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We present a theory of word alignments in machine transtafMT) that equips every word
alignment with a hierarchical representation with exacinsatics defined over the translation
equivalence relations known as hierarchical phrase pditse hierarchical representation con-
sists of a set of synchronous trees (called Hierarchicaj@ient Trees — HATS), each specifying
a bilingual compositional build ugor a given word aligned, translation equivalent sentence
pair. Every HAT consists of a single tree with nodes decarat@h local transducers that
conservatively generalize the asymmetric bilingual treénversion Transduction Grammar
(ITG). The HAT representation is proven semantically egjemt to the word alignment it
represents, and minimal (among the semantically equivaéarnatives) because it densely
represents the subsumption order between pairs of (hibreat) phrase pairs. We present an
algorithm that interprets every word alignment as a senaatly equivalent set of HATSs, and
contribute an empirical study concerning tleeact coveragef subclasses of HATs that are
semantically equivalent to subclasses of manual and autonvard alignments.

1. Introduction

A major challenge for machine translation (MT) researcloisytstematically define for every
source-target sentence pair in a parallel corpus a bilirrgaarsive structure that shows how the
target-language translation of the source sentence tupditom the translations of its parts. The
core of this challenge is to align, recursively, the partd thire translation equivalents in every
sentence pair in a parallel corpus (Wu 1996, 1997; Wu and VI®&98). This kind of recursive
alignment at the sub-sentential level (in contrast withaloed level) is often represented as a pair
of source-target trees with alignment links between thetes. Nodes that are linked together
dominate fringes that are considered translation equitglénducing hierarchical alignments
in parallel texts (Wu 1997) turns out a far more difficult tabln inducing conventional word
alignments, i.e., alignments at the lexical level.

Perhaps learning hierarchical alignment is so difficulteaese it hinges on fundamental
knowledge of how translation equivalent unidsmpose together recursiveilyto larger units.
The (hierarchical) phrase-based SMT models, e.g., (Zenk, énd Ney 2002; Koehn, Och,
and Marcu 2003; Galley et al. 2004; Chiang 2007; Zollmanné&alugopal 2006; Mylonakis
and Sima’an 2011), avoid this difficulty by directly extract rules of translation equivalence
(also known as phrase pairs or synchronous productions) &waord aligned parallel corpus
The extraction heuristics treat word alignments as coimigrghat define the set of admissible
translation equivalents. For example, the phrase pairsssibte by a given word alignment are
non-empty pairs of contiguous sub-strings that are aligongdther but not with other positions
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outside, e.g., (Koehn, Och, and Marcu 2003). The hieraatipicrase pairs of Chiang (Chiang
2005, 2007) are defined by a recursive extension of thesesaititity constraints. And the

GHKM approach (Galley et al. 2004) is directly aimed at remlimg the admissibility constraints

over word alignments with the constituency constraintsresged by syntactic structure. In
all these cases, word alignment is assumed the starting fuvixtracting basic translation
equivalents, used as thexical(ized)part of a synchronous grammar.

The current state-of-the-art SMT systems employ automlatimduced word alignments
that are known to be far from perfect. The phrase pair extmadteuristics used by state-of-the-
art models seem to compensate for the inaccuracy of wordrabgts by extracting grossly
redundantset of translation equivalents. This redundancy leads &wg®neration but puts the
burden of selecting the better translations squarely ostttestical model.

In this paper we concentrate on the question how to repregadtalignments in a parallel
corpus agsets of) synchronous tree pa{STPs) thaexactlycapture the (unpruned) set of lexical
translation equivalents that are commonly extracted froondwalignments. We are motivated
primarily by the idea that when such a hierarchical repreegiem is available, future hierarchical
translation models need not start out by hypothesizing alspmous grammar before seeing
the word aligned parallel data. Instead, a variety of syocbus grammars can be extracted
directly from the hierarchical representation, in analagythe way monolingual grammars
are currently extracted from monolingual treebahi®n the one hand, such a representation
provides a formal tool for rigorous analysis of the kinds phchronous grammars that best
fit with the word alignments, and on the other, it replacespthiase extraction heuristics with
a sentence-level hierarchical representation, thatit@e the statistical modeling dfow
translation equivalents compose together into larger slation equivalents

We present a hierarchical theory of word alignments thaipsoghem with:

e An asymmetric representation of word alignments that eddgrermutations into a
representation (called permutation sets) that accomrasdaany-to-one,
one-to-many and many-to-many alignments.

e  Ahierarchical representation (called HATS) as a ratheitéichform of STPs and
an algorithm that computes a set of HATs for every permutagit. The
semanticsof the HATs produced by our algorithm is proven equivalerthiset
of lexical translation equivalence relations, known fronmgse-based models and
Chiang synchronous grammars.

We exploit this theory for an empirical study on manually antbmatically word aligned parallel
corpora providing statistics over sub-classes of wordhatignts. We repoxtoverage figurefor
limited forms of HATs and exemplify a possible applicatioontributing novel insights to an
ongoing debate othow to compute) the alignment coverage of (normal form),|&@@., (Zens
and Ney 2003; Wu 1997; Wellington, Waxmonsky, and Melame@b28luang et al. 2009; Wu,
Carpuat, and Shen 2006; Sggaard and Wu 2009).

We will first provide an intuitive outline of the present woakd a road map that explains
the structure of this paper.

1 Treebank grammars in parsing are extracted from unambgyiowanually annotated sentences, whereas here a set
of STPs is computed for every word aligned sentence paiiilllbes necessary to induce a probability distribution
over the different STPs that represent every word alignrimeatparallel corpus. The present work is not concerned
with inducing such distributions but merely with defining thxact set of STPs.

2 Our use of the word semantics is in the formal sense of ththsetetic interpretation of a representation.
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2. An Intuitive Outline: How to Represent Translation Equivalence Recursively?

What is the semantics of word aligned sentence pairs in fErabrpora?.In machine trans-
lation, source-target sentence pairs in a parallel corpris@nsideredranslation equivalents
Word alignments are interpreted as the lexical relatioas dielimit the space afub-sentential
translation equivalence unit@lso called translation units) that underly MT models. ®finke

the semantics of word alignments in parallel corpora, welneelefine:

e  The minimal translation equivalence relations intende¢hijvidual alignment
links between words, and

e  The translation equivalence relations defined by the diffeforms of
co-occurrencef individual alignment links in word alignments of sentergairs.

Crucially, in this paper we are also interested in definiry veryword alignment) a hierar-
chical representation that details explicitly trezursive, compositional build upf translation
equivalents from the individual word alignment links up e sentence-pair level.

A word alignment defines theinimal translation equivalence relatioms a sentence pair.
Individual words linked together are translation equingde(TES), and we interpret multiple
words linked with a single word conjunctively, i.e., theked words together are equivalent
to that word. Figures 1a to 1d show example word alignnfemtsFigure 1dwor t hwhi | e
is equivalent taroei t e waar d (and we will write this(wor t hwhi | e, noei t e waar d));
neithernoei t e norwaar d separately is equivalent twor t hwhi | e. Unaligned words must
group with other aligned words in their surroundings to fopwssible units of translation
equivalence. In Figure 1d, the Dutch wattd groups withnoei t e waar d leading to the TE
(wor t hwhi | e,de npeite waard).

{1} {2} {3} {4} {5} {1} {2} {3} {4y {5} {6}
Hij is bereid te vertrekken dat hij bereid is te vertrekken
H|e is ready to lelve that he is ready to leave
(a) Example monotone alignment (Dutch-English) (b) Example alignment (Dutch-English)
@ @wmeE B 6 8 w5 89 W

we should not be so politically partisan

man darf politisch nicht so sektiererisch sein .

we have achieved a worthwhile compromise .

wij hebben een compromis bereikt dat de moeite waard is

(c) Alignment 4131 from Europarl EN-DE

(d) Alignment 6213 from Europarl EN-NE.

Figure 1: Example word alignments of varying complexity

How minimal TE relations combine together into larger uistperhaps a theoretical matter
related to the assumption ebmpositional translatiorfJanssen 1998; Landsbergen 1982). In
contrast, data-driven approaches define which target imfarallel data ardéikely to be good
translations of which source units, given a word alignmerd,, (Zens, Och, and Ney 2002;

3 The sets of integers in these figures are of later relevantteésimliscussion.
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{1 {2 8 & ,
Je ne fume pas A= (1 XP == Je XP) B = (don't XP == ne XP pas)

C = (smoke == fume) D = (don't smoke == ne fume pas)
E = (I don’t XP == Je ne XP pas)
F = (I don’t smoke == Je ne fume pas)
I don't smoke
Figure 2: A word aligned sentence pair and a selection ofstation equivalents. XP is a
nonterminal variable.

Koehn, Och, and Marcu 2003; Chiang 2007). Statistics areegetl over TE units of varying
lengths, including TEs and their sub-units down to the maliomits. In phrase-based models,
the non-minimal TE relations (called phrase pairs) are &my taking contiguous sequences
of minimal units equivalent to each other on both sides (uige conjunctive interpretation)
and extracting them as larger phrase pair equivalents.duar€&ilb, for example, one may ex-
tract(bereid is,is ready)and(hij bereid is,he is ready) butcannotextract
(hij is,he is) forthe lack of adjacency ofhi j , he) and (i s, i s) on the Dutch side
(note that the latter does constitute a phrase pair of tigmmlént in Figure 1a). In Figure 1d,
we find (achi eved a worthwhil e conproni se,een conpromni s berei kt dat

de noeite waard is), where the unaligned wordslét de) are included because they
are the only material intervening between two TEs.

The extraction methodised in phrase-based models can be seen to compose two or more
TE units into a larger TE unit if and only if their componente adjacent on both source and
target side$ (Koehn, Och, and Marcu 2003). Adjacency on both sides carebe as simple
synchronized concatenation of sequenaediseit with the possibility opermuting the ordeof
the sequences on the one side relative to the other.

Chiang’s extraction method (2007) extends the set of phpags with higher order TE
relations (synchronous productions) containing pairsafableslinked together to stand for
TE sub-units that has been abstracted away from a phrasé& paiphrase paithi j berei d
i s,he is ready) in Figure 1b can produce a Chiang-style synchronousghilg X is,
he i s X), whereX on both sides stands for two nonterminal variables linkegttioer. Note
that the twoX instances stand in positions where another TE (létr ei d, r eady) used to
reside. Figure 2 exhibits one more alignment for a shorted (@ell known) sentence pair and a
selection of example TEs.

In Section 4 we define the semantics of a sentence-level Wigrthaent to be equivalent to
the set of translation equivalence relations that are eteidsfrom it by the Chiang methédwith
this semantics in place, we are interested in the questiarttioepresent a word alignmentin a
hierarchical formalism that harbors all and only the tratish equivalents that the semantics of
word alignments defines, and makes explicit the compositistnucture of TEs?

What is the recursive structure of translation equivaléhdgy extracting arbitrary length (hi-
erarchical) phrase pairs directly, current extractionhuds do not concern themselves with
the question how sub-units of TEs compose together to forgetalTEs in a word aligned
sentence pair in the training data. We prefer a represent#ttiat shows as much as possible
how a constellation of multiple TE units compose togethefoton largercompositTE units.

4 In other words they must form contiguous spans on both sides.
5 In practical systems like Hiero, the extractions are prumgdg various heuristics. These heuristics are not retevan
for this study.
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I don’t smoke

Hierarchical Reggntations for Word Alignments

| don’t smoke

v : ; XP
XP xP XP
xXP
\/ \/
XP - XP
XP XP
/\

/\
XP XP xXpP
/BR
Je ne fume pas Je he fume pz
(a) Spurious Ambiguity

| | don’t don’t don’t
v VP »XP vp
XP Xp XP N xXpP XP XP
XP XP XP
XP/\XP XP/\XP XP/\XP XP
A A
Je Je ne pas ne pas ne pas

(b) Synchronous fragments extracted from the right STPguiféi 3a

Figure 3: Example STPs and synchronous fragments

Initially we make the assumption that TEs compose togetheyhchronized concatenation with
reordering(thereby enforcing the aforementioned assumptiobilafgual adjacency. Later on
we provide a conservative generalization of this assumpdio composition for representing
translation equivalence relations that digcontinuousthereby covering the Chiang-style TEs.

Figure 3a exhibits two STPs, pairs of trees with linked pairsodes’ Edges linking pairs of
nodes in the two trees stand for pairs of TEs formed by theesezps of words at the fringes of the
subtrees dominated by the two nodés.both STPs we find the TEon' t snoke,ne fume
pas). In the one STP we find this TE as an atomic unit (the left STREgmas it is a composit
one in the other (the right STP). The two STPs constitutdtifegie alternative outcomes of
a synchronous grammar like that used in (Chiang 2007; M¥snand Sima’an 2011): the
atomic version employs a TE (phrase pair productiogth—don’ t snoke, XP—ne fume
pas), whereas the other one employs a derivation consisting@ptwductions{XP—snoke,
XP—f une) substituted in th&P linked slots in(XP—don’ t XP,XP—ne XP pas).

6 For the moment being we do not discuss constraints on thisrgerepresentation and leave that for the formal
sections in the sequel.

7 Observe particularly how the French womks andpas that are equivalent tdon’ t (a discontinuous French side)
are not dominated by a pair of linked nodes on their own, aatite andpas stand directly under the same mother
nodeXP which is linked with theXP under whichdon’ t is also found. This is important for representing the
discontinuous TE.
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Our proposed representation (called Hierarchical Aligntigees — HATS) will avoid this
kind of derivational redundancyf one TE is a sub-unit of another subsuming TE (g gnpke,
f urme) is subsumed bydon’t snoke, ne fune pas)) then the representation developed
here will explicitly represent this subsumption order {jlikee the STP to the right in Figure 3a).
We will prove that in the set of HATs that we define for a wordyaient, every linked pair
of nodes dominates a pair of fringes that constitutes a phpa#, and that all phrase pairs
are represented by linked nod€sucially, the HATs will explicitly represent the subsuiapt
relation between phrase pairs: every phrase pair that cardeéeomposed into smaller phrase
pairs will be represented as such, and the HATs are the ST&R<timtain the maximal number
of nodes that the word alignment permits

For building MT models, one could extraggnchronized fragmen{possibly conditioned
on context).Synchronized fragmentsan be extracted under the constraint that we “cut" only
at linked pairs of nodes (a DOT heuristic due to (Poutsma POQis leads to synchronous
fragments that can be used in a Synchronous Tree SubgtitGiiammar (Eisner 2003) and
akin to Chiang’s synchronous context-free productionso@iding the heuristic constraints on
length etc). Besides the phrase pairs (fully lexicalizegyfnents) we could also obtain (among
others) the synchronous fragments shown in Figure 3b fremigfnt-side STP in Figure 3a. By
discarding the interna{P nodes in these synchronous fragments we obtain Chiang symmins
context-free productions.

How to build hierarchical structures for translation eqalence? Consider first the two simple
alignments in Figures 1a and 1b. Intuitively speaking, fauFe 1a (monotone), any pair of
identical binary-branching trees with linking of all idé@l (isomorphic) nodes constitutes a
suitable STP for this example. The same strategy would workie second example (Fig-
ures 1b) provided that we first grotyer ei d i s andi s r eady under a pair of linked nodes.
Both examples can be dealt with using binary STPs, and intffeeste binary STPs are of the
kind that can be generated by normal-form ITG. These twanalignt are simple examples of
what is known adinarizable permutationfHuang et al. 2009). In Figures 1a and 1b, the integer
permutations are shown as a sequence of singleton setegémstabove the Dutch words; the
dual permutation can be formed on the English side by writiogn for every English word the
position of the Dutch word linked with it.

For developing the hierarchical representation for gdweved alignments we must address
the technical challenges of how to represent complex woderodifferences and alignments
that are not one-to-one. The permutation notation will notkvfor one-to-many, many-to-
one or many-to-many alignments and a special extensiongdatk Figure 1d shows how our
proposed extended representation looks like: the positidhe wordwor t hwhi | e is linked
with two Dutch positions and hence is represented by a sebtf {8, 9}. This new extension
of permutations to represent general word alignments (@néaning) is called permutation
set In section 5 we present permutation sets and formalizedhaterparts of TEs in this new
asymmetric representation.

Binarizable permutations constitute a proper subset oitbrel alignments found in actual
data. Figure 1c and 1d show two examples of non-binarizabi@ptations sets, where the first
one is a permutation and the second is a proper permutatioif tse word order differences
in these word alignments is such that they cannot be repesbdry an STP generated by an
(NF-)ITG. In Figure 1c, the crossing alignments constittite non-binarizable permutation
(2,5,3,1,4).8 A similar, but slightly more complex situation holds for Eig 1d because of the

8 To see that it is non-binarizable check that none of the adjggairs of integers constitutes a pair of successive
integers, i.e., the foreign side positions of the adjacdfd dre not adjacent to one another.
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one-to-many alignment: with the unaligned woddgt de at positions and7, the permutation
set({5,6,7},3,{8,9},4) is as non-binarizable &8, 1, 4, 2).
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(b) HAT for the word alignment in Figure 1d
Figure 4: Two HAT representations for examples of word atignts

For representing word alignments (permutation sets) wilRP<$ Section 6 develops the
HAT representation and algorithms for interpreting wordgmnents as sets of HATs. We



Computational Linguistics Volume xx, Number xx

prove that the HATs have equivalent semantics to word algms(permutations sets) and are
compact/minimal in the sense discussed above. Figure 4sstvaovof the HAT representations
for the examples in Figures 1c and 1d. To avoid a jungle of Hio#te in such largish examples,
we resort to an implicit representation of node linking arsdjaared off tree representation. Pairs
of nodes linked together are represented with the same €iltelbs (word alignments are left in
tact as a visual aid). Figure 4 shows that a minimal branc8&irg is chosen given the constraints
of the word alignment. An idiomatic treatment of a phrase plaat cannot be decomposed
under the defined semantics is shown in Figure 4a. Figure dlysslan interesting case: it
representsachi eved, berei kt dat de) and(wort hwhil e,noeite waard is) as
two pairs of linked nodes. The complex permutation set ia éxample (5, 3,{8,9},6,7,4)),
discussed earlier, is represented as a four-branchingphinked nodes ). This permutation
set is equivalefitto (3, 1,4, 2), an inversion of the famous non-binarizalfe 4, 1, 3) of (Wu
1997). The nodes on both sides of the STP are decorated welthpsmutation sets standing for
transduction operators that generalize the inversionatpeof ITG1°

An important property of the HAT representation is that thranghing factor at every
internal node igminimal In Section 6 we prove that the choice for minimal branchinges
(minimal segmentation of a sub-permutation) leads to tmepat representation which avoids
the derivational redundancy exemplified above. Becausérdueching factor of every node is
the minimal given the word alignment, then for binarizabéerputations we will automatically
obtain fully binary HATs (that can be generated by a nornoalf ITG).

What kinds of word alignments are being used for buildingenirstate-of-the-art SMT systems?.
Are the cases of non-binarizable permutations frequentaraliel data or are they marginal
cases? What hierarchical properties do these word aligtanteave? Section 7 provides an
empirical study that addresses these and other empiriestigns pertaining to subsets of word
alignments and the HAT representation. But first, in the segtion, we review the related work.

3. Related Work

Given the relative importance of word alignments, the goashow to represent them hier-
archically has received limited attention. Earlier workkas different modeling assumptions
regarding the nature of word alignments, the STP formalisth@role of syntactic trees. Many
of these modeling assumptions emanate from the choice foedfic probabilistic synchronous
grammar when inducing word alignments. In this work we asstinat word alignments are
given in parallel data and, therefore, can afford to avoisl dissumption.

Wu (Wu 1997) presents a framework for learning hierarchédighments under Inversion-
Transduction Grammar (ITG). The framework starts out bytydating a synchronous grammar
for bilingual parsing of sentence pairs in a parallel corfyspostulating a grammar (ITG) first,
the goal is to represent the whole corpus of bilingual ser@ems members in the language of
this grammar. This contrasts with the goal of the presenkwee aim at representing every
individual word alignment in a parallel corpus with hierarchical bjliral representations (sets
of STPs) that are provably equivalent in terms gbradefined semantic notion of translation
equivalenceGiven the definition of translation equivalence over wdigranents, one can say

9 After reducing({8, 9}, 6, 7) into a single position 6.

10 The complexity of parsing-branching synchronous grammar with> 3 (rank k syntax-directed transduction
grammars (Lewis and Stearns 1968)) is well documenteda(&att Peserico 2005) but irrelevant to this work.
Parsing a parallel string depends on the kind of synchrogcarsmar at hand. In this paper we are neither
concerned with extraction nor with parsing under a givemgnar but merely with specifying thexact
representation.
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that here we aim at making hierarchical representationéoidpat reside in the word alignment
itself, not in an external grammaspecified prior to seeing the alignments. In this sense ocalsgo
are different from those of Wu (1997).

Other assumptions regarding representing word alignmetsnade as well. Typically,
when a certain section of a given word alignment cannot bemdposed under the working
assumptions regarding the formal grammar, it is extracsesl single atomic phrase patrThis
means that translation equivalents that are related tomother in the data (e.g., one embedded
in the other) are represented as alternative, unrelated.rWe think that this complicates bi-
lingual parsing as well as the statistical estimation oséhgrammars (see e.g., (Marcu and
Wong 2002; DeNero et al. 2006; Mylonakis and Sima’an 201Q,120

The direct correspondence assumption (DCA) of syntactiseptiees underlies the efforts
at building syntactic parallel treebanks, and word alignte@re considered merely as heuristic
constraints on node-linking, e.g., (Tinsley, Hearne, aray\V®009; Zhechev and Way 2008;
Tinsley and Way 2009). This line of research is not concemigitl representing the translation
equivalence that the input word alignments define but witlb@erlinking relation between two
monolingual parse trees

The ITG (or Wu’'s) hypothesis states that all (or at least tast wajority of the correct)
word alignments (in any parallel corpus) can be represeagquhirs of binary trees (STPs) with
a bijective node linking relation where “vertically crosgl' node alignment are not allowed.
Furthermore, for every sequence of sister nodes, the liaksomly two possible orientations:
fully monotone or fully inverted. The stability of the ITGasnption is an empirical matter that
depends on the relative frequency of complex permutatiodsadignment constructions (like
Discontinuous Translation Units (Sggaard and Kuhn 2009gBdtual data. Here, we are not
concerned with the validity/stability of the ITG assumptia practice. Instead, we are interested
in representing word alignments hierarchically to repnésair choice for a predefined notion
of translation equivalence. Crucially, the resulting hrehical structure reflects our choice of
translation equivalence semantics. Whether a word alignoan be covered by (NF-)ITG or any
another formalism is a secondary matter pertaining to uartmverage metrics of the translation
equivalence relations represented in our hierarchicaéssmtation (see also (Sggaard and Kuhn
2009) for a similar observation). We think that the coveragglf can be effectively measured
as the intersection between the set of HATs equivalent tombrel alignment and the set of
synchronous trees generated by the given formalism forgh&eace pair. It is crucial to point
out the subtle point that the measured coverage is alwaysregfards to a predefined notion of
translation equivalence over word alignments and the kirickes projected from them. We will
elaborate more on this observation in Section 7.

The empirical part of this paper (Section 7) explores theanahical nature of word align-
ments within our hierarchical theory. However, as a firstnepke application of our formal and
algorithmic findings, we make a modest, yet distinct, cdwition to the NF-ITG coverage de-
bate. By defining a shared semantics for word alignments @& Hbur algorithm for computing
a set of HATs for every word alignment affords us to reportezage figures based on formal
inspection of the set of HATs to determine whether thereterisall an NF-ITG that can generate
them. This approach is distinct from earlier approachebecstudy of empirical ITG coverage
in that it formally builds the HATs foeveryword alignment before doing any measurements. In
Section 7, we will contrast our approach with earlier workiNfITG coverage.

11 The redundancy of such synchronous grammar rules is reteimti®f Data-Oriented Parsing (DOP) (Bod, Scha,
and Sima’an 2003), albeit a major difference is that latktraets fragments from a treebank implying explicit
internal structure shared between different fragments.



Computational Linguistics Volume xx, Number xx

4. Defining Translation Equivalence over Alignments

Throughout this paper we will be concerned wéttntencedinite sequences of tokens (atomic
or terminal symbols). Thalignmentswill consist of sequences of individulixhks between these
tokens. For the purposes of intuitive and simple expositiewill often talk about words but the
treatment will apply to atomic tokens at other granularydls.

Unaligned words (NULLS) lead to an extensive notationaldear and, in principle, we
will not provide a formal treatment of unaligned words in tim®re advanced sections, but
our intuitive treatment of this special case will aim at siraythat an extension of the present
techniques to unaligned words is inexpensive.

Definition 1 (Alignment and sub-alignment)

Given a source and target sentence pait, s1, ..., s, andt = tq,...,t,,, we define an align-
menta as a relation of pairs consisting of a positionsrand another int or NULL, i.e.,
ac{0,1,...,n} x{0,1,...,m} where positiord stands for NULL. Each individual pair is
alink. We will call b a sub-alignment of an alignmeatwhenb C a.

Alignments in machine translation play a major role in definthe atomic elements of
translation equivalence, words linked together or everagdhmpairs. We view alignments as
postulating basic word-level relations of translationieglence, that when (somehow) combined
together would lead to larger units of translation equine&s up to the sentence level. The
crucial question usually is which links to combine togetaed which operators to use for the
combination. Before we make any choices, we first providersege definition of relations of
translation equivalence defined over an alignment.

Definition 2 (Translation-admissable sub-alignments)

Given an alignment betweens and t, a non-empty sub-alignmemt C a is translation-
admissable (t-admissabléff for every (x,y) € b holds {(z1,yl) €a | (zl =2)V (yl =
y)} € b. In other words, all alignments involving source positiofin a must either all be in
b or else none, and similarly for all alignments involvingger positiony.

In Figure 2, sincene andpas are both linked withdon’ t , it is reasonable to think that
don’ t translates ase + pas. Hence the definition of t-admissable sub-alignments. Bhe s
of all t-admissable sub-alignments of an alignmantenotedl" A(a), is attractive because it
defines an important range of translation equivalents @hbsumes phrase pairs). In Figure 2,
the sub-alignment representing the word linkinde, 1 ), (f une, snoke)} is t-admissable for
this alignment, whilst it is not a phrase pair.

For computational and representational reasons, we wilintexested in a subspace of
the t-admissable sub-alignments for a given alignmeemarticularly the phrase pairs known
from phrase-based translation, and phrase-like synclisopductions (containing “holes”) as
introduced by Chiang (Chiang 2005). Intuitively, for standl phrase pairs, links are grouped
together into larger units of translation equivalence étlare adjacent both at the source and
target sides.

Definition 3 (Phrase-pair sub-alignment)

A t-admissable sub-alignmeibt C a is called aphrase pair sub-alignmeriff both the sets
of source and target positions i minus the NULLs (position zero), constitute contiguous
sequences of source and target positions.

10
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Definition 4 (Minimal phrase-pair sub-alignment)
A phrase pair sub-alignmentis minimal if and only if nonetsfgroper sub-aligments is a phrase
pair.

Definition 5 (Chiang-admissable sub-alignments)

A t-admissable sub-alignmemi C a is called Chiang-admissableff there exists a phrase
pair sub-alignmenb,, C a such thatb C b, and the complemer{b, \ b) is either empty or
constitutes a set of phrase pair sub-alignments.

Clearly, every phrase pair sub-alignment is also Chiangisshble. However, Chiang-
admissable sub-alignments may consist of hon-contigumusige side or boths sides) sequences
of t-admissable sub-alignments that correspond to a plpaswith “gaps” that stand for phrase
pairs. Figure 2 shows a few examples of phrase pairs (tt#zmskquivalent€, D, F). The same
figure shows Chiang-admissable sub-alignmefi( E) represented with the “holes" between
the segments marked with the symbol XP, in following of stddoractice.

Having defined the semantics of word alignments as phraiseapd Chiang-admissable
sub-alignments, we will now fix this semantics for all kindsfature representations of word
alignments. Our choice for this semantics has attracti@pgmties but this does not come without
a price.

Limitations.This semantics conflates the differences between certaihalignments and avoids
difficult questions about the semanticsmfilti-word, minimal phrase pair sub-alignmerfsee
Figure 5). Under theonjunctive interpretatiorof word alignments, the contiguous sequences
on both sides of a minimal phrase pair sub-alignment beloggther. It is then important to
recognize that this choice cannot discriminate betwedareifit alignments that lead to the same
minimal phrase pair. Figure 5 exhibits three word alignmeehat constitute minimal phrase
pairs of the same string pair and all three share the samensieméset of Chiang-admissable
sub-alignments). The topic of extending the semantics thathit discriminates between some
of these cases is not treated in this paper.

Figure 5: Three word alignments that constitute minimabgbrpairs

5. Alignments as Permutation Sets: A Representation of Retave Word Order

Alignments make explicit various phenomena at the lexiasl, in particular word-order differ-
ences. Crossing links between positions as well as aligtsrleat relate groups of source words
to groups of target words express constraints on how a samd¢arget sentences relate to one
another as sentential tranlsation equivalents. The cigglef modeling word-order differences
is a major reason for studying syntactic and hierarchicaleg e.g., (Wu 1997; Chiang 2007).

In the preceding section we represented t-admissable |gybveents, phrase pairs or
Chiang-admissable, as sets of sub-alignments. The adjpoétinks on both sides symultanu-
osly turned out a crucial constraint on grouping links intwgse pair sub-alignments. Following
(Wu 1997; Huang et al. 2009), we choose a simple mechanisaptesent how the target-side
of a given sub-alignment is obtained from the source sidenpgation of positions.

11
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Permutations are useful representations for a subcladgofrents that naturally capture
the adjacency requirement. In this section, we propose aegw@sentation of alignments, called
permutation setghat extends permutations. We also discuss how translatjoivalence follows
from permutations and how it relates to translation eqgeive¢ definitions from the preceding
section, particularly the phrase pairs and Chiang subradénts.

Bijective alignments and Permutation&. special interesting case of alignments is the class
of bijective (i.e. 1:1 and onto) alignments. H is bijective, then the positions on the one
side can be described asparmutationof the positions on the other side. For example, if
a = {1-2,2-1, 3-3,4-4} (with source positions coming first in the pairs), then thgeapositions
constitute the permutatiof2, 1, 3, 4) relative to source positions.

Definition 6 (Permutations and shifted-permutations)

A permutationr over the range of integefs..n] is a sequence of integers such that each integer
in [1..n] occursexactly oncén 7. We will also consider permutations over integer$iiry] (for

1 # 1) and refer to them ashifted-permutations

Definition 7 (Sub-permutation)
A sub-permutationr,, of a permutatiorr is a contiguous subsequencenoivhich constitutes a
shifted-permutation.

Sub-permutations clearly comply with the adjacency rezmagnt of linked positions on both
sides, which are required for phrase pair sub-alignmerits.fdllowing rather straightforward
lemma highlights the fact that bijective alignments andmpgations can be used to define exactly
the same sets of phrase pair sub-alignments (translationedence relations):

Lemma 1
The set of phrase pair sub-alignments for a bijective aligminipermutationi is equivalent to
the set of sub-permutations of the permutation correspayidia.

The proof of this lemma follows from the definitions of phrgsair sub-alignment for
bijective permutations and the definition of sub-permotati

Notation. For traversing a permutatiom from left to right we will employ indeces to mark
the current state of traversal: at start ihdexis zero and after moving ongositionto the
right the index increments by one (i.e., indgx 0 stands between positiorisand;j + 1). The
notationw; and ; refers to sub-sequencesofthat are repectively the prefix ending with
the integer at position and the suffix starting with the integer at positipa- 1. Note that these
subsequences are not necessarily sub-permutationssofce they might consist of integers
that do not define a range of successive integers. For exampte= (2,1, 3, 4), we find sub-
permutationsr<s = (2,1, 3) andn~3 = (4), butws; = (1,3, 4) is not a sub-permutation.

We can also represent a permutation, e(g,,1,3,4), as ranging over singleton sets,
i.e., ({2},{1},{3},{4}). This allows us to encode non-bijective alignments, cota sub-
alignments that are not 1:1, as extensions of permutatiogrssets of target positions relative to
source positions. The sets of target positions imply gnogigionstraints defined by alignments
that are not 1:1.

Back to our running example (Figure 2). If we take French asstturce language then the
representation (called permutation set) of this alignnief1}, {2}, {3}, {2}), whereas if we
take English as the source side thermutation seshould be({1},{2,4},{3}). To arrive at
these permutations sets, simply scan the source (resplgdirget) side left to right word-by-
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word and for every word position note down in a set notati@ténrget positions linked with that
word. In the representatigqf1}, {2}, {3}, {2}) (the French-side view) the sg2} appears in the
second and fourth positions signifying that & English word is linked with both the second
and fourth French positions. In other words, the two appess of{2} signify a grouping
constraint for the second and fourth French positions witihosinding positions. This example
should also highlight thasymmetri;mature of this representation (just like permutations).

Now we define permutation sets by providing a recipe for alinigithem from alignments.
To avoid notational complications, our definition in thegdencase of unlinked words (i.e., linked
with NULL) remains somewhat informal.

Definition 8 (Permutation sets for non-bijective alignmens)

A permutation sets a finite sequence of finite sets of integers such that thenuoii these sets
constitutes a range of integéfs.n]. The three cases of non-bijective alignments are repredent
in permutation sets as follows:

e For every source positiof > 0 (i.e., not NULL), we represent this position with
a seta(iy) that fulfills j; € a(is) iff i, andj, are linked together and none is
NULL, i.e., j; € a(is) iff (is,J:) € aandj; # 0.

. For contiguous spans of source positions linked with NULLwikgroup them
with the directly adjacent source positions that are linkeét target words. For
every contiguous span of (one or more) unlinked source wardsprefix of this
span may group with aligned source words directly to its bafd the remaining
suffix of the span will group with the aligned source word®dily to its right.
Either the prefix or the suffix can be the empty string but nabhbodhis leads to
multiple alternative permutation sets that together regmethe same alignment.
This conforms with current practice in phrase pair extmgte.g., (Koehn, Och,
and Marcu 2003).

. For contiguous spans of target position linked with NULL, wid first group the
positions with the non-NULL linked adjacent positions ahdn represent the
target sets of positions that correspond to every sourdégaslhe grouping of
the prefix and the suffix of such contiguous spans proceedsg@rausly to the
NULL-aligned source positions in the preceding item.

If we put NULL-links aside and view alignments asymmetdigésay from the source side), we
find that every permutation set represents a single aligharehthat every alignment (viewed
from the source side) can be represented by a single peiotutst. The NULL cases lead to
multiple permutation sets that correspond to one and the s¢ignment. This only leads to more
notation and in the sequel we will not deal with NULL links,dwming that they can be treated
with a relatively straightforward extension of the pregechniques.

Another example of a permutation set(id, 2}, {3}, {2,4}) which implies the alignment
{1-1,1-2,2-3,3-2,3— 4} (where here we informally represent an alignment as a set of
linked source-target pairs of positions- y).

Definition 9 (Sub-permutation of a permutation set)

A sub-permutation of a permutation set= (s1,...,s,) iS a contiguoussubsequence
(si,...s5) (@ < j)that fulfills the requirement that the unigs; U ... U s;) of the setss;, ... s;
constitutes a contiguous range of integers and for eveegértr € (s; U...Us;) holdsx ¢
(s1,U...Usi1Usjp1 U...Usp).
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This definition demands contiguous chunks on both sides laadlinks from the same
position (including discontinuous cases) must remainttegre For example, for permutation set
({1},{2}, {3}, {2}) (Figure 2, French as source), the atomic subsequeitésand({3}) are
sub-permutations. In contrast, the atomic subsequéfije is not a sub-permutation because
one copy of the2 remains in the complement (the two copies together stand ftiscontin-
uous alignment with English positio?). The subsequencg2}, {3}, {2}) constitutes a sub-
permutation, wherea${1}, {2}) is not a sub-permutation because again one copy of2the
remains in the complement.

Partial sets.In a permutation set, we refer to those sets that do not d¢otes&n atomic sub-
permutation (like{2} in ({1}, {2}, {3}, {2}) or {2,5} in (3,{2,5}, 1,4)) with the termpartial
sets A partial set either shares positions with other partiéd se it consists of a non-singleton
set that does not constitute a sub-permutatfon.

In permutation set{1, 2}, {3}, {2,4}) for example, we find that each ¢t,2} and{2,4}
separately are partial sets, wher¢as is an (atomic) sub-permutation.

Also under the latter definition we find that the set of phrasegub-alignmentsis equivalent
to the set of sub-permutations as stated in the followingr@mwhich applies to alignments not
containing NULL links but can be extended to the general eds®

Lemma 2
The set of phrase pair sub-alignments for an alignment (p&tion setl is equivalent to the
set of sub-permutations of the permutation sets correspgnala.

We will also define the following intuitively simple partiadrder relation over sub-
permutations of the same permutatian

Definition 10 (Partial order < over permutation sets)
Given a permutation set; over[i..j] and another permutation sef over [k..1]. We will write
m < m iff i < j < k <. Thisrelation extends naturally to sub-permutations.also

In summary, permutation sets are asymmetric represensatib alignments. In terms of
translation equivalence relations, it is important to higjt the equivalence of the set of
phrase pair sub-alignments defined by a given alignment é¢os#t of sub-permutations of
the corresponding permutation set. This equivalence @aghat we can represent alignments
hierarchically if we succeed to represent permutationfsetairchically. As we shall see, because
permutation sets are asymmetric they constitute a nicene#iate representation on the way
from alignments to hierarchical representations.

6. The Hierarchical Structure of Sub-permutations: Recursve Translation Equivalence
The various kinds of t-admissable sub-alignments fromiSeet stand for sets of translation

equivalence relations that can be extracted given an abghnd\ permutation set provides an
asymmetric representation of the alignment in terms of odiféerences of the target sentence

12 Partial sets are contiguous source-side sub-units in whaidwn as Discontinuous Translation Units (DTUS). These
correpond to the two cases of a source side position aligrixdavaiscontinuous set of positions on the target side
or a target side position aligned with a discontinuous s@bsftions on the source side. (Sggaard and Kuhn 2009).
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relative to the source sentence. By concentrating on suitgations of a given permutation set,
we concentrate attention on sub-alignments that link coutges positions on both sides, also
known as phrase pair sub-alignments (Section 4).

({1} {2, 4}, {3}) (1,2,3) (1,2,3)
N N

1 2.
P o B & B
@1 (B

Figure 6: The left tree representation makes explicit therénchical structure of the sub-

permutations of permutation séf1}, {2,4}, {3}), and the two to the right for permutation

(1,2, 3) (since all sets are singletons we simplified the permutat#into a standard permuta-

tion). Note that there are two trees for the latter permaoitgach showing the recursive grouping
using different sub-permutations.

Consider the permutation sgtl }, {2,4}, {3}) for the English side as source in Figure 2. Its
sub-permutations aré{1}), ({3}), ({2,4}, {3})and{{1},{2, 4}, {3}). The sequenceg2, 4})
and ({1}, {2,4}), for example, are not sub-permutations becajisel} does not constitute a
range of consecutive integers.

Let us now concentrate on structuring the sub-permutatibagiven permutation set. Fig-
ure 6 (left side) shows a graphical representation of hovstiepermutatio{1}, {2,4}, {3})
can be seen as tlncatenatiorof the two sub-permutation§1}) and({2,4}, {3}), and that
the latter sub-permutation is the concatenatiorf{@f 4}) and ({3}), in this order. The same
figure also shows two trees for the permutation (&§et}, 3). Note how these two trees exhibit the
grouping of different sub-permutations, that correspandifferent sub-alignments, and hence
also different translation equivalence relations.

In this section we are interested, on the one hand, in thid kifh grouping of sub-
permutations into hierarchical structures (trees), antherother, in a suitable represention that
makes explicit the mapping between the local order of sesite groups and the order of their
target-side counterparts. The challenge is how to makeaiqble hierarchical structure of how
sub-permutations compose together, recursively, inggelasub-permutations. Concatenation is
the main composition operation that we are going to assumee he

Definition 11 (Concatenation of sub-permutations and/or sguence of partial sets)

The concatenation of sub-permutations is a special casengfatenation of sequences (ordered
sets) because sub-permutations are sequences of sesgafrg1tThe same applies to sequences
of partial sets. The result of the concatenation of an odipegr of sequencegr;, 7o), written
concat(m1,72) is the sequence of sets of integers obtained by concatgrthénsequence,
after the sequence, . We define the concatenation operator to be left-assoeiativ

Note that concatenation itself is not guaranteed to lead sulapermutation even if both
components are sub-permutations. We will also define thensetation of a (sub-)permutation
(almost but not exactly the inverse of concatenation bexaaacatenation is not guaranteed to
result in a sub-permutation).

Definition 12 (Segmentation of a sub-permutation)

A segmentation of a sub-permutation= (kq,...,k,) is a set of indicesB = {j, =
0,J1,-..,jm = n} that segments into m adjacent, non-overlapping and contiguous subse-
quences (called segments) such that foi0all i < m holds: the sub-sequence ofgiven by
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kjf?“ =kj ...k is either asub-permutationf = or a sequence consisting of a singbatial

4 Jit1
setfrom .

For example, the sub-permutation (showing the indicesi@iplusing extra subscript notation)
ma = (0{1},1 {2},2{3},3{2}4) has a possible segmentatidh = {0,1,4} leading to sub-
permutationg{1}) and ({2}, {3}, {2}), another segmentatiaB; = {0, 1,2, 3,4} leading to a
sub-permutation§{1}), ({3}) and twice the sequence with a single partial(§et). The set of
indicesB* = {0, 2,4}, for example, does not constitute a segmentation.of

A second example might make the segmentations even cledwmr: 7 =
(0o{1},1{2},2{2},5{3}4) there are segmentation®; = {0,1,2,3,4}, By ={0,1,3,4},
Bs ={0,1,4} andB, = {0, 3,4} (note that{({2}, {2}) is a sub-permutation ofz).

Segmentations and the hierarchical structure of sub-péatians. The following lemma (with
two sub-statements) is central for devising an algorithmtli@ hierarchical representation of
sub-permutations in permutation sets. Intuitively, the sub-statements in this lemma together
imply that we can build recursive tree hierarchies that waitk minimal segmentatiorsf = and
still coverall sub-permutationsThis is the intuition behind the algorithms presented mrlext
Section.

Lemma 3 (Sub-permutations and minimal segmentations)
The lemma has two subsections:

SegliFor every sub-permutatian, of another sub-permutationthere exists a
segmentation of into a sequence of segmefits, , ..., A,,,) in whichr, is a
member, i.e., there exists< i < m such thatd; = 7.

Seg2?letk > 1 be the minimal cardinality of a segmentation of a sub-peatin~. We
will refer to B with | B| = k as a minimal segmentation. For every segmentaiari
m, there exists a segmentatiét, ;,, of = such thatB,,.;,, C B and|B,,:,| = k. In
other words, every segmentatiéhcan be regrouped into a minimal segmentation.

Proof

Segl By contradiction. Let us assume there is no such segmentatio. If 7, # 7 is a sub-
permutation ofr found between positions indexed witlandj, then there existX; and X,., at
least one of which is non-empty, such that= (X;, ; 7., ; X,) (the subscriptsand, are used
to mark the indeces). If,, is not a member in any segmentationmthen (by Definition 12) for
every segmentatioR of = holds{s, j} ¢ B. Because the sub-sequence betwiesmd; is a sub-
permutationr,, this implies that either one or both of the sub-sequeigesnd X, cannot be
segmented into sub-permutations and single partial setsb&aus& oncat(X;, 7., X,) =7

is a sub-permutation, it is a sequence of sets over a rangmeécutive integefl;..n;..n;..n,|,
wherer,, is defined over th@roper sub-rangén;..n;]. Hence, the integer sets iK; and X,
must be defined as subsets[0f..n;_1n;1..n,]. But this implies that each such integer set in
itself is either a partial set or can form on its own a sub-péation ofr. Contradiction, because
this does constitute a segmentati®rof 7 such thati, j} € B.

Seg2Let 7 be a sub-permutation with a minimal segmentation of cafityn&B,,..,| = k. For
every segmentatio® of = we want to prove that there exists a segmentation chlled B’
such thatB' C B and |B'| = k. The proof is by induction onn = (|B| — k). For the case
m = 1: By contradiction. Suppose there is a segmentaBoof 7 with |B| = k + 1 for which
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there exists no minimal segmentatiéh ¢ B and |B'| = k. BecauseB segmentsr into a
sequenceXy, ..., X1 of &+ 1 sub-permutations or partial sets, the assumption holderiff
all consecutive pairsX; and X;;1 (1 <14 < k) holds: (X;, X;11) does not constitute a sub-
permutation. This situation can occur iff for dll< i < k holds the intersection ak; and/or
Xiy1 With Ujgq;:413X; is non-empty (multiple discontiguous source-side posgialigned
with the same target position) and/or, the converse, theXset X;,; does not constitute a
consecutive range of integers. But if this holds for all camgive pairs of segmenis B, then

by the definition of segmentation in every consecutive paisegments at least one segment
is a partial set. In that cas® constitutes the only possible segmentationradf lengthk + 1
because at least every other segmenBiiis a partial set. Because segmentation works with
consecutive segments and all consecutive pairB icannot form a sub-permutation, there is
no way to segment into k£ segments. This contradicts our assumption thats a minimal
segmentation of length > 1. This concludes the case = 1 in the induction.

For segmentation® with m = (|B| — k) > 1 we will exploit the standard induction as-
sumption: for every segmentatids, of = which fulfills 1 < |B,| — k < m there exists a seg-
mentation ofr called B such that3' C B, and|B’'| = k. We want to prove that the same holds
for every segmentatiofB| = m + k. By contradiction, let us assume there exj®@$= m + k
for which there does not existA c B and|B’| = k. This can be true iff we cannot reduée
in any way to a segmentatid®y C B such that: < |B;| < (m + k). For if we could find such
a segmentatiom3;, the induction assumption will apply; in other words,can be reduced into
B, first, and by the induction assumption there exiBts- B, C B and|B'| = k. But if there
exists no segmentatioB; C B such thatt < |B;| < (m + k) thennoneof the sequences
of adjacent segments ifi of length2 < |z| < (m + 1) can be reduced into a sub-permutation.
Moreover, none of the adjacent segments of length> (m + 1) can be reduced into a sub-
permutation because that would contradict the main assamabd the minimality of for .
But that implies thatB segmentsr in such a way that none of the sequences of segments in
B of length2 < |z| < |7| can be reduced into a sub-permutation. The latter impliasetery
sequence of length < |z| < |x| must consist of at least one partial set that has its compieme
outside the sequence in But that implies that3 and thus alser is a sequence of partial sets
each having its complement at a distafcg which can be true iffr cannot be segmented at
all into a segmentation of length larger than one. This @utitts the existence of a minimal
segmentation of of lengthk > 1.l

These two lemma’s together prove that every sub-permutatioof a sub-permutation
can be a segment in a segmentatidof = which is a superset of a minimal segmentatiomnr of

Next we take a little detour to define node-linked pairs oésrecalled Synchronized Tree
Pairs (STPs), and a constrained node linking relation akihat known from ITG (Wu 1997).
After defining STPs we return to our main task of represerttiegstructure of permutation sets
as hierarchical structures of their sub-permutations hade¢ordering they imply.

6.1 Synchronized Tree Pairs with Layered Linking
Because the labels in the trees assumed here are irrelvingt discussion, we may assume that

internal nodes in these trees are unlabeled (or labeledansthgle symbol calletiracke) and
that leaf nodes are labeled with integers representingiposiin sentence pairs (the terminals).
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Definition 13 (Synchronized Tree Pairs (STPs))

A Synchronized Tree Pair (STP),, 7, ~) consists of a pair of trees andr; and a node-linking
relation~ which at least links the roots of both trees. Apart from thatspany other node in,
could possibly (but not necessarily) be linked togethehwirdes inr;.

Wu (Wu 1997) defines BITGs that derive binary STRs,, ;) } each fulfilling strict criteria
on the node-linking relation. Graphically speaking, limksnot cross “vertically" but may cross
“horizonally”. We state this as theayered linking propertyalso defined by Wu (Wu 2010) as
thecrossing constraint

Definition 14 (Layered linking)

The linking relation~ between the nodes af andr; is acorrespondencéeft-total and right-
totaf*®), and for every pair of linked nodég., 11;), where i in 7, andp; in 7;), the children of
s are linked only with the children qf; and vice versa.

Figure 7: In the left-hand STP the roots are involved in eaity crossing links leading tot non-
Layered links, while in the right-hand STP all nodes are imed in layered linking.

Figure 7 shows a schematic example of one layered linkingaanther non-layered linking
(in this abstract figure the links are visualized as edges).

Like many current research that starts out from ITG, e.gy {\@97; Chiang 2007; Zollmann
and Venugopal 2006), we also limit the node linking relagido those that abide byayered
linking. We do not impose any further constraints. Particularly weat impose extra constraints
on the linking relations of sister nodes.

For permutation sets, the attractive aspects of STP’s ajtbred node linking is that they can
be represented as a single source tree decorated at evengimode. s with a local transducer
that explains how the child-order of the linked target npgés obtained as an order permutation
of the child-order ofus, plus or minus a handfull extra operations for dealing witinyto-one
and one-to-many alignments.

6.2 Representing permutation sets with STPs: Requirements
The algorithms for structuring permutations and permatasets into layered-linking STPs,

presented respectively in Subsections 6.3 and 6.4, takepat & permutation (respectively
permutation sety and output a finite set of STPs. These algorithms abide by leguirements

13 In simple words, every node i, is linked with some node im; and vice versa.
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stated in terms of the correspondence between sub-pefomgta@nd linked nodes in the STPs
built by these algorithms. On the one hand, these requirenpeavide the intuitive justification
for the algorithms, and on the other, they constitute ekplgguirements bridging between the
world of sub-permutations and the world of linked nodes ifPST

I ° °
P N S
c c ! . . 4
1 m
o o T TN
2 3 4 1 2 3
ey Te,,
[ ] [ ] [ ] [ ] [ ]
N Nl T P
(] (] i 4 1 b 1 ° ° 4
A~ S N N
1 2 3 4 o 3 2 o ° 4 1 °
PN
12 3 4 33 7 3

Figure 8: Upper-left corner: a schematic view of decompgsimb-permutations. All other trees
show possible hierarchical structuring of permutat{or, 3,4) into sub-permutations. Nodes
labeled withx will not be allowed by our algorithm. These trees constitute side of the STPs
we build for permutations.

11 (Soundness)Every linked node dominates a subtree with a fringe thatesponds to a
sub-permutation. We will say that the linked node domin#tassub-permutation and

that the latter is dominated by the node.

12 (Completeness)For every sub-permutatian, of input permutationr there will be a
linked node that dominates, at least in one of the STPs that the algorithm generates

for .

I3 (Maximal hierarchy): Let linked node: have a sequence of > 1 child nodes
ci, ... cm, and denote withr,., , ... 7., the sequence of fringes (sub-permutations or
partial sets) dominated by, . . . ¢,,, (See Figure 8 (upper-left corner) for a schematic
sketch):

*  The sub-permutation, dominated by nodg is equivalent to
concat(me, ... Te,, )-

* misaminimal segmentation af,.

Requirements (I11) and (12) together guarantee that thewe ame-to-one mapping between
the linked nodes in the STPs built by the algorithm and the merdmutations of the input
permutation set. Requirement (13) guarantees that thestreeture is meaningful and maximal
as a hierarchical organization of sub-permutations. The structure is compact in that it
organizes sub-permutations that concatenate togetlodaiger sub-permutations resulting from
the concatenation, and it is maximal because when 1 is the minimal segmentation of a sub-
permutation into sub-permutations, the tree structurebeilas deep as possible and contain as
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ALGORITHM 1 (CONSTRUCTINGPETS FOR PERMUTATIONS PeT's())
Input: A (sub-)permutationr = &, ...k, over[(l + 1)..(I + n)] for somel > 0.
Output: The set of Permutation Tred%T's(r).

n = 1: SetPeT's(m) contains a single PeT consisting of a root node directly datrig a
leaf node labeled with the only positionn and the operator on the root node is the
identity operator. Retur®eT s(m)

n > 1: Segment:Let the setB be aminimalset of indices between positionssn
such thatB segmentsr into m > 1 sub-permutations, . . . m,.

Build:
If there exist such minimal segmentations with> 1 then
For every minimal set of indiceB:
1 For eachl <i <m, we build the setPeT's(w;) which is built
recursively for sub-permutatiar.
2 For every combination of PeT$,,...t,, € PeTs(m) X ... X
PeT's(m,y,), we build and add taPeT's(w) a PeT consisting of a
root-node dominatingn = (|B| — 1) nodes; each of the resulting

child nodesl < i < m dominates the Pef; for =;.
3 The root node of the PeT built fd8 is labeled with a permutation

operatorO = (o1, ...,0n,) over [1..m] such that for every two
positionsl < i # j < m holds:7,, <, iff 0; < o;.
4 ReturnPeT's(m).

else #there exist no such segmentations B with m>1, i.e. m=1

1 There is no way to segmentand we build a root node of a PeT
that dominates. nodes, with the?” node ( < i < n) dominating
the only member ofPeT's(k;).

2 The PeT root node is labeled with the permutation oper@tes
(01,...,0p) over[l..n] such that for every two positions< i #
J <mholds:m,, <, iff 0; < oj.

3 ReturnPeT's(r). '

Figure 9: AlgorithmPeT's() outputs the set of PeTs for input permutatian

many linked nodes as possible (given all other requiren@mntshat the structure is supposed to
represent). Figure 8 shows example trees for structuriagithple permutatiofil, 2, 3,4). The
nodes labeled withr do not abide by the minimal segmentation requirement, vasemedes that
are unlabeled do so.

6.3 Permutation Trees: Hierarchies over Sub-permutation®f Permutations

We start the effort for representing permutation sets hikieally by first considering the
simpler case of permutations.

A Permutation Tree for a given permutatinmver[1..n] is a layered-linking STP consisting
of a tree representation over sub-permutations afid node-links represented as logatmuta-
tion operatorgecorating every node; a permutation operator on postgulates how to permute
the ordered sequence of the children:db obtain the sequence of children of the node thist
linked with. Permutation Trees (PeTs) are inspired by andrekthe kind of trees generated by
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(1,2) (1,2) (3,1,4,2)
L] L[] L]
/\
(271) (1,2) (172) .
° ° . |
./\. ./\. %t . 4 <1.‘2> <3,1‘4,2> <1‘2> <2.‘1>
2 1 3 4 N3 F F Fgi
A |
|
2 1 3 4 8 10 7 9 1 2 6 5

Figure 10: Permutation trees: left two for the same pernanatight the single PeT for the
permutation. Note that the identity operators are not nthrie pre-terminal nodes but left
implicit.

ITGs because they allow arbitrary layered linking relasias opposed to the inverted/monotone
binary choice that ITG strictly postulates. For every petation we will define a unique set of
PeTs that fulfills the requirements (11-13) from Section.6.2

Figure 9 shows Algorithm 1 for building the set of PeTs for apuit permutation. When
is non-trivial (i.e.,n > 1), the algorithm builds the PeTs recursively each time by ssgimg~
into a minimal sequence of sub-permutations and then Ingjlsiets of PeTs recursively for these
sub-permutations. The PeTs forare obtained by combining PeTs from these sets and putting
them under a single node dominating the segmentation.

Figure 10 exhibits the two PeTs for permutatidn2, 3, 4), and the single PeT for permuta-
tion (3,4,8,10,7,9,1,2,6,5). The latter case is interesting because the minimal segti@mdf
this permutation consists of four sub-permutations. Nbgerecursive structure which contains
binary branching as well n-ary branching nodes, dependirty® minimal segmentations of the
sub-permutations. We will return tainarizable permutations the sequel.

Theorem 1 (Soundness, completeness and maximal hierarchfy BeT's(m))
The set of PeTs output by AlgorithiReT's() fulfills the requirements (11, Soundness), (12,
Completeness) and (13, Maximal hierarchy) stated in déatelection 6.2.

Proof

Soundnes®y construction: every node created ByT's(w) is built for a sub-permutation. This
is easy to check for the cagse= 1 as well as for thé&uild subsection ofi > 1.

Completenesd he proof hinges on Lemma 3. We will proceed by induction anlémgth ofr.
The cases = 1 andn = 2 are trivial and are easy to prove as base for induction. Weaunate
on the induction step to length > 2, where we will use the induction assumption for all (sub-
)permutations shorter than The proof of the induction step is by contradiction. Supgposw
there is a sub-permutation. of 7 that is not dominated by any node in a PeT builtT s ().
Necessarilyr, # m andn > 1 because the algorithm must build a root node for every input
permutationr, whether withinn = 1 or whithinBuild for n > 1. There exists a segmentatiéh

of 7 in whichr,, participates (by Lemma 3, part Segl). Because assumed not to have a node
in any PeT,B cannot be minimal (because if it were minimal then Algoritiel s(7) would
build a node for it aBuild). However, if B itself is not minimal, then there is a hierarchical
structuring (tree) o3 (by concetenation of sub-permutations into new sub-peatiaunts) leading

to a minimal segmentatio,,,;, of = (by Lemma 3, part Seg2). Consequentty, will be
covered within one of the sub-permutations calieg) of B,,.;,. By the induction assumption
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and because ) must be strictly shorter tham, we find thatr, will have a node built for it
within the PeTs forr(,). Becauses,,;, is a minimal segmentation of, Algorithm PeT's()
will build a root node dominating a child for every sub-petation in the sequence defined by
Binin, 1.€. also forr,y. Particularly, a copy of the node built fat,, will constitute the root for
every PeT inPeT's(m(,) (Build). Contradiction because now there is a node corresponding f
7, in a PeT built forr.

Maximal hierarchyThis follows from the explicit points in the algorithm (p&ularly Segment
andBuild), Lemma 3 and the above proofs.
|

This theorem states the attractive property of the BeT's(w) that all and only the sub-
permutations ofr are represented as nodes labeled with permutation operatdhe PeTs.
Another attractive property is that the minimal branchinges define maximal trees in number
of nodes; becaused nodes dominate sub-permutations, afattér are translation equivalence
relations, we find that PeTs are maximal hierarchies oveqpsuinutations and can be viewed as
hierarchical, extensive explanations of translation eajence.

Binary Inversion-Transduction Trees (BITT€pnsider for example the permutati¢i) 1, 3, 4):
both PeTs for this permutation are fully binary branchireg(Eigure 10). A well-known example
of a permutation that does not have binary branching PeT$,i§ 1, 3), due to (Wu 1997).
The latter permutation is called rron-binarizable permutatiorPermutations that have fully
binary branching PeTs are calldiharizable permutations (Huang et al. 2009). Binarizable
permutations can be hierarchically structured into PeTsdrynal-form ITGs (NF-ITGs), hence
we will refer to fully binary branching PeTs with the nafmary Inversion Transduction Trees
Interestingly, and due to (Wu 1997), any permutation of targxactly three is binarizable. From
this follows that none of the PeTs built by algorithfeT's() will contain 3-branching nodes.
Note that is not necessarily true for the general case of ption sets (next section).

6.4 Hierarchical Alignment Trees (HATS) for permutation sets

Figure 11 shows Algorithm 2 which builds the sEtAT's(w) for any permutation set. It
generalizes Algorithm 1 and the differences are local. Wk refer to the STPs built by
Algorithm 2 with the nameHierarchical Alignment Tree§HATS), in order to distinguish them
from PeTs and BITTs, which are simpler versions of HATs.

Observe in Algorithm 2 an important difference with Algdrit 1 for the casén = 1):
Algorithm 2 discriminates between partial sets (which aeresented as leaf nodes) and sub-
permutations, which are built as pre-terminal nodes dotimiga leaf node. The importance of
making this distinction can be understood from the fact #ietmembers of a partial set must
remain together (under the same mother node) because ntreméeparately corresponds to a
target-side node. This is in contrast with sub-permutation

Another difference is that Algorithm 2 defines the node ofmesaas permutation sets. For
step 3 underBuild in Figure 11, the permutation set is initially built with ‘gaie holders"
(stepa) that are normalized (stelp) to get rid of gaps. For example, in the permutation set
(3,{2,6},1,4,5) (see Figure 14) the algorithm will reduce sub-permutatibis) into a single
position (stepa), leading to(3, {2, 6}, 1,4) which does not constitute a permutation set (not a
contiguous range of integers). In (stbp these “place holders" are reduced to a consecutive
range of integers: in this example férwe find k,,, = 4 # (6 — 1) and hence is exchanged
with 5, leading to(3, {2,5},1,4).
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ALGORITHM 2 (CONSTRUCTINGHAT S FOR PERMUTATION SETS H AT s())
Input: A sub-permutation / permutation set= (ki, ... k,), where eacl; is an integer set.
Output: The set of HATSH AT s().

n=1: if (7 consists of a single partial set)
then HAT consists of a leaf node labeled
else 7 must contain a sub-permutation
HAT = a node dominating a leaf labeled with
and the operator on the node is the identity operator.
Return HATs(mw) = {HAT}.

n > 1: Segment:Let B = {jo =0, j1, ..., jm = n} be aminimalset of indices
between positions in such thatB segmentsr into m > 1 segmentsor all
0 < i < m, w4 stands for segmenk;, .. . k.., ).

Build:
If there exist such minimal segmentations with> 1 then
For every minimal set of indiceB:
1 Foreach) < i < m, we build the seH AT s(m;41) which is built recursively
for <7Ti+1> = </€§Z+1>
2 For every combination of HATS ¢1,...t, € HATs(m) x ... %
HATSs(m,,), we build and add toHATs(w) a HAT consisting of a
root-node dominatingn = (|B| — 1) nodes; each of the resulting child
nodes) < i < m dominates the HAF,; for (m; 1) = (kj, ... kj,,,)-
3 Theroot node of the HAT built foB is labeled with gpermutation
setO = (o1, ..., on) built as follows:
a For0<i<m # make place hol ders 4
if ;11 IS a sub-permutation then, ; = min Uiii},» ky
elseoiH = 741 # for partial sets /
b Forl<i<m # reducing the integer gaps
lettemp = 0
For allk € o; in increasing order
letk; := max(UjL;0; N [1..(k — 1)])
temp:=temp U {k; + 1}
0; :=temp

4 ReturnH AT 's(m).

else#t here exist no such segmentations B with m>1, i.e. m=1
1 There is no way to segmentand we build a root node of a HAT
that dominates. HATs, with thei** HAT being a member of the
singleton sefd AT 's(k;).
2 The HAT root node is labeled with a permutation set=
(01,...,0,) €quivalent tar.
3  ReturnH AT s(r).

Figure 11: AlgorithmH AT s(w) outputs the set of HATs for input permutation set
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2! T 22 Jo — <
3
1 2! 3 2?2
Je ne fume  pas
‘ fume
I don't smoke
1 2 3 pas
Figure 12: The French constructioe .. pas aligned withdon’ t . The word-aligned sen-

tence pair (lower left corner) is shown with the French sideattated with the permutation set
representing English order relative to French order; weens® notatior2! and2? to represent
the alignments of both wordse andpas with the second position at the English side. The
HAT exhibited for this permutation set is shown in the upgdt torner. The notatiofi, 2, 1)

on the node dominating this construction stands for (curdckets ommitted) a permutation set
operator linking the first and third children of this nodefdnatingne andpas) with the first
child under the corresponding node on the English side. Tue+aligned trees that the HAT
packs together are depicted at the right side of the figure).

Figure 12 contains the runnimge  pas example represented as HAT and unpacked into
an STP. Nodes that are representee® d®minate sub-permutation of the permutation set, and
they are linked nodes on both sides of the STP. Particulariy how a node dominatésine
(inside thene fune pas) signifying that it constitutes a sub-permutation repnésd bye and
linked with a node dominatingnmoke. This does not hold for the wordse, pas anddon’ t .
They are grouped together only includihgrme andsnoke. Note also that we could extract
pairs of linked subtrees from this STP only at the nodes nthuilith ¢ and thereby extract all sub-
permutations, i.e., phrase pairs. If we would allow the seéx to end at frontier nodes marked
we would obtain also Chiang-like constructions represgrsiynchronous productions like-X
( X . x )whereX is a nonterminal variable of the synchronous grammar and the

don’ t x1
ne x1 pas

superscriptX ! stands for synchronized nonterminal leaf nodes (link@ddes in our STPS).

Like Algorithm 1 also Algorithm 2 fulfills the soundness, cplaeteness and maximal
hierarchy requirements, i.e., generalizing Theorem 1 fermutations to permutation sets
(and the set of phrase pairs to the Chiang’s set of syncheopmductions). The proofs of
this generalization are rather similar (but more detaibttj hinge on Lemma 3 (see Proof of
Theorem 1). Importantly, Lemma 3 is stated and proverpomutation sets in generalhich
implies that it applies directly within the proof of the geakzation of Theorem 1 to permutation
sets (i.e., Algorithm 2). Given the central role of Lemma 3hwi the proof, we skip the explicit
statement of a corresponding theorem and proof.

Remarks about efficient implementatioAs efficient version of Algorithm 2 will avoid re-
computation of the same sets of HATs by using a chart or paifde: A CYK (Younger 1967)
bottom-up implementation is relatively easy to devise amhhsis of the recursive, top-dwon
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Algorithm 2. Given such an efficient chart-based approalt, domplexity of Algorithm 2
depends mainly on the complexity of (1) identifying all spermutations of a given permutation
set and (2) on computing the minimal segmentations for egekypermutation. Identifying
all sub-permutations and partial sets tak¥®?) time as it demands checking for every span
(1,7) whether it is a sub-permutation (after é&{n) scan of the input to note down for every
integer set whether it is a partial set or not). Having idediall sub-permutations and partial
sets, the rest of the algorithm is very similar to standar&K@hen a grammar is given, albeit
here the grammar is implicit in finding the minimal segmeiota of every sub-permutation.
To identify the minimal segmentations of a sub-permutatiblengthm (there areO(n?) such
sub-permutations), Dijkstra’s shortest-path algoritinjkstra 1959) can be applied to the graph
representing all eligible segmentations of the sub-peatian. The graph consists of vertices
for a sub-permutation of length and Dijskra’s algorithm take®(m?) time. Hence, the worst-
case complexity of Algorithm 2 i®(n*).

There is, however, one remaining wrinkle pertaining to tlemtment of NULL-aligned
words. The phrase pair semantics of translation equiveldittates that every unaligned word
must group with adjacent phrase pairs on either side. Whemtimber of such unaligned
words is large, this could lead to a very large number of pé¢atian sets representing the
same alignment. Crucially, the structure shakirizetween the different permutation sets implies
that this does not disturb the polynomial-time complexifyttee algorithm. Nevertheless, the
computation of the full HAT forest can be space-consumingome extreme cases and for the
experiments in Section 7 we will set a cut-off constant on ¢bmputation, which rules out
only a negligblenumber of alignments in the corpus. With these hints reggrdin efficient
implementation, we will leave the full formalization of tkeicient version of the algorithms for
future work dedicated to efficiency issues.

6.5 The role of node operators

The semantics of a node operator that is a permutation seter the child sequence of the
current node is a generalization of the semantics of the Ip&atorg] and (). The semantics
of these operators is the same as the definition of permutaéits for standard alignments but
here it applies to the sequence of child nodes of the curmaié .MAlgorithmically speaking the
semantics of the permutation sebver the children of the current nogelinked with a target
side nodeu, is obtained as follows. Scanningleft to right: for the set of integerX in thei'"
position inm generate child positions undgy corresponding to the integers i and link each
of these target positions with th& child of .

Throughout this paper we fixed the semantics of word alignsmenbe equal to the set
of Chiang-admissable sub-alignments (with the phrases fmding the fully lexicalized bilin-
gually contiguous subset). On the one hand, the HAT reptaten represents this semantics
compactly. On the other, the choice for this semantics oireents difficult questions about how
the semantics omulti-word, minimal phrase pairsA minimal phrase pair is one that cannot
be segmented any further because undectmgunctive interpretatiomf word alignments, the
contiguous sequences on both sides belong together. Higunehibits three abstract word align-
ments that constitute minimal phrase pairs. In the HAT regnéation each of the three will be
represented as a single linked node (pre-terminal levefj)idating three terminal nodes. While
the tree structure itself is the same, the node operators(jiation sets) on each are different.

14 In analogy to the monolingual case of parsing finite-stateraata (lattices or word-graphs) with CFGs (van Noord
1995; Sima’an 1999), the bilingual case here also remailympmial-time; the time complexity multiplies with a
constant factor linear in the number of edges/transitiorthé automaton.
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The node operators specify the internal alignment strector, otherwise, hierarchically very
difficult to represent word alignments. This way, the intralignments of phrase pair units
remain preserved. As mentioned in Section 4, this difficigltg theoretical matter regarding the
semantics of word alignments.

<{2}, {1,3}, {2}> <{1},{1,2,3}, 3> <{1,2,3}, {1.2,3},{1,2,3}>

P

N

D

<{2}, {13}, {2p> <{1.2}, {2}, {2, 3p> <{1,2,3}, {1,2,3}{1.2.3}>

Figure 13: Three word alignments that constitute minimabph pairs and their HATs
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Figure 14: Dual HAT representations (for source and tarigess for a complex word alignment
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Figure 14 exhibits an example word alignment (coming shiafgom our automatically
aligned data) and a hierarchical representation congistira HAT on one side and its dual
HAT on the other side, with links between the pairs of nodeprgsented by a choice
of circle filling). This word alignment shows an interestisgse of a discontinuous align-
ment of owe with zi j n andver schul di gd together with another crossing alignment.
The HAT representatiomevealsa pair of linked nodes dominating the synchronous pair
((X1 owe X2 X3), (X2 zijn X3 X3 verschuldigd)), whereX;, X, and X3 stands for three
aligned pairs of nodes in the HAT. The latter bilingual constion is a Chiang-admissable sub-
alignment. The pair of linked nodes is decorated with a péation set(3, {2,5},1,4) on the
English side and3, 2, 1,4, 2) on the Dutch side. Observe how these permutation sets Bctual
link the secondZi j n) and fifth “er schul di gd) children of the Dutch node with the second
child (owe) of the English linked node, thereby maintaining the lekigard aligment for such
cases within the HAT structure.

6.6 What are empirical word alignments?

|:| Permutations Sets

|:| Permutations

|:| Binarizable Permutations

|:| Empirical word alignments

Figure 15: A sketch of a possible characterization of eroginvord alignments

Figure 15 shows a sketch of a likely situation: empirical evalignments are not a proper
subset of binarizable permutations, nor are they a progesedwof permutations. However, by
definition, word alignments are a subset of permutation Sé¢te figure shows that empirical
word alignments overlap with binarizable permutationg#af), with permutations (area A+B)
and with permutation sets (area A+B+C). What are the raaiizes of areas A, B and C? Clearly
this is an empirical question that depends on the natureegbdinallel corpus (language pair and
language use) and on the kind of word alignments found imithé next section we would like
to shed some light on this question. There are various wayguantifying this question and we
would like to cover a few of them using the HAT algorithm.

7. Empirical explorations of the hierarchical characterigics of word alignments

In the preceding sections we showed that every word alighisnbe represented bysaman-
tically equivalentset of HATS, i.e., given a certain semantic interpretatibword alignments
as sets of translation equivalents. With translation egjaivce (the semantics) at the center of
attention, we are now interested in the statistics of varisubsets of HATs that fit well with
manual or automatically induced word alignments in paraltepora. Broadly speaking, the
question addressed here is
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What percentage of word alignments and translation egeritsilcan be represented
by specifying relevant formal constraints on the HATs (eupperbound on
branching factor, upperbound on difference from a perrnartg®

This empirical question pertains to statistics over woidrathentsin the context of the present
choice of semantics (defining the set of translation egaiva) The latter observation is im-
portant because we think that word alignments do not obtegir semantic interpretation (in
terms of translation equivalents) from an external formangmar. Rather, only after fixing
the semantics of word alignments, one can measure the ageqbia certain (synchronous)
grammar/formalism for representing the semantic integpien of the word alignments.

Next we report various measures over word alignments inaratpBecause HATs are
minimally branching STPs for the word alignments, a primdifierentiating parameter for the
performance measures is tmaximal branching factoof the nodes in the HATs built for a given
word alignment:

Bmaz: the maximal branching factasf the linked nodes (above the pre-terminal level) in
the HATs. The branching factor is measured on both sides lahak&d nodes in the
HATSs for a word alignment must fall within the range. 3,,,...] to be counted if®

For a givenG,,... value we report:

Alignment coverage:This is the percentage of word alignments for which the dnang
factor of all nodes in all HATSs fall within the settings, ... Alignment coverage is not
necessarily equivalent mignment reachabilitySggaard and Wu 2009; Sggaard
2010) or the complementary measurgafsing failure rate (PFR{Zens and Ney
2003; Sggaard and Wu 2009), which are both reported undeewubf ITG.

Alignment coverage is equivalent to alignment reachahilitder a given grammar
formalism iff both are measured in under the same semaniitsech that the setting
of Bmaz correspond exactly to the formalism in questidnn this sense, alignment
coverage fop3,,.. = 2 is an exact (as opposed to upper/lowerbounds) on alignment
reachability for NF-ITG®

Translation equivalents coverage (TEC)This is thepercentage of phrase-paitsat are
represented by a linked node in the HATs (if any) that haveimabkbranching factor
Bmaz- The TEC measure is strongly related to Translation UnitsrBRate (TUER)
(Sggaard and Kuhn 2009; Sggaard and Wu 2009). In fact, if @¢hessame definition
of translation equivalents, the same counting algorithchthe same representation for
both (NF-ITG), we find that TUER = (1-TEC).

Binarizability score: The ratio of the number of linked nodes in a HAT (subjecbtq,.)
built for a given word alignment relative to the number oflsmodes in a hypothetical,

15 Formally, we think that this can be achieved as a measureeoftarsection of the set of HATs forveord alignment
with the set of synchronous trees generated by a synchr@raoemar for thesentence pair

16 Null aligned words are not counted in the branching facter,even unaligned word dominated directly by a node
contributes zero to the branching factor of that node. Ttierrale behind this is that we do not want to discriminate
between permutation sets differing only by NULL aligned d&rThis means that the reported results are rather
conservative.

17 Unlike for ITGs, the cas@,,, .. = 3 is not necessarily equivalent ,,,. = 2 because the permutations sets (as
opposed to permutations) over three positions can be naribable, see e.g., Figure 13.

18 Because our algorithm builds HATs over minimal phrase p#ies case3, ., = 2 is equivalent to the NF-ITG over
these minimal phrase pairs, i.e., given the defined sensamtiword alignments.
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fully binary branching HAT (using the length of the shortastong the source and
target sentences minus one). The binarizability scoreppesed to TEC, provides a
relatively objective measure of how hard it is to represkattord alignments in the
corpus by deeply nested HATs. The lower the binarizabilityrs, the less linked
nodes exist in the HATs admitted (givéh,...), if any at all. HATs that contain flat
structures indicate complex word alignments consistingnafligned words and
many-to-many alignments that cannot be decomposed inttesrii& units. This can
be seen to indicate idiomatic translation, as opposed tgositional translation
(given the semantics defined here).

Because for some alignments our algorithm could take a iomgtb calculate the HAT forest we
had to abort the algorithm in a small percentage of cases)( °), mostly very long, complex
alignments with many unaligned words. For all reported expents we set a cut-off (set at 100k)
on the number of inferences per linked node in the CYK chaptémenting the HAT algorithm
in Figure 11. Once the algorithm exceeds 100k inferencea fayde we skip the alignment. In
what follows the number of skipped sentence pairs is redddieeach experiment separately.

After presenting the empirical results, we will discuss hibwse results relate to existing
work, primarily concentrated on the coverage of (NF-)ITG.

7.1 Manual word alignments

In this part, we use the manually aligned part of the Hansewdsus (English-French), created
and first used by Och and Ney (2000, 2003). This tiny corpusistsof 447 manually aligned
sentence pairs, were alignment links are labeled Bitine or Possible Some basic statistics
of this corpus is shown in Table 1. We report the results fer S$ure+Possible links, i.e., all
alignment links.

Language Pair English-French
Total number of sentence pairs 447

#skipped sentence pairs 0

#sentence pairs containing nulls 231

Mean source length 15.705:6.994
Mean target length 17.362+7.554
Mean and STD of ratio source to target length8.928+0.221
Mean #links per word 2.524+1.73

Table 1: Statistics of Hansards manually aligned corpus. ‘Tiean #links per word" is calcu-
lated using the meap—-algnmentlinks __ o ar the corpus word alignments.

Mingc(s,¢) length of z

Tables 2a, 2b and 2c report respectively the break-downwgrage, TEC and binarizability
score t08,q.- All scores increase rapidly in the ran@g,.. € [2..10], but more gradually for
Bmaz > 10. The alignment coverage and the TEC results start low indterdies fo15,,,4., = 2
(NF-ITG), but increase rapidly to the low nineties By,.. = 6. The increase continues at a
decaying pace for higher values gf,.... The binarizability scores, Table 2c, are a different
matter. The results make clear that the HATs built for thedradignments contain only at most
62% of the number of linked nodes irhgipotheticafully binary HAT (binarizable permutation).
This suggests that these word alignments are representbdH&Ts that are somewhat flat
relative to the hypothetical fully binary HATs. This obsation completes the picture drawn by
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English-French| | 8,.qz English-French Bmaz | English-French
Brmaz = 2 71.46% 2 73.54% 2 42.34%
Brmaz = 3 77.08% 3 80.66% 3 46.97%
Brmaz = 4 82.47% 4 87.24% 4 51.53%
Bmaz =5 87.19% 5 91.74% 5 55.00%
Bmaz = 6 90.11% 6 93.81% 6 56.82%
Bmaz =T 92.58% 7 95.12% 7 58.19%
Bmaz =8 94.38% 8 96.96% 8 59.77%
Bmaz =9 96.40% 9 98.30% 9 61.02%
Brmaz = 10 97.75% 10 98.89% 10 61.77%
Bmaz = 15 99.33% 15 99.81% 15 62.66%
Bmaz = 19 100.00% 19 100.00% 19 62.91%
(a) Alignment coverage. (b) Translation Equivalents Coverage. (c) Binarizability scores.

Table 2: Scores for Sure+Possible manual alignments in tes&tds corpus as a function of

5771(13?'

Kind of HATs (Permutation Sets)| English-French
BITTs (Binarizable permutations| 71.46%
PETSs (All permutations) 72.14%
HATs (Permutation Sets) 100.00%

Table 3: The ratio of the different subsets of HATs in the nar&ure+Possible alignments in
the Hansards corpus: BITTs, PETs and HATs

the coverage and TEC results féy,,. > 2: the word alignments are clearly far more complex
than the entry-level cases of binarizable permutations.

At least as interesting, Table 3 reports the coverage of vatighments to the kind of
permutation set (HATS) involved: binarizable permutasi¢BITTs), permutations (PETs) and
permutation sets (HATS). Remarkably, merely moving awaynfbinarizable to all permutations
does not increase the coverage much, whereas the generalfqaermutation sets provides full
coverage. This result together with the break-down of tadssics tos,, .. values in the other
tables suggests actually that the cases of non-binaripabteutations tend to cooccur with other
complex forms of alignments, including discontinuous arahgrto-many cases. This does not
mean that we do not need the full descriptive power of pertiauts, but that on their own they
arealmost as insufficient as their binarizable sub&mt capturing word alignments found in
actual translation data.

English-French
D(a,s,t) = 0 (pure permutations 72.04%
D(a,s, t) =1 77.85%
D(a,s,t) =4 85.46%
D(a,s,t) =12 90.16%
D(a,s,t) =30 95.53%
D(a,s,t) =50 98.66%
D(a,s,t) =83 100.00%

Table 4: Coverage of the Hansard manually aligned corpudwasciion of D(a, s, t).
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To obtain a better picture, we refine Table 3 by ordepegmutation setinto increasing
subsets:.we measure how far a word alignment is from being a permutatiormally, a
permutation set (word alignment) differs from a permutatiothat it is a non-bijective relation,
i.e., it may contain many more links than the bijective caséd@ustive one-to-one) and/or the
source and target sides may contain a different number dfigos Given our semantics, it
makes sense to consider minimal phrase pairs (rather thadsjvas standing at individual
positions. Consequently, we define for every word alignment, a) its “distance"D(a, s, t)
from being a permutation simply as the absolute value of ifferdnce between the number
of individual alignment links it containsnumber of links(a)) and theminimumnumber of
positions {ength()) between the source and target sides, where both numbereaseired over
the minimal phrase pairs (not the individual words):

D(a,s,t) = |[number of links(a) — rrennt length(z)]

This measure is afirst approximation of the idea, but it pfegia meaningful approximate break-
down of the space between word alignments (permutatiohaetspermutations. Table 4 shows
the breakdown of the coverage of word alignments to any vafuB(a, s, t) in between the
two extreme cases of pure permutatiohs4, s, t) = 0) and arbitrary permutation sets that are
equivalent to the word alignments themselves. Clearlys@pmately one in five of these manual
alignments falls somewhat far off from pure permutatiob$s, s, t) > 1), whereas almost one
in four is beyond binarizable permutations. This highlgtiie need for future refinements of
permutation sets into more tight subsets that characterézeial word alignments.

7.2 Automatic word alignments

We report empirical results on English-Dutch, English#fete and English-German corpora
obtained from the respective corpora in the Europarl cttdac(Koehn 2005) by setting an
upperbound of 40 words on the sentence length on the soutt¢éaeget sides. Table 5 lists
the sizes of the corpora. The corpora we use are about hadizbeof the original corpora but
we think that they are large enough to contain word aligns\Befpresentative of the subsuming,
full-size corpora.

Language Pairs English-Dutch | English-French | English-German
Total number of sentence pairs 945167 949408 995909
#skipped sentence pairs 745 257 453

#sentence pairs containing nulls | 801948 783367 839335

Mean source length 21.295+8.916 | 20.556+:8.585 | 21.559+-9.138
Mean target length 21.212+9.011 | 22.552+9.383 | 20.459+8.872
Mean and STD of ratio of source 101.029£0.219 | 0.934£0.201 1.081+0.244
target lengths

Mean & STD #links per word 1.12+0.14 1.15+0.15 1.14+0.16

Table 5: The corpora used in our analysis (sentence lergitd words). The “mean

#links per word" is calculated using as the mean over the uoglignments for the ratio
# alignment links
mingc(s ¢} length of = °
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Model Number of training iterationsg
IBM model 1 4
HMM model 3
IBM model 3 3
IBM model 4 4

Table 6: GIZA++ training policy

English-Dutch | English-French| English-German

Brmas = 2 45.52% 52.84% 45.60%
Bimaz = 3 55.77% 67.27% 56.80%
Bimas = 4 73.95% 82.60% 74.75%
Brmae = b 83.51% 90.01% 84.63%
Bmaz = 6 89.92% 94.40% 90.76%
R 93.56% 96.72% 94.36%
Bimaz = 8 95.91% 98.06% 96.55%
Bimaz =9 97.37% 98.85% 97.88%
Bmaz = 10 98.33% 99.31% 98.71%
Brmaz = 15 99.86% 99.95% 99.90%
Bmaz = 21 100.00% 100.00% 100.00%

Table 7: Coverage of the corpus as a functiomgf,, for symmetrized (grow-diag-final) word
alignments in EuroParl parallel corpora (sentence lergd®) for three language pairs

Following standard practice (e.g., (Koehn et al. 2007)§, skentences were lower-cased
and tokenized using the relevant Moses scriiptEhe sentence pairs were word aligned using
GIZA++2° with training iterations that are shown in Table 6.

The grow-diag-final heuristic was used for symmetrizatiérih@ alignments in the two
translation directions. The grow-diag-final heuristic igrently considered best practice, and
compared taunion or intersectionof alignments seems to give a good compromise between
precision and recall, i.e. it aligns most words while notdsag overly imprecise in doing so.

Tables 7 and 8 show the alignment and TE Coverage resulteatdsgly. Unlike the
manual word alignments, for the automatic alignments the@ge and TEC results increase
dramatically fors,,q, values in[2..6]. For .., = 2 the results are in the mid/low forties for
English-Dutch/German and low fifties for English-Frenalt by 3,,,... = 6 all results are in the
nineties or thereabout.

Automatic alignments obtained by symmetrization hewss{particularly grow-diag-final)
are built in a way that allows the extraction of a large humbkephrase pair equivalents.
This could explain why binary branching HATs (BITTs) havever coverage of such word
alignments, and why more often than not a larger branchicpfahan two is needed. Table 9
supports this observation. On the one hand, for at most pibenching HATS (4. = 2),
the binarizability score is very low in the thirties (Dut@&rman) or forties (French) suggesting
that these word alignments are hard to capture with BITTst@nother, byS,,.. > 10 the
binarizability score is around the 83% for English-Frenabgesting HATs with many linked
nodes, particularly when we contrast this with 62% for thenstads manual alignment. It

19 http://ww. statnt. org/ noses/
20 http://wwi6.informati k. rwt h-aachen. de/ Col | eagues/ och/ sof tware/ G ZA++. ht i .
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English-Dutch | English-French| English-German
Brmaz = 2 44.63% 51.99% 43.40%
Bmaz = 3 56.35% 68.55% 56.13%
Bmaz = 4 75.79% 84.64% 75.46%
Brmaz =5 85.51% 91.93% 85.79%
Bimaz = 6 91.64% 95.83% 91.83%
Brmaz =7 94.91% 97.71% 95.23%
Brmaz = 8 96.90% 98.73% 97.18%
Brmaz =9 98.08% 99.28% 98.33%
Bmaz = 10 98.82% 99.59% 99.02%
Bimaz = 15 99.91% 99.97% 99.94%
Bmas = 20 100.00% 100.00% 100.00%

Table 8: Translation Equivalents Coverage as a functios),gf,

English-Dutch | English-French| English-German
Bmaz = 2 33.45% 41.43% 32.75%
Brmaz = 3 42.40% 54.75% 42 .45%
Bmaz = 4 58.38% 68.92% 58.19%
Bmac =5 66.47% 75.47% 66.59%
Brmaz =6 71.75% 79.21% 71.62%
Bmaz =1 74.63% 81.10% 74.48%
Bmaz = 8 76.43% 82.15% 76.14%
Brmaz =9 77.52% 82.76% 77.14%
Brmaz = 10 78.22% 83.10% 77.74%
Bmas = 15 79.27% 83.54% 78.57%
Brmaz = 21 79.35% 83.57% 78.62%

Table 9: Binarizability scores as a function/@f, ...

Kind of HATs (Permutation sets) | English-Dutch| English-French| English-German
BITTs (Binarizable permutations 45.52% 52.84% 45.60%
PETs (Permutations) 52.63% 56.56% 52.55%
H AT's (Permutation sets) 100.00% 100.00% 100.00%

Table 10: The ratio of the different subsets of HATs in thepes: BITTs, PETs and HATs

is unlikely that the latter difference can fully be explainey the difference in language use
(Hansards vs EuroParl) and, in fact, the shorter averagersemlength in the Hansards manually
aligned corpus actually suggests the reverse situatianidgbe true. This supports the hypothesis
that the symmetrized automatic alignments are built suah ttiey can facilitate extracting a

larger number of phrase pair equivalents, leading to mamgmodes in the HATs than manual

alignments.

Table 10 shows that the coverage of BITTs around 52% for Fremd 45% for Dutch
and German. The coverage of PETs (permutations) incregsés/bo only, again suggesting
that neither BITTs nor PETs (as pure permutation-devices) provide good coverage of
phenomena in word alignments. If only approximately 50%Ilb$ach word alignments can be
represented fully as a permutation, then the other 50% déséwe notion of a permutation set
that can capture discontinuous alignments and complex #fanyany cases. Yet, permutation
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sets remain simple extensions of permutations and HATs eaeé&n as conservative extensions
of PETs and BITTs.

English-Dutch| English-French| English-German
D(a,s,t) = O (pure permutations 52.63% 56.55% 52.55%
D(a,s,t) = 75.86% 80.12% 75.29%
D(a,s,t) = 90.11% 92.27% 89.28%
D(a,s,t) = 96.05% 97.18% 95.60%
D(a,s,t) = 98.44% 98.95% 98.19%
D(a,s,t) = 99.39% 99.60% 99.28%
D(a,s,t) = 10 100.00% 100.00% 100.00%

Table 11: Coverage of the corpus as a functiodo4, s, t).

Table 11 shows the breakdown of the coverage statistic @haatic word alignments to
D(a,s,t), i.e., the measure of “distance" of the word alignment fra@imb a pure permutation.

In symmetrized automatic alignments, it turns out that athome half is beyond permuta-
tions, whereas by distande(a, s, t) < 5 there is almost full coverage. Intuitively speaking, only
a small number of deletions of alignment links in these atignts should result in alignments
that resemble permutations. This does not reveal the fatipdexity of these alignments but it
does suggest that the automatic alignment that are nomizabée are less complex than their
Hansards manual (Sure+Possible) counterpart. We thinktisas because the Hansards manual
alignments (Sure+Possible) are in many cases dense wikth (kee the “mean number of links
per word" in Tables 1 and 5). Some of these manual alignmémig\slink almost all source
words with almost all target words leading to rather flat HARgl fewer phrase pair translation
equivalents than the automatic alignments.

7.3 Discussion and related empirical work on alignments

As stated earlier, the empirical results presented in tleeqating sections are not particularly
targeted at studying the coverage of a certain grammar femmdlike ITG). Nevertheless, we
see the coverage of NF-ITG as an opportunity for a first apptia of our theory. Our results
providedirectly and exactly computembverage results for NF-ITG, given the chosen semantics.
Before we discuss these results, we will discuss a crugi@asf how these results are obtained.

The debate concerning the representation power of (NF-JoF@&anslation data continues
and the reports concentrate mostlyugper bounds$or the representation power of ITG in terms
of manual or automatic word alignments (Zens and Ney 2008g%at al. 2004; Wellington,
Waxmonsky, and Melamed 2006; Sggaard and Wu 2009; Sggaafi). 2Bggaard and Wu
(Sggaard and Wu 2009) observe correctly that the repottgiliterature differ considerably in at
least four dimensions (i) Data: what data and which aligrnisere used, (ii) Metrics: the way the
coverage is measured (sentence vs. translation unit Jeti@)sSemantics: how to interpret word
alignments (disjunctively/conjunctively) and (iv) Algtirmics: the algorithm used for computing
the upperbounds. In studying some of the existing liteeatve found it particularly difficult to
pin down the exact choices made, which makes it even moreuliffio interpret the reported
results. There is, however, a good reason for the difficultgxact description as we explain
next.

In particular, choices (iii) and (iv) pertain to the formabplem of how to parse word align-
ments with a synchronous grammar. We think that the problemeasuring the exact coverage
of word alignments by a synchronous grammar is particulesiyiplicated because there is no
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a priori, objective, formal grounds on which word alignmeahd synchronous grammars can
be formally intersected. Before intersecting these two metely different representations, it is
necessary to specifyshared meaning/semantidadeed, it is necessary to define the semantics
of word alignments, as sets of translation equivalents,raptesent them by synchronous trees
with the same semantic interpretation as the trees gendgitthe synchronous grammatr, i.e.,
linked pairs of nodes dominate pairs of fringes that com&itranslation equivalents. Without
fixing the latter relation between STPs and translationvedents, it is difficult to talk about
how word alignments exactly intersect with an unknown inséaof a synchronous grammar. In
essence, here we define for every word alignment a semaygcalivalent set of HATs, and then
we check that these HATs can be built by an instance of the m@arformalism, i.e., that there
exists an instance at all that can generate these HATs. Asediedarlier, for measuring sentence-
level coverage, we check that there exists an instance gf#memar formalism that can generate
all these HATs exactly. And for coverage/recall of trarislaequivalents/units (TEC), we check
the percentage of linked nodes that can be generated bytandesof the grammar formalism.
This is exactly the methodology followed by the present work

Our results withG,,., = 2 are in fact exact coverage and TEC results for NF-ITG. Some
earlier work has concentrated on measuripperbound®on the coverage/TEC either by dis-
counting the complex alignment cases that cannot be cousrédF--ITG, e.g., (Sggaard and
Kuhn 2009; Sggaard and Wu 2009), or by defining a “lighter"aetins of word alignments by
employing a disjunctive interpretation (as opposed to tleenaccepted conjunctive interpreta-
tion) (Wellington, Waxmonsky, and Melamed 2006). In costraith earlier work, our results
are exact results, formally based on the intersection idééined above and are subject to the
chosen semantics.

As far as we can see, the results presented in (Zens and N8y Q0 Carpuat, and Shen
2006; Sggaard 2010), although based on a different appavatiertain to different data sets and
word alignments, are measured in ways that might be (clgsenf@iementing the intersection
advocated here. Zens and Ney (2003) employ Viterbi alignsnen Hansards data (sentence
length up to 30 words) and obtain far higher coverage re$at®NF-ITG (~ 81% and 73%
depending on direction) than our results for English-FhreBaroParl data with symmetrized
word alignments & 53%). Apart from differences in corpus data, symmetrizégnahents,
constituting the backbone data for training state-ofdhesystems, are known to be distinctively
different from their Viterbi uni-directional ancestorshd coverage result of (Sggaard 2010)
on the manual Hansards data (77%) comes very close to ourag®/eesult (72%). Sggaard
(2010) is presented densely and somewhat informally thaesdetails escape us. We attribute
the difference to various reasons, including sentencgthedifferences (in (Sggaard 2010) the
cutoff is 15 words) and choices of how to define translatiamedents with unaligned words on
either side. The work of (Wu, Carpuat, and Shen 2006) coisc&rabic-English data, which is
not studied here.

A completely distinct work that reports measures of wordratient coverage under ITG
constraints is (Huang et al. 2009). The work is based on thEl@Galley et al. 2004) method
of extracting synchronous rules, which involves targeglaage syntax. The authors report
percentages of binarizable synchronous rules extracted fhe word alignments. The results
reported are incomparable to our results for NF-ITG becdlieg are subject to the GHKM
extraction method of synchronous rules, which encapswiatg difficult word alignments as
internal, lexical parts of a synchronous rule. By doing ke,doverage is measured with regards
to a different semantics (the GHKM extraction method) of evalignments than our choice of
semantics. Our semantics of word alignments is more exivaubian the GHKM semantics in
that we allow all phrase pairs to be extracted without camsts from monolingual syntax or
other performance-driven constraints.
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Sggaard and Wu (2009) argue convincingly that ITG has ardiftecoverage than its normal-
form variant (akin to Chomsky normal form). We would like toipt out that the coverage
of permutations (represented by PETs in Tables 3 and 10alcwets an upperbound on the
coverage of the ITG formalism for the word alignments stddiere. A lower-bound is set
by the binarizable permutations (NF-ITG). Having set a Idwe&ind and an upperbound, we
hope in future work, dedicated to this topic, to calculataatxoverage figures under the chosen
semantics for an “all-accepting ITG'.

8. Conclusions and future work

In this paper we presented a theory of word alignments thédwa them with semantics from
machine translation and with hierarchical representatibiat capture recursive properties of
these semantic units. Viewing word alignments from the pertive of word order differences,
initially we extended permutations into permutation skt tonstitute asymmetric representa-
tions of word alignments. Subsequently we defined the seosaot word alignments in terms
of sets of translation equivalents, and advocated the fgalie hierarchical structure of word
alignments (as permutations sets) should represent thpasitional build up of all translation
equivalents found in the word alignment. By adopting phiaaie semantics, this paper exem-
plifies this general idea, and presents an algorithm fodimgl a set of semantically equivalent
Hierarchical Alignments Trees (HATSs) for every word aligamt. The HAT representation, a
conservative extension of the synchronous trees known fii0&) is shown to posses some
attractive properties, particularly that every node inrgudAT is minimally branching given
the choice of the semantics and the kind of hierarchicalsgmtation.

On the empirical side we exemplified the use of this theoryralyze the hierarchical
properties of word alignments, where we analyzed manualaandmatically acquired word
alignments. Our analysis concentrates on a break-dowratiétits of word alignments by the
maximal branching factor needed in the HATs that repredsrnt Capitalizing on this idea,
we report exact coverage results of word alignments for abiform ITG and advocate the
need for a more rigorous approach to measuring the covefegygohronous grammars using
our HAT representation. Particularly, we argued that itrisc@l to pin down the semantics of
word alignments and their hierarchical representatioasyell as the semantics of the trees
generated by a grammar, in order to measure the coverage agersection between two sets
of synchronous trees: the set of HATs defined for a word aligmnand the set of synchronous
trees generated by an all-accepting grammar for the senfggic We implement this idea by
imposing the formal constraints of the grammar on the setAfdfiltering out the HATs (or
parts of) that do not abide by these constraints.

In future work we plan to study efficiency aspects of the pneaggorithms. We will explore
different semantics for word alignments and possibly défe definitions of node alignments
(possibly generalizing layered linking somewhat). Besigieidying the exact coverage of ITGs
and other synchronous grammars, we expect that our HAT septation can be used to shed
light on the stability of the Direct Correspondence Assuompbf monolingual syntactic repre-
sentations projected using word alignments, e.g., (FoR28Wa et al. 2002). Similarly, we also
expect that the HAT representation will allow us to extraeagety of probabilistic synchronous
grammars which capture varying degrees of statisticalgaddence between translation units.
Finally, we hope that this study prepares the ground for hawel useful methods for the
automatic learning of hierarchical alignments in paratletpora, the original topic that lead
to this study.
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