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Abstract

The celebrated van Benthem characterisation theorem states that on
Kripke structures modal logic is the bisimulation-invariant fragment of
first-order logic. In this paper we prove an analogue of the van Benthem
characterisation theorem for models based on descriptive general frames.
This is an important class of general frames for which every modal logic
is complete. These frames can be represented as Stone spaces equipped
with a “continuous” binary relation. The proof of our theorem generalises
Rosen’s proof of the van Benthem theorem for finite frames and uses as
an essential technique a new notion of descriptive unravelling. We also
develop a basic model theory for descriptive general frames and show
that in many ways it behaves like the model theory of finite structures.
In particular, we prove the failure of the Compactness theorem, of the
Beth definability theorem, of the Craig interpolation theorem, and of the
Upward Léwenheim-Skolem theorem.*

1 Introduction

Kripke models are relational structures which provide standard models for modal
logic. Bisimulations are relations on Kripke models that are indistinguishable
by modal logic, in the sense that the truth of modal formulae is preserved under
these relations. The van Benthem characterisation theorem states that in fact,
any first-order formula that is invariant under bisimulations must be equivalent
to a modal formula [1, 4]. This is often formulated more succinctly by saying
that modal logic is the bisimulation-invariant fragment of first-order logic. The
theorem has inspired many generalisations and alternative versions, including
a similar characterisation for intuitionistic logic [19, 20], neighbourhood mod-
els [12], and numerous coalgebraic generalisations [22]. Another notable result
is the Janin-Walukiewicz theorem [15], showing that the modal u-calculus is the
bisimulation-invariant fragment of monadic second-order logic.

A result that is of particular importance to this paper was given by Rosen
in [21], showing that over finite models, too, modal logic is the bisimulation-
invariant fragment of first-order logic. This is particularly remarkable because

IThis paper is based on [14].



the Compactness theorem of first-order logic features prominently in the proof
of the original van Benthem characterisation theorem, while the class of finite
models crucially lacks the compactness property. The result for finite models
has in turn been generalised to multiple other classes lacking the compactness
property, including the classes of rooted finite models, rooted transitive models,
and well-founded transitive models [6].

The main result of this paper is the van Benthem characterisation theorem
for the class of models over descriptive general frames. These frames can be
represented topologically as totally separated, compact topological spaces, com-
monly known as Stone spaces, with a continuous relation, whose models have
valuations restricted to clopen sets.

Descriptive general frames form an important class of frames with respect to
which, unlike standard Kripke semantics, every modal logic is complete. This is
due to the Jonsson-Tarski duality between descriptive general frames and modal
algebras [4, 5, 16],

Descriptive general frames are also a natural generalisation of finite frames.
Topological compactness is a common generalisation of finiteness and the classes
of finite and descriptive general frames are both closed under many operations
such as finite disjoint unions and p-morphic images, they both are not closed
under infinite disjoint unions and they both have the Hennessy-Milner property
(see [4, Theorem 2.24] and [2, Corollary 3.10]). Moreover, we show that they
have a similar model theory. In particular, we will prove that the Compactness
theorem, the Beth definability theorem, the Craig interpolation theorem, and
the Upward Lowenheim-Skolem theorem all fail on descriptive general frames.

For the proof of the van Benthem theorem our central tool is, what we call,
descriptive unravelling. This is some kind of a descriptive completion of the
unravelling tree commonly seen and used in modal logic. Roughly speaking, we
add new points to the standard unravelling at “infinite distance” from the points
of unravelling, yet guaranteeing that the new model is descriptive. Proving a
number of important properties of this construction then allows for its use in
the main proof through an Ehrenfeucht-Fraissé argument.

Finally, we point out that descriptive general frames can be viewed as coal-
gebras for the Vietoris functor on the category of Stone spaces [18], just like
Kripke frames are coalgebras for the powerset functor and finite Kripke frames
are coalgebras for the powerset functor restricted to finite sets [23]. While an
analogue of the van Benthem theorem for coalgebraic logics given by Set-functors
has been proved in [22], as far as we are aware, the result in this paper is the
first van Benthem-style characterisation theorem for coalgebras over a category
of topological spaces. This may pave the way for generalisations of the the-
orem for coalgebras of other Vietoris-like functors. These and other potential
generalisations are briefly discussed in the conclusions.

The paper is organised as follows: In Section 2, descriptive general frames
and their models are introduced and discussed. Algebraic duality for general
frames is presented and a descriptive completion is introduced. Additionally,
Vietoris bisimulations for models based on general frames are defined and finite
approximations to bisimulations are briefly discussed. Section 3 focuses on the



model theory of descriptive models and proves the failure of a number of im-
portant results from classical model theory such as the Compactness theorem
for first-order logic and the Upward Lowenheim-Skolem theorem, on the class of
descriptive general models. Inspired by the model-theoretic similarities between
the classes of finite and descriptive models, Section 4 uses the approach from
[21] to prove our main result, the van Benthem characterisation theorem for
descriptive models. An unravelling constructionm which is the central tool in
the proof is presented together with a duplication procedure. Some of their
properties are stated and proven, and with those results, the main theorem is
shown through an Ehrenfeucht-Fraissé argument. The final section contains a
brief summary of the paper and points to a number of possible new research
directions.

2 Preliminaries

In this section we briefly discuss some of the basic definitions and facts that will
be used throughout the paper. We use [4, 5, 17] as our main references for the
basic theory of modal logic. We assume the reader’s familiarity with the basic
concepts of modal logic.

2.1 Descriptive frames

Let (W, R) be a Kripke frame, i.e., W is a set and R C W x W is a binary
relation on W. For each z € W and U C W we let R[z] = {y € W : zRy},
R Yz] ={y € W :yRz}, and (R)U = {z € W : R[z] N U # 0}.

We next recall the general frame semantics for modal logic.

Definition 2.1. A triplet g = (W, R, A) is a general frame if (W, R) is a Kripke
frame and A is a field of sets? over W that is closed under the operation (R)
(i.e., for every a € A also (R)a € A). The underlying frame (W, R) of g will be
denoted by g.

A quadruplet m = (W, R, A, V) is a general model based on g = (W, R, A)
over a set of propositional variables P if V : P — A is a function. The definition
of [-]™ is the same for general models as it is for Kripke models. <

This definition is motivated by the fact that now, the truth set [¢]™ belongs
to A for any general model m and formula ¢.

General frames also have a natural structure of a topological space, with
A acting as a basis of clopens on a universe W. This opens the subject for
topological analysis, which has led in the past to many crucial insights into
these structures.

Some specific types of general frames are of special importance. The follow-
ing classes of important general frames will be relevant to this paper.

2That is, a non-empty collection of sets that is closed under binary union and complement-
ation.



Definition 2.2. Let g = (W, R, A) be a general frame. Then

e g is called differentiated if for all distinct w,v € W there exists an a € A
such that v € a but w ¢ a;

g is tight3 if for all w,v € W with (w,v) ¢ R there exists an a € A such
that v € a and w ¢ (R)a;

g is called compact if all collections A C A with empty intersection have
a finite subcollection Ay C A with empty intersection;

g is called image-compact if for any point w € W, a collection A C A
whose intersection is disjoint from R[w], the set of successors of w, has a
finite subcollection Ay C A whose intersection is also disjoint from R[w];

g is called descriptive if it is differentiated, tight, and compact. The class
of models based on descriptive frames will be denoted by 9.

Models based on such a general frame are called differentiated, tight, compact,
or descriptive models. In the presence of these modifiers, the adjective “general”
will usually be omitted from both the frames and the models. |

The term compactness is used because it corresponds to topological com-
pactness. Differentiatedness is equivalent to the topological space being totally
separated (i.e., every two distinct points being separated by a clopen set). To-
pological spaces that are compact and totally separated are called Stone spaces.
Descriptive frames are then pairs (W, R) where W is a Stone space and R is
such that

e Rix] is closed for every x € W,
e For every clopen set U C W the set (R)U is also clopen.

We refer to [4, 17] for a detailed discussion on the connection of these two
approaches to descriptive frames. From now on we will use the topological
concept interchangeably with the subclass of general frames.

2.2  Duality

One of the many reasons descriptive frames have proven a valuable tool, is their
role in Jonsson-Tarski duality for modal algebras. This duality builds on the
celebrated Stone duality between the category of Boolean algebras and Boolean
algebra homomorphisms is dually equivalent to the category of Stone spaces and
continuous maps.

Definition 2.3. A modal algebra is a pair M = (B, ¢) where B = (B, V,A,—,0,1)
is a Boolean algebra, and ¢ : B — B is an operator satisfying ¢0 = 0 and

O(aVvb)=0aV Ob.

3The tightness condition can also be considered a continuity condition for the relation with
respect to the topology, see also [14, Definition 2.71, Proposition 2.73].




The category M A has as objects all modal algebras and as morphisms the
Boolean morphisms f such that f(Qa) = ¢ f(a) for all a. <

Definition 2.4. The category DF is the category with all descriptive frames
as objects, and as morphisms the continuous bounded morphisms.* <

The functors that establish the category duality will be referred to as (—).
and (—)*. We will briefly recall their definition.

Let M = (B,0) be a modal algebra. Then let M, = (W, R, A) be the
descriptive frame (see [4, Theorem 5.76]) with

W =1Uf B the collection of ultrafilters on B;
A:{/b\|b63} WhereZ::{FeW|b€F};
FRF' = bc F' implies 0b € F.

Moreover, if f : M — M’ is a morphism of modal algebras, let then f, : M/ —
M., be the map given by f.(F') = f~1[F’] for each ultrafilter I’ € M/,. In [4,
Proposition 5.80] this is shown to be a continuous bounded morphism.

Let g = (W, R, A) be a descriptive frame. Then the associated modal algebra
is g* = (4, (R)). Continuous bounded morphisms f : g — g’ are mapped to the
map f*: (g')* — g* of modal algebras given by f*(a) = f~![a] for each a € A.

Theorem 2.5 (Jonsson-Tarski duality [4, 5, 16, 17]). The functors (—). and
(=)* provide a dual category equivalence between MA and DF.

It is important to note the use of the (—)*-functor is not restricted to de-
scriptive frames only. For the entire class of general frames, one may define
the exact same operation. Combining it with the other functor results in an
operation that turns every general frame into a descriptive frame. This may be
called the descriptive completion of the general frame.

Definition 2.6. Let g = (W, R, A) be a general frame. Then its descriptive
completion is (g*). =: (W, Ry, A), where A = {ad|ac A}. Tm=(g,V)isa
general model, there is an induced descriptive model m, := ((g*)«, Vi) where V,
is the unique valuation such that if originally V' (p) = a, then V. (p) = a. <

The name “descriptive completion” is justified by the following theorem.
Theorem 2.7. ([4, Theorem 5.76]) Let g be a general frame. Then
e (g")« is a descriptive frame,

e g2 (g). if and only if g is descriptive.

4 A bounded morphism between Kripke frames § = (W, R) and §' = (W', R’) is a map
f+ W — W’ with the property that if wRv then f(w)Rf(v) and if f(w)R'v’ then there is a
v € W such that wRv and f(v) = v’. A map is continuous if the inverse image of any open
set is open.



In the special case that g is a Kripke frame, meaning that A = 2 (W) is
the powerset, then (g*). is known as the ultrafilter extension of g, see also [4,
Section 2.5].

This completion construction will be used in Section 4 to develop the central
tool in the proof for a van Benthem-type result.

2.3 Kripke and Vietoris bisimulations

An important notion in modal logic that is central to main theorem of this thesis
is the concept of bisimulations. Intuitively, if two points w and v in models 9
and 1 respectively are bisimilar, they are impossible to distinguish by walking
from w and v through the models and looking only at the propositional variables
that are true at the points reached. In this section we will recall the notions of
Kripke and Vietoris bisimulations for descriptive models.

Definition 2.8. Let 9 and 9 be (general) models on frames (W, R) and
(W', R") with valuations V and V’. A relation Z C W x W' is called a (Kripke)
bisimulation if for all (w,w") € Z the following three conditions hold:

(prop) If p € P then w € V(p) <— w' € V'(p);
(forth) If v € R[w] then there exists a v’ € R'[w’] such that (v,v') € Z;
(back) If v' € R'[w’] then there exists a v € R[w] such that (v,v) € Z.

If two points w and v in models 9t and D are linked by a bisimulation, then
we say that w and v are bisimilar. A model 9t with a fixed element w will be
called a pointed model. If two points w and v in models 9t and I respectively
are bisimilar, then we say that pointed models 9, w and 91, v are bisimilar. <«

As will be shown in Theorem 2.15, two points linked by a bisimulation satisfy
the same modal formulae.

Definition 2.9 ([2, 8]). Let m and m’ be general models and Z a Kripke
bisimulation between them. If Z is closed in the product topology of the two
associated topological spaces, then it is called a Vietoris bisimulation. |

If two pointed models are linked by a Kripke bisimulation this is denoted by
mw < m,w
and if they are linked by a Vietoris bisimulation this will be written as
m,w=m,w.

Remark 2.10. This definition is motivated by a coalgebraic perspective on de-
scriptive frames, in which it is the coalgebraic definition of a bisimulation on de-
scriptive frames as coalgebras for the Vietoris functor. However, on descriptive
frames this is equivalent to the definition provided above. A detailed explora-
tion of the coalgebraic notion of descriptive frames can be found in [2, 18, 24|
and an extensive treatment of Vietoris bisimulations, including this equivalence,
can be found in [2, §]. <



Theorem 2.11 ([2, Theorem 5.2]). If m,w and n,v are two pointed image-
compact general models, then the following are equivalent:

1. myw < nv;

2. myw = n,v.

2.4 Finite bisimulations

Crucial for this paper will be the notion of finite (approximations to) bisimu-
lations. Like the finitary modal language, the finite number of steps involved
makes them much easier to deal with.

Definition 2.12. Let k£ € N be a natural number, P a set of propositional vari-
ables and 2t and 9 be two (general) models with frames (W, R) and (W', R')
and valuations V and V' over P respectively. Then a k-bisimulation over P is
a C-decreasing (k + 1)-sequence (Zy)o<e<k of relations Zy C W x W' such that
for all natural numbers ¢ < k and (w,w’) € Z:

(prop) If p € P then w € V(p) if and only if w’ € V'(p);

(forth) For all non-negative m < ¢, if v € R[w] then there exists a v/ €
R'[w'] such that the pair (v,v) is an element of Z,,;

(back) For all non-negative m < ¢, if v' € R'[w'] then there exists a
v € R[w] such that the pair (v,v’) is an element of Z,,,.

If there exists an k-bisimulation (Zy)o<¢<k with (w,v) € Zj, this is denoted by
M, w <, N,v. |

One could also define finite Vietoris bisimulations when all Z, are closed,
but this notion will not be useful for this paper.

Remark 2.13. If Z is a Kripke bisimulation, then for any & € N the sequence
(Z)o<i<k is a k-bisimulation. As such, MM, w < N, v implies M, w <, N, v for
any k. <

Lemma 2.14. Let £ € N and 9, w and N, v be two pointed (general) models
and P a set of propositional variables. Then

If M, w <, M, v over P then M, w e~y N, v over P,

where «~ denotes agreement on all modal formulae on modal depth < k.
Moreover, if P is finite, then the converse implication holds as well.

Proof. The proof for Kripke models can be found in e.g. [4, Proposition 2.31].
As general models satisfy the same formulae as their associated Kripke models®
and the definition of k-bisimulations references only the Kripke model structure,
this immediately extends the result to general models. O

5That is, a general model (W, R, A, V) has an associated Kripke model (W, R, V), which
satisfies the same formulae in the same points as the collection of admissible sets, whose only

semantic function is to restrict the choice of valuation, is not relevant when the valuation has
already been chosen.




Theorem 2.15. Any two ( Vietoris-)bisimilar pointed (general) models satisfy
the same formulae.

Proof. This follows immediately from Lemma 2.14 and Remark 2.13 for the
Kripke case, and additionally Theorem 2.11 for the Vietoris case. O

An important note to make is that these are equivalence relations, in par-
ticular transitive.

Lemma 2.16. Assume that Mo, wo <, My, w1 and My, w; &, My, we for
¢ < k. Then My, wo &, My, we. In particular, if My, wy & My, w; and
Mo, wo <, N, v, then My, w1 <, M, 0.

Proof. Let (Z,)o<m<¢ be an (-bisimulation between Mg, wo and My, w; and

let (Z,,)o<n<k be a k-bisimulation between 9y, wy and My, we. Then consider

(Zm; Zm)o<m=<e as an £-bisimulation between My, wo and Ma, we, where ; de-
notes the composition of relations. Suppose that (vg,vs) € Zpn; Zpm for some
m < £. Then there exists a v; such that vgZ,,v1 and vlznvg. Consequently,
vo satisfies the same propositional variables as vy, which in turn satisfies the
same propositional variables as wvq, verifying that vy and vy satisfy the same
propositional variables.

For the forth condition, if vy has a successor xg, then there is a successor x; of
v1 such that xoZ,z; for all n < m. Then from v; Z,, vy it follows that there is a
successor xo of vg such that x1 7,25 for all n < m. Therefore (zg, z2) € (Z,; Z,)
for all n < m. The back condition is identical. The final observation then follows

from Remark 2.13. O

3 Model-theoretic failures on descriptive models

In this section we will study the basic model-theoretic properties of descriptive
frames. We will show that, similarly to finite frames, many classical model-
theoretic results fail on descriptive frames.

The next lemma demonstrates that a subclass of finite frames can be defined
with a single first-order sentence.’

Lemma 3.1. An infinite, irreflexive, linear order cannot be given the structure
of a descriptive frame. Therefore, the subclass of finite, irreflexive, linear orders
of the class of descriptive models can be defined by a single first-order sentence.

Proof. Suppose g = (W, R, A) is a descriptive frame such that (W, R) is an
infinite, irreflexive linear order. The C-decreasing sequence of sets W 2O R[W] D
<+ D R"[W] D -+ must be non-empty for all n, otherwise g would be a finite
chain. As such, C := (), R*[W] is closed and non-empty, because the space is
topologically compact by assumption, the R-image of a closed set is closed [4,

In [14, Lemma 3.6], we have attempted to present an intuitive, visual proof of this fact,
but this proof requires a topological toolkit of “nets”. Readers with a background in topology
are encouraged to consult it but the proof included in this paper is purposefully elementary.



Proposition 5.83iii] and induction thus grants that R™[IW] is closed for all n. By
tightness and irreflexivity, for each x € C there must be a clopen set a, such
that « € a, but ¢ (R)a,. As then

Cn()(Ras =9,
zeC
topological compactness of g gives a finite set {z1,...,z;} such that the finite

intersection CN(R)ay, N---N{R)ay, is empty. Since the z; are linearly ordered,
there must be a least one, say x1, so that (R)a,, C (R)a,, for all i by transitivity,
yielding C' N (R)a,, = 0.

The fact that (R)a,, is clopen, hence compact, and the fact that C' =
N,, R"[W], imply that there is an n € N such that R*"[W] N (R)a,, = 0, so
that 21 ¢ R" 1 [W], which contradicts x1 € C. Thus no such descriptive frame
exists.

The irreflexive linear orders are definable in the single first-order sentence A
given by

A= VaVy[(x = y V Rxy) < —Ryz] AVaVyVz[(Rxy A Ryz) — Rxz]. (1)

total, irreflexive, and antisymmetric transitive

Since all finite irreflexive linear orders can be given the structure of a descriptive
frame (with the powerset as a collection of admissible sets) the subclass of finite,
irreflexive linear orders in the class of descriptive models can be defined by a
single first-order sentence. O

This lemma immediately implies the failure of the Compactness theorem for
first-order logic.

Theorem 3.2. The class of descriptive models is not compact over first-order
logic.

Proof. From Lemma 3.1, the Compactness theorem fails almost immediately.
Taking A to be Formula 1 and letting ¢, denote the existence of at least n
distinct elements by

RES dxqy -+ - dxy, /\ T = X where n € N,
1<i<j<n

Lemma 3.1 implies directly that {A\} U {p, }nen is not satisfiable on the class of
descriptive models. However, every finite subset is satisfied on a finite, irreflexive
linear order, which can always be given the structure of a descriptive model with
the powerset as collection of admissible sets. O

With the failure of the Compactness theorem in mind, it is natural to wonder
if some of its famous consequences fail, and indeed they do.



Theorem 3.3 (Failure of Beth definability theorem on descriptive models).
Let R be a binary relation symbol and let P be a unary predicate symbol. Then
there exists a formula ¢ that implicitly defines” P over the class @ of descriptive
models such that there is no formula v € FOL({R, P},0) that explicitly defines
P relative to ¢ over 9.

Proof. Let A be Formula 1 defining the finite, irreflexive linear orders over the
class of descriptive models as per Lemma 3.1. Then take ¢ to be the formula
saying that R is an irreflexive linear order, the R-minimum does not have P
and any two immediate successors disagree on P. Formally, ¢ is

A AVz[Pzx < Jy[Ryx A ~3z[Ryz A Rzz] A —Py]] (2)

P iff an immediate predecessor lacks P

The models of A are precisely finite, irreflexive linear orders that assign P to
exactly the even points.

Suppose now that there were a formula v (z) € FOL({R}, () that explicitly
defined P. Then the formula ¢ stating that R is an irreflexive linear order and
the maximum has the property ¥, given explicitly by

A AVz[-Ty Rxy — ¥ (x)] (3)

would be a formula in FOL({R},?) that characterises exactly the finite, even,
irreflexive linear orders. However, sufficiently large linear orders are first-order
equivalent as shown in [7, Example 2.3.6] with the Ehrenfeucht-Fraissé method.
It follows that no one formula can characterise the even linear orders and thus
1) cannot exist. O

The Craig interpolation theorem fails on the class of descriptive models for
essentially the same reason that the Beth definability theorem fails. Usually, the
Beth definability theorem is stated as a consequence of the Craig interpolation
theorem, so that the failure of former immediately implies failure of the latter,
but we consider a direct proof to be informative.

Theorem 3.4 (Failure of Craig interpolation theorem on descriptive models).
Let R be a binary relation symbol, let Py, Py be unary predicate symbols, and let
Do, D1, and Doy denote the class of descriptive models over predicate sets { Py},
{P1}, and {Py, P1} respectively. Then there exist formulae ¢ € FOL({R, Py}, )
and ¢ € FOL({R, P1},0) such that ¢ =g, ¥, but there is no formula 0 €
FOL({R},0) such that ¢ =g, 0 and 0 =g, 9.

Proof. Let ¢ state that R is an irreflexive linear order, P, occurs only on the
even points as in Formula 2 in the proof of Theorem 3.3, as well as that the

7A formula ¢ in a language £ U {P} implicitly defines a predicate P if every L-structure
2 has at most one extension to a £ LI {P}-structure A such that A = .

81f ¢ in LU {P} implicitly defines P, then a formula ) (z) in £ explicitly defines P relative
to ¢ if ¢ = Va[y(z) <> Px].

10



maximum satisfies Py like Formula 3. Let v state that R is an irreflexive linear
order and if P; occurs only on the even points, then the maximum has P;.

The formula ¢ is true on the finite, even, irreflexive linear orders with Py
on the even points. Similarly, for ¢ to be true, a structure must be a finite,
irreflexive linear order with P; true on an odd point or false on an even point,
or it must be even. Since all structures satisfying ¢ are even, it follows that
© Fag .

Suppose now for contradiction that there is an interpolant 6 € FOL({R}, )
such that ¢ =g, 6 and 0 =g, 1. Then in particular § must be true on all finite,
even, irreflexive linear R-orders. Again from |7, Example 2.3.6], this means that
0 is true on all sufficiently large finite, irreflexive linear R-orders. But an odd
linear order among these can be expanded with a predicate P, on the even
points, from which it follows that 0 £g, 1. This is a contradiction. O

These two results use Lemma 3.1 to reduce a model-theoretic problem for
the class of descriptive models to the corresponding result in finite model theory.
This reasoning can resolve model-theoretic problems on descriptive models that
have an analogue on finite models, but does not help when considering results
that have no sensible corresponding statement in finite model theory.

For an example of such results, consider the celebrated Upward Lowenheim-
Skolem theorem. It states that any first-order theory 7" with an infinite model
has arbitrarily large models.

The Upward Léwenheim-Skolem theorem has no meaningful interpretation
in finite model theory, because the hypothesis of the implication is vacuously
false. However, as the theorem is an immediate consequence of the Compactness
theorem, it is natural to wonder if it holds on the class of descriptive models
on which this the compactness property fails. Indeed this class turns out to
lack the Upward Lowenheim-Skolem property. In fact, it even fails when the
theorem is restricted to speak only about formulae.

Theorem 3.5 (Failure of Upward Lowenheim-Skolem theorem for descriptive
models). There exists a first-order formula that is satisfiable on an infinite de-
scriptive model, but not satisfiable on any uncountable descriptive model.

Proof. Let ¢ be a formula encoding a linear order with a reflexive minimum and
no other reflexive points. That is, ¢ is the formula

VaVylz =y V (Rxy + —~Ryx)] (antisymmetric & total)
A VaVyVz[(Rzy A Ryz) — Rxz| (transitive)
A VaVy|Rxx A Ryy — x = y] (at most one reflexive point)
A 3z[Rzx A Vy Rxy] (there is a reflexive minimum).

First, consider the Kripke frame (w + 1, R) with Rab if and only if a > b or
a = b = w, equipped with the collection of admissible sets given by the finite
subsets of N and cofinite subsets of N with w. See Figure 1 for the underlying
Kripke frame. This is easily checked to be a descriptive frame. Then any model

11



based on this frame satisfies ¢, because the relation is a linear order, has a
reflexive minimum and no other reflexive points.

Now suppose that m = (W, R, A, V) is a descriptive model of cardinality
[W| > Ny whose underlying frame is a linear order with exactly one reflexive
point v that is also its minimum. Because of transitivity and cardinality reasons,
there is at least one point w with infinitely many successors that is not the
minimum:

Ro < [W|=|R[]| = |Rlv] \ {v}| = | | {«} U Rz] =sip|{x}UR[$]|7
Ttv TFv

where the last equality follows from transitivity. So there is at least one w €
W\ {v} such that |{w} U R[w]| > No.

Now R[w] is closed by [4, Proposition 5.83iv] and thus a compact subspace as
a closed subset of a compact space, thereby inducing another infinite descriptive
model that is a linear order. By Lemma 3.1, it follows that R[w] contains an-
other reflexive point, which means that m contains at least two reflexive points,
implying that m [~ ¢. O

[
w

Figure 1: Schematic illustration of (w + 1, R) for R the >-relation without
reflexivity on the natural numbers. To avoid cluttering, not all arrows between
the natural numbers are drawn, but the relation should be understood to be
transitive.
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4 The van Benthem characterisation theorem for
descriptive models

In this section we prove the van Benthem characterisation theorem for the
class of models over descriptive frames, stating that modal logic is the Kripke-
bisimulation-invariant (or equivalently the Vietoris-bisimulation-invariant) frag-
ment of first-order logic.

Theorem 4.1 (The van Benthem characterisation theorem for descriptive mod-
els). Let a be a first order formula in one free variable. Then the following are
equivalent:

1. There exists a modal formula ¢ such that for all pointed, descriptive models
m,w

m,w Ik ¢ if and only if m = afw].

2. If m,w and n,v are two Kripke-bisimilar pointed, descriptive models, then
m = afw| if and only if n = afvl;

8. Ifm,w andn,v are two Vietoris-bisimilar pointed, descriptive models, then
m = afw] if and only if n = afv].

The strategy followed will be modelled after [21] and is visually represented
in Figure 2. That is, the unravelling tree will be modified in Definitions 4.12

(Def 4.22) (Def 4.22)

m® (w,0) £ mw 2y nv & a®% (y0)

% S
4 (Def 4.2) (Def 4.2) N

T(m®), ((w,0)) T(n®"), ((v,0))
& R

—

mer B & mOFYn®s @ =00 mOsyYn®s g & a8y

(Def 4.12) (Lem 4.26) (Def 4.12)

Figure 2: A visual representation of the argument that will be used to prove
Theorem 4.1.

to remain in the class of descriptive models, while still Kripke-bisimilar (and
Vietoris-bisimilar) to the original model. On these tree-like structures, an
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Ehrenfeucht-Fraissé-type argument (see [10] for more details on this technique)
will show in Lemma 4.26 that bisimulation-invariance implies k-bisimulation-
invariance for sufficiently large k. This will imply that any formula that is
bisimulation-invariant on descriptive models is modally expressible. Assuming
that « is bisimulation-invariant, m = afw], and m, ws,n, v for sufficiently large
£, the formula a can be followed clockwise around the diagram to conclude
n = afv]. The final conclusion of the proof can be found on page 23.

4.1 Unravelling for general frames

Towards proving the van Benthem theorem for descriptive models, it will be
necessary to modify the notion of unravelling trees and unravelling forests to
descriptive frames. To do this, first the unravelling forest of all finite paths needs
to be given the structure of a general frame. The most canonical way of doing
that, pulling back the admissible sets through the projection map 7, does not
offer a useful solution. The resulting frame would not inherit differentiatedness
nor tightness. To accomplish this inheritance, R¥-closure and the collection T
of paths of length 0 will be added.

Definition 4.2. Let g = (§, A) be a general frame with underlying frame
§ = (W, R). Define the unravelling cover T(g) of g to be T(g) = (T(F), A%),
where T(F) = (W=, RY) defined by

VVg = {(’wl)lgn S wntt ‘ neN,Vi<n: wiRle};

R = {(wi)igns (Wi)ignt1) © (Wi)izns1 € W)

is the forest of all finite paths in § and with collection of admissible sets A¥, a
subalgebra of (2 (W?), (R¥)) defined through the surjective bounded morphism
7 : T(F) = § by the following recursive schema:

I:=W NW € 4%, (1)
acA = 7 'a] € A%; (2)
be A* — R*[b] € A%, (3)
bt € A* - bUY,bNY € A®. (4)

In a similar vein, for a general model m = (g, V'), the unravelling cover will
be T(m) := (T(g),P°Pr o V), where ?°Pr(a) = 7~ [a]. For any point w € W,
the connected component of paths starting at w will be written as T, (g) or
Tw(m). <

Despite these extra additions, the resulting frame is always a general frame.

Proposition 4.3. Let g = (W, R, A) be a general frame. Then ¥(g) is a general
frame.

Proof. All to be checked is that A* is a field of sets and closed under the (R¥)-
operation. This is an elementary, but tedious induction. Closure under binary

14



union and intersection is immediate. Closure under complements can by checked
by induction on the construction of A¥. The complement of the initial points
¢ = R¥[W?] is the set of points with a predecessor, and is in A% because
W= = 7=YW] is in A*, from which rule (3) gives Z¢ = R*[W?] € A*.

Moreover, (77 1[a])¢ = 7~ 1[a] € A* and if by,b; € A™ have b5, b5 € A,
then (bg Uby)¢ =b5Nb§ € A* and (bo N by)¢ = b5 U b € A*.

The final case, the R*-image of an admissible set, requires a minor observa-
tion about R*: distinct points have disjoint image-sets. After all, two distinct
paths cannot have the same extension. An alternative way of saying this is that
each point has at most one R*-predecessor. As such, we have for all a C W*
that

(R¥[a])¢ = R*[a“]UT € A%,

because each point with no predecessor in a either has a its unique predecessor
in a® or has no predecessor.

For closure under (R¥), note that every element in A% can be written as
a finite union of finite intersections of elements of the form 7 '[a] for a € A
admissible, R*[b] for b € A% or Z. This is evident for elements of the forms (1),
(2) or (3) and will follow by induction on the construction for elements of the
form (4).

As (R7) distributes over unions, it is sufficient to show (R*)-closure for finite
intersections. By induction on n, it will be shown that for by, ..., b, of the forms
(1),(2) and (3), the set (R*)(by N ---Nby,) is in A*.

For n = 1, note that (R¥)T = ) = 7 '[)] € A% and if a € A then
(R¥)n~1[a] = 77 1[(R)a] € A* because 7 is a bounded morphism.

Moreover, (R*)(R*[b]), again because each point has at most one prede-
cessor, is the subset of b given by points with at least one successor. After all,
x € (R%)(R*[b]) if and only if there is a y such that y € R*[b] and zR*y.
That is equivalent y being a successor to x and having a predecessor in b, and
since predecessors in this frame are unique, this predecessor must be x. So
(RYYR*B]) = (RYYWEnb=71"(R)W]Nbe A*.

Now suppose that (R*)(b; N---Nb,) when all b; are of the forms (1),(2) or
(3). Consider then by Nby N---Nb, for n > 1. If one of the b; is of the form Z,
then it follows immediately that (R¥)(bo Nby N---Nb,) € (R¥)T = . If one
of them, without loss of generality by, is of the form R*[V'], then observe that
r € (R (R¥[V']NbyN---Nby,) if and only if Jy € R¥[x] : y € R¥[V]Nb1N---Nb,,.
By the uniqueness of predecessors, this is equivalent to having x € b and
x € (R*)(byN---Nb,). As the latter was admissible by the induction hy-
pothesis, it follows that (R¥)(R*[0']Nby N---Nb,) = N(R¥)(byN---Nby,),
which is admissible by closure under intersection.

Finally, if none of the b; are of the form Z or R*[b'] for some b’ € A*, then
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they must all be of the form b; = 7~ ![a;], from which it follows that

(R¥) (b N ---Nby) = (RY)(m Yao] N -+ N an]) = (R7 ag N - Nay)
=7 (R)(agN---Nay,)| € A*,

because (R)(apN---Nay) € A. O

Now towards the main result of the paper, it is useful to find out which
properties of the general frame are transferred to its unravelling cover.

Remark 4.4. For all a € A and n € N, the set (R¥)"[a] is admissible. <

In order to obtain the van Benthem result for descriptive models, we will
show that properties defining descriptive frames are preserved under this con-
struction.

Proposition 4.5. If g = (§F, A) is differentiated, then so is T(g).

Proof. Let & = (2;)i<n, ¥ = (y;)j<m € W* be distinct paths. If n > m, then
7 ¢ (R¥)"[W?] > #. So assume n = m. Then their distinction must mean there
is some k < n such that x; # yi. Then by differentiatedness of g there is an
a € A such that yx ¢ a > xj. But then (y;)i<k ¢ 7 '[a] > (@i)i<k, meaning
g (RE)"Frta] > 2. O

Proposition 4.6. If g = (§, A) is differentiated, then T(g) is tight.

Proof. Let (Z,7) ¢ RT. If the length I(i) of 7 is not 1(Z)+1, then § € (R¥)!® (7],
but & ¢ (RT)(R%)!@[Z] € (R*)'®~1[Z], because all paths in (R*)"[Z] have
length n.

If n:=1(y) = I(Z) + 1, then there must be a k < I(¥) such that z;, # ys.
By assumption, g is differentiated, so there exists an a € A with x, ¢ a > yx.
This implies that ¥ € (R*)"*[r~![a]] € A* but ¥ ¢ (R* )" *“1[x~1[a]] D
(RE)(R*)"* {7 [a]]. 0

Although surprising, it may be understandable that tightness is not required,
as the structure of the forest itself already separates unconnected points auto-
matically.

Proposition 4.7. Let g = (W, R, A) be a general frame and ¥(g) its unravelling
cover. Take # € W*. Then « | R*[7] : R*[¥] — R[r(Z)] is a homeomorphism
between the subspace topologies.

Proof. Tt is obviously a continuous bijection as 7~ '[a] € A% for all a € A,
which is the basis of the topology on g. To prove continuity of the inverse, it is
sufficient to show that all basis elements in the subspace topology of R*[%] are
of the form 7~ '[a] N R*[7].

By induction on the recursion schema for A*. It is obvious for the restriction
of 771a] and Z. If b € A%, then

0 if & ¢ b,

RﬂmﬂRﬂﬂ:{Rﬁﬂ if 7 € b,
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by using again that distinct points have disjoint R¥-successor sets.
Finally, 7= distributes over intersection and union, completing the induc-
tion. U

Corollary 4.8. A general frame g is image-compact if and only if T(g) is image-
compact.

Proof. The previous proposition gives that the image-sets are homeomorphic,
granting the corollary immediately. O

Corollary 4.9. Let g be a descriptive frame. Then ¥(g) is a differentiated,
tight, and image-compact.

Proof. Differentiatedness and tightness were stated in Propositions 4.5 and 4.6.
Note that descriptive frames are image-compact, because points are closed in
Hausdorff spaces, the image of a closed set is closed in a descriptive frame [4,
Proposition 5.83iii], and a closed subset of a compact space is also compact.
From there, Corollary 4.8 finishes the proof. O

4.2 The descriptive unravelling

The unravelling cover of a compact frame is not necessarily compact, as the
following example demonstrates.

Example 4.10. Consider the descriptive frame consisting of a single reflexive
point with the only field of sets possible. Its unravelling cover is N with the
finite and cofinite sets as admissible sets, which is not compact.

This shows that while differentiatedness of g implies ¥(g) is differentiated
and tight, compactness may not be preserved. In fact, no collection of admissible
sets can be constructed with which an unravelling forest of a descriptive frame
with arbitrarily long paths is descriptive.

Proposition 4.11. Let g = (F, A) be a descriptive frame. If the path lengths
in g are unbounded, then T(F) cannot be made into a descriptive frame.

Proof. For contraposition, let (T(F),.A) be descriptive. As reasoned before in
the proof of Lemma 3.1, from [4, Proposition 5.83iii] and induction it follows
that (R¥)"[W™] is closed for all n. Clearly, (), on(R¥)"[W=] = 0, as any one
path is of finite length. By compactness, then, there exists an m such that
(R*)™[W=] = (. Therefore, there exist no path of length m or more in g. [

Like for the proof on finite models from [21], the unravelling must be modified
to become descriptive. In principle, this could be done in the same way as
was done in [21]. Putting the original frame at a sufficiently long distance
from 7 would likely suffice for a reproduction of the argument. However, for
descriptive frames, there exists an alternative construction that will be used in
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this paper: the descriptive completion using Joénsson-Tarski duality discussed
in Definition 2.6.°

Definition 4.12. Let g be a general frame. Then let its descriptive unrav-
elling be the descriptive completion (Definition 2.6) of the unravelling cover
(Definition 4.2) of g. Write

to abbreviate. |

This will turn out to be a very well-behaved construction for descriptive
frames and will be key to the theorem.

Lemma 4.13. Let g = (W, R, A) be image-compact. Let F,, F € Uf A, where
F, is the ultrafilter generated by x. Then in the descriptive completion F, R, F
if and only if F' = F,, for some y € R[z].

Proof. For the implication from right to left, assume that y € R[z]. To prove
that FyR.F),, let a € F,. Then y € a. From xRy it follows that z € (R)a,
yielding (R)a € F,. Since a was arbitrary, this holds for all a« € F, so that
F,R.F,.

For the implication from left to right, assume F, R, F'. By definition, ifa € F
then (R)a € Fy, implying x € (R)a. Therefore, there exists an 2’ € a such that
xRz’

So for every a € F, we have a N R[z] # (). Since F is closed under finite
intersections, we find that {aNR[z] : a € F'} has the finite intersection property.
By compactness of R[z], the set (N{aNR[x] : a € F} = R[z]N() F is non-empty.
Therefore, there exists a y € R[z] such that for all a € F we have y € a. So
F = F, for some y € R[z], because it is an ultrafilter. O

Remark 4.14. One might have expected tightness to show up in the proposition
above to prove that F, R, [, implies xRy, but tightness is an immediate con-
sequence from image-compactness and differentiability, so it may be reasonable
to expect that image-compactness is strong enough to prove something not quite
as strong as tightness. <

Proposition 4.15. Let g be a differentiated and image-compact frame. Then
g — (g%)+ is a generated subframe'? through a topological embedding ¢4 : z +—
F,. That is, g is homeomorphic to its image under ¢4.

Proof. Lemma 4.13 gives immediately that it is a bounded morphism. From the
fact that g is differentiated, it follows that ¢y injective, making g a generated

9 Actually, the construction is quite natural in that it admits several potential equivalent
definitions, including an explicit construction and a topological definition [14, Definition 2.86,
Definition 5.14] as well as a definition through a universal property, but these will not be
needed in this paper.

10Generated subframes are given by injective bounded morphisms
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subframe. To see that it is a homeomorphism on its image, let a be an admissible
set on g. Then

g(z)=F, €0 <= a€F, < z€a,

so that ¢4 and L;l preserve the basis elements of the topology, ensuring continu-
ity for both it and its inverse restricted to the image. O

Theorem 4.16. Let g be a descriptive frame. Then7: T(g) — @ continuously.

Proof. Note that descriptive frames are in particular, image-compact and differ-
entiated, so Corollary 4.8 and Proposition 4.5 gives that T(g) is image-compact
and differentiated. Proposition 4.15 then gives the theorem. O

In fact, an even stronger claim is true.

Theorem 4.17. Let g be a descriptive frame. Then gy = T(g)x W £ for some
unspecified frame of limit points £,1 where the #-operation takes the underlying
Kripke frame of a general frame.

Proof. Let g = (W, R, A). From Theorem 4.16, it is sufficient to show that two
points in g can only be (R?),-related if they are both inside or both outside
%(g)#. Theorem 4.16 implies that if w is in the image of 7: T(g) — @, then the
(R*),-successor set of w is, too. To complete the theorem, the predecessor set
has to be, as well. This means that if F(R*),F, for some ultrafilter F' and the
ultrafilter F, generated by z, then F = F, for y € (R*)~[z].

Towards contraposition, assume that F' # F, for any y € (R¥)7![z]. In
T(g), each point has at most one predecessor, so (R¥)~[z] C {y} for some y.
In particular, this means there exists some a € F C A% such that = ¢ R*[a],
either because it has no predecessor or because y ¢ a. By construction of A%,
the set R*[a] is in A%, so that a C [R*]R*[a] € F by monotonicity of filters.
Since z ¢ R*[a], also R*[a] ¢ F,, implying that (F, F,) ¢ (R*).. O

As such, there is is an isomorphic copy of T(g)x in gx. The next step is to
upgrade the descriptive unravelling to a descriptive model.

~

Corollary 4.18. Let m = (g,V) be a descriptive model. Define m := (g, V)

with V(p) = #=1[V/(p)]. Then the relation 77;7is a Kripke bisimulation between
m and m, where the functions 7 and 7 are to be viewed as binary relations, ;
denotes composition of the relations and —7 takes the inverse of a relation.
Therefore its closure is a Vietoris bisimulation.

Proof. Both 7 and 7 are bounded morphisms, so they satisfy the back and forth
conditions by construction. The propositional requirements is satisfied because

n(@) eV(p) = Ten '[V(p) <= 7 '[V(p) € Fz
— Frerl[V(p)=V(p).
The final remark is then given by [2, Theorem 5.2]. O

11See [14, Chapter 5] for the structure of these limit points.
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4.3 Preservation under finite bisimulations

The previous section provides a tool with which to show invariance under bisim-
ulation implies invariance under some finite bisimulation. This tool will now be
used to achieve this through Ehrenfeucht-Fraissé methods. To this end, there is
a final combinatorial construction that will prove useful: a duplication process.
It will be useful to copy points in a manner that preserves compactness.

Definition 4.19. Let A and B be fields of sets over universes X and Y. Write
A ® B for the field of sets over the universe X x Y generated by {a x b | a €
A,b € B}. <

Proposition 4.20. Let A and B be fields of sets generating topological spaces
X and )Y as bases. Then A ® B is a basis for the product space X x ).

Proof. To see that A ® B generates topology that is at least as fine, note that
the basis of X x ) consists of all U x V where U and V are open subsets of X
and Y respectively. This means that U =, ay and V = g ; b¢ for a,; € A
and b¢ € B and index sets I and J. But then it is immediate that

UxV=|(Uay | x[Ube|= U anxbe

nel ged nel,geJ

is generated by A ® B.
To see that it is at least as coarse, remark that all elements of A ® B are
products of sets open in X with open sets of ). O

Corollary 4.21. Let A and B be fields of sets.
1. If A and B are compact, then A ® B is compact;
2. If A and B are differentiated, then A ® B is differentiated.

Proof. This follows immediately from Proposition 4.20 and the fact that the
product of two compact spaces is compact and the product of totally separated
spaces is totally separated. O

Definition 4.22. Let g = (W, R, A) be a general frame and let F be a field of
sets over a universe X. Define the F-multiplier of g by

R® X = {((w,z1), (v,22)) € (W x X)? | (w,v) € R,x1,20 € X};
g®7 =W xX,R®X,A® F).

If m = (g,V) is a general model, then define V(-) x X by p+— V(-) x X) and
m®7 = (097, V() x X),

which will be called the F-multiplier of m. <
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Remark 4.23. There is an obvious surjective continuous bounded morphism
7o : §¥X — §F given by projection on the first coordinate. <

Lemma 4.24. Let g = (W, R, A) be a descriptive frame and let F over X be a
compact and differentiated field of sets. Then g®7 is a descriptive frame.

Proof. Compactness and differentiatedness follow immediately from Corollary
4.21. To see tightness, let ((w,x1), (v,22)) ¢ R® X. Then (w,v) ¢ R. From
tightness of g follows the existence of a € A such that v € a but w ¢ (R)a.
Then in particular, (v,22) € a x X, but (w,z1) ¢ ((R)a) x X. It is a general
frame in the first place, because

(ROX)axX)={FeWxX|3HcaxX:5RoX)t}
={(s,z) e W x X | 3(t,y) € a x X : sRt}
={seWxX|3te€a:sRt} x X =((R)a) x X,

completing the proof. O

As mentioned before, this construction will be used to apply Ehrenfeucht-
Fraissé method. Multiple constructions are conceivable, but the approach taken
here is adopted for its convenience. It will be inspired by Hanf’s Lemma [11,
Lemma 2.3|. Like Hanf’s Lemma, it relies on the notion of the Gaifman neigh-
bourhood.

Definition 4.25. Let § = (W, R) be a frame, I = (F,V) a model and S C W.
Then the Gaifman neighbourhood of size £ of S is defined recursively by

N§(S) = S;
NF(S) = NJ(S)U(RNF(S)UR[NF(S)];

NF(S) = (NJ(S),R | N} (S)) where R | A:= RN A x A;
N(S) = (NF(S), VN NF(9)),

where V N NS (S) := (p — V(p)N Nf(S)). That is, the ¢-neighbourhood of S

is the set of points that can be reached in ¢ steps along or against R. The letter
N is used for the set, and ¥ is used for the subframe and the submodel. |

That is, the f-neighbourhood of a set S is the collection of sets that can be
reached in at most ¢ steps forwards or backwards along R from S.

Lemma 4.26. Let M= X WY, ; By and N =X WY, ; C, be two (general)
models such that

e B, = B for all n,{ € I
o C,=C; forall p,me J;

e [ and J are infinite.
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Taking ¢ = 3", suppose that for each point w in B,, there exists a point v in a
C, such that N (w) = N (v) and vice versa. Then for wg in M and vy in N

N (wo) = N vg) = M, we =, N, vo.

Proof. The proof uses the Ehrenfeucht-Fraissé method. The reader is referred
to [10] for an exposition of the method.
By induction on the number of rounds played so far, it will be shown that
Duplicator can counter any move by Spoiler. To this end, write £(k) := 3"~*.
More precisely, let the induction hypothesis denote that for any (a;);< and
(b;)i<k such that

X U Ny ({wo} U {ai}i<k) = X U N ({Uo} U {bi}i<k)

a; '—)bi,
where < wqg — v,
T ifx € X.

a move ai can be countered with a move by such that the above condition
holds with k replaced by k + 1. In particular, there will be a local isomorphism
between the elements chosen. From symmetry, the response of an aj to a by can
be given similarly. Inductively performing this until k¥ = n then gives victory
for Duplicator.

Suppose that there have been k turns and the inductive hypothesis holds.
When Spoiler makes a move ag, there are two cases to consider:

1. a; € Ng.g(kJrl) ({’wo} U {ai}Kk) uX,

2. ay ¢ Nz.g(kJrl) ({’wo} U {ai}Kk) . ¢

In the former case, let 6 : X U Nyuy({ai}ick) — X U Ny ({bi}i<r) be the
isomorphism assumed in the induction hypothesis and let by = 6(ay). Observe
that 2 - 3n—k—1 4 gn—k-1 = 3n_k, SO Ng(k,l)({ai}igk) - Nl(k)({ai}Kk) and
the same for b. It follows immediately that the restriction of 6 is again an
isomorphism between these two smaller neighbourhoods.

In the second case, remark that Ny ({b;}i<x) can only intersect at most k
connected components. Because J was infinite per assumption, there is a p € J
such that Ny ({bi}i<k) N C, = 0. By assumption, there is a 7 such that

Nogoy(ar) = Nyoy(v) € Cr = C,

for some v. Therefore, there is a by in C, (namely the image of v under the
isomorphism directly above) such that Ny)(ar) = Nyo)(br). Choosing it, one
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obtains

Noe+1)(ar) = N1y (br);
X U N1y ({aiticr) = X UNygqry({aiticr) through restriction of 9;

X U Ny ({aiti<k) = Nogrr) (ar) ® (X U N1y ({aibicr))
& Noer1) (br) W (X U N1y ({3 Yicrr))
= X UNg(r1)({bi}i<k),

where W denotes disjoint union of models and the isomorphism on the different
disjoint components is preserved, so that it is still the identity on X, and sends
the a; to the b;.

Symmetry of the models 9t and O guarantees that the exact same argument
provides a response aj to a move by by Spoiler.

At the end, this gives Duplicator an isomorphism

X U Ny ({0} U {aitizn ) 2 X U Ny ({wo} U {ai}icn )
which, using ¢(n) = 1, can be restricted to a local isomorphism

{wo} U{aiticn = {vo} U {bi}icn,
winning the game for Duplicator. O

This final lemma now permits a proof of the van Benthem Characterisation
Theorem for the class of models on descriptive frames.

Proof of Theorem 4.1. Remark that the equivalence (2) <= (3) follows im-
mediately from Theorem 2.11.

The implication (1) = (2) is a well-known property of Kripke bisimula-
tions and modal logic [4, Theorem 2.20]. Modal formulae are bisimulation-
invariant, so any first-order formula equivalent to one, is also bisimulation-
invariant.

The only interesting implication is the implication towards (1). Towards
the implication (2) == (1), it will turn out to be sufficient that Kripke-
bisimulation-invariance implies finite-bisimulation-invariance.

Let a(z) be a bisimulation-invariant formula in one free variable with quan-
tifier depth q(a). Write £ =2 39(®) and assume that m,w and n, v are pointed
descriptive models with respective universes W and W such that

e m E afw];

e m,w <, n,v over the propositional variables corresponding to the predic-
ates occurring in a.

Let x be an infinite cardinal greater than those of the universes of m and n.
Then the order topology is compact and totally separated on the ordinal number
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k+ 1. Write K for the field of clopens of this topology. Remark 4.23 gives that
m®E (w,0) £, n®K (v,0) and Corollary 4.18 implies

mEE Fy.0)) 0 09K F(y.0))-

Write W := F(w,0)) and U := F{(,,0)) to avoid unnecessarily complicated ex-
pressions. Observe that the bisimulations provided by Remark 4.23 and Co-

rollary 4.18, together with the bisimulation-invariance of o imply that m®¥ =

a[w]. Showing now that ok = a[v] would, through the same bisimulations,
then show n |= «a[v], as desired.

Following Theorem 4.17, the models m®X and n®X can be written as

moK = LW TM®F) L ew [ T(u, )

nerk+1
weWw
WK = A Te) Ay [H T, )
UENil
veW
mEK Wnek = (CwA)w |4 ( H T @) |4 z(m(nw)),
ner+l  wew vEW

where the equalities marked by * follow from the fact that two paths can only be
related in the tree if one extends the other, and two paths with different starting
points cannot extend one another. Recall from Definition 4.2 that T, (90) is the
submodel of paths starting at . The submodels £ and A are unspecified frames
of limit points.

For any n,¢ € K + 1,

L‘ﬂ T (mEF) & L‘ﬂ T, (n¥F) = L‘ﬂ Tw,e) (M) & L‘ﬂ T(v,6)(n®F)
weW ’UEW weW ’UGW

through the map of switching the initial point. Moreover,
mOK @ & mOK yn®K = mOK g n®K = ow]
and
0K 5 o mOK Wnek 3,
Therefore, if JYZ“‘®K (w) = JYE"@K@), applying Lemma 4.26 for

—_— —_—
M =N := mOK yn®K,;

I=J:=k+1;
By=Cypi=|H Twmm®)w |4 T, n®X);
weWw 1,EW
X=£WA
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will prove that

f)ﬁ, w Eq(a) ‘JT, .

This implies m®K noK = «av], from which the bisimulation above provides

n®K = a[v], which in turn shows n = afv] from the previous bisimulations.
This implies that « is preserved under finitary bisimulations. As bisimilarity
up to depth ¢ over finitely many propositional variables is identical to modal
equivalence up to depth ¢ (|21, Proposition 1]), this means that « is characterised
by some collection of theories of formulae of finite modal depth. As there are
finitely many such formulae, there is a modal formula of depth up to £ equivalent
to a, concluding the proof.

This final claim of isomorphism of neighbourhoods will be achieved by show-
ing inductively that there exists a sequence of isomorphisms (f;);<¢ with

fi o NEEF (@) 2 A (),

K2

fi I NP (@) = for j < i;
NP (@) 3 @ emg_y filz) € NN (D) over the predicates in a.

Clearly, the map fy : JV(}“®K (W) — JV(;‘@K@) is an isomorphism, since both
consist of a single irreflexive point and must satisfy the same propositional vari-
ables, because m®X @ <, n®K 3, so they satisfy the same propositional vari-
ables, implying that fy is an isomorphism. Moreover, through [21, Proposition
1], it implies that W «~ 0.

Now suppose that f; : N™™ (@) — A" () is an isomorphism. Since @ is

the root of its treelike connected component, if R is the relation on m®X, then

N (@) = | RMa),
K<j

so the isomorphism f;;; only needs to extend f; on the successors of R![i)].
Because the connected component under consideration is a tree, no two points
share successors. Therefore, the successors of each such point may be considered
separately.

Let © € R'[@]. Each theory of modal depth £ — i — 1 over the predicates in
« has a single characterising formula, as there are finitely many such formulae.
Write ¥ for the set of these characterising formulae. For each ¢ € ¥, if m®X 2 I-
O, then this type occurs x many times in R[z] and otherwise it occurs 0 times,
because if it occurs once, then it must occur in all the K-duplicates. The same
reasoning applies to f;(x), so because they agree on each (¢ per assumption, for
each theory x and f;(x) either both have x many successors with that theory,
or none.

It follows that for every ¢ € X, there exists a bijection g between the
successors of x satisfying ¢ and the successors of f;(z) satisfying ¢. Choosing
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one such g7 for each ¢ allows the construction of

fin=fo || ¢
2ER[)
peED
this preserves all new relations and predicates. Moreover, y € R[x] with = €
R'[@] has modal theory characterised by ¢ € ¥, and therefore by construction
Yy ewe—i—1 gy(y). Since this also held for f; by induction hypothesis, the
inductive condition is satisfied again. O

5 Conclusions and future work

The main result of this paper is the validity of the van Benthem characterisation
theorem on the class of models based on descriptive frames. We also showed the
failures of the Compactness theorem, the Upward Léwenheim-Skolem theorem,
the Beth definability theorem, and the Craig interpolation theorem on this class
of models.

We will now briefly discuss potential directions for future work. As discussed
in the introduction, many generalisations and adaptations exist of the classical
van Benthem characterisation theorem. Deserving special mention is the Janin-
Walukiewicz theorem [15]. This theorem is an analogue of the van Benthem
characterisation theorem for the modal p-calculus. It states that the modal p-
calculus is the bisimulation-invariant fragment of monadic first-order logic. The
proof of this theorem also relies centrally on unravelling trees and the convenient
properties of trees for game-theoretic semantics. In [3], a subclass of descriptive
frames is designed to allow interpretation of the modal p-calculus. We leave
it as an open problem whether an analogue of the Janin-Walukiewicz theorem
can be proved for these descriptive u-frames. We only note that for this task
one could try to work with an appropriate version of descriptive unravellings
defined in this paper.

The coalgebraic generalisations of the van Benthem characterisation theorem
for finite frames are inspired by the view of Kripke frames as coalgebras for the
powerset functor on the category of sets. Similarly, the finite Kripke frames can
be viewed as coalgebras for the powerset functor in the category of finite sets.
This then leads to a strategy based on the pseudotrees as in [21] to obtain the
van Benthem characterisation theorem for finite supported coalgebras. As was
shown in this paper, descriptive frames are model-theoretically highly similar to
finite frames. As descriptive frames are coalgebras for the Vietoris functor on the
category of Stone spaces, one could consider combining the constructions from
this paper with the approach used in [22]. There again, a type of pseudotree
is introduced to apply arguments from finite model theory to obtain the result.
Replacing the pseudotree with the descriptive unravelling could give way to a
similar result for alternative Vietoris-like coalgebras on Stone spaces.

In [19, 20], the van Benthem characterisation Theorem is treated for intu-
itionistic frames. Descriptive intuitionistic frames are known as Esakia spaces
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[9] and with the techniques from this paper, one could pursue modal character-
isation theorems on these interesting classes.

Finally, neighbourhood structures have been given the structure of Stone
coalgebras in [13]. Thus, the constructions presented here may be combined
with the approach from [12] to achieve a modal characterisation result on these
neighbourhood structures over Stone spaces.
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