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Abstract. We prove that the modal logic of a crowded locally compact generalized ordered
space is S4. This provides a version of the McKinsey-Tarski theorem for generalized ordered
spaces. We then utilize this theorem to axiomatize the modal logic of an arbitrary locally
compact generalized ordered space.

1. Introduction

In topological semantics of modal logic � is interpreted as topological interior and hence
♦ as topological closure. The famous McKinsey-Tarski theorem [17] states that under such
interpretation the modal logic of an arbitrary crowded (that is, dense-in-itself) metrizable
space is Lewis’s well-known modal system S4. The original McKinsey-Tarski theorem had
an additional assumption of separability, which was shown to be redundant by Rasiowa and
Sikorski [18]. On the other hand, if a metric space is not crowded, it can give rise to other
modal logics. A full axiomatization of such logics was given in [5]. To describe this result,
for a topological space X, let L(X) be the modal logic of X; that is, L(X) is the set of modal
formulas valid in X. Let also isoX be the set of isolated points of X. We then have the
following result, where all the undefined notions can be found in Section 2.

Theorem 1.1. [5, Thm. 3.8] Let X be a nonempty metrizable space.

(1) If isoX is not dense in X, then L(X) = S4.
(2) If isoX is dense in X, but X is not scattered, then L(X) = S4.1.
(3) If X is scattered and the Cantor-Bendixson rank of X is infinite, then L(X) = S4.Grz.
(4) If X is scattered and of Cantor-Bendixson rank n ≥ 1, then L(X) = S4.Grzn.

It is unclear whether the McKinsey-Tarski theorem holds for a larger class of spaces. For
example, a natural generalization of the class of metrizable spaces is that of paracompact
spaces. But the McKinsey-Tarski theorem does not hold for crowded paracompact spaces as
it already fails for crowded compact Hausdorff spaces. Indeed, the modal logic of an arbitrary
infinite crowded extremally disconnected compact Hausdorff space is S4.2 [7, Prop. 4.3].

Our aim is to obtain a version of the McKinsey-Tarski theorem for a different class of
spaces, which also plays an important role in topology, and has numerous applications. One
could think of metrizable spaces as a natural generalization of the topology of the real line
R, which is induced by the metric d(x, y) = |x − y|. But this topology is also induced by
the ordering ≤ of R. Thus, the concept of a linearly ordered topological space (or LOTS
for short) is another natural generalization of R (see, e.g., [11, p. 56]). Unlike the class of
metrizable spaces, the class of LOTS is not closed under subspaces. Closing the class of
LOTS under subspaces leads to the notion of a generalized ordered space (or GO-space for
short); see, e.g., [16].
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The classes of metrizable spaces and GO-spaces are incomparable. Each Euclidean space
of dimension ≥ 2 is an example of a metrizable space that is not a GO-space. The circle
is an example of a one-dimensional metrizable space that is not a GO-space. Examples of
GO-spaces that are not metrizable include ω1, the Sorgenfrey line, and the long line (see, e.g.,
[11, p. 237]). More generally, typical examples of non-metrizable GO-spaces are topologies
of “long” lexicographic orders.

Our first main result establishes the McKinsey-Tarski theorem for an arbitrary crowded
locally compact GO-space. If the real line is the guiding example in proving the McKinsey-
Tarski theorem, the guiding example for our version of McKinsey-Tarski theorem is the long
line.

Our strategy is based on the modern proof of the McKinsey-Tarski theorem presented in
[2], which is based on the partition and mapping lemmas. Starting from a closed nowhere
dense set N , the partition lemma builds a partition of a space consisting of N and finitely
many open sets such that N is in the closure of each. Utilizing such partitions, the mapping
lemma delivers a refutation for each non-theorem of S4 via an interior map onto an arbitrary
finite rooted S4-frame. We develop these results for crowded locally compact GO-spaces.

As a brief survey aimed at providing intuition, we sketch how the partition lemma works
for R, then for an arbitrary crowded metrizable space, and finally for a crowded locally
compact GO-space. Rather than working directly with R, consider the real open unit interval
(0, 1). Start with N equal to the Cantor set (excluding 0 and 1) constructed through the
well-known recursion of deleting open middle thirds. Then the open sets of the partition
are obtained by taking appropriate unions of the deleted open thirds. Since an arbitrary
crowded metrizable space need not have an immediate analogue of the Cantor set, Bing’s
metrization theorem is utilized in a nontrivial way to prove a much more elaborate version of
the partition lemma in [2]. The situation for a crowded locally compact GO-space is simpler
because it contains a nowhere dense preimage N of the Cantor set. This yields a starting
point, which relies nontrivially on local compactness (see Section 3), that is analogous to
the above construction for R. Moreover, the complement of N contains enough open sets to
realize the desired partition. It remains an interesting open problem whether we can drop
local compactness from our assumptions.

Our second main result axiomatizes the modal logics arising as L(X) for some locally
compact GO-space X. In particular, we obtain an analogue of Theorem 1.1 for locally com-
pact GO-spaces. While our proof technique is similar to that of [5], there is one important
difference. Namely, the proof of [5] requires that each scattered metrizable space is strongly
zero-dimensional, which is achieved by utilizing Telgarsky’s theorem [20]. However, Telgar-
sky’s theorem is not applicable to every locally compact GO-space. Instead we use Herrlich’s
theorem [12] that a hereditarily disconnected LOTS is strongly zero-dimensional, and gen-
eralize it to the setting of GO-spaces. This yields that each scattered GO-space is strongly
zero-dimensional.

The paper is organized as follows. In Section 2 we recall some basic definitions and facts
about modal logic and its topological semantics. We also provide the necessary background
on LOTS and GO-spaces. Section 3 is dedicated to proving the McKinsey-Tarski theorem
for crowded locally compact GO-spaces. In Section 4 we generalize Herrlich’s result on
hereditarily disconnected LOTS to hereditarily disconnected GO-spaces. Finally, in Section 5
we prove an analogue of Theorem 1.1 for locally compact GO-spaces.
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2. Background

In this section we recall basic definitions and facts about modal logic and topology that
play a key role in the paper. As basic references we use [9] for modal logic, [11] for topology,
and [16] for GO-spaces.

2.1. Modal logic. Lewis’s modal system S4 is the least set of modal formulas containing

• the classical tautologies,
• �(p→ q)→ (�p→ �q),
• �p→ p,
• �p→ ��p,

and closed under the inference rules

• modus ponens ϕ, ϕ→ψ
ψ

,

• substitution ϕ(p0,...,pn)
ϕ(ψ0,...,ψn)

,

• necessitation ϕ
�ϕ .

As is common, we use ♦ϕ as an abbreviation for ¬�¬ϕ.
We call a set L of modal formulas a normal extension of S4 if S4 ⊆ L and L is closed under

the above three inference rules. The following well-known normal extensions of S4 play a
key role in the paper:

S4.1 = S4 + �♦p→ ♦�p
S4.Grz = S4 + �(�(p→ �p)→ p)→ p
S4.Grzn = S4.Grz + bdn (n ≥ 1)

where
bd1 = ♦�p1 → p1
bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1 (n ≥ 1)

In relational semantics of modal logic, an S4-frame is a pair F = (W,R) consisting of a
nonempty set W and a reflexive and transitive binary relation R on W . Let F = (W,R) be
an S4-frame. Then F is a partially ordered S4-frame if R is additionally antisymmetric. For
A ⊆ W , define

R(A) = {w ∈ W | ∃a ∈ A with aRw} and R−1(A) = {w ∈ W | ∃a ∈ A with wRa}.

If A = {w}, then we simply write R(w) and R−1(w). Call F rooted if there is r ∈ W , called
a root of F, such that R(r) = W . A cluster of F is an equivalence class of the equivalence
relation ≡ on W defined by w ≡ v iff wRv and vRw. The skeleton ρF of F is the quotient of
F by ≡. Then ρF is a partially ordered S4-frame whose order is induced by R in the natural
way.

Let F = (W,R) be a partially ordered S4-frame. A subset C of W is a chain in F if wRv
or vRw for all w, v ∈ C. The depth of F is n ≥ 1 provided there is a chain in F consisting of
n elements but no chain in F has n+ 1 elements. Call F a tree if F is rooted and R−1(w) is
a finite chain for each w ∈ W . Let F = (W,R) be a tree and w, v ∈ W . Call v a child of w
and w the parent of v provided v covers w; that is, wRv, w 6= v, and wRuRv implies u = w
or u = v for each u ∈ W .

Let F = (W,R) be an S4-frame. The depth of F is n provided the depth of ρF is n.
Let A ⊆ W . We call w ∈ A quasi-maximal (resp. maximal) in A if wRv implies vRw
(resp. w = v) for each v ∈ A. The concept of quasi-minimal (resp. minimal) is defined
dually. Let qmaxA (resp. maxA) be the set of quasi-maximal (resp. maximal) points in A.
Call F a quasi-tree whenever ρF is a tree. Let F = (W,R) be a quasi-tree. Then F is a
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top-thin-quasi-tree provided that qmaxW = maxW and each maximal cluster is the unique
child of its parent cluster in ρF; see Figure 1.
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Figure 1. A top-thin-quasi-tree.

The modal language is interpreted in an S4-frame F = (W,R) by associating to each
propositional letter a subset of W . This extends to all modal formulas by interpreting the
classical connectives as Boolean operations and the modal box by setting

w � �ϕ iff (∀v ∈ W )(wRv implies v � ϕ),

and hence
w � ♦ϕ iff (∃v ∈ W )(wRv and v � ϕ).

A formula ϕ is valid in F, written F � ϕ, provided under every valuation of the propositional
letters we have w � ϕ for each w ∈ W . Let L(F) be the set of modal formulas valid in F,
and for a class K of S4-frames, let L(K) =

⋂
{L(F) | F ∈ K}. It is well known that L(F) and

hence L(K) are normal extensions of S4. We call L(F) the modal logic of F and L(K) the
modal logic of K. The following result is well known; see, e.g., [9] (or [7, Prop. 2.5]).

Lemma 2.1.
(1) S4 is the logic of the class of all finite quasi-trees.
(2) S4.1 is the logic of the class of all finite top-thin-quasi-trees.
(3) S4.Grz is the logic of the class of all finite trees.
(4) S4.Grzn is the logic of the class of all finite trees of depth ≤ n.

2.2. Topological semantics. As in relational semantics of modal logic, in topological se-
mantics we assume that the modal language is interpreted in nonempty topological spaces.
Let X be a nonempty topological space. We interpret propositional letters as subsets of X,
classical connectives as the corresponding Boolean operations, � as interior, and hence ♦ as
closure. Therefore, for x ∈ X, we have

x � �ϕ iff there is an open neighborhood U of x such that y � ϕ for all y ∈ U,
and hence

x � ♦ϕ iff for every open neighborhood U of x there is y ∈ U such that y � ϕ.

A modal formula ϕ is valid in X, written X � ϕ, provided under all valuations we have
x � ϕ for each x ∈ X. The modal logic L(X) of X is the set of formulas valid in X, and the
modal logic L(K) of a class of spaces is

⋂
{L(X) | X ∈ K}. It is well known that L(X) and

hence L(K) are normal extensions of S4.
Topological semantics generalizes relational semantics of S4 since each S4-frame can be

viewed as a special topological space, in which an arbitrary intersection of open sets is open.
Such spaces are known as Alexandroff spaces. For an S4-frame F = (W,R), call U ⊆ W an
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R-upset if R(U) = U . An R-downset is defined dually, and for a partially ordered set we
simply say an upset or downset. The collection τR of all R-upsets of F is an Alexandroff
topology on W such that R−1 is the closure operator, {R(w) | w ∈ W} is a basis for τR, and
F � ϕ iff (W, τR) � ϕ for each modal formula ϕ. Consequently, if a normal extension of S4
is complete with respect to its relational semantics, then it is also complete with respect to
its topological semantics.

For a topological space X, we denote the closure and derivative operators by c and d,
respectively. We recall that a point x ∈ X is isolated if {x} is open. Let isoX be the set of
isolated points of X. Then X is crowded (or dense-in-itself ) if isoX = ∅, and X is scattered
if every nonempty subspace of X has an isolated point (in the relative topology).

Following a suggestion of Archangel’skii (see [4, Sec. 2.2]), we call X densely discrete
provided isoX is dense in X (that is, c(isoX) = X). It is easy to see that every scattered
space is densely discrete, but that the converse is not true in general.

By the famous Cantor-Bendixson theorem, each space is decomposed into the disjoint
union of a closed crowded subspace D and an open scattered subspace S. For A ⊆ X and
ordinal α, define recursively dαA by setting

d0A = A
dα+1A = d (dαA)
dαA =

⋂
β<α d

βA if α is a limit ordinal.

There is a least ordinal %, called the Cantor-Bendixson rank of X, such that d%X = d%+1X.
The Cantor-Bendixson decomposition X = D∪S is then realized by D = d%X and S = X\D.
It is well known that X is scattered iff D = ∅, and that X is crowded iff S = ∅. For scattered
spaces, the Cantor-Bendixson rank is the topological analogue of the depth of an S4-frame.
It is well known that an S4-frame F is of depth ≤ n iff F � bdn (see, e.g., [9, Prop. 3.44]).
Likewise, it follows from [5, Lem. 3.6] that a nonempty scattered space X is of Cantor-
Bendixson rank ≤ n iff X � bdn. The following topological analogue of Lemma 2.1 is well
known (see, for example, [7, Prop. 2.2]).

Lemma 2.2.
(1) S4 is the logic of the class of all topological spaces.
(2) S4.1 is the logic of the class of all densely discrete spaces.
(3) S4.Grz is the logic of the class of all scattered spaces.
(4) S4.Grzn is the logic of the class of all scattered spaces of Cantor-Bendixson rank ≤ n.

Let f : X → Y be a map between topological spaces. We recall that f is

• continuous if f−1(V ) is open in X for each open V ⊆ Y ,
• open if f(U) is open in Y for each open U ⊆ X,
• interior if it is both continuous and open.

It is well known that f is interior iff f−1 commutes with closure. We will use this in Section 5.
If f is an onto interior map, then we call Y an interior image of X. Because an S4-frame
is equivalently an Alexandroff space, these definitions make sense if either X or Y is an S4-
frame. Indeed, an interior map is the topological analogue of a p-morphism. As such, onto
interior maps preserve validity; that is, if Y is an interior image of X, then L(X) ⊆ L(Y ).

Let Y be an open subspace of X. Then the inclusion Y → X is an interior map. As
with interior images, we have that open subspaces preserve validity; that is, if Y is an open
subspace of X, then L(X) ⊆ L(Y ).

2.3. LOTS and GO-spaces. We recall that a partially ordered set (X,≤) is linearly ordered
if x ≤ y or y ≤ x for each x, y ∈ X (that is, X is a chain). We write x < y provided x ≤ y
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and x 6= y. The intervals

(x, y), [x, y], [x, y), (y, x]

are defined as usual, and so are the intervals

(x,→), [x,→), (←, y), (←, y].

Therefore,

(x, y) = {z ∈ X | x < z < y}, (x,→) = {z ∈ X | x < z}, etc.

We say that C ⊆ X is convex provided x, y ∈ C and x ≤ y imply [x, y] ⊆ C. Clearly each
interval is convex. Let ∅ 6= Y ⊆ X. A convex component C of Y is a maximal convex subset
of Y . Each convex component of Y is an interval (possibly a singleton). For each x ∈ Y ,
there is a unique convex component Cx of Y containing x; namely

Cx =
⋃
{C ⊆ Y | x ∈ C and C is convex},

and the convex components of Y yield a partition of Y . The next definition is well known
(see, e.g., [11, pp. 56–57]).

Definition 2.3. A topological space (X, τ) is called a linearly ordered topological space or
simply a LOTS provided there is a linear order ≤ on X such that the family

B≤ := {(x,→), (x, y), (←, y) | x, y ∈ X}

is a basis for τ . We call τ the interval topology, and say that ≤ induces τ .

Typical examples of LOTS include the real numbers R, rationals Q, the Cantor space C,
etc. On the other hand, the subspace X := (0, 1) ∪ {2} of R is not a LOTS (see, e.g., [16,
Rem. 6.2]). This shows that the class of LOTS is not closed under taking subspaces.

Definition 2.4. A topological space X is called a generalized ordered space or simply a
GO-space provided it is homeomorphic to a subspace of some LOTS.

The next theorem is well known (see, e.g., [16, Sec. 2]).

Theorem 2.5. A topological space (X, τ) is a GO-space iff there is a linear ordering ≤ of
X such that B≤ ⊆ τ and each x ∈ X has a local basis consisting of intervals in X.

We conclude this section with a lemma in which we collect together some well-known
facts about GO-spaces that will be useful in the rest of the paper. Where we were unable
to find an exact reference, we briefly sketch a proof. We recall that a subset of a topological
space is clopen if it is simultaneously closed and open, and that a property is hereditary if
every subspace has it. We also recall that the concept of a collectionwise normal space is a
strengthening of the concept of a normal space; see [11, p. 305] for details.

Lemma 2.6. Let X be a GO-space.

(1) The convex components of an open subset U of X are open, and hence U is uniquely
represented as a disjoint union of open convex sets in X.

(2) If X is compact, then X is a LOTS.
(3) If K ⊆ X is compact and nonempty, then maxK and minK exist.
(4) If X is separable, then X is first-countable.
(5) X is separable iff X is hereditarily separable.
(6) X is hereditarily collectionwise normal.
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Proof. (1) Let C be a convex component of U and x ∈ C. As x ∈ U , there is an open convex
subset V of X such that x ∈ V and V ⊆ U . By the maximality of C we see that V ⊆ C.
Therefore, C is open in X.

(2) See, e.g., [16, Lem. 6.1].
(3) If maxK does not exist, then {(←, x) | x ∈ K} is an open covering of K with no finite

subcover. That minK exists is proved similarly.
(4) Let D be a countable dense subset of X and x ∈ X. If x is isolated in X then {{x}}

is a countable local basis at x. Suppose that x is not isolated. Then

x ∈ c (X \ {x}) = c(←, x) ∪ c(x,→).

If x ∈ c(←, x) ∩ c(x,→), then

{(d, e) | d, e ∈ D and d < x < e}

is a countable local basis at x. Suppose that x ∈ c(←, x) \ c(x,→). Then c(←, x) = (←, x]
and c(x,→) = (x,→). Therefore, (←, x] is a clopen downset, implying that {(a, x] | a < x}
is a local basis at x. Thus,

{(d, x] | d ∈ D ∩ (←, x)}
is a countable local basis at x. Similarly, if x ∈ c(x,→)\c(←, x), then {[x, d) | d ∈ D∩(x,→)}
is a countable local basis at x.

(5) See, e.g., [16, Prop. 2.10(a)].
(6) By [16, Prop. 4.1], each GO-space is collectionwise normal. Since a subspace of a

GO-space is a GO-space, each GO-space is hereditarily collectionwise normal. �

3. The McKinsey-Tarski Theorem for crowded locally compact GO-spaces

In this section we prove our first main result, that the McKinsey-Tarski Theorem holds for
an arbitrary crowded locally compact GO-space. The section is divided into three subsec-
tions. The first subsection consists of several auxiliary lemmas, the second subsection proves
the Partition Lemma, the key tool in proving the Mapping Lemma, which is done in the
third subsection. The Mapping Lemma then easily delivers the main result of the section,
that S4 is the logic of an arbitrary crowded locally compact GO-space.

3.1. Auxiliary lemmas. We recall that a space X is locally compact provided for each
x ∈ X there is an open neighborhood U of x such that cU is a compact Hausdorff subspace
of X. By [11, Thm. 3.3.1], each locally compact space is Tychonoff. We also recall that a
continuous onto map between compact Hausdorff spaces is irreducible provided the image of
a closed proper subset is proper. The following fact is well known. Since we were unable to
find a reference, we give a short proof.

Lemma 3.1. (Folklore) Let X be a nonempty crowded locally compact space. Then there is
a compact subspace Y of X and an irreducible map f from Y onto the Cantor space C.

Proof. Since X is nonempty locally compact, there is a nonempty open subset U of X such
that cU is compact. Because X is crowded, cU is not scattered. Therefore, [19, Thm. 8.5.4]
yields a continuous onto map f : cU → [0, 1]. Thus, f−1(C) is a closed, hence compact
subspace of cU , and the restriction of f to f−1(C) is a continuous map onto C. Finally,
apply [15, p. 102] to deliver a closed, hence compact subspace Y of f−1(C) such that the
restriction of f to Y is an irreducible map onto C. �

Lemma 3.2. For X, Y , and f : Y → C as in Lemma 3.1, there is a compact nowhere dense
Z ⊆ X and an irreducible map g : Z → C.
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Proof. Let C0 be a nowhere dense closed subspace of C that is homeomorphic to C. Since f
is irreducible, f−1(C0) is closed and nowhere dense in Y , hence closed and nowhere dense in
X. There is a closed subspace Z of f−1(C0) such that f |Z : Z → C0 is an irreducible map
(see, e.g., [15, p. 102]). As Y is compact and Z is closed in Y , we have that Z is compact.
Moreover, Z is nowhere dense in X since Z is nowhere dense in f−1(C0), which is nowhere
dense in X. The desired irreducible map g : Z → C is then the composition of f |Z and a
homeomorphism of C0 onto C. �

Lemma 3.3. If X, Z, and g : Z → C are as in Lemma 3.2, then Z is separable and crowded.

Proof. Let D be a countable dense subset of C. Because g is onto, we may choose zx ∈ g−1(x)
for each x ∈ D. Let E = {zx | x ∈ D}. Then E is dense in Z since g is irreducible.
Therefore, Z is separable. If x is an isolated point of Z, then Z \ {x} is a proper closed
subset of Z, and hence g(Z \ {x}) is a proper closed subset of C. This is a contradiction
since g(Z \ {x}) = C \ {g(x)}. Thus, Z is crowded. �

Lemma 3.4. Let X be a crowded locally compact GO-space and C a nonempty convex open
subset of X. Then there is a nonempty crowded compact separable nowhere dense subspace
of C.

Proof. Being a nonempty convex open subset of a crowded Hausdorff space, there are x, y ∈ C
such that ∅ 6= (x, y) ⊆ C. Since (x, y) is open in X, which is crowded and locally compact,
we have that (x, y) is a crowded locally compact subspace of X. Lemmas 3.2 and 3.3 then
yield a nonempty crowded compact separable nowhere dense subspace Z of (x, y). Since Z
is nowhere dense in (x, y), it is nowhere dense in C. �

The nonempty crowded compact separable nowhere dense subspaces play the same role in
our construction as the Cantor space plays in the construction of [6, Sec. 3].

Lemma 3.5. Let X be a crowded compact separable GO-space and

L = {x ∈ X | x ∈ c(←, x)}.

(1) L is dense in X.
(2) There is a countable dense subset D of X such that D ⊆ L and each x ∈ D is the

supremum of a strictly increasing sequence in D.

Proof. (1) If L is not dense, then there is a nonempty open subsetG ofX such thatG∩L = ∅.
Since G 6= ∅ and X is normal (see Lemma 2.6(6)), there is a nonempty open subset U of
X such that cU ⊆ G. Because U is a nonempty open subspace of a crowded space, U is
crowded, so cU is also crowded. Moreover, cU is compact and cU ∩L = ∅. Let x = max cU
(see Lemma 2.6(3)). As x 6∈ L, we have that x 6∈ c(←, x). Therefore, there is an open
neighborhood V of x such that V ∩ (←, x) = ∅. Thus, V ∩ cU = {x}, implying that x is an
isolated point of cU . The obtained contradiction proves that L is dense in X.

(2) By Lemma 2.6(5), L is separable. Let D be a countable dense subset of L. Then
D is dense in X since L is dense in X by (1). Let x ∈ D. It follows from Lemma 2.6(4)
that there is a countable local basis {Un | n ∈ ω} at x. Without loss of generality we may
assume Un+1 ⊂ Un for each n ∈ ω. We recursively define a sequence {xn}n∈ω utilizing both
that x ∈ c(←, x) (since x ∈ L) and that D is dense in X. As U0 is an open neighborhood
of x, we have that U0 ∩ (←, x) 6= ∅. Because U0 ∩ (←, x) is open in X, we may choose
x0 ∈ U0 ∩ (←, x)∩D. For n ∈ ω, assume that xn ∈ Un ∩D has been chosen so that xn < x.
Noting that (xn,→)∩Un+1 is an open neighborhood of x, we have that (xn,→)∩Un+1∩(←, x)
is a nonempty open subset of X. Thus, we may choose xn+1 ∈ (xn,→)∩Un+1 ∩ (←, x)∩D.
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By construction, we have that {xn}n∈ω is a strictly increasing sequence in D bounded
above by x. Let y ∈ X be such that y < x. Then (y,→) is an open neighborhood of x. So
there is n ∈ ω such that Un ⊆ (y,→). Since xn ∈ Un, we have that y < xn. Therefore, y is
not an upper bound of {xn}n∈ω, and hence x is the supremum of {xn}n∈ω. �

3.2. The Partition Lemma. Let κ ≥ 1 be a cardinal. We recall that a space Y is κ-
resolvable if there is a partition of Y into κ subsets that are each dense in Y . Clearly being
1-resolvable merely means that the space is nonempty. Nevertheless, this notion is useful for
inductive arguments. The following lemma on resolvability is a straightforward consequence
of the work of Hewitt, Ceder, Illanes, and Eckertson.

Lemma 3.6. Let Y be a nonempty crowded Hausdorff space and 1 ≤ κ ≤ ω.

(1) If Y is first-countable, then Y is κ-resolvable.
(2) If Y is locally compact, then Y is κ-resolvable.

Proof. (1) Since Y is a nonempty crowded first-countable space, Y is 2-resolvable by [13,
p. 331]. Because the property of being first-countable and crowded is preserved by dense
subsets of Y , a straightforward induction yields that Y is n-resolvable for each n ≥ 2. By
[14, Thm. 5], Y is also ω-resolvable.

(2) Recall that the dispersion character of Y is

∆(Y ) := min{|U | | U is nonempty open in Y }.

Since Y is a nonempty crowded Hausdorff space, ∆(Y ) ≥ ω. Because Y is also locally
compact, Y is ∆(Y )-resolvable by [8, Thm. 7]. Now apply [10, Prop. 1.1(b)]. �

Lemma 3.7. [Partition Lemma] Let X be a crowded locally compact GO-space, F a nonempty
crowded compact separable nowhere dense subset of X, and k ∈ ω. Then there is a partition
{F,U0, . . . , Uk} of X such that each Ui is open in X and cUi = Ui ∪ F .

Proof. Since F satisfies the conditions of Lemma 3.5, there is a countable dense subset D of
F as in Lemma 3.5(2). Being a compact subspace of a GO-space, F is closed in X. Let C
be the collection of all convex components of X \ F . By Lemma 2.6(1), each element of C
is open in X. For each x ∈ X \ F let Cx be the unique element of C such that x ∈ Cx.

For each x ∈ D, we build a countably infinite pairwise disjoint subcollection C ′x of C .
Let x ∈ D. By Lemma 3.5(2), there is a strictly increasing sequence {xn}n∈ω in D whose
supremum is x. Let n ∈ ω and consider the open interval (xn, xn+1), which is nonempty
by Lemma 3.5(2) because xn+1 ∈ D. Since F is nowhere dense, (xn, xn+1) 6⊆ F . Choose
yn ∈ (xn, xn+1) \ F and consider Cyn ∈ C . Since xn, xn+1 ∈ F , it must be the case that
Cyn ⊆ (xn, xn+1). Set C ′x = {Cyn | n ∈ ω}.

Let x, y ∈ D be such that y < x. As x is the supremum of the strictly increasing sequence
{xn}n∈ω, there is N ∈ ω such that y < xn for all n ≥ N . Thus, all but finitely many members
of C ′x are contained in (y,→). This implies that C ′x ∩ C ′y is finite since

⋃
C ′y ⊆ (←, y). Let

{xm | m ∈ ω} be an enumeration of D. For each m ∈ ω put

Cxm = C ′xm \
⋃
i<m

C ′xi

Then {Cx | x ∈ D} is a pairwise disjoint family of countably infinite subcollections of C .
Since F is a crowded separable GO-space and D is a dense subspace of F , we have that

D is crowded and separable (see Lemma 2.6(5)). By Lemma 2.6(4), D is first-countable. By
Lemma 3.6(1), there is a partition {D0, . . . , Dk} of D consisting of dense subsets of D. For
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0 ≤ i ≤ k, set Ui =
⋃

Ci where

Ci =

{ ⋃
{Cx | x ∈ Di} if i < k

C \
⋃
{Cx | x ∈ D \Dk} if i = k

Since C consists of open convex sets in X, for each 0 ≤ i ≤ k we have that Ui is open
in X and its set of convex components is Ci. Moreover, {C0, . . . ,Ck} is a partition of C .
Therefore, {U0, . . . , Uk} is pairwise disjoint and

X \ F =
⋃

C =
⋃k

i=0

⋃
Ci =

⋃k

i=0
Ui.

Thus, {F,U0, . . . , Uk} is a partition of X.
Let 0 ≤ i ≤ k. To see that cUi = Ui ∪ F , we first observe that Ui ∪ F is closed since

X \ (Ui ∪ F ) = U0 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Uk
is open. Thus, cUi ⊆ Ui∪F and it is sufficient to show that F ⊆ cUi. Let y ∈ F and U be an
open neighborhood of y. Since open convex sets form a basis of X, without loss of generality
we may assume that U is convex. Because Di is dense in F , there is x ∈ Di∩U . Since x ∈ D
and F is closed in X, we have that x ∈ c(←, x)∩ F = c ((←, x) ∩ F ). Thus, U ∩ (←, x)∩ F
is a nonempty open subset of F , and so there is a ∈ D∩U ∩ (←, x). By Lemma 3.5(2), there
is N ∈ ω such that a < xn for n ≥ N . Therefore, Cyn ⊆ (xn, xn+1) ⊆ (xN , x) ⊆ (a, x) ⊆ U
for n ≥ N . Since C ′x \Cx is finite, there is n ∈ ω with n ≥ N and Cyn ∈ Cx ⊆

⋃
z∈Di

Cz = Ci.
Thus, Cyn ⊆

⋃
Ci = Ui, which yields that ∅ 6= Cyn ⊆ Ui ∩ U . Consequently, F ⊆ cUi. �

Remark 3.8. The last paragraph of the proof of the Partition Lemma shows that for each
open neighborhood U of y ∈ F and 0 ≤ i ≤ k, there is a convex component Ci of Ui such
that Ci ⊆ U .

3.3. The Mapping Lemma. As we pointed out in Section 2.2, we view S4-frames as
Alexandroff spaces.

Lemma 3.9. [Mapping Lemma] Let X be a nonempty crowded locally compact GO-space
and let T = (W,R) be a finite quasi-tree. Then T is an interior image of X.

Proof. Our proof is by strong induction on the depth n ≥ 1 of T. Let the root cluster of T
be C = {rj | 0 ≤ j ≤ m} for some m ∈ ω.

Base case: Suppose n = 1. By Lemma 3.6(2), X is (m + 1)-resolvable. Therefore, T is
an interior image of X by [1, Lem. 5.9].

Inductive step: Suppose n ≥ 1, the depth of T is n + 1, and each finite quasi-tree of
depth ≤ n is an interior image of any nonempty crowded locally compact GO-space.

Let w0, . . . , wk be representatives of the children clusters of the root cluster C of T. For
each i ≤ k put Wi = R(wi) and Ti = (Wi, Ri), where Ri is the restriction of R to Wi. Then
each Ti is a quasi-tree of depth ≤ n; see Figure 2.

r0, . . . , rm
�
 �	HH

H
��

�

�
 �	 �
 �	w0 wk

T0 Tk

E
E
E
E
E

E
E
E
EE

�
�
�
��

�
�
�
��

· · ·

Figure 2. The quasi-trees T and T0, . . . ,Tk.
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Because X is nonempty, by Lemma 3.4, there is a nonempty crowded compact separable
nowhere dense subspace F of X. In particular, F is locally compact, so Lemma 3.6(2)
delivers a partition {Fj | 0 ≤ j ≤ m} of F such that each Fj is dense in F .

Let {F,U0, . . . , Uk} be as in the Partition Lemma and 0 ≤ i ≤ k. Adopting the notation
in the proof of the Partition Lemma, we have Ui =

⋃
Ci where Ci is the set of convex

components of Ui. Let C ∈ Ci. Then C is a convex component of X \ F . Because F is
closed, C is open by Lemma 2.6(1). Thus, the subspace C is a nonempty crowded locally
compact GO-space. By the inductive hypothesis, there is an onto interior map fC,i : C → Ti.

Define f : X → T by

f(x) =

{
fC,i(x) if x ∈ C for 0 ≤ i ≤ k and C ∈ Ci

rj if x ∈ Fj for 0 ≤ j ≤ m

Then f is a well-defined onto map since {F,U0, . . . , Uk} is a partition of X, {F0, . . . , Fm}
is a partition of F , Ci is a partition of Ui for each 0 ≤ i ≤ k, and each mapping fC,i is
onto. Figure 3 depicts the mapping f where the set F is represented by bullets, the convex
components of some Ui are depicted with angled brackets, and C is a convex component of
Ui.

r0, . . . , rm
�
 �	

�
 �	wi

Ti

E
E
E
EE

�
�
�
��

· · · · · ·

X
F

•• •• •• •• •• ••
〈〉 〈 〉 〈 〉

C -fC,i

-

Ui =
⋃

Ci and C ∈ Ci

Figure 3. The mapping f : X → T.

Claim 3.10. f is continuous.

Proof. Let w ∈ W . If w is a root of T, then f−1(R(w)) = f−1(W ) = X is open in X.
Suppose that w is not a root of T. Since T is a quasi-tree, there is a unique 0 ≤ i ≤ k
such that wiRw. Let C ∈ Ci. Since fC,i is continuous, f−1C,i(R(w)) is open in C, and hence

open in X (because C is open in X). Thus, f−1(R(w)) =
⋃
C∈Ci

f−1C,i(R(w)) is open in X.
Because {R(w) | w ∈ W} is a basis for the Alexandroff topology on T, it follows that f is
continuous. �

Claim 3.11. f is open.

Proof. Let U be a nonempty open subset of X. Since convex open subsets form a basis
for X and the direct image of a function commutes with arbitrary unions, without loss of
generality we may assume that U is convex. For each 0 ≤ i ≤ k and C ∈ Ci, the set U ∩ C
is open in C. As fC,i is open, it follows that fC,i(U ∩C) is open in Ti, and hence open in T.
We have

X = F ∪
⋃k

i=0
Ui =

(⋃m

j=0
Fj

)
∪
(⋃k

i=0

⋃
Ci

)
Therefore,

U = U ∩X =
(⋃m

j=0
(U ∩ Fj)

)
∪
(⋃k

i=0

⋃
C∈Ci

(U ∩ C)
)
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Thus,

f(U) =
(⋃m

j=0
f (U ∩ Fj)

)
∪
(⋃k

i=0

⋃
C∈Ci

f (U ∩ C)
)

=
(⋃m

j=0
f (U ∩ Fj)

)
∪
(⋃k

i=0

⋃
C∈Ci

fC,i (U ∩ C)
)
.

If U ∩ F = ∅, then U ∩ Fj = ∅ for all 0 ≤ j ≤ m, which yields that

f(U) =
⋃k

i=0

⋃
C∈Ci

fC,i (U ∩ C)

is open in T since each fC,i (U ∩ C) is open in T.
Suppose that U ∩ F 6= ∅. This yields that U ∩ Fj 6= ∅ for all 0 ≤ j ≤ m since each Fj is

dense in F and U ∩ F is a nonempty open subset of F . Therefore, f(U ∩ Fj) = {rj} for all
0 ≤ j ≤ m. Let 0 ≤ i ≤ k. Because U ∩ F 6= ∅, Remark 3.8 implies that there is a convex
component Ci of Ui contained in U . Since fCi,i(Ci) = Ti, we have

f(U) =
(⋃m

j=0
f (U ∩ Fj)

)
∪
⋃k

i=0

⋃
C∈Ci

fC,i (U ∩ C)

⊇
(⋃m

j=0
{rj}

)
∪
⋃k

i=0
fCi,i (U ∩ Ci)

= {r0, . . . , rm} ∪
⋃k

i=0
fCi,i (Ci)

= {r0, . . . , rm} ∪
⋃k

i=0
Ti = T.

Thus, f is open. �

Consequently, T is an interior image of X. �

We are ready to prove an analogue of the McKinsey-Tarski Theorem for crowded locally
compact GO-spaces.

Theorem 3.12. If X is a nonempty crowded locally compact GO-space, then L(X) = S4.

Proof. Since S4 ⊆ L(X), it is sufficient to prove that if S4 6` ϕ, then ϕ is refuted on X. By
Lemma 2.1(1), ϕ is refuted on some finite quasi-tree T. By the Mapping Lemma, T is an
interior image of X. As interior images preserve validity, X 6� ϕ. Thus, L(X) = S4. �

Since a LOTS is a GO-space, we immediately obtain the following corollary.

Corollary 3.13. If X is a nonempty crowded locally compact LOTS, then L(X) = S4.

Remark 3.14.
(1) Since R and C are crowded locally compact LOTS, it follows from Corollary 3.13 that

S4 is the logic of both R and C.
(2) The Euclidean spaces Rn for n ≥ 2 are not GO-spaces. Nevertheless, it is an easy

consequence of Corollary 3.13 that L(Rn) = S4. Indeed, since the projection map
from Rn onto R is an onto interior map, every formula ϕ refuted on R is also refuted
on Rn. This implies that L(Rn) = S4.

(3) On the other hand, since Q is not locally compact, our results do not yield that
L(Q) = S4.

(4) Local compactness is essential for our proof as it produces our basic building block for
the recursive step in the Mapping Lemma. Without the locally compact assumption
it is unclear how to construct such a building block.

Open Problem: Is S4 the logic of an arbitrary nonempty crowded GO-space?



THE MCKINSEY-TARSKI THEOREM FOR LOCALLY COMPACT ORDERED SPACES 13

4. Zero-dimensional GO-spaces

In this section we recall Herrlich’s result about hereditarily disconnected LOTS, and then
utilize a result of Čech to generalize Herrlich’s result to GO-spaces. We start by the following
well-known definition (see, e.g., [11, Sec. 6.2]).

Definition 4.1. Let X be a topological space.

(1) X is hereditarily disconnected if the only nonempty connected subsets of X are sin-
gletons.

(2) X is zero-dimensional if X is T1 and has a basis of clopen sets.
(3) X is strongly zero-dimensional if X is Tychonoff and the Čech-Stone compactification

βX of X is zero-dimensional.

Every strongly zero-dimensional space is zero-dimensional (see, e.g., [11, Thm. 6.2.6]), and
every zero-dimensional space is hereditarily disconnected (see, e.g., [11, Thm. 6.2.1]).

Theorem 4.2. (Herrlich [12, Lem. 1]) A LOTS is strongly zero-dimensional iff it is heredi-
tarily disconnected.

To generalize Herrlich’s result to GO-spaces, we use Lutzer’s modification of Čech’s con-
struction.

Definition 4.3. (Lutzer [16, Def. 2.5]) Let X be a GO-space with order ≤ and topology τ ,
and let σ be the interval topology induced by ≤. Define X∗ ⊆ X × Z by

X∗ = (X × {0}) ∪ {(x, n) | [x,→) ∈ τ \ σ and n ≤ 0}
∪ {(x,m) | (←, x] ∈ τ \ σ and m ≥ 0} .

We view X∗ as a LOTS whose interval topology is induced by the restriction of the lexico-
graphic order on X × Z.

Remark 4.4. We can think of X∗ as being obtained from X by inserting a decreasing
sequence of isolated points below each x ∈ X satisfying [x,→) ∈ τ \ σ, and an increasing
sequence of isolated points above each x ∈ X satisfying (←, x] ∈ τ \ σ. Each such sequence
does not have a limit in X∗. For the subspace X := {−1} ∪ (0, 1) ∪ {2} of the LOTS R, we
have that X∗ is homeomorphic to{

− 1

m+ 1
| m ≥ 0

}
∪ (0, 1) ∪

{
2− n
1− n

| n ≤ 0

}
The next theorem is attributed to Čech in [16, Prop. 2.7].

Theorem 4.5. Let X be a GO-space and let X∗ be as in Definition 4.3. The mapping
f : X → X∗ given by f(x) = (x, 0) is an order-isomorphism and homeomorphism of X and
the subspace X × {0} of X∗.

From now on we identify X with the subspace X×{0} of X∗. It follows from the proof of
[16, Thm. 2.9] that X∗ \X consists of isolated points of X∗, which yields that X is a closed
subspace of X∗.

Lemma 4.6. If X is a hereditarily disconnected GO-space, then X∗ is a hereditarily discon-
nected LOTS.

Proof. Let A be a nonempty connected subspace of X∗. If A ⊆ X, then A is a singleton
since X is hereditarily disconnected. Suppose A 6⊆ X. Then A ∩ (X∗ \X) 6= ∅. Therefore,
A contains an isolated point x of X∗. Because {x} is clopen and A is connected, we conclude
that A = {x}. Thus, X∗ is hereditarily disconnected. �
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We are ready to generalize Herrlich’s result to GO-spaces.

Theorem 4.7. A GO-space is strongly zero-dimensional iff it is hereditarily disconnected.

Proof. It is sufficient to show that every hereditarily disconnected GO-space is strongly
zero-dimensional. Let X be a hereditarily disconnected GO-space and let X∗ be as in Defi-
nition 4.3. By Lemma 4.6, X∗ is hereditarily disconnected. Therefore, by Theorem 4.2, X∗

is strongly zero-dimensional. By [11, Thm 6.2.11], strong zero-dimensionality is a heredi-
tary property for closed subspaces of a normal space. Thus, X is strongly zero-dimensional
because X is a closed subspace of the strongly zero-dimensional normal space X∗. �

Corollary 4.8. Let X be a GO-space.

(1) X is zero-dimensional iff X is strongly zero-dimensional.
(2) If X is scattered, then X is strongly zero-dimensional.

Proof. (1) This is immediate from Theorem 4.7.
(2) We show that X is hereditarily disconnected. Let A be a nonempty connected subspace

of X. Since X is scattered, A has an isolated point, so {x} is a clopen subset of A. Because
A is connected, A = {x}. Thus, X is hereditarily disconnected, and applying Theorem 4.7
finishes the proof. �

5. Logics arising from locally compact GO-spaces

In this final section we axiomatize all logics arising as L(X) for some nonempty locally
compact GO-space. The main result is that

S4 ⊂ S4.1 ⊂ S4.Grz ⊂ · · · ⊂ S4.Grz3 ⊂ S4.Grz2 ⊂ S4.Grz1

are exactly the logics obtained this way, thus yielding an analogue of Theorem 1.1 for locally
compact GO-spaces.

Let X be a nonempty locally compact GO-space. If X is not densely discrete, then
Theorem 3.12 yields that L(X) = S4, as we next show.

Theorem 5.1. If X is a locally compact GO-space that is not densely discrete, then L(X) =
S4.

Proof. We only need to show L(X) ⊆ S4 since the other inclusion always holds. Suppose
S4 6` ϕ. Because X is not densely discrete, U := X \c(isoX) is a nonempty open subset of X.
Let X = D ∪ S be the Cantor-Bendixson decomposition of X. Since S ⊆ c(isoX), we have
U ⊆ D. Therefore, U is a nonempty crowded locally compact GO-space. By Theorem 3.12,
U refutes ϕ. As open subspaces preserve validity, X also refutes ϕ. Thus, L(X) = S4. �

Next suppose that X is densely discrete. To determine L(X) we need one more mapping
lemma (Lemma 5.3) for which we recall the following two results about normal spaces. The
first one follows from a straightforward inductive argument from the well-known fact that
if F1, F2 are disjoint closed subsets of a normal space, then there exist open subsets U1, U2

such that F1 ⊆ U1, F2 ⊆ U2, and cU1, cU2 are disjoint. The second one can, for example, be
found in [5, Lem. 3.2].

Lemma 5.2. Let X be a normal space, n ≥ 1, and {Fi | i < n} a pairwise disjoint family
of nonempty closed subsets of X.

(1) There is a family {Ui | i < n} of open subsets of X such that Fi ⊆ Ui for each i < n
and {cUi | i < n} is pairwise disjoint.

(2) If in addition X is strongly zero-dimensional, then {Ui | i < n} can be chosen to be
a partition of X.



THE MCKINSEY-TARSKI THEOREM FOR LOCALLY COMPACT ORDERED SPACES 15

For a finite top-thin-quasi-tree T = (W,R) let T− be the quasi-tree obtained from T by
deleting maxW ; see Figure 4.
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Figure 4. The quasi-trees T and T−.

Lemma 5.3. Let X be a non-scattered densely discrete locally compact GO-space. Then
every finite top-thin-quasi-tree T = (W,R) is an interior image of X.

Proof. Let X = D∪S be the Cantor-Bendixson decomposition of X. Because X is nonempty
and densely discrete, S ⊇ isoX 6= ∅. Also since X is not scattered, D is nonempty, and so
D is a crowded locally compact GO-space. By the Mapping Lemma (Lemma 3.9), there is
an onto interior map g : D → T−. We show by strong induction on the depth n of T that
each such map g can be extended to an onto interior map f : X → T so that f(S) = maxW .
It follows from the definition of a top-thin-quasi-tree that the depth of T is ≥ 2. Therefore,
the base case for induction is n = 2. Let Cr be the root cluster of T.

Base case: Suppose that n = 2. Then W = Cr ∪ {m} where m is the maximum element
of T; see Figure 5.

�
 �	Cr

•
m

Figure 5. A top-thin-quasi-tree of depth 2.

Let g : D → T− be an onto interior map. Define f : X → T by

f(x) =

{
g(x) if x ∈ D
m if x ∈ S

Because {D,S} is a partition of X and g is onto, it follows that f is a well-defined onto map
that extends g. Clearly f(S) = {m} = maxW .

Since {m} is the only nonempty proper open subset of T and f−1(m) = S is open in X,
we have that f is continuous. Let U be a nonempty open subset of X. As X is densely
discrete, ∅ 6= U ∩ isoX ⊆ U ∩ S. If U ⊆ S, then f(U) = {m} is open in T. Suppose U 6⊆ S.
Then U ∩ D is a nonempty open subset of D. Because g is interior and T− consists of a
single cluster, namely Cr, we have

f(U) = f(U ∩ S) ∪ f(U ∩D) = {m} ∪ g(U ∩D) = {m} ∪ Cr = W.

Thus, f is open, and hence T is an interior image of X.
Inductive step: Suppose that the depth of T is n + 1, where n ≥ 2. By inductive

hypothesis, for each top-thin-quasi-tree F = (V, S) of depth ≤ n, a non-scattered densely



16 G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, AND J. VAN MILL

discrete locally compact GO-space Y whose Cantor-Bendixson decomposition is Y = D′∪S ′,
and G : D′ → F− an onto interior map, there is an onto interior map F : Y → F extending
G such that F (S ′) = maxV .

Let g : D → T− be an onto interior map. We must extend g to an onto interior map
f : X → T so that f(S) = maxW . Let C0, . . . , Ck be the children clusters of the root cluster
Cr of T. For i = 0, . . . , k, let Ti = (R(Ci), Ri) where Ri is the restriction of R to R(Ci).
Because T is a finite top-thin-quasi-tree of depth n+ 1, each Ti is a finite top-thin-quasi-tree
of depth ≤ n. Therefore, T−i = (Wi, Qi) where Wi = R(Ci)\maxW and Qi is the restriction
of R to Wi. Observe that {Cr, R(C0), . . . , R(Ck)} is a partition of W and {Cr,W0, . . . ,Wk}
is a partition of W \ maxW . Set F = g−1(Cr), Di = g−1(Wi), and Y = X \ F . Then
{D0, . . . , Dk} is a partition of D \ F and Y = S ∪ (D \ F ); see Figure 6.
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Figure 6. The mapping g and the partition of D it induces.

Because g is interior, each Di is open in D and F is closed in D. As D is closed in X,
we have that F is closed in X, which yields that Y is open in X. In addition, the closure of
A ⊆ D relative to D is cA. Thus, Di is closed in Y since

cDi = cg−1(Wi) = g−1(R−1Wi) = g−1(Wi ∪ Cr) = g−1(Wi) ∪ g−1(Cr) = Di ∪ F

implies that c(Di)∩ Y = (Di ∪F )∩ Y = Di. Being a GO-space, Y is normal. Therefore, we
may apply Lemma 5.2(1) to {D0, . . . , Dk} to obtain a family {U0, . . . , Uk} of open subsets
of Y , and hence of X, such that Di ⊆ Ui and {c(Ui) ∩ Y | i = 0, . . . , k} is pairwise disjoint.
Then {U0, . . . , Uk} is pairwise disjoint since Ui ⊆ c(Ui) ∩ Y .

We clearly have that each Di ⊆ Ui ∩ D. For the converse, let x ∈ Ui ∩ D. Then x 6∈ S
and x ∈ Ui ⊆ Y = X \ F . So there is j such that x ∈ Dj. Therefore, x ∈ Uj, which implies
Ui ∩ Uj 6= ∅. Thus, j = i, so x ∈ Di and hence Di = Ui ∩D.

The family {c(Ui)∩S | i = 0, . . . , k} is pairwise disjoint and consists of closed subsets of S.
Since isoX ⊆ S and X is densely discrete, S is dense in X. Because each Ui is a nonempty
open subset of X, we have that Ui ∩ S 6= ∅. Therefore, each c(Ui) ∩ S is nonempty. Since
S is a scattered GO-space, Corollary 4.8(2) implies that S is a strongly zero-dimensional
normal space. By Lemma 5.2(2), there is a partition {S0, . . . , Sk} of S consisting of open
subsets of S (which are also open in X) such that c(Ui) ∩ S ⊆ Si.

For each i put Yi = Di ∪ Si; see Figure 7.
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F

S

Yi

Si

Di· · · · · ·

· · · · · ·

Figure 7. The subspace Yi = Di ∪ Si.

Because Di = Ui ∩D and Ui ∩ S ⊆ c(Ui) ∩ S ⊆ Si, we have

Yi = Di ∪ Si = (Ui ∩D) ∪ (Ui ∩ S) ∪ Si = (Ui ∩ (D ∪ S)) ∪ Si = (Ui ∩X) ∪ Si = Ui ∪ Si.
Therefore, Yi is open in X since Ui and Si are open in X. Thus, being an open subspace of
a densely discrete space, Yi is densely discrete. It is obvious that {Y0, . . . , Yk} is a partition
of Y .

We have that Di is crowded since it is an open subspace of the crowded space D. Recalling
that cDi = Di ∪ F , it follows that dDi = Di ∪ F , which implies that dαDi = Di ∪ F for
each nonzero ordinal α. Let % be the Cantor-Bendixson rank of X. Then % 6= 0 and d%Si ⊆
d%S ⊆ d%X = D. Because U :=

⋃
{Yj | j 6= i} is open in X, we have that Yi ∪ F = X \ U is

closed in X. Therefore, d%Si ⊆ dSi ⊆ cSi ⊆ Yi ∪ F , yielding that

d%Si ⊆ (Yi ∪ F ) ∩D = (Di ∪ Si ∪ F ) ∩D = (Di ∩D) ∪ (Si ∩D) ∪ (F ∩D) = Di ∪ F
Thus,

d%Yi = d%(Di ∪ Si) = d%Di ∪ d%Si = Di ∪ F ∪ d%Si = Di ∪ F,
which implies d%Yi∩Yi = Di. Therefore, the Cantor-Bendixson decomposition of Yi is Di∪Si.
Because Di 6= ∅, it follows that Yi is a non-scattered densely discrete locally compact GO-
space.

Let gi be the restriction of g : D → T− to Di. Since g is an onto interior map and Di

is open in D, we have that gi is an interior mapping of Di = g−1(Wi) onto T−i = (Wi, Qi).
By the inductive hypothesis, there is an interior mapping fi of Yi onto Ti = (R(Ci), Ri)
extending gi such that fi(Si) = maxR(Ci); see Figure 8.

Yi

Di

Si

�� ��

�� ���� ��• •

A
A
A
A

�
�
�
�

· · ·
· · ·

Ci

Wi

Ti

-
gi

-
fi

Figure 8. Extending gi to fi.

Define f : X → T by

f(x) =

{
g(x) if x ∈ F
fi(x) if x ∈ Yi

Note that f is a well-defined map since {F, Y0, . . . , Yk} is a partition of X. It is clear that f
extends g.
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Claim 5.4. f is onto.

Proof.

f(X) = f (F ∪ Y0 ∪ · · · ∪ Yk) = f(F ) ∪ f(Y0) ∪ · · · ∪ f(Yk)

= g(F ) ∪ f0(Y0) ∪ · · · ∪ fk(Yk) = Cr ∪R(C0) ∪ · · · ∪R(Ck) = W.

�

Claim 5.5. f(S) = maxW .

Proof.

f(S) = f (S0 ∪ · · · ∪ Sk) = f(S0) ∪ · · · ∪ f(Sk)

= f0(S0) ∪ · · · ∪ fk(Sk) = maxR(C0) ∪ · · · ∪maxR(Ck) = maxW.

�

Claim 5.6. f is continuous.

Proof. Let w ∈ W . If w ∈ Cr then f−1(R(w)) = f−1(W ) = X is open in X. Suppose that
w 6∈ Cr. Then there is a unique i such that w ∈ R(Ci). Therefore, f−1(R(w)) = f−1i (Ri(w)),
so is open in Yi. As Yi is open in X, it follows that f−1(R(w)) is open in X. Thus, f is
continuous. �

Claim 5.7. f is open.

Proof. Let U be a nonempty open subset of X. Then

f(U) = f(U ∩X) = f (U ∩ (F ∪ Y0 ∪ · · · ∪ Yk))
= f ((U ∩ F ) ∪ (U ∩ Y0) ∪ · · · ∪ (U ∩ Yk))
= f(U ∩ F ) ∪ f(U ∩ Y0) ∪ · · · ∪ f(U ∩ Yk)
= g(U ∩ F ) ∪ f0(U ∩ Y0) ∪ · · · ∪ fk(U ∩ Yk).

Because each fi is interior, fi(U ∩Yi) is open in Ti, and hence open in T. If U ∩F = ∅, then

f(U) =
⋃k
i=0 fi(U ∩ Yi) is a union of open subsets of T, and so is open in T. Suppose that

U ∩ F 6= ∅. Let x ∈ U ∩ F . Then g(x) ∈ Cr is a root of both T and T−. Since g is an open
map and U ∩D is open in D, we have that g(U ∩D) is an open subset of T− containing a
root. Therefore, g(U ∩ D) = W \ maxW , and hence g(U ∩ F ) = Cr. For each i we have
that x ∈ g−1(R−1(Ci)) = cg−1(Ci), which implies that there is yi ∈ U ∩ g−1(Ci). Note that
fi(yi) = f(yi) = g(yi) ∈ Ci is a root of Ti. Being an open subset of Ti containing a root, we
have that fi(U ∩ Yi) = Ri(Ci) = R(Ci). Thus,

f(U) = g(U ∩ F ) ∪ f0(U ∩ Y0) ∪ · · · ∪ fk(U ∩ Yk) = Cr ∪R(C0) ∪ · · · ∪R(Ck) = W,

and hence f is open. �

Consequently, T is an interior image of X. �

Theorem 5.8. If X is a non-scattered densely discrete locally compact GO-space, then
L(X) = S4.1.

Proof. Since X is densely discrete, S4.1 ⊆ L(X) by Lemma 2.2(2). Suppose that S4.1 6` ϕ.
By Lemma 2.1(2), there is a finite top-thin-quasi-tree T refuting ϕ. By Lemma 5.3, T is
an interior image of X. Because interior images preserve validity, ϕ is refuted on X. Thus,
L(X) = S4.1. �

Theorem 5.9. Let X be a nonempty scattered locally compact GO-space and n ≥ 1.
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(1) If the Cantor-Bendixson rank of X is n, then L(X) = S4.Grzn.
(2) If the Cantor-Bendixson rank of X is infinite, then L(X) = S4.Grz.

Proof. Lemma 2.6(6) implies that every open subspace of X is collectionwise normal. Since
each subspace of a scattered space is scattered, Corollary 4.8(2) yields that every open
subspace of X is strongly zero-dimensional. Thus, it follows from [3, Thm. 4.9] that we may
apply [3, Thm. 7.3] to obtain the result. �

Putting Theorems 5.1, 5.8, and 5.9, we arrive at the following axiomatization of L(X) for
each nonempty locally compact GO-space.

Theorem 5.10. Let X be a nonempty locally compact GO-space.

(1) If X is not densely discrete, then L(X) = S4.
(2) If X is densely discrete but not scattered, then L(X) = S4.1.
(3) If X is scattered and has infinite Cantor-Bendixson rank, then L(X) = S4.Grz.
(4) If X is scattered and has Cantor-Bendixson rank n ≥ 1, then L(X) = S4.Grzn.

Remark 5.11. Utilizing the well-known Gödel translation (see, e.g., [9, Sec. 3.9]), Theo-
rem 5.10 yields a characterization of the superintuitionistic logics (si-logics for short) arising
from nonempty locally compact GO-spaces. Let IPC be the intuitionistic propositional cal-
culus and IPCn := IPC + ibdn where

ibd1 = p1 ∨ ¬p1
ibdn+1 = pn+1 ∨ (pn+1 → ibdn)

The formulas ibdn are the intuitionistic version of the modal formulas bdn.
We recall (see, e.g., [9, Sec. 9.6]) that via the Gödel translation each si-logic L gives rise to

an interval (with respect to ⊆) of normal extensions of S4 consisting of modal companions of
L. It is well known that the modal companions of IPC form the interval [S4, S4.Grz]. Thus,
each of S4, S4.1, and S4.Grz is a modal companion of IPC. Moreover, S4.Grzn is a modal
companion of IPCn. This together with Theorem 5.10 yields that the si-logic of a nonempty
locally compact GO-space X is:

(1) IPCn if X is scattered and has Cantor-Bendixson rank n ≥ 1, and
(2) IPC otherwise.

Thus, the si-logics
IPC ⊂ · · · ⊂ IPC3 ⊂ IPC2 ⊂ IPC1

are exactly those that arise as the si-logic of a nonempty locally compact GO-space.

Acknowledgement: We thank Klaas Pieter Hart for kindly providing a copy of [16].
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