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Abstract. Bipolar Argumentation Frameworks (BAF) are a natural extension of
Dung’s Argumentation Frameworks (AF) where a relation of support between
arguments is added to the standard attack relation. Despite their interest, BAF
present several difficulties and their semantics are quite complex. This paper pro-
vides a definition of semantic concepts for BAF in terms of fixpoints of the func-
tions of neutrality and defense, thus preserving most of the fundamental proper-
ties of Dung’s AF. From this angle it becomes easy to show that propositional
dynamic logic provides an adequate language to talk about BAF. Finally, we il-
lustrate how this framework allows to encode the structure of the referential dis-
course involved in semantic paradoxes such as the Liar. It turns out that such
paradoxes can be seen as BAF without a stable extension.

1 Introduction

Bipolar Argumentation Frameworks (BAF) were introduced by [5] and [6] to enrich
Dung’s Argumentation Frameworks (AF) [9] with an explicit relation of support.4 In
many respects, the semantics of BAF are more difficult to categorize than those of
standard AF. There are two main (related) reasons for this. First of all, at least two
different interpretations of support are available:

– deductive support: a supports b means “the acceptance of a implies the acceptance
of b” [3].

– necessary support: a supports b means “a is a necessary condition for the accep-
tance of b” or, equivalently, “acceptance of b implies the acceptance of a” [18,19].5

A further notion is that of evidential support [20] that we will not deal with here.6

? Carlo Proietti gratefully acknowledges funding received from the European Commission
(Marie Skłodowska-Curie Individual Fellowship 2016, 748421) for his research. The authors
would like to thank the anonymous reviewers of LORI’19 for many helpful suggestions.

4 Indeed, the only support available in standard AF is the “defense” relation: argument a supports
argument b by attacking one of its attackers. This is too restrictive in most real-life debates,
where arguments providing direct support are commonly used.

5 We limit ourselves to binary necessary support. Indeed this notion of support is often intro-
duced as a more general relation between a set of arguments and an argument [18,19].

6 Evidential support can be seen as a special kind of necessary support where an argument
cannot be accepted unless it is ultimately supported by “evidence”, the latter being a special



The following scenario provides an example of deductive support (given the back-
ground information) from a to b.

Example 1. Suppose that, on the day before the last matchday of Premier League,
Liverpool is at the top, one point ahead Manchester. Consider the following arguments:

a. Liverpool wins last match.
b. Liverpool wins Premier League.

c. Manchester wins Premier League.

This other gives an example of a necessary support from b′ to c′.

Example 2. The dark room. Consider one room with no windows that can only be
illuminated by an electric light (with no other external sources available). Consider the
following arguments:

a’. The switch was turned off last night.
b’. The switch is on.

c’. The room is illuminated.

The second main problem, as the examples suggest, is that the interaction of sup-
port and attack induces several forms of complex attack, such as those from a to c (a
supports b which attacks c) and from a′ to c′ (a′ attacks b′ which supports c′). How-
ever, while a complex attack as that of Example 1 is intuitively effective for deductive
support, it is not for necessary support. The converse holds for complex attacks as that
of Example 2. The presence of complex attacks complicates the criterion of coherence
for a set of arguments, which for standard AF is encoded by conflict-freeness. The liter-
ature on BAF provides several characterizations of coherence which, by consequence,
multiply the criteria of admissibility for sets of arguments. This, in turn, generates a
caleidoscope of additional criteria for acceptable (complete, preferred, grounded and
stable) extensions.

We define extensions (or semantics) for BAF in line with [9] by only using conflict-
freeness (and self-defense) w.r.t. to (complex) attacks. Despite this minimal coherence
criterion, extensions thus defined turn out to be coherent in the strongest possible sense,
and their properties are in line with those of standard AF. To define our extensions, we
fix a primitive notion of complex attack for each reading of the support relation,7 then
we use it for defining the defense function (characteristic function in Dung’s original
work) and the neutrality function. The extensions are then characterised in terms of
(post)fixpoints of these functions.8 As a further relevant point, we show that these se-
mantics have a modal representation in the framework of propositional dynamic logic
[16], which therefore provides an adequate language to talk about BAF.

type argument (also called a prima facie argument) that can be neither attacked nor supported
by other arguments.

7 A similar strategy was proposed by [7], which already provides some of our results. However,
this was done without the use of algebraic and fixpoint notions.

8 Fixpoint-theoretic notions were of high impact in Dung’s original work; since then, they have
been scarcely exploited for the study of BAF and for abstract argumentation in general.



Directed graphs offer a natural representation of the referential structure of a dis-
course [12,8,23,10,11]. In this context, the semantics of Dung’s AF provide an interest-
ing tool to understand the nature of paradoxes as “pathological” graphs. This specific
link has been established by [10,11], the central result being Fact 9 below, which asso-
ciates paradoxality with lack of a stable extension. BAF, as a natural expansion of AF,
allow to express referential structures in a more compact way, although being equally
expressive as standard AF in this respect [1]. Our result in Theorem 3 subsumes Fact 9
as a special case and provides a first bridge from the semantics of BAF to the analysis
of paradoxes.

The paper proceeds as follows. Section 2 recalls the basic concepts of AF, introduc-
ing BAF with necessary and deductive support and defining their extension concepts.
We show that extensions thus defined preserve the fundamental properties of their corre-
sponding AF extensions, and then prove additional results (Theorems 1 and 2). Section
3 introduces a language of propositional dynamic logic to talk about BAF (plus a com-
plete axiom system), providing a modal definition of the extension concepts introduced
in Section 2. Section 4 focuses on the analysis of semantic paradoxes, showing first
how to encode the structure of the referential discourse within BAF with necessary sup-
port. Based on this we prove our main correspondence result in Theorem 3. Section 5
summarizes the results and mentions open problems for future work.

2 Argumentation Frameworks

A basic AF A = (A,→) is a relational structure, with A , ∅ the set of arguments
and → ⊆ A × A a binary relation, where a → b is read as “a attacks b”. We use
the shortenings X → a for ∃x ∈ X : x → a, a → X for ∃x ∈ X : a → x, and
X → Y for ∃x ∈ X,∃y ∈ Y : x → y. Additionally, for X a set and R a relation, the set
〈R〉X := {x | ∃y ∈ X and xRy} contains the arguments that can R-access some element
in X, while [R]X := {x | ∀y if xRy then y ∈ X} contains the arguments that can R-access
only elements in X.

The fundamental concept in abstract argumentation is that of an extension or so-
lution. Intuitively, a set of arguments X is a solution for A only if it satisfies certain
properties which make it an “acceptable” opinion in the argumentation represented by
A. Most solution concepts for AF share two basic properties: conflict-freeness and de-
fense of their own arguments. There are many equivalent ways to define such properties;
here we characterize them in terms of the neutrality and defense functions (as in [13]).

Definition 3 (Neutrality and defense function). Let A = (A,→) be an AF. The neu-
trality function nA : P(A) −→ P(A) is:

nA(X) = {x ∈ A : NOT X → x}

The defense function dA : P(A) −→ P(A) is:

dA(X) = {x ∈ A : ∀y ∈ A : IF y→ x THEN X → y}

In other words, nA(X) is the set of arguments that are not attacked by X (i.e. to which X
is neutral) and dA(X) is the set of arguments that are defended by X. The advantage of



this characterization is that it provides an insightful and compact definition of solution
concepts as (post)fixpoints of nA and dA. This will prove useful in the study of BAF.

Definition 4 (Solution concepts). Given a frameworkA:

– A set X is conflict-free (CfrA(X)) iff X ⊆ nA(X) (i.e. X is a postfixpoint of nA).
– A set X is self-defended (SdfA(X)) iff X ⊆ dA(X) (i.e. X is a postfixpoint of dA).
– A set X is an admissible extension (AdmA(X)) iff X is conflict-free and self-defended.
– A set X is a complete extension (CmpA(X)) iff X = dA(X) and X ⊆ nA(X) (i.e. X is

admissible and is a fixpoint of dA).
– A set X is a (the) grounded extension (GrnA(X)) iff X is the smallest fixpoint of dA.
– A set X is a preferred extension (PrfA(X)) iff X is maximal (for set inclusion)

among the admissible (or complete) extensions ofA.
– A set X is a stable extension (StbA(X)) iff X = nA(X) (i.e., X is a fixpoint of nA).

Fact 5 below recapitulates known facts about solution concepts, with AdmA denoting
the set of admissible extensions ofA and likewise for other solution concepts.

Fact 5 ([9]). LetA be an argumentation framework.

1. 〈AdmA,⊆〉 is a poset.
2. Any upward directed non-empty family in AdmA is closed under union.
3. ∅ ∈ SdfA
4. PrfA , ∅
5. The defense function is monotonic and therefore the grounded set always exists.
6. A stable extension is not guaranteed to exist.
7. If→ is well-founded9 thenA has exactly one complete extension, which is grounded,

preferred and stable.

The following is worth noticing: 1 and 2 together imply that the set of admissible solu-
tions forms a complete partial order; 3-6 establish the existence, in any argumentation
framework, of admissible, complete, grounded and preferred extensions, but that is not
the case for stable extensions; 7 entails that all extensions are one and the same when
the attack relation is well-founded.

2.1 Bipolar Argumentation Frameworks

A BAF A = (A,→,⇒) is a birelational directed graph, with A and → as before, and
a⇒ b indicating “a supports b”. BAF like those in Figure 1 allow to represent Examples
1 and 2. As mentioned in Section 1, two complex attacks are represented here: from a
to c and from a′ to c′. However, their interpretation depends on the specific reading of
the support relation. If ⇒ is read as deductive support, then the attack from a to c is
effective, while the one from a′ to c′ is not; the opposite holds for necessary support.
Hence, the semantics of necessary and deductive support should be treated separately.

9 We recall that a binary relation is well-founded whenever it does not contain any infinitely
descending chain, i.e., in our case, there exists no infinite chain a0 ← a1 ← · · · ← an ← . . .

of attacked arguments.
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Fig. 1. Example 1 and Example 2 represented with Bipolar Argumentation Frameworks.

Necessary support Two main types of complex attacks are generated by BAF with
necessary supports, namely secondary attacks, as in Figure 2(a), and extended attacks,
in Figure 2(b) (see [18,19,7]). A secondary attack from a to b holds if there is a path
a→ b0 ⇒ · · · ⇒ bn with b = bn for n ≥ 0; more succinctly, a attacks b iff a→ · ⇒∗ b,
with · the operation of composition and⇒∗ the reflexive and transitive closure of⇒ (we
shall also write a →⇒∗ b for conciseness). An extended attack holds if a(⇒−1)∗ → b,
with ⇒−1 the converse of ⇒. As stressed by [7] (Proposition 6), both types of attacks
are special cases of n+-attacks (Figure 2(c)), which hold whenever a(⇒−1)∗ →⇒∗ b.10

b . . . a

(a) Secondary attack

b

. . .a

(b) Extended attack

. . .b

. . .a

(c) n+-attack

Fig. 2. Complex attacks for necessary support

Here we assume “secondary attack” to be our primitive notion of attack for BAF
with necessary support. Given a BAF A = (A,→,⇒), this enables to define the neu-
trality function nns

A
: P(A) −→ P(A) as:

nns
A(X) = {x ∈ A : NOT X →⇒∗ x}

and the defense function dns
A

: P(A) −→ P(A) as:

dns
A(X) = {x ∈ A : ∀y ∈ A : IF y→⇒∗ x THEN X →⇒∗ y}

This approach has the advantage of anchoring the definitions of the solution concepts
to those provided by [9].11 For example, define

Cmpns
A(X) iff X = dns

A(X) and X ⊆ nns
A(X)

It is an immediate consequence of these definitions that all the fundamental results listed
in Fact 5 (1–7) hold for the new solution concepts. For example, every BAF A where

10 This is because both relations→⇒∗ and (⇒−1)∗ → are contained in relation (⇒−1)∗ →⇒∗.
11 In an analogous way we could assume extended or n+-attacks as our primitive notion and

define the neutrality and defense function accordingly.
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(a) Supported attack

a

. . .b

(b) Mediated attack

. . .b

. . .a

(c) d+-attack

Fig. 3. Complex attacks for deductive support

→⇒∗ is well-founded has exactly one complete extension, which is grounded, preferred
and stable, by Fact 5 (7). The proofs are completely analogous to those provided by [9].

The following theorem establishes key properties of the new solution concepts.

Theorem 1. LetA = (A,→,⇒) be a BAF.

1. Any X ⊆ A s.t. Admns
A

(X) does not contain any n+-attack.
2. Any X ⊆ A s.t. Cmpns

A
(X) is closed for⇒−1.

3. If X is closed for⇒−1 and X ⊆ nA(X) then X ⊆ nns
A

(X).
4. If⇒ is well-founded then Stbns

A
(X) iff X = nA(X) ∩ [⇒−1](X).

Proof. See Appendix.

Theorem 1(1) shows that any admissible set is conflict-free w.r.t. any type of complex
attack. Therefore, all the defined solution concepts are strongly coherent even though
Cfrns

A
takes only secondary attacks into account. Part (2) demonstrates that all solution

concepts stronger than complete (preferred, grounded and stable) are closed under the
“being supported” relation. Furthermore, by Theorem 1(3), closure under the “being
supported” relation together with Dung’s conflict-freeness entails conflict-freeness in
the extended sense. Finally, Theorem 1(4) provides a sufficient condition for ns-stability
of X,12 and is a generalization of [17], Proposition 1 to the case of infinite BAF.

Deductive support BAF with deductive support present two main patterns of complex
attacks, namely supported attacks, Figure 3(a), and mediated attacks, Figure 3(b) (see
[7]). A supported attack from a to b holds only if there is a path a ⇒ b0 ⇒ · · · ⇒

bn−1 → bn with b = bn for n ≥ 0; more compactly, a attacks b iff a ⇒∗ · → b.
A mediated attack instead holds if a → (⇒−1)∗b. Here again it is not difficult to find
a more general pattern of incompatibility, as for n+-attacks, by generalizing the two
kinds of attack, i.e. a⇒∗→ (⇒−1)∗b. We shall call this a d+-attack.

Deductive support is naturally interpreted as the converse of necessary support, i.e.
⇒−1 [7]. According to this reading, mediated attacks under deductive support are noth-
ing more than secondary attacks under necessary support. It therefore makes sense to
assume the notion of “mediated attack” as primitive, i.e. a attacks b iff a → (⇒−1)∗b,
defining the neutrality function nds

A
: P(A) −→ P(A) as:

nds
A (X) = {x ∈ A : NOT X → (⇒−1)∗x}

12 We may rephrase this condition as: for any x ∈ X, all of x’s attackers are outside X and all x’s
supporters are inside.



and the defense function dds
A

: P(A) −→ P(A) as:

dds
A (X) = {x ∈ A : ∀y ∈ A : IF y→ (⇒−1)∗x THEN X → (⇒−1)∗y}

Here again solution concepts are defined over the new defense and neutrality function
and all results resumed in Fact 5 hold. In particular, any BAFA with deductive support
where → (⇒−1)∗ is well-founded has exactly one complete extension, which is also
grounded, preferred and stable

Two important properties of the solution concepts for BAF with deductive support
are the following.

Theorem 2. LetA = (A,→,⇒) be a BAF.

1. Any X ⊆ A s.t. Admds
A

(X) does not contain any d+-attack.
2. Any X ⊆ A s.t. Cmpds

A
(X) is closed for⇒.

Proof. See Appendix

3 Modal logics for bipolar argumentation

Propositional modal logic with a universal modality is expressive enough to talk about
standard AF ([13,14]). A modal language to express the fundamental concepts of BAF
requires instead the more complex resources of propositional dynamic logic (PDL) with
the global universal modality [U]. Our language LU It is built over a set of atoms P and
a set of four basic actions Π = {α, β, α−1, β−1} by the following BNF:

φ ::= p | ⊥ | ¬φ | φ ∧ φ | 〈π〉φ | 〈U〉φ for p ∈ P
π ::= α | β | α−1 | β−1 | π; π | π∗

Define other Boolean connectives (disjunction ∨, implication ⊃ and bi-implication ≡)
as usual; take [π]φ := ¬〈π〉¬φ and [U]φ := ¬〈U〉¬φ. The operator 〈α〉 (resp. 〈β〉)
is the “being attacked” (resp. “being supported”) modality; e.g., 〈α〉φ indicates that
the argument is attacked by some argument labelled φ. Action α−1 (resp. β−1) is the
converse of α (resp. β), so 〈α−1〉 (resp. 〈β−1〉) express the “attacks” (resp. “supports”)
modality.

Definition 6 (Bipolar models). Let P be a set of atoms. A bipolar model is a tuple
M = 〈A,V〉, withA = 〈A,→,⇒〉 a BAF andV : P −→ P(A) a valuation function.

M denotes the set of models. The formal semantics of LU is expressed via the notion of
satisfaction of a formula in a model.
Definition 7 (Satisfaction). The satisfaction of φ by a point a in a bipolar modelM =
〈A,V〉 is defined, for atoms and Boolean operators, in the standard way. For the rest,

M, a |= 〈π〉φ IFF ∃b ∈ A :aRπb ANDM, b |= φ, M, a |= 〈U〉φ IFF ∃b ∈ A :M, b |= φ

with Rα and Rβ defined as the respective converses of→ and⇒, and the remaining Rπ

defined in the standard way.13 The truth-set of φ inM is ~φ�M = {a ∈ A | M, a |= φ};14

the set of valid formulae (those true in every point of every model) is called (logic) KU .
13 That is, Rα−1 = (Rα)−1, Rβ−1 = (Rβ)−1, Rπ;π′ = {(a, b) ∈ A × A | ∃c ∈ A : (Rπac & Rπ′cb)} and

Rπ∗ =
⋃

n≥0 Rπn (with Rπ0 = {(a, a) | a ∈ A} and Rπn+1 = Rπn;π, for the latter).
14 Thus, (i)M, a |= 〈α〉φ if and only if ∃b ∈ A with b→ a and b ∈ ~φ�M, (ii)M, a |= 〈β〉φ if and

only if ∃b ∈ A with b⇒ a and b ∈ ~φ�M, and (iii)M, a |= [U]φ if and only if ~φ�M = A.



` ϕ for ϕ an instance of a propositional tautology From ` ϕ and ` ϕ ⊃ ψ infer ` ψ (MP)

` [π](p ⊃ q) ⊃ ([π]p ⊃ [π]q) ([π]-Normality) ` [π]p ≡ ¬〈π〉¬p ([π]-Dual)

` [π;σ]p ≡ [π][σ]p ([π;σ]) ` [π∗]p ≡ p ∧ [π][π∗]p ([π∗])

` p ⊃ [α]〈α−1〉p ([π]-Conv1) ` p ⊃ [α−1]〈α〉p ([π]-Conv2)

` p ⊃ [β]〈β−1〉p ([π]-Conv3) ` p ⊃ [β−1]〈β〉p ([π]-Conv4)

` [U](p ⊃ q) ⊃ ([U]p ⊃ [U]q) ([U]-Normality) ` [U]p ≡ ¬〈U〉¬p ([U]-Dual)
` p ⊃ 〈U〉p ([U]-Reflexivity) ` p ⊃ [U]〈U〉p ([U]-Symmetry)
` 〈U〉〈U〉p ⊃ 〈U〉p ([U]-Transitivity) ` 〈π〉p ⊃ 〈U〉p (Incl)

From ` φ ⊃ [π]φ infer ` φ ⊃ [π∗]φ (LI) From ` φ infer ` [π]φ ([π]-Nec)
From ` φ infer ` [U]φ ([U]-Nec)

Table 1. Axiom system for KU

As it has been proved, the axiom system of Table 1 is sound and complete for KU .15

The first three groups of axioms together with rules ([π]-Nec) and (LI) provide a
standard axiomatization for the PDL modalities [16]. Axioms ([π]-Conv1) through
([π]-Conv4) characterise the fact that →−1 and ⇒−1 are the converse of → and ⇒
[2,16]. The fifth group consists of S5 axioms for the universal modality and Incl, the
latter determining the inclusion of any relation π in the universal accessibility relation.

Interestingly, LU can define the class of AF in which a given action π is well-
founded. Indeed, [U]([π]p ⊃ p) ⊃ p holds in a AF if and only if Rπ is well-founded [2,
chap. 7.1]. Thus, it is possible to isolate the classes of AF and the classes of BAF with
necessary (resp. deductive) support where extensions are unique (Fact 5(7)).16

Several solution concepts for BAF are expressible within LU , as those for standard
AF are by standard modal logic [13]. In the case of necessary support, the property of
not being attacked via a secondary attack (see Figure 2(a)) by the set ~p� is expressed
by the concatenation ¬〈β∗;α〉p which therefore can be taken to be the modal rendering
of the neutrality function. Analogously the property of being defended by the set ~p� is
expressed by the concatenation [β∗;α]〈β∗;α〉p, i.e. the defense function. This provides
the following list of characterizations.

Proposition 1 (Solution concepts for necessary supports). For any (A,V), a,

V(p) ∈ Cfrns
A IFF (A,V), a |= [U](p ⊃ ¬〈β∗;α〉p)

V(p) ∈ Sdfns
A IFF (A,V), a |= [U](p ⊃ [β∗;α]〈β∗;α〉p)

V(p) ∈ Admns
A IFF (A,V), a |= [U](p ⊃ ¬〈β∗;α〉p) ∧ [U](p ⊃ [β∗;α]〈β∗;α〉p)

V(p) ∈ Cmpns
A IFF (A,V), a |= [U](p ⊃ ¬〈β∗;α〉p) ∧ [U](p ≡ [β∗;α]〈β∗;α〉p)

V(p) ∈ Stbns
A IFF (A,V), a |= [U](p ≡ ¬〈β∗;α〉p)

15 See [2,16] for the PDL, converse and [U] fragments. (See [21,22] for PDL+[U]).
16 Thus, the formulas [U]([α]p ⊃ p) ⊃ p, [U]([β∗;α]p ⊃ p) ⊃ p and [U]([β−1∗;α]p ⊃ p) ⊃ p

characterise, respectively, the well-foundedness of→,→⇒∗ and→ (⇒−1)∗.



Furthermore, [β∗;α]〈β∗;α〉 is equivalent to ¬〈β∗;α〉¬〈β∗;α〉p, so the defense function
is the double iteration of the neutrality function (see [13]). Thus, the fact that Stbns

A
(X)

entails X = nA(X) ∩ [⇒−1](X) (Theorem 1(4), right to left) can be restated in modal
terms:

Fact 8. For any bipolar modelM = 〈A,V〉 and any a ∈ A,

StbA(~p�M) entails M, a |= [U](p ≡ (¬〈α〉p ∧ [β]p)).

For deductive support, the property of not being attacked via a mediated attack (see
Figure 3(b)) by the set ~p� is expressed by ¬〈β−1∗;α〉p. Therefore, by the same mecha-
nism we can provide the following modal definitions for solution concepts of BAF with
deductive support.

Proposition 2 (Solution concepts for deductive supports). For any (A,V), a,

V(p) ∈ Cfrds
A IFF (A,V), a |= [U](p ⊃ ¬〈β−1∗;α〉p)

V(p) ∈ Sdfds
A IFF (A,V), a |= [U](p ⊃ [β−1∗;α]〈β−1∗;α〉p)

V(p) ∈ Admds
A IFF (A,V), a |= [U](p ⊃ ¬〈β−1∗;α〉p) ∧ [U](p ⊃ [β∗;α]〈β−1∗;α〉p)

V(p) ∈ Cmpds
A IFF (A,V), a |= [U](p ⊃ ¬〈β−1∗;α〉p) ∧ [U](p ≡ [β−1∗;α]〈β−1∗;α〉p)

V(p) ∈ Stbds
A IFF (A,V), a |= [U](p ≡ ¬〈β−1∗;α〉p)

Here too the concatenation [β−1∗;α]〈β−1∗;α〉 is equivalent to ¬〈β−1∗;α〉¬〈β−1∗;α〉p;
thus, the defense function is the double iteration of the neutrality function.

4 Bipolarity and semantic paradoxes

The Liar Paradox consists of any statement of the following kind

a := The statement a is false

to which no true or false value can be assigned. Early diagnoses of the problem pointed
to the self-reference of statement a as the culprit. In many cases, however, self-reference
is not direct, as the following paradox shows [24]:

a := The statement b is true and the statement c is false.
b := Either the statement a is false or the statement c is true
c := Both statements a and b are true.

Moreover, Yablo’s paradox [25] provides an example with no referential circuits of
the above kind. Therefore, although the problem lies clearly in the referential struc-
ture of the discourse, it is more complex than what an intuitive understanding of “self-
referentiality” and “circularity” may suggest.

An important clue for clarifying this structural problem comes from two relatively
new approaches to semantic paradoxes. One of them is the equational approach by [24]
and the other is a graph-theoretic one [12,8,23,10,11]. In its bare bones, the equational



approach interprets referential discourses of the above kind as systems of boolean equa-
tions, or equivalently as sets of biconditionals where referential statements figure as a
set of propositional variables A. The Liar is then translated as the biconditional a ≡ ¬a,
while the second example consists of the three biconditionals a ≡ b ∧ ¬c, b ≡ ¬a ∨ c
and c ≡ a ∧ b.

Both examples determine a propositional theory T that is paradoxical insofar
as MOD(T ) = ∅, where MOD(T ) denotes the set of propositional assignments
v : A −→ {1, 0} that satisfy the theory. It has been shown [1,11] that any system of
boolean equations T can be transformed into and equivalent T ′ in digraph normal
form, i.e. a theory consisting of a set S = {s0, . . . , sn} of n sentences of the form

si := xi ≡
∧
x∈Xi

¬x

for 0 ≤ i ≤ n, where by convention
∧
∅ = 1. Any such T ′ can be represented by a

corresponding AFA(T ′) = (A,→) defined as follows ([10,11]):

A =
⋃
i≤n

({xi} ∪ Xi ∪ {x | x ∈ Xi ∧ ∀i ≤ n : x , xi})

→ = (
⋃
i≤n

{(x, xi) | x ∈ Xi}) ∪ {(x, x), (x, x) | x ∈ A}

Note that a cannot be true (accepted) if b is true (accepted); hence, an attack b → a
encodes “a := b is false”. Moreover, there are mutual attacks between newly added x
and those x which would otherwise be unattacked (thus forced to be true). The intuitive
meaning of the attack relation is captured by a complete labelling [4], defined for any
AFA = (A,→) as a (partial) function l : A −→ {1, 0} such that, for every a ∈ A,

1. l(a) = 1 iff ∀b, b→ a entails l(b) = 0
2. l(a) = 0 iff ∃b, b→ a and l(b) = 1

For a givenA(T ), any such labelling l can be regarded as a propositional assignment to
the set V(T ) of variables occurring in T . In general, given l, we denote by l ↑V(T ) the
restriction of l to such set and by l∗ the valuation of propositional formulas induced by
l. By l1 we denote the set {a ∈ A | l(a) = 1}. Then the following correspondence holds:

Fact 9 ([10]). For any theory T in digraph normal form and any labelling l ofA(T ):

l ↑V(T )∈ MOD(T ) iff l1 is a stable extension ofA(T )

An important consequence of this fact is that any paradoxical theory T corresponds to
a graph with no stable extension (the Liar corresponds to a single node with a self-loop)
and this provides an interesting structural criterion for understanding paradoxicality.

What is important here is that, a fortiori, any propositional theory can also be trans-
lated in what one may call a bipolar digraph normal form (see [23]), i.e. as a set of
sentences of the following form:

xi ≡
∧
x∈Xi

¬x ∧
∧
x∈Yi

y



Any such theory gives rise to a corresponding BAFA(T ) = (A,→,⇒) where A and→
are as before and

⇒ =
⋃
i≤n

{(y, xi) | y ∈ Yi}

Here b ⇒ a encodes “a := b is true”, since the truth of every conjunct b is a necessary
condition for the truth of a. Therefore the bipolar digraph normal form and its corre-
sponding BAF are a natural and more compact way to represent referential discourses
with both predicates “true” and “false”.

Let us define a labelling l for bipolar graphs as follows:

1. l(a) = 1 iff (∀b, b→ a entails l(b) = 0 and ∀c, c⇒ a entails l(c) = 1 )
2. l(a) = 0 iff otherwise

Then it is possible to establish the following correspondence

Theorem 3. Let T be a theory in bipolar digraph normal form such thatA(T ) is well-
founded for⇒. Then the following holds for any labelling l:

l ↑V(T )∈ MOD(T ) iff Stbns
A(T )(l

1)

Proof. See Appendix.

Stability provides a general clue for understanding several patterns of paradox. For
example, consider Yablo’s paradox, which consists of a numerable set of biconditionals
with infinite conjunctions on the right side, of the form xn ≡

∧
k>n ¬xk, with n ∈ N. It

is indeed a propositional theory whose corresponding graph, represented in Figure 4,
lacks a stable extension.

a b c d . . .

Fig. 4. Yablo’s paradox

Interestingly, from the point of view of modal logic a labelling can be seen as a
valuation Vl : {0,1} −→ P(A) over the set of propositional letters 0 and 1, which
satisfies the conditions 1 and 2 above. By our remark in Section 3, any A(T ) with a
well-founded⇒ is a structure such that A(T ) |= [U]([β]p ⊃ p) ⊃ p. Within this class,
the paradoxal structures are those where there is no labelling l such that (A(T ),Vl) |=
[U](1 ≡ ¬〈β−1∗;α〉1).



5 Conclusions

This work provides a new approach to the study of BAF where the fundamental solu-
tion concepts are introduced by means of the neutrality and the defense function in a
systematic way. We also show how PDL provides an adequate modal language to talk
about BAF. Finally, BAF with necessary support are employed to encode the referential
discourse contained in semantic paradoxes as the Liar. It is shown that the paradox-
ality of a referential discourse T corresponds to the absence of a stable solution for
the generated BAF A(T ) whenever A(T ) is well-founded for the support relation. A
problem however arises when the support relation is not well-founded. This is the case
of a propositional theory as the following: a ≡ ¬a ∧ b and b ≡ a. Here the labelling
l(a) = 0; l(b) = 0 provides a model. However, it is easy to ascertain that l1 = ∅ is
not a ns-stable extension for the corresponding graph. This leaves open the problem of
finding an adequate full correspondence. We leave this for future work.
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Appendix

Proof of Theorem 1:
1. It suffices to show that no n+-attack is possible. Suppose Admns

A
(X) and that X con-

tains a and b such that a(⇒−1)∗ →⇒∗ b. Then there is a c such that a(⇒−1)∗c and
c →⇒∗ b (as in Figure 2(c)). Therefore c carries a secondary attack towards b. But
since X is admissible it defends b against c, i.e. there is d ∈ X such that d →⇒∗ c. But
then d →⇒∗ a, i.e. d ∈ X attacks a ∈ X, against the assumption that Cfrns

A
(X).

2. Suppose a ∈ X and b⇒ a. As Cmpns
A

(X) implies X = dns
A

(X), it is enough to show that
b ∈ dns

A
(X). Indeed, if b < dns

A
(X) then ∃c→⇒∗ b and not X →⇒∗ c. But then c→⇒∗ a

and X does not defend a, from which we get a contradiction by the completeness of X.
Therefore b ∈ dns

A
(X).

3. Suppose a ∈ X and ∃b ∈ X such that b→⇒∗ a. Then there is a c such that b→ c and
c⇒∗ a. Since a ∈ X we get, by⇒−1-closure, that c ∈ X, which entails that X * nA(X).
Contradiction.
4. The proof exploits the equivalence Stbns

A
(X) iff X = nns

A
(X) (Definition 4). It is not

difficult to prove that X = nns
A

(X) implies X = nA(X) ∩ [⇒−1](X) even without restric-
tion to well-foundedness of⇒. We skip this part here.
For the other direction we need to prove that nns

A
(X) = X. The only difficult part is

nns
A

(X) ⊆ X, the converse inclusion being almost immediate. For this it suffices to show
that a < X implies a < nA(X). Suppose a < X. Therefore, by X = nA(X) ∩ [⇒−1](X),
either (a) ∃c0 ∈ X such that c0 → a, in which case a < nns

A
(X) and we are done, or else

(b) ∃b0 < X such that b0 ⇒ a. The same reasoning applies to b0: either (a) ∃c1 ∈ X
such that c1 → b, in which case a < nns

A
(X) (since c1 →⇒

∗ a), or else (b) ∃b1 < X
such that b1 ⇒ b0. Alternative (b) can only apply a finite number of times, otherwise
it would determine an infinite descending chain of supports, which is excluded by the
well-foundedness of⇒. Therefore a < nns

A
(X) and the inclusion is proved.



Proof of Theorem 2:
1. Suppose that Admds

A
(X) and X contains both a and b with a ⇒∗→ (⇒−1)∗b. Then

there is a c such that a ⇒∗ c and c → (⇒−1)∗b. Therefore c carries a mediated attack
towards b. Since X is admissible it defends b against c, i.e. there is d ∈ X such that
d → (⇒−1)∗c. But then d → (⇒−1)∗a, against the conflict-freeness of X.
2. Suppose a ∈ X and a⇒ b. As Cmpds

A
(X) implies X = dA(X), it is enough to show that

b ∈ dA(X). Suppose b < dA(X); then ∃c → (⇒−1)∗b and not X → (⇒−1)∗c. But then
clearly c→ (⇒−1)∗a and X does not defend a, a contradiction. Therefore b ∈ dA(X).

Proof of Theorem 3:
1. From right to left. Assume that Stbns

A(T )(l
1) . Consider any biconditional φ := xi ≡∧

x∈Xi
¬x ∧

∧
x∈Yi

y in the theory. There are two cases: (a) l(xi) = 1, i.e. xi ∈ l1. An
immediate consequence of this, by Theorem 1 (4, left-to-right) is that for all attacker x
of xi: x < l1, i.e. x ∈ l0 by the given definition of labelling, and for all supporter y of xi:
x ∈ l1 (closure of stable sets under support Theorem 1 (2)). This suffices to guarantee
that l∗(

∧
x∈Xi
¬x ∧

∧
x∈Yi

y) = 1 and then l∗(φ) = 1.
(b) l(xi) = 0. Since l0 is the complement of l1, by Theorem 1 (4, left-to-right) either
some attacker x of xi: x ∈ l1, or some supporter y of xi: y ∈ l0. By construction of
A(T ) all supporters and attackers figure on the right handside of φ. As a consequence
l∗(
∧

x∈Xi
¬x ∧

∧
x∈Yi

y) = 0 and then l∗(φ) = 1.
2. From left to right. Assume that l is such that l∗(φ) = 1 for all φ ∈ T . In order to show
that Stbns

A(T )(l
1) we need to prove that l1 = nns

A
(l1). We first prove that

(a) l1 ⊆ nns
A

(l1). Let x ∈ l1. We have three cases. (a.1) x is of the form y. Then by
construction x has no supporters and is only attacked by y. Then y ∈ l0 by condition
1 on labellings. Since, by construction, y is the only (direct or indirect) attacker of x,
it follows that x ∈ nns

A
(l1). (a.2) x appears only on the right hand side of a bicondi-

tional. Again, by construction, x has no supporters and is only attacked directly by x,
which however is labelled 0. Ergo x ∈ nns

A
(l1). Otherwise suppose that (a.3) x ∈ l1 ap-

pears on the left hand side of some biconditional. If x < nns
A

(l1) then there is a chain
y0 → y1 ⇒ · · · ⇒ yn ⇒ x such that y0 ∈ l1, y1, . . . , yn ∈ V(T ), and at least y2, . . . , yn

appear on the right hand side of some biconditional. This forces y1, . . . , yn ∈ l1. But
then l1 → y1 against condition 1 on labelling. Therefore x ∈ nns

A
(l1).

(b) nns
A

(l1) ⊆ l1. For this is sufficient to show that for every x < l1 there is an y ∈ l1:
y→⇒∗ x. It is straightforward to prove this for the cases where (b.1) x is of the form y
or (b.2) x appears only on the right hand side of a biconditional.We consider (b.3) x =

xi < l1 appears on the left hand side of some biconditional φ := xi ≡
∧

x∈Xi
¬x∧

∧
x∈Yi

y.
Since xi ∈ l0 (the complement of l1) and l∗(φ) = 1 by assumption, then either one of the
conjuncts z ∈ Xi is in l1, in which case xi < nns

A
(l1) and we are done, or else one of the

conjuncts y ∈ Yi is in l0. If y is as in (b.1) or (b.2) then it is attacked by l1 and therefore
xi < nns

A
(l1). Otherwise y is either attacked by l1 or supported by some y′ in l0. However

the chain of supports cannot go on forever because the support relation is well-founded
by assumption. Therefore we should finally find some attacker in l1 and xi < nns

A
(l1).
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