complete with respect to finite rooted frames.

Theorem 3.8. For every formula ϕ in the language Ln, we have

IPC ⊢ ϕ iff U(n) |= ϕ.

Obviously, every formula in n variables defines an upset of the n-universal
model. Moreover, every upset of the 1-universal model is defined by a for-
mula in 1 variable (see, e.g., Section 5). It is well-known, however, that for
n > 1 not every upset of the n-universal model is defined by a formula, e.g.,
Section 5. This leads to the following important definition.

Definition 3.9. We call a set U ⊆ U(n) definable if there is a formula

ϕ(p1, . . . , pn) such that U = {w ∈ U(n) : w |= ϕ}.
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We will close this section by recalling the connection of n-universal mod-
els and Lindenbaum-Tarski algebras of intuitionistic logic.

Let F (n) be the Lindenbaum-Tarski algebra of IPC of the formulas
in n variables; that is, the algebra of all formulas in n variables modulo
IPC-equivalence. This algebra is also called the n-generated free Heyting

algebra. Let Up(U(n)) denote the algebra of all definable subsets of U(n),
respectively. The next theorem spells out the crucial connection between
n-universal models and Lindenbaum-Tarski algebras. For the proof we refer
to either of [6, Sec. 8.6 and 8.7], [12, §2], [2], [21] and [20], [3, Thm. 3.2.20],
[17].

Theorem 3.10. The algebra of all definable upsets of the n-universal model

is isomorphic to the Lindenbaum-Tarski algebra of IPC on n generators;

that is, Up(U(n)) are isomorphic to F (n).

We have the following useful consequence of Theorem 3.10.

Corollary 3.11. Let ϕ and ψ be formulas in n variables. Then

ϕ ⊢ ψ iff (w ∈ V (ϕ) ⇒ w ∈ V (ψ) for each w ∈ U(n)).

It is well-known that every substitution σ can be seen as a homomorphism
between free algebras. The next theorem characterizes those maps between
universal frames that correspond to substitutions.

Definition 3.12. A frame p-morphism f : U(m) → U(n) is called definable
if for every definable upset U ⊆ U(n) the upset f−1(U) is definable.

Obviously, for f : U(m) → U(n) to be a definable p-morphism it suffices that
f−1(V (pi)) is definable for each i ≤ n. The fact that the inverse image of
an upset is an upset follows from the fact that f is order-preserving. We are
now ready to spell out the connection between substitutions and definable
p-morphisms. The next theorem is a direct consequence of the duality of
Heyting algebras. For the details see e.g., [6, Thm. 8.57 and 8.59], or [3,
Thm. 2.3.25].

Theorem 3.13.

1. For every substitution σ : F (n) → F (m) there exists a definable frame p-

morphism f :U(m) → U(n) such that for every formula ϕ in n variables

we have

V (σϕ) = f−1(V (ϕ)).

where V is the valuation of U(n).
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2. For every definable frame p-morphism f : U(n) → U(m) the map σ :
F (m) → F (n) defined by

σϕ = ψ if f−1(V (ϕ)) = V (ψ)

is a substitution.

In the second part of this paper we will make a substantial use of this
theorem.

Finally, we recall that every point generated upset of the n-universal
model is definable. We also recall the particular structure of the formulas
that define them. This will be used consequently in the paper.

Definition 3.14 (de Jongh [13]). Let w be a point in the n-universal model.

The formulas ϕw and ψw are defined inductively. If d(w) = 0, then let

ϕw =
∧

{pk : w |= pk} ∧
∧

{¬pj : w 6|= pj} for each k, j = 1, . . . , n

and

ψw = ¬ϕw.

If d(w) > 0, then let {w1, . . . , wm} be the set of all immediate successors of

w. We let

prop(w) = {pk : w |= pk}

and

newprop(w) = {pk : w 6|= pk and wi |= pk for each i such that 1 ≤ i ≤ m}.

The formulas ϕw and ψw are defined by

ϕw :=
∧

prop(w) ∧

(

(
∨

newprop(w) ∨
m
∨

i=1

ψwi
) →

m
∨

i=1

ϕwi

)

and

ψw = ϕw →
m
∨

i=1

ϕwi

The formulas ϕw and ψw are called the de Jongh formulas.

For the proof of the next theorem the reader is referred to [13] and [3, Thm.
3.2.2].

Theorem 3.15. For every w ∈ U(n) we have
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• R(w) = {v ∈ U(n) : v |= ϕw}, i.e., V (ϕw) = R(w).

• U(n)−R−1(w) = {v ∈ U(n) : v |= ψw}, i.e., V (ψw) = U(n)−R−1(w).

Using this theorem it was shown in [17] that the above-mentioned iso-
morphism of U(n) to the upper part of the n-canonical model is given by
f(w)=Cnn(ϕw) where Cnn(ϕw) = {ψ(p1, . . . , pn) : ϕw ⊢ψ}.

4. Exact, extendible and projective formulas

In this section we recall the definitions of exact, extendible and projective
formulas and give alternative characterizations of these formulas in terms of
n-universal models.

4.1. Exact formulas

We start by discussing exact formulas.

Definition 4.1 (de Jongh [14]). A formula ϕ is called an exact formula if

there is a substitution σ such that

1. IPC ⊢ σ(ϕ),

2. For any formula ψ, if IPC ⊢ σ(ψ), then ϕ ⊢ ψ.

We first look into an algebraic characterization of exact formulas, which
also provides an additional motivation for introducing them. Let σ :F (n) →
F (m) be a substitution. The theory of σ is the filter σ−1(⊤). The theory
of σ is finitely axiomatizable if σ−1(⊤) is a principal filter; that is, if there
exists a formula ϕ ∈ F (n) such that σ−1(⊤) = [ϕ). The next proposition
shows that exact formulas are exactly those formulas that axiomatize the
theories of substitutions.

Proposition 4.2. A formula ϕ is exact iff there is a substitution σ :F (n) →
F (m), such that ϕ axiomatizes the theory of σ.

Proof. The proof is just spelling out the definitions.

Next we discuss the question whether the theory of every substitution is
finitely axiomatizable. In fact, its positive answer is a direct consequence of
Pitts’ Uniform Interpolation Theorem. We formulate the latter result in its
more general form; see e.g., [19, 11].
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Theorem 4.3 (Pitts [19]). Every substitution σ :F (n) → F (m) possesses

right and left adjoints ∃σ,∀σ :F (m) → F (n). That is, for any formula

ϕ(p1, . . . , pm), there are formulas ∃σϕ and ∀σϕ in n variables such that for

any ψ(p1, . . . , pn)

(1) ϕ ⊢ σ(ψ) iff ∃σϕ ⊢ ψ

(2) σ(ψ) ⊢ ϕ iff ψ ⊢ ∀σϕ.

Pitts’ theorem immediately implies the following result (see also [15]).

Corollary 4.4.

1. For every substitution σ :F (n) → F (m), the theory of σ is finitely ax-

iomatizable by the formula ∃σ⊤.

2. A formula ϕ is exact iff there is a substitution σ :F (n) → F (n) such that

ϕ is equivalent to ∃σ⊤.

Proof. The proof is spelling out the definitions.

Let f :U(m) → U(n) be the definable p-morphism corresponding to a substi-
tution σ. Then ∃σ and ∀σ can be seen as maps from Up(U(m)) to Up(U(n)).
The next proposition, which is well-known, characterizes these maps in terms
of f . We give the proof to make the paper more self contained.

Proposition 4.5. Let σ :F (n) → F (m) be a substitution and f : U(m) →
U(n) the corresponding definable p-morphism. Then for every formula ϕ in

m variables we have:

V (∃σ(ϕ)) = f(V (ϕ))

V (∀σ(ϕ)) = −R−1f(−V (ϕ)).

Proof. It is well-known that if an adjoint exists, then it is unique. There-
fore, to prove the proposition it is sufficient to show that for each definable
upset U ⊆ U(m) and V ⊆ U(n) the following holds:

1. f(U) ⊆ V iff U ⊆ f−1(V )

2. f−1(V ) ⊆ U iff V ⊆ −R−1f(−U).

(1) Suppose f(U) ⊆ V . Then f−1(f(U)) ⊆ f−1(V ). Since U ⊆ f−1(f(U)),
we obtain that U ⊆ f−1(V ). Conversely, let U ⊆ f−1(V ). Then f(U) ⊆
f(f−1(V )). Since f(f−1(V )) ⊆ V , we obtain that f(U) ⊆ V .

(2) Now let f−1(V ) ⊆ U and suppose x /∈ −R−1f(−U). Then x ∈
R−1f(−U). Therefore, there exists y ∈ f(−U) such that xRy. The fact
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that y ∈ f(−U) means that there is z /∈ U such that f(z) = y. Since
f−1(V ) ⊆ U , we have that z /∈ f−1(V ). On the other hand, if x ∈ V we also
have that y ∈ V (V is an upset). Therefore, z ∈ f−1(V ), a contradiction.
Thus, x /∈ V and V ⊆ −R−1f(−U).

Conversely, suppose V ⊆ −R−1f(−U) and x ∈ f−1(V ), then f(x) ∈ V .
If x /∈ U , then f(x) ∈ f(−U). SinceR is reflexive we have f(x) ∈ R−1f(−U).
On the other hand, V ⊆ −R−1f(−U) implies f(x) /∈ R−1f(−U). This is a
contradiction. Therefore, f−1(V ) ⊆ U .

This result gives us the following characterization of exact formulas in terms
of universal models.

Corollary 4.6. A formula ϕ(p1, . . . , pn) is exact iff there exists a definable

p-morphism f :U(n) → U(n) such that V (ϕ) = f(U(n)).

Proof. The result follows immediately from Corollary 4.4(2) and Proposi-
tion 4.5.

4.2. Extendible formulas

It this section we define extendible formulas and prove that every exact
formula is extendible.

Definition 4.7 (de Jongh, Visser [16]). A formula ϕ is called extendible if

any finite disjoint union of finite rooted Kripke models validating ϕ can be

extended to a Kripke model validating ϕ by adding a new root to this disjoint

union of Kripke models.

This concept was introduced in an attempt to find a semantic character-
ization of exact formulas later given by Ghilardi. It is easy to give some
examples of extendible formulas.

Lemma 4.8. For every formula ϕ, the formula ϕ→ p is extendible.

Proof. Let M1, . . . ,Mn be such that Mi |= ϕ→ p for each i ≤ n. Let F be
a frame obtained by adding a new root w to the disjoint union of Mi’s. To
prove that ϕ→ p is extendible we need to define a valuation on w such that
w |= ϕ→ p. If Mi |= p, for every i ≤ n, then we let w |= p, which obviously
implies that w |= ϕ→ p. Now suppose there exists i ≤ n such that Mi 6|= p.
Then, we let w 6|= p. Since Mi |= ϕ → p, we have that Mi 6|= ϕ. Therefore,
w 6|= ϕ, and we again obtain that w |= ϕ→ p. Thus, ϕ→ p is an extendible
formula.
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Next we will characterize extendible formulas in terms of universal models.

Definition 4.9. An upset U of the n-universal model U(n) is called ex-
tendible if for every finite antichain ∆ ⊆ U , there exists a point w ∈ U such

that w ≺ ∆.

In fact, there is a one-to-one correspondence between definable extendible
upsets of the n-universal model and extendible formulas in n-variables. The
next theorem was first proved in [1, Thm. 12].

Theorem 4.10. A formula ϕ(p1, . . . , pn) is extendible iff V (ϕ) is an ex-

tendible upset of the n-universal model U(n).

Proof. The direction from left to right is obvious. So, assume V (ϕ) is an
extendible upset of the n-universal model U(n). Let M1, . . . ,Mk be such
that Mi |= ϕ. Then, by Lemma 3.5(1), there are unique p-morphisms fi
mapping the Mi onto R(wi) for some elements wi in U(n). By the property
of p-morphisms, the wi are elements of V (ϕ). As V (ϕ) is an extendible
upset of U(n) there exists a w∈V (ϕ) such that w ≺ {w1, . . . , wk}. We add
a new root v below the disjoint union of M1, . . . ,Mk with col(v) = col(w)
to obtain a new model M. It is easy to see that the p-morphisms fi can be
joined to one p-morphism f from M onto R(w) by taking f(v)=w. Again
by the property of p-morphisms, M |= ϕ.

We are now ready to give an alternative proof of the fact that every exact
formula is extendible using universal models.

Theorem 4.11 (de Jongh and Visser [16]). If a formula ϕ is exact, then it

is extendible.

Proof. Let ϕ be an exact formula in n variables. Then by Corollary 4.6,
there is a definable p-morphism f : U(n) → U(n) such that V (ϕ) = f(U(n)).
We show that V (ϕ) is an extendible upset. Let ∆ ⊆ V (ϕ) be any finite
antichain. Since f is order-preserving, f−1(∆) is an antichain of U(n). Let
x ∈ U(n) be such that x ≺ f−1(∆) (by the construction of U(n) we know
that such a point always exists). Then f(x) ∈ V (ϕ) and it is easy to see
that f(x) ≺ ∆. Therefore, V (ϕ) is an extendible upset of U(n) and, by
Theorem 4.10, ϕ is an extendible formula.

In the remainder of this section we characterize extendible upsets of n-
universal models.

Definition 4.12. For every upset U of the n-universal model, we call a

point x ∈ U(n) a U -border point if x /∈ U , but for every proper successor
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y of x we have y ∈ U . For every upset U let B(U) denote the set of all

U -border points.

In other words, w is a U -border point iff w ∈ max(−U). Let ϕ be any
formula. The V (ϕ)-border points we simply call ϕ-border points. Let B(ϕ)
denote the set of all ϕ-border points. The points that belong to V (ϕ) will
be called ϕ-points. Let x ∈ U(n) be totally covered by an antichain ∆; that
is, x ≺ ∆. We call a point y ∈ U(n) a sister of x if x 6= y and y ≺ ∆. (If ∆
is empty both points x and y are endpoints.)

Theorem 4.13. Let U be a non-empty upset of the n-universal model U(n).
Then U is extendible iff U = −R−1(S), where S ⊆

⋃n
i=1 V (pi)∪

⋃n
i=1B(pi),

and if x ∈ S and x has more than one immediate successor, then x has a

sister y /∈ S.

Proof. By Lemma 3.6, we have that U = −R−1(S), for some (finite or
infinite) antichain S in U(n). Now assume U is extendible, and suppose
there is z ∈ S such that z /∈

⋃n
i=1 V (pi) ∪

⋃n
i=1B(pi). First note that since

z /∈
⋃n

i=1B(pi), there is no u such that z ≺ u; otherwise, by the structure of
the n-universal model z would be a pi-border point for some i ≤ n. Let ∆
be an antichain such that z ≺ ∆. It also follows from the structure of U(n)
that there is no other point that is totally covered by ∆; otherwise z is a pi
point or a pi-border point for some i ≤ n. Since z ∈ S, we have that ∆ ⊆ U .
This means that U is not extendible, which is a contradiction. Therefore,
S ⊆

⋃n
i=1 V (pi) ∪

⋃n
i=1B(pi). For the final result, first note that if x ∈ S

and all the sisters of x also belong to S, then the antichain ∆ that totally
covers x belongs to U and every point y such that y ≺ ∆ is outside U , which
again contradicts the extendibility of U .

The converse implication is similar.

In Section 5 we will give a complete characterization of the definable ex-
tendible upsets of the 2-universal model U(2).

4.3. Projective formulas

In this section we recall the definition of projective formulas and give an
alternative proof using universal models that every projective formulas is
exact and extendible.

Definition 4.14 (Ghilardi [10]). A formula ϕ is called projective if there is

a substitution σ (called a projective substitution) such that

1. IPC ⊢ σ(ϕ),
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2. For any formula ψ, we have ϕ ⊢ ψ ↔ σ(ψ).

For the motivation for introducing projective formulas and their connection
with the theory of unification we refer to [10]. We will just briefly mention
the connection between projective formulas and projective Heyting algebras.
For the definition of projective and finitely presentable algebras see [5]. For
the next theorem see Grigolia [12] and Ghilardi [10]; although neither of the
references state the result explicitly. A direct proof can be found in [1, Cor.
9].

Theorem 4.15. There is a one-to-one correspondence between projective

formulas and finitely presentable, projective Heyting algebras. In particu-

lar, for every projective formula ϕ in n variables the algebra F (n)/[ϕ) is a

finitely presentable projective algebra, and for every finitely presentable pro-

jective Heyting algebra A there exists a projective formula ϕ such that A is

isomorphic to F (n)/[ϕ).

We will now explore the connection of projective formulas with the exact
and extendible formulas. We first note the following simple fact.

Theorem 4.16. Every projective formula is exact.

Proof. In fact the substitution σ that makes ϕ projective will also make it
exact. For this all one needs to observe is that if ⊢ σ(ψ), then ϕ ⊢ ψ ↔ σ(ψ)
implies ϕ ⊢ ψ.

Next we give a characterization of projective formulas in terms of the uni-
versal models.

Theorem 4.17. A formula ϕ is projective iff there exists a definable p-

morphism f : U(n) → U(n) such that V (ϕ) = f(U(n)) and f(x) = x, for
every x ∈ V (ϕ).

Proof. Suppose ϕ is such that there exists a definable p-morphism f :
U(n) → U(n) with V (ϕ) = f(U(n)) and f(x) = x, for every x ∈ V (ϕ).
Let σ be the substitution that corresponds to f . Then f−1(V (ϕ)) = U(n).
Therefore, ⊢ σ(ϕ). Let x ∈ V (ϕ) and let ψ be some formula. Then as
f(x) = x, we have that x |= ψ is equivalent to f(x) |= ψ, which is equivalent
to x |= σ(ψ). Thus, by Corollary 3.11, ϕ ⊢ ψ ↔ σψ and ϕ is projective.

Now assume ϕ is projective and let σ be its projective substitution. Let
f be a definable p-morphism corresponding to σ. Then ⊢ σ(ϕ) implies
that f−1(V (ϕ)) = U(n) and therefore V (ϕ) ⊇ f(U(n)). Next we show by
induction on the depth of the elements of V (ϕ) that for every x ∈ V (ϕ)
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we have f(x) = x. Since f is a p-morphism, for every x ∈ U(n) we have
f(R(x)) = R(f(x)). So if x ∈ V (ϕ) is a maximal point of U(n), then f(x)
is also a maximal point of U(n). Let ϕf(x) be the de Jongh formula of the
point f(x). Then f(x) |= ϕf(x) implies that x |= σ(ϕf(x)). Since x |= ϕ
and ϕ is projective, by Corollary 3.11, we have that x |= ϕf(x). This, by
Theorem 3.15, implies that f(x)Rx, which by the maximality of f(x) is
possible only if f(x) = x. Now assume that x is of depth k > 0 and the
theorem is true for every point y of depth < k. That is, for every immediate
successor y of x we have f(y) = y. This, together with f(R(x)) = R(f(x)),
gives us that the set of immediate (in fact all proper) successors of x and
the set of immediate (in fact all proper) successors of f(x) are the same.
Therefore, x and f(x) are totally covered by the same antichain. Now exactly
the same argument as above using the de Jongh formula of f(x) shows that
f(x)Rx, which implies f(x) = x. So we showed that for each x ∈ V (ϕ) we
have f(x) = x. This of course also proves that V (ϕ) ⊆ f(U(n)). Therefore,
V (ϕ) = f(U(n)) and f(x) = x for every x ∈ V (ϕ).

Remark 4.18. The property of projective formulas ϕ discussed in Theo-
rem 4.15, in fact, means that V (ϕ) is a retract of U(n). This, in its turn
means that the algebra F (n)/[ϕ) that corresponds to the upset V (ϕ) is a
retract of F (n). It is known (see, e.g., [5]) that an algebra A is a retract of
a free algebra iff it is projective. This gives us another proof of the fact that
ϕ is a projective formula iff F (n)/[ϕ) is a projective algebra. We will skip
the details.

5. Extendible formulas in two variables

In this section we will concentrate on formulas in two variables. In the first
subsection we give a complete description of the definable extendible upsets
of the 2-universal model. After that we give an alternative proof of Ghilardi’s
theorem for formulas in two variables. In the second subsection we describe
explicitly all the extendible formulas in two variables.

5.1. Extendible formulas in 2 variables are projective

We start with the characterization of the definable extendible subsets of the
2-universal model. We will use the propositional letters p and q instead of p1
and p2. First we will prove an auxiliary lemma. We call the sets F ⊆B(p)
and G ⊆ B(q) cofinite, if the sets B(p)− F and B(q)−G are finite.
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Lemma 5.1. Let ϕ be some formula in 2 variables. Then the sets V (ϕ)∩B(p)
and V (ϕ) ∩B(q) are either finite or cofinite.

Proof. We prove the lemma by induction on the complexity of ϕ. If ϕ
is p or q, then obviously the set of border points that satisfy ϕ is empty.
Now suppose ϕ has the form ψ ∧ χ. Then, {w ∈ B(p) : w |= ψ ∧ χ} =
{w ∈ B(p) : w |= ψ} ∩ {w ∈ B(p) : w |= χ}. By the induction hypothesis,
{w ∈ B(p) : w |= ψ} and {w ∈ B(p) : w |= χ} are finite or cofinite.
Therefore, their intersection is also finite or cofinite. The case of ∨ is similar.
Finally, suppose ϕ has the form ψ → χ. If there exists a point v ∈ V (p)
such that v 6|= ψ → χ, then every p-border point which is below v also
does not satisfy ψ → χ. Thus, the set {w ∈ B(p) : w |= ϕ} is finite.
Now, assume for each v ∈ V (p), we have that v |= ψ → χ, then obviously
{w ∈ B(p) : w |= ψ → χ} = {w ∈ B(p) : w 6|= ψ or w |= χ} = (B(p)−{w ∈
B(p) : w |= ψ}) ∪ {w ∈ B(p) : w |= χ}. By the induction hypothesis, both
sets are finite or cofinite. Therefore, {w ∈ B(p) : w |= ϕ} is finite or cofinite
as well.

The next corollary gives a necessary condition for extendible upsets of U(2)
to be definable.

Corollary 5.2. Let U be an upset of the 2-universal model U(2). If U is

definable and extendible, then U = −R−1(S), where S ⊆ V (p)∪V (q)∪B(p)∪
B(q), the sets S ∩ B(p) and S ∩ B(q) are finite or cofinite subsets of B(p)
and B(q), respectively, and if x ∈ S and x has more than one immediate

successor, then there exists a sister y of x such that y /∈ S.

Proof. Assume U ⊆ U(2) is extendible and definable. By Theorem 4.13,
all we need to show is that S ∩ B(p) and S ∩ B(q) are finite or cofinite.
Since U is definable, there exists a formula ϕ such that U = V (ϕ). Then
B(p)− (S ∩B(p)) ⊆ V (ϕ) and B(q)− (S ∩B(q)) ⊆ V (ϕ). By Lemma 5.1,
these sets are finite or cofinite, which implies that S ∩ B(p) and S ∩ B(q)
are also finite or cofinite.

In the last section of the paper we will show that in fact the converse of
Corollary 5.2 also holds.

We are now ready to give an alternative proof (for the restricted case of
formulas in two variables) of Ghilardi’s theorem that the exact, extendible
and projective formulas are the same.

Theorem 5.3 (Ghilardi [10]). Let ϕ be a formula in 2 variables. The fol-

lowing three conditions are equivalent.
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1. ϕ is projective,

2. ϕ is exact,

3. ϕ is extendible.

Proof. (1) ⇒ (2) is Theorem 4.16, and (2) ⇒ (3) is Theorem 4.11. We
now prove that (3) implies (1). In fact, this proof will also be a direct proof
of (3) ⇒ (2).

Let ϕ be an extendible formula. Then V (ϕ) is an extendible upset of the
2-universal model. We assume that V (ϕ) is nonempty. By Theorem 4.13,
we have that V (ϕ) = −R−1(S), where S is an antichain that contains only
p-points, q-points, p-border points and q-border points. We will construct
a definable frame p-morphism f :U(2) → U(2), such that f(U(2)) = V (ϕ),
and f(x) = x, for every x ∈ V (ϕ). By Theorem 4.17, this will imply that ϕ
is a projective formula.

Note that by Corollary 5.2, for every x in S with more than one im-
mediate successor, x has a sister belonging to V (ϕ). Intuitively speaking,
f will be the the least definable p-morphism that maps the points in S to
their sisters (if x has only one immediate successor then f maps x to this
successor). The four maximal points of U(2) will play a somewhat special
role. Let us name them m11,m10,m01 and m00 with the obvious meaning.
Note that m11 is both a p-point and a q-point, that m10 is a p-point as well
as a q-border point, analogously for m01, and that m00 is both a p-border
point and a q-border point. Let us note that max(V (ϕ)) is the subset of
those 4 points that are members of V (ϕ). If this set is a singleton the situ-
ation becomes very special, and we leave it to the end of the proof. So, for
the main part of the proof we assume max(V (ϕ)) to contain at least two
elements.

Two other points will play a special role. First, the point with color 10
which has m11 as its only proper successor: let us call it m10→11. Similarly,
m01→11.

Let Sp = (S ∩ V (p)) − {m10→11} and Sq = (S ∩ V (q))− {m01→11}. Let
also TB(p) = B(p) − V (ϕ) and TB(q) = B(q) − V (ϕ). The special role of
m10→11 is caused by the fact that this point is a p-point as well as a q-
border point, and we prefer to treat it as the latter. The point m01→11 gives
similar problems of course.

We define f as the composition of four definable p-morphisms fB(p),
fB(q), fp, fq constructed using these four sets. One or more of these four
p-morphisms may be left completely undefined, and is then supposed to be
left out of this composition.
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Definition of fB(p)(x) by distinguishing cases depending on the relationship
of x to TB(p). If neither m11 nor m10 is in V (ϕ) (i.e. V (ϕ)∩V (p) is empty),
then fB(p) is left undefined. Otherwise:

1. x ∈ −R−1(TB(p)). Then fB(p)(x) = x.

2. x ∈ TB(p). We distinguish three cases:

(a) x has one successor y in V (p). Then fB(p)(x) = y.

(b) x has two successors in V (p). Then fB(p)(x) = y where y is x’s sister
in V (p).

(c) x has no successors: x is m01 or m00. Then fB(p)(x) = m10 if m10 is
in V (ϕ), otherwise m11.

Note that in each case fB(p)(x) ∈ V (p).

3. x ∈ R−1(TB(p)) − TB(p)). We define fB(p) by induction on the layers of
R−1(TB(p)). Let x≺∆ and let fB(p) be already defined on the elements
of ∆. If min(fB(p)(∆)) consists of a single point z we define fB(p)(x) = z.
Otherwise, min(fB(p)(∆)) is an antichain consisting of two points z and
u with z |= p and u 6|= p, and we let fB(p)(x) = z. By induction, in all
cases fB(p)(x) ∈ V (p), and a fortiori, x 6∈ R−1(TB(p)).

Checking that fB(p) is a well-defined p-morphism is routine, it follows from
the easily checked fact that, if fB(p)(x)≺∆, then the elements of ∆ are
fB(p)(y) for some y with xRy. Note also that V (ϕ) ⊆ −R−1(TB(p)).

Claim 5.4. fB(p)(U(2)) = −R−1(TB(p)).

Proof. Since fB(p)(x) = x for every x ∈ −R−1(TB(p)), we have that
−R−1(TB(p)) ⊆ fB(p)(U(2)). The converse inclusion follows by induction
on the layers of R−1(TB(p)). Note that Case 2 of the definition of fB(p) guar-
antees that f(TB(p)) ⊆ −R−1(TB(p)) and the later f -values automatically
get into −R−1(TB(p)) as well, if only because fp(x) ∈ V (p).

Next we show that fB(p) is definable. We will prove that it is defined by the
substitution σB(p) given by σB(p)(p) = ϕ → p, σB(p)(q) = q. We will need
the following claim.

Claim 5.5. If fB(p)(x) is defined, we have for every x ∈ U(2)

x |= ϕ→ p iff fB(p)(x) |= p.
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Proof. ⇐=: Assume this direction fails. Let x be a maximal point with
the property x 6|= ϕ → p and fB(p)(x) |= p. There exists y such that xRy,
y |= ϕ and y 6|= p. Since fB(p) is order-preserving we have fB(p)(y) |= p.
This, by the maximality of x, implies that x = y. Thus, x ∈ V (ϕ) and
x /∈ V (p). Since V (ϕ) ⊆ −R−1(TB(p)), by Case 1 of the definition of fB(p)(x),
fB(p)(x)= x, hence fB(p)(x) |= p, a contradiction.

=⇒ : Assume this direction fails. Let x be a maximal point with the
property fB(p)(x) 6|= p and x |= ϕ→ p. Let ∆ be such that x≺∆. (Note that
∆ is non-empty, since otherwise x=m01 or x=m00 and then fB(p)(x) |= p by
the definition of f .) By the maximality of x, we have that fB(p)(∆) ⊆ V (p).
If x ∈ R−1(TB(p)), then by (2) and (3) of the definition of fB(p) we have
that fB(p)(x) |= p, a contradiction. Therefore, x /∈ R−1(TB(p)). Then,
by (1) of the definition of fB(p), we have fB(p)(x)= x and fB(p)(∆)=∆.
Thus, ∆⊆V (p). This means that x is a p-border point. If x ∈ V (ϕ), then
x 6|= ϕ→ p, which is a direct contradicton. And if x /∈ V (ϕ), then x ∈ TB(p),
which contradicts the established fact that x 6∈R−1(TB(p)).

Therefore, x ∈ f−1
B(p)(V (p)) iff x ∈ V (ϕ → p). Thus, f−1

B(p)(V (p)) = V (ϕ →

p). This means that the p-morphism fB(p) corresponds to the substitution
σB(p).

Definable p-morphism fB(q) corresponding to the substitution σB(q)(p) =
p, σB(q)(q) = ϕ → q is defined similarly to fB(p) by replacing everywhere
p-border points by q-border points.

Definition of fp:

1. x ∈ −R−1(Sp). Then fp(x) = x.

2. x ∈ Sp. Then fp(x) = y for a sister y of x not in S, and hence in V (ϕ),
and not in p. By Theorem 4.13, such a y exists if x has more than one
immediate successor. In the (improper) case that x=m11 or x=m10, by
the assumption made at the start of the proof not both m01 and m00 are
in S . We choose m00 if it is in V (ϕ), otherwise m01. The point x cannot
be in V (p) and have exactly one immediate successor, because then x
would have to be m10→11, and we did not take this to be a member of
Sp.

3. x ∈ R−1(Sp) − Sp. Then there exists at least one y ∈ Sp such that
xRy. We define fp by induction on the layers of R−1(Sp). Let x ≺ ∆
and assume that fp is already defined on the elements of ∆. Consider
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min(fp(∆)). If min(fp(∆)) is a single point z, then we put fp(x) = z.
Otherwise min(fp(∆)) is an antichain. By (2), fp(y) /∈ V (p). This,
by the the fact that fp is order-preserving, implies that there is u ∈
min(fp(∆)) such that u /∈ V (p). Because ϕ is extendible there is z ∈
V (ϕ) such that z ≺ min(fp(∆)). We define fp(x) = z. If we have a
choice we take z with the color 01.

Checking that fp is a p-morphism is routine. Moreover, fp(x) = x for each
x ∈ −R−1(Sp). We prove that

Claim 5.6. fp(U(2)) = −R−1(Sp), fp(−R
−1(Sp)) ⊆ V (ϕ).

Proof. Since fp(x) = x, for every x ∈ −R−1(Sp), we have that −R
−1(Sp) ⊆

fp(U(2)). All we need to check now is that if x ∈ R−1(Sp), then fp(x) ∈
−R−1(Sp) and fp(x) ∈ V (ϕ). This is actually clear by (2) and (3) of the
definition of fp.

Next we show that fp is definable. For this it is sufficient to prove that
f−1
p (V (p)) and f−1

p (V (q)) are definable. It is easy to see that f−1
p (V (q)) =

V (q). Next we show that f−1
p (V (p)) = V (ϕ ∧ p); that is, the substitution

σp defined by fp is given by σp(p) = ϕ ∧ p and σp(q) = q. Thus we need to
show that

Claim 5.7. For every x ∈ U(2):

x |= ϕ ∧ p iff fp(x) |= p.

Proof. By (1) of the definition of fp, if x |= ϕ ∧ p, then obviously x =
fp(x) |= p. And if x 6|= ϕ ∧ p, then by (2) and (3) of the definition of fp, we
have fp(x) 6|= p.

Thus, fp is a definable p-morphism. Definable p-morphism fq is defined
similarly to fp by replacing everywhere p-points by q-points. Let f = fB(q) ◦
fB(p) ◦ fq ◦ fp. Then f is a composition of definable p-morphisms and hence
is a definable p-morphism.

Claim 5.8. f(U(2)) = fqfpfB(q)fB(p)(U(2)) = V (ϕ) and f(x) = x, for every
x ∈ V (ϕ).

Proof. First note that by the definition of each of the four defined p-
morphisms g we have in case x |= ϕ that g(x) = x, and hence that f(x) = x.
Therefore, V (ϕ) ⊆ f(U(2)). For every x 6|= ϕ we have that x is a predecessor
of some node in S. We systematically took care that in such a case for the
relevant p-morphisms g, g(x) ∈ V (ϕ). The other p-morphisms, either are
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the identity on x or will not disturb its value g(x) in V (ϕ). This finishes the
proof of the claim.

Thus, f is a definable p-morphism such that f(U(2)) = V (ϕ) and f(x) =
x, for every x ∈ V (ϕ). By Theorem 4.17, this means that ϕ is projective,
and in fact, by Theorem 4.6, it is also exact. Moreover, the substitution
σ corresponding to f is a composition of the substitutions given by the
formulas ϕ ∧ p, ϕ → p, ϕ ∧ q and ϕ → q. This finishes the proof of the
theorem except for the degenerate cases in which max(V (ϕ)) is a singleton.
Let us treat these one by one.

1. max(V (ϕ))=m00. Then ϕ is (equivalent to) ¬p∧¬q. We define only fp
and fq. Now fp ◦ fq is equivalent to the substitution σ(p)= (¬p ∧ ¬q) ∧
p=⊥, σ(q)= (¬p ∧ ¬q) ∧ q=⊥.

2. max(V (ϕ))=m10. Then ϕ is p∧¬q or ¬¬p∧¬q. We define only fB(p) and
fq. Now fB(p) ◦ fq is equivalent to the substitutions σ(p)=⊤, σ(q)=⊥,
and σ(p)=¬¬p→ p, σ(q)=⊥, respectively.

3. max(V (ϕ))=m01.This is symmetric to the previous case.

4. max(V (ϕ))=m11. This case is more complicated, but defining only fB(p)

and fB(q) works out properly.

Remark 5.9. To adjust the proof to the case of formulas of n variables will
not be easy. Ghilardi [10] does show that if a formula is extendible, then its
projective substitution is the composition of the substitutions of the form
ϕ→ pi and ϕ∧pi. But such substitutions may have to be applied more than
once. The fact that this is not necessary in the 2-variable case is in fact a
corollary of our proof.

We also mention that in the light of Remark 4.18, Theorem 5.3 shows that
A is a finitely presentable projective algebra iff its corresponding definable
upset of the universal model is extendible.

5.2. Syntactic characterization

In this section we give a syntactic description of the extendible formulas in
two variables. Some of these formulas have already appeared in [15]. First
we recall the characterization of the extendible formulas in one variable.
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Definition 5.10. The Rieger-Nishimura polynomials are given by the fol-

lowing recursive definition: 1. g0(p) = p, 2. g1(p) = ¬ p, 3. f1(p) = p ∨ ¬p,
4. g2(p) = ¬¬ p, 5. g3(p) = ¬¬ p→ p, 6. gn+4(p) = gn+3(p)→ (gn(p)∨
gn+1(p)), 7. fn+2(p) = gn+2(p)∨ gn+1(p).

Recall the labeling of U(1) by wk’s as shown in Figure 1.

Lemma 5.11. For every k ∈ ω we have:

1. R(wk) = {w ∈ U(1) : w |= gk(p)},

2. R(wk) ∪R(wk−1) = {w ∈ U(1) : w |= fk(p)}.

Proof. The proof is a routine check.

We are now ready to characterize the projective, exact and extendible for-
mulas in one variable.

Theorem 5.12 (de Jongh [14]).

1. The only extendible upsets of U(1) are U(1), {w0}, {w1}, R(w2), and

R(w3).

2. The only projective formulas in one variable are the formulas p → p, p,
¬p, ¬¬p, and ¬¬p→ p.

Proof. (1) The proof is a matter of a routine check.

(2) The result follows from (1) and Lemma 5.11.

Now we move to the two-variable case. By Theorem 3.7, we know that
V (p)⊆U(2) and V (q)⊆U(2) (with restricted order and valuation) are iso-
morphic to U(1). We assume that the points of V (p) are labelled by wk’s
as in Figure 1 and the points of V (q) are labelled by w′

k’s in the same way.
This makes it obvious that

Lemma 5.13. For every k < ω we have

1. R(wk) = V (gk(q) ∧ p).

2. R(w′

k) = V (gk(p) ∧ q).

Next we characterize those extendible formulas that define upsets generated
by p-points and q-points. Note that the de Jongh formulas of type ψw have
this property. But here we will find simpler formulas. We will need a few
auxiliary lemmas.
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Lemma 5.14. Let M = (W,R, V ) be a general model. Then for every formula

ϕ and ψ we have

V (ϕ→ ψ) = −R−1(V (ϕ)− V (ψ)).

Proof. The proof is a routine check.

We assume that if w ∈ U(2) is such that w |= p, then w = wk for some k ∈ ω
and if w |= q, then w = w′

k for some k ∈ ω.

Lemma 5.15. For every k ∈ ω we have

1. −R−1(wk) is defined by the formula rn(p, q) = p→ gk+1(q).

2. −R−1(w′

k) is defined by the formula rn(q, p) = q → gk+1(p).

Proof. (1) By Lemma 5.14, we have V (p → gk+1(q)) = −R−1(V (p) −
V (gk+1(q)). Note that V (p) − R(wk+1) = R−1(wk). So by Lemma 5.15,
V (p)− V (gk+1(q)) = R−1(wk). Thus, V (p→ gk+1(q)) = −R−1(R−1)(wk) =
−R−1(wk).

(2) is similar to (1).

Next we characterize the extendible formulas that define upsets generated
by a single p-border or q-border point. Again, the de Jongh formulas of
type ψw do this, but we will simplify them here a bit (sometimes reducing
ϕw →

∨

ϕwi
to ϕw → p).

Lemma 5.16. Assume w ∈ U(2).

1. Let w be a p-border point totally covered by a point wk for some k < ω.
Then −R−1(w) is defined by a formula

hk(p, q) = ((p ∨ (p → gk+1(q))) → (p ∧ gk(q))) → p.

2. Let w be a p-border point totally covered by a point w′

k for some k < ω.
Then −R−1(w) is defined by a formula

hk(q, p) = ((q ∨ (q → gk+1(p))) → (q ∧ gk(p))) → q.

3. Let w be a p-border point totally covered by the points wk and wk+1 for

some k < ω. Then −R−1(w) is defined by the formula

jk(p, q) = ((p ∨ (p→ (gk+1(q)) ∨ (p→ gk+2(q))) → (p ∧ fk+2(q))) → p.
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4. Let w be a q-border point totally covered by the points w′

k and w′

k+1 for

some k < ω. Then −R−1(w) is defined by the formula

jk(q, p) = ((q ∨ (q → (gk+1(p)) ∨ (q → gk+2(p))) → (q ∧ fk+2(p))) → q.

Proof. (1) Recall that for every w ∈ U(2) the de Jongh formula ϕw defines
R(w). Therefore, V (ϕw) = R(w). Then V (ϕw → p) = −R−1(V (ϕw) −
V (p)) = −R−1(w). The formula ϕw is described in Definition 3.14. Note
that since w is p-border point we have that col(w) = 00, and therefore,
prop(w) = ∅. Moreover, notprop(w) = {p}. By Lemma 5.15, the formula
ψwk

is equivalent to p → gk(q) and by Lemma 5.13, the formula ϕwk
is

equivalent to p ∧ gk(q). Therefore, we obtain that ϕw = (p ∨ (p→ gk+1)) →
(p ∧ gk(q)). Thus, the upset −R−1(w) is defined by the formula ((p ∨ (p →
gk+1)) → (p ∧ gk(q)) → p.

(2) is similar to (1).

(3) As in (1) the upset −R−1(w) is defined by the formula ϕw → p. In
this case ϕw = (p ∨ (p → (gk+1(q)) ∨ (p → gk+2(q))) → ((p ∧ gk(q)) ∨ (p ∧
gk+1(q)))) = (p∨ (p→ (gk+1(q))∨ gk+2(q))) → ((p∧ fk+2(q))). This finishes
the proof of (3).

(4) is similar to (3).

Lemma 5.17.

1. Let w, v ∈ U(2) and w be a p-border point. If w is totally covered by a

two element antichain ∆ = {x, y} and v is its sister (i.e. w, v ≺ ∆), or
w ≺ v, then for every formula ϕ(q) we have

w |= ϕ(q) iff v |= ϕ(q).

2. Let w, v ∈ U(2) and w be a q-border point. If w is totally covered by a

two element antichain ∆ = {x, y} and v is its sister (i.e. w, v ≺ ∆), or
w ≺ v, then for every formula ϕ(p) we have

w |= ϕ(p) iff v |= ϕ(p).

Proof. (1) Just note that w and v are bisimilar in the language L − {p}
that does not contain the variable p. (2) is similar to (1).

Lemma 5.18. For any formula ϕ and ψ and any model M = (W,R, V ) we

have

V (ϕ→ ψ) ∩B(ψ) = B(ψ)− V (ϕ).
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Proof. The result follows immediately from that fact that if w ∈ B(ψ),
then w /∈ V (ϕ) if and only if w 6|= ϕ→ ψ.

Lemmas 5.15 and 5.16 show how to construct extendible formulas that define
extendible upsets of the form −R−1(S) for finite S. Now we will introduce
the formulas that define extendible upsets of the form −R−1(S) for a cofinite
set S of p and q-border points. This togther with Lemmas 5.15 and 5.16
will immediately yieled a syntactic description of extendible formulas in two
variables.

Let Fk = {w ∈ B(p) : wi for some i ≤ k is an immediate successor of w}
and F ′

k = {w ∈ B(q) : w′

i for some i ≤ k is an immediate successor of w}.
Let also Gk = B(p)− Fk and G′

k = B(q)− F ′

k.

Lemma 5.19. For each n ∈ ω:

1. The upset −R−1(Gk) is defined by the formula

ak(p, q) = (gk(q) → p) → p.

2. The upset −R−1(G′

k) is defined by the formula

ak(q, p) = (gk(p) → q) → q.

Proof. (1) By Lemma 4.8, the formula (gk(q) → p) → p is extendible,
for every k ∈ ω. Therefore, the definable upset U defined by ak(p, q) is
extendible. By Theorem 4.13, we have that U = −R−1(S) and S may
contain only p-points q-points, q-border points and q-border points. It is
easy to see that every q-point and q-border point (except for the single point
of U(2), which is also a p-border point) satisfies ak(p, q). Obviously, if a
point u ∈ U(2) is such that u |= p, then u |= ak(p, q). So S ⊆ B(p).
By Lemma 5.15, a p-point v satisfies gk(q) iff vRwi for some i ≤ k. By
Lemma 5.17, a p-border point w satisfies gk(q) if and only if wRwi for some
i ≤ k. Therefore, w |= gk(q) iff w ∈ B(p)−Gk. So B(p)∩V (gk(q)) = B(p)−
Gk. Then by Lemma 5.18, V (gk(q) → p) ∩ B(p) = B(p) − V (gk(q)) = Gk,
and so V (ak(p, q)) ∩ B(p) = B(p)− V (gk(q) → p) = B(p)−Gk. Therefore,
Gk ⊆ S and B(p)−Gk ⊆ U . This means that S = Gk.

(2) follows from (1).

Corollary 5.20. Let U be an upset of the 2-universal model U(2). Then

U is definable and extendible, iff U = −R−1(S), where S ⊆ V (p)∪V (q), the
sets S ∩ B(p) and S ∩ B(q) are finite or cofinite subsets of B(p) or B(q),
and if x ∈ S and has more than one immediate successor, then there exists

a sister y of x such that y /∈ S.
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Proof. The result is an immediate consequence of Corollary 5.2 and Lem-
mas 5.16 and 5.19.

Finally, we arrive at the following characterization of the extendible formulas
in two variables.

Theorem 5.21. If ϕ(p, q) is an extendible formula in two variables, then it

is equivalent to a formula ϕ1 ∧ · · · ∧ ϕk, k ≥ 1, where each ϕi belongs to the

set

{rn(p, q), rn(q, p), hn(p, q), hn(q, p),
jn(p, q), jn(q, p), an(p, q), an(q, p) : n ∈ ω},

and for each n ∈ ω, the formulas rn(p, q) ∧ jn(p, q), rn(q, p) ∧ jn(q, p),
rn(p, q) ∧ an(p, q) and rn(q, p) ∧ an(q, p) are not part of ϕ1 ∧ · · · ∧ ϕk.

Proof. The result follows from Corollary 5.20, and Lemmas 5.15, 5.16 and
5.19.

One can make many restrictions on the forms that occur. For example, if
rn(p, q) occurs as a ϕi, then no rm(p, q) and hm(p, q) need to occur for any
m > n + 1. Finding a projective substitution for the formulas occurring in
Theorem 5.21 would provide an alternative proof of Theorem 5.3.

6. Conclusions

We gave characterizations of exact, extendible and projective formulas in
terms of n-universal models and definable p-morphisms. For formulas in
two variables, using these characterizations, we gave a proof of Ghilardi’s
theorem that every extendible formula is projective. We also gave a full
recursive description of the infinitely many exact, extendible and projective
formulas in two variables.

The question whether these results could be generalized to formulas in
three and more variables in IPC is far from obvious. The recursive formulas
constructed in this paper heavily depend on the Rieger-Nishimura polyno-
mials and the characterization of extendible subsets of U(2) in terms of finite
and cofinite p-border and q-border points. These characterizations do not
transfer directly to the case of n-universal models for n > 2. Thus we leave
it as an (interesting) open problem whether a complete characterization can
be given to exact, extendible and projective formulas of IPC in three and
more variables. Another topic for future work is to investigate connections of
this approach with the now actively developing theory of projective formulas
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in other non-classical logics. In particular, connections between projective
formulas in the Lukasiewicz logic and projective MV-algebras have already
been made in [18]. However, a syntactic description of projective formulas
in the Lukasiewicz logic is still open.
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