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We present a theory of word alignments in machine translation (MT) that equips every word
alignment with a hierarchical representation with exact semantics defined over the translation
equivalence relations known as hierarchical phrase pairs.The hierarchical representation con-
sists of a set of synchronous trees (called Hierarchical Alignment Trees – HATs), each specifying
a bilingual compositional build upfor a given word aligned, translation equivalent sentence
pair. Every HAT consists of a single tree with nodes decorated with local transducers that
conservatively generalize the asymmetric bilingual treesof Inversion Transduction Grammar
(ITG). The HAT representation is proven semantically equivalent to the word alignment it
represents, and minimal (among the semantically equivalent alternatives) because it densely
represents the subsumption order between pairs of (hierarchical) phrase pairs. We present an
algorithm that interprets every word alignment as a semantically equivalent set of HATs, and
contribute an empirical study concerning theexact coverageof subclasses of HATs that are
semantically equivalent to subclasses of manual and automatic word alignments.

1. Introduction

A major challenge for machine translation (MT) research is to systematically define for every
source-target sentence pair in a parallel corpus a bilingual recursive structure that shows how the
target-language translation of the source sentence is built up from the translations of its parts. The
core of this challenge is to align, recursively, the parts that are translation equivalents in every
sentence pair in a parallel corpus (Wu 1996, 1997; Wu and Wong1998). This kind of recursive
alignment at the sub-sentential level (in contrast with theword level) is often represented as a pair
of source-target trees with alignment links between their nodes. Nodes that are linked together
dominate fringes that are considered translation equivalents. Inducing hierarchical alignments
in parallel texts (Wu 1997) turns out a far more difficult taskthan inducing conventional word
alignments, i.e., alignments at the lexical level.

Perhaps learning hierarchical alignment is so difficult because it hinges on fundamental
knowledge of how translation equivalent unitscompose together recursivelyinto larger units.
The (hierarchical) phrase-based SMT models, e.g., (Zens, Och, and Ney 2002; Koehn, Och,
and Marcu 2003; Galley et al. 2004; Chiang 2007; Zollmann andVenugopal 2006; Mylonakis
and Sima’an 2011), avoid this difficulty by directly extracting rules of translation equivalence
(also known as phrase pairs or synchronous productions) from aword aligned parallel corpus.
The extraction heuristics treat word alignments as constraints that define the set of admissible
translation equivalents. For example, the phrase pairs admissible by a given word alignment are
non-empty pairs of contiguous sub-strings that are alignedtogether but not with other positions

∗ Institute for Logic, Language and Computation, Universityof Amsterdam. k.simaan@uva.nl
∗∗ Institute for Logic, Language and Computation, Universityof Amsterdam. gemdb@gmail.com

© 2005 Association for Computational Linguistics



Computational Linguistics Volume xx, Number xx

outside, e.g., (Koehn, Och, and Marcu 2003). The hierarchical phrase pairs of Chiang (Chiang
2005, 2007) are defined by a recursive extension of these admissibility constraints. And the
GHKM approach (Galley et al. 2004) is directly aimed at reconciling the admissibility constraints
over word alignments with the constituency constraints expressed by syntactic structure. In
all these cases, word alignment is assumed the starting point for extracting basic translation
equivalents, used as thelexical(ized)part of a synchronous grammar.

The current state-of-the-art SMT systems employ automatically induced word alignments
that are known to be far from perfect. The phrase pair extraction heuristics used by state-of-the-
art models seem to compensate for the inaccuracy of word alignments by extracting agrossly
redundantset of translation equivalents. This redundancy leads to overgeneration but puts the
burden of selecting the better translations squarely on thestatistical model.

In this paper we concentrate on the question how to representword alignments in a parallel
corpus as(sets of) synchronous tree pairs(STPs) thatexactlycapture the (unpruned) set of lexical
translation equivalents that are commonly extracted from word alignments. We are motivated
primarily by the idea that when such a hierarchical representation is available, future hierarchical
translation models need not start out by hypothesizing a synchronous grammar before seeing
the word aligned parallel data. Instead, a variety of synchronous grammars can be extracted
directly from the hierarchical representation, in analogyto the way monolingual grammars
are currently extracted from monolingual treebanks.1 On the one hand, such a representation
provides a formal tool for rigorous analysis of the kinds of synchronous grammars that best
fit with the word alignments, and on the other, it replaces thephrase extraction heuristics with
a sentence-level hierarchical representation, that facilitates the statistical modeling ofhow
translation equivalents compose together into larger translation equivalents.

We present a hierarchical theory of word alignments that equips them with:

r An asymmetric representation of word alignments that extends permutations into a
representation (called permutation sets) that accommodates many-to-one,
one-to-many and many-to-many alignments.

r A hierarchical representation (called HATs) as a rather limited form of STPs and
an algorithm that computes a set of HATs for every permutation set. The
semantics2 of the HATs produced by our algorithm is proven equivalent tothe set
of lexical translation equivalence relations, known from phrase-based models and
Chiang synchronous grammars.

We exploit this theory for an empirical study on manually andautomatically word aligned parallel
corpora providing statistics over sub-classes of word alignments. We reportcoverage figuresfor
limited forms of HATs and exemplify a possible application contributing novel insights to an
ongoing debate on(how to compute) the alignment coverage of (normal form) ITG, e.g., (Zens
and Ney 2003; Wu 1997; Wellington, Waxmonsky, and Melamed 2006; Huang et al. 2009; Wu,
Carpuat, and Shen 2006; Søgaard and Wu 2009).

We will first provide an intuitive outline of the present workand a road map that explains
the structure of this paper.

1 Treebank grammars in parsing are extracted from unambiguously manually annotated sentences, whereas here a set
of STPs is computed for every word aligned sentence pair. It will be necessary to induce a probability distribution
over the different STPs that represent every word alignmentin a parallel corpus. The present work is not concerned
with inducing such distributions but merely with defining the exact set of STPs.

2 Our use of the word semantics is in the formal sense of the set-theoretic interpretation of a representation.
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2. An Intuitive Outline: How to Represent Translation Equivalence Recursively?

What is the semantics of word aligned sentence pairs in parallel corpora?.In machine trans-
lation, source-target sentence pairs in a parallel corpus are consideredtranslation equivalents.
Word alignments are interpreted as the lexical relations that delimit the space ofsub-sentential
translation equivalence units(also called translation units) that underly MT models. To define
the semantics of word alignments in parallel corpora, we need to define:

r The minimal translation equivalence relations intended byindividual alignment
links between words, and

r The translation equivalence relations defined by the different forms of
co-occurrenceof individual alignment links in word alignments of sentence pairs.

Crucially, in this paper we are also interested in defining (for everyword alignment) a hierar-
chical representation that details explicitly therecursive, compositional build upof translation
equivalents from the individual word alignment links up to the sentence-pair level.

A word alignment defines theminimal translation equivalence relationsin a sentence pair.
Individual words linked together are translation equivalents (TEs), and we interpret multiple
words linked with a single word conjunctively, i.e., the linked words together are equivalent
to that word. Figures 1a to 1d show example word alignments3. In Figure 1d,worthwhile
is equivalent tomoeite waard (and we will write this〈worthwhile, moeite waard〉);
neithermoeite norwaard separately is equivalent toworthwhile. Unaligned words must
group with other aligned words in their surroundings to formpossible units of translation
equivalence. In Figure 1d, the Dutch wordde groups withmoeite waard leading to the TE
〈worthwhile, de moeite waard〉.

{1}
Hij

{2}
is

{3}
bereid

{4}
te

{5}
vertrekken

He is ready to leave .

(a) Example monotone alignment (Dutch-English)

{1}
dat

{2}
hij

{3}
bereid

{4}
is

{5}
te

{6}
vertrekken

that he is ready to leave

(b) Example alignment (Dutch-English)

(c) Alignment 4131 from Europarl EN-DE (d) Alignment 6213 from Europarl EN-NE.

Figure 1: Example word alignments of varying complexity

How minimal TE relations combine together into larger unitsis perhaps a theoretical matter
related to the assumption ofcompositional translation(Janssen 1998; Landsbergen 1982). In
contrast, data-driven approaches define which target unitsin parallel data arelikely to be good
translations of which source units, given a word alignment,e.g., (Zens, Och, and Ney 2002;

3 The sets of integers in these figures are of later relevance inthis discussion.
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A = (I XP == Je XP) B = (don’t XP == ne XP pas)
C = (smoke == fume) D = (don’t smoke == ne fume pas)
E = (I don’t XP == Je ne XP pas)
F = (I don’t smoke == Je ne fume pas)

Figure 2: A word aligned sentence pair and a selection of translation equivalents. XP is a
nonterminal variable.

Koehn, Och, and Marcu 2003; Chiang 2007). Statistics are gathered over TE units of varying
lengths, including TEs and their sub-units down to the minimal units. In phrase-based models,
the non-minimal TE relations (called phrase pairs) are formed by taking contiguous sequences
of minimal units equivalent to each other on both sides (under the conjunctive interpretation)
and extracting them as larger phrase pair equivalents. In Figure 1b, for example, one may ex-
tract〈bereid is, is ready〉 and〈hij bereid is, he is ready〉 but cannot extract
〈hij is, he is〉 for the lack of adjacency of〈hij, he〉 and 〈is, is〉 on the Dutch side
(note that the latter does constitute a phrase pair of the alignment in Figure 1a). In Figure 1d,
we find〈achieved a worthwhile compromise, een compromis bereikt dat
de moeite waard is〉, where the unaligned words (dat de) are included because they
are the only material intervening between two TEs.

The extraction methodused in phrase-based models can be seen to compose two or more
TE units into a larger TE unit if and only if their components are adjacent on both source and
target sides4 (Koehn, Och, and Marcu 2003). Adjacency on both sides can be seen as simple
synchronized concatenation of sequences, albeit with the possibility ofpermuting the orderof
the sequences on the one side relative to the other.

Chiang’s extraction method (2007) extends the set of phrasepairs with higher order TE
relations (synchronous productions) containing pairs ofvariableslinked together to stand for
TE sub-units that has been abstracted away from a phrase pair. The phrase pair〈hij bereid
is, he is ready〉 in Figure 1b can produce a Chiang-style synchronous rule〈hij X is,
he is X〉, whereX on both sides stands for two nonterminal variables linked together. Note
that the twoX instances stand in positions where another TE unit〈bereid, ready〉 used to
reside. Figure 2 exhibits one more alignment for a shorter (and well known) sentence pair and a
selection of example TEs.

In Section 4 we define the semantics of a sentence-level word alignment to be equivalent to
the set of translation equivalence relations that are extracted from it by the Chiang method5. With
this semantics in place, we are interested in the question how to represent a word alignment in a
hierarchical formalism that harbors all and only the translation equivalents that the semantics of
word alignments defines, and makes explicit the compositional structure of TEs?

What is the recursive structure of translation equivalence?. By extracting arbitrary length (hi-
erarchical) phrase pairs directly, current extraction methods do not concern themselves with
the question how sub-units of TEs compose together to form larger TEs in a word aligned
sentence pair in the training data. We prefer a representation that shows as much as possible
how a constellation of multiple TE units compose together toform largercompositTE units.

4 In other words they must form contiguous spans on both sides.
5 In practical systems like Hiero, the extractions are prunedusing various heuristics. These heuristics are not relevant

for this study.
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XPXP

XP

XP

Je ne fume pas

don’t smoke

I

XP

XPXP
XP

XPXP

Je

XP

XP

XP

ne fume pas

don’t smokeI

XP

(a) Spurious Ambiguity

I

XP

XPXP

Je

XPXP

XP

don’t

I

XP

XPXP
XP

Je ne pas

XP

XPXP

XP

don’t

XP

XPXP
XP

ne pas

XP

XPXP

XP

don’t

XP

XP

ne pas

XP

XP

(b) Synchronous fragments extracted from the right STP in Figure 3a

Figure 3: Example STPs and synchronous fragments

Initially we make the assumption that TEs compose together by synchronized concatenation with
reordering(thereby enforcing the aforementioned assumption ofbilingual adjacency). Later on
we provide a conservative generalization of this assumption on composition for representing
translation equivalence relations that arediscontinuous, thereby covering the Chiang-style TEs.

Figure 3a exhibits two STPs, pairs of trees with linked pairsof nodes.6 Edges linking pairs of
nodes in the two trees stand for pairs of TEs formed by the sequences of words at the fringes of the
subtrees dominated by the two nodes.7 In both STPs we find the TE〈don’t smoke,ne fume
pas〉. In the one STP we find this TE as an atomic unit (the left STP), whereas it is a composit
one in the other (the right STP). The two STPs constitute legitimate alternative outcomes of
a synchronous grammar like that used in (Chiang 2007; Mylonakis and Sima’an 2011): the
atomic version employs a TE (phrase pair production)〈XP→don’t smoke, XP→ne fume
pas〉, whereas the other one employs a derivation consisting of two productions:〈XP→smoke,
XP→fume〉 substituted in theXP linked slots in〈XP→don’t XP, XP→ne XP pas〉.

6 For the moment being we do not discuss constraints on this general representation and leave that for the formal
sections in the sequel.

7 Observe particularly how the French wordsne andpas that are equivalent todon’t (a discontinuous French side)
are not dominated by a pair of linked nodes on their own, and thatne andpas stand directly under the same mother
nodeXP which is linked with theXP under whichdon’t is also found. This is important for representing the
discontinuous TE.
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Our proposed representation (called Hierarchical Alignment Trees – HATs) will avoid this
kind of derivational redundancy. If one TE is a sub-unit of another subsuming TE (e.g.,〈smoke,
fume〉 is subsumed by〈don’t smoke, ne fume pas)〉 then the representation developed
here will explicitly represent this subsumption order (just like the STP to the right in Figure 3a).
We will prove that in the set of HATs that we define for a word alignment, every linked pair
of nodes dominates a pair of fringes that constitutes a phrase pair, and that all phrase pairs
are represented by linked nodes.Crucially, the HATs will explicitly represent the subsumption
relation between phrase pairs: every phrase pair that can bedecomposed into smaller phrase
pairs will be represented as such, and the HATs are the STPs that contain the maximal number
of nodes that the word alignment permits.

For building MT models, one could extractsynchronized fragments(possibly conditioned
on context).Synchronized fragmentscan be extracted under the constraint that we “cut" only
at linked pairs of nodes (a DOT heuristic due to (Poutsma 2000)). This leads to synchronous
fragments that can be used in a Synchronous Tree Substitution Grammar (Eisner 2003) and
akin to Chiang’s synchronous context-free productions (discarding the heuristic constraints on
length etc). Besides the phrase pairs (fully lexicalized fragments) we could also obtain (among
others) the synchronous fragments shown in Figure 3b from the right-side STP in Figure 3a. By
discarding the internalXP nodes in these synchronous fragments we obtain Chiang synchronous
context-free productions.

How to build hierarchical structures for translation equivalence?.Consider first the two simple
alignments in Figures 1a and 1b. Intuitively speaking, for Figure 1a (monotone), any pair of
identical binary-branching trees with linking of all identical (isomorphic) nodes constitutes a
suitable STP for this example. The same strategy would work for the second example (Fig-
ures 1b) provided that we first groupbereid is andis ready under a pair of linked nodes.
Both examples can be dealt with using binary STPs, and in factthese binary STPs are of the
kind that can be generated by normal-form ITG. These two alignment are simple examples of
what is known asbinarizable permutations(Huang et al. 2009). In Figures 1a and 1b, the integer
permutations are shown as a sequence of singleton sets of integers above the Dutch words; the
dual permutation can be formed on the English side by writingdown for every English word the
position of the Dutch word linked with it.

For developing the hierarchical representation for general word alignments we must address
the technical challenges of how to represent complex word order differences and alignments
that are not one-to-one. The permutation notation will not work for one-to-many, many-to-
one or many-to-many alignments and a special extension is needed. Figure 1d shows how our
proposed extended representation looks like: the positionof the wordworthwhile is linked
with two Dutch positions and hence is represented by a set of both {8, 9}. This new extension
of permutations to represent general word alignments (and its meaning) is called apermutation
set. In section 5 we present permutation sets and formalize the counterparts of TEs in this new
asymmetric representation.

Binarizable permutations constitute a proper subset of theword alignments found in actual
data. Figure 1c and 1d show two examples of non-binarizable permutations sets, where the first
one is a permutation and the second is a proper permutation set. The word order differences
in these word alignments is such that they cannot be represented by an STP generated by an
(NF-)ITG. In Figure 1c, the crossing alignments constitutethe non-binarizable permutation
〈2, 5, 3, 1, 4〉.8 A similar, but slightly more complex situation holds for Figure 1d because of the

8 To see that it is non-binarizable check that none of the adjacent pairs of integers constitutes a pair of successive
integers, i.e., the foreign side positions of the adjacent TEs are not adjacent to one another.
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one-to-many alignment: with the unaligned wordsdat de at positions6 and7, the permutation
set〈{5, 6, 7}, 3, {8, 9}, 4〉 is as non-binarizable as〈3, 1, 4, 2〉.

(a) HAT for the word alignment in Figure 1c

(b) HAT for the word alignment in Figure 1d

Figure 4: Two HAT representations for examples of word alignments

For representing word alignments (permutation sets) with STPs, Section 6 develops the
HAT representation and algorithms for interpreting word alignments as sets of HATs. We
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prove that the HATs have equivalent semantics to word alignments (permutations sets) and are
compact/minimal in the sense discussed above. Figure 4 shows two of the HAT representations
for the examples in Figures 1c and 1d. To avoid a jungle of nodelinks in such largish examples,
we resort to an implicit representation of node linking and asquared off tree representation. Pairs
of nodes linked together are represented with the same filledcircles (word alignments are left in
tact as a visual aid). Figure 4 shows that a minimal branchingSTP is chosen given the constraints
of the word alignment. An idiomatic treatment of a phrase pair that cannot be decomposed
under the defined semantics is shown in Figure 4a. Figure 4b shows an interesting case: it
represents〈achieved, bereikt dat de〉 and〈worthwhile, moeite waard is〉 as
two pairs of linked nodes. The complex permutation set in this example (〈5, 3, {8, 9}, 6, 7, 4〉),
discussed earlier, is represented as a four-branching pairof linked nodes (). This permutation
set is equivalent9 to 〈3, 1, 4, 2〉, an inversion of the famous non-binarizable〈2, 4, 1, 3〉 of (Wu
1997). The nodes on both sides of the STP are decorated with such permutation sets standing for
transduction operators that generalize the inversion operator of ITG.10

An important property of the HAT representation is that the branching factor at every
internal node isminimal. In Section 6 we prove that the choice for minimal branching nodes
(minimal segmentation of a sub-permutation) leads to the compact representation which avoids
the derivational redundancy exemplified above. Because thebranching factor of every node is
the minimal given the word alignment, then for binarizable permutations we will automatically
obtain fully binary HATs (that can be generated by a normal-form ITG).

What kinds of word alignments are being used for building current state-of-the-art SMT systems?.
Are the cases of non-binarizable permutations frequent in parallel data or are they marginal
cases? What hierarchical properties do these word alignments have? Section 7 provides an
empirical study that addresses these and other empirical questions pertaining to subsets of word
alignments and the HAT representation. But first, in the nextsection, we review the related work.

3. Related Work

Given the relative importance of word alignments, the question how to represent them hier-
archically has received limited attention. Earlier work makes different modeling assumptions
regarding the nature of word alignments, the STP formalism or the role of syntactic trees. Many
of these modeling assumptions emanate from the choice for a specific probabilistic synchronous
grammar when inducing word alignments. In this work we assume that word alignments are
given in parallel data and, therefore, can afford to avoid this assumption.

Wu (Wu 1997) presents a framework for learning hierarchicalalignments under Inversion-
Transduction Grammar (ITG). The framework starts out by postulating a synchronous grammar
for bilingual parsing of sentence pairs in a parallel corpus. By postulating a grammar (ITG) first,
the goal is to represent the whole corpus of bilingual sentences as members in the language of
this grammar. This contrasts with the goal of the present work: we aim at representing every
individual word alignment in a parallel corpus with hierarchical bilingual representations (sets
of STPs) that are provably equivalent in terms of apredefined semantic notion of translation
equivalence. Given the definition of translation equivalence over word alignments, one can say

9 After reducing〈{8, 9}, 6, 7〉 into a single position 6.
10 The complexity of parsingk-branching synchronous grammar withk > 3 (rankk syntax-directed transduction

grammars (Lewis and Stearns 1968)) is well documented (Satta and Peserico 2005) but irrelevant to this work.
Parsing a parallel string depends on the kind of synchronousgrammar at hand. In this paper we are neither
concerned with extraction nor with parsing under a given grammar but merely with specifying theexact
representation.
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that here we aim at making hierarchical representations explicit that reside in the word alignment
itself,not in an external grammarspecified prior to seeing the alignments. In this sense our goals
are different from those of Wu (1997).

Other assumptions regarding representing word alignmentsare made as well. Typically,
when a certain section of a given word alignment cannot be decomposed under the working
assumptions regarding the formal grammar, it is extracted as a single atomic phrase pair.11 This
means that translation equivalents that are related to one another in the data (e.g., one embedded
in the other) are represented as alternative, unrelated rules. We think that this complicates bi-
lingual parsing as well as the statistical estimation of these grammars (see e.g., (Marcu and
Wong 2002; DeNero et al. 2006; Mylonakis and Sima’an 2010, 2011)).

The direct correspondence assumption (DCA) of syntactic parse trees underlies the efforts
at building syntactic parallel treebanks, and word alignments are considered merely as heuristic
constraints on node-linking, e.g., (Tinsley, Hearne, and Way 2009; Zhechev and Way 2008;
Tinsley and Way 2009). This line of research is not concernedwith representing the translation
equivalence that the input word alignments define but with a node-linking relation between two
monolingual parse trees.

The ITG (or Wu’s) hypothesis states that all (or at least the vast majority of the correct)
word alignments (in any parallel corpus) can be representedas pairs of binary trees (STPs) with
a bijective node linking relation where “vertically crossing" node alignment are not allowed.
Furthermore, for every sequence of sister nodes, the links has only two possible orientations:
fully monotone or fully inverted. The stability of the ITG assumption is an empirical matter that
depends on the relative frequency of complex permutations and alignment constructions (like
Discontinuous Translation Units (Søgaard and Kuhn 2009)) in actual data. Here, we are not
concerned with the validity/stability of the ITG assumption in practice. Instead, we are interested
in representing word alignments hierarchically to represent our choice for a predefined notion
of translation equivalence. Crucially, the resulting hierarchical structure reflects our choice of
translation equivalence semantics. Whether a word alignment can be covered by (NF-)ITG or any
another formalism is a secondary matter pertaining to various coverage metrics of the translation
equivalence relations represented in our hierarchical representation (see also (Søgaard and Kuhn
2009) for a similar observation). We think that the coverageitself can be effectively measured
as the intersection between the set of HATs equivalent to theword alignment and the set of
synchronous trees generated by the given formalism for the sentence pair. It is crucial to point
out the subtle point that the measured coverage is always with regards to a predefined notion of
translation equivalence over word alignments and the kind of trees projected from them. We will
elaborate more on this observation in Section 7.

The empirical part of this paper (Section 7) explores the hierarchical nature of word align-
ments within our hierarchical theory. However, as a first example application of our formal and
algorithmic findings, we make a modest, yet distinct, contribution to the NF-ITG coverage de-
bate. By defining a shared semantics for word alignments and HATs, our algorithm for computing
a set of HATs for every word alignment affords us to report coverage figures based on formal
inspection of the set of HATs to determine whether there exists at all an NF-ITG that can generate
them. This approach is distinct from earlier approaches to the study of empirical ITG coverage
in that it formally builds the HATs foreveryword alignment before doing any measurements. In
Section 7, we will contrast our approach with earlier work onNF-ITG coverage.

11 The redundancy of such synchronous grammar rules is reminiscent of Data-Oriented Parsing (DOP) (Bod, Scha,
and Sima’an 2003), albeit a major difference is that latter extracts fragments from a treebank implying explicit
internal structure shared between different fragments.
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4. Defining Translation Equivalence over Alignments

Throughout this paper we will be concerned withsentences, finite sequences of tokens (atomic
or terminal symbols). Thealignmentswill consist of sequences of individuallinksbetween these
tokens. For the purposes of intuitive and simple expositionwe will often talk about words but the
treatment will apply to atomic tokens at other granularity levels.

Unaligned words (NULLs) lead to an extensive notational burden and, in principle, we
will not provide a formal treatment of unaligned words in themore advanced sections, but
our intuitive treatment of this special case will aim at showing that an extension of the present
techniques to unaligned words is inexpensive.

Definition 1 (Alignment and sub-alignment)
Given a source and target sentence pair,s = s1, . . . , sn andt = t1, . . . , tm, we define an align-
ment a as a relation of pairs consisting of a position ins and another int or NULL, i.e.,
a ⊆ {0, 1, . . . , n} × {0, 1, . . . , m} where position0 stands for NULL. Each individual pair is
a link. We will call b a sub-alignment of an alignmenta whenb ⊆ a.

Alignments in machine translation play a major role in defining the atomic elements of
translation equivalence, words linked together or even phrase pairs. We view alignments as
postulating basic word-level relations of translation equivalence, that when (somehow) combined
together would lead to larger units of translation equivalence, up to the sentence level. The
crucial question usually is which links to combine togetherand which operators to use for the
combination. Before we make any choices, we first provide a general definition of relations of
translation equivalence defined over an alignment.

Definition 2 (Translation-admissable sub-alignments)
Given an alignmenta betweens and t, a non-empty sub-alignmentb ⊆ a is translation-

admissable (t-admissable)iff for every 〈x, y〉 ∈ b holds {〈x1, y1〉 ∈ a | (x1 = x) ∨ (y1 =
y)} ⊆ b. In other words, all alignments involving source positionx in a must either all be in
b or else none, and similarly for all alignments involving target positiony.

In Figure 2, sincene andpas are both linked withdon’t, it is reasonable to think that
don’t translates asne + pas. Hence the definition of t-admissable sub-alignments. The set
of all t-admissable sub-alignments of an alignmenta, denotedTA(a), is attractive because it
defines an important range of translation equivalents (thatsubsumes phrase pairs). In Figure 2,
the sub-alignment representing the word linking{〈Je,I〉, 〈fume,smoke〉} is t-admissable for
this alignment, whilst it is not a phrase pair.

For computational and representational reasons, we will beinterested in a subspace of
the t-admissable sub-alignments for a given alignmenta, particularly the phrase pairs known
from phrase-based translation, and phrase-like synchronous productions (containing “holes") as
introduced by Chiang (Chiang 2005). Intuitively, for standard phrase pairs, links are grouped
together into larger units of translation equivalence if they are adjacent both at the source and
target sides.

Definition 3 (Phrase-pair sub-alignment)
A t-admissable sub-alignmentb ⊆ a is called aphrase pair sub-alignmentiff both the sets
of source and target positions inb minus the NULLs (position zero), constitute contiguous
sequences of source and target positions.

10
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Definition 4 (Minimal phrase-pair sub-alignment)
A phrase pair sub-alignment is minimal if and only if none of its proper sub-aligments is a phrase
pair.

Definition 5 (Chiang-admissable sub-alignments)
A t-admissable sub-alignmentb ⊆ a is called Chiang-admissableiff there exists a phrase
pair sub-alignmentbp ⊆ a such thatb ⊆ bp and the complement(bp \ b) is either empty or
constitutes a set of phrase pair sub-alignments.

Clearly, every phrase pair sub-alignment is also Chiang-admissable. However, Chiang-
admissable sub-alignments may consist of non-contiguous (on one side or boths sides) sequences
of t-admissable sub-alignments that correspond to a phrasepair with “gaps" that stand for phrase
pairs. Figure 2 shows a few examples of phrase pairs (translation equivalentsC, D, F). The same
figure shows Chiang-admissable sub-alignments (A, B, E) represented with the “holes" between
the segments marked with the symbol XP, in following of standard practice.

Having defined the semantics of word alignments as phrase-pair and Chiang-admissable
sub-alignments, we will now fix this semantics for all kinds of future representations of word
alignments. Our choice for this semantics has attractive properties but this does not come without
a price.

Limitations.This semantics conflates the differences between certain word alignments and avoids
difficult questions about the semantics ofmulti-word, minimal phrase pair sub-alignments(see
Figure 5). Under theconjunctive interpretationof word alignments, the contiguous sequences
on both sides of a minimal phrase pair sub-alignment belong together. It is then important to
recognize that this choice cannot discriminate between different alignments that lead to the same
minimal phrase pair. Figure 5 exhibits three word alignments that constitute minimal phrase
pairs of the same string pair and all three share the same semantics (set of Chiang-admissable
sub-alignments). The topic of extending the semantics suchthat it discriminates between some
of these cases is not treated in this paper.

Figure 5: Three word alignments that constitute minimal phrase pairs

5. Alignments as Permutation Sets: A Representation of Relative Word Order

Alignments make explicit various phenomena at the lexical level, in particular word-order differ-
ences. Crossing links between positions as well as alignments that relate groups of source words
to groups of target words express constraints on how a sourceand target sentences relate to one
another as sentential tranlsation equivalents. The challenge of modeling word-order differences
is a major reason for studying syntactic and hierarchical models, e.g., (Wu 1997; Chiang 2007).

In the preceding section we represented t-admissable sub-alignments, phrase pairs or
Chiang-admissable, as sets of sub-alignments. The adjacency of links on both sides symultanu-
osly turned out a crucial constraint on grouping links into phrase pair sub-alignments. Following
(Wu 1997; Huang et al. 2009), we choose a simple mechanism to represent how the target-side
of a given sub-alignment is obtained from the source side: permutation of positions.

11
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Permutations are useful representations for a subclass of alignments that naturally capture
the adjacency requirement. In this section, we propose a newrepresentation of alignments, called
permutation sets, that extends permutations. We also discuss how translation equivalence follows
from permutations and how it relates to translation equivalence definitions from the preceding
section, particularly the phrase pairs and Chiang sub-alignments.

Bijective alignments and Permutations.A special interesting case of alignments is the class
of bijective (i.e. 1:1 and onto) alignments. Ifa is bijective, then the positions on the one
side can be described as apermutationof the positions on the other side. For example, if
a = {1-2, 2-1, 3-3, 4-4} (with source positions coming first in the pairs), then the target positions
constitute the permutation〈2, 1, 3, 4〉 relative to source positions.

Definition 6 (Permutations and shifted-permutations)
A permutationπ over the range of integers[1..n] is a sequence of integers such that each integer
in [1..n] occursexactly oncein π. We will also consider permutations over integers in[i..j] (for
i 6= 1) and refer to them asshifted-permutations.

Definition 7 (Sub-permutation)
A sub-permutationπx of a permutationπ is a contiguous subsequence ofπ which constitutes a
shifted-permutation.

Sub-permutations clearly comply with the adjacency requirement of linked positions on both
sides, which are required for phrase pair sub-alignments. The following rather straightforward
lemma highlights the fact that bijective alignments and permutations can be used to define exactly
the same sets of phrase pair sub-alignments (translation equivalence relations):

Lemma 1
The set of phrase pair sub-alignments for a bijective alignment (permutation)a is equivalent to
the set of sub-permutations of the permutation corresponding toa.

The proof of this lemma follows from the definitions of phrasepair sub-alignment for
bijective permutations and the definition of sub-permutation.

Notation.For traversing a permutationπ from left to right we will employ indeces to mark
the current state of traversal: at start theindex is zero and after moving oneposition to the
right the index increments by one (i.e., indexj > 0 stands between positionsj andj + 1). The
notationπ<j andπ>j refers to sub-sequences ofπ that are repectively the prefix ending with
the integer at positionj and the suffix starting with the integer at positionj + 1. Note that these
subsequences are not necessarily sub-permutations ofπ since they might consist of integers
that do not define a range of successive integers. For example, in π = 〈2, 1, 3, 4〉, we find sub-
permutationsπ<3 = 〈2, 1, 3〉 andπ>3 = 〈4〉, butπ>1 = 〈1, 3, 4〉 is not a sub-permutation.

We can also represent a permutation, e.g.,〈2, 1, 3, 4〉, as ranging over singleton sets,
i.e., 〈{2}, {1}, {3}, {4}〉. This allows us to encode non-bijective alignments, containing sub-
alignments that are not 1:1, as extensions of permutations over sets of target positions relative to
source positions. The sets of target positions imply grouping constraints defined by alignments
that are not 1:1.

Back to our running example (Figure 2). If we take French as the source language then the
representation (called permutation set) of this alignmentis 〈{1}, {2}, {3}, {2}〉, whereas if we
take English as the source side thepermutation setshould be〈{1}, {2, 4}, {3}〉. To arrive at
these permutations sets, simply scan the source (respectively target) side left to right word-by-
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word and for every word position note down in a set notation the target positions linked with that
word. In the representation〈{1}, {2}, {3}, {2}〉 (the French-side view) the set{2} appears in the
second and fourth positions signifying that the2nd English word is linked with both the second
and fourth French positions. In other words, the two appearances of{2} signify a grouping
constraint for the second and fourth French positions with surrounding positions. This example
should also highlight theasymmetricnature of this representation (just like permutations).

Now we define permutation sets by providing a recipe for obtaining them from alignments.
To avoid notational complications, our definition in the single case of unlinked words (i.e., linked
with NULL) remains somewhat informal.

Definition 8 (Permutation sets for non-bijective alignments)
A permutation setis a finite sequence of finite sets of integers such that the union of these sets
constitutes a range of integers[0..n]. The three cases of non-bijective alignments are represented
in permutation sets as follows:

r For every source positionis > 0 (i.e., not NULL), we represent this position with
a seta(is) that fulfills jt ∈ a(is) iff is andjt are linked together and none is
NULL, i.e., jt ∈ a(is) iff 〈is, jt〉 ∈ a andjt 6= 0.

r For contiguous spans of source positions linked with NULL wewill group them
with the directly adjacent source positions that are linkedwith target words. For
every contiguous span of (one or more) unlinked source words, any prefix of this
span may group with aligned source words directly to its left, and the remaining
suffix of the span will group with the aligned source words directly to its right.
Either the prefix or the suffix can be the empty string but not both. This leads to
multiple alternative permutation sets that together represent the same alignment.
This conforms with current practice in phrase pair extraction, e.g., (Koehn, Och,
and Marcu 2003).

r For contiguous spans of target position linked with NULL, wewill first group the
positions with the non-NULL linked adjacent positions and then represent the
target sets of positions that correspond to every source position. The grouping of
the prefix and the suffix of such contiguous spans proceeds analoguously to the
NULL-aligned source positions in the preceding item.

If we put NULL-links aside and view alignments asymmetrically (say from the source side), we
find that every permutation set represents a single alignment and that every alignment (viewed
from the source side) can be represented by a single permutation set. The NULL cases lead to
multiple permutation sets that correspond to one and the same alignment. This only leads to more
notation and in the sequel we will not deal with NULL links, knowing that they can be treated
with a relatively straightforward extension of the presenttechniques.

Another example of a permutation set is〈{1, 2}, {3}, {2, 4}〉 which implies the alignment
{1 − 1, 1 − 2, 2 − 3, 3 − 2, 3 − 4} (where here we informally represent an alignment as a set of
linked source-target pairs of positionsx − y).

Definition 9 (Sub-permutation of a permutation set)
A sub-permutation of a permutation setπ = 〈s1, . . . , sm〉 is a contiguoussubsequence
〈si, . . . sj〉 (i ≤ j) that fulfills the requirement that the union(si ∪ . . . ∪ sj) of the setssi, . . . sj

constitutes a contiguous range of integers and for every integerx ∈ (si ∪ . . . ∪ sj) holdsx /∈
(s1,∪ . . . ∪ si−1 ∪ sj+1 ∪ . . . ∪ sm).

13



Computational Linguistics Volume xx, Number xx

This definition demands contiguous chunks on both sides and that links from the same
position (including discontinuous cases) must remain together. For example, for permutation set
〈{1}, {2}, {3}, {2}〉 (Figure 2, French as source), the atomic subsequences〈{1}〉 and〈{3}〉 are
sub-permutations. In contrast, the atomic subsequence〈{2}〉 is not a sub-permutation because
one copy of the2 remains in the complement (the two copies together stand fora discontin-
uous alignment with English position2). The subsequence〈{2}, {3}, {2}〉 constitutes a sub-
permutation, whereas〈{1}, {2}〉 is not a sub-permutation because again one copy of the2
remains in the complement.

Partial sets.In a permutation set, we refer to those sets that do not constitute an atomic sub-
permutation (like{2} in 〈{1}, {2}, {3}, {2}〉 or {2, 5} in 〈3, {2, 5}, 1, 4〉) with the termpartial
sets. A partial set either shares positions with other partial sets or it consists of a non-singleton
set that does not constitute a sub-permutation.12

In permutation set〈{1, 2}, {3}, {2, 4}〉 for example, we find that each of{1, 2} and{2, 4}
separately are partial sets, whereas{3} is an (atomic) sub-permutation.

Also under the latter definition we find that the set of phrase pair sub-alignments is equivalent
to the set of sub-permutations as stated in the following lemma, which applies to alignments not
containing NULL links but can be extended to the general casealso.

Lemma 2
The set of phrase pair sub-alignments for an alignment (permutation set)a is equivalent to the

set of sub-permutations of the permutation sets corresponding toa.

We will also define the following intuitively simple partialorder relation over sub-
permutations of the same permutationπ:

Definition 10 (Partial order < over permutation sets)
Given a permutation setπ1 over [i..j] and another permutation setπ2 over [k..l]. We will write
π1 < π2 iff i ≤ j < k ≤ l. This relation extends naturally to sub-permutations also.

In summary, permutation sets are asymmetric representations of alignments. In terms of
translation equivalence relations, it is important to highlight the equivalence of the set of
phrase pair sub-alignments defined by a given alignment to the set of sub-permutations of
the corresponding permutation set. This equivalence implies that we can represent alignments
hierarchically if we succeed to represent permutation setshierarchically. As we shall see, because
permutation sets are asymmetric they constitute a nice intermediate representation on the way
from alignments to hierarchical representations.

6. The Hierarchical Structure of Sub-permutations: Recursive Translation Equivalence

The various kinds of t-admissable sub-alignments from Section 4 stand for sets of translation
equivalence relations that can be extracted given an alignment. A permutation set provides an
asymmetric representation of the alignment in terms of order differences of the target sentence

12 Partial sets are contiguous source-side sub-units in what is known as Discontinuous Translation Units (DTUs). These
correpond to the two cases of a source side position aligned with a discontinuous set of positions on the target side
or a target side position aligned with a discontinuous set ofpositions on the source side. (Søgaard and Kuhn 2009).
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relative to the source sentence. By concentrating on sub-permutations of a given permutation set,
we concentrate attention on sub-alignments that link consecutive positions on both sides, also
known as phrase pair sub-alignments (Section 4).

〈{1}, {2, 4}, {3}〉

〈{1}〉 〈{2, 4}, {3}〉

〈{2, 4}〉 〈{3}〉

〈1, 2, 3〉

〈1, 2〉

〈1〉 〈2〉

〈3〉

〈1, 2, 3〉

〈1〉 〈2, 3〉

〈2〉 〈3〉

Figure 6: The left tree representation makes explicit the hierarchical structure of the sub-
permutations of permutation set〈{1}, {2, 4}, {3}〉, and the two to the right for permutation
〈1, 2, 3〉 (since all sets are singletons we simplified the permutationset into a standard permuta-
tion). Note that there are two trees for the latter permutation, each showing the recursive grouping
using different sub-permutations.

Consider the permutation set〈{1}, {2, 4}, {3}〉 for the English side as source in Figure 2. Its
sub-permutations are:〈{1}〉, 〈{3}〉, 〈{2, 4}, {3}〉 and〈{1}, {2, 4}, {3}〉. The sequences〈{2, 4}〉
and 〈{1}, {2, 4}〉, for example, are not sub-permutations because{2, 4} does not constitute a
range of consecutive integers.

Let us now concentrate on structuring the sub-permutationsof a given permutation set. Fig-
ure 6 (left side) shows a graphical representation of how thesub-permutation〈{1}, {2, 4}, {3}〉
can be seen as theconcatenationof the two sub-permutations〈{1}〉 and〈{2, 4}, {3}〉, and that
the latter sub-permutation is the concatenation of〈{2, 4}〉 and 〈{3}〉, in this order. The same
figure also shows two trees for the permutation (set)〈1, 2, 3〉. Note how these two trees exhibit the
grouping of different sub-permutations, that correspond to different sub-alignments, and hence
also different translation equivalence relations.

In this section we are interested, on the one hand, in this kind of grouping of sub-
permutations into hierarchical structures (trees), and onthe other, in a suitable represention that
makes explicit the mapping between the local order of source-side groups and the order of their
target-side counterparts. The challenge is how to make explicit the hierarchical structure of how
sub-permutations compose together, recursively, into larger sub-permutations. Concatenation is
the main composition operation that we are going to assume here.

Definition 11 (Concatenation of sub-permutations and/or sequence of partial sets)
The concatenation of sub-permutations is a special case of concatenation of sequences (ordered
sets) because sub-permutations are sequences of sets of integers. The same applies to sequences
of partial sets. The result of the concatenation of an ordered pair of sequences〈π1, π2〉, written
concat(π1, π2) is the sequence of sets of integers obtained by concatenating the sequenceπ2

after the sequenceπ1. We define the concatenation operator to be left-associative.

Note that concatenation itself is not guaranteed to lead to asub-permutation even if both
components are sub-permutations. We will also define the segmentation of a (sub-)permutation
(almost but not exactly the inverse of concatenation because concatenation is not guaranteed to
result in a sub-permutation).

Definition 12 (Segmentation of a sub-permutation)
A segmentation of a sub-permutationπ = 〈k1, . . . , kn〉 is a set of indicesB = {j0 =

0, j1, . . . , jm = n} that segmentsπ into m adjacent, non-overlapping and contiguous subse-
quences (called segments) such that for all0 ≤ i < m holds: the sub-sequence ofπ given by
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k
ji+1

ji
= kji

. . . kji+1
is either asub-permutationof π or a sequence consisting of a singlepartial

setfrom π.

For example, the sub-permutation (showing the indices explicitly using extra subscript notation)
πA = 〈0{1},1 {2},2 {3},3 {2}4〉 has a possible segmentationB1 = {0, 1, 4} leading to sub-
permutations〈{1}〉 and〈{2}, {3}, {2}〉, another segmentationB2 = {0, 1, 2, 3, 4} leading to a
sub-permutations〈{1}〉, 〈{3}〉 and twice the sequence with a single partial set〈{2}〉. The set of
indicesB∗ = {0, 2, 4}, for example, does not constitute a segmentation ofπA.

A second example might make the segmentations even clearer:for πB =
〈0{1},1 {2},2 {2},3 {3}4〉 there are segmentationsB1 = {0, 1, 2, 3, 4}, B2 = {0, 1, 3, 4},
B3 = {0, 1, 4} andB4 = {0, 3, 4} (note that〈{2}, {2}〉 is a sub-permutation ofπB).

Segmentations and the hierarchical structure of sub-permutations.The following lemma (with
two sub-statements) is central for devising an algorithm for the hierarchical representation of
sub-permutations in permutation sets. Intuitively, the two sub-statements in this lemma together
imply that we can build recursive tree hierarchies that workwith minimal segmentationsof π and
still coverall sub-permutations. This is the intuition behind the algorithms presented in the next
Section.

Lemma 3 (Sub-permutations and minimal segmentations)
The lemma has two subsections:

Seg1:For every sub-permutationπx of another sub-permutationπ there exists a
segmentation ofπ into a sequence of segments〈A1, . . . , Am〉 in whichπx is a
member, i.e., there exists1 ≤ i ≤ m such thatAi = πx.

Seg2:Let k > 1 be the minimal cardinality of a segmentation of a sub-permutationπ. We
will refer to B with |B| = k as a minimal segmentation. For every segmentationB of
π, there exists a segmentationBmin of π such thatBmin ⊆ B and|Bmin| = k. In
other words, every segmentationB can be regrouped into a minimal segmentation.

Proof

Seg1.By contradiction. Let us assume there is no such segmentation of π. If πx 6= π is a sub-
permutation ofπ found between positions indexed withi andj, then there existsXl andXr, at
least one of which is non-empty, such thatπ = 〈Xl, i πx, j Xr〉 (the subscriptsi andj are used
to mark the indeces). Ifπx is not a member in any segmentation ofπ, then (by Definition 12) for
every segmentationB of π holds{i, j} 6⊂ B. Because the sub-sequence betweeni andj is a sub-
permutationπx, this implies that either one or both of the sub-sequencesXl andXr cannot be
segmented into sub-permutations and single partial sets. But becauseConcat(Xl, πx, Xr) = π
is a sub-permutation, it is a sequence of sets over a range of consecutive integers[nl..ni..nj ..nr],
whereπx is defined over theproper sub-range[ni..nj ]. Hence, the integer sets inXl andXr

must be defined as subsets of[nl..ni−1nj+1..nr]. But this implies that each such integer set in
itself is either a partial set or can form on its own a sub-permutation ofπ. Contradiction, because
this does constitute a segmentationB of π such that{i, j} ∈ B.

Seg2.Let π be a sub-permutation with a minimal segmentation of cardinality |Bmin| = k. For
every segmentationB of π we want to prove that there exists a segmentation ofπ calledB

′

such thatB
′
⊆ B and |B

′
| = k. The proof is by induction onm = (|B| − k). For the case

m = 1: By contradiction. Suppose there is a segmentationB of π with |B| = k + 1 for which

16



K. Sima’an and G. Maillette de Buy Wenniger Hierarchical Representations for Word Alignments

there exists no minimal segmentationB
′
⊂ B and |B

′
| = k. BecauseB segmentsπ into a

sequenceX1, . . . , Xk+1 of k + 1 sub-permutations or partial sets, the assumption holds ifffor
all consecutive pairsXi andXi+1 (1 ≤ i ≤ k) holds: 〈Xi, Xi+1〉 does not constitute a sub-
permutation. This situation can occur iff for all1 ≤ i ≤ k holds the intersection ofXi and/or
Xi+1 with ∪j/∈{i,i+1}Xj is non-empty (multiple discontiguous source-side positions aligned
with the same target position) and/or, the converse, the setXi ∪ Xi+1 does not constitute a
consecutive range of integers. But if this holds for all consecutive pairs of segmentsin B, then
by the definition of segmentation in every consecutive pair of segments at least one segment
is a partial set. In that case,B constitutes the only possible segmentation ofπ of lengthk + 1
because at least every other segment inB is a partial set. Because segmentation works with
consecutive segments and all consecutive pairs inB cannot form a sub-permutation, there is
no way to segmentπ into k segments. This contradicts our assumption thatπ has a minimal
segmentation of lengthk > 1. This concludes the casem = 1 in the induction.

For segmentationsB with m = (|B| − k) > 1 we will exploit the standard induction as-
sumption: for every segmentationBx of π which fulfills 1 ≤ |Bx| − k < m there exists a seg-
mentation ofπ calledB

′
such thatB

′
⊂ Bx and|B

′
| = k. We want to prove that the same holds

for every segmentation|B| = m + k. By contradiction, let us assume there exists|B| = m + k
for which there does not exist aB

′
⊂ B and|B

′
| = k. This can be true iff we cannot reduceB

in any way to a segmentationB1 ⊂ B such thatk ≤ |B1| < (m + k). For if we could find such
a segmentationB1, the induction assumption will apply; in other words,B can be reduced into
B1 first, and by the induction assumption there existsB

′
⊂ B1 ⊂ B and|B

′
| = k. But if there

exists no segmentationB1 ⊂ B such thatk ≤ |B1| < (m + k) then noneof the sequencesx
of adjacent segments inB of length2 ≤ |x| ≤ (m + 1) can be reduced into a sub-permutation.
Moreover, none of the adjacent segments of length|x| > (m + 1) can be reduced into a sub-
permutation because that would contradict the main assumption and the minimality ofk for π.
But that implies thatB segmentsπ in such a way that none of the sequences of segments in
B of length2 ≤ |x| < |π| can be reduced into a sub-permutation. The latter implies that every
sequence of length2 ≤ |x| < |π| must consist of at least one partial set that has its complement
outside the sequence inπ. But that implies thatB and thus alsoπ is a sequence of partial sets
each having its complement at a distance|π|, which can be true iffπ cannot be segmented at
all into a segmentation of length larger than one. This contradicts the existence of a minimal
segmentation ofπ of lengthk > 1. �

These two lemma’s together prove that every sub-permutation πx of a sub-permutationπ
can be a segment in a segmentationB of π which is a superset of a minimal segmentation ofπ.

Next we take a little detour to define node-linked pairs of trees, called Synchronized Tree
Pairs (STPs), and a constrained node linking relation akin to that known from ITG (Wu 1997).
After defining STPs we return to our main task of representingthe structure of permutation sets
as hierarchical structures of their sub-permutations and the reordering they imply.

6.1 Synchronized Tree Pairs with Layered Linking

Because the labels in the trees assumed here are irrelvant tothe discussion, we may assume that
internal nodes in these trees are unlabeled (or labeled witha single symbol calledbracket) and
that leaf nodes are labeled with integers representing positions in sentence pairs (the terminals).
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Definition 13 (Synchronized Tree Pairs (STPs))
A Synchronized Tree Pair (STP)〈τs, τt,∼〉 consists of a pair of treesτs andτt and a node-linking
relation∼ which at least links the roots of both trees. Apart from the roots, any other node inτs

could possibly (but not necessarily) be linked together with nodes inτt.

Wu (Wu 1997) defines BITGs that derive binary STPs{〈τs, τt〉} each fulfilling strict criteria
on the node-linking relation. Graphically speaking, linksdo not cross “vertically" but may cross
“horizonally". We state this as theLayered linking property, also defined by Wu (Wu 2010) as
thecrossing constraint.

Definition 14 (Layered linking)
The linking relation∼ between the nodes ofτs andτt is acorrespondence(left-total and right-
total13), and for every pair of linked nodes〈µs, µt〉, where (µs in τs andµt in τt), the children of
µs are linked only with the children ofµt and vice versa.

Figure 7: In the left-hand STP the roots are involved in vertically crossing links leading tot non-
Layered links, while in the right-hand STP all nodes are involved in layered linking.

Figure 7 shows a schematic example of one layered linking andanother non-layered linking
(in this abstract figure the links are visualized as edges).

Like many current research that starts out from ITG, e.g., (Wu 1997; Chiang 2007; Zollmann
and Venugopal 2006), we also limit the node linking relations to those that abide byLayered
linking. We do not impose any further constraints. Particularly we do not impose extra constraints
on the linking relations of sister nodes.

For permutation sets, the attractive aspects of STP’s with layered node linking is that they can
be represented as a single source tree decorated at every internal nodeµs with a local transducer
that explains how the child-order of the linked target nodeµt is obtained as an order permutation
of the child-order ofµs, plus or minus a handfull extra operations for dealing with many-to-one
and one-to-many alignments.

6.2 Representing permutation sets with STPs: Requirements

The algorithms for structuring permutations and permutation sets into layered-linking STPs,
presented respectively in Subsections 6.3 and 6.4, take as input a permutation (respectively
permutation set)π and output a finite set of STPs. These algorithms abide by three requirements

13 In simple words, every node inτs is linked with some node inτt and vice versa.
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stated in terms of the correspondence between sub-permutations and linked nodes in the STPs
built by these algorithms. On the one hand, these requirements provide the intuitive justification
for the algorithms, and on the other, they constitute explicit requirements bridging between the
world of sub-permutations and the world of linked nodes in STPs.

µ

c1

πc1

. . . cm

πcm

•

1 x
•

2 3 4

•

x
•

1 2 3

4

•

•

1 2

•

3 4

•

•

•

1 2

3

4

•

1 •

2 •

3 4

•

1 •

•

2 3

4

•

•

1 •

2 3

4

Figure 8: Upper-left corner: a schematic view of decomposing sub-permutations. All other trees
show possible hierarchical structuring of permutation〈1, 2, 3, 4〉 into sub-permutations. Nodes
labeled withx will not be allowed by our algorithm. These trees constituteone side of the STPs
we build for permutations.

I1 (Soundness):Every linked node dominates a subtree with a fringe that corresponds to a
sub-permutation. We will say that the linked node dominatesthat sub-permutation and
that the latter is dominated by the node.

I2 (Completeness):For every sub-permutationπx of input permutationπ there will be a
linked node that dominatesπx at least in one of the STPs that the algorithm generates
for π.

I3 (Maximal hierarchy): Let linked nodeµ have a sequence ofm > 1 child nodes
c1, . . . cm, and denote withπc1

, . . . πcm
the sequence of fringes (sub-permutations or

partial sets) dominated byc1, . . . cm (See Figure 8 (upper-left corner) for a schematic
sketch):

r The sub-permutationπµ dominated by nodeµ is equivalent to
concat(πc1

, . . . πcm
).

r m is a minimal segmentation ofπµ.

Requirements (I1) and (I2) together guarantee that there isa one-to-one mapping between
the linked nodes in the STPs built by the algorithm and the sub-permutations of the input
permutation set. Requirement (I3) guarantees that the treestructure is meaningful and maximal
as a hierarchical organization of sub-permutations. The tree structure is compact in that it
organizes sub-permutations that concatenate together into larger sub-permutations resulting from
the concatenation, and it is maximal because whenm > 1 is the minimal segmentation of a sub-
permutation into sub-permutations, the tree structure will be as deep as possible and contain as
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ALGORITHM 1 (CONSTRUCTINGPETS FOR PERMUTATIONS: PeTs(π))
Input: A (sub-)permutationπ = k1, . . . kn over[(l + 1)..(l + n)] for somel ≥ 0.
Output: The set of Permutation TreesPeTs(π).

n = 1: SetPeTs(π) contains a single PeT consisting of a root node directly dominating a
leaf node labeled with the only position inπ, and the operator on the root node is the
identity operator. ReturnPeTs(π)

n > 1: Segment:Let the setB be aminimalset of indices between positions inπ
such thatB segmentsπ into m > 1 sub-permutationsπ1, . . . πm.

Build:
If there exist such minimal segmentations withm > 1 then
For every minimal set of indicesB:
1 For each1 ≤ i ≤ m, we build the setPeTs(πi) which is built

recursively for sub-permutationπi.
2 For every combination of PeTst1, . . . tm ∈ PeTs(π1) × . . . ×

PeTs(πm), we build and add toPeTs(π) a PeT consisting of a
root-node dominatingm = (|B| − 1) nodes; each of the resulting
child nodes1 ≤ i ≤ m dominates the PeTti for πi.

3 The root node of the PeT built forB is labeled with a permutation
operatorO = 〈o1, . . . , om〉 over [1..m] such that for every two
positions1 ≤ i 6= j ≤ m holds:πoi

< πoj
iff oi < oj .

4 ReturnPeTs(π).

else #there exist no such segmentations B with m > 1, i.e. m = 1

1 There is no way to segmentπ and we build a root node of a PeT
that dominatesn nodes, with theith node (1 ≤ i ≤ n) dominating
the only member ofPeTs(ki).

2 The PeT root node is labeled with the permutation operatorO =
〈o1, . . . , on〉 over [1..n] such that for every two positions1 ≤ i 6=
j ≤ m holds:πoi

< πoj
iff oi < oj .

3 ReturnPeTs(π).

Figure 9: AlgorithmPeTs(π) outputs the set of PeTs for input permutationπ.

many linked nodes as possible (given all other requirementson what the structure is supposed to
represent). Figure 8 shows example trees for structuring the simple permutation〈1, 2, 3, 4〉. The
nodes labeled withx do not abide by the minimal segmentation requirement, whereas nodes that
are unlabeled do so.

6.3 Permutation Trees: Hierarchies over Sub-permutationsof Permutations

We start the effort for representing permutation sets hierarchically by first considering the
simpler case of permutations.

A Permutation Tree for a given permutationπ over[1..n] is a layered-linking STP consisting
of a tree representation over sub-permutations ofπ and node-links represented as localpermuta-
tion operatorsdecorating every node; a permutation operator on nodeµ stipulates how to permute
the ordered sequence of the children ofµ to obtain the sequence of children of the node thatµ is
linked with. Permutation Trees (PeTs) are inspired by and extend the kind of trees generated by

20



K. Sima’an and G. Maillette de Buy Wenniger Hierarchical Representations for Word Alignments

〈1,2〉
•

〈2,1〉
•

•

2

•

1

〈1,2〉
•

•

3

•

4

〈1,2〉
•

〈1,2〉
•

〈2,1〉
•

•

2

•

1

•

3

•

4

〈3,1,4,2〉
•

〈1,2〉
•

•

3

•

4

〈3,1,4,2〉
•

•

8

•

10

•

7

•

9

〈1,2〉
•

•

1

•

2

〈2,1〉
•

•

6

•

5

Figure 10: Permutation trees: left two for the same permutation, right the single PeT for the
permutation. Note that the identity operators are not marked on pre-terminal nodes but left
implicit.

ITGs because they allow arbitrary layered linking relations as opposed to the inverted/monotone
binary choice that ITG strictly postulates. For every permutation we will define a unique set of
PeTs that fulfills the requirements (I1-I3) from Section 6.2.

Figure 9 shows Algorithm 1 for building the set of PeTs for an input permutation. Whenπ
is non-trivial (i.e.,n > 1), the algorithm builds the PeTs recursively each time by segmentingπ
into a minimal sequence of sub-permutations and then building sets of PeTs recursively for these
sub-permutations. The PeTs forπ are obtained by combining PeTs from these sets and putting
them under a single node dominating the segmentation.

Figure 10 exhibits the two PeTs for permutation〈1, 2, 3, 4〉, and the single PeT for permuta-
tion 〈3, 4, 8, 10, 7, 9, 1, 2, 6, 5〉. The latter case is interesting because the minimal segmentation of
this permutation consists of four sub-permutations. Note the recursive structure which contains
binary branching as well n-ary branching nodes, depending on the minimal segmentations of the
sub-permutations. We will return tobinarizable permutationsin the sequel.

Theorem 1 (Soundness, completeness and maximal hierarchy of PeTs(π))
The set of PeTs output by AlgorithmPeTs(π) fulfills the requirements (I1, Soundness), (I2,

Completeness) and (I3, Maximal hierarchy) stated in detailin Section 6.2.

Proof

Soundness.By construction: every node created byPeTs(π) is built for a sub-permutation. This
is easy to check for the casen = 1 as well as for theBuild subsection ofn > 1.

Completeness.The proof hinges on Lemma 3. We will proceed by induction on the length ofπ.
The casesn = 1 andn = 2 are trivial and are easy to prove as base for induction. We concentrate
on the induction step to lengthn > 2, where we will use the induction assumption for all (sub-
)permutations shorter thann. The proof of the induction step is by contradiction. Suppose now
there is a sub-permutationπx of π that is not dominated by any node in a PeT built byPeTs(π).
Necessarilyπx 6= π andn > 1 because the algorithm must build a root node for every input
permutationπ, whether withinn = 1 or whithinBuild for n > 1. There exists a segmentationB
of π in whichπx participates (by Lemma 3, part Seg1). Becauseπx is assumed not to have a node
in any PeT,B cannot be minimal (because if it were minimal then AlgorithmPeTs(π) would
build a node for it atBuild). However, ifB itself is not minimal, then there is a hierarchical
structuring (tree) ofB (by concetenation of sub-permutations into new sub-permutations) leading
to a minimal segmentationBmin of π (by Lemma 3, part Seg2). Consequently,πx will be
covered within one of the sub-permutations calledπ(x) of Bmin. By the induction assumption
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and becauseπ(x) must be strictly shorter thanπ, we find thatπx will have a node built for it
within the PeTs forπ(x). BecauseBmin is a minimal segmentation ofπ, Algorithm PeTs(π)
will build a root node dominating a child for every sub-permutation in the sequence defined by
Bmin, i.e. also forπ(x). Particularly, a copy of the node built forπ(x) will constitute the root for
every PeT inPeTs(π(x)) (Build ). Contradiction because now there is a node corresponding for
πx in a PeT built forπ.

Maximal hierarchy.This follows from the explicit points in the algorithm (particularly Segment
andBuild ), Lemma 3 and the above proofs.
�

This theorem states the attractive property of the setPeTs(π) that all and only the sub-
permutations ofπ are represented as nodes labeled with permutation operators in the PeTs.
Another attractive property is that the minimal branching nodes define maximal trees in number
of nodes; becaused nodes dominate sub-permutations, and the latter are translation equivalence
relations, we find that PeTs are maximal hierarchies over sub-permutations and can be viewed as
hierarchical, extensive explanations of translation equivalence.

Binary Inversion-Transduction Trees (BITTs).Consider for example the permutation〈2, 1, 3, 4〉:
both PeTs for this permutation are fully binary branching (see Figure 10). A well-known example
of a permutation that does not have binary branching PeTs is〈2, 4, 1, 3〉, due to (Wu 1997).
The latter permutation is called anon-binarizable permutation. Permutations that have fully
binary branching PeTs are calledbinarizablepermutations (Huang et al. 2009). Binarizable
permutations can be hierarchically structured into PeTs bynormal-form ITGs (NF-ITGs), hence
we will refer to fully binary branching PeTs with the nameBinary Inversion Transduction Trees.
Interestingly, and due to (Wu 1997), any permutation of length exactly three is binarizable. From
this follows that none of the PeTs built by algorithmPeTs() will contain 3-branching nodes.
Note that is not necessarily true for the general case of permutation sets (next section).

6.4 Hierarchical Alignment Trees (HATs) for permutation sets

Figure 11 shows Algorithm 2 which builds the setHATs(π) for any permutation setπ. It
generalizes Algorithm 1 and the differences are local. We will refer to the STPs built by
Algorithm 2 with the nameHierarchical Alignment Trees(HATs), in order to distinguish them
from PeTs and BITTs, which are simpler versions of HATs.

Observe in Algorithm 2 an important difference with Algorithm 1 for the case(n = 1):
Algorithm 2 discriminates between partial sets (which are represented as leaf nodes) and sub-
permutations, which are built as pre-terminal nodes dominating a leaf node. The importance of
making this distinction can be understood from the fact thatall members of a partial set must
remain together (under the same mother node) because none ofthem separately corresponds to a
target-side node. This is in contrast with sub-permutations.

Another difference is that Algorithm 2 defines the node operators as permutation sets. For
step 3 under Build in Figure 11, the permutation set is initially built with “place holders"
(stepa) that are normalized (stepb) to get rid of gaps. For example, in the permutation set
〈3, {2, 6}, 1, 4, 5〉 (see Figure 14) the algorithm will reduce sub-permutation〈4, 5〉 into a single
position (stepa), leading to〈3, {2, 6}, 1, 4〉 which does not constitute a permutation set (not a
contiguous range of integers). In (stepb), these “place holders" are reduced to a consecutive
range of integers: in this example for6 we find km = 4 6= (6 − 1) and hence6 is exchanged
with 5, leading to〈3, {2, 5}, 1, 4〉.
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ALGORITHM 2 (CONSTRUCTINGHATS FOR PERMUTATION SETS: HATs(π))
Input: A sub-permutation / permutation setπ = 〈k1, . . . kn〉, where eachki is an integer set.

Output: The set of HATsHATs(π).

n = 1: if (π consists of a single partial set)
then HAT consists of a leaf node labeledπ.
else π must contain a sub-permutation

HAT = a node dominating a leaf labeled withπ,
and the operator on the node is the identity operator.

Return HATs(π) = {HAT }.

n > 1: Segment:Let B = {j0 = 0, j1, . . . , jm = n} be aminimalset of indices
between positions inπ such thatB segmentsπ into m > 1 segments; for all
0 ≤ i < m, πi+1 stands for segment〈kji

. . . kji+1
〉.

Build:
If there exist such minimal segmentations withm > 1 then
For every minimal set of indicesB:
1 For each0 ≤ i < m, we build the setHATs(πi+1) which is built recursively

for 〈πi+1〉 = 〈k
ji+1

ji
〉.

2 For every combination of HATs t1, . . . tm ∈ HATs(π1) × . . . ×
HATs(πm), we build and add toHATs(π) a HAT consisting of a
root-node dominatingm = (|B| − 1) nodes; each of the resulting child
nodes0 ≤ i < m dominates the HATti for 〈πi+1〉 = 〈kji

. . . kji+1
〉.

3 The root node of the HAT built forB is labeled with apermutation
setO = 〈o1, . . . , om〉 built as follows:

a For0 ≤ i < m # make place holders

if πi+1 is a sub-permutation thenoi+1 = min∪
ji+1

x=ji
kx

elseoi+1 = πi+1 # for partial sets

b For1 ≤ i ≤ m # reducing the integer gaps

let temp = ∅
For allk ∈ oi in increasing order

let kt := max(∪m
j=1oj ∩ [1..(k − 1)])

temp:= temp ∪ {kt + 1}
oi := temp

4 ReturnHATs(π).

else#there exist no such segmentations B with m > 1, i.e. m = 1

1 There is no way to segmentπ and we build a root node of a HAT
that dominatesn HATs, with theith HAT being a member of the
singleton setHATs(ki).

2 The HAT root node is labeled with a permutation setO =
〈o1, . . . , on〉 equivalent toπ.

3 ReturnHATs(π).

Figure 11: AlgorithmHATs(π) outputs the set of HATs for input permutation setπ.
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Figure 12: The French constructionne .. pas aligned withdon’t. The word-aligned sen-
tence pair (lower left corner) is shown with the French side decorated with the permutation set
representing English order relative to French order; we useextra notation21 and22 to represent
the alignments of both wordsne andpas with the second position at the English side. The
HAT exhibited for this permutation set is shown in the upper left corner. The notation〈1, 2, 1〉
on the node dominating this construction stands for (curly brackets ommitted) a permutation set
operator linking the first and third children of this node (dominatingne andpas) with the first
child under the corresponding node on the English side. The node-aligned trees that the HAT
packs together are depicted at the right side of the figure).

Figure 12 contains the runningne ⋆ pas example represented as HAT and unpacked into
an STP. Nodes that are represented as• dominate sub-permutation of the permutation set, and
they are linked nodes on both sides of the STP. Particularly note how a node dominatesfume
(inside thene fume pas) signifying that it constitutes a sub-permutation represented by• and
linked with a node dominatingsmoke. This does not hold for the wordsne, pas anddon’t.
They are grouped together only includingfume andsmoke. Note also that we could extract
pairs of linked subtrees from this STP only at the nodes marked with• and thereby extract all sub-
permutations, i.e., phrase pairs. If we would allow the subtrees to end at frontier nodes marked•,
we would obtain also Chiang-like constructions representing synchronous productions like X→
〈 X

ne X1 pas

, X

don’t X1

〉 whereX is a nonterminal variable of the synchronous grammar and the

superscriptX1 stands for synchronized nonterminal leaf nodes (linked• nodes in our STPs).
Like Algorithm 1 also Algorithm 2 fulfills the soundness, completeness and maximal

hierarchy requirements, i.e., generalizing Theorem 1 frompermutations to permutation sets
(and the set of phrase pairs to the Chiang’s set of synchronous productions). The proofs of
this generalization are rather similar (but more detailed)and hinge on Lemma 3 (see Proof of
Theorem 1). Importantly, Lemma 3 is stated and proven forpermutation sets in general, which
implies that it applies directly within the proof of the generalization of Theorem 1 to permutation
sets (i.e., Algorithm 2). Given the central role of Lemma 3 within the proof, we skip the explicit
statement of a corresponding theorem and proof.

Remarks about efficient implementations.An efficient version of Algorithm 2 will avoid re-
computation of the same sets of HATs by using a chart or parse-table. A CYK (Younger 1967)
bottom-up implementation is relatively easy to devise on the basis of the recursive, top-dwon
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Algorithm 2. Given such an efficient chart-based approach, the complexity of Algorithm 2
depends mainly on the complexity of (1) identifying all sub-permutations of a given permutation
set and (2) on computing the minimal segmentations for everysub-permutation. Identifying
all sub-permutations and partial sets takesO(n2) time as it demands checking for every span
〈i, j〉 whether it is a sub-permutation (after anO(n) scan of the input to note down for every
integer set whether it is a partial set or not). Having identified all sub-permutations and partial
sets, the rest of the algorithm is very similar to standard CYK when a grammar is given, albeit
here the grammar is implicit in finding the minimal segmentations of every sub-permutation.
To identify the minimal segmentations of a sub-permutationof lengthm (there areO(n2) such
sub-permutations), Dijkstra’s shortest-path algorithm (Dijkstra 1959) can be applied to the graph
representing all eligible segmentations of the sub-permutation. The graph consists ofm vertices
for a sub-permutation of lengthm and Dijskra’s algorithm takesO(m2) time. Hence, the worst-
case complexity of Algorithm 2 isO(n4).

There is, however, one remaining wrinkle pertaining to the treatment of NULL-aligned
words. The phrase pair semantics of translation equivalence dictates that every unaligned word
must group with adjacent phrase pairs on either side. When the number of such unaligned
words is large, this could lead to a very large number of permutation sets representing the
same alignment. Crucially, the structure sharing14 between the different permutation sets implies
that this does not disturb the polynomial-time complexity of the algorithm. Nevertheless, the
computation of the full HAT forest can be space-consuming insome extreme cases and for the
experiments in Section 7 we will set a cut-off constant on thecomputation, which rules out
only a negligblenumber of alignments in the corpus. With these hints regarding an efficient
implementation, we will leave the full formalization of theefficient version of the algorithms for
future work dedicated to efficiency issues.

6.5 The role of node operators

The semantics of a node operator that is a permutation setπ over the child sequence of the
current node is a generalization of the semantics of the ITG operators[] and〈〉. The semantics
of these operators is the same as the definition of permutation sets for standard alignments but
here it applies to the sequence of child nodes of the current node. Algorithmically speaking the
semantics of the permutation setπ over the children of the current nodeµ linked with a target
side nodeµt is obtained as follows. Scanningπ left to right: for the set of integersX in theith

position inπ generate child positions underµt corresponding to the integers inX and link each
of these target positions with theith child of µ.

Throughout this paper we fixed the semantics of word alignments to be equal to the set
of Chiang-admissable sub-alignments (with the phrase pairs being the fully lexicalized bilin-
gually contiguous subset). On the one hand, the HAT representation represents this semantics
compactly. On the other, the choice for this semantics circumvents difficult questions about how
the semantics ofmulti-word, minimal phrase pairs. A minimal phrase pair is one that cannot
be segmented any further because under theconjunctive interpretationof word alignments, the
contiguous sequences on both sides belong together. Figure13 exhibits three abstract word align-
ments that constitute minimal phrase pairs. In the HAT representation each of the three will be
represented as a single linked node (pre-terminal level) dominating three terminal nodes. While
the tree structure itself is the same, the node operators (permutation sets) on each are different.

14 In analogy to the monolingual case of parsing finite-state automata (lattices or word-graphs) with CFGs (van Noord
1995; Sima’an 1999), the bilingual case here also remains polynomial-time; the time complexity multiplies with a
constant factor linear in the number of edges/transitions in the automaton.
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The node operators specify the internal alignment structure for, otherwise, hierarchically very
difficult to represent word alignments. This way, the internal alignments of phrase pair units
remain preserved. As mentioned in Section 4, this difficultyis a theoretical matter regarding the
semantics of word alignments.

<{2}, {1,3}, {2}>

<{2}, {1,3}, {2}>

<{1}, {1,2,3}, {3}>

<{1,2}, {2}, {2, 3}> <{1,2,3}, {1,2,3},{1,2,3}>

<{1,2,3}, {1,2,3},{1,2,3}>

Figure 13: Three word alignments that constitute minimal phrase pairs and their HATs

Figure 14: Dual HAT representations (for source and target sides) for a complex word alignment
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Figure 14 exhibits an example word alignment (coming straight from our automatically
aligned data) and a hierarchical representation consisting of a HAT on one side and its dual
HAT on the other side, with links between the pairs of nodes (represented by a choice
of circle filling). This word alignment shows an interestingcase of a discontinuous align-
ment of owe with zijn and verschuldigd together with another crossing alignment.
The HAT representationreveals a pair of linked nodes dominating the synchronous pair
〈(X1 owe X2 X3), (X2 zijn X1 X3 verschuldigd)〉, whereX1, X2 andX3 stands for three
aligned pairs of nodes in the HAT. The latter bilingual construction is a Chiang-admissable sub-
alignment. The pair of linked nodes is decorated with a permutation set〈3, {2, 5}, 1, 4〉 on the
English side and〈3, 2, 1, 4, 2〉 on the Dutch side. Observe how these permutation sets actually
link the second (zijn) and fifth (verschuldigd) children of the Dutch node with the second
child (owe) of the English linked node, thereby maintaining the lexical word aligment for such
cases within the HAT structure.

6.6 What are empirical word alignments?

Permutations Sets

Permutations

Binarizable Permutations

Empirical word alignments

A

C

B

Figure 15: A sketch of a possible characterization of empirical word alignments

Figure 15 shows a sketch of a likely situation: empirical word alignments are not a proper
subset of binarizable permutations, nor are they a proper subset of permutations. However, by
definition, word alignments are a subset of permutation sets. The figure shows that empirical
word alignments overlap with binarizable permutations (area A), with permutations (area A+B)
and with permutation sets (area A+B+C). What are the relative sizes of areas A, B and C? Clearly
this is an empirical question that depends on the nature of the parallel corpus (language pair and
language use) and on the kind of word alignments found in it. In the next section we would like
to shed some light on this question. There are various ways for quantifying this question and we
would like to cover a few of them using the HAT algorithm.

7. Empirical explorations of the hierarchical characteristics of word alignments

In the preceding sections we showed that every word alignment can be represented by aseman-
tically equivalentset of HATs, i.e., given a certain semantic interpretation of word alignments
as sets of translation equivalents. With translation equivalence (the semantics) at the center of
attention, we are now interested in the statistics of various subsets of HATs that fit well with
manual or automatically induced word alignments in parallel corpora. Broadly speaking, the
question addressed here is
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What percentage of word alignments and translation equivalents can be represented
by specifying relevant formal constraints on the HATs (e.g., upperbound on
branching factor, upperbound on difference from a permutation)?

This empirical question pertains to statistics over word alignmentsin the context of the present
choice of semantics (defining the set of translation equivalents). The latter observation is im-
portant because we think that word alignments do not obtain their semantic interpretation (in
terms of translation equivalents) from an external formal grammar. Rather, only after fixing
the semantics of word alignments, one can measure the adequacy of a certain (synchronous)
grammar/formalism for representing the semantic interpretation of the word alignments.15

Next we report various measures over word alignments in corpora. Because HATs are
minimally branching STPs for the word alignments, a primarydifferentiating parameter for the
performance measures is themaximal branching factorof the nodes in the HATs built for a given
word alignment:

βmax: themaximal branching factorof the linked nodes (above the pre-terminal level) in
the HATs. The branching factor is measured on both sides and all linked nodes in the
HATs for a word alignment must fall within the range[1..βmax] to be counted in.16

For a givenβmax value we report:

Alignment coverage:This is the percentage of word alignments for which the branching
factor of all nodes in all HATs fall within the settingsβmax. Alignment coverage is not
necessarily equivalent toalignment reachability(Søgaard and Wu 2009; Søgaard
2010) or the complementary measure ofparsing failure rate (PFR)(Zens and Ney
2003; Søgaard and Wu 2009), which are both reported under subsets of ITG.
Alignment coverage is equivalent to alignment reachability under a given grammar
formalism iff both are measured in under the same semantics and such that the setting
of βmax correspond exactly to the formalism in question.17 In this sense, alignment
coverage forβmax = 2 is an exact (as opposed to upper/lowerbounds) on alignment
reachability for NF-ITG.18

Translation equivalents coverage (TEC):This is thepercentage of phrase-pairsthat are
represented by a linked node in the HATs (if any) that have maximal branching factor
βmax. The TEC measure is strongly related to Translation Units Error Rate (TUER)
(Søgaard and Kuhn 2009; Søgaard and Wu 2009). In fact, if we use the same definition
of translation equivalents, the same counting algorithm and the same representation for
both (NF-ITG), we find that TUER = (1-TEC).

Binarizability score: The ratio of the number of linked nodes in a HAT (subject toβmax)
built for a given word alignment relative to the number of such nodes in a hypothetical,

15 Formally, we think that this can be achieved as a measure of the intersection of the set of HATs for aword alignment
with the set of synchronous trees generated by a synchronousgrammar for thesentence pair.

16 Null aligned words are not counted in the branching factor, i.e, even unaligned word dominated directly by a node
contributes zero to the branching factor of that node. The rationale behind this is that we do not want to discriminate
between permutation sets differing only by NULL aligned words. This means that the reported results are rather
conservative.

17 Unlike for ITGs, the caseβmax = 3 is not necessarily equivalent toβmax = 2 because the permutations sets (as
opposed to permutations) over three positions can be non-binarizable, see e.g., Figure 13.

18 Because our algorithm builds HATs over minimal phrase pairs, the caseβmax = 2 is equivalent to the NF-ITG over
these minimal phrase pairs, i.e., given the defined semantics of word alignments.
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fully binary branching HAT (using the length of the shortestamong the source and
target sentences minus one). The binarizability score, as opposed to TEC, provides a
relatively objective measure of how hard it is to represent the word alignments in the
corpus by deeply nested HATs. The lower the binarizability score, the less linked
nodes exist in the HATs admitted (givenβmax), if any at all. HATs that contain flat
structures indicate complex word alignments consisting ofunaligned words and
many-to-many alignments that cannot be decomposed into smaller TE units. This can
be seen to indicate idiomatic translation, as opposed to compositional translation
(given the semantics defined here).

Because for some alignments our algorithm could take a long time to calculate the HAT forest we
had to abort the algorithm in a small percentage of cases (≤ 10−5), mostly very long, complex
alignments with many unaligned words. For all reported experiments we set a cut-off (set at 100k)
on the number of inferences per linked node in the CYK chart implementing the HAT algorithm
in Figure 11. Once the algorithm exceeds 100k inferences fora node we skip the alignment. In
what follows the number of skipped sentence pairs is reported for each experiment separately.

After presenting the empirical results, we will discuss howthese results relate to existing
work, primarily concentrated on the coverage of (NF-)ITG.

7.1 Manual word alignments

In this part, we use the manually aligned part of the Hansardscorpus (English-French), created
and first used by Och and Ney (2000, 2003). This tiny corpus consists of 447 manually aligned
sentence pairs, were alignment links are labeled withSureor Possible. Some basic statistics
of this corpus is shown in Table 1. We report the results for the Sure+Possible links, i.e., all
alignment links.

Language Pair English-French
Total number of sentence pairs 447
#skipped sentence pairs 0
#sentence pairs containing nulls 231
Mean source length 15.705±6.994
Mean target length 17.362±7.554
Mean and STD of ratio source to target lengths0.928±0.221
Mean #links per word 2.52 ± 1.73

Table 1: Statistics of Hansards manually aligned corpus. The “mean #links per word" is calcu-
lated using the mean # alignment links

minx∈{s,t} length of x over the corpus word alignments.

Tables 2a, 2b and 2c report respectively the break-down of coverage, TEC and binarizability
score toβmax. All scores increase rapidly in the rangeβmax ∈ [2..10], but more gradually for
βmax > 10. The alignment coverage and the TEC results start low in the seventies forβmax = 2
(NF-ITG), but increase rapidly to the low nineties byβmax = 6. The increase continues at a
decaying pace for higher values ofβmax. The binarizability scores, Table 2c, are a different
matter. The results make clear that the HATs built for the word alignments contain only at most
62% of the number of linked nodes in ahypotheticalfully binary HAT (binarizable permutation).
This suggests that these word alignments are represented with HATs that are somewhat flat
relative to the hypothetical fully binary HATs. This observation completes the picture drawn by
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English-French
βmax = 2 71.46%
βmax = 3 77.08%
βmax = 4 82.47%
βmax = 5 87.19%
βmax = 6 90.11%
βmax = 7 92.58%
βmax = 8 94.38%
βmax = 9 96.40%
βmax = 10 97.75%
βmax = 15 99.33%
βmax = 19 100.00%

(a) Alignment coverage.

βmax English-French
2 73.54%
3 80.66%
4 87.24%
5 91.74%
6 93.81%
7 95.12%
8 96.96%
9 98.30%
10 98.89%
15 99.81%
19 100.00%

(b) Translation Equivalents Coverage.

βmax English-French
2 42.34%
3 46.97%
4 51.53%
5 55.00%
6 56.82%
7 58.19%
8 59.77%
9 61.02%
10 61.77%
15 62.66%
19 62.91%

(c) Binarizability scores.

Table 2: Scores for Sure+Possible manual alignments in the Hansards corpus as a function of
βmax.

Kind of HATs (Permutation Sets) English-French
BITTs (Binarizable permutations) 71.46%
PETs (All permutations) 72.14%
HATs (Permutation Sets) 100.00%

Table 3: The ratio of the different subsets of HATs in the manual Sure+Possible alignments in
the Hansards corpus: BITTs, PETs and HATs

the coverage and TEC results forβmax > 2: the word alignments are clearly far more complex
than the entry-level cases of binarizable permutations.

At least as interesting, Table 3 reports the coverage of wordalignments to the kind of
permutation set (HATs) involved: binarizable permutations (BITTs), permutations (PETs) and
permutation sets (HATs). Remarkably, merely moving away from binarizable to all permutations
does not increase the coverage much, whereas the general case of permutation sets provides full
coverage. This result together with the break-down of the statistics toβmax values in the other
tables suggests actually that the cases of non-binarizablepermutations tend to cooccur with other
complex forms of alignments, including discontinuous and many-to-many cases. This does not
mean that we do not need the full descriptive power of permutations, but that on their own they
are almost as insufficient as their binarizable subsetfor capturing word alignments found in
actual translation data.

English-French
D(a, s, t) = 0 (pure permutations) 72.04%
D(a, s, t) = 1 77.85%
D(a, s, t) = 4 85.46%
D(a, s, t) = 12 90.16%
D(a, s, t) = 30 95.53%
D(a, s, t) = 50 98.66%
D(a, s, t) = 83 100.00%

Table 4: Coverage of the Hansard manually aligned corpus as afunction ofD(a, s, t).
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To obtain a better picture, we refine Table 3 by orderingpermutation setsinto increasing
subsets:we measure how far a word alignment is from being a permutation. Formally, a
permutation set (word alignment) differs from a permutation in that it is a non-bijective relation,
i.e., it may contain many more links than the bijective case (exhaustive one-to-one) and/or the
source and target sides may contain a different number of positions. Given our semantics, it
makes sense to consider minimal phrase pairs (rather than words) as standing at individual
positions. Consequently, we define for every word alignment〈s, t,a〉 its “distance"D(a, s, t)
from being a permutation simply as the absolute value of the difference between the number
of individual alignment links it contains (number of links(a)) and theminimumnumber of
positions (length()) between the source and target sides, where both numbers aremeasured over
the minimal phrase pairs (not the individual words):

D(a, s, t) = |number of links(a) − min
x∈s,t

length(x)|

This measure is a first approximation of the idea, but it provides a meaningful approximate break-
down of the space between word alignments (permutation sets) and permutations. Table 4 shows
the breakdown of the coverage of word alignments to any valueof D(a, s, t) in between the
two extreme cases of pure permutations (D(a, s, t) = 0) and arbitrary permutation sets that are
equivalent to the word alignments themselves. Clearly, approximately one in five of these manual
alignments falls somewhat far off from pure permutations (D(a, s, t) > 1), whereas almost one
in four is beyond binarizable permutations. This highlights the need for future refinements of
permutation sets into more tight subsets that characterizemanual word alignments.

7.2 Automatic word alignments

We report empirical results on English-Dutch, English-French and English-German corpora
obtained from the respective corpora in the Europarl collection (Koehn 2005) by setting an
upperbound of 40 words on the sentence length on the source and target sides. Table 5 lists
the sizes of the corpora. The corpora we use are about half thesize of the original corpora but
we think that they are large enough to contain word alignments Representative of the subsuming,
full-size corpora.

Language Pairs English-Dutch English-French English-German
Total number of sentence pairs 945167 949408 995909
#skipped sentence pairs 745 257 453
#sentence pairs containing nulls 801948 783367 839335
Mean source length 21.295±8.916 20.556±8.585 21.559±9.138
Mean target length 21.212±9.011 22.552±9.383 20.459±8.872
Mean and STD of ratio of source to
target lengths

1.029±0.219 0.934±0.201 1.081±0.244

Mean & STD #links per word 1.12±0.14 1.15±0.15 1.14±0.16

Table 5: The corpora used in our analysis (sentence length≤ 40 words). The “mean
#links per word" is calculated using as the mean over the corpus alignments for the ratio

# alignment links
minx∈{s,t} length of x .
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Model Number of training iterations
IBM model 1 4
HMM model 3
IBM model 3 3
IBM model 4 4

Table 6: GIZA++ training policy

English-Dutch English-French English-German
βmax = 2 45.52% 52.84% 45.60%
βmax = 3 55.77% 67.27% 56.80%
βmax = 4 73.95% 82.60% 74.75%
βmax = 5 83.51% 90.01% 84.63%
βmax = 6 89.92% 94.40% 90.76%
βmax = 7 93.56% 96.72% 94.36%
βmax = 8 95.91% 98.06% 96.55%
βmax = 9 97.37% 98.85% 97.88%
βmax = 10 98.33% 99.31% 98.71%
βmax = 15 99.86% 99.95% 99.90%
βmax = 21 100.00% 100.00% 100.00%

Table 7: Coverage of the corpus as a function ofβmax for symmetrized (grow-diag-final) word
alignments in EuroParl parallel corpora (sentence length≤ 40) for three language pairs

Following standard practice (e.g., (Koehn et al. 2007)), the sentences were lower-cased
and tokenized using the relevant Moses scripts.19 The sentence pairs were word aligned using
GIZA++20 with training iterations that are shown in Table 6.

The grow-diag-final heuristic was used for symmetrization of the alignments in the two
translation directions. The grow-diag-final heuristic is currently considered best practice, and
compared tounion or intersectionof alignments seems to give a good compromise between
precision and recall, i.e. it aligns most words while not becoming overly imprecise in doing so.

Tables 7 and 8 show the alignment and TE Coverage results respectively. Unlike the
manual word alignments, for the automatic alignments the coverage and TEC results increase
dramatically forβmax values in[2..6]. For βmax = 2 the results are in the mid/low forties for
English-Dutch/German and low fifties for English-French, but byβmax = 6 all results are in the
nineties or thereabout.

Automatic alignments obtained by symmetrization heuristics (particularly grow-diag-final)
are built in a way that allows the extraction of a large numberof phrase pair equivalents.
This could explain why binary branching HATs (BITTs) have lower coverage of such word
alignments, and why more often than not a larger branching factor than two is needed. Table 9
supports this observation. On the one hand, for at most binary branching HATs (βmax = 2),
the binarizability score is very low in the thirties (Dutch/German) or forties (French) suggesting
that these word alignments are hard to capture with BITTs. Onthe other, byβmax ≥ 10 the
binarizability score is around the 83% for English-French suggesting HATs with many linked
nodes, particularly when we contrast this with 62% for the Hansards manual alignment. It

19 http://www.statmt.org/moses/
20 http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/GIZA++.html.

32



K. Sima’an and G. Maillette de Buy Wenniger Hierarchical Representations for Word Alignments

English-Dutch English-French English-German
βmax = 2 44.63% 51.99% 43.40%
βmax = 3 56.35% 68.55% 56.13%
βmax = 4 75.79% 84.64% 75.46%
βmax = 5 85.51% 91.93% 85.79%
βmax = 6 91.64% 95.83% 91.83%
βmax = 7 94.91% 97.71% 95.23%
βmax = 8 96.90% 98.73% 97.18%
βmax = 9 98.08% 99.28% 98.33%
βmax = 10 98.82% 99.59% 99.02%
βmax = 15 99.91% 99.97% 99.94%
βmax = 20 100.00% 100.00% 100.00%

Table 8: Translation Equivalents Coverage as a function ofβmax

English-Dutch English-French English-German
βmax = 2 33.45% 41.43% 32.75%
βmax = 3 42.40% 54.75% 42.45%
βmax = 4 58.38% 68.92% 58.19%
βmax = 5 66.47% 75.47% 66.59%
βmax = 6 71.75% 79.21% 71.62%
βmax = 7 74.63% 81.10% 74.48%
βmax = 8 76.43% 82.15% 76.14%
βmax = 9 77.52% 82.76% 77.14%
βmax = 10 78.22% 83.10% 77.74%
βmax = 15 79.27% 83.54% 78.57%
βmax = 21 79.35% 83.57% 78.62%

Table 9: Binarizability scores as a function ofβmax

Kind of HATs (Permutation sets) English-Dutch English-French English-German
BITTs (Binarizable permutations) 45.52% 52.84% 45.60%
PETs (Permutations) 52.63% 56.56% 52.55%
HATs (Permutation sets) 100.00% 100.00% 100.00%

Table 10: The ratio of the different subsets of HATs in the corpus: BITTs, PETs and HATs

is unlikely that the latter difference can fully be explained by the difference in language use
(Hansards vs EuroParl) and, in fact, the shorter average sentence length in the Hansards manually
aligned corpus actually suggests the reverse situation should be true. This supports the hypothesis
that the symmetrized automatic alignments are built such that they can facilitate extracting a
larger number of phrase pair equivalents, leading to many more nodes in the HATs than manual
alignments.

Table 10 shows that the coverage of BITTs around 52% for French and 45% for Dutch
and German. The coverage of PETs (permutations) increases by 4-7% only, again suggesting
that neither BITTs nor PETs (as pure permutation-devices) can provide good coverage of
phenomena in word alignments. If only approximately 50% of all such word alignments can be
represented fully as a permutation, then the other 50% demands the notion of a permutation set
that can capture discontinuous alignments and complex many-to-many cases. Yet, permutation
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sets remain simple extensions of permutations and HATs can be seen as conservative extensions
of PETs and BITTs.

English-Dutch English-French English-German
D(a, s, t) = 0 (pure permutations) 52.63% 56.55% 52.55%
D(a, s, t) = 1 75.86% 80.12% 75.29%
D(a, s, t) = 2 90.11% 92.27% 89.28%
D(a, s, t) = 3 96.05% 97.18% 95.60%
D(a, s, t) = 4 98.44% 98.95% 98.19%
D(a, s, t) = 5 99.39% 99.60% 99.28%
D(a, s, t) = 10 100.00% 100.00% 100.00%

Table 11: Coverage of the corpus as a function ofD(a, s, t).

Table 11 shows the breakdown of the coverage statistic of automatic word alignments to
D(a, s, t), i.e., the measure of “distance" of the word alignment from being a pure permutation.

In symmetrized automatic alignments, it turns out that almost one half is beyond permuta-
tions, whereas by distanceD(a, s, t) ≤ 5 there is almost full coverage. Intuitively speaking, only
a small number of deletions of alignment links in these alignments should result in alignments
that resemble permutations. This does not reveal the full complexity of these alignments but it
does suggest that the automatic alignment that are non-binarizable are less complex than their
Hansards manual (Sure+Possible) counterpart. We think that this is because the Hansards manual
alignments (Sure+Possible) are in many cases dense with links (see the “mean number of links
per word" in Tables 1 and 5). Some of these manual alignments simply link almost all source
words with almost all target words leading to rather flat HATsand fewer phrase pair translation
equivalents than the automatic alignments.

7.3 Discussion and related empirical work on alignments

As stated earlier, the empirical results presented in the preceding sections are not particularly
targeted at studying the coverage of a certain grammar formalism (like ITG). Nevertheless, we
see the coverage of NF-ITG as an opportunity for a first application of our theory. Our results
providedirectly and exactly computedcoverage results for NF-ITG, given the chosen semantics.
Before we discuss these results, we will discuss a crucial aspect of how these results are obtained.

The debate concerning the representation power of (NF-)ITGfor translation data continues
and the reports concentrate mostly onupper boundsfor the representation power of ITG in terms
of manual or automatic word alignments (Zens and Ney 2003; Galley et al. 2004; Wellington,
Waxmonsky, and Melamed 2006; Søgaard and Wu 2009; Søgaard 2010). Søgaard and Wu
(Søgaard and Wu 2009) observe correctly that the reports in the literature differ considerably in at
least four dimensions (i) Data: what data and which alignments are used, (ii) Metrics: the way the
coverage is measured (sentence vs. translation unit levels), (iii) Semantics: how to interpret word
alignments (disjunctively/conjunctively)and (iv) Algorithmics: the algorithm used for computing
the upperbounds. In studying some of the existing literature we found it particularly difficult to
pin down the exact choices made, which makes it even more difficult to interpret the reported
results. There is, however, a good reason for the difficulty of exact description as we explain
next.

In particular, choices (iii) and (iv) pertain to the formal problem of how to parse word align-
ments with a synchronous grammar. We think that the problem of measuring the exact coverage
of word alignments by a synchronous grammar is particularlycomplicated because there is no
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a priori, objective, formal grounds on which word alignments and synchronous grammars can
be formally intersected. Before intersecting these two completely different representations, it is
necessary to specify ashared meaning/semantics. Indeed, it is necessary to define the semantics
of word alignments, as sets of translation equivalents, andrepresent them by synchronous trees
with the same semantic interpretation as the trees generated by the synchronous grammar, i.e.,
linked pairs of nodes dominate pairs of fringes that constitute translation equivalents. Without
fixing the latter relation between STPs and translation equivalents, it is difficult to talk about
how word alignments exactly intersect with an unknown instance of a synchronous grammar. In
essence, here we define for every word alignment a semantically equivalent set of HATs, and then
we check that these HATs can be built by an instance of the grammar formalism, i.e., that there
exists an instance at all that can generate these HATs. As defined earlier, for measuring sentence-
level coverage, we check that there exists an instance of thegrammar formalism that can generate
all these HATs exactly. And for coverage/recall of translation equivalents/units (TEC), we check
the percentage of linked nodes that can be generated by an instance of the grammar formalism.
This is exactly the methodology followed by the present work.

Our results withβmax = 2 are in fact exact coverage and TEC results for NF-ITG. Some
earlier work has concentrated on measuringupperboundson the coverage/TEC either by dis-
counting the complex alignment cases that cannot be coveredby NF-ITG, e.g., (Søgaard and
Kuhn 2009; Søgaard and Wu 2009), or by defining a “lighter" semantics of word alignments by
employing a disjunctive interpretation (as opposed to the more accepted conjunctive interpreta-
tion) (Wellington, Waxmonsky, and Melamed 2006). In contrast with earlier work, our results
are exact results, formally based on the intersection idea outlined above and are subject to the
chosen semantics.

As far as we can see, the results presented in (Zens and Ney 2003; Wu, Carpuat, and Shen
2006; Søgaard 2010), although based on a different approachand pertain to different data sets and
word alignments, are measured in ways that might be (close to) implementing the intersection
advocated here. Zens and Ney (2003) employ Viterbi alignments on Hansards data (sentence
length up to 30 words) and obtain far higher coverage resultsfor NF-ITG (≈ 81% and 73%
depending on direction) than our results for English-French EuroParl data with symmetrized
word alignments (≈ 53%). Apart from differences in corpus data, symmetrized alignments,
constituting the backbone data for training state-of-the-art systems, are known to be distinctively
different from their Viterbi uni-directional ancestors. The coverage result of (Søgaard 2010)
on the manual Hansards data (77%) comes very close to our coverage result (72%). Søgaard
(2010) is presented densely and somewhat informally that some details escape us. We attribute
the difference to various reasons, including sentence-length differences (in (Søgaard 2010) the
cutoff is 15 words) and choices of how to define translation equivalents with unaligned words on
either side. The work of (Wu, Carpuat, and Shen 2006) concerns Arabic-English data, which is
not studied here.

A completely distinct work that reports measures of word alignment coverage under ITG
constraints is (Huang et al. 2009). The work is based on the GHKM (Galley et al. 2004) method
of extracting synchronous rules, which involves target-language syntax. The authors report
percentages of binarizable synchronous rules extracted from the word alignments. The results
reported are incomparable to our results for NF-ITG becausethey are subject to the GHKM
extraction method of synchronous rules, which encapsulatevery difficult word alignments as
internal, lexical parts of a synchronous rule. By doing so, the coverage is measured with regards
to a different semantics (the GHKM extraction method) of word alignments than our choice of
semantics. Our semantics of word alignments is more exhaustive than the GHKM semantics in
that we allow all phrase pairs to be extracted without constraints from monolingual syntax or
other performance-driven constraints.
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Søgaard and Wu (2009) argue convincingly that ITG has a different coverage than its normal-
form variant (akin to Chomsky normal form). We would like to point out that the coverage
of permutations (represented by PETs in Tables 3 and 10) actually sets an upperbound on the
coverage of the ITG formalism for the word alignments studied here. A lower-bound is set
by the binarizable permutations (NF-ITG). Having set a lowerbound and an upperbound, we
hope in future work, dedicated to this topic, to calculate exact coverage figures under the chosen
semantics for an “all-accepting ITG’.

8. Conclusions and future work

In this paper we presented a theory of word alignments that endows them with semantics from
machine translation and with hierarchical representations that capture recursive properties of
these semantic units. Viewing word alignments from the perspective of word order differences,
initially we extended permutations into permutation sets that constitute asymmetric representa-
tions of word alignments. Subsequently we defined the semantics of word alignments in terms
of sets of translation equivalents, and advocated the idea that the hierarchical structure of word
alignments (as permutations sets) should represent the compositional build up of all translation
equivalents found in the word alignment. By adopting phrasepair semantics, this paper exem-
plifies this general idea, and presents an algorithm for building a set of semantically equivalent
Hierarchical Alignments Trees (HATs) for every word alignment. The HAT representation, a
conservative extension of the synchronous trees known fromITG, is shown to posses some
attractive properties, particularly that every node in every HAT is minimally branching given
the choice of the semantics and the kind of hierarchical representation.

On the empirical side we exemplified the use of this theory to analyze the hierarchical
properties of word alignments, where we analyzed manual andautomatically acquired word
alignments. Our analysis concentrates on a break-down of statistics of word alignments by the
maximal branching factor needed in the HATs that represent them. Capitalizing on this idea,
we report exact coverage results of word alignments for normal-form ITG and advocate the
need for a more rigorous approach to measuring the coverage of synchronous grammars using
our HAT representation. Particularly, we argued that it is crucial to pin down the semantics of
word alignments and their hierarchical representations, as well as the semantics of the trees
generated by a grammar, in order to measure the coverage as the intersection between two sets
of synchronous trees: the set of HATs defined for a word alignment and the set of synchronous
trees generated by an all-accepting grammar for the sentence pair. We implement this idea by
imposing the formal constraints of the grammar on the set of HATs, filtering out the HATs (or
parts of) that do not abide by these constraints.

In future work we plan to study efficiency aspects of the present algorithms. We will explore
different semantics for word alignments and possibly different definitions of node alignments
(possibly generalizing layered linking somewhat). Besides studying the exact coverage of ITGs
and other synchronous grammars, we expect that our HAT representation can be used to shed
light on the stability of the Direct Correspondence Assumption of monolingual syntactic repre-
sentations projected using word alignments, e.g., (Fox 2002; Hwa et al. 2002). Similarly, we also
expect that the HAT representation will allow us to extract avariety of probabilistic synchronous
grammars which capture varying degrees of statistical independence between translation units.
Finally, we hope that this study prepares the ground for novel and useful methods for the
automatic learning of hierarchical alignments in parallelcorpora, the original topic that lead
to this study.
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