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Abstract

This thesis is concerned with giving a computational social choice-theoretic
model of transitive proxy voting.

Transitive proxy voting (or ‘liquid democracy’) is a novel form of collec-
tive decision making. It is often introduced as an attractive hybrid of direct
and representative democracy. Recently, it has been used by the German
branch of the Pirate Party to aid intra-party decisions (Litvinenko (2012)).

Although the ideas behind liquid democracy have garnered widespread
support, there has been little rigorous examination of the arguments offered
on its behalf. In particular, there have been relatively few attempts to
model liquid democracy formally. A formal model has the potential to serve
as a testing ground for the conceptual and empirical claims put forward by
supporters (and, of course, detractors) of liquid democracy.

Computational social choice is an emerging field at the intersection of
economics and computer science (Brandt et al. (2016)). There are a variety
of methodologies and techniques employed within the field, but a common
theme in the heterogeneous approaches is a formal perspective on collec-
tive decision making. As such, tools from computational social choice seem
natural candidates for modelling liquid democracy.

In this thesis, I’ll propose a novel model of transitive proxy voting. My
model is individuated by the fact it takes a richer formal perspective on
proxy selection (the process by which a voter chooses a proxy). I argue
that this allows it better to capture features relevant to claims made about
transitive proxy voting.

After proposing the model, I’ll examine it from an axiomatic perspective.
I’ll then look at problems of manipulation and control in a proxy vote setting,
using the model I have introduced.
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Chapter 1

Introduction

1.1 Overview

This thesis is concerned with giving a computational social choice-theoretic
model of transitive proxy voting.

Transitive proxy voting (or ‘liquid democracy’) is a novel form of collec-
tive decision making. It is often introduced as an attractive hybrid of direct
and representative democracy. Recently, it has been used by the German
branch of the Pirate Party to aid intra-party decisions (Litvinenko (2012)).

Although the ideas behind liquid democracy have garnered widespread
support, there has been little rigorous examination of the arguments offered
on its behalf. In particular, there have been relatively few attempts to
model liquid democracy formally. A formal model has the potential to serve
as a testing ground for the conceptual and empirical claims put forward by
supporters (and, of course, detractors) of liquid democracy.

Computational social choice is an emerging field at the intersection of
economics and computer science (Brandt et al. (2016)). There are a variety
of methodologies and techniques employed within the field, but a common
theme in the heterogeneous approaches is a formal perspective on collec-
tive decision making. As such, tools from computational social choice seem
natural candidates for modelling liquid democracy.

In this thesis, I’ll propose a novel model of transitive proxy voting. My
model is individuated by the fact it takes a richer formal perspective on
proxy selection (the process by which a voter chooses a proxy). I argue
that this allows it better to capture features relevant to claims made about
transitive proxy voting.

After proposing the model, I’ll examine it from an axiomatic perspective.
I’ll then look at problems of manipulation and control in a proxy vote setting,
using the model I have introduced.

6



1.2 Structure of the Thesis

In this chapter (Chapter 1), I’ll introduce transitive proxy voting, or ‘liquid
democracy’. I’ll offer a brief survey of extant models of liquid democracy
from within the computational social choice literature.

In Chapter 2, I’ll outline the model of transitive proxy voting that I
propose in this thesis. What distinguishes my model from existing models
is its ability to include preference information in proxy selection. Formally,
the model I present augments a classical election/vote (N,A, f) where

• N = {i, j, k, l, ...} is a set of voters, with |N | = n

• A = {a, b, c, d, ...} is a set of alternatives (or ‘candidates’), with |A| =
m

• f is a social choice function

with a novel function g, which I call a ‘proxy mechanism’. So a ‘proxy
vote’ (or ‘proxy election’) is a tuple (N,A, f, g). This proxy mechanism g
takes into account preference information supplied by voters and supplies
each voter with a set of potential proxies. After sketching some reasons why
the addition of a proxy mechanism has the potential to lead to interesting
complications, I’ll highlight some of the representational capacities of the
model I propose.

In Chapter 3, I’ll explore novel properties of proxy mechanisms. I’ll char-
acterize a natural proxy mechanism (the SUBSET mechanism) using some of
these properties. We can also define properties of pairs (f, g), where f is a
social choice function and g is a proxy mechanism. I’ll examine the interac-
tion between these properties of pairs (f, g), properties of proxy mechanisms
g and classical properties of social choice functions f . I’ll prove a proxy vote
analogue of May’s Theorem and present and prove an impossibility result in
a proxy vote setting, showing that certain desirable properties of pairs (f, g)
are incompatible with natural properties of their individual components f
and g.

In Chapter 4, I’ll examine manipulation and control in a proxy vote set-
ting. I’ll define a novel form of manipulation (which I call ‘proxy choice
manipulability’) and explore connections between this form of manipula-
tion and manipulation as it is classically understood (which I call ‘Gibbard-
Satterthwaite manipulability’). I’ll also examine the effect on manipula-
tion of domain restrictions (e.g. single peakedness) in a proxy vote setting,
demonstrating that strategyproofness is strictly harder to come by in proxy
elections. Finally, I’ll extend classical candidate control problems into a
proxy vote setting. I’ll show that when we explore these problems from the
perspective of computational complexity, hardness results carry over natu-
rally into this setting. Using tools from parameterized complexity theory,
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I’ll present a novel choice of parameter for proxy votes, and present FPT -
membership results using this parameterization. I’ll finish by discussing the
significance of these results.

I’ll conclude the thesis by summarising the principal results I’ve ob-
tained, and sketching several directions for future work using the model I’ve
proposed.

1.3 Proxy Voting

In a standard vote, voters submit preferences over some set of alternatives.1

In a proxy vote, voters can choose not to vote directly. Instead, they can
delegate their vote to some other voter (who becomes their ‘proxy’); this
proxy will then cast a ballot on the original voter’s behalf, as well as her
own ballot.

One way to motivate proxy voting is to frame it as a hybrid between di-
rect democracy and representative democracy. Direct democracy, where cit-
izens vote directly on issues through frequent referenda, is seen as ‘strongly
democratic but highly impractical’ (Green-Armytage (2015), p.190), whilst
representative democracy, where citizens elect representatives to make deci-
sions on their behalf, is ‘practical but democratic to a lesser degree’ (Green-
Armytage (2015), p.190). If we view this trade-off between democratic rep-
resentation and practicality as inherent to any real-world voting process,
then it seems like we might want some happy medium, balancing pragmatic
factors with the ability for a population to be represented.

Proxy voting purports to be just this. If people want their particular
views to be represented in a vote, they can ensure this by voting directly. If
they are undecided on an issue (or practial factors prevent them from be-
coming sufficiently informed, or even from casting their vote directly), they
can choose to delegate their vote to someone they perceive as competent, or
trustworthy.

As well as this ideological advantage, it has been proposed that proxy
voting is accompanied by several practical benefits.

Increasing Voter Turnout. Depending on the situation where it is used,
proxy voting may increase voter turnout. There are at least three arguments
for this. Firstly, Miller (1969) argues that a major barrier to voters’ partic-
ipation in elections is simply the opportunity cost of voting directly; proxy
voting has the potential to lower this cost. Secondly, both Miller (1969) and
Alger (2006) identify apathy towards political representatives as a reason

1Note that at this point I’m not assuming a particular formalisation of elections. For
example, I will stay neutral here on what form ballots take. Later, though, I will as-
sume that ballots are represented as linear (or sometimes partial) orders over the set of
alternatives.
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for poor voter turnout. If a voter can be represented by someone whom
she trusts, they argue, she will be more likely to vote. The fact that proxy
voting (at least as it is normally construed) allows voters to delegate their
votes to any other voter makes it more likely that voters will be represented
by someone they approve of. Finally, voters are often deterred from voting
by the fact that they haven’t made their mind up about all the alternatives
being considered in the election (even if they have some sense of what they
think). By choosing their proxy carefully, they can vote even if they haven’t
made their minds up fully.

Increasing Competence of Voters. One case in which a voter might
delegate her vote is when she believes another voter to be more competent,
or better informed than her. Assuming this perception of competence is
truth-tracking, Green-Armytage (2015) argues that this implies that proxy
voting leads to votes being cast by voters who are (on average) better in-
formed. Given that at least one justification for increasing representation is
epistemic, this is a point in proxy voting’s favour.

Increasing Diversity of Viewpoints. Relatedly, Alger (2006) observes
that proxy voting might be more likely to lead to a greater diversity in the
viewpoints expressed by voters. In a representative democracy, only a very
small proportion of the population is a potential representative; this means
that such representatives tend to be pushed towards viewpoints with more
broad appeal, with the consequence that some voters find their views unrep-
resented in the views of their representatives. By increasing the number of
potential representatives, proxy voting could allow people to express more
idiosyncratic viewpoints. Again, this appears to be favoured by an epistemic
conception of democracy.

1.4 Liquid Democracy

In the previous section, I outlined proxy voting, and sketched some potential
motivations for it. In this section, I will outline a specific form of proxy
voting which has earned enough interest to be viewed as a separate form
of voting in its own right: ‘transitive proxy voting’ or (the more catchy)
‘liquid democracy’. As the name suggests, what distinguishes transitive
proxy voting from a more vanilla form of proxy voting is the transitivity of
proxy selection. Blum and Zuber (2016) characterise liquid democracy as
the conjunction of four principles. Voters can:

• Directly vote on all policy issues (direct democratic compo-
nent)

• Delegate their votes to a representative to vote on their
behalf on (1) a singular policy issue, or (2) all policy issues
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in one or more policy areas, or (3) all policy issues in all
policy areas (flexible delegation component)

• Delegate those votes they have received via delegation to
another representative (meta-delegation component)

• Terminate the delegation of their votes at any time (instant
recall component)

(Blum and Zuber (2016), p.165)

It is the meta-delegation component (and, to a lesser extent, the instant
recall component) which distinguishes transitive proxy voting from less flex-
ible forms of proxy voting. Proponents of liquid democracy, such as Behrens
(2017), argue that this flexibility accentuates the advantages of proxy vot-
ing. In the previous section, I emphasised a key strength of proxy voting,
namely that it increases the number of potential representatives in an elec-
tion. Meta-delegation, the ability for proxies to delegate their votes (and
the votes that have been delegated to them), can only increase this number.
The point is that one can be a representative without having made one’s
mind up on all the alternatives under consideration. So liquid democracy
purports to deliver all of the benefits of proxy voting with some add-ons.

1.5 Related Work

The motivation for this thesis is as follows. In order to assess the arguments
in favour of proxy voting (and transitive proxy voting specifically), it’s help-
ful to have a formal model of decision making in a proxy voting setting.
A formal model gives us a transparent testing ground for the conceptual
and empirical arguments in the previous sections. Since we are dealing with
collective decision making, it seems natural to turn to social choice theory
when searching for a formal model. Furthermore, it’s undeniable that the
very notion of transitive proxy voting has an algorithmic whiff to it. With
this in mind, in this section I’ll examine some existing attempts to model
(transitive) proxy voting from within the computational social choice liter-
ature.

1.5.1 Pairwise Delegations

Brill and Talmon (2018) propose ‘Pairwise Liquid Democracy’ (PLD). The
key assumption behind PLD, which also operates in the background of the
model I propose in this thesis, is that we can view ordinal preference rank-
ings as collections of pairwise comparisons (or ‘edges’) between alternatives.
When voters are asked to provide, for example, linear orders � over some
set of alternatives A, they are effectively choosing whether a � b or b � a
for each a, b ∈ A (with the requirement that the pairwise choices they make
be transitive and anti-symmetric).
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Recall that a factor motivating proxy voting (and transitive proxy voting
specifically) is the fact that a voter can fail to have a fully formed opinion
and yet still be able to express her partial opinion, through the selection
of a suitable proxy. Brill and Talmon’s suggestion is that, in the ordinal
preference setting, we can model this voter as having fixed some pairwise
comparisons/edges but not others. The model I propose in the next chapter
uses this idea too.

There is an important feature of Brill and Talmon’s model which I will
not adopt in this thesis. In Brill and Talmon’s model, for each pair of
alternatives (a, b) that a voter has not decided between, she chooses some
delegate from amongst the other voters to decide on her behalf whether
a � b or b � a. Note that this implies that a voter could have a different
delegate for each edge she is undecided on. A consequence of this is that the
voter can end up submitting an intransitive preference order. Let the set of
voters be N . Say voter i ∈ N is undecided on three pairwise comparisons:
(a, b), (b, c) and (a, c). She gives the decision between a and b to j ∈ N\{i},
the decision between b and c to k ∈ N\{i, j} and the decision between a and
c to l ∈ N\{i, j, k}. Suppose now that j decides a � b, k decides b � c but
l decides c � a. Then the order i ends up submitting will be intransitive.2

Of course, since social choice/welfare functions operate on total prefer-
ence profiles (lists of linear orders over the set of alternatives), we cannot
use the outputs of these pairwise delegations as inputs to a social choice
function. This means that we are left with three options:

• Provide a systematic way of moving from the outputs of delegations
(lists of possibly intransitive orders over the set of alternatives) to
preference profiles.

• Place restrictions on proxy selections to ensure that every output of a
pairwise delegation is a preference profile (i.e. to ensure that intransi-
tivity doesn’t occur at the level of individual voters).

• Modify the social choice function to accommodate intransitivity.

The remainder of Brill and Talmon (2018) is spent exploring these options,
particularly the first and third.

With regards to the first option, they find that the most natural response
(looking for the minimal number of delegations we can ignore to reach a
preference profile), is computationally intractable (NP -complete) to solve.

With regards to the third option, they sketch an initial attempt at a
voting rule in their setting, based on minimising the number of pairwise
alternative swaps voters have to make to end up with concensus on a ranking

2Note that anti-symmetry will not fail on Brill and Talmon (2018)’s model, since, for
each undecided edge (a, b), a single delegate makes an exclusive decision between a � b
and b � a.
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over alternatives (essentially a liquid democracy version of the Kemeny rule).
I see at least two problems with this approach. Firstly, it seems likely that
the winner determination problem for any such rule would be NP -complete.
Secondly, it seems strange to me that in a distance-based approach we would
treat the edges a voter has delegated and the edges she has decided herself
as having the same weight in the distance calculation. To see this, note that
under the rule Brill and Talmon propose we are just as likely to flip the
pairwise comparison a voter has made in the order she ends up submitting
as we are to flip the pairwise comparison one of her delegates has made.
Intuitively, though, it seems like the voter would care much more about
the pairwise comparison she herself as made. After all, isn’t the purpose
of liquid democracy to allow voters who submit partial votes to have their
views represented?

I think it’s worth considering the second option, namely restricting the
delegations which are available to a voter. Brill and Talmon briefly note two
ways to do this. Either a voter delegates all possible pairwise comparisons
to a proxy, or she collects her pairwise comparisons into a weak order and
delegates each indifference class to a proxy. With regards to the latter
option, Brill and Talmon argue that it asks too much of voters. Brill and
Talmon dismiss the former option as inflexible (after all, they are committed
to a pairwise delegation system).

Given that voters will have at most one delegate in my model, I feel it’s
important that I challenge the idea that it is necessarily advantageous to
allow voters to delegate to separate proxies on separate edges. As noted,
the flexibility comes at a price (the failure of transitivity). Rather than
dwell on the practical (and computational) issues with fixing intransitivity,
though, I think there is also something conceptually suspect about allowing
intransitive delegations. According to Brill and Talmon, delegation is done
on the basis of the perception of competence; voter i delegates the decision
(a, b) to voter j because she thinks j is more competent at making the
decision than her. Similarly, she delegates the decision (b, c) to voter k
because voter k is competent on this issue, and (a, c) to voter l because l
is competent on this issue. But if we accept that it is irrational to hold
intransitive preferences oneself, then it is not at all obvious to me that it
is rational to accept an intransitive preference resulting from delegation.
Surely the conclusion voter i ought to draw when her delegates present
her with the cycle a � b � c � a is that she was mistaken in her initial
assessment of the competence of her delegates? If we understand competence
in the common sense way, in terms of a propensity to make correct decisions,
then (assuming that intransitivity is the incorrect decision) at least one of
her delegates must be incompetent. If we think that voters ought to delegate
to competent people, then it appears that we are condoning irrationality at
a distance.

I take it that any response to this point needs to give a proper account
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of the reasons why a voter chooses a delegate. My aim is not to deny that
this can be done, but rather to cast doubt on the idea that the flexibility
provided by pairwise (or issue-wise) delegation is inherently advantageous.
In effect, my point is about model selection. Ceteris paribus, I don’t think
there’s any reason to prefer a model which allows delegations which result in
intransitive orderings, given that we require that preferences be transitive.
Intransitivity shouldn’t be thought of as merely a practical problem, but
rather a philosophical one.

1.5.2 Liquid Democracy with Interdependent Binary Issues

The model proposed by Christoff and Grossi (2017) uses interdependent
binary issues instead of ordinal preference rankings. Let A be the set of
binary issues under consideration. For each binary issue p ∈ A, voters
either submit their decision on the issue or choose some delegate to decide
whether p = 0 or p = 1.

The parallels between this model and that of Brill and Talmon (2018)
should be clear. Once we translate ordinal rankings into a binary aggregation
setting, pairwise comparisons become binary issues and transitivity is just
one possible rationality requirement on individual judgements.

With this in mind, it’s clear that (a more general variant of) the same
problem arises for Christoff and Grossi’s model as arose for Brill and Tal-
mon’s model, namely that issue-wise delegations can result in a voter having
a judgement which breaches some rationality requirement inherent to the
aggregation setting. Christoff and Grossi suggest a novel solution to this
problem, namely to think of delegation as a diachronic process. From this
perspective, which they call the ‘vote-copying’ perspective, voters begin with
some default view on issues (some default judgement). At each timestep,
they delegate decisions on some issues to individual proxies. Rather than
updating their judgements with the decisions made by their delegates, they
first check to see whether such an update would be consistent with any ra-
tionality requirement in the aggregation setting. Only updates which are
consistent with any rationality requirements are performed, and the process
continues until convergence. (Christoff and Grossi characterise the condi-
tions required for convergence.)

Again, I think any breach of individual rationality resulting from issue-
wise delegation constitutes a conceptual reason to be suspicious of issue-wise
delegation, for the same reasons as outlined in my discussion of pairwise del-
egation (in Brill and Talmon (2018)). I think an account of proxy selection is
also needed to justify the ‘vote-copying’ interpretation of liquid democracy.
For example, why should we assume that all votes are copied simultane-
ously?

Christoff and Grossi (2017) considers another problem, namely the fact
that delegations can result in delegation cycles. If i delegates on issue p to
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j, j delegates issue p to k and k delegates issue p to i, then it is unclear
what the input to an aggregator should be. In other words, how should we
interpret i, j and k’s views on p?

Standardly, agents in a delegation cycle are simply assumed to abstain
(here, to abstain on a single issue, since cycles occur at the level of individual
issues). This seems unsatisfactory, particularly since a practical justification
for proxy voting appeals to its ability to raise voter turnout. Christoff and
Grossi propose that voters submit a default view on each issue. In the case
that some set of agents is involved in a delegation cycle on an issue, we look
at the majority default view on the issue among the agents involved in the
cycle, and interpret each agent in the cycle as having that majority view
at the point of aggregation. This seems to capture the idea of agents being
represented by their delegates without penalizing them for being involved
in a delegation cycle. Of course, it comes at a cost; the requirement that
voters submit a default view goes against a motivation for proxy voting,
namely that one can express one’s opinion without putting in the effort to
generate a fully formed vote. That said, it’s hard to see how else we should
deal with cases where voters don’t have suitable options for delegates (and
I will argue that cycles constitute only one such case). The model I propose
in the next chapter will follow Christoff and Grossi in having agents submit
default views on issues.

1.5.3 Liquid Democracy and the Rationality of Delegation

One complaint I have made about the models I’ve discussed so far has been
that little emphasis has been placed on analysing the reasons why an indi-
vidual voter chooses a proxy rather than casting her vote directly. There is
often a tacit assumption that there is some effort involved in voting directly,
or that the voter thinks there will be a gain of accuracy by delegating to a
more competent representative, but the assumption is undeveloped, to the
extent that it has no counterpart in the actual formalism of the models.

Bloembergen, Grossi, and Lackner (2019) attempt to fill this lacuna by
focusing on the conditions according to which it is rational for an agent to
delegate her vote rather than voting directly.

The model they consider is very simple; voters are choosing between
two alternatives. For each agent, one alternative is better (i.e. agents can
be divided into two groups depending on which alternative is better for
them), but agents are not aware which alternative is better for them (or
which alternative is best for the other agents). If an agent votes directly,
then, there is a chance she will vote for the alternative which is worse for
her. Bloembergen, Grossi, and Lackner assume that the probability qi that
an agent i votes with her interests when she votes directly is always qi ≥
0.5. Bloembergen, Grossi, and Lackner call this probability qi an agent’s
‘accuracy’; each agent’s accuracy is assumed to be public knowledge.
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Agents are arranged into a network structure. Each agent can choose to
vote directly or to delegate her vote to one of her neighbours in the network
(so delegations are transitive). If an agent i votes directly, she incurs a cost
ei (interpreted as the effort it took her to vote). If she delegates her vote, she
incurs no such cost. The utility an agent gains from voting is proportional to
the probability that the voter who ends up casting her vote - her ‘guru’ (note
that if she votes directly she will be this voter) - votes for the alternative
which is better for her.

Under restricted conditions (firstly, where agents have deterministic hid-
den interests, rather than some non-degenerate distribution over hidden in-
terests; secondly, where each cost ei = 0), Bloembergen, Grossi, and Lackner
show the existence of Nash Equilibria in their model.

I don’t want to examine their results in detail, but I do want to highlight
two features of their model which I will employ in mine.

Firstly, I will also use the idea that agents incur some cost to voting
directly. It seems to me that it’s important to make explicit such a cost
in any formal model of proxy voting, since it features so prominently in
philosophical justifications of proxy voting. In my model, rather than a
cardinal cost, this will be a means for agents to decide between outcomes
they are indifferent between (they will prefer reaching the same outcome
having invested less energy in voting; this will be made more formal in the
next chapter).

Secondly, I will also use the core idea of Bloembergen, Grossi, and Lack-
ner’s model, namely that what drives an agent to pick a particular delegate
as her proxy depends in some way on that delegate’s views on the alterna-
tives at hand. I think it’s crucial to emphasise that proxy selection must
depend on some feature of the proxy being selected. Because I will (usually)
be dealing with settings with more than two alternatives, this will need to
be fleshed out in a different way from the accuracy metric of Bloembergen,
Grossi, and Lackner (2019).

1.5.4 The Structure of the Delegation Graph

The models we have discussed so far typically divide transitive proxy voting
into two stages. In the first stage, preferences over alternatives and delegates
are elicited; these are then combined into a ‘delegation graph’ (a graph rep-
resenting delegations between voters). In the second stage, this delegation
graph (or the profile resulting from it) is used as an input to some sort of
aggregator.

It’s possible to consider questions regarding the two stages indepen-
dently. Gölz et al. (2018) focus on the formation of the delegation graph
from information about voters’ delegation preferences.

Recall that a purported advantage of transitive proxy voting is that it
concentrates power amongst more competent voters. Some have argued
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that this concentration of power in the hands of a few ‘super-delegates’ is
problematic.3 It risks putting electoral outcomes at the whims of a few
individuals. To combat this, Gölz et al. consider the problem of assigning
delegations so as to minimise the number of voters delegating their vote to
a single proxy (in other words, to minimise the maximum voting weight of
a voter who votes directly).

In the model they propose, each agent specifies a subset of the other
voters who they would be happy to delegate their vote to. A central mech-
anism then forms the delegation graph from this information, attempting
to restrict the concentration of voting power by minimising the maximum
weight given to any delegate. They find that not only is solving this problem
NP -hard, but also that approximations to the problem are NP -hard (even
in the very restricted case where we assume that each voter picks at most
two potential proxies).

Boldi et al. (2011) examine a similar issue from a different perspective.
In their ‘viscous democracy’, they propose a delegation factor α ∈ (0, 1),
representing the extent to which delegation preserves voting power (which
influences the ‘viscosity’ of the system). The smaller α is, the more weight
is lost every time a vote is transferred. Intuitively, then, fine-tuning α could
affect the feasible length of delegation chains. They discuss the impact of
the structure of an underlying social network on the number of possible
winners.

1.5.5 Preferences over Gurus

In Escoffier, Gilbert, and Pass-Lanneau (2018, 2019), the authors investigate
the stability of delegations. Their model is as follows. Let N = {i, j, k, l, ...}
be a set of voters, with |N | = n. Each voter is choosing whether to cast
her own vote, choose some other voter to be her proxy or abstain. Escoffier,
Gilbert, and Pass-Lanneau (2018) arrange the voters in a social network
(with the accompanying restriction that voters are only allowed to delegate
to their neighbours), whilst Escoffier, Gilbert, and Pass-Lanneau (2018)
assume the social network is complete (such that there is no restriction on
who can delegate to whom).

We assume that each i ∈ N has a preference ordering �i over N ∪ {0};
we interpret this as representing who i would prefer to end up casting her
vote,4 with ‘0’ representing the possibility of abstention. For example, i �i j
implies that i would rather cast her own vote than have j end up casting
her vote, whilst j �i 0 implies that i would rather have j end up casting her

3For example, Kling et al. (2015) conduct an empirical analysis of internal election data
from Germany’s Pirate Party (which used a transitive proxy voting system), showing that
power ended up concentrating amongst the most active users of the system.

4Note that this is not a preference relation over who is her immediate proxy, but rather
a preference relation over who is her terminal proxy (or ‘guru’).
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vote than she would abstain.
The authors fix a delegation function d : N → N ∪{0}. For some i ∈ N ,

d(i) = j signifies that i delegates her vote to j, d(i) = i signifies that she
casts her own vote and d(i) = 0 signifies that she abstains. A delegation
function is ‘Nash-stable for agent i’ if i prefers her guru (strictly speaking,
she is not guaranteed to have a guru, since she could end up abstaining)
when she delegates according to d(i) over any guru that results from some
other feasible delegation. A delegation function is ‘Nash-stable’ if it is Nash-
stable for every i ∈ N .

It is easy to see that there are delegation functions which are Nash-stable
(simply consider the case where every voter prefers to cast her own vote) and
delegation functions which are not (consider a voter who hates abstaining
who delegates to a voter who abstains). For a given list of preferences
(�i)i∈N and social network (N,R) (where R is a binary relation), Escoffier,
Gilbert, and Pass-Lanneau (2018) investigate (amongst other optimisation
problems) the problem of finding whether a Nash-stable delegation function
exists. They show that the problem is NP -hard even when we assume that R
is complete, or has a bounded out-degree. They also show that the problem
is W [1]-hard when we parameterize by the tree-width of the social network.

Escoffier, Gilbert, and Pass-Lanneau (2018) examine the effect of re-
stricting the allowed list of preferences (�i)i∈N on the optimisation prob-
lems considered in Escoffier, Gilbert, and Pass-Lanneau (2018) (assuming
here that R is complete). Specifically, they consider the effect of requiring
that (�i)i∈N is single peaked along some dimension. They show that when
(�i)i∈N is single-peaked, there will always exist a Nash-stable delegation
function, which can be found in polynomial time.

The idea of having voters rank other voters is one I will use in my model.
Rather than have voters express preferences over gurus, though, I will have
voters express preferences over immediate proxies.

What is missing from the models in Escoffier, Gilbert, and Pass-Lanneau
(2018) and Escoffier, Gilbert, and Pass-Lanneau (2018) is the actual election
in which voters are participating. That is, what is driving the preferences
expressed by the voters? In lieu of such an account, it’s unclear what the
consequences of their model are for transitive proxy voting. To make this
more concrete: unless we have some formal account of what generates prefer-
ences over gurus (for example, a notion of competence built into the model,
or an idea of a guru agreeing on a particular issue), it’s not clear to me
that we should rush to accommodate such preferences. If a guru has been
chosen by a proxy of a voter and the voter is dissatisfied with the guru, then
does that not imply that the voter should be dissatisfied with her choice
of proxy? Part of the problem relates to the interpretation of delegation
functions; do they represent (more plausibly) the voter’s preference over her
delegates, or do they represent some strategic attempt to end up with as
competent a guru as possible? Similarly, it’s unclear how we should inter-
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pret the importance of single-peakedness in this setting; can it be thought of
as second-order agreement on voter competence? Some philosophical work
is needed to tease out the significance of the formal results.

1.5.6 Preference over Delegates

In the previous section, I discussed a model where voters submitted prefer-
ences over their potential terminal delegates, or gurus. As I noted, it also
seems natural to consider a model where agents can submit preference in-
formation over their immediate proxies (i.e. the people they can delegate to
directly), since these are the delegations that agents can control themselves.
Kotsialou and Riley (2018) propose a model in which there is a set of agents
N and a set of alternatives A. Agents can either submit:

• (partial) preferences over the set of alternatives A

• (partial) preferences over the set of voters N

• no information

In the first case, voters are taken to cast their own vote. In the second case,
voters are taken to delegate their vote (with the delegate still to be decided
on by a central mechanism). In the third case, voters are taken to abstain
from voting.

Given that each agent has been sorted into one of these three categories
(a direct voter, a delegator or an abstainer), a ‘delegation graph function’
then produces a directed graph (N,R,w), where

• N is the set of agents

• R is a binary relation over N . We have (i, j) ∈ R iff j features in the
partial ranking i submits over the set of voters.

• Suppose there is an edge (i, j) ∈ R. Then w(i, j) labels the edge with
the position that j features in the preference ranking that i submitted
(we know that j is ranked at some point in the preference ranking,
since we are assuming the edge (i, j) exists in the graph).

A ‘delegation rule function’ takes into account this graph and the partial list
of partial preference information over alternatives submitted by the voters,
and produces a single delegation (or abstention) for each voter, resulting
in a preference profile. This can then be fed into one’s preferred social
choice (welfare) function.5 Kotsialou and Riley define two different types of

5There’s a small technical problem here. Since Kotsialou and Riley allow that voters
can submit partial preferences over the set of alternatives, and require that any voter
who submits preferences over alternatives casts her vote directly, they need to give some
details about how these partial preferences should be extended to linear orders. For now,
I will just assume that every voter who submits preference information over the set of
alternatives submits complete information.
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delegation rule function.
Firstly, they define a ‘depth-first’ function, which they observe is the

standard interpretation of transitive proxy voting. In a depth-first function,
to find a guru for voter i ∈ N , we move along edges with weight 1 (i.e. we
move to i’s favourite proxy, then to her favourite proxy’s favourite proxy,
etc) until we reach a voter who votes directly. This voter is then taken to
be her guru.

Secondly, they define a novel delegation rule function, a ‘breadth-first’
function. In a breadth-first function, we look for the shortest path from i to
a voter who votes directly. If there are multiple shortest paths, we pick the
path with the smallest weight.

Kotsialou and Riley show that when we use a depth-first method of
delegation, there are profiles where voters would prefer not to be the guru
of some other voter (so a proxy vote analogue of participation fails). When
we use a breadth-first delegation rule, though, they show that this situation
does not arise.

The model of Kotsialou and Riley (2018) attempts to give a fuller picture
of the liquid democratic process (in that it connects delegation to a standard
vote, since voters can submit preference information over alternatives). As
noted in a previous section, I will also have voters submit preference infor-
mation over potential proxies.

One issue with the Kotsialou and Riley (2018) model is that the two
sorts of preference information submitted by voters (over alternatives and
over proxies) are treated independently by the central delegation mecha-
nism(s). That is, there is no attempt to capture the intuitive idea that
voters might prefer proxies who agree with their views. Voters are imme-
diately categorised into direct voters or delegators, regardless of the actual
content of the preferences they submit (the existence of a preference order
of either sort is sufficient to determine this categorisation). Recall that an
advantage of (transitive) proxy voting is that it allows voters to express pref-
erences on some issues but not others. The model by Kotsialou and Riley
is unable to represent this idea, since it takes an all-or-nothing approach to
delegation.6

With this in mind, I think we should also question the decisiveness of the
participation property the authors focus on (‘guru’ participation, where a
voter would always like to end up casting some other voter’s vote). Suppose
we accept that some delegates are able better to represent a voter’s views
than others, and that the voter’s preferences over delegates tracks this prop-
erty. Then there is another natural participation property we would want
satisfied, namely that a voter would rather delegate her vote than abstain.

6One solution to this worry might be to incorporate ideas from the ‘statement voting’
of Zhang and Zhou (2017), which allows delegations with (e.g.) conditional structure.
However, it’s not clear how to marry these sorts of ballots with Kotsialou and Riley’s
model.
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As it stands, the model from Kotsialou and Riley is unable to accommo-
date this, since any voter who has preferences over alternatives casts her vote
directly (so every delegator has no preferences over alternatives, implying
that she is entirely neutral between participating and abstaining). But say
we could extend the model to incorporate this idea. Then it seems unlikely
that a breath-first delegation function will satisfy this sort of participation
property, since it can lead to delegations that a delegator is very unhappy
with. In other words, breadth-first delegation may make gurus happy, but it
seems unlikely to make delegators happy, once we augment the model with
a representation of delegator satisfaction.

1.5.7 Epistemic Justifications for Liquid Democracy

Thus far I’ve considered accounts of liquid democracy which consider tran-
sitive proxy voting as a system of aggregating voters’ preferences. But there
are also models which examine the claim that transitive proxy voting tends
to lead to better outcomes (where ‘better’ is understood in an epistemic
sense, as ‘more correct’).

Cohensius et al. (2017) considers a situation where a (possibly infinite)
population N of voters is distributed on some interval [a, b]. They consider
two scenarios. In the first, the ground truth is taken to be the median of the
voters’ positions. In the second, it is taken to be the mean of their positions.

The basic set-up for both scenarios is the same. Some distinguished
finite N ′ ⊆ N (with |N ′| = n′) is selected, representing the set of voters who
are allowed to cast their votes directly (the ‘agents’ in Cohensius et al.’s
terminology). A vote consists of (possibly falsely) stating one’s position on
the interval. Cohensius et al. compare the situation where the other voters
- the non-agents in N\N ′ - abstain to the situation where the other voters
delegate their votes to the members of N ′. In the model of Cohensius et al.
(2017), each voter delegates her vote to the closest agent in N ′ who chooses
to cast her vote directly. Note that this means that delegations will never
be transitive (so we are in a vanilla proxy voting situation). The authors
find that proxy voting is always more accurate when the ground truth is the
median position, and generally (through simulation) more accurate when
the ground truth is the mean position.

Kang, Mackenzie, and Procaccia (2018) answer a similar question using
a more familiar model. They assume that N voters are arranged in a social
network. They are voting on a single binary issue, for which it is assumed
there is a ground truth. Similarly to Bloembergen, Grossi, and Lackner
(2019), each voter i ∈ N has a competence level pi, interpreted as the
probability she would vote correctly if she voted directly. The competence
level of each voter is public information.

Voters can either vote directly or delegate their vote to a neighbour whose
competence level is strictly higher than their own (note that this eliminates
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delegation cycles).
Kang, Mackenzie, and Procaccia define a ‘delegation mechanism’ as a

function which takes in the social network and list of competence levels and
returns, for each voter i ∈ N , a probability distribution over the delega-
tions available to i. Delegations carry weight according to this probability
distribution. The collective decision is then made by the majority rule.

The authors focus on a special class of delegation mechanisms, which
they call ‘local’ mechanisms. For a voter i ∈ N , a local delegation mechanism
is blind to any information outside of i’s neighbourhood in the social network
(so in two distinct networks where i has exactly the same neighbours with
the same competence levels, the delegation mechanism will output exactly
the same probability distribution over those neighbours).

Ideally, we would like a local mechanism whose expected return is always
better than the case where everyone votes directly. Unfortunately, Kang,
Mackenzie, and Procaccia prove an impossibility result, namely that there is
no local mechanism which is always no worse than voting directly and better
in some cases as the number of voters increases. Their results essentially
work by concentrating voting power in the hands of a few voters.

1.5.8 Flexible Representative Democracy

Abramowitz and Mattei (2019) propose ‘Flexible Representative Democ-
racy’ (FDR). FDR is a model of vanilla proxy voting, since it doesn’t allow
proxies to further delegate the votes they have been given. However, it is
worth outlining FDR, since it informs a key motivation for the model I will
present, namely that delegates ought to represent the views of the voters
who delegate their votes to them.

In FDR, there is an electorate that is voting on a set of binary issues.
Abramowitz and Mattei divide the electorate into two distinct categories,
voters and delegates. This risks undermining an argument for the claim
that proxy voting increases voter turnout, namely that voters are able to
delegate their votes to individuals who they know and trust.

In Abramowitz and Mattei’s model, both voters and delegates have pref-
erences over the set of binary issues. Voter preferences are private, but
delegate preferences are public (so every voter knows every delegate’s pref-
erences and her own preferences, but no other voter’s preferences; we can
assume some sort of election campaign has occurred). Voters then express
preferences over delegates (Abramowitz and Mattei consider various ballots
on which these preferences could be expressed, such as approval voting or
standard ordinal preference voting). Crucially, a voter’s attitude towards
a delegate is assumed to correspond with the degree of agreement between
the voter’s preferences over the issues and the delegate’s preferences over
the issues. So voters make delegation decisions according to how closely a
delegate’s preferences match their own (with tie breaks being broken arbi-
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trarily).
There are several important differences between Abramowitz and Mat-

tei’s model and mine. The fundamental setting is entirely different, to the
extent that the primary question they consider (which set of delegates should
we choose to cast votes, assuming we want to represent the views of the
population?) wouldn’t make sense in my setting. But the core idea - that
a voter’s choice of delegate should be in some way tied to correspondence
between the voter’s views and the delegate’s - is at the very heart of the
model I present. As I’ve emphasised throughout this chapter, it’s an idea
which is largely absent from the literature on transitive proxy voting.
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Chapter 2

Proposed Model

In the previous chapter, I introduced transitive proxy voting and examined
existing attempts to formalise it from within the computational social choice
literature (broadly construed). During my discussion, I argued that we
ought to assess these models by their ability to represent the features of
transitive proxy voting that are central to its justification as a system of
voting. Amongst others, these included:

• The ability for voters to express their views on some issues but not
others, by choosing a suitable proxy.

• The empirical claim that voters will delegate to a proxy who they
perceive as more competent.

I emphasised that very few of the existing models give an account of what
it is for a voter to select a proxy. The result is that proxy selection is often
treated by these models as a black box. This means that the models are often
unable to represent the very features which make proxy voting attractive,
since they depend on the notion of a proxy representing a voter. This is
unfortunate, since a purpose of formalisation is giving us a more rigorous
framework in which to test philosophical arguments regarding transitive
proxy voting.

The model I present in this chapter is motivated by this deficiency. I
start with the platitude that voters choose proxies to represent them, and
attempt to formalise this intuition, whilst allowing sufficient flexibility to
represent different features relevant to liquid democracy.

2.1 Proxy Selection

It’s not my aim in this thesis to give a full account of the factors that go
into a voter’s choice of delegate. Indeed, it seems likely that such an account
would have to contain so many features as to render it unsuitable for the sort

23



of abstraction required for a social choice-theoretic model. But I do think
that a model of transitive proxy voting should try to take proxy selection
into account. With this in mind, I begin with the following two intuitive
principles.

(1) There is a large range of factors which informs a voter’s choice of dele-
gate (for example, a perception of competence, charisma, intelligence,
honesty, etc).

(2) Voters pick proxies who (they think) will represent their interests.

I take it that (1) and (2) are plausible starting points for an account of proxy
selection.

It is helpful to illustrate the relationship between (1) and (2) with an
example. Suppose I were asked to give my preference regarding the nature
of Britain’s future relationship with the European Union, in the form of an
ordinal ranking over the available options. There are a multitude of options
at hand, including:

(a) remaining in the EU

(b) leaving the EU without a deal

(c) leaving the EU with a customs union

(d) leaving the EU with a backstop

and a variety of others, with varying degrees of specificity and complexity.
Suppose (accurately!) that I am not sufficiently well informed about these
options to submit a linear order over them. I know that I prefer remaining
in the EU to the other options, but I am unsure about how to compare the
various intermediate levels of integration at hand. If I am given the option
of choosing a trusted delegate to submit an opinion on my behalf, I will opt
for this option.

Suppose that my friend Alice is exceptionally well informed about the
intricacies of the EU. She is a lawyer specialising in European law and regu-
larly meets with industry experts on Brexit-related matters. Ceteris paribus,
then, she would be an excellent candidate to be my delegate. She manifests
various qualities which are relevant to my choice of delegate.

Suppose now that I learn that Alice prefers leaving the EU without a
deal to remaining in the EU (so b � a, according to Alice). Recall that I am
sure that I prefer remaining in the EU to leaving without a deal (so I think
that a � b). The fact that Alice prefers a no-deal Brexit to remaining in
the EU doesn’t make me think that she’s any less informed, or trustworthy,
and so on, but it is sufficient to ensure that I won’t pick her as my proxy.
Since she disagrees with me so strongly on the issues on which I have made
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up my mind, I don’t think she will represent my interests if she votes on my
behalf.

I use this thought experiment to show that a model of proxy selection
should have at least two interacting components. First and foremost, voters
will only consider delegates who represent their interests (this is (2)). That
said, it is futile to attempt to place restrictions on their choice amongst
potential delegates who they feel represent their interests, since many factors
are relevant to this decision (this is (1)).

Of course, when we formalise this idea, we will need to flesh out what it
means for a delegate to ‘represent a voter’s interests’. We will also need to
formalise the notion of a voter choosing a delegate without making explicit
the criteria behind the choice.

In the setting I use, a set of voters N will submit ordinal preferences over
both a set of alternatives A and the other voters (i.e. over their potential
proxies). The former preference can be partial, meaning it can omit certain
pairwise comparisons between alternatives. The latter preference must be a
linear (total) order. Based on the preferences submitted over alternatives,
a central mechanism decides for a given voter which of the other voters
represent her interests sufficiently. This subset of voters is called the voter’s
‘permitted proxies’. Based on the preferences she submitted over the other
voters, one of these permitted proxies is then chosen as her delegate.

2.2 Formal Background

For a finite set X, let P(X) denote the set of all binary relations on X which
are irreflexive, anti-symmetric and transitive.

I will call P ∈ P(X) a ‘partial order’, to emphasise that P need not
be total. Technically, of course, the relation usually called a ‘partial order’
is reflexive rather than irreflexive. The reader should be mindful of this
terminological idiosyncrasy, but it makes no substantive difference to the
content of the thesis.

Following Brill and Talmon (2018), it will be helpful to think of a partial
order as a set of strict pairwise comparisons. This affects the notation I use.
Suppose X = {a, b, c}. Then, using my terminology, the following are all
examples of partial orders on X:

• P = ∅

• P ′ = {a � b}

• Q = {a � b, a � c}

but the following would not be a partial order, since it is not closed under
transitivity:

• Q′ = {a � b, b � c}
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I will also speak of specific pairwise comparisons (or ‘edges’) being members
of a partial order. For example, I will say that P ′ contains the edge a � b.
Formally, I will write that a � b ∈ P ′ (or, equivalently, that {a � b} ⊆ P ′),
but a � b /∈ P ({a � b} * P ′). I will also write |P | to express the number
of pairwise comparisons P contains. For example, |P | = 0, |P ′| = 1 and
|Q| = 2.

Let L(X) denote the set of all binary relations on X which are irreflexive,
anti-symmetric, transitive and also complete. Then I call L ∈ L(X) a ‘linear
order’. Note that, by definition, L(X) ⊆ P(X).

Throughout the thesis, I will speak of profiles of partial (linear) orders.
We can think of a profile of partial orders as a list of partial orders, one
for each agent. So if N = {1, ..., n} is the set of agents, and A is the set of
alternatives, then P = (P1, ..., Pn) ∈ P(A)n is a list of partial orders (note I
use the bold type face for the list of orders, and the normal type face for the
partial orders themselves). By Pi, I designate the partial order submitted
by agent i.

Fix some P = (P1, ..., Pn). Then, as is standard, we can also write
P = (Pi, P−i) or P = (Pi,j , P−i,j), for some i, j ∈ N . I will write (P ′i , P−i)
to designate the profile that is an ‘i-variant’ of (Pi, P−i) (that is, the profile
where at most agent i changes the order she submits, from Pi to P ′i ). The
same notational conventions apply to profiles of linear orders.

2.3 Social Choice/Welfare Functions

Let (N,A) be defined as follows:

• N = {i, j, k, l, ...} is a set of voters, with |N | = n. It will also sometimes
be convenient to write N = {1, ..., n}.

• A = {a, b, c, d, ...} is a set of candidates, with |A| = m.

Recall that L(A) is the set of all linear orders over A. Note that P(A)
denotes the powerset of A; this should not be confused with P(A), the set
of partial orders over A.

There are two types of social choice functions (W. Zwicker and Herve
Moulin (2016)).1

Definition 2.1 (Irresolute Social Choice Function). An Irresolute Social
Choice Function

f : L(A)n → P(A)\∅

aggregates agents’ total preferences over A into a set of winners of the elec-
tion.

1Of course, it is possible to see resoluteness as a property of irresolute social choice
functions, and a resolute social choice function as a special sort of irresolute social choice
function.
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Definition 2.2 (Resolute Social Choice Function). A Resolute Social Choice
Function

f : L(A)n → A

aggregates agents’ total preferences over A into a single winner of the elec-
tion.

In this thesis, I will largely (out of convenience) be concerned with res-
olute social choice functions (so the reader can assume that the functions
I consider have some sort of tie-breaking system built in). When I use the
phrase ‘social choice function’, I intend to refer to a resolute social choice
function. Occasionally, though, it will be important to emphasise that a par-
ticular result does not depend on the resoluteness of the underlying social
choice function. I will make this clear when appropriate.

Definition 2.3 (Social Welfare Function). A Social Welfare Function

f : L(A)n → L(A)

aggregates agents’ total preferences over A into a single linear order (inter-
preted as the preference of the group).

The overwhelming majority of the results I present in this thesis relate
to social choice functions. The model I present, though, can also be used
with social welfare functions. This is a potential avenue for future work.

Definition 2.4 (Election/Vote). A Classical Election, or Vote, is a triple
(N,A, f), where

• N = {i, j, k, l, ...} is a set of voters, with |N | = n. It will also sometimes
be convenient to write N = {1, ..., n}.

• A = {a, b, c, d, ...} is a set of candidates, with |A| = m.

• f is a social choice (welfare) function.

Each voter i (or ‘agent’) submits a linear order Li over the set of alternatives
A, generating a profile L = (L1, ..., Ln) ∈ L(A)n. The outcome of the
election is given by f(L).

2.3.1 Properties of Social Choice Functions

There are various familiar properties of social choice functions which will be
relevant during this thesis (W. Zwicker and Herve Moulin (2016)).

Definition 2.5 (Anonymity). A social choice function f is anonymous if,
for any bijection ψ : N → N and profile L = (L1, ..., Ln) ∈ L(A)n, we have
that

f(L1, ..., Ln) = f(Lψ(1), ..., Lψ(n))

If a social choice function is anonymous, we can permute the names of the
agents, and it is guaranteed not to change the result of the election.
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Let ψ : A → A be a bijection. Let P ∈ P(A). By ψ(P ), I denote the
alternative-wise application of the bijection. So if P = {a � b}, ψ(a) = b
and ψ(b) = a, then ψ(P ) = {b � a}.

Definition 2.6 (Neutrality). A social choice function f is neutral if, for any
bijection ψ : A→ A and profile L = (L1, ..., Ln) ∈ L(A)n, we have that

ψ(f(L1, ..., Ln)) = f(ψ(L1), ..., ψ(Ln))

If a social choice function is neutral and we permute the names of the al-
ternatives, then we can simply calculate the winner of the new election by
permuting the name of the previous winner.

Definition 2.7. (Weak Monotonicity) A social choice function f is weakly
monotonic if the following holds for every L ∈ L(A)n.

Suppose f(L) = a, for some a ∈ A. Let L′ = (L′i, L−i) be an i-variant
of L, where

L′i = Li\{b � a} ∪ {a � b}

for some b ∈ A (in other words, voter i moves alternative a up at most one
place in her ordering). Then we have that f(L′) = a.

Definition 2.8. (Unanimity) A social choice function f is unanimous if the
following holds for every L ∈ L(A)n, a ∈ A.

Fix a ∈ A. Suppose that for every i ∈ N , for every b ∈ A\{a}, we have
a � b ∈ Li (in other words, every voter’s favourite alternative is a). Then
we must have f(L) = a.

Definition 2.9. (Pareto Efficiency) A social choice function f is Pareto
efficient if the following holds for every L ∈ L(A)n, a ∈ A.

Suppose that there is some b ∈ A\{a} such that for every i ∈ N we
have b � a ∈ Li (in other words, there is an alternative, b, that every voter
prefers to a). Then we must have f(L) 6= a.

I will also include here a novel property of social choice functions, which I
will make use of in Chapters 3 and 4.

Let L+ be the profile we get when we augment L with |A|! new voters,
one holding each possible ranking in L(A) (if f is anonymous, then we can
think of L+ as L∪L(A); otherwise, we must assume some ordering on the
rankings in L(A)).

Definition 2.10. (Uniform Voter Addition Invariance) Then f is Uniform
Voter Addition Invariant (UVAI) iff f(L+) = f(L) for every L ∈ L(A)n.

Uniform Voter Addition Invariance (UVAI) says that we can add a new set
of voters to our existing voters, one holding each possible linear order over
the set of alternatives, without changing the result of the election.
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2.4 Extending Classical Votes

In this section, I will present the model I will use for the remainder of the
thesis. My model extends a classical vote with a proxy mechanism, g.

2.4.1 Proxy Mechanisms

Recall that P(A) denotes the set of all partial orders over A. Recall that
P(N) designates the powerset of N .

Definition 2.11 (Proxy Mechanism). A function

g : P(A)n ×N → P(N)

is a proxy mechanism iff, for every P = (P1, ..., Pn) ∈ P(A)n, for every
i ∈ N :

1. If Pi = ∅, then g(P , i) = N\{i}.

2. If Pi ∈ L(A), then g(P , i) = {i}.

3. If Pi /∈ L(A), then i /∈ g(P , i).

Intuitively, a proxy mechanism takes in a profile of partial orders and assigns
to each voter a set of permitted proxies, the voters who they are allowed to
choose as their delegate. Recall that the idea is that this set of permitted
proxies constitutes the delegates who could represent the voter’s interests.
Let’s turn to the individual clauses in the definition.

Firstly, if agent i submits an empty order, we require (in 1.) that she
can choose any other agent as her proxy (every other agent is in her set
of permitted proxies). This is because she has no preferences over the al-
ternatives, implying that there is no way for a potential delegate to fail to
represent her interests.

Similarly, if agent i submits a linear order, we require (in 2.) that she
casts her own vote (she is the only agent in her set of permitted proxies). The
motivation for this is simple; if she has already made her mind up about the
alternatives, there is no need for her to delegate her vote to another agent.

Finally, if agent i submits a partial order which is not a linear order,
then she is not allowed (by 3.) to cast her own vote (she does not appear in
her set of permitted proxies). This is because the aggregation function (a
social choice or welfare function) takes profiles of linear orders as an input;
the model I propose modifies the method of collecting preferences, not the
method of aggregating preferences.
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2.4.2 Proxy Votes

We are now ready to define proxy votes. Recall that a classical vote was a
triple (N,A, f). A proxy vote adds a proxy mechanism into the mix, and
requires agents to submit linear orders over the set of potential proxies, as
well as a default vote and a partial order over the set of alternatives.

Definition 2.12 (Proxy Vote). A proxy vote is a tuple

(N,A, f, g)

where:

• N = {i, j, k, l, ...} is a set of voters, with |N | = n. It will also sometimes
be convenient to write N = {1, ..., n}.

• A = {a, b, c, d, ...} is a set of candidates, with |A| = m.

• f is a social choice (welfare) function.

• g is a proxy mechanism.

An agent i ∈ N submits a triple (Pi, Si, Di), where:

• Pi ∈ P(A) is a partial order over the alternatives. So the model allows
agents to have made their mind up about some pairwise comparisons
but not others.

• Si ∈ L(N) is a linear order over the voters. Intuitively, this order cor-
responds to a ranking over potential proxies (capturing all the reasons
that i might have to prefer a delegate as her proxy independently of
the delegate’s ability to represent her).

• Di ∈ L(A) is a linear order over the set of alternatives, with Pi ⊆ Di.
Di is a ‘default vote’. In the situation where i has no permitted proxies
(so g(P , i) = ∅), i is required to vote directly, submitting this default
vote.

When each agent submits a triple, we have a proxy vote profile (P ,S,D),
where

• P is a (partial) preference profile.

• S is a proxy choice profile.

• D is a default vote profile.
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Each voter i then receives g(P , i), a set of permitted proxies, given the
preference profile.

If g(P , i) = ∅, then i must submit her default vote Di ∈ L(A).
If g(P , i) 6= ∅, then i must pick some j ∈ gi(P ) to cast her vote on

her behalf. Let N ′ ⊆ N . Then by Si|N ′ I denote the restriction of Si to
N ′. Agent i will pick the potential proxy who is ranked highest when we
consider Si|g(P ,i) (in other words, the most preferred delegate from amongst
her permitted proxies). Suppose that this is j. Then I will abuse notation by
writing that Si|g(P ,i) = j. For the sake of convenience, I will write Si|{i} = i
and Si|∅ = i, since i casts her own vote if g(P , i) = {i} or if g(P , i) = ∅.

So, given a voting profile P = (P1, ..., Pn) and proxy choice profile S =
(S1, ..., Sn), each i ∈ N has a proxy. So we have a delegation graph (N,R)
where iRj iff

j = Si|g(P ,i)
Note that, where it does not have a negative impact on accuracy, I will speak
of ‘i choosing j to be her proxy’ as expressing this formal condition.

Let R∗ be the transitive closure of R. For each i, let

Πi = {j ∈ N | iR∗j and jRj}

If Πi is non-empty, it is easy to see that it will be a singleton {πi}. Call
πi voter i’s guru. Note that if i casts her own vote, then we have πi = i (so
i will be her own guru). We can then define a guru voting profile

Pπ,S,D = (Pπ1,S1,D1 , ..., Pπn,Sn,Dn)

Where Pπi,Si,Di is the preference order submitted by voter i’s guru, generated
according to (P ,S,D).

I use the notation Pπ,S,D to emphasise that this profile results from the
proxy vote profile (P ,S,D). The use of π is supposed to remind the reader
that the votes are actually submitted by the gurus π1, ..., πn.

Note that, by construction, Pπi,Si,Di ∈ L(A), for every i ∈ N , since
each guru must cast her own vote. So we can use Pπ,S,D as the input to a
social choice (welfare) function. The outcome of the proxy vote is given by
f(Pπ,S,D).

2.4.3 Agents’ Preferences over the Outcomes of Proxy Votes

In Chapter 4, we will explore manipulation in a proxy vote setting. To do
this, we need to define what it means for an agent to prefer one outcome
of a proxy vote over another. Suppose that f is a resolute social choice
function. Let (P ,S,D) be a proxy vote profile. Then let P ′ = (P ′i , P−i),
S′ = (S′i, S−i) and D′ = (D′i, S−i) (so P ′ is an i-variant of P , S′ is an
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i-variant of S and D′ is an i-variant of D). We will say that i prefers
f(P ′

π′,S′,D′) to f(Pπ,S,D) iff either

f(P ′
π′,S′,D′) � f(Pπ,S,D) ∈ Pi (A)

or (
f(Pπ,S,D) � f(P ′

π′,S′) /∈ Pi (B1)

and (
πi = i and π′i 6= i (B2.1)

or
|P ′i | < |Pi| and π′i 6= i)). (B2.2)

Recall that |P ′i | is the number of pairwise comparisons contained within P ′i ,
and |Pi| is the number of pairwise comparisons contained within Pi.

Formally, the relationship between the equations that expresses the con-
dition is

A ∨ (B1 ∧ (B2.1 ∨B2.2)).

The first condition (‘Strict Preference’) is expressed by equation A whilst
the second condition (‘Effort Preference’) is jointly expressed by equations
B1 and B2.1/B2.2.

Strict Preference says that an agent will prefer changing what she sub-
mits when she prefers the winner of the new proxy vote to the winner of
the old proxy vote in her original partial order. Strict Preference is simply
the standard formalisation of an agent’s preference over outcomes of a vote,
updated to take into account the proxy vote setting.

Effort Preference says that an agent will prefer changing what she sub-
mits when it does not make the outcome any worse (according to her original
ordering), whilst allowing her to submit fewer pairwise comparisons in her
new preference ordering. Note that she cares about the size of the vote she
actually has to cast (so if she casts her default vote, that is taken to be
the size of the vote she casts, rather than the size of the partial order she
submitted). In other words, an agent is happy when she has to put in less
effort to achieve a result which is no worse. Effort Preference is a novel
condition, designed to capture the idea of ‘effort’ in a proxy voting setting.
It is motivated by the assumption that each pairwise comparison takes some
effort to decide on and submit in a vote. This is an assumption (familiar
from the previous chapter) which features in prominent defences of proxy
voting, so I will not question it here.

2.5 Discussion of the Model

In this section, I will attempt to flesh out the conceptual underpinnings of
the model, as well as highlighting some of its representational power.
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2.5.1 What is a Proxy Mechanism?

A natural question concerns the nature of the proxy mechanism g. Recall
that a proxy mechanism takes into account the partial preferences over the
set of alternatives submitted by the voters and assigns to each voter a set
of permitted proxies, the voters who she is allowed to delegate her vote to.
I have suggested that we should interpret this set of permitted proxies as
the set of delegators who would represent the voter’s interests (based on the
preferences they have submitted). But what is the proxy mechanism itself?
How does it decide which voters are capable of representing which others?

The first point to make is that there are a lot of possible proxy mecha-
nisms, just as there are a lot of social choice functions. I postpone examining
proxy mechanisms from an axiomatic perspective until the next chapter. But
it is worth giving some examples of simple proxy mechanisms here.

Definition 2.13. (TRIV)

TRIV(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

∅ otherwise

Definition 2.14. (SUBSET)

SUBSET(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j ∈ N\{i} | Pi ⊆ Pj} otherwise

Definition 2.15. (STRICT-SUBSET)

STRICT-SUBSET(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j ∈ N\{i} | Pi ⊂ Pj} otherwise

Definition 2.16. (UNIV)

UNIV(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

N\{i} otherwise

Definition 2.17. (DICTATOR) For each i ∈ N , fix some j ∈ N\{i} (to make
this concrete, we could, for example, pick the lexicographically earliest voter
in N\{i}). Then

DICTATOR(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j} otherwise
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Definition 2.18. (HYBRID) Fix some j ∈ N . Then

HYBRID(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

N\{i} if i = j and Pi /∈ L(A)

∅ otherwise

For most of the remainder of this thesis, I’ll focus on the SUBSET mecha-
nism, as I think it is a natural interpretation of what it means for a delegate
to represent a voter. In the next chapter, I’ll also show that it is the unique
mechanism satisfying certain desirable properties.

For now, though, note that the choice of proxy mechanism g has a large
effect on the proxy vote setting.

If g = TRIV, then every agent will cast her own vote, unless she has
no preferences at all over the alternatives (in which case she will delegate).
So we are close to a classical vote; proxy voting plays little role here. In
particular, the proxy choice profile S is often fairly irrelevant to the outcome
of the election, although the default vote profile D can be highly relevant.

By contrast, if g = UNIV, then every agent who has not made her mind
up fully can delegate her vote to any other agent, regardless of what she
thinks on the issues she has made her mind up on. In effect, this is the
formal set up of many of the accounts we discussed in the previous chapter;
the strictly partial components of the preference profile P are irrelevant to
the outcome of the vote, as is the default vote profile D. Instead, it is the
proxy choice S that plays a large role in determining the outcome of the
election.

If g = DICTATOR, then each agent i has a unique dictator j; when i
submits some but not all pairwise comparisons, then she must delegate her
vote to j. Similarly, if g = HYBRID, then the mechanism acts like UNIV for
some distinguished j ∈ N , and acts like TRIV for every i ∈ N\{j}. These
are not intended as real suggestion for a proxy mechanisms, but should serve
to indicate the sheer range of available options.

Having sketched some example of proxy mechanisms and their effects
on the voting system, it is time to turn to the question at hand. What
actually is a proxy mechanism? I see at least two interpretations of proxy
mechanisms.

Firstly, there is a descriptive interpretation of proxy mechanisms. On
this interpretation, a proxy mechanism describes the behaviour of voters
(assuming they act in their own interest). Voters will only choose dele-
gates who represent their interests, and the proxy mechanism makes this
constraint explicit. Note that proxy mechanisms allow for different voters
to have different interpretations of what it takes for a delegate to represent
their interests (since they take the name of the voter as an input). Different
proxy mechanisms correspond to different constraints on the judgement of
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voters. I think the descriptive interpretation best corresponds to the ac-
count of proxy choice I offered at the beginning of this chapter (consider,
for example, the Brexit thought experiment).

There is also a prescriptive interpretation of proxy mechanisms. On this
interpretation, a proxy mechanism is something external to a voter. It could
be some aspect of a centralised voting system, or some rule which a voter is
required to obey.

When it comes to the classical picture of liquid democracy as a happy
medium between direct and representative democracies, I think it is clear
that we ought to prefer the descriptive interpretation of proxy mechanisms.
When it comes to transitive proxy voting more broadly, though, I think the
idea of a centralised proxy mechanism becomes less strange. Suppose, for
example, that agents are autonomous software agents making decisions over
a large number of alternatives. At this point, one might plausibly want to
constrain the sort of delegations that are allowed, to have some means to
predict the behaviour of the system.

2.5.2 Cycles

The reader will note that proxy votes are currently underspecified. I have
not yet discussed what should happen in the case of delegation cycles. Since
other authors have taken delegation cycles seriously in their formalisation
of transitive proxy voting, something clearly needs to be said about them.

The first point to make is that the model I have defined leaves freedom
to reduce the occurrence of delegation cycles. If we use the STRICT-SUBSET

mechanism, for example, then delegation cycles can only involve agents who
have decided on absolutely no pairwise comparisons. Depending on the
setting where transitive proxy voting is used, one might not be too worried
about failing to include such agents. So the choice of proxy mechanism can
ameliorate the problem of delegation cycles.

More importantly, though, the model permits an easy resolution to del-
egation cycles. Following Christoff and Grossi (2017), I have had agents
submit a default vote which extends their existing vote. One could simply
specify that this default vote is submitted directly by any agent who features
in a delegation cycle. Thus delegation cycles penalise the agent a little (in
that they have to submit more edges), but do not prevent them from voting.

2.5.3 Networks

There is an aspect of transitive proxy voting explored by other authors which
is not explicitly present in my model. Several authors arrange agents into
a social network (N,T ), and require that agents can only delegate to their
neighbours in the network.
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Although I have not arranged agents in a network, the model I have
presented can accommodate a social network in at least two ways. I’ll outline
these here, so as to give a sense of the expressive power of the model.

Firstly, we can build the social network into the proxy mechanism g. To
give an example, consider NETWORK-UNIV.

Definition 2.19. (NETWORK-UNIV) Let (N,T ) be a social network, where T
is irreflexive.

NETWORK-UNIV(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

T [i] otherwise

where T [i] denotes the neighbourhood of i according to the binary relation
T . Since T is irreflexive, i /∈ T [i], and so NETWORK-UNIV is a well-defined
proxy mechanism.

If we use NETWORK-UNIV, we are essentially saying that an agent is capable
of being represented by all and only her neighbours in the network. This
models the proxy vote setting considered by many authors.

It’s clear that we could easily create a networked version of an existing
proxy mechanism (for example, SUBSET) by intersecting an agent’s permit-
ted proxies with her neighbourhood in the network. So we can impose a
network structure on delegations whilst retaining the flexibility of the proxy
mechanism framework if we desire.

There’s another way to incorporate a social network into my model,
namely to place a requirement on S, the proxy choice profile. Fix some
social network (N,T ). For each i ∈ N , we could stipulate that

(j, k) ∈ Si iff (j ∈ T [i] and k /∈ T [i]).

What this says is that i will always delegate to one of her neighbours if they
are in her set of permitted proxies, but is able to delegate further afield if
none of her neighbours represents her sufficiently. We could refine this idea
further, by having i’s neighbour’s neighbours ranked behind her neighbours
but ahead of the remaining agents, and so on.

In this way, the model can capture the idea that agents will delegate to
their neighbours in the network, whilst taking a more flexible perspective
on other permitted delegations. If we assume that delegation is done us-
ing some sort of technology, then it seems plausible that an agent might be
able to reach beyond her direct neighbours when making a delegation. So
this interpretation of a social network may actually have significant concep-
tual advantages, depending on the setting where proxy voting is used. To
my knowledge, this is the first time this way of modelling delegations in a
network has been suggested.

36



2.5.4 Existing Impossibility Results

The final point to make in this section is that a proxy vote (N,A, f, g) is
a straightforward generalisation of a classical vote (N,A, f). In the case
where Pi ∈ L(A) for every i ∈ N , every agent casts her vote directly. So the
additional elements in the proxy vote model (the proxy mechanism g, the
proxy choice profile S and the default vote profile D) are irrelevant to the
outcome of the election.

In particular, this implies that any impossibility result concerning a so-
cial choice (welfare) function f will carry over into my setting. So, for
example, Arrow’s Impossibility Theorem (Arrow (1950)) and the Gibbard-
Sattherthwaite Theorem (Gibbard (1973), Satterthwaite (1975)) still hold
in this novel setting.

2.6 Responses and Rejoinders

In the remainder of this chapter, I will attempt to anticipate some responses
to the model I have proposed, and provide some brief rejoinders to those
responses.

2.6.1 The Model Requires too much from Voters

As it stands, each voter i submits a triple (Pi, Si, Di), where Pi ∈ P(A),
Si ∈ L(N) and Di ∈ L(A). This is a lot of information to ask for from
voters, especially as one of the principle justifications of proxy voting is that
it reduces the workload required to express an opinion. One might worry
that this makes the model unworkable from the outset.

One rejoinder to this response is a companions-in-guilt argument. As I
showed in the previous section, various authors have required that voters
submit similar amounts of information when modelling proxy voting. So
there’s a tacit assumption in the literature that this doesn’t doom the model
to failure.

Of course, this sort of response will only go so far, since it doesn’t address
the actual objection at hand. Let us look at what we require of voters.

A key assumption driving proxy voting is that each pairwise comparison
between alternatives requires some effort for a voter i to decide on and then
submit. Since Pi does not have to include every pairwise comparison, it must
be at most as burdensome for a voter as the vote required by a standard
election. So I take it that it is not Pi that is the problem.

Does submitting Di, the default preference, require the same amount of
effort from a voter as submitting a linear order? Well, it depends how we
interpret how a voter picks the default preference. If we suppose the voter
puts a significant amount of energy into making each pairwise comparison,
then there is no essential difference between the default preference and a
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complete vote; in other words, the voter might as well have voted directly,
and we should forget about proxy voting.

This seems implausible to me, though. The very point of a default
preference is that it is little more than a placeholder, a device which serves
some practical purpose but has little ideological significance. I think a more
realistic perspective on the default preference is that each voter extends Pi
at random, or chooses the lexicographically earliest extension of Pi, and so
on. Given such a perspective, the fact that a voter must submit a default
preference shouldn’t be an issue; she still puts in less effort than she would
to make up her mind on each issue. As for the cost required for a voter i to
submit a default preference, note that she only incurs this cost when she has
no permitted proxies (or, depending on one’s preferred account of cycles, is
involved in a delegation cycle). In such a case, we are essentially saying that
her original preference Pi was sufficiently baroque that no other voter could
represent her interests. Here, it seems natural that she might have to pay
some extra cost to express her view.

That leaves us with Si, then, the linear order over the voters. If |N | = n
is large, the cost of forming and submitting such an order could be extremely
high. I take it that Si is the element of the ballot for which the objection
at hand has the most bite, then.

Here, it is helpful to delineate two different perspectives on the proxy
vote model, a synchronic perspective and a diachronic perspective.

The synchronic perspective takes the formal requirements of the model
literally. It assumes we are dealing with a static environment in which voters
really do submit triples (Pi, Si, Di), from which the outcome of the election
is calculated deterministically.

The diachronic perspective, by contrast, assumes that the model is a
static representation of a process which is inherently dynamic. The di-
achronic perspective could interpret the model as follows. A voter i submits
Pi. She is then told g(P , i), her set of permitted proxies. If g(P , i) = ∅,
she submits Di ⊃ Pi, her default preference. If g(P , i) 6= ∅, she picks some
j ∈ g(P , i) to be her proxy.

From the diachronic perspective understood as above, the objection we
are considering doesn’t have any teeth. Rather than Si, the voter i is really
only required to specify the name of a proxy.

It’s clear that any real world version of transitive proxy voting will be
situated within a dynamic environment. Indeed, dynamics are essential to
Blum and Zuber (2016)’s charaterisation of liquid democracy. There is little
doubt that the diachronic perspective will be the correct one when we look
to the actual situations which the model purports to describe.

Why do we need the synchronic perspective at all, then? Why not build
some sort of dynamics into the model directly, such that the sort of worry
expressed in this subsection doesn’t apply? Essentially, this question relates
to a difficulty with any formal model of a highly complex system. We want
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the model to contain a sufficient level of detail to describe features of the
system relevant to its analysis, and a sufficient level of abstraction to ensure
that such analysis is tractable. I have opted for a static model, trusting that
it is sufficiently expressive to ask non-trivial questions about the setting it
represents.

In Chapter 4, we’ll see a drawback of the model’s staticity when describ-
ing strategic behaviour amongst agents. It may be that the proper response
to this drawback is to add dynamics to the model. For the remainder of this
thesis, though, I’ll use the static formal model with the diachronic perspec-
tive in the conceptual background.

2.6.2 The Model Renders Voter Behaviour Trivial

A second worry also relates to a general issue with modelling. When we
abstract away information from the transitive proxy voting setting (as we
must when we attempt to formalise it), there is a risk that we lose the ability
to describe the behaviour of voters. We have formal features such as proxy
choice profiles S, but do these features actually latch onto their intended
interpretation, or are they just useless formal appendages of the model?

One way to express this worry is to look at the behaviour of agents within
the model. If we find that agents act differently from how they would in
the situations the model purports to describe, then this is evidence of some
deficiency in the model. More concretely, if we find that there is some domi-
nant strategy in the formal setting (even in the absence of information about
the preferences of other voters) that does not exist in the real-world setting,
then this poses a problem for the model. I will spend the remainder of this
subsection showing that there is no obvious dominant strategy. I consider
two candidates for a dominant strategy of this sort.

Dominant Strategy 1: Will Agents Always Submit Linear Orders?

The first worry is that no agent would prefer to delegate her vote in the
setting I have described. Instead, every agent will simply vote directly. It
should be seen from the way I defined the notion of a voter’s preference
over outcomes of the election that this isn’t the case, but I’ll describe a toy
example which makes this clearer.

Suppose f is unanimous (I make no assumptions about g). Let N =
{1, 2} and let A = {a, b}. Suppose that:

Pi = {a � b}, ∀i ∈ N

As it stands, a is the winner of the election, since f is unanimous. Consider
agent 1. Currently P1 ∈ L(A). But note that 1 would prefer to submit
P ′1 = ∅. In such a situation, g((P ′1, P2), 1) = {2}, and so π1 = 2. So a would
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remain the winner of the election, since

Pπ,S,D = (P ′1, P2)π′,S,D

But note that |P ′1| < |P1|. So 1 would prefer to submit P ′1 than P1. This
demonstrates that there are situations where agents would prefer not to sub-
mit linear orders.

Dominant Strategy 2: Will Agents Always Submit Empty Orders?

The second worry is the opposite of the first. The worry is that based
on the way we have defined the notion of an agent preferring an outcome
of the election, agents would always prefer to submit empty orders (since
they require no effort from the agent). Again, I’ll give a toy example which
shows this isn’t the case.

Suppose f is the plurality rule (I make no assumptions about g). Let
N = {1, 2, 3} and let A = {a, b}. Suppose that:

P1 = {a � b}
P2 = {a � b}
P3 = {b � a}

and that
S1 = {3 � 2 � 1}

As it stands, a is the winner of the election, since f is the plurality rule.
Consider agent 1. Examine what would happen if P ′1 = ∅. In such a situa-
tion, g((P ′1, P−1), 1) = {2, 3}, and so π1 = 3. But then b would become the
winner of the election, since f is the plurality rule. But a � b ∈ P1. So 1
would not prefer to submit P ′1 over P1. This demonstrates that there are
situations where agents would prefer not to change their vote to an empty
preference order.

Of course, these two dominant strategies do not exhaust the possible
trivialities. But I hope they give some evidence to the reader that the
model doesn’t immediately collapse into triviality, so that we can proceed
with examining more interesting properties of the model.

2.7 Concluding Remarks

In this chapter, I’ve defined the model which I will use in Chapter 3 and
Chapter 4. In the next chapter, I’ll examine proxy mechanisms and proxy
votes from an axiomatic perspective. I’ll characterise the SUBSET mechanism
using some of these axioms, and prove a general impossibility result for
natural properties of (social choice function, proxy mechanism) pairs (f, g).
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Chapter 3

Properties of Proxy
Mechanisms and Proxy
Votes: An Axiomatic
Analysis

In the previous chapter, I outlined a novel model of transitive proxy voting.
At the heart of the model was a proxy mechanism, g. In this chapter, I
will examine proxy mechanisms from an axiomatic perspective. I will also
examine properties of pairs (f, g), where f is a social choice function and g
is a proxy mechanism.

3.1 Proxy Mechanisms

In this section, I’ll define some natural properties which proxy mechanisms
can satisfy. I’ll then use some of these properties to characterise the SUBSET

mechanism (defined in the previous chapter).

3.1.1 Properties of Proxy Mechanisms

Recall that a proxy mechanism is a function

g : P(A)n ×N → P(N).

Let us define some properties of proxy mechanisms as follows.
Let ψ : N → N be a bijection. Let N ′ ⊆ N . Then I write ψ(N ′) to

denote the image of N ′ under ψ. Let P ∈ P(A)n be a partial preference
profile. Abusing notation, I write

ψ(P ) = ψ(P1, ..., Pn) = (Pψ(1), ..., Pψ(n))
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Definition 3.1. (Proxy Mechanism Anonymity) A proxy mechanism g is
anonymous iff for every preference profile P ∈ P(A)n and every bijection
ψ : N → N , we have that

ψ(g(P , i)) = g(ψ(P ), ψ(i))

Proxy Mechanism Anonymity says that if we rename the agents, then a
renamed agent’s set of permitted proxies will just be the original agent’s set
of permitted proxies renamed. In other words, the proxy mechanism is blind
to the identity of the individual agents.

Let ψ : A → A be a bijection. Let P ∈ P(A). By ψ(P ), I denote the
alternative-wise application of the bijection. So if P = {a � b}, ψ(a) = b
and ψ(b) = a, then ψ(P ) = {b � a}. Let P ∈ P(A)n be a partial preference
profile. Abusing notation, I write

ψ(P ) = ψ(P1, ..., Pn) = (ψ(P1), ..., ψ(Pn))

Definition 3.2. (Proxy Mechanism Neutrality) A proxy mechanism g is
neutral iff for every preference profile P ∈ P(A)n and every bijection ψ :
A→ A, we have that

g(P , i) = g(ψ(P ), i)

Proxy Mechanism Neutrality says that we can rename the alternatives with-
out affecting each agent’s set of permitted proxies.

Definition 3.3. (Proxy Availability (PA)) g satisfies PA iff for every Q ∈
P(A), for every i ∈ N , there is some P ∈ P(A)n such that Pi = Q and

g(P , i) 6= ∅

Proxy Availability (PA) says that every voter should be able to find poten-
tial proxies for their votes, regardless of what views they hold, in at least
some profile. In other words, every voter is capable of being represented,
regardless of her views.

Definition 3.4. (Independence of Irrelevant Proxies (IIP)) g satisfies IIP
iff for every P ,P ′ ∈ P(A)n, for every i, j ∈ N , if Pi = P ′i and Pj = P ′j , then

j ∈ (P , i) iff j ∈ g(P ′, i)

Independence of Irrelevant Proxies (IIP) says that whether j is a permit-
ted proxy for i should depend only on i’s and j’s preferences, not on the
preferences of the other agents.

Definition 3.5. (Zero Regret (ZR)) g satisfies ZR iff there is no triple
(P ,S,D) (where P ∈ P(A)n, S ∈ L(N)n and D ∈ L(A)n) such that, for
some i ∈ N :

Pi * Pπi,Si,Di
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Zero Regret (ZR) says that a proxy mechanism guarantees that every agent’s
vote ends up being cast by someone who agrees with them completely (i.e.
that they have no regrets about the vote submitted by their guru).

Before defining the next condition on proxy mechanisms, it will be useful
to define a couple of terms.

Definition 3.6. (Agreement and Disagreement) Let Pi, Qi ∈ P(A). Then

Agree(Pi, Qi) = {a �Pi b | a �Qi b}

and
Disagree(Pi, Qi) = {a �Pi b | b �Qi a}

So Agree(Pi, Qi) returns the set of pairwise comparisons which Pi and
Qi agree on, and Disagree(Pi, Qi) returns the set of pairwise comparisons
which Pi and Qi disagree on. Note that if Pi, Qi ∈ L(A) (i.e. if they are
linear orders), we have

|Agree(Pi, Qi)|+ |Disagree(Pi, Qi)| =
1

2
m(m− 1)

since 1
2m(m − 1) is the total number of pairwise comparisons that need to

be made to form a total/linear order over |A| = m alternatives.
With Definition 3.6 in mind, we can define another condition on proxy

mechanisms.

Definition 3.7. (Preference Monotonicity (PM)) g satisfies PM iff the fol-
lowing condition holds for every P ∈ P(A)n, for every i ∈ N . Suppose
j ∈ g(P , i) and j 6= i. Then for every k ∈ N\{i}, if

Agree(Pi, Pj) ⊆ Agree(Pi, Pk)

and
Disagree(Pi, Pk) ⊆ Disagree(Pi, Pj)

then k ∈ g(P , i).

Preference Monontonicity (PM) says that if j is a permitted proxy for i and
k agrees with i on at least the same things as j whilst disagreeing with i on
at most the same things as j, then k should also be a permitted proxy for i.

3.1.2 Characterising SUBSET

Recall that SUBSET was defined as follows:

Definition 3.8. (SUBSET)

SUBSET(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j ∈ N\{i} | Pi ⊆ Pj} otherwise
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Theorem 3.9. SUBSET is the unique proxy mechanism satisfying Proxy
Availability, Independence of Irrelevant Proxies, Zero Regret and Preference
Monotonicity.

Proof. Clearly, SUBSET satisfies PA, IIP and ZR. To see that SUBSET satisfies
PM, suppose that j ∈ SUBSET(P , i) and j 6= i, for some P ∈ P(A)n, i, j ∈
N . So Pi ⊆ Pj . Suppose that there is k ∈ N such that Agree(Pi, Pj) ⊆
Agree(Pi, Pk) and Disagree(Pi, Pk) ⊆ Disagree(Pi, Pj). Then we must
have Pi ⊆ Pk, since Agree(Pi, Pj) = Pi, since Pi ⊆ Pj . So k ∈ SUBSET(P , i),
as required.

For the other direction (i.e. to show uniqueness), I prove the contrapos-
itive. Suppose g 6= SUBSET is a proxy mechanism, and suppose g satisfies
PA, IIP and PM. I will show that g does not satisfy ZR.

It will help to prove the following intermediate claim.

Lemma 3.10. Let P ∈ P(A)n and i, j ∈ N , such that Pi /∈ L(A). Then if
Pi ⊆ Pj , and g satisfies PA, IIP and PM, we have j ∈ g(P , i).

Proof. Since g satisfies PA, there must be some P ′ ∈ P(A)n such that
P ′i = Pi and g(P ′, i) 6= ∅. Suppose k ∈ g(P ′, i), for some k ∈ N . Then we
can construct a new profile P ′′ where

P ′′i = P ′i = Pi

P ′′j = Pj

P ′′k = P ′k

By IIP, we must have k ∈ g(P ′′, i), since P ′′i = P ′i and P ′′k = P ′k. But then
by PM, we must have j ∈ (P ′′, i), since

P ′′i = Pi ⊆ Pj = P ′′j

implying that j must agree at least as much with i as k in profile P ′′. But
then by another application of IIP, we must have j ∈ g(P , i), since P ′′i = Pi
and P ′′j = Pj .

We are now ready to prove the uniqueness of SUBSET. Since g 6= SUBSET,
there must be some P ∈ P(A)n and i, j ∈ N with Pi /∈ L(A) such that
either

Pi * Pj and j ∈ g(P , i)

or
Pi ⊆ Pj and j /∈ g(P , i)

But note that Lemma 3.10 rules out this latter case. So we only need to
consider the case where

Pi * Pj and j ∈ g(P , i)
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Since Pi * Pj , there must be some a � b ∈ Pi such that a � b /∈ Pj .
But now consider a profile P ′ where, for some k ∈ N :

P ′i = Pi

P ′j = Pj

P ′j ∪ {b � a} ⊆ P ′k, and P ′k ∈ L(A)

Note that this profile is well defined; since a � b /∈ Pj = P ′j , we must have
that P ′j ∪ {b � a} is still anti-symmetric, and thus can be extended to a
linear order P ′k.

Since P ′i = Pi and P ′j = Pj , we must have j ∈ g(P ′, i), by IIP. But then
we must have k ∈ g(P ′, j) by Lemma 3.10, since P ′j ⊆ P ′k. So then if i
picks j as her proxy and j picks k as her proxy, then k will be i’s guru. But
P ′i * P ′k, since a � b ∈ Pi = P ′i and a � b /∈ P ′k (because b � a ∈ P ′k). So g
is not ZR.

Showing each condition is necessary

I have characterised SUBSET as the conjunction of four conditions: Surjec-
tivity, IIP, ZR and PM. We can also show that each of these conditions is
individually necessary for characterising SUBSET, by showing that the other
three conditions are not jointly sufficient.

Proposition 3.11. PA is necessary for characterising SUBSET.

Proof. Recall that TRIV was defined as follows.

TRIV(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

∅ otherwise

TRIV is a proxy mechanism which does not satisfy PA. But note that TRIV

does satisfy IIP, ZR and PM.

Proposition 3.12. ZR is necessary for characterising SUBSET.

Proof. Recall that UNIV was defined as follows:

UNIV(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

N\{i} otherwise

UNIV is a proxy mechanism which does not satisfy ZR. But note that UNIV

does satisfy PA, IIP and PM.

Proposition 3.13. PM is necessary for characterising SUBSET.

45



Proof. Consider g defined as follows:

g(P , i) =


N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j ∈ N | Pj ∈ L(A) and Pi ⊂ Pj} otherwise

g is a proxy mechanism which does not satisfy PM (just consider some
Pj /∈ L(A) such that Pi ⊆ Pj). But note that g does satisfy PA, IIP and
ZR.

Proposition 3.14. IIP is necessary for characterising SUBSET.

Proof. Consider g defined as follows:

g(P , i) =



N\{i} if Pi = ∅
{i} if Pi ∈ L(A)

{j ∈ N | Pj ∈ L(A)} if Pi /∈ L(A) and Pi ⊆ Pj ,∀j ∈ N\{i}
such that Pj ∈ L(A)

∅ otherwise

g is a proxy mechanism which does not satisfy IIP. But note that g does
satisfy PA, PM and ZR.

3.1.3 Discussion

It is worth briefly commenting on the properties used to characterise SUBSET.
I take it that proxy availability is an important feature of any proxy

mechanism. The whole point of proxy voting is that voters are (at least in
principle) capable of finding delegates to represent them, regardless of their
views or their identity. So I will not challenge proxy availability here.

Independence of irrelevant proxies plays a large role in the characteri-
sation of SUBSET. Here is one way of motivating independence of irrelevant
proxies. In the previous chapter, I argued that we should think of a voter
i’s set of permitted proxies as the set of delegates who are capable of repre-
senting i’s interests. Membership in this set is binary; a delegate is either
capable of representing i’s interests or she is not. Using proxy mechanisms,
we are interpreting this capacity in terms of a correspondence between the
voter’s views and the delegates’. Independence of irrelevant proxies essen-
tially says that each delegate’s capacity to represent a voter is independent
of what the other delegates think about the issues. If a delegate is capable
(or not) of representing a voter and some other voter changes her mind,
then this should not affect the capacity, since the correspondence between
the voter and delegate’s views still exists (or not).

The interpretation of the previous paragraph also lends itself to a defence
of preference monotonicity, which goes as follows. Suppose some delegate
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is capable of representing some voter. This indicates that there is some
correspondence between the voter’s views and the delegate’s. Suppose now
that there is an even greater correspondence between some other delegate’s
and the voter’s views. Then this other delegate is also capable of representing
the voter.

We are left, then, with zero regret. I take it that zero regret is desirable
from the perspective of an individual voter, but implausible if we take a
proxy mechanism to describe all real world delegations. After all, it seems a
consequence of the transitivity of transitive proxy voting that a voter’s vote
can end up going to someone who they may disagree with. Moreover, one can
imagine situations where a voter might have no objection to this (e.g. since
the pairwise comparison she cares about most is still represented, or since
she has still been spared the effort of voting directly). So we might prefer a
proxy mechanism to satisfy zero regret, without rejecting out of hand any
proxy mechanism that fails to satisfy it. Future work could address this.

3.2 Properties of Proxy Votes

In the previous section, we identified some plausible properties of proxy
mechanisms, and characterised a specific mechanism (the SUBSET mecha-
nism) in terms of these properties.

In this section, we examine properties of proxy votes as a whole. Recall
that proxy votes are tuples

(N,A, f, g).

It follows that the properties we identify will be properties of pairs (f, g). So
these properties will interact both with novel properties of proxy mechanisms
g, and with familiar properties of social choice functions f .

3.2.1 Defining Some Properties

Proxy Vote Anonymity

Before defining a notion of anonymity in a proxy vote setting, it will be
useful to define some notation. Suppose ψ : N → N is a bijection.

Suppose P ∈ P(A)n is a preference profile. Then it will be convenient
to write

ψ(P ) = (Pψ(1), ..., Pψ(n))

to denote the agent-wise application of the bijection ψ. Likewise with a
default vote profile D ∈ L(A)n.

Similarly, suppose S ∈ L(N)n is a proxy choice profile. Then I write

ψ(S) = (Sψ(1), ..., Sψ(n))

to denote the agent-wise application of the bijection ψ.
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Definition 3.15. (Proxy Vote Anonymity) A pair (f, g), where f is a social
choice function and g is a proxy mechanism, satisfies Proxy Vote Anonymity
iff for every P ∈ P(A)n, for every S ∈ L(N)n for every D ∈ L(A)n, and for
every bijection ψ : N → N :

f(Pπ,S,D) = f(ψ(P )π,ψ(S),ψ(D))

Proxy Vote Anonymity says that renaming the agents does not affect the
result of the proxy vote.

Neutrality

Before defining a notion of neutrality in a proxy vote setting, it will be
helpful to define some notation. Suppose ψ : A → A is a bijection. Let
P ∈ P(A). Then I write ψ(P ) to denote the alternative-wise permutation
of P . For example, if P = {a � b}, then ψ(P ) = {ψ(a) � ψ(b)}.

Suppose P ∈ P(A)n is a (partial) preference profile. Then, abusing
notation slightly, it will also be convenient to write

ψ(P ) = (ψ(P1), ..., ψ(Pn))

to denote the agent-wise application of the bijection ψ. Likewise with a
default vote profile D ∈ L(A)n.

Definition 3.16. (Proxy Vote Neutrality) A pair (f, g), where f is a social
choice function and g is a proxy mechanism, satisfies Proxy Vote Neutrality
iff for every P ∈ P(A)n, for every S ∈ L(N)n, for every D ∈ L(A)n and for
every bijection ψ : A→ A:

ψ(f(Pπ,S,D)) = f(ψ(P )π,S,ψ(D))

Proxy Vote Neutrality says that renaming the alternatives just renames the
outcome of the proxy vote.

Proxy Vote Monotonicity

In a proxy vote setting, voters submit partial orders over alternatives. This
means there are two ways they can increase their support for an alternative
a ∈ A. They can either add an edge a � b, or remove an edge b � a. In a
classical vote setting (in which agents submit linear orders over alternatives),
these two notions coincide, since one cannot add an edge a � b without
removing an edge b � a (and vice versa).

With this in mind, we can distinguish between two notions of monotonic-
ity in a proxy vote setting: ‘addition monotonicity’ and ‘deletion monotonic-
ity’.
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Definition 3.17. (Proxy Vote Addition Monotonicity (PVAM)) A pair
(f, g), where f is a social choice function and g is a proxy mechanism, sat-
isfies PVAM iff the following holds for every P ∈ P(A)n, every S ∈ L(N)n

and every D ∈ L(A)n.
Suppose f(Pπ,S,D) = a for some a ∈ A. Consider an i-variant of P , P ′ =

(P ′i , P−i), where P ′i = Pi ∪ {a � b}, for some b ∈ A. Then f(P ′
π,S,D) = a.

Proxy Vote Addition Monotonicity (PVAM) says that if the winner under
some proxy vote profile (P ,S,D) is a, and we modify P by having some
agent add a pairwise comparison to favour a, then the winner should remain
a.

Definition 3.18. (Proxy Vote Deletion Monotonicity (PVDM)) A pair
(f, g), where f is a social choice function and g is a proxy mechanism, sat-
isfies PVDM iff the following holds for every P ∈ P(A)n, every S ∈ L(N)n

and every D ∈ L(A)n.
Suppose f(Pπ,S,D) = a, for some a ∈ A. Consider an i-variant of P ,

P ′ = (P ′i , P−i), where P ′i = Pi\{b � a}, for some b ∈ A. Then f(P ′
π,S,D) =

a.

Proxy Vote Deletion Monotonicity (PVDM) says that if the winner under
some proxy vote profile (P ,S,D) is a, and we modify P by having some
agent delete a pairwise comparison which favours some other alternative
over a, then the winner should remain a.

3.2.2 How do these relate to classical properties of social
choice functions?

Having defined these properties of pairs (f, g), it’s interesting to explore
how they relate to properties of the individual components f and g. In this
subsection, I’ll focus on properties of f .

Proposition 3.19. If (f, g) satisfies proxy vote anonymity, then f satisfies
anonymity.

Proof. By contraposition. Consider the case where every agent submits a
linear order.

Proposition 3.20. If (f, g) satisfies proxy vote neutrality, then f satisfies
neutrality.

Proof. By contraposition. Consider the case where every agent submits a
linear order.

Recall that a social choice function f is weakly monotonic if the following
holds for every L ∈ L(A)n.
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Suppose f(L) = a, for some a ∈ A. Let L′ = (L′i, L−i) be an i-variant
of L, where

L′i = Li\{b � a} ∪ {a � b}

for some b ∈ A (in other words, voter i moves alternative a up at most one
place in her ordering). Then we have that f(L′) = a.

Proposition 3.21. If (f, g) satisfies proxy vote addition monotonicity and
proxy vote deletion monotonicity, then f satisfies weak monotonicity.

Proof. By contraposition. Suppose f is not weakly monotonic. We will show
that either (f, g) fails to satisfy PVAM or (f, g) fails to satisfy PVDM.

Since f is not weakly monotonic, there must be P ,P ′ ∈ L(A)n, where
P ′ = (P ′i , P−i) and

P ′i = Pi\{b � a} ∪ {a � b}

such that f(P ) = a and f(P ′) 6= a.
Define P ′′i = Pi − {b � a}. By definition, Pi = P ′′i ∪ {a � b}. Define

P ′′ = (P ′′i , P−i). Fix some arbitrary proxy choice profile S and default
vote profile D. We know f(Pπ,S,D) = a, by assumption. We also know
f(P ′

π,S,D) 6= a, by assumption. If f(P ′′
π,S,D) = a, then (f, g) fails to

satisfy PVAM, by definition (since adding the edge a � b changes the winner
from a). If f(P ′′

π,S,D) 6= a, then (f, g) fails to satisfy PVDM, by definition
(since removing the edge b � a has changed the winner from a).

3.2.3 How do these relate to properties of proxy mecha-
nisms?

We can also explore the interaction between properties of f and g, and
properties of the pair (f, g).

Lemma 3.22. If f is anonymous and g is proxy mechanism anonymous,
then (f, g) is proxy vote anonymous.

Proof. Let a proxy vote profile (P ,S,D) be arbitrary. Pick some bijection
ψ : N → N . Then we must have

f(ψ(P )π,ψ(S),ψ(D)) = f(ψ(Pπ,S,D)) (since g is anonymous)

= f(Pπ,S,D) (since f is anonymous)

Lemma 3.23. If f is neutral and g is proxy mechanism neutral, then (f, g)
is proxy vote neutral.
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Proof. Let a proxy vote profile (P ,S,D) be arbitrary. Pick some bijection
ψ : A→ A. Then we must have

f(ψ(P )π,S,ψ(D)) = f(ψ(Pπ,S,D)) (since g is neutral)

= ψ(f(Pπ,S,D)) (since f is neutral)

Note that, in general, the other direction of Theorems 3.22 and 3.23 won’t
hold.

Recall that Uniform Voter Addition Invariance was defined as follows.
Let L ∈ L(A)n be arbitrary. Let L+ be the profile we get when we augment
L with |A|! new voters, one holding each possible ranking in L(A) (if f is
anonymous, then we can think of L+ as L ∪ L(A); otherwise, we must
assume some ordering on the rankings in L(A)). Then f is Uniform Voter
Addition Invariant (UVAI) iff f(L+) = f(L).

Lemma 3.24. If (f, g) satisfies proxy vote addition monotonicity, g satisfies
preference monotonicity and f satisfies uniform voter addition invariance,
then f satisfies weak monotonicity

Proof. By contraposition. Suppose f does not satisfy weak monotonicity
but does satisfy uniform voter addition invariance. Suppose also that g
satisfies preference monotonicity. We will show that (f, g) does not satisfy
proxy vote addition monotonicity.

Since f does not satisfy weak monotonicity, we know that for some L ∈
L(A)n such that f(L) = a, there is an i-variant L′ = (L′i, L−i) with

L′i = Li\{b � a} ∪ {a � b}

for some b ∈ A, and f(L′) 6= a.
Consider L+ and L′+, the uniform voter augmented versions of, re-

spectively, L and L′. Since f satisfies uniform voter addition invariance, we
have that

f(L+) = f(L) = a

and
f(L′+) = f(L′) 6= a

Consider the profile P that is exactly like L+ (and L′+), but where

Pi = Li\{b � a} = L′i\{a � b}

There are two cases.
In the first case, g(P , i) = ∅. In this case, i must submit some ranking

P ′i with Pi ⊆ P ′i . Simply suppose that P ′i = Li.
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In the second case, g(P , i) 6= ∅. Since P−i = L+−i, we know there must
be some j ∈ N+ with Pj = Li. Since Pi ⊆ Li, we have Pi ⊆ Pj . So we must
have that j ∈ g(P , i), since g is preference monotonic. Simply suppose that
i picks j as her proxy.

In either case, we end up with i’s guru submitting the vote Li (note that
i is her own guru in the first case). So we have that

Pπ,S,D = L+

It follows that
f(Pπ,S,D) = f(L+) = a

Consider now that profile L′+. Note that it is exactly like P except for the
fact that

L′+i = Li = Pi ∪ {a � b}

As noted above, we have that f(L′+) 6= a. It follows that (f, g) violates
proxy vote addition monotonicity.

3.2.4 A Proxy Vote Analogue of May’s Theorem.

May’s Theorem (May (1952)) is a well known result. When |A| = 2 and |N |
is odd, May shows that we can characterise the majority rule as the unique
rule satisfying anonymity, neutrality and weak monotonicity. Here, I show
that we can use the proxy vote analogues of these properties to achieve the
same characterisation result.

Theorem 3.25. Suppose |A| = 2 and |N | is odd. Then a pair (f, g) satisfies

• Proxy Vote Anonymity

• Proxy Vote Neutrality

• Proxy Vote Addition Monotonicity (PVAM), and

• Proxy Vote Deletion Monotonicity (PVDM)

iff f is the majority rule.

Proof. The left to right direction follows from Propositions 3.19, 3.20, 3.21
and May’s Theorem.1

For the other direction, suppose that f is the majority rule. So f is
anonymous and neutral. Since |A| = 2, every proxy mechanism g will be
anonymous and neutral (this is trivial to verify). By Lemmas 3.22 and 3.23,
this implies that (f, g) is anonymous and neutral.

1Note that we only need the requirement that |N | is odd to ensure that the majority
rule is resolute. We can drop this requirement if we replace weak monotonicity by its
irresolute counterpart, positive responsiveness, and modify the definitions of anonymity
and neutrality to accommodate irresoluteness.
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It remains only to show that (f, g) satisfies PVAM and PVDM. I will
write A = {a, b}. Suppose that for some proxy vote profile (P ,S,D), we
have

f(Pπ,S,D) = a

Fix some i ∈ N . Then there are two cases to consider.
To see that (f, g) satisfies PVAM, suppose that Pi = ∅, then consider the

case where P ′i = {a � b}. So i casts her own vote, meaning P ′πi,Si = {a � b}.
Note that if j picked i as her proxy when Pi = ∅, then j must still pick i
as her proxy (since this implies Pj = ∅, since |A| = 2). And we know that
Pπi,Si was either {b � a} or {a � b}.

To see that (f, g) satisfies PVDM, suppose that Pi = {b � a}, then
consider the case where P ′i = ∅. So i delegates her vote, meaning P ′πi,Si is
either {a � b} or {b � a}. Note that if j didn’t pick i as her proxy when
Pi = {b � a}, then j must still not pick i as her proxy (since this implies
either that Pj ∈ L(A), or that Pj = ∅ and j prefers some other voter in
N\{i}). And we know that Pπi,Si was {b � a}, since i cast her own vote.

In either case, changing from Pi to P ′i can only decrease the number of
{b � a} edges submitted in the profile P ′

π,S,D from in the profile Pπ,S,D
and increase the number of {a � b} edges submitted in the profile P ′

π,S,D

from in the profile Pπ,S,D. Since f is weakly monotonic, this implies that
f(P ′

π,S,D) = a. So (f, g) satisies PVAM and PVDM.

The reader might find it strange that Theorem 3.25 characterises a social
choice function f in terms of properties of pairs (f, g) without making ref-
erence to a proxy mechanism g.

Of course, this is due to the fact that |A| = 2. When there are two
alternatives, there is only a single (trivial) proxy mechanism. Voters can
only submit linear orders or empty orders. If they submit an empty order,
they can delegate their vote to any other agent. If they submit a linear
order, they cast their own vote. So delegation plays a rather limited role in
these proxy votes. And, as it happens, the sort of delegation that occurs
does not violate PVAM and PVDM, assuming f is the majority rule.

3.2.5 Proxy Vote Monotonicity: An Impossibility Result

The reader will notice that we haven’t yet explored the relationship be-
tween the proxy vote monotonicity properties and the proxy mechanism
monotonicity property (‘preference monotonicity’).

In fact, we can show that, given some plausible restrictions on f and g,
the monotonicity property of g is incompatible with monotonicity properties
of the pair (f, g). We have the following impossibility result.

Theorem 3.26. Suppose |A| = 3. Then, for every sufficiently large odd
|N |, there is no pair (f, g), where f is a social choice function and g is a
proxy mechanism, such that:
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• (f, g) satisfies proxy vote addition monotonicity (PVAM) and proxy
vote deletion monotonicity (PVDM)

• f satisfies anonymity and neutrality

• g satisfies preference monotonicity (PM) and independence of irrele-
vant proxies (IIP)

Proof. Note that, since (f, g) satisfies PVAM and PVDM, we can assume
without loss of generality that f is weakly monotonic (from Proposition
3.21). I proceed by means of three lemmas.

Lemma 3.27. Suppose that for some i ∈ N , for some a, b ∈ A, for some
P−i ∈ P(A)|N\{i}|, if

P ′i = {a � b}

we have
g((P ′i , P−i), i) 6= N\{i}.

Then we can construct profiles (Q,S,D) and ((Q′i, Q−i),S,D), where

Qi = ∅

and
Q′i = {a � b}

such that
Qπi,Si,Di = {b � a � c}

and
Q′π′i,Si,Di

= {c � a � b}

regardless of the behaviour of the set N\{i, πi, π′i} (that is, regardless of
(P−i,πi,π′i , S−i,πi,π′i , D−i,πi,π′i)). In other words, we can construct a profile
where the vote cast by i’s guru changes from {b � a � c} to {c � a � b}
and we are free to specify the votes submitted by any voter who is not i’s
guru.

Proof. Let P ∈ P(A)n be such that for some i ∈ N , for some a, b ∈ A if

P ′i = {a � b}

we have, writing P ′ = (P ′i , P−i),

g(P ′, i) 6= N\{i}.

We construct the profiles (Q,S,D) and (Q′ = (Q′i, Q−i),S) as follows.
Let Q′i = ∅ and Q′i = {a � b}. We know that there must be some

k ∈ N\{i} such that k /∈ g((Q′i, P−i), i). So let Qk = Pk. Take some
j ∈ N\{i, k}, and let Qj = {b � a � c}.
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Note that since g satisfies IIP, we must have k /∈ g((Q′i, Qj,k, P−i,j,k), i).
Since g satisfies PM, this implies that j /∈ g((Q′i, Qj,k, P−i,j,k), i), since oth-
erwise we would have to have k ∈ g((Q′i, Qj,k, P−i,j,k), i) (because it would
be impossible for Qk to conflict with Q′i more that Qj does). Suppose that
Si|N = j. Note that this implies that i picks j as her proxy in any pro-
file of the form ((Qi, Q−i),S), since we know that g(Qi, Q−i) = N\{i} by
definition (because g is a proxy mechanism).

Choose some l ∈ N\{i, j}, and suppose that Si|N\{j} = l (i.e. that i
picks l as her proxy if she is not allowed to pick j). Set Ql = {c � a � b}.
There are two cases.

For the first case, suppose g((Q′i, Qj,l, P−i,j,l), i) 6= ∅. Then we must have
l ∈ g((Q′i, Qj,l, P−i,j,l), i), since g satisfies PM. Then i delegates her vote to j
(who is actually her guru, since Qj ∈ L(A)) in the profile ((Qi,j,l, P−i,j,l),S),
and delegates her vote to l (who is actually her guru, since Ql ∈ L(A)) in
the profile ((Q′i, Qj,l, P−i,j,l),S).

For the second case, suppose g((Q′i, Qj,l, P−i,j,l), i) = ∅. Then we can
simply let Di = {c � a � b}. Then i delegates her vote to j (who is actually
her guru, since Qj ∈ L(A)) in the profile ((Qi,j,l, P−i,j,l),S), and casts her
own vote in the profile ((Q′i, Qj,l, P−i,j,l),S).

So, regardless of which case obtains, i’s vote is cast as {b � a � c} in the
profile ((Qi,j,l, P−i,j,l),S), and {c � a � b} in the profile ((Q′i, Qj,l, P−i,j,l),S),
as desired. Note, crucially, that this is entirely independent of (P−i,j,l, S−i,j,l),
since g is IIP and PM and we have fixed Si.

Lemma 3.28. Suppose that for any j ∈ N , a, b ∈ A, P−j ∈ P(A)|N\{j}|,
that if Pj = {a � b}, we have

g(P ) = N\{j}

Suppose that for some i ∈ N , for some a, b, c ∈ A, for some P−i ∈
P(A)|N\{i}|, if

P ′i = {a � b, c � b}

we have
g((P ′i , P−i), i) 6= N\{i}.

Then we can construct profiles (Q,S,D) and ((Q′i, Q−i),S,D), where

Qi = {c � b}

and
Q′i = {a � b, c � b}

such that
Qπi,Si,Di = {b � a � c}

and
Q′π′i,Si,Di

= {c � a � b}
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regardless of the behaviour of the set N\{i, πi, π′i} (that is, regardless of
(P−i,πi,π′i , S−i,πi,π′i , D−i,πi,π′i)). In other words, we can construct a profile
where the vote cast by i’s guru changes from {b � a � c} to {c � a � b}
and we are free to specify the votes submitted by any voter who is not i’s
guru.

Proof. Suppose that for any j ∈ N , a, b ∈ A, P−j ∈ P(A)|N\{j}|, that if
Pj = {a � b}, we have

g(P ) = N\{j}.

Suppose that for some i ∈ N , for some a, b, c ∈ A, we have P−i ∈ P(A)|N\{i}|

such that if
P ′i = {a � b, c � b}

we have
g((P ′i , P−i), i) 6= N\{i}.

We construct Q and Q′ = (Q′i, Q−i) as follows.
Let Qi = {c � b} and let Q′i = P ′i . By assumption, we must have

g((Qi, P−i), i) = N\{i}

We also know that
g((Q′i, P−i), i) 6= N\{i}

So there must be k ∈ g((Qi, P−i), i) such that k /∈ g((Q′i, P−i), i).
We can now essentially repeat the proof of Lemma 3.27. For j ∈

N\{i, k}, set Qj = {b � a � c}. For l ∈ N\{i, j, k}, set Ql = {c � a � b}.
Set Si|N = j, Si|N\{j} = l and Di = {c � a � b} (this is allowed,
since Q′i ⊆ {c � a � b}). Then since Q′i ⊆ Ql, it is easy to see that
l ∈ g((Q′i, Qj,l, P−i,j,l), i) if g((Q′i, Qj,l, P−i,j,l), i) is non-empty. Furthermore,
by assumption, we know that it always holds that j ∈ g((Qi, Qj,l, P−i,j,l), i).

So, regardless of whether g((Q′i, Qj,l, P−i,j,l), i) is every non-empty, i’s
vote is cast as {b � a � c} in the profile ((Qi,j,l, P−i,j,l),S), and {c � a � b}
in the profile ((Q′i, Qj,l, P−i,j,l),S), as desired. Note, crucially, that this is
entirely independent of (P−i,j,l, S−i,j,l), since g is IIP and PM and we have
fixed Si.

Lemma 3.29. Suppose that for any j ∈ N , a, b, c ∈ A, P−j ∈ P(A)|N\{j}|,
that if Pj = {a � c, b � c}, we have

g(P ) = N\{j}

Then we can construct profiles (Q,S,D) and ((Q′i, Q−i),S,D), where

Qi = {b � a � c}

and
Q′i = {a � c, b � c}
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(i.e. Q′i = Qi − {b � a}) such that

Qπi,Si,Di = {b � a � c}

and
Q′π′i,Si,Di

= {c � a � b}

regardless of the behaviour of the set N\{i, πi, π′i} (that is, regardless of
(P−i,πi,π′i , S−i,πi,π′i , D−i,πi,π′i)). In other words, we can construct a profile
where the vote cast by i’s guru changes from {b � a � c} to {c � a � b}
and we are free to specify the votes submitted by any voter who is not i’s
guru.

Proof. Suppose that for any j ∈ N , a, b, c ∈ A, P−j ∈ P(A)|N\{j}|, that if
Pj = {a � c, b � c}, we have

g(P ) = N\{j}

Let Qi = {b � a � c} and Q′i = {a � c, b � c}. Let Qj = {c � a � b}
for some j ∈ N\{i}. Let Si|N = j.

Since Qi ∈ L(A), we know that i casts her own vote in any profile of the
form ((Qi, P−i), (Si, S−i), regardless of P−i and S−i. So i will always cast
the vote b � a � c when she submits Qi.

Since Q′i = {a � c, b � c}, we must have (by assumption)

g((Q′i, P−i), i) = N\{i}.

for any P−i ∈ P(A)|N\{i}|.
So, in particular

j ∈ g((Q′i, Qj , P−i,j), i)

regardless of what (P−i,j , S−i,j) looks like. So when i submits (Q′i, Si) and
j submits Qj , i’s vote will always be case as {c � a � b}.

It might not be immediately clear how Lemmas 3.27, 3.28 and 3.29 will
help us prove Theorem 3.26.

Note that in Lemmas 3.27 and 3.28 we construct profiles where a single
voter adding an edge {a � b} switches the vote that is cast on her behalf
from {b � a � c} to {c � a � b}. In Lemma 3.29, we construct profiles
where a single voter removing an edge {b � a} switches the vote that is cast
on her behalf from {b � a � c} to {c � a � b}.

Of course, each of these results is based on assumptions about the proxy
mechanism g. The crucial point to observe is that the assumptions upon
which these results rest collectively exhaust the available options for g. In
Lemma 3.27, we assume that there is at least one case where a voter i
submits a single edge Pi = {a � b} and

g(P , i) 6= N\{i}
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for some P−i.
In Lemma 3.29, we assume that in every case where a voter i submits

an edge of the form Pi = a � c, b � c, we have

g(P , i) = N\{i}

regardless of P−i.
In Lemma 3.28, we assume that both of these assumptions are false.

That is, we assume that in every case where a voter i submits an edge of
the form Pi = {a � b}, we have

g(P , i) = N\{i}

regardless of P−i, and we assume that there is at least one case where a
voter i submits a single edge Pi = a � c, b � c and

g(P , i) 6= N\{i}

for some P−i.
What we have shown, then, is that given the conditions on g there must

exist profiles where adding an edge {a � b} or removing an edge {b � a}
switches a voter i’s final vote from {b � a � c} to {c � a � b}. In these
profiles, we require that the votes submitted by at most two other voters are
fixed. In particular, we require that Qj = {b � a � c} and Ql = {c � a � b}
for some j, l ∈ N . Crucially, though, we have shown that we are free to vary
the votes of the other |N\{i, j, l}| voters as we wish (exploiting the fact that
g is IIP) and that i’s final vote will still change in the constructed way.

We are now in a position to show that, given f satisfies anonymity,
neutrality and weak monotonicity, this implies that (f, g) must fail to satisfy
at least one of proxy vote addition monotonicity and proxy vote deletion
monotonicity. Specifically, we need to fiddle with the votes submitted by
the voters in the set N\{i, j, l} to construct profiles where a wins when i’s
final vote is {b � a � c}, and c wins when i’s final vote is {c � a � b}.

But it’s easy to see that this can be done, since f is anonymous, neutral
and weakly monotonic. Just have one voter k vote for {b � c � a}, and
have the other voters split their votes between {a � c � b} and {c � a � b},
such that

|{l′ ∈ N\{i, j, k, l} | Pl = {a � c � b}| =
|{l′ ∈ N\{i, j, k, l} | Pl′ = {c � a � b}|+ 1

Let us write |{l′ ∈ N\{i, j, k, l} | Pl′ = {c � a � b}| as n′ (note that
n′ = 1

2(|N\{i, j, k, l}| − 1)). Then when i’s guru votes for {b � a � c} (i.e.
i’s guru is j), there will be n′ + 1 votes for {a � c � b}, n′ + 1 votes for
{c � a � b}, two votes for {b � a � c} and one vote for {b � c � a}. When
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i’s guru votes for {c � a � b} (i.e. i’s guru is l), then there will be n′ + 1
votes for {a � c � b}, n′ + 2 votes for {c � a � b}, one vote for {b � a � c}
and one vote for {b � c � a}.

For sufficiently large |N |, the fact f is anonymous, neutral and weakly
monotonic implies b cannot win in either case.2 So either a or c must win
in each case.

To see that a must win in the first case, suppose that c wins in the first
case. Then suppose we change i’s vote from {b � a � c} to {b � c � a}. By
neutrality and anonymity, a would now have to win. So f would fail to be
weakly monotonic.

To see that c must win in the second case, suppose that a wins in the
second case. Then suppose we change i’s vote from {c � a � b} to {a � c �
b}. By neutrality and anonymity, c would now have to win. So f would fail
to be weakly monotonic.

What we have seen, then, is that i will become the tiebreaker. If i’s guru
votes for {b � a � c}, then a must win. If i’s guru votes for {c � a � b},
then c must win. So (f, g) must either fail to satisfy PVAM or failt to satisfy
PVDM.

3.2.6 Discussion

What Theorem 3.26 shows is that the monotonicity properties of (f, g) are
fundamentally incompatible with the monotonicity properties of g (assuming
g is IIP). Essentially, this is because adding an edge a � b (or deleting an
edge b � a) can lead a voter to change guru, since proxy mechanims are
sensitive to changes in preferences over alternatives. This can mean that
the voter’s guru can end up submitting a vote which leads a to fail to win
the election.

One might question Theorem 3.26 as follows. The result relies on the
fact that f is anonymous and neutral, and we have been assuming that
f is resolute. But it’s well known that for certain values of |N | and |A|
no resolute, anonymous and neutral social choice function exists (Herve
Moulin (1983)). The worry is that we have just proven this result in a more
complicated way.

There are two points to make here. The first is that Lemmas 3.27, 3.28
and 3.29 do not rely on any assumptions about f . So if f were irresolute
and suitably non-trivial, and we were using some irresolute counterpart to
the monotonicity properties at hand, then there’s no reason to doubt that
some version of Theorem 3.26 would still go through. Note that this would
also allow us to remove the requirement that |N | be odd.

The second (more important) point is that the proof applies to every |N |
of the form |N | = 2n′+5 for some sufficiently large n′ ∈ N. In particular, for

2Note this is the only role the ‘sufficiently large |N |’ plays in the proof. It should be
clear that this reasoning applies with even relatively small values of |N |.
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example, the result will apply to every prime |N | > 2. Moulin shows, on the
other hand, that anonymous, neutral and resolute social choice functions do
exist when |A| cannot be written as the sum of factors of |N | greater than
one. So the impossibility result here applies to pairs (N,A) for which there
do exist anonymous, neutral and resolute social choice functions.

One final topic of discussion is the assumption that |A| = 3. Theorem
3.26 can be generalised to apply to arbitrary values of |A| > 3. To see
this for |A| = 4, augment A with a dummy candidate d, and suppose that
a � d ∈ Pi, for every a ∈ A\{d} and for every i ∈ N . Then the proof of
Lemmas 3.27, 3.28 and 3.29 will be almost identical, since g is preference
monotonic. We are guaranteed to end up with guru profiles where d is at the
bottom of every linear order submitted. Since f is anonymous, neutral and
weakly monotonic, we know that d cannot win the election. So a modified
version of the second half of the proof will also go through.
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Chapter 4

Manipulation and Candidate
Control in Proxy Votes

In the previous chapter, I examined novel properties of proxy votes from
an axiomatic perspective, presenting some results on their interaction with
classical properties of social choice functions.

In this chapter, I want to give an example of the sort of analysis that
can be done using my model of transitive proxy voting. Specifically, I will
look at the topics of manipulation and control, which have hitherto received
little attention in the literature on liquid democracy.

In the first section, I will define a novel form of manipulation (‘proxy
choice manipulation’) and show that it occurs roughly as often as classical
manipulation. I will then generalise classical manipulation to the proxy vote
setting, and show that manipulation can occur strictly more often in proxy
votes.

In the second section, I will discuss candidate control in proxy votes.
After briefly generalising classical candidate control problems to the proxy
vote setting, I will show that certain control immunity results fail when we
allow proxy voting. I will then look at the (parameterized) complexity of
candidate control. I will show that all hardness results carry over into the
proxy vote setting. After defining a novel parameterization of a proxy vote,
I will adapt an existing FPT -membership result to include a proxy vote
control problem, and comment briefly on the significance of this result.

4.1 Manipulation

In a classical vote (N,A, f), agents can manipulate by misrepresenting their
preferences to achieve a better outcome. In the next subsection, I show that
proxy voting increases the number of forms of manipulation.
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4.1.1 Proxy Choice Manipulation

In a proxy vote (N,A, f, g), there is an additional option for manipulation.
Agents can manipulate by misrepresenting their choice of proxy (i.e. by
picking one proxy over another for strategic reasons).

I call this sort of manipulation ‘proxy choice manipulation’. Note that
in a proxy vote setting, manipulability is no longer a property of a social
choice function f alone, but rather of a pair (f, g).

Definition 4.1. (Proxy Choice Manipulation) A pair (f, g) is proxy choice
manipulable (PC-manipulable) iff there exists i ∈ N , P ∈ P(A)n, S ∈
L(N)n, D ∈ L(A)n such that:

f(P π,S,D) ≺ f(P π,(S′i,S−i),D
) ∈ Pi

for some Si, S
′
i ∈ L(N).

Intuitively, a pair (f, g) is PC-manipulable if there is a profile where an agent
would prefer one of her potential proxies over another for purely strategic
reasons.

A natural question to investigate is how PC-manipulability relates to
the standard notion of manipulability, which I’ll call ‘Gibbard-Satterthwaite
Manipulability’ (GS-manipulability). Recall that it is defined as follows.

Definition 4.2. (Gibbard-Satterthwaite Manipulation) A social choice func-
tion f is Gibbard-Satterthwaite manipulable (GS-manipulable) iff there exists
i ∈ N , P ∈ L(A)n such that:

f(P ) ≺ f((P ′i , P−i)) ∈ Pi

for some Pi, P
′
i ∈ L(A).

One way of investigating the connection between PC-manipulability and
GS-manipulability is to fix a particular proxy mechanism g.

In the previous chapter, I showed that SUBSET is the unique proxy mech-
anism satisfying zero regret, proxy availability, preference monotonicity and
independence of irrelevant proxies. Since these properties are intuitively
plausible requirements on g, let’s suppose that the proxy mechanism we are
considering is SUBSET.

Theorem 4.3. If (f, SUBSET) is PC-manipulable for n voters and m alter-
natives, then f is GS-manipulable for n voters and m alternatives.

Proof. Suppose (f, SUBSET) is PC-manipulable for n voters and m alterna-
tives. Then there is some preference profile P , default profile D, proxy
choices of the voters S−i and voters i, j, k ∈ N where i strictly prefers the
outcome of the vote when she picks k as her proxy to the outcome when she
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picks j. So suppose Si|N = j and S′i|N = k. Let S = (Si, S−i) and define
S′ = (S′i, S−i) (i.e. the profile that only differs by S by changing Si to S′i).

If i herself has no proxies, then the proof is straightforward. Since

f(P π,S,D) ≺ f(P π,(S′i,S−i),D
) ∈ Pi

we must have that
P π,S,D 6= P π,(S′i,S−i),D

Since we are assuming that i is not a proxy, this implies that f(P π,S,D) and
f(P π,(S′i,S−i),D

) differ only with regard to Pπi,Si,Di . But then this implies
that f is GS-manipulable (we need only consider a profile P π,S,D where i
switches from Pπi,Si,Di to P ′πi,S′i,Di

).

If i herself has proxies, then the situation becomes more complicated.
Let

Proxyi = {j ∈ N | Sj |g(P ,j) = i}

be the set of voters selecting i as their proxy.
Since

f(P π,S,D) �Pi f(P π,(S′i,S−i),D
)

we must have that
P π,S,D 6= P π,(S′i,S−i),D

It is easy to verify that this implies that f(P π,S,D) and f(P π,(S′i,S−i),D
)

differ only with regard to Pπl , for every l ∈ Proxyi, and with regard to Pπi
(so for exactly |Proxyi|+ 1 voters).

Without loss of generality, suppose

f(P π,S,D) = b

and
f(P π,(S′i,S−i),D

) = a

By definition, this implies that a � b ∈ Pi. Since we are using the SUBSET

mechanism, this implies that a � b ∈ Pπi,Si,Di . Of course, this also implies
that a � b ∈ Pπl,Sl , for every l ∈ Proxyi.

Suppose now that we move from the profile P π,S,D towards the profile
P π,(S′i,S−i),D

by changing, for each l ∈ Proxyi, Pπl,Sl to Pπi,S′i , and finally
by changing Pπi,Si,Di to P ′πi,S′i,Di

.

We know that when we start, the social outcome is a. We know that
when we have made all the changes, the social outcome is b. If the social
outcome changes directly from a to b at some stage in the process, then we
have a profile with respect to which f is GS-manipulable (since i would like
to effect the change, and is capable of making it, since Pπi = Pπl , for every
l ∈ Proxyi). If the social outcome first changes to some c 6= b 6= a, then
there are two cases. If c �Pπi b, then the same reasoning shows that f is
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GS-manipulable. If c ≺Pπi b, then we can just carry on making the changes
until the social outcome changes to b, then apply the same reasoning as
above. It follows that f is GS-manipulable.

So we have shown that PC-manipulability implies GS-manipulability,
assuming g is the SUBSET mechanism. To investigate the conditions under
which GS-manipulability implies PC-manipulability, it is necessary to define
an intermediate form of manipulability.

Definition 4.4. (IIA-Manipulability) A social choice function f is IIA-
manipulable if there is some L ∈ L(A) such that, for some i ∈ N , L′i 6= Li:

• f(L) = b

• f(L′i, L−i) = a

• a � b ∈ Li and a � b ∈ L′i
for some a, b ∈ A.

Intuitively, f is IIA-manipulable if an agent can reverse the social ranking
of two alternatives whilst maintaining her personal ranking of the alterna-
tives.1 Clearly, f will be GS-manipulable if it is IIA-manipulable (since
IIA-manipulability is just a special sort of GS-manipulability). We can also
prove something about the converse.

Theorem 4.5. Suppose f is GS-manipulable and unanimous. Then f is
IIA-manipulable.

Proof. I first prove the case with N = {i, j} and A = {a, b, c}. Assume that
f is GS-manipulable and unanimous. Assume, for reductio, that f is not
IIA-manipulable.

Since f is GS-manipulable, there must be (without loss of generality)
profiles P = (Pi, Pj) and P ′ = (P ′i , Pj) such that a � b ∈ Pi, f(P ) = b and
f(P ′) = a.

So that means P is partially described by one of these three cases:

(1)

i j

a
b
c

(2)

i j

a
c
b

(3)

i j

c
a
b

1IIA-manipulability is closely related to ‘one-way monotonicity’ (Sanver and W. S.
Zwicker (2009)), which features in the preference reversal paradox (Peters (2017)).
IIA-manipulability is a much weaker condition than one-way monotonicity, though.
One-way monotonicity says that every example of GS-manipulability is an example of
IIA-manipulability, whereas IIA-manipulability requires only that one example of GS-
manipulability is an example of IIA-manipulability.
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and P ′ is partially described by one of these six cases:

(1)

i j

a
b
c

(2)

i j

a
c
b

(3)

i j

c
a
b

(4)

i j

c
b
a

(5)

i j

b
a
c

(6)

i j

b
c
a

Case 1: P = (1)
By assumption, the winner in (1) is b. Since we are assuming that f is not
IIA-manipulable, this implies that the winner in both (2) and (3) must not
be a (since otherwise i could IIA-manipulate by switching from (1) to (2)
or (3), respectively).

Since the winner in (1) is b and f is unanimous, this implies that j
must not rank a as her top pick, since otherwise the winner would be a, by
unanimity.

If j ranks b as her top pick, then b must win in profiles (5) and (6), by
unanimity. This implies that P ′ = (4). So the winner in (4) is a. But then
i could IIA-manipulate by switching from (e.g.) (4) to (5).

If j ranks c as her top pick, then c must win in profiles (3) and (4),
by unanimity. So, by the reasoning above, a must win in either profile (5)
or profile (6).If a wins in profile (6), then i can IIA-manipulate by moving
from profile (6) to profile (4).If a wins in profile (5), then consider profile
(2). We know the winner in profile (2) is not a. If the winner in profile (2)
is b, then i could IIA-manipulate by switching from profile (2) to profile (3),
since the winner in profile (3) is c. If the winner in profile (2) is c, then i
could IIA-manipulate by switching from profile (2) to profile (5).

These sub-cases are exhaustive. It follows that P 6= (1).

Case 2: P = (2)
By assumption, the winner in (2) is b. It follows that the winner in (1) and
(3) cannot be a, since otherwise i could IIA-manipulate by switching from
(2) to (1) or (3) respectively.

This also implies that j must not have a as her top pick, since otherwise
the winner in (2) would be a, by unanimity.

If j has b as her top pick, then the winner in both (5) and (6) must be
b, by unanimity. By our original assumption, this implies that the winner
in (4) is a. But then i can IIA-manipulate by moving from (4) to (e.g.) (5).

If j has c as her top pick, then the winner in (4) must be c. But then
i could IIA-manipulate by switching from (2) to (4), changing the outcome
from b to c.
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These sub-cases are exhaustive. It follows that P 6= (2).

Case 3: P = (3)
By assumption, the winner in (3) is b. It follows that the winner in (1) and
(2) cannot be a, since otherwise i could IIA-manipulate by switching from
(3) to (1) or (2) respectively. This implies that j cannot have a as her top
pick, since otherwise the winner in (1) and (2) would be a, by unanimity.

It also follows that j cannot have c as her top pick, since otherwise the
winner in (3) would be c, by unanimity.

By the reasoning above, it follows that j must have b as her top pick.
So b must be the winner in (5) and (6). So a must be the winner in (4), by
our original assumption. But then i can IIA-manipulate by switching from
(4) to (5) or (6).

These sub-cases are exhaustive. It follows that P 6= (3).

These cases are exhaustive. It follows that f must be IIA-manipulable.

We have the following bridging propositions, familiar from the literature
on automating social choice theory.

Proposition 4.6. Suppose f is IIA-manipulable for n voters and m alter-
natives, with n ≥ 2 and m ≥ 3. Then f is IIA-manipulable for n voters and
m+ 1 alternatives.

Proof. See Tang and Lin (2008), Lemma 1. The proof works for IIA-
manipulability.

Proposition 4.7. Suppose f is IIA-manipulable for n voters and m alter-
natives, with n ≥ 2 and m ≥ 3. Then f is IIA-manipulable for n+ 1 voters
and m alternatives.

Proof. See Tang and Lin (2008), Lemma 1. The proof works for IIA-
manipulability.

Earlier, we saw that a social choice function f was GS-manipulable if the pair
(f, SUBSET) was PC-manipulable. We are now ready to describe a converse
relationship.

Recall that Uniform Voter Addition Invariance was defined as follows.
Let L ∈ L(A)n be arbitrary. Let L+ be the profile we get when we

augment L with |A|! new voters, one holding each possible ranking in L(A)
(if f is anonymous, then we can think of L+ as L ∪ L(A); otherwise, we
must assume some ordering on the rankings in L(A)). Then f is Uniform
Voter Addition Invariant (UVAI) iff f(L+) = f(L).

Theorem 4.8. Let f be a social choice function. Suppose that f is:

• GS-manipulable over n voters and m alternatives.
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• Unanimous

• Invariant to Uniform Voter Additions

Then (f, SUBSET) is PC-manipulable over n+m! voters, and m alternatives.

Proof. From Theorem 4.5, we know that f is IIA-manipulable, for some
profile L ∈ L(A)n. So there must be some i ∈ N such that, for some
L′i 6= Li, we have

f(L′i, L−i) �Li f(L)

For the sake of readability, let f(L) = b and f(L′i, L−i) = a. Since f is
IIA-manipulable, we can assume that both

a �Li b

and
a �L′i b

without loss of generality.
Let us now consider L+ and L′+, the uniform-voter augmentations of

L and (L′i, L−i) respectively. Since f is IUVA, it follows that

f(L+) = b

and
f(L′+) = a

Now define
Pi = a � b

Let (Pi, L+−i) be the profile which is exactly like L+, but where voter i
submits the partial order Pi instead of her previous (linear) order Li.

Since L+ contains, for every linear order over A, at least one voter who
submits that order, we must have voters j and k such that L+j = Li and
L+k = L′i.

Note, crucially, that both Pi ⊂ L+j and Pi ⊂ L+k (using the fact,
observed above, that we are constructing this profile from an instance of
IIA-manipulation). Since we are using the SUBSET proxy mechanism, this
implies that both j and k are permitted proxies for i in the profile (Pi, L+−i).

If i picks j as her proxy, then the guru profile for (Pi, L+−i), written as
(Pi, L+−i)π,S , is simply L+. So we must have f((Pi, L+−i)π,S) = b.

If i picks k as her proxy, then the guru profile for (Pi, L+−i), written as
(Pi, L+−i)π,S′ , is simply L′+. So we must have f((Pi, L+−i)π,S′) = a.

Since a �Pi b, it follows that we have a situation where i would strictly
prefer picking k over j as her proxy. So f is PC-manipulable on a profile of
n+m! voters.
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4.1.2 Preference Misrepresentation Manipulation

PC-manipulation is a novel form of manipulation. It has no analogue in the
classical setting. But it is also natural to generalise GS-manipulation in the
proxy vote setting. I call this ‘Preference Misrepresentation Manipulation’
(PM-manipulation).

Definition 4.9. (Preference Misrepresentation Manipulation) A pair (f, g)
is preference misrepresentation manipulable (PM-manipulable) iff there ex-
ists i ∈ N , P ∈ P(A)n, S ∈ L(N)n such that:

f(P π,S,D) ≺ f((P ′i , P−i)π,S,D) ∈ Pi

for some Pi, P
′
i ∈ P(A).

So PM-manipulability is just the generalisation of GS-manipulability to the
proxy vote setting. It should therefore be no surprise that the following
result holds.

Proposition 4.10. If f is GS-manipulable, then (f, g) is PM-manipulable,
for any proxy mechanism g.

Proof. Trivial. We need only consider profiles where every agent votes di-
rectly.

Given such a large class of social choice functions is vulnerable to GS-
manipulation, it is common to look for subdomains where the Gibbard-
Satterthwaite theorem doesn’t hold. The most famous of these domain
restrictions is single-peakedness (Black (1948)).

One might wonder whether these same domain restrictions also result in
PM-strategyproofness. The following result shows that this does not hold.
There are social choice functions f such that (f, SUBSET) is PM-manipulable
on the domain of single-peaked preferences but f is not GS-manipulable on
the domain of single-peaked preferences. So PM-strategyproofness is strictly
more demanding a condition than GS-strategyproofness.

Theorem 4.11. When |A| ≥ 3, there is no social choice function f which is
non-dictatorial, surjective, and such that (f, SUBSET) is PM-strategyproof,
even when we restrict the domain to include only single-peaked preference
profiles.

Proof. We know that if a social choice function f is GS-manipulable, the
pair (f, SUBSET) is PM-manipulable. By contraposition, it follows that if the
pair (f, SUBSET) is PM-strategyproof, f is GS-strategyproof.

Moulin characterises the class of surjective, non-dictatorial and GS-
strategyproof social choice functions on the domain of single-peaked pref-
erences as the class of generalised median voter rules (H. Moulin (1980)).
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To prove the theorem at hand, then, it suffices to show that for a gener-
alised median voter rule f , (f, SUBSET) is PM-manipulable on the domain
of single-peaked preferences when |A| ≥ 3. For the sake of convenience, I
focus on the case where |A| = {a, b, c}.

Let f be an arbitrary generalised median voter rule with n−1 phantoms.
There are two cases.

Case 1: Every phantom has the same peak. Without loss of generality,
suppose this is a. Consider the profile P = (P1, ..., Pn), where

Pj = {a � b} ∀j ∈ N\{i}
Pi = {c � b � a}

Suppose also that Sj |∅ = {a � c � b} for every j ∈ N\{i}. Note that
(among other dimensions) P is single-peaked along the dimension a, c, b.

As it stands, we have that g(P , j) = ∅ for every j ∈ N\{i}. It follows
that each of these agents will cast her own vote as {a � b � c}. So the peak
of the median voter will be a. So the winner will be a.

Now suppose i switches from {c � b � a} to {c � a � b}. Note that the
profile is still single-peaked along the dimension a, c, b. Now we have that
g(P , j) = {i} for every j ∈ N\{i}. It follows that each of the N voters has i
as her guru. So the peak of the median voter will be c. So the winner will be
c. Since c �Pi a, it follows that i has an incentive to change her preference
from {c � b � a} to {c � a � b}.

Case 2: The phantoms have at least two distinct peaks. Suppose,
without loss of generality, that at least one phantom has peak a and at least
one phantom has peak b. We can then use exactly the same profiles as in
the previous case to show that i can PM-manipulate.

It’s worth briefly discussing the reasons why this result goes through. It
may seem strange that a single agent can exert so much influence on the
domain of single-peaked preferences, especially since Moulin’s strategyproof-
ness result applies to coalitional manipulation. The point is that in a proxy
vote setting, an agent can acquire proxy votes from voters whose votes were
previously cast on the other side of her ‘peak’ (because these voters are
indifferent to which side of her peak their peak falls on). This marks the
critical difference from a standard case of coalitional manipulation.

To make this clearer, it’s worth identifying conditions under which the
fact that (f, SUBSET) is PM-manipulable implies that f is GS-manipulable.
It is easy to see that when the delegation graph is unaffected by a case of
PM-manipulability, then we can construct a case of GS-manipulability.

Let P ∈ P(A)n, let S ∈ L(N)n, let D ∈ L(A)n and let i ∈ N . By
ProxyP ,S,D,i, I denote the set of agents whose vote ‘flows through’ i (i.e.
the set of agents that are related to i in the delegation graph) under profile
(P ,S,D).
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Proposition 4.12. Suppose a pair (f, SUBSET) is PM-manipulable by agent
i. So we have (P ,S,D) and (P ′,S,D), where P ′ = (P ′i , P−i) and agent i
manipulates by switching from Pi to P ′i . Suppose that

ProxyP ′,S,D,i = ProxyP ,S,D,i

Then f is GS-manipulable.

Proof. Trivial.

4.1.3 Discussion

In this section, I’ve investigated formal counterparts of classical notions of
manipulation in a proxy vote setting. Manipulability in this setting be-
comes a property of pairs (f, g). I’ve provided some initial exploration of
the relationship between these novel forms of manipulation and classical
manipulation.

PC-manipulation occurs when an agent chooses her proxies strategi-
cally. The fact that so many social choice functions are vulnerable to PC-
manipulation (at least when paired with the SUBSET proxy mechanism) is
not particularly surprising, but it does pose a problem for the diachronic
interpretation of the model I’ve proposed in this thesis. Recall that in the
diachronic interpretation, voters are presented with a set of their permitted
proxies before they make their choice of proxy. Depending on what informa-
tion is available to them, then, the results in this section show that they will
often have the opportunity to act strategically. This worry has less force for
the synchronic interpretation, since voters are taken to submit preferences
and proxy choices simultaneously.

There are various avenues for future work to pursue. For example, one
question concerns manipulation under partial information. Classically, this
partial information is understood as partial knowledge of the preference
profile submitted by agents (Reijngoud and Endriss (2012), Endriss et al.
(2016)). In the proxy vote setting, there are more sources of information
which could be restricted. For example, we could restrict information about
the proxy choices of the other agents, or about their default values.

Another question concerns the structure of the delegation graph when
PM-manipulation occurs. I have shown that if an agent i has an incentive to
manipulate (f, SUBSET) when the set of voters choosing i as their proxy stays
the same, then this implies that f is GS-manipulable. It would be interesting
to explore the connection between PM-manipulation and GS-manipulation
more. For example, it’s easy to see that there are cases where an agent i
has an incentive to manipulate, even when she reduces the number of voters
choosing her as their proxy.

Relatedly, I’ve shown that single-peakedness is not sufficient for PM-
strategyproofness. It would be interesting to look for non-trivial domain
restrictions which do guarantee PM-strategyproofness.
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4.2 Control

In this section, I present a straightforward generalisation of candidate control
problems to the proxy vote setting. I show that hardness results carry over
into the proxy vote setting, and adapt an existing FPT -membership result
using a parameterization unique to the new setting.

4.2.1 Generalising Candidate-based Control Problems

Bartholdi, Tovey, and Trick (1992) introduce various control problems. I
will focus on four candidate control problems here.

Constructive Control By Adding Candidates (CCAC)

Definition 4.13. (CCAC) In the classical CCAC problem, we have:

• An election (N,A, f).

• B, a set of spoiler candidates.

• Some distinguished a ∈ A, interpreted as a preferred candidate.

• A bound k ≤ |N |, the number of spoiler candidates we are allowed to
add to the election.

The problem is to decide whether we can find some set of spoiler candidates
B′ ⊆ B with |B′| ≤ k such that a wins the election (N,A ∪B′).

Constructive Control By Deleting Candidates (CCDC)

Definition 4.14. (CCDC) In the classical CCDC problem, we have:

• An election (N,A, f).

• Some distinguished a ∈ A, interpreted as a preferred candidate.

• A bound k ≤ |N |, the number of candidates we are allowed to remove
from the election.

The problem is to decide whether we can find some set of A′ ⊆ A with
|A−A′| ≤ k such that a wins the election (N,A′).

Destructive Control By Adding Candidates (DCAC)

Definition 4.15. (DCAC) In the classical DCAC problem, we have:

• An election (N,A, f).

• B, a set of spoiler candidates.
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• Some distinguished a ∈ A, interpreted as a disliked candidate.

• A bound k ≤ |N |, the number of spoiler candidates we are allowed to
add to the election.

The problem is to decide whether we can find some set of spoiler candidates
B′ ⊆ B with |B′| ≤ k such that a does not win the election (N,A ∪B′).

Destructive Control By Deleting Candidates (DCDC)

Definition 4.16. (DCDC) In the classical DCDC problem, we have:

• An election (N,A, f).

• Some distinguished a ∈ A, interpreted as a disliked candidate.

• A bound k ≤ |N |, the number of candidates we are allowed to remove
from the election.

The problem is to decide whether we can find some set of A′ ⊆ A\{a} with
|A\{a} −A′| ≤ k such that a does not win the election (N,A′ ∪ {a}).

Note that each control problem is defined for a social choice function f . If,
for a given control problem, there is some profile which yields a yes answer
to the control problem, we say that f is vulnerable to control of the sort
specified in the problem. Otherwise, we say f is immune to such control.

The proxy vote analogues of these classical control problems are defined
by simply replacing a classical election (N,A, f) by a proxy vote (N,A, f, g).
I denote the proxy vote analogues of these classical control problems (respec-
tively): PCCAC, PCCDC, PDCAC and PDCDC.

As is now familiar, when we move to a proxy vote setting, control prob-
lems are now defined relative to pairs (f, g), where f is a social choice prob-
lem and g is a proxy mechanism. So we now speak of pairs (f, g) as being
vulnerable or immune to control, rather than social choice functions alone.

As soon as we move to the proxy vote setting, differences can appear.
Let Condorcet be some social choice function which outputs the unique
Condorcet winner on profiles in which such a winner exists.

Proposition 4.17. (Bartholdi, Tovey, and Trick (1992)) Condorcet is im-
mune to CCAC when we restrict the domain to profiles where there is a
Condorcet winner.

Proposition 4.18. (Bartholdi, Tovey, and Trick (1992)) Condorcet is im-
mune to DCDC when we restrict the domain to profiles where there is a
Condorcet winner.

When we move from classical votes to proxy votes, these immunity results
no longer hold, at least when we use the SUBSET proxy mechanism.
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Proposition 4.19. (Condorcet, SUBSET) is vulnerable to PCCAC.

Proof. Suppose N = {1, 2, 3}, A = {a, b} and B = {c, d}. I will define
P = (P1, P2, P3) as follows:

P1 = {a � b � c � d}
P2 = {b � a � d � c}
P3 = {c � d}

In this election, 1 and 2 will cast their votes directly, whilst 3 will delegate.
Suppose that

S3 = {2 � 1 � 3}

When the set of candidates is A, 3 will delegate her vote to 2. So b will be
the Condorcet winner. When the set of candidates is A ∪ B, though, we
have that

2 /∈ SUBSET(P , 3)

since d � c /∈ P3. So 3 will delegate her vote to 1, meaning a becomes the
Condorcet winner.

Proposition 4.20. (Condorcet, SUBSET) is vulnerable to PDCDC.

Proof. Suppose N = {1, 2, 3} and A = {a, b, c, d}. I will define P =
(P1, P2, P3) as follows:

P1 = {a � b � c � d}
P2 = {b � a � d � c}
P3 = {c � d}

In this election, 1 and 2 will cast their votes directly, whilst 3 will delegate.
Suppose that

S3 = {2 � 1 � 3}

When the set of candidates is A, we have that

2 /∈ SUBSET(P , 3)

since d � c /∈ P3. So 3 will delegate her vote to 1, meaning a is the Condorcet
winner.

When the set of candidates is A\{c, d}, though, 3 will delegate her vote
to 2. So a will no longer be the Condorcet winner.

The point is that, in a proxy vote setting, preferences over alternatives
determine not only how voters vote directly, but also how they delegate
their votes (since the proxy mechanism g takes into account the voters’
preferences over alternatives). So a small change in the set of alternatives
can result in a large change in the delegation graph.
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4.2.2 Complexity of Candidate Control in the Proxy Vote
Setting

Of course, most social choice functions are not immune to control. It’s natu-
ral, then, to explore how difficult it is to control an election for a given social
choice function. This difficulty is often cashed out in terms of computational
complexity; intuitively, a social choice function is resistant to some control
problem if there exists no efficient algorithm for deciding the problem. More
formally, a social choice function is resistant to some control problem if the
control problem is NP -hard (Faliszewski, Rothe, and Hervé Moulin (2016)).

Proposition 4.21. Suppose f is resistant to some control problem C. Then
(f, g) is resistant to the proxy vote analogue of the control problem, PC,
for any proxy mechanism g.

Proof. Consider some instance of the classical control problem. Note that
it is also an instance of the proxy vote control problem (where everyone
casts their own vote). It follows that the identity function constitutes a
polynomial-time reduction from the classical control problem for f to the
proxy vote control problem for (f, g), regardless of how g is defined. So
(f, g) must be resistant to the proxy vote analogue of the control problem,
PC.

NP -hardness is a useful conceptual tool to analyse this sort of difficulty, but
it is also blind to the structure of the input space. For example, the control
problems we’ve outlined above have many different interacting features (to
give a few examples: the number of voters, the number of candidates, and
the number k of alternatives we are allowed to add/delete). When we move
to a proxy voting setting, the number of such features only increases.

In the face of so much input structure, it’s natural to wonder whether we
can obtain a more fine-grained perspective on the difficulty of control. An
attempt to do this formally comes from the field of parameterized complexity
theory (Niedermeier (2006)).

Of course, the proof of Proposition 4.21 also shows that any parameter-
ized hardness result will carry over to the proxy vote setting. So it’s interest-
ing to focus on membership results, using a parameterization specific to the
proxy vote setting. In the following section, I’ll present an FPT -membership
result of this sort.

4.2.3 Parameterizing Problems with respect to the Number
of Gurus: an FPT-Membership Result for PCCDC

Chen et al. (2015) show that if f is the plurality rule, CCDC is in FPT when
we parameterize by |N |, the number of voters.
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Theorem 4.22. (Chen et al. (2015)) CCDC using the plurality rule can
be solved in O(|A| · |N | · 2|N |) time (implying FPT membership when we
parameterize by |N |, the number of voters in the election).

In this section, I’ll prove a proxy vote anologue of this result, using a novel
parameterization.

Let (N,A, f, g) be a proxy vote. Consider the control problem PCCDC,
with k as the (maximum) number of candidates that can be deleted.
Define LIN ⊆ N as follows:

LIN = {i ∈ N | i submits a linear order over some B ⊆ A alternatives

with |B| = |A| − k}

Define SOLO ⊆ N as follows:

SOLO = {i ∈ N | i has no proxies in the vote (N,A)}

Define N ′ = LIN ∪ SOLO. Before presenting the main result, it is neces-
sary to present some intermediate propositions. I write P |B to denote the
restriction of the preference profile P to the candidate set B.

Proposition 4.23. Suppose SUBSET(P |B, i) = ∅ in some vote (N,B), where
B ⊆ A. Then i ∈ SOLO.

Proof. Since SUBSET(P |B, i) = ∅, we must have by definition that

{j ∈ N\{i} | Pi|B ⊆ Pj |B} = ∅

It follows there must be some a, b ∈ B such that {a � b} ∈ Pi|B and
{a � b} /∈ Pj |B for every j ∈ N\{i}. But since B ⊆ A, it follows that
a, b ∈ A. So then

{j ∈ N\{i} | Pi ⊆ Pj} = ∅

It follows that SUBSET(P , i) = ∅. So i ∈ SOLO.

Proposition 4.24. Suppose SUBSET(P |B, i) = {i} in some vote (N,B),
where B ⊆ A with |B| ≥ |A| − k. Then i ∈ LIN .

Proof. Follows directly from the definition of LIN , given that SUBSET is a
proxy mechanism.

From Propositions 4.23 and 4.24, we can deduce the following result.

Theorem 4.25. Suppose that i ∈ N is a guru for some j ∈ N (possibly
with i = j) in the vote (N,B), where B ⊆ A with |B| ≥ |A| − k. Then we
must have that i ∈ N ′.
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Proof. Since i is a guru for some j ∈ N , we must have that i submits her
own vote in the vote (N,B). So we must either have that:

SUBSET(P |B, i) = ∅

or that
SUBSET(P |B, i) = {i}

From Proposition 4.23, the first case implies that i ∈ SOLO. From Propo-
sition 4.24, the second case implies that i ∈ LIN . The two cases are ex-
haustive, so it follows that i ∈ N ′.

We are now ready to present the main result in this section, namely that
the ‘hardness’ in CCDC is localised to the size of N ′ when f is the plurality
rule and g is the SUBSET mechanism. Our proof is very similar to the proof
of Chen et al.’s Proposition 4.22.

Theorem 4.26. When f is the plurality rule and g is the SUBSET mecha-
nism, PCCDC is in FPT with respect to |N ′| = n′.

Proof. Standardly, it is assumed a polynomial length certificate for a control
problem is simply a list of candidates which should be deleted (added).
But it’s also possible to take a more voter-centric approach when specifying
certificated for control problems. Instead of specifying candidates which
should be deleted from the election as a whole, we could also specify for each
voter the vote they end up submitting. The following proof of Theorem 4.26
exploits this fact.

We consider each of the 2n
′

subsets of N ′, one at a time. For each
considered subset H ⊆ N ′, we do the following. For each i ∈ H, we delete
every candidate b ∈ A such that {b � a} ∈ Pi (recall that a ∈ A was our
preferred candidate). This means that there is no voter i ∈ H who ranks a
below some other alternative in the ranking she submits.

At this point, we establish who the current winner in this election. If it is
some c ∈ A\{a}, then we delete c ∈ A and repeat the winner determination
until a is the winner.

If at any stage in this process we have deleted more than k candidates,
we reject. If the process terminates for some particular H ⊆ N ′ and we have
not deleted more than k candidates, then we accept.

Suppose our algorithm leads to an acceptance. Then it follows that there
must exist a solution for this instance of the PCCDC control problem, since
we will actually have found some particular solution.

Suppose there is a solution for the PCCDC control problem. Then it follows
that there must be some A′ ⊆ A with |A − A′| ≤ k such that a wins the
election (N,A′).

But then some subset H ⊆ N of the gurus in the election (N,A′) must
rank a first in their ranking (since the gurus are the only voters who actually
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end up casting votes). So, by Theorem 4.25, we must have that H ⊆ N ′

ranks a first in their ranking. So the algorithm will find a solution when it
considers this subset H ⊆ N ′.

It remains only to note the running time of this algorithm. We consider
2|N

′|=n′ subsets, and each subset can clearly be evaluated in polynomial
time with respect to |N | = n and |A| = m. It follows that PCCDC is in
FPT with parameter |N ′|, when f is the plurality rule and g is the SUBSET

mechanism.

4.2.4 Discussion

Theorem 4.26 says that when very few voters have made their mind up
about a significant number of the options, there exist relatively tractable
algorithms to solve PCCDC for (Plurality, SUBSET).

Of course, in the case where everyone submits a linear order (or close to
a linear order), there is no difference between Theorem 4.26 and Proposition
4.22. The difference between Theorem 4.26 and Proposition 4.22 is when
there is a large number of voters of whom very few have made their minds
up about (nearly) all of the alternatives. Note, though, that this is exactly
the sort of scenario which is used to motivate transitive proxy voting. From
the preliminary results in this section, then, it appears that there is strictly
more potential for candidate control in a proxy vote setting.
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Chapter 5

Conclusion and Future Work

In this thesis, I introduced a novel model of transitive proxy voting. I argued
that extant models of transitive proxy voting paid insufficient attention to
‘proxy selection’, the process by which voters select delegates.

The model I proposed featured a two-dimensional analysis of proxy selec-
tion. First, a set of permitted proxies was formed for each voter by a ‘proxy
mechanism’. The formation of these sets depended only on the preferences
over alternatives submitted by the voters. Second, some delegate was chosen
from within the set of permitted proxies according to a ranking submitted
by the voter. I have deliberately stayed silent on the origins of this rank-
ing, in recognition of the myriad of factors that can inform preferences over
potential proxies.

After introducing the model, I explored some of its properties from an
axiomatic perspective. The principal result in this section was an impossi-
bility result. I showed that (given plausible assumptions) we cannot expect
proxy votes to satisfy intuitively desirable monotonicity properties. I take
it that this result does pose a challenge for proponents of liquid democracy.
It serves to highlight the instability of any transitive proxy voting system.
Small changes in preferences (either over alternatives or proxies) can lead to
unexpected effects in the result of the vote as a whole. Future work could
assess the implications of this result more thoroughly (for example, I have
not shown that each assumption is individually necessary for the proof to
go through).

In the final chapter of the thesis, I put the model to work in analysing
manipulation and control in a proxy vote setting. I showed that not only
do novel forms of manipulation arise in a proxy vote setting, but also that
there are strictly more situations in which classical manipulation is available
to agents in a proxy vote than in a classical vote. I also showed that certain
candidate control immunity results fail when we allow proxy voting, and
that there exist scenarios in which candidate control of proxy votes is strictly
easier than candidate control of classical votes.
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The results I’ve presented in this thesis do not begin to exhaust the
available research directions using a computational social choice-theoretic
model of transitive proxy voting. My aim has not been to provide a full
coverage of topics relevant to transitive proxy voting, but rather to showcase
interesting features of the model I’ve introduced. My hope is that the reader
thinks my model sufficiently rich to enable non-trivial formal discussion of
the merits of liquid democracy.

During individual chapters, I’ve given some sense of topic-specific future
research paths. Here, I want briefly to sketch some areas which future work
could engage with. A non-exhaustive list:

• In Chapter 2, I sketched two ways in which a social network could
be accommodated within my model. It would be interesting to pursue
this idea. For example, most properties of proxy mechanisms will need
to be modified (e.g. anonymity, neutrality) when we build a social
network into the proxy mechanism. Do the results I’ve presented in
the rest of the thesis still hold when such modifications come into
effect?

• Throughout the thesis, I’ve focused on elections using a social choice
function. But, as I noted above, we could also use a social welfare
function in the model.

• In Chapter 3, I gave a few examples of properties of proxy mechanisms,
and characterised the SUBSET mechanism using these. But there are
many interesting properties, and many plausible proxy mechanisms,
which I have not discussed. It would be interesting to explore further
the relationships between these properties and mechanisms. Are there
specific voting scenarios in which we would prefer one proxy mecha-
nism over another?

• Similarly, a motivation for transitive proxy voting is that it purport-
edly increases voter turnout. But I have not examined participation
properties in this thesis. It would be interesting to extend the model
to allow voters to abstain.

• In my model, voters submit partial orders over alternatives, linear or-
ders over voters and default votes. This suggests a novel ‘possible
winner problem’. Given a partial preference profile, how many pos-
sible winners are there when we are free to fill out the proxy choice
profile as we wish? How does the complexity of classical possible win-
ner problems change in this setting? How does the choice of proxy
mechanism affect this?

• In Chapter 4, I examined manipulation and control problems. But
there are other forms of strategic behaviour that are relevant to as-
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sessing liquid democracy. For example, it would be interesting to look
at voter control problems and bribery problems.

To conclude, liquid democracy appears to be a promising means for collective
decision-making, especially with the proliferation of technology in society.
Before it achieves widespread adoption, though, it is necessary to scrutinise
the claims offered by its proponents and detractors. One form of scrutiny
is technical: how do formal models of liquid democracy behave? By writing
this thesis, I hope to have contributed a formal tool for conducting such
analysis.

80



Chapter 6

References

Abramowitz, Ben and Nicholas Mattei (2019). “Flexible Representative Democ-
racy: An Introduction with Binary Issues”. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19. International Joint Conferences on Artificial Intelligence Organiza-
tion, pp. 3–10. doi: 10.24963/ijcai.2019/1. url: https://doi.org/
10.24963/ijcai.2019/1.

Alger, Dan (2006). “Voting by proxy”. In: Public Choice 126 (1). url:
https://doi.org/10.1007/s11127-006-3059-1.

Arrow, Kenneth (1950). “A Difficulty in the Concept of Social Welfare”. In:
Journal of Political Economy 58. url: https://EconPapers.repec.
org/RePEc:ucp:jpolec:v:58:y:1950:p:328.

Bartholdi, John J., Craig A. Tovey, and Michael A. Trick (1992). “How hard
is it to control an election?” In: Mathematical and Computer Modelling
16.8, pp. 27–40. issn: 0895-7177. doi: https://doi.org/10.1016/

0895- 7177(92)90085- Y. url: http://www.sciencedirect.com/

science/article/pii/089571779290085Y.
Behrens, Jan (2017). “The Origins of Liquid Democracy”. In: The Liquid

Democracy Journal 5.
Black, Duncan (1948). “On the Rationale of Group Decision-Making”. In:

Journal of Political Economy 56, pp. 23–34.
Bloembergen, Daan, Davide Grossi, and Martin Lackner (2019). “On Ratio-

nal Delegations in Liquid Democracy”. In: Association for the Advance-
ment of Artificial Intelligence, AAAI 2019.

Blum, Christian and Christina Isabel Zuber (2016). “Liquid Democracy:
Potentials, Problems, and Perspectives”. In: Journal of Political Phi-
losophy 24.2, pp. 162–182. doi: 10.1111/jopp.12065. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/jopp.12065. url:
https://onlinelibrary.wiley.com/doi/abs/10.1111/jopp.12065.

Boldi, Paolo, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna (2011).
“Viscous Democracy for Social Networks”. In: Commun. ACM 54.6,

81



pp. 129–137. issn: 0001-0782. doi: 10.1145/1953122.1953154. url:
http://doi.acm.org/10.1145/1953122.1953154.

Brandt, Felix, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.
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