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Abstract
We develop a powerful approach that makes modern SAT
solving techniques available as a tool to support the axiomatic
analysis of economic matching mechanisms. Our central re-
sult is a preservation theorem, establishing sufficient con-
ditions under which the possibility of designing a match-
ing mechanism meeting certain axiomatic requirements for
a given number of agents carries over to all scenarios with
strictly fewer agents. This allows us to obtain general results
about matching by verifying claims for specific instances us-
ing a SAT solver. We use our approach to automatically de-
rive elementary proofs for two new impossibility theorems:
(i) a strong form of Roth’s classical result regarding the im-
possibility of designing mechanisms that are both stable and
strategyproof and (ii) a result establishing the impossibility
of guaranteeing stability while also respecting a basic notion
of cross-group fairness (so-called gender-indifference).

1 Introduction
The development of the theory of matching, going back to
the seminal work of Gale and Shapley (1962), has been one
of the grand success stories of Economics and Operations
Research, leading to significant benefits to society at large.
Examples include matching schemes developed for the allo-
cation of students to schools, of resident doctors to hospitals,
and of organ donors to patients (Economic Sciences Prize
Committee 2012).

Motivated by the demands of diverse applications, many
different variants of the basic model of matching have been
considered. For instance, we may need to compute one-to-
one matchings between agents on two sides of a market, or
we may be able to match several agents to a single agent on
the other side of the market. We may require agents to report
complete preferences over potential partners or we may want
to permit incomplete (truncated) preferences. Similarly, we
may or may not want to allow agents to declare preferen-
tial indifferences. The list goes on. This makes it difficult
to obtain a clear picture of the range of desiderata for which
we can successfully design a matching mechanism. This dif-
ficulty motivates the idea of using tools from AI to auto-
mate some of the tasks of the economic theorist intent on
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analysing an intricate model of matching to better under-
stand what opportunities there are (or are not) for designing
good mechanisms. In this paper, we develop an approach
to automatically search for impossibility theorems regard-
ing the design of matching mechanisms that satisfy a num-
ber of desirable properties of interest (so-called axioms). We
focus on the classical model of one-to-one matching, with
two groups of n agents each, who we need to pair up with
each other on the basis of their reported preferences.

Our approach makes use of SAT solving techniques,
which have long been studied—and applied—in AI (Biere,
Heule, and van Maaren 2009). SAT is the NP-complete
problem of deciding whether a given propositional formula
has a model. Despite this high complexity, in practice a mod-
ern SAT solver will often be able to compute an answer in a
matter of seconds for formulas in CNF (conjunctive normal
form) with millions of clauses. We use such formulas to en-
code the desirable properties of matching mechanisms (for a
specific choice of n) we are interested in; a model then cor-
responds to a mechanism with those properties. If we obtain
a negative answer and thus designing a mechanism of the
desired kind is impossible for the specific value of n tested,
then in some cases this observation can be generalised to an
impossibility theorem for all larger values of n.

Related work. The original idea of using a SAT solver
to automatically prove the “base case” on an impossibility
theorem is due to Tang and Lin (2009) who used this ap-
proach to obtain an alternative proof of Arrow’s Impossi-
bility Theorem and a number of closely related results in
social choice theory. Since then, this methodology has also
been applied, amongst other things, to the analysis of pref-
erence extensions (Geist and Endriss 2011), resolute voting
rules (Brandt, Geist, and Peters 2017), irresolute voting rules
(Brandt and Geist 2016), and multiwinner voting rules (Pe-
ters 2018). Geist and Peters (2017) review the state of the
art in this subfield of computational social choice (Brandt et
al. 2016). While SAT solving can automate the proof of a
“base case”, deriving a fully fledged impossibility theorem
still requires a manual proof of the corresponding “induc-
tive step”. Depending on the axioms involved, this can be
difficult and/or tedious. Only for the (particularly simple)
domain of preference extensions has it been possible so far



to obtain a general meta-result that shows—for axioms that
meet certain syntactic conditions when expressed in a suit-
able formal language—that any impossibility observed at a
given domain size always extends to all larger domains sizes,
thereby making manual proofs for specific such axioms ob-
solete (Geist and Endriss 2011).

While the present paper is the first instance where the
SAT-based approach is used to support the axiomatic study
of matching mechanisms, we note that Drummond, Perrault,
and Bacchus (2015) have used SAT solving techniques to
implement matching mechanisms in practice.
Contribution. We propose a formal language for express-
ing axioms of interest in the context of designing one-to-
one matching mechanisms and show that for axioms that
have a particular syntactic form (the universal axioms) the
mathematical possibility of designing mechanisms satisfy-
ing those axioms is preserved whenever we reduce the num-
ber of agents involved. This Preservation Theorem allows
us to fully automate the search for relevant impossibility
theorems by delegating the verification of the base case to
a SAT solver. We describe this approach and use it to de-
rive elementary human-readable proofs of two new impos-
sibility theorems. One of them is a strong form of a clas-
sical result on the impossibility of combining stability and
strategyproofness (Roth 1982), and the other establishes the
impossibility of combining stability with a fairness notion
known as gender-indifference (Masarani and Gokturk 1989).
Paper outline. In Section 2 we recall the familiar model
of one-to-one matching and discuss relevant axioms. Then,
in Section 3 we present our language for encoding axioms
and prove our Preservation Theorem, and in Section 4 we
show how to apply our approach to automate the search for
impossibility theorems. Section 5 concludes.

The code used to derive (and full documentation of)
the computer-generated results mentioned in this paper are
available as supplementary material (Endriss 2019).

2 Matching Mechanisms
In this section we recall the classical model of one-to-one
matching markets introduced by Gale and Shapley (1962).
We also review a number axioms describing intuitively de-
sirable properties of one-to-one matching mechanisms.

2.1 The Model
For any given number n ∈ N, let An = {a1, . . . , an} and
Bn = {b1, . . . , bn}. For any set X , let X! denote the set of
all strict linear orders on X . We want to model scenarios in-
volving two groups of n agents each,An andBn. Each agent
a ∈ An reports her preferences in the form of a strict linear
order on Bn, and each agent b ∈ Bn reports her preferences
in the form of a strict linear order on An. This results in a
profile of preferences—an element of Bn!n ×An!n.

On the basis of such a profile, we want to match each
member of An with a member of Bn. The first—intriguing
if moderately inappropriate—example for such a scenario in
the original paper of Gale and Shapley (1962) is that of a
“marriage market”, in which n men and n women need to
get married off to each other. A more significant application

is that of n job seekers and n employers (with one vacancy
each) who need to get matched to each other.

A matchingM is a subset of the setAn×Bn of pairs with
the property that #{b | (a, b) ∈M} = 1 for all a ∈ An and
#{a | (a, b) ∈M} = 1 for all b ∈ Bn.

A matching mechanism µ : Bn!n × An!n → 2An×Bn is
a function mapping any given profile p to some matching
M = µ(p). We call n the dimension of the mechanism µ
(and also of the profiles p it can be applied to).

Example 1. Consider the following profile for n = 3:

a1 : b1 � b2 � b3
a2 : b2 � b1 � b3
a3 : b1 � b3 � b2

b1 : a2 � a3 � a1
b2 : a3 � a1 � a2
b3 : a1 � a2 � a3

Under the serial dictatorship with a1 picking first and a2
next, we obtain the matching {(a1, b1), (a2, b2), (a3, b3)}.
Under the deferred-acceptance mechanism of Gale and
Shapley (with agents in A3 proposing to agents in B3, who
always accept the best proposal received so far), on the other
hand, we obtain {(a1, b2), (a2, b1), (a3, b3)}. M

2.2 Axioms
What makes for a good matching mechanism? In game the-
ory, and in economic theory more broadly, we approach
such questions by means of the axiomatic method. This in-
volves formulating intuitively appealing normative princi-
ples in precise mathematical terms, resulting in so-called
axioms, and exploring what kind of mechanism will satisfy
which axioms (Roth and Sotomayor 1990). The most im-
portant axiom in the literature on matching is stability. It
encodes the desideratum that we would not want our mech-
anism to return a matching that is unstable, in the sense that
two agents a and b—a so-called blocking pair—have an in-
centive to partner up with each other rather than the agents
they have been assigned to by the mechanism.

Definition 1. A mechanism µ is stable if for no profile p in
which agent a prefers b to b′ and agent b prefers a to a′ it is
the case that both (a, b′) ∈ µ(p) and (a′, b) ∈ µ(p).

For instance, the aforementioned deferred-acceptance mech-
anism is known to be stable (Gale and Shapley 1962), while
Example 1 shows that serial dictatorships are not stable (in
the example, (a3, b1) is a blocking pair).

We are also going to consider the following (nonstandard)
variant of stability, which only requires protection against
deviating agents who are each others’ absolute favourite.

Definition 2. A mechanism µ is top-stable if (a, b) ∈ µ(p)
for every profile p in which agent a ranks b at the top of her
preference order and agent b ranks a at the top of hers.

Observe that stability entails top-stability (which is a much
weaker requirement). If we have reason to believe that
agents will reject the solution proposed by our mechanism
only in the most extreme cases, then we may be content with
trying to guarantee merely top-stability rather than the more
demanding property of stability.

A central concern in all of game theory, including the the-
ory of matching, is whether we can prevent strategic agents
from misrepresenting their truthful preferences. For agent



i ∈ An ∪ Bn, we say that profiles p and p′ are i-variants of
each other if no agent other than i (and possibly not even i)
changes her preferences when we move from p to p′.

Definition 3. A mechanism µ is one-way strategyproof for
agents of the first group if for no agent a in that group and no
a-variants p and p′ it is the case that, in p, a prefers b to b′
for agents b and b′ with (a, b′) ∈ µ(p) and (a, b) ∈ µ(p′).

Note that if the condition above is violated, then in pro-
file p agent a has an incentive to pretend that her actual pref-
erences are as in profile p′. The axiom of one-way strate-
gyproofness for agents of the second group is defined analo-
gously. Now a mechanism µ is called two-way strategyproof
if it is one-way strategyproof for agents of both groups.

A very different kind of concern is whether the mecha-
nism we choose to implement is fair. For example, a well-
known deficiency of the deferred-acceptance mechanism is
that it treats the members of the first group more favourably
than the members of the second group. An interesting pro-
posal for an axiom designed to rule out such sources of un-
fairness is due to Masarani and Gokturk (1989). In reference
to the interpretation of agents inAn as men and agents inBn
as women, this axiom is known as “gender-indifference”.
We say that profiles p and p′ are swap-variants of each other,
if ai prefers bj to bj′ in p whenever bi prefers aj to aj′ in p′
(and analogously with the roles of a and b inverted).

Definition 4. A mechanism µ is gender-indifferent if
(ai, bj) ∈ µ(p) implies (aj , bi) ∈ µ(p′) for any swap-
variants p and p′ and any two indices i, j ∈ N.

Thus, this axiom requires that, if we swap groups in the input
consumed by µ, then this should result in a corresponding
swap of the groups in the output returned by µ.

3 The Preservation Theorem
In this section we prove our Preservation Theorem, estab-
lishing that any matching mechanism µ+ of dimension n
with n > 1 that satisfies a given set of axioms meeting cer-
tain conditions can be transformed into a matching mech-
anism µ of dimension n− 1 that satisfies the same set of
axioms. The theorem applies to all axioms that can be ex-
pressed in (a particular fragment of) a particular formal lan-
guage, which we also introduce in this section. The theorem
is useful, because its contrapositive reading shows that any
impossibility for designing a matching mechanism satisfy-
ing certain axioms that we might observe for a given specific
dimension n immediately extends to a general impossibility
theorem for every dimension greater or equal to n.

3.1 A Formal Language for Expressing Axioms
Recall the axioms capturing basic normative principles re-
garding the design of matching mechanisms reviewed in
Section 2.2. They all talk about relationships between pro-
files and agents. To represent these and other axioms, we
now introduce a formal language. Readers familiar with
many-sorted first-order logic (see, e.g., Hodges 1997) will
recognise this language as first-order logic with two sorts,
one for profiles and one for agents (or more accurately: in-
dices of agents), and a set of seven atomic propositions (to

speak about preferences of agents in a given profile, about
relationships between profiles, and about matchings). We
stress that, in principle, there is room to extend this language
further and to add additional atomic propositions for other
types of basic relationships.

Let VarN and VarP be two disjoint (and sufficiently large)
sets of variables. The set of all syntactically valid expres-
sions ϕ of our language is defined by the following specifi-
cation in Backus-Naur form. Here i represents variables in
VarN and p represents variables in VarP.

ϕ ::= i �A
p,i i | i �B

p,i i | topA
p,i = i | topB

p,i = i |
p ∼A

i p | p ∼B
i p | p� p | p . (i, i) |

¬ϕ | ϕ ∧ ϕ | ∀Ni.ϕ | ∀Pp.ϕ

The interpretation of formulas in our language depends
on n, the dimension of the matching mechanisms we want
to describe. Variables in VarN range over the set {1, . . . , n}
of agent indices, and variables in VarP range over profiles.
An assignment is a function α : VarN ∪ VarP → Dn,
where Dn = {1, . . . , n} ∪ (Bn!n × An!n) that ensures that
α(i) ∈ {1, . . . , n} for all i ∈ VarN and α(p) ∈ Bn!n×An!n

for all p ∈ VarP. We often write pα as a shorthand for α(p).
For any x ∈ VarN ∪ VarP, assignments α and α′ are called
x-variants of each other if α(y) = α′(y) for every variable
y ∈ VarN ∪VarP \ {x}. We write µ, α |= ϕ to say that mech-
anism µ satisfies formula ϕ under assignment α. This notion
of satisfaction is defined inductively as follows:
• µ, α |= j �A

p,i j
′ if aα(i) ranks bα(j) above bα(j′) in pα

• µ, α |= i �B
p,j i

′ if bα(j) ranks aα(i) above aα(i′) in pα

• µ, α |= topA
p,i = j if aα(i) ranks bα(j) at the top in pα

• µ, α |= topB
p,j = i if bα(j) ranks aα(i) at the top in pα

• µ, α |= p ∼A
i p
′ if profiles pα and p′α are aα(i)-variants

• µ, α |= p ∼B
j p
′ if profiles pα and p′α are bα(j)-variants

• µ, α |= p� p′ if profiles pα and p′α are swap-variants
• µ, α |= p . (i, j) if (aα(i), bα(j)) ∈ µ(pα)
• µ, α |= ¬ϕ if µ, α |= ϕ is not the case
• µ, α |= ϕ∧ψ if both µ, α |= ϕ and µ, α |= ψ are the case
• µ, α |= ∀Ni.ϕ if µ, α′ |= ϕ for all i-variants α′ of α
• µ, α |= ∀Pp.ϕ if µ, α′ |= ϕ for all p-variants α′ of α
A formula ϕ is called a sentence if every variable occurring
in ϕ is bound by a quantifier. Observe that for sentences ϕ
the assignment α in a statement such as µ, α |= ϕ plays no
role, so we can simply write µ |= ϕ instead and say that
mechanism µ satisfies sentence ϕ.

For notational convenience, we also introduce several ad-
ditional operators that can be reduced to the core operators
of our language in the usual manner: ϕ ∨ ψ is short for
¬(¬ϕ ∧ ¬ψ), ϕ→ ψ is short for ¬(ϕ ∧ ¬ψ), ∃Ni.ϕ is short
for ¬(∀Ni.¬ϕ), and ∃Pp.ϕ is short for ¬(∀Pp.¬ϕ). Note that
our language has neither constant nor function symbols.

Table 1 demonstrates how to encode the axioms defined in
Section 2.2 in our language. Inspection of these encodings
shows that, not only can all of these axioms be expressed
in our language, but they also are naturally expressed using
a specific syntactic form. Let us call an axiom universal, if
it can be expressed by a sentence in our language that is of
the form ∀~x.ϕ(~x), where ~x is a sequence of variables (each



Stability ∀Pp.∀Pp
′.∀Ni.∀Ni

′.∀Nj.∀Nj
′ .
[

(j �A
p,i j

′ ∧ i �B
p,j i

′) → ¬(p . (i, j′) ∧ p . (i′, j))
]

Top-stability ∀Pp.∀Ni.∀Nj .
[

(topA
p,i = j ∧ topB

p,j = i) → (p . (i, j))
]

One-way strategyproofness (for A) ∀Pp.∀Pp
′.∀Ni.∀Nj.∀Nj

′ .
[

(p ∼A
i p
′ ∧ j �A

p,i j
′) → ¬(p . (i, j′) ∧ p′ . (i, j))

]
Gender-indifference ∀Pp.∀Pp

′.∀Ni.∀Nj . [ (p� p′) → (p . (i, j) → p′ . (j, i)) ]

Table 1: Formalisation of common axioms

bound by the appropriate quantifier) and ϕ(~x) is a quantifier-
free formula involving only variables occurring in ~x.
Lemma 1. The set of universal axioms is closed under the
operation of conjunction.

Proof. Immediate from the fact that (∀~x.ϕ) ∧ (∀~y.ψ) is
equivalent to ∀~x~y.(ϕ ∧ ψ) whenever the sequences of vari-
ables ~x and ~y do not overlap, together with the fact that we
can freely rename variables for any given sentence.

Proposition 2. The axioms of stability, top-stability,
(one-way and two-way) strategyproofness, and gender-
indifference are all universal axioms.

Proof. Encodings of stability, top-stability, one-way strate-
gyproofness, and gender-indifference in the required univer-
sal form are given in Table 1. For two-way strategyproof-
ness, which is the conjunction of two formulas of the kind
used to encode one-way strategyproofness, the claim now
follows from Lemma 1.

While our formal language—and specifically its universal
fragment—thus are sufficiently expressive to encode a range
of important axioms of practical interest, there also are clear
limitations (and, as we are going to see, these limitations are
intended, as they allow us to focus on axioms that are “well-
behaved” in a sense to be made precise).

3.2 Preservation of Universal Axioms
We are now ready to formulate our central result. It is sim-
ilar in nature to (one direction of) the classical Łoś-Tarski
Theorem, a basic staple of model theory (Hodges 1997), on
the preservation of first-order ∀1-formulas in substructures.
Theorem 3 (Preservation Theorem). Let µ+ be a top-stable
matching mechanism of dimension n > 1 that satisfies all
axioms in a given set Φ of universal axioms. Then there also
exists a top-stable matching mechanism µ of dimension n−1
that satisfies all axioms in Φ.

Proof. Keeping in mind that (i) a given matching mecha-
nism satisfies all the axioms in a set Φ if and only if it satis-
fies their conjunction, and given that (ii) we have seen that
the family of universal axioms is closed under taking con-
junctions, it suffices to prove the claim for a single universal
axiom ϕ. So let µ+ be an arbitrary top-stable mechanism of
dimension n > 1 and let ϕ be a universal axiom such that
µ+ |= ϕ. We need to construct a top-stable mechanism µ of
dimension n− 1 such that µ |= ϕ.

We are going to define µ by fixing a procedure for ex-
tending any given profile p of dimension n − 1 to a pro-
file p+ of dimension n in such a way that we can first ap-
ply µ+ to p+ and then project the result from An × Bn

down to An−1 × Bn−1, before returning it as µ(p). So let
p be any profile of dimension n − 1. We construct p+ as
follows. We first add bn to the bottom of each preference
order of each of the agents in An−1 and an to the bottom
of the preference orders of each of the agents in Bn−1. We
then fix the preference order of the additional agent an as
bn � bn−1 � · · · � b1 and that of the additional agent bn as
an � an−1 � · · · � a1. Here is a schematic illustration of
this construction of the new profile p+:

a1 : 2 � · · · � 2 � bn
a2 : 2 � · · · � 2 � bn
...

...
...

...
an−1 : 2 � · · · � 2 � bn
an : bn � · · · � b2 � b1

b1 : 2 � · · · � 2 � an
b2 : 2 � · · · � 2 � an
...

...
...

...
bn−1 : 2 � · · · � 2 � an
bn : an � · · · � a2 � a1

As µ+ is top-stable by assumption, we are guaranteed that
(an, bn) ∈ µ+(p+). So we can define the new mechanism
µ by letting µ(p) = µ+(p+) \ {(an, bn)} for any given pro-
file p of dimension n − 1. Let us now show that µ |= ϕ
indeed holds for the mechanism µ thus defined.

As ϕ is universal, it can be written as ∀~x.ψ, where ∀~x is
a sequence of universal quantifications and ψ is a quantifier-
free formula (involving only variables that occur in the se-
quence ~x). By definition, µ+ |= ϕ if and only if µ+, α+ |= ψ
for all assignments α+ from variables to elements of the do-
main Dn. In particular, µ+ |= ϕ entails µ+, α+ |= ψ for
all those assignments α+ that happen to map every variable
i ∈ VarN to an element of {1, . . . , n− 1} and every variable
p ∈ VarP to a profile (of dimension n) that could have been
produced by our construction above. Let us call any such
assignment (mapping into Dn) a restricted assignment.

Now observe that there exists a natural bijection between
the set of all restricted assignments α+ mapping intoDn and
the set of all assignments α mapping into Dn−1:

• α+(i) = α(i) for all i ∈ VarN

• α+(p) = (α(p))+ for all p ∈ VarP

The latter means that we can obtain the interpretation (which
is a profile) of the variable p under assignment α+ by first
retrieving the interpretation of p under assignment α and
then performing our construction on that profile of dimen-
sion n− 1 to turn it into a profile of dimension n.

As µ |= ϕ if and only if µ, α |= ψ for all assignments α
mapping into Dn−1, we are done proving µ |= ϕ if we can
show that µ+, α+ |= ψ if and only if µ, α |= ψ for every
restricted assignment α+ and its counterpart α.1 We do so by

1In fact, we only need to show that µ+, α+ |= ψ implies
µ, α |= ψ. However, in the proof that follows, the step covering the
negation operator relies on the other direction being true as well.



induction on the size of ψ. There is one base case to consider
for every kind of atomic proposition in the language:

• For ψ = (j �A
p,i j

′) the claim holds, because no agent ai
indexed by some i ∈ {1, . . . , n − 1} changes her rela-
tive ranking of agents bj and bj′ indexed by some j, j′ ∈
{1, . . . , n−1}when we move between a profile of dimen-
sion n− 1 and the corresponding profile of dimension n.
Analogous arguments apply to (j �B

p,i j
′), (topA

p,i = j),
(topB

p,j = i), (p ∼A
i p
′), (p ∼B

j p
′), and (p� p′).

• For ψ = (p . (i, j)) the claim holds, because µ has been
defined so as to agree with µ+ on all pairings involving
agents with indices in {1, . . . , n− 1}.

To complete the proof, we require one inductive step for ev-
ery propositional operator in the language (which are nega-
tion and conjunction). This part is straightforward: First,
(µ+, α+ |= ψ if and only if µ, α |= ψ) immediately entails
(µ+, α+ |= ¬ψ if and only if µ, α |= ¬ψ). Second, once we
have established (µ+, α+ |= ψ if and only if µ, α |= ψ) and
(µ+, α+ |= ψ′ if and only if µ, α |= ψ′), this immediately
entails (µ+, α+ |= ψ ∧ ψ′ if and only if µ, α |= ψ ∧ ψ′).

It remains for us to verify that µ is top-stable. But given
that top-stability is a universal axiom, this follows immedi-
ately from our general result about µ satisfying all universal
axioms that are satisfied by µ+.

Some readers may find this result unsurprising. It certainly
could be argued that the claim made is obvious as far as
specific universal axioms are concerned, such as stability.
Indeed, the kind of reasoning we have used here is implicit
in some results in the literature, where it is taken to be self-
evident that, whenever we can design a mechanism for n
that satisfies the axiom of interest, then we certainly can do
so for n−1 as well.2 The power of the Preservation Theorem
lies in the fact that it applies to every combination of axioms
we can express in the universal fragment of our language.
At this point, it may be instructive to consider examples for
(other) axioms for which our theorem does not apply.

Example 2. An axiom of interest we are not able to express
in our language is known as peer-indifference (Masarani and
Gokturk 1989). It postulates that the outcome returned by a
mechanism should not change if we swap two agents be-
longing to the same group. Modelling this axiom would re-
quire the introduction of an additional kind of atomic propo-
sition that allows us to state that profile p′ can be obtained
from profile p by swapping two of the agents in the first
group (and a similar atomic proposition for swapping two
agents in the second group). And indeed, peer-indifference
is not always preserved when moving to smaller scenarios.
For instance, even though for n = 3 there exists a mecha-
nism that is both peer-indifferent and gender-indifferent, for
n = 2 this is not the case anymore.3 M

2This is the case, for instance, for the original proof of the result
by Roth (1982) we are going to discuss in Section 4.2.

3These two claims can be easily verified using the techniques
we are going to introduce in Section 4.1 (Endriss 2019).

Example 3. Consider the following axiom—which we can
express in our language, albeit not in its universal fragment:

∀Pp.∃Ni.∀Nj.[ (topA
p,i = j) → (p . (i, j)) ] ∧

∀Pp.∃Nj.∀Ni.[ (topB
p,j = i) → (p . (i, j)) ]

It encodes the requirement that for every profile there should
be at least one agent from each group who gets assigned to
her most preferred partner. This is clearly possible for n = 3
but impossible for n = 2. M

We conclude this section with a useful reformulation of the
Preservation Theorem that shows that impossibilities are
preserved as we move up (while possibilities, as we have
seen, are preserved as we move down).
Corollary 4. If there exists no matching mechanism of di-
mension k that satisfies all axioms in a given set Φ of univer-
sal axioms, then the same is true for all dimensions n ≥ k.

4 Automated Search for Impossibility Results
In this section we describe our approach for automating the
search for impossibility theorems via SAT solving and then
present human-readable proofs for two such theorems. In
fact, the use of SAT solving techniques is not restricted to
proving impossibility theorems, and we briefly comment on
some further uses of this technology along the way.

4.1 Approach
By Corollary 4, to prove an impossibility theorems for a set
of universal axioms that applies to all dimensions n ≥ k, it
suffices to prove it for k. We can do the latter by translating
the axioms into propositional formulas (which is possible for
a fixed dimension, by rewriting universally quantified for-
mulas as conjunctions, and so forth) and then checking the
conjunction of all those formulas for satisfiability.

The translation to propositional logic (in CNF) is straight-
forward and similar to prior work using SAT solving for the
analysis of voting rules (Geist and Peters 2017). For every
profile p and every pair of indices i, j ∈ {1, . . . , n} we in-
troduce a propositional variable xp.(i,j), which should be set
to true if and only if ai should get matched with bj in pro-
file p.4 For example, stability can be expressed as follows:∧

p

∧
i

∧
j

∧
i′s.t. p has

ai�bj
a
i′

∧
j′s.t. p has
bj�ai

b
j′

(
¬xp.(i,j′) ∨ ¬xp.(i′,j)

)
Using a simple script (written in PYTHON) we can generate
the formula in CNF corresponding to each of the axioms in
Table 1 (Endriss 2019). Similarly, we can generate one fur-
ther formula in CNF to encode the requirement that every
a is matched to at least one b, and every b is matched to at
most one a. We can now use a SAT solver, such as PICOSAT
(Biere 2008), to check whether the conjunction of this latter

4As there are (n!)2n profiles, the number of variables required
is (n!)2n ·n2. For n = 4 this figure is roughly 1.76 ·1012, meaning
that this approach will be hardly feasible for dimensions n ≥ 4.
Fortunately, inspection of the social choice literature suggests that
many (though of course not all) interesting phenomena in this do-
main occur when changing a relevant parameter from 2 to 3.



p0 =

 312 123
132 123
312 213



p3 =

 123 123
132 123
312 213



p1 =

 321 123
132 123
312 213



p4 =

 213 123
132 123
312 213



p5 =

 321 123
132 123
312 123



p6 =

 321 213
132 123
312 213



p2 =

 312 123
132 123
312 231



p7 =

 123 123
132 123
312 231



p8 =

 312 123
312 123
312 231



p9 =

 312 123
132 123
312 312


a1

a1

a1

b3

b1

b3

a1

a2

b3

Figure 1: Profiles involved in the proof of Theorem 5

formula and the formulas encoding a set of axioms of inter-
est is satisfiable for, say, n = 3. If it is not, then we have
found an impossibility theorem for n ≥ 3.

At this point the reader may raise an objection or two:
What if our script does not in fact generate the correct for-
mula in CNF? What if the SAT solver has a bug? While it
is not unreasonable to assume that the latter objection is un-
likely to have much impact on the correctness of the results
generated by our approach and while it is possible, at least
in principle, to proof-read a script for generating the CNF
in the same way as one would proof-read a paper, the ac-
cepted gold standard for certifying the correctness of a math-
ematical statement still is, and always will be, an elementary
human-readable proof.

The good news is that SAT solving technology offers a so-
lution to this problem. We can use a tool such as PICOMUS,
which is part of the PICOSAT distribution, to automatically
extract a minimal unsatisfiable subset (MUS) from a given
unsatisfiable set of clauses. Provided it is sufficiently small,
we can then turn this MUS into a human-readable proof.

4.2 Results
By a seminal result in the theory of matching due to
Roth (1982), it is impossible to design a one-to-one match-
ing mechanism that is both stable and two-way strate-
gyproof. To be precise, Roth proved this impossibility theo-
rem for a richer model, in which agents are permitted to re-
port so-called incomplete preferences. Intuitively speaking,
increasing the range of profiles we want our mechanism to
operate on might increase the chance of running into an im-
possibility. Indeed, while Roth’s result holds even for n = 2
for the model he considers, this is not the case for our model:
there exists a matching mechanism for n = 2 that is both sta-
ble and two-way strategyproof. This is well known and easy
to verify. In fact, with a SAT solver at hand, we can auto-
matically design such a mechanism by simply running the
solver on a formula in CNF that encodes the requirements
of stability and strategyproofness, and then inspecting the
model returned (Endriss 2019). We can also count the num-
ber of distinct models of this formula. This reveals that there
are exactly four distinct mechanisms for n = 2 that are both
stable and two-way strategyproof (Endriss 2019).

However, for n ≥ 3 it is well known that Roth’s result ap-
plies even when all preferences must be complete, as is the

case for our model. We are now going to prove a strength-
ened variant of this result: the impossibility continues to ap-
ply even when we weaken stability to top-stability.
Theorem 5. For n ≥ 3, there exists no matching mechanism
that is top-stable and two-way strategyproof.

Proof. As we have seen that both top-stability (TS) and
strategyproofness (SP) are universal axioms, due to Corol-
lary 4, we are done if we can prove the claim for n = 3.
Running PICOMUS on the corresponding CNF returns an
MUS of 23 clauses that together make reference to ten dif-
ferent profiles. These profiles are shown in Figure 1, using
a simplified notation to describe preferences. For example,
in profile p3 agent a1 reports b1 � b2 � b3, while agent b3
reports a2 � a1 � a3. Six of the clauses in the MUS are
instances of TS, applied to the three profiles on the very left
and the three profiles on the very right. Nine clauses are in-
stances of SP; each of them corresponds to one of the nine
arrows in the picture (pointing from the truthful profile to
the profile we obtain when the agent whose name is used
to label the arrow tries to manipulate). The remaining seven
clauses encode (relevant aspects of) the fact that any agent
must be matched with exactly one other agent.

Inspection of Figure 1 reveals that it is impossible to as-
sign a partner to agent a1 in profile p0 without violating at
least one of our requirements. Let us now make this line of
argument explicit. We first show that (a1, b1) 6∈ µ(p0) must
be the case by exploring the profiles on the left:

• (a1, b2) ∈ µ(p4) by TS
• (a1, b2) ∈ µ(p4) implies (a1, b1) 6∈ µ(p1) by SP
• (a1, b3) ∈ µ(p5) by TS
• (a1, b3) ∈ µ(p5) implies (a3, b3) 6∈ µ(p1) by SP
• (a2, b1) ∈ µ(p6) by TS
• (a2, b1) ∈ µ(p6) implies (a3, b1) 6∈ µ(p1) by SP
• (a1, b3) ∈ µ(p1) follows as the only remaining option
• (a1, b3) ∈ µ(p1) implies (a1, b1) 6∈ µ(p0) by SP

For instance, the second step above follows when we con-
sider the possibility of agent a1 manipulating in profile p1
(by moving to p4) to get matched with b2 instead of b1. Next,
we use analogous reasoning to establish (a1, b3) 6∈ µ(p0):

• (a1, b1) ∈ µ(p7) by TS
• (a1, b1) ∈ µ(p7) implies (a1, b2) 6∈ µ(p2) by SP
• (a2, b3) ∈ µ(p8) by TS



• (a2, b3) ∈ µ(p8) implies (a2, b2) 6∈ µ(p2) by SP
• (a3, b3) ∈ µ(p9) by TS
• (a3, b3) ∈ µ(p9) implies (a1, b3) 6∈ µ(p2) by SP
• (a2, b3) ∈ µ(p2) follows as the only remaining option
• (a2, b3) ∈ µ(p2) implies (a1, b3) 6∈ µ(p0) by SP

Finally, we get that (a1, b2) 6∈ µ(p0) as a consequence of
(a1, b1) ∈ µ(p3) and (a1, b1) ∈ µ(p3) implying (a1, b2) 6∈
µ(p0), which are instance of TS and SP, respectively.

Our second impossibility theorem shows that we cannot de-
sign a stable mechanism that would be fair in the sense of
treating the two groups of agents in a symmetric manner.
Theorem 6. For n ≥ 3, there exists no matching mechanism
that is stable and gender-indifferent.

Proof. As we have seen that both stability and gender-
indifference are universal axioms (and as stability entails
top-stability), due to Corollary 4, we are done if we can
prove the claim for n = 3. Running PICOMUS on the corre-
sponding CNF returns an MUS of 13 clauses. Seven of these
clauses encode the fact that any matching mechanism µmust
be well-defined on the following profile (which we call p):

a1 : b2 � b3 � b1
a2 : b3 � b1 � b2
a3 : b1 � b2 � b3

b1 : a2 � a3 � a1
b2 : a3 � a1 � a2
b3 : a1 � a2 � a3

Note that p is symmetric in the sense that, if we swap A
and B (the operation at the heart of the definition of gender-
indifference), then we end up with the very same profile p.

Note that (for n = 3) there are six possible matchings a
mechanism µ might return for a given profile. The remain-
ing six clauses in the MUS each exclude one of those match-
ings as a possibility. Four of them are instances of stability
and two are instances of gender-indifference. Indeed, stabil-
ity rules out the following four matchings:

• {(a1, b1), (a2, b2), (a3, b3)} is blocked by (a1, b2)
• {(a1, b1), (a2, b3), (a3, b2)} is blocked by (a1, b3)
• {(a1, b2), (a2, b1), (a3, b3)} is blocked by (a3, b2)
• {(a1, b3), (a2, b2), (a3, b1)} is blocked by (a2, b1)

But the remaining two matchings are inconsistent with the
requirements imposed by gender-indifference:

• {(a1, b2), (a2, b3), (a3, b1)} is not admissible, because if
we match a1 to b2, then we also must match b1 to a2.

• {(a1, b3), (a2, b1), (a3, b2)} is not admissible, because if
we match a2 to b1, then we also must match b2 to a1.

Thus, any mechanism that is stable and gender-indifferent
will have to remain undefined on p. In other words, there
exists no mechanism that meets all our requirements.

Theorem 6 may appear to contradict a result due to Pini
et al. (2011) who claim to have found a general approach
for turning any given matching mechanism that is stable
into a matching mechanism that is both stable and gender-
indifferent. The source of this mismatch between results is
that Pini et al. work with a different definition of gender-
indifference: under their alternative definition, µ is gender-
indifferent if µ(p) = µ(p′) whenever p′ can be obtained

# Clauses # Variables Build SAT MUS

Theorem 5 4, 805, 568 419, 904 34s 1s 64s
Theorem 6 1, 399, 680 419, 904 9s 2s 19s

Table 2: Resources required to prove impossibility theorems

from profile p by swapping A and B. So their definition is
different from the one originally proposed by Masarani and
Gokturk (1989), which is the one we use in this paper and
which arguably is the most appropriate definition. While the
definition of Pini et al. does encode some notion of what
one might want to call “gender-independence” (the outcome
does not depend on which group is calledA and which group
is called B), it arguably does not quite qualify as a fairness
property, as it does not exclude the possibility that one group
is greatly favoured when computing outcomes.

Table 2 summaries the computational resources required
to prove the two impossibility theorems discussed in this
section (to automatically prove the base case for n = 3).
Besides the size of the formula ϕ in CNF that needs to be
analysed, we report the time it takes to execute the PYTHON
script to build ϕ, the time it takes to run PICOSAT to verify
that ϕ is not satisfiable, and the time it takes to run PICO-
MUS to compute an MUS from which we can read off a
human-verifiable proof. All runtimes have been measured
on a mid-range desktop machine (running an Intel Core i5-
7500 processor at 3.40GHz with 8GB of memory).

Finally, we note that Theorem 5 and Theorem 6 are maxi-
mally strong, in the sense that neither can be strengthened
further by lowering the bound to n ≥ 2 or by omitting
one of the axioms involved. Furthermore, Theorem 5 can-
not be strengthened by weakening two-way strategyproof-
ness to one-way strategyproofness, and Theorem 6 cannot
be strengthened by weakening stability to top-stability. Each
of these claims can be verified at the press of a button by run-
ning a SAT solver on the corresponding formula and finding
that formula to be satisfiable (Endriss 2019).

5 Conclusion
We have extended the approach for proving impossibility
theorems with the help of a SAT solver developed in the field
of computational social choice over the past decade to the
new domain of matching. Our main result is a meta-result
regarding the approach developed: the Preservation Theo-
rem shows that we can reduce the proof of any conjectured
impossibility theorem involving only axioms that have a uni-
versal form to a proof for a fixed domain size—and the latter
typically can be fully automated using SAT solving tech-
nology. Finally, we have used our approach to derive two
new impossibility theorems for one-to-one matching mech-
anisms that are of some interest in their own right.

Future work should be directed towards the challenge
of extending our approach to a wider range of scenarios
in which matching mechanisms are used, notably the case
of one-to-many matching. Another worthwhile challenge
would be to look for applications of the approach beyond
the task of proving impossibility theorems (such as the task
of automatically designing mechanisms with attractive prop-
erties), which we have only briefly hinted at in this paper.
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