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Abstract

This thesis covers structuralism in the philosophy of mathematics,
focusing on non-eliminative versions thereof and zooming in on three fresh
and promising contemporary articulations. After introducing the topic and
essential piece of terminology, we follow a quasi-historical route to modern
mathematical structuralism: starting with Paul Benacerraf’s seminal articles
and after drawing a taxonomy of views playing out in the contemporary
field, we discuss eliminative structuralism alongside introducing useful
ideology, and we formulate eliminativist discontents which feed a line of
reasoning which is crucially invoked by non-eliminativists to motivate their
view. Moving thus on to non-eliminativism, we introduce Stewart Shapiro’s
early articulation thereof: Sui Generis Structuralism, followed by an
extensive discussion of many of the the problems and ensuing objections
leveraged against it. Gathered together, all these concerns constitute the
canon we use to assess the three newly emerging articulations of
positionalist non-eliminativist structuralism. After taking a motivated
detour through non-positionalist non-eliminativism, we introduce in some
detail Øystein Linnebo and Richard Pettigrew’s Fregean Abstractionist
Structuralism, Edward Zalta and Uri Nodelman’s Object Theoretic
Structuralism and Hannes Leitgeb’s Graph Theoretic Structuralism.
Assessing each of these views against our canon, we find that, for the most
part, each of these is successfully replied. Our thesis is that in spite of
sustained criticism, there is still fuel in the realist’s tank, meaning that each
of the three views is left standing following their assessment against the
canon, albeit this claim will be qualified in Conclusion.
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Introduction

1 Introduction

The last five decades brought structuralism into the spotlight of philosophy,
especially mathematical structuralism (MS) in the philosophy of mathematics.
Ever since Paul Benacerraf’s seminal article,1 the philosophical community
engaged closer and closer with structuralist themes, leading to the emergence of
several different structuralist views to the point that no currently available
taxonomy may comfortably accommodate them all. John Burgess sketches a
history of the evolution of structuralist views in the last century.2 The following
essay is concerned with central topics in the contemporary debates around MS.

Coming of age against the background of a mathematical practice which emerged
radically transformed at the end of more than a century of foundational disputes,
modern structuralism in the philosophy of mathematics is a paradigm whose core
claim is that structures constitute the subject matter of mathematical theories:
such theories, the structuralist holds, are about structures.3 The main motivation
behind mathematical structuralism rests on peculiar phaenomena of indifference in
the modern mathematical practice: the number theorist, for instance, doesn’t care
whether natural numbers are set theoretic systems, a sequence of Roman emperors
or another of watermelons, at least as long as there are enough of them.

As much is a common to all sorts of currently trending structuralist views, but
the agreement stops here. On the metaphysical side, divisions appear with respect
to the status and nature of structures. On the ontological side, similar divisions
emerge about the existence, nature and identity of mathematical objects understood
as positions in structures; we are going to indiscriminately use ‘metaphysical’ and
‘ontological’ when referring to either cluster of issues in what follows. Such issues
are paralleled by deep disagreements concerning the proper construal of ordinary
mathematical discourse; such concerns are labeled ‘semantic’. Further, yet mostly
neglected topics are epistemological,4 but these will be almost entirely bracketed
in what follows. In what follows we are chiefly concerned with metaphysical and
semantic aspects of MS.

Some of these disagreements are resolved along two main separation lines well
known in philosophical circles: eliminativism and non-eliminativism, a.k.a.

1Benacerraf [1965].
2Burgess [2015, §3]. See also Hellman and Shapiro [2019, §2].
3 Alongside mathematical structuralism, scientific structuralism is a boiling hot topic in the

philosophy of science. See Ladyman et al. [2007] introducing ontic structural realism and Ladyman
[2020] for a review of the contemporary field. We will not discuss scientific structuralism per
se. Many problems and potential solutions discussed below have correspondents in scientific
structuralism and a joint assessment would certainly prove most interesting. However, this is
a topic for further work.

4See Shapiro [1997, §4] for an epistemology of structures in terms of pattern recognition. See
MacBride [2008] for a discussion of the epistemological debts of non-eliminativism.
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Introduction

anti-realism and realism, respectively.5 Eliminativists hold that structures do not
exist and analyze discourse about structures as discourse about their systems. The
distinction between structures and systems will become clear shortly; roughly,
systems are understood as entities containing a domain of entities with relations
and functions on them (like model theoretic structures), while structures are, if
anything, something over and above systems that isomorphic systems have in
common. Non-eliminativists, unlike eliminativists, hold that structures do exist
and aim to provide an account of their nature. Our main focus in what follows is
non-eliminativist MS. However, since an assessment of non-eliminativism is
inevitably against the background of its main contender, a self-contained
presentation of eliminativism will precede our core discussion. Non-eliminativism
has been recently split into positionalism and non-positionalism:6 the former
pictures structures as endowed with a domain of positions perforating them, while
the latter has no appetite for that. Our focus is positionalism, but
non-positionalism will be shortly discussed nonetheless.

The main question of the present essay is the following (with a wink at
Benacerraf’s famous title):

Question 1: What could mathematical structures be?

In particular, what could non-eliminativists’ mathematical structures be? For one,
structures should be the kind of entities whose isomorphism suffices for identity,
unlike other abstract objects such as set theoretic models, for instance. We review
four metaphysical accounts of structure, aiming to showcase the contemporary non-
eliminativist’s options based on an uniform methodology (coming shortly). Since
we focus on positionalism, the following needs attending:

Question 2? What could positions be?

However, as we shall shortly see, this question is not interesting as it stands once
Question 1 has been answered. However, coming up with satisfactory identity
criteria for positions in structures will prove tricky. So the following replaces it:

Question 2: What sort of facts govern the identity of positions?

One of the major temptations of positionalism is the promise of a simple semantic
picture: mathematical theories are about structures, mathematical terms refer to
positions thereof (and relations and functions on them). However, there is no such
thing as a free-lunch in philosophy7 and positionalists owe us an account of reference
to structures and their positions:

5The distinction is first made explicit by Charles Parsons [1990]. A Hegelian remark on labeling
philosophical views: historical priority is sharply marked by positive terms, even when the content
of the corresponding view is rather negative (i.e. it negates some thesis). One can read historical
order off labels.

6This distinction has been introduced by Bahram Assadian [2016]; see e.g. p. 29ff.
7Although there are a few used ’till abused catchphrases.
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Introduction

Question 3: What sort of reference do mathematical terms perform?

These questions correspond to the three topics mentioned above: metaphysical,
ontological and semantic. They are the main focus of the present essay and will
prove instrumental while presenting the views. Each of the three clusters of problems
corresponds to one topic.

Our thesis is humble: in spite of sustained criticism, there is still fuel in the
realist’s tank. We focus on assessing three recent non-eliminativist articulations
against an arsenal of problems and objections leveraged against Stewart Shapiro’s
and Michael Resnik early versions of positionalism.8 In this order, after
introducing Shapiro’s Sui Generis Strucutralism (§3.1)9 alongside its problems, we
review Fregean Abstractionist Structuralism (§3.4.1),10 Object Theoretic
Structuralism (§3.4.2),11, and Unlabeled Graph-theoretic Structuralism (§3.4.3).12

We show that each of these is left standing following the assault, albeit we will
qualify this thesis in conclusion (§4).

Concerning our methodology, we engage in score keeping with respect to an
extensive collection of problems and objections. We label this collection the ‘canon’
and each view mentioned above will be assessed against the canon. Passing the
canonical test, at least largely, is necessary for a view’s worth of further theoretical
interest. However, a full comparative assessment is a task for further work.

These contents are structured as follows. This Introduction (§1) continues with
a short quasi-historical outline of the emergence of MS as a modern philosophy of
mathematics in Benacerraf [1965], presenting his main arguments, conclusion, and
the dynamics that played out between the exponents of its main versions (§1.1); we
use this opportunity to introduce essential piece of vocabulary to be used throughout
the essay. Concluding the Introduction, we present a taxonomy of the views playing
out in the field (§1.2).

The second section (§2) provides an outline of eliminativism, considering the
three most common variants thereof: relativism (§2.1), universalism (§2.2) - using
Reck and Price [2000]’s jargon - and modal structuralism (§2.3), each presentation
concluding with the main objections leveraged against the view just presented.
Finally, we show how these serve as the chief motivation leading to
non-eliminativism (§2.4).

The third section (§3) constitutes the core of the essay, bringing
non-eliminativism into focus. We present Stewart Shapiro [1997]’s now classic
positionalist account, indicating highlighting the crucial theses and time bombs.
Afterwards we review the problems and objections raised against Shapiro’s

8Mainly in Shapiro [1997] and Resnik [1997].
9Original in Shapiro [1997].

10Original in Linnebo and Pettigrew [2014] emended in Schiemer and Wigglesworth [2017] and
Wigglesworth [2018a]. Reviewed in §3.4.1.

11Original in Nodelman and Zalta [2014].
12Leitgeb [forthcoming,a] and Leitgeb [forthcoming,b].
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1.1 Historical note

structuralism and build our canon off them (§3.2). Before going full on discussing
positionalism, we consider non-positionalist accounts motivated by the observation
that most of the canonical problems concern positions themselves or their roles in
structures; a short assessment of this view will highlight some of its weaknesses
(§3.3). We now turn to discussing the positionalist views mentioned above (§3.4),
where each dedicated section has three parts: (1) the presentation of the theory is
followed by (2) an assessment against the canonical problems and (3) concludes
with a simplified picture and relevant remarks. Finally, the fourth and last section
(§4) concludes the essay taking stock and highlighting further work.

It is certainly wise to inform the reader concerning those structuralist topics we
are utterly silent about; to avoid repetition, we advise those interested in forming
an accurate picture of the considerable gaps figuring in the essay at hand to take a
glance at the last paragraph of §1.2.

1.1 Historical note

Modern MS begins with Paul Benacerraf’s seminal article ”What numbers could
not be.” At that time and under the influence of the Nicolas Bourbaki group,
working mathematicians already subscribed to a version of structuralism in
mathematics.13 In Bourbaki’s sense, a structure is a set together with a collection
of relations between its elements. Such sets were taken to be those posited by the
most mature set theory of the day (ZFC) and mathematical theories, understood
as collections of axioms, were thought of as about those structures satisfying them,
while mathematical objects were elements in such structures. This notion of
structure is later in the century philosophically recovered under the label ’system:’
structures in the Bourbakist sense just are a particular sort of system, namely
systems of sets:

(System) A system is a collection of objects with relations on them.

In what follows, we reserve the terms ‘structure’ simpliciter for that which is
common to isomorphic systems. We can now introduce our first distinction. Call a
theory categorical if all the systems satisfying it are isomorphic, where
isomorphisms are structure-preserving maps between systems. Bourbaki
distinguishes between univalent and multivalent mathematical theories, a
distinction to be later recovered under the labels assertoric and algebraic theories,
respectively:

(Assertoric theories) A theory T is assertoric if and only if it is
categorical.

13Burgess [2015, p. 106-113] offers a neat presentation of their ideas; we draw on Burgess remarks
in these paragraphs.

7



1.1 Historical note

(Algebraic theories) A theory T is algebraic if and only if it is not
assertoric.

All mathematical theories are construed as being about structures (understood as
set theoretic systems), but some of them, the assertoric ones, have the additional
property that only systems of a certain isomorphism type satisfy them and, in this
sense, they are held to describe their common structure. This distinction is only
rough and for some purposes its characterization in terms of the intended
interpretation of the theory might fare better; however, this is enough for our
purposes in what follows.

This was and probably still is the mindset of the working mathematician; we call
this view ’methodological structuralism.’14 This was made possible by developments
in mathematics and logic in the 19th and 20th century, with the development of
axiomatic systems and novel mathematical disciplines such as set theory and later on
model theory. What is peculiar to this incipient form of structuralism is that it is free
of any philosophical commitments concerning mathematical objects or structures:
methodological structuralism was a faithful description of mathematical practice
itself and, as such, unavoidably patchy and question begging from a philosophical
viewpoint.

The middle of the 20th century brought about an ”ontological turn” in analytic
philosophy, notably in W.V.O. Quine’s work.15 Disputes between realism and
anti-realism returned in focus transformed by half a century of analytic philosophy
and engagement with formal means in the philosophical enquiry. Quinean dictums
such as ” ”[t]o be is to be the value of a variable” ” or ”no entity without
identity”16 legitimized enquiries based on while at the same time going beyond the
naive contents of methodological structuralism.

While practicing mathematicians were content to state that mathematical
theories were about set theoretic structures, this much appeared now incomplete
to those more philosophically inclined and well-informed concerning the latest
philosophies of the day. Let’s call versions of structuralism about mathematics
which build more substantial philosophical conceptions upon the methodological
structuralist scaffolding ’philosophical structuralism.’17 Philosophical structuralism
takes seriously questions concerning the existence and nature of structures,
mathematical objects, identity, reference or epistemology, supplementing the thin
approach of methodological structuralism with substantial philosophical theses.

Against this background, Paul Benacerraf [1965]18 argues that numbers could not
be objects, against the naive, implicit Weltanschaung of the working mathematician.

14See Reck and Price [2000, p. 346] and Reck and Schiemer [2020, §2.3].
15Burgess [2015, p. 119-120].
16Quine [1948, p. 34] and Quine [1969, p. 23], respectively.
17Following Reck and Schiemer [2020, §2.3].
18Reck and Schiemer [2020, §1.1] mention Hillary Putnam as another early proponent of

philosophical structuralism; see Putnam [1975].

8



1.1 Historical note

Benacerraf’s first argument relies on simple set-theoretic observations while
taking notions such as ’object’ seriously. Using number theory as a case study,
Benacerraf points out that there are multiple set-theoretic reductions of the
natural numbers, as witnessed by the Zermelo and the von Neumann ordinals.
Zermelo suggests an interpretation which assigns H to 0, while the successor
function is s : x ÞÑ txu. Von Neumann, instead, keeps the interpretation of 0, but
takes the successor function to be rather be s1 : x ÞÑ x Y txu. The associated
domain for each interpretation is the closure of tHu under their respective
successor functions. Both interpretations define set-theoretic structures satisfying
PA2. However, since the sets involved are distinct, the structure of natural
numbers, N, cannot be both at once and mathematical objects cannot be both
Zermelo and von Neumann ordinals. So which one are they? Benacerraf’s answer
is uncompromising: none, since N could as well be any of them. If natural
numbers are sets, thus objects, they should be particular ones with certain identity
criteria distinguishing them from all other sets, so they should be certain sets. So
they cannot be both Zermelo and von Neumann ordinals, hence they are neither.19

This is Benacerraf’s first embarrassment of riches for set-theoretic reductions of
number theory. However, one can go on to notice that as well is certainly not best :
both systems attribute to natural numbers extra-arithmetical properties such as
1 P 2 or 1 R 2.20 Corresponding to the methodological structuralist’s indifference
concerning the choice of set-theoretic structures, is indifference concerning
mathematical entities: mathematical entities appear to have exclusively structural
properties:

Structural property: Let S be a system, a be an element in the domain
of S and ϕ be a property such that ϕpaq. ϕ is a ’structural property’ of
a if and only if for all systems S1 and f : S – S1, ϕpaq ” ϕpfpaqq.

Structural properties are isomorphism invariant properties, i.e. properties which
are preserved along isomorphisms. Structural relations are those relations which
are shared by all those systems which share the same structure.21 If mathematical
entities are objects at all, then they are a peculiar, incomplete sort thereof. This
kind of indifference transferred from the level of systems to that of objects will

19Benacerraf [1965, p. 63].
20PA2 is categorical – see Shapiro [1991] for a reconstruction of a proof traced back to Dedekind

and Behman [trans]. However, we should notice that even though Zermelo and von Neumann
ordinals - ordered by their appropriate successor functions s and s1, respectively - are isomorphic in
the signature of arithmetic (L2Yt0, su), they are not set-theoretically isomorphic. As such, the fact
that they are not set-theoretically elementarily equivalent doesn’t conflict their being isomorphic
in the relevant sense.

21See Korbmacher and Schiemer [2018] which distinguish another characterization found in the
literature: structural properties are those expressible solely in terms of the primitive relations of
the mathematical theory characterizing the structure concerned. The authors compare these two
notions and find them extensionally distinct.
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1.1 Historical note

prove a cornerstone for non-eliminativism. Benacerraf sees reason to strengthen
his conclusion that numbers are not sets: sets have the kind of properties numbers
should better lack. This argument applies over the board to every assertoric
mathematical theory such as integer, real and complex analysis, geometry or
theories describing any finite unlabeled graph: if mathematical theories are about
structures, then neither structures, nor their positions are sets.22

Benacerraf’s second argument reinforces the former with a full on anti-realist
sentence. Suppose that we somehow managed to pick out a unique system which we
deem to be the structure described by a certain theory. It is a simple model theoretic
result that (non-trivial) permutations of set-theoretic systems yield distinct albeit
isomorphic set-theoretic systems:

Permutation: Let L be any signature, let M be any L-structure with
underlying domain M, and let π : M Ñ N be any bijection. One can
use π to induce another L-structure N with underlying domain N , just
by ”pushing through” the assignments in M, i.e., by stipulating that
sN “ πpsMq for each L-symbol s. Having done this, one can then check
that π :MÑ N is an isomorphism.23

We follow the practice and abuse language by using M and N to refer to
set-theoretic systems as well as their domains; in this case, we call f a
’permutation’ of M, and N a ’permuted copy’ of M. This much again concludes
that structures are not set-theoretic systems; however, permutation appears simple
enough to assume that whatever structures might be, they will afford some kind of
permutation operation resulting in further distinct but isomorphic structures.
Assuming (plausibly) that the permuted copy is just as good (and just as little
bad) as the original for fixing the reference of mathematical terms, then we end up
with the second embarrassment of riches, this time a more damning one. If
something like the model theoretic permutation construction can be performed on
the domain of the structure, then, given any of them, we end up with plenty of
good choices. Taking arithmetic and the natural number structure as case study
throughout his essay, Benacerraf [1965] makes the point in terms of progressions
rather than permutations of given collections:

It was pointed out above that any system of objects, whether sets or not,
that forms a recursive progression must be adequate. But this is odd,
for any recursive set can be arranged in a recursive progression. So what
matters, really, is not any condition on the objects (that is, on the set) but

22The easiest way too apply this argument to integer, real and complex analysis is noticing that
set theoretic structures thereof can be defined starting with a set theoretic structure of the natural
numbers and it can be seen that different choices of structures for the latter will end up with
different structures for the former ones.

23See e.g. Button and Walsh [2016, p. 284].
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1.1 Historical note

rather a condition on the relation under which they form a progression.
To put the point differently – and this is the crux of the matter – that any
recursive sequence whatever would do suggests that what is important is
not the individuality of each element but the structure which they jointly
exhibit. This is an extremely striking feature (Benacerraf [1965, p. 69])

Since any choice would be arbitrary, Benacerraf concludes that none is the structure
and hence that mathematical entities are not objects at all. This is what we will
later present as the Permutation problem (§3.2.2) and, as one might expect, there
are versions of it threatening mainstream non-eliminativist positions.

The constructive part of Benacerraf’s article is far from being as well
articulated as its destructive input. Benacerraf states that mathematical theories
are about ”abstract structure” such as the natural number structure24 or the real
number structure, that mathematical entities should be conceived of as ”
”elements” of the structure”, that positions in the natural number structure are
fully characterized by what ”stem[s] from the relations they bear to one another in
virtue of being arranged in a progression” (Benacerraf [1965, p. 70]); however,
nothing is uttered concerning the nature of structures or whether discourse about
them should be understood at face value (suggesting realism) or rather
paraphrased away (suggesting a reduction of structures to another kind of
entities). Straining it (arguably a bit too much), Benacerraf [1965]’s positive
characterization leaves enough space for both eliminativist as well an
non-eliminativist articulations of philosophical structuralism.

Modern structuralists25 have recovered historical statements hinting in the
direction of their views. Most notably, Richard Dedekind’s views have been quoted
by eliminativists and non-eliminativists alike to motivate their take on the matter.
It turned out that the many of the important figures engaged with the foundations
of mathematics at the turn of last century provide the means for a structuralist
interpretation of sorts.26 Some scholars have tried to resolve well-known disputes
such as that recorded in the correspondence between Gottlob Frege and David
Hilbert in terms of disputes on structuralism.27 Such historical enquiries also
brought to light early objections to modern day influential versions of
structuralism, such as the Circularity objection (§3.2.2) which can be traced back

24Benacerraf states:

Arithmetic is therefore the science that elaborates the abstract structure that all
progressions have in common merely in virtue of being progressions. (Benacerraf
[1965, p. 70])

25From now on, the terms ’structuralism’, ’structuralist’, ’MS’ etc. simpliciter will be meant to
refer to philosophical structuralism etc. unless otherwise stated.

26See e.g .Reck [2018] and Hellman and Shapiro [2019, §2].
27Doherty [2019].
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1.2 A Taxonomy of MS

to Bertrand Russell’s remarks against Dedekind’s view.28

This section should have provided the necessary historical background for the
discussion to follow. Before concluding our introduction, we provide a taxonomy of
modern structuralist views.

1.2 A Taxonomy of MS

We are drawing upon Reck and Schiemer [2020, §2.3]’s ”broader” taxonomy of
structuralism, understood here generally to include not only its philosophical
variants, but also methodological structuralism itself.

Mathematical structuralism

Methodological Philosophical

Eliminativism

Full-eliminativism

Modalism

Semi-eliminativism

Relativism Universalism

Non-eliminativism

Positionalism

Ante Rem

Sui Generis

Generic Structuralism

Object Theoretic

Unlabeled Graph Theoretic

In Re

Fregean Abstractionism

Dedekind Abstractionism

Russellian Abstractionism

Non-positionalism

Ante Rem In Re

28Russell [2009, p. 251]
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1.2 A Taxonomy of MS

Following Bahram Assadian [2016], we enriched Reck and Schiemer [2020]’s
suggestion by adding a further split within non-eliminativist views between
positionalism and non-positionalism. Let us shortly characterize the views just
mentioned.

Methodological structuralism corresponds to the characterization provided in the
previous section: it is a depiction of the mathematical practice as it emerged at the
end of the first quarter of the last century, lacking any concessions to satisfy the
curiosity of the more philosophically inclined. It is however in principle possible to
conceive of such a view as philosophically loaded, enriching it with theses holding
ontological questions to be meaningless.29 But this is a pure theoretical possibility
in the contemporary field.

Philosophical structuralism has been also sketched in the previous section: it is
the philosophically mature endorsement of methodological structuralism. The
taxonomy of non-eliminativist views goes along metaphysical separation lines. On
the one hand, eliminativists hold that discourse about structures has to analyse
structures away, or otherwise reduce structures to another kind of entity;
non-eliminativists, on the other hand, hold that structures are sui generis
inhabitants of our ontology.

Among the eliminativists, some aim to fully do away with abstract objects,
holding to have reduced structures in ways that do not rely on the existence of any
kind of abstracta; these are the full-eliminativists. By way of contrast,
semi-eliminativists allow the existence of some, ’more concrete’ mathematical
objects, most notably sets, and propose ways to reduce structures to set theoretic
systems. Naive set theoretic structuralism, relativist structuralism30 and
universalist structuralism31 are of the latter sort, while modal structuralism32 is of
the former. We will briefly discuss these in §2, alongside those objections leveraged
against them chiefly employed by non-eliminativists to motivate their views.

Among non-eliminativists, positionalists hold that mathematical structures are
perforated by positions which are themselves objects. In minority and motivated
by problems surrounding positionalism, non-positionalists do not ontologically
commit to positions, deeming mathematical objects a sort of shadowy artefact of
our discourse concerning structures. Both views afford ante rem as well as in re
articulations, depending on whether structures are taken to be ontologically
independent of, or rather abstracted from, the systems having it them common.33

Ante rem positionalism is usually identified with Stewart Shapiro’s sui generis

29Reck and Price [2000] mention Ludwig Wittgenstein and Rudolf Carnap in this respect.
30E.g. Reck and Price [2000], Schiemer and Gratzl [2016].
31E.g. Pettigrew [2008], Reck and Price [2000], probably Putnam [1975]. Charles Parsons [2008]’s

Conceptualist Structuralism is probably another version of semi-eliminativism.
32E.g. Hellman [1989].
33For instance, Ketland [2015] and Isaacson [2011] arguably provide ante rem versions of non-

positionalism; Assadian [2016, §6.4] articulates a version of in re non-positionalism.
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Eliminativist MS

structuralism,34 but at least three other versions of this kind can be identified in
the field; we will discuss two of these below (§3.4). Research into the full potential
of in re positionalism is still ongoing, but the option is already crowded by views
assuming different abstraction principles; among these, we will extensively discuss a
version based on Fregean abstractionist principles holding that structures are logical
objects corresponding to isomorphism classes (§3.4.1).35

Notable omissions from the above taxonomy are category theoretic
structuralism (Awodey [1996]), homotopy type theoretic (with the Univalence
axiom) based structuralism (Awodey [2014]), Charles Chihara’s own version of
modal structuralism (Burgess [2005]), Modal Set-Theoretic Structuralism
(Hellman and Shapiro [2019, §7]), and probably others. Mathematical
structuralism is a rapidly evolving field and a complete taxonomy is still awaiting
historical sedimentation. Beside these, Russellian and Dedekind structuralisms,
Charles Parsons’ Conceptualist structuralism, Generic structuralism,36 as well as
scientific structuralism and epistemological aspects of non-eliminativism will be
utterly absent but for further work.

2 Eliminativist MS

Eliminative structuralism denies that structures, understood as that various
isomorphic systems have in common, really exist. What is probably the first
version of eliminativism is only a bit more than methodological structuralism.
What we call naive set-theoretic structuralism37 barely enriches methodological
structuralism with a conventional assignment of a set-theoretic system as the
structure of interest, not unlike the way we sometimes talk about isomorphism
classes through a choice of their representatives. Model theory provides the means
to talk about the systems being described by theories through a recursively defined
notion of satisfaction. If T is a theory with primitive non-logical vocabulary in t,
then an interpretation of T is a Lt-(set-theoretic-)-structure I “ xD, Iy where D is
a domain of objects and I is a function assigning elements in D to constants in t,
subsets of D - i.e. properties - to predicates in t, sets of n-tuples of elements form
D to n-ary relation symbols from t and functions from D to D to functional
symbols in t. Notice that most of these are not necessarily ‘in’ D in a set
theoretical sense, but they have D as basis. I is sometimes called a Lt-structure or

34Shapiro [1997].
35Linnebo and Pettigrew [2014], Schiemer and Wigglesworth [2017]). For Russellian

abstractionism, see Reck [2018]); for Dedekind abstractionism, see Reck [2018], Reck [2003] and
Linnebo [2007], all presenting slightly different reconstructions of Dedekind’s thought on the
matter.

36Original in Horsten [2019], drawing on Finean topics from Fine and Tennant [1983] and Fine
[1998].

37Reck and Schiemer [2020, §1.1] call it ’set-theoretic foundationalism’.
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2.1 Relativist MS

model or interpretation, keeping track of the language it interprets, here the
language of T.

If we disregard the linguistic component, we end up with a set of sets, a
set-theoretic model. Consider for instance PA2p0, sq, where 0 and s constitute its
sole non-logical vocabulary. The von Neumann t0, su-interpretation of PA2p0, sq is
I “ xω, Ip0q “ H, Ipsq “ f : x ÞÑ x Y txuy. From a set-theoretic perspective,
xω,H, fy - often called simply ω - is a model of PA2 and she might go about - as it
is by no means unusual - identifying the natural number ”structure” N with ω
itself. ”Structures” emerge as conventionally privileged set theoretic systems,
where mathematical objects are sets in such systems and mathematical
(arithmetical etc.) language should be interpreted as referring to such structures
and their elements.

Naive set theoretic structuralism is the main target of Benacerraf’s first
argument. What makes it structuralist is the conventionalism behind the choice of
system: the thought is that any relevantly isomorphic choice would have been just
as good as the actual one and therefore, say, if another individual or community
makes a different but relevantly isomorphic choice, the naivist would not go about
holding that she is mistaken, but rather adapt her discourse to fit the
circumstances. Conversely, the structuralist would not hold of say, arithmetic,
anything not following from all systems which are isomorphic to the conventionally
chosen one.

We discuss several more sophisticated variants of eliminativism which emerged
as enlightened versions of naive structuralism in the face of Benacerraf’s
objections. None of the views is tied to a set theoretic background ontology;
however, for reasons to be fully explained when discussing their problems at the
end of each section), relativism and universalism are customarily carried out
against such a background, thus bearing commitment to at least some abstract
objects (sets), which in turn justifies their posting under the label of
’semi-eliminativism’, rather than ’full-eliminativism’.

2.1 Relativist MS

Relativist structuralism38 resembles naive structuralism in that it takes structures
to be particular, typically set-theoretical systems. On the semantic side, just like
naive structuralism, relativists hold that mathematical vocabulary is relative to a
certain system.39 As such, just like before, they can, for the most part, hold onto
a grammatically accurate40 interpretation of the mathematical language, matching

38See Reck and Price [2000, §2].
39This is what justifies the label.
40Some might say that we could as well have used here ‘face value’ instead of ‘grammatical

accuracy’; however, talking of a face value interpretation of the mathematical discourse in the
context of eliminativism might might be confusing to those strongly associating the literal construal
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2.1 Relativist MS

the logical .
However, there are significant differences when it comes to the choice of system.

Unlike naivists, relativists hold that this choice is arbitrary, in such a way that we
can neither know, nor semantically determine which system is the one involved.
This account is structuralist in that given the complete arbitrariness of the choice
of system, its elements can only be characterized up to those relations holding
in all the relevantly isomorphic systems; after all, given arbitrariness, the system
concerned could be any of those isomorphic ones. This is the relativist explanation
of mathematical entities’ exclusively structural properties. Relativism is arguably
superior to naivism in that conventionalism is essentially avoided; however, this
comes at the cost of having to deal with matters semantic.

The burden of relativism is on the semantics of mathematical discourse: we
are owed an account of reference which allows for the sort of arbitrariness being
advertised, namely arbitrary reference.41 Involvement with arbitrary reference is not
the exclusive trade of eliminativism: contemporary non-eliminativist conceptions
invoke arbitrary reference as well, and we will engage with such views in §3.4.42

Schiemer and Gratzl’s relativist account, which will be presented in some detail
here, contains a semantics of arbitrarily referring terms; the reader will be later
reminded to revisit the current section for details concerning an understanding of
such terms.

The articulation of relativism introduced in Schiemer and Gratzl [2016]
borrows ideas from Rudolf Carnap’s mature reconstruction of scientific theories
and employs David Hilbert’s ε-calculus alongside an associated choice-theoretic
semantics to account for arbitrarily referring terms.

We assume set-theory alongside second-order logic with identity in the
background. Let T be an assertoric mathematical theory, and let t “ xt1, ..., tny be
the non-logical vocabulary of T. Then T can be fully characterized by a single
formula of Lt (the language of T):

of ordinary mathematical discourse to non-eliminativism. We refer the reader to the next section
(§2.2) for a paragraph on this issue in connection to Pettigrew [2008]’s thesis.

41For a presentation and defense of arbitrary reference as an account of instantial terms –
terms such as those used in mathematical reasoning naturally construed as employing Existential
Elimination and Universal Introduction – see Breckenridge and Magidor [2012]. The general thesis
concerning arbitrary reference is stated as follows:

(AR) It is possible to fix the reference of an expression arbitrarily. When we do so,
the expression receives its ordinary kind of semantic value, though we do not and
cannot know which value in particular it receives. (Breckenridge and Magidor [2012,
p. 378])

Connections between instantial terms and mathematical terms generally have been drawn in
Shapiro [2008], Shapiro [2012] and Breckenridge and Magidor [2012].

42For instance when discussing Leitgeb [forthcoming,b]’s Unlabeled Graph-theoretic
Structuralism.
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2.1 Relativist MS

(ΦT) Φpt1, ..., tnq

where ΦT can be taken to be the conjunctions of all the axioms of T. The Ramsey
sentence corresponding to T is then:

(RST) DX1, ..., DXnΦpX1, ..., Xnq

Notice that all the terms of T have been eliminated in RST; however, every system
in which RST holds is (or can under the right interpretation function be turned into)
a model of T. RST can be seen as capturing the structural content of T.

In order to recover the structural content of the terms in t, we need to introduce
Hilbert’s ε-calculus. ε is a term forming operator governed by the following two
axioms:

(Critical Formulas) Aptq Ñ ApεxApxqq;

(Extensionality) @xpApxq Ñ Bpxqq Ñ εxApxq “ εxBpxq

Upon close inspection of the axioms, one can see that the intended meaning of the
ε-operator is to pick out objects satisfying certain conditions, but only arbitrarily.43

We can now recover through explicit definitions the (structural content of the)
vocabulary of T in two steps. First, we define t:

(ε-Def) t :“ εzDX1, ..., DXnrz “ xX1, ..., Xny ^ ΦpX1, ..., Xnqs

If the Ramsey Sentence of T is true, that is, if the theory is satisfiable, then the
sequence of T’s theoretical terms is defined by referring to an arbitrary tuple of
relations which is a model of T. The use of ε in ε-Def is the first and the essential
occurrence of ε in this reconstruction; before clarifying this, let us formulate the
explicit definition of each term from t:

(ε-Def˚) ti :“ εY DX1, ..., DXnrt “ xX1, ..., Xny ^ Y “ Xis

The intended meaning of ε-Def is that t picks out an arbitrary system satisfying
RST. However, the use of ε in ε-Def˚ is redundant: once a system of terms t has
been picked out, arbitrary reference is not called upon in defining each term in t.44

The relativist can thus explicitly define mathematical terms which refer
arbitrarily, and she can account for their inferential role; but we still lack a
semantic understanding of such arbitrarily referring ε-terms. Schiemer and Gratzl
[2016] present us with a choice-theoretic semantics for ε-terms.45

43See Schiemer and Gratzl [2016, §4] for a comparison to the definite description operator ι,
which picks out the only object satisfying a certain property.

44See Schiemer and Gratzl [2016, p. 412-413].
45The authors refer Zach [2014] for formal details. The semantics for the rest of the language is

Tarskian.
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2.1 Relativist MS

(Choice-semantics for ε-terms) Let M be a model and D be its
domain. Let X Ď D and δ : PpDq Ñ D be a choice function, as

follows: δpXq “

#

x P X, ifX ‰ H

x P D, otherwise
. Let s be an assignment and A

be a formula with at most x free. Then: pεxApxqqM,s,δ “ δpApxqqM,s “

δptd P D|M, srx{ds ( Apxquq.

ε-terms are evaluated on models alongside assignments and a given choice function:
given a formula A with only x free, A induces a subset of the domain of the model;
an arbitrarily picked A-element form the domain of the model (i.e. εxApxq) is the
A-element picked out by the given choice function. The interpretation of ε terms
is given in terms of a choice function: ε terms pick out elements in the domain, if
any, satisfying the embedded formula in accordance to a given choice function. The
semantics of sentences containing ε terms can then be given as follows:

(Evaluation of sentences containing ε-terms) Let A be a sentence
in Lt and A˚ be its correspondent in Lε. Let M be a Lε-model. Then:

• A is true inM iff there is a choice function δ such thatM, δ ( A˚;

• A is universally true inM iff for all choice functions δ,M, δ ( A˚.

Mathematical truth would then correspond to universal truth. Consider the
arithmetical formula 2 ` 3 “ 5. The relativist interprets it on the background of
some arbitrarily chosen set-theoretic structure:

N :“ pεzqpDXqpDxqpDfqpD˝qrz “ xX, x, f, ˝y ^ PA2
pX, x, f, ˝qs

where each individual term in N “ xNN, 0N, sN,`Ny is defined as in ε-Def˚.46

Therefore, the relativist interpretation of 2 ` 3 “ 5 would be 2N `N 3N “ 5N
(where, of course, 2N “ sNsNp0Nq and so on), where the ε-term N figures in the
ε-Def˚ definition of each other individual term. Which tuple of terms N actually is
depends on the choice function involved in its interpretation; however, what this
choice function is is entirely opaque.

A final remark before listing objections. Relativism requires that some system
satisfying the Dedekind-Peano axioms actually exists:

(Exist) DXDyDf PA2pX, y, fq

Relativism is committed to the existence of a domain of entities interpreting ‘N’, a
distinguished entity in this domain interpreting ‘0’ and a function on X interpreting
‘successor’ such that PA2 comes up true under these assignments. Intuitively, if no

46Preferably replacing the ε-operator in front of ε-Def2 with a definite ι-operator defined as
s “ ιxP pxq :” D!ypP pyq ^ y “ sq.
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2.1 Relativist MS

such entities exist, then the arithmetical discourse is strictly speaking meaningless.
In terms of the choice interpretation of ε-terms, such a discourse would be about an
arbitrarily picked out system which doesn’t satisfy PA2, deeming the arithmetical
discourse nothing more than a random display of truths and falsehoods.

Several objections have been leveraged against relativism, some of them also
applying to other versions of eliminativism discussed below:

1. Relativism is committed to the existence of an actual system satisfying the
theory.47 The system is either one of abstract objects, commonly sets, or
otherwise one of concrete ones, sometimes space-time regions. In the latter
case, even assuming that it is possible to define the right relations on the
concrete system, mathematical truth and facts would be deemed contingent,
since such a system could have failed to exist altogether; but this goes
against the orthodoxy holding that mathematical truth is necessary.
Therefore one customarily concludes towards preserving the necessity of
mathematical truth, that relativism is committed to the existence of a
system of abstract objects, most commonly a set-theoretic one. However,
commitment to set theory implies that set theory itself cannot be provided
with a structuralist interpretation on pain of vicious circularity, deeming
relativism incoherent at its root. Moreover, the particular set theory
assumed in the background would exclude other set theories from the
structuralist picture since they conflict with the chosen one on matters
concerning sets. Finally, quantification over sets has set theory committed to
a (class like) totality of sets which cannot be extended, which clashes with an
Extendibility principle for structures.48 In short, neither concrete systems,
nor a set theoretic background offer the needed ambient for structuralist
views.

2. Relativism, just like naivism, attributes too much structure to mathematical
entities.49 For instance, 1 P 2 would obtain if the choice of system would
actually be the von Neumann ordinals on some choice, even if concluding to
this effect from within arithmetical discourse would be semantically blocked;
arguably, numbers have no such properties, which makes them unlike sets.
This objection certainly applies to naivism, but it is doubtful that it has the
same force against the version of relativism we presented above. For one, the
system arbitrarily chosen to provide us with the semantic contents of a piece
of mathematical discourse is not, strictly speaking, identified with the
natural numbers: in this strict sense, the natural numbers do not exist and
so there is no question concerning the amount of structure imposed on them.

47See Reck and Price [2000], Hellman [2005].
48See Hellman [2005] for a systematic presentation of such concerns.
49See Reck and Price [2000], Leitgeb [forthcoming,a, p. 10].
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2.2 Universalist MS

Things would change if relativism would be understood as providing a
reduction of mathematical entities to sets; however, relativism is an
eliminative position, holding that there are no structures over and above
systems, and thus no mathematical objects such as natural numbers. Since
the relevant mathematical ordinary discourse is rendered just right through
the arbitrariness of the choice of system, this objection appears to be
unmotivated against relativism as conceived of here. We only mention this
objection here because recent defenders of non-eliminativism such as Leitgeb
[forthcoming,a, p. 10] consider this to be the main complaint motivating
relativism’s rejection. However, these remarks is the farthest we go in this
essay in the direction of a reply on behalf of relativism.

3. Relativism is committed to arbitrary reference, which brings about primitive
semantic facts, i.e. semantic facts which do not supervene on use facts
broadly construed, against the contemporary philosophical orthodoxy.50 The
likely picture painted by semantic non-supervenientionism is that of some
semantic facts figuring in a presumed description of fundamental reality
alongside quark color and charge. Although this might be only metaphorical,
alternative metaphysical pictures of a world in which semantic
non-supervenientionism obtains are yet to be provided. Meanwhile, the
intuitive picture is seemingly unacceptable.

2.2 Universalist MS

Universalism51 holds that structure-talk is to be paraphrased away as talk about
relevantly isomorphic systems. Unlike the former views, universalism doesn’t
recommend systems serving as surrogates for structures: mathematical discourse is
paraphrased such as to do away with any purported reference to structures,
ordinary mathematical terms, the universalist holds, are not singular terms.

Resembling relativism, the burden of universalism is on semantics. The
universalist construes mathematical discourse concerning structures as discourse

50See Kearns and Magidor [2012] for a general defense of ’Semantic Sovereignty’, their label for
the thesis that semantic facts do not (necessarily) supervene on use facts, broadly construed.

51Reck and Schiemer [2020, §1.1] mention Hilary Putnam - especially Putnam [1975] - its
probably first defender under the label of ’if-then-isms’; another usually mentioned defender of
this view is Mayberry [2000]. This version of eliminativism is sometimes called ’set-theoretic
structuralism’ (’STS’) (see Hellman and Shapiro [2019, §3], Hellman [2001], Hellman [2005]).
However, there at least two reasons to prefer the label ’universalist’. First, set theoretic
structuralism would potentially generate confusion when it comes to distinguishing between what
we here called universalist and relativist structuralisms. Second, it isn’t strictly speaking necessary
to assume a background universe of sets for universalism to hold: provided that we have enough
objects organized appropriately, any kind of objects would do, so the ’set-theoretic’ label would
be voided. Be that as it is, relying on other sorts of objects raises potentially intractable problems
and a set theoretic background is usually assumed; we will make no exception in this respect.
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2.2 Universalist MS

about all systems satisfying a certain categorical condition. Consider arithmetic
PA2pN, 0, sq and let ϕ be a sentence in its language. First, replace all terms in ϕ
with their analyses such as to end up with a formula ϕpN, 0, sq only containing
N, 0, s as non-logical vocabulary. The structuralist would then construe the
arithmetical meaning of ϕ as follows:

(Univ) @X, y, fpPA2pX, y, fq Ñ ϕpX, y, fqq52

For instance, the mathematician’s assertion that 2` 3 “ 5 is construed as

@X, y, fpPA2
pX, y, fq Ñ ffpyq ` fffpyq “ fffffpyqq

(where ` is recursively defined as usual). If there are no systems pX, y, fq satisfying
PA2pX, y, fq, then every arithmetical statement comes out vacuously true. So the
universalist has to make the Exist assumption stated when discussing relativism.

This semantic account construes all mathematical assertions as universal
statements quantifying over all systems satisfying certain conditions; this is a far
cry from the face value grammar of an ordinary mathematical statement.
However, Richard Pettigrew [2008] adds a machinery of (pragmatically) dedicated
variables and argues that ordinary mathematical discourse can be recovered in an
essentially universalist setting. Mathematical terms such as ’N’, ’s’, ’0’, ’1’, ’+’,
’ˆ’ etc. as employed in ordinary mathematical discourse are dedicated free
variables, i.e. free variables introduced into the discourse by stipulations such as:

(Stip) ”Let N, s, 0 satisfy the Peano Axioms” (or ”PA2pN, s, 0q”)

An ordinary mathematical assertion ϕpN, s, 0q can be recovered as a formula rather
than a sentence. However, this formula follows the surface grammar of the asserted
statement, just like relativism and naivism recommend; unlike these, mathematical
terms are free variables rather than singular terms and, as such, there is nothing
they refer to. The semantic content of the mathematical assertion is essentially
captured by Univ, but ordinary mathematical discourse is not construed as trading
in explicit generalities anymore; rather, generalities are concealed in the generality
of the open formulas.

We use this opportunity to highlight an issue that will be important later on
(in particular in §3.2.3.2 when we discuss the Semantic objections against non-
eliminativism). Interestingly, Pettigrew states the following:

I will argue that philosophers of elementary number theory—or
arithmetic as philosophers and logicians tend to call it—have been
wrong to assume that the platonist interpretation of that discourse is
the only interpretation that takes its sentences at ‘face value’ or

52This core component of universalism construing mathematical statements as universal ones is
what backs its choice of label. See Reck and Price [2000, §3].
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2.2 Universalist MS

‘literally’. I will argue that the antirealist interpretation given by
eliminative structuralists has at least as much claim to be the ‘literal’
or ‘face-value’ reading. (Pettigrew [2008, p. 310], our highlight)53

As glossed upon in §2.4, a face value or literal interpretation of ordinary
mathematical discourse is regarded as a non-eliminativist stronghold against the
eliminativist. Pettigrew argued against this claim. However, this raises a question
concerning the precise meaning of the claim itself; in particular, this requires an
understanding of what is customarily regarded as the literal meaning of ordinary
mathematical discourse, and its tenability. Throughout Pettigrew [2008], notion
employed appears to be the following:

(Literal Construal) A construal of ordinary mathematical discourse is
literal if and only if (i) it construes mathematical terms as syntactical
singular terms and (ii) it is grammatically accurate, i.e. it matches the
grammatical form of ordinary mathematical assertions.

We can already notice that (ii) is naturally achieved by naivism and relativism
and, as we are on our way to find out, by universalism and modal structuralism
as well: grammatical accuracy with respect to ordinary mathematical discourse is
not the privilege of non-eliminativism. This leaves only (i) as a distinguished non-
eliminativist dimension of Literal Construal. Stewart Shapiro, however, leads us to
a seemingly richer notion:54

(Literal Construal`) In addition, (iii) syntactic singular terms have
the semantic function of performing singular reference to mathematical
objects, i.e. the semantic values of mathematical terms are appropriate
mathematical objects.

53We’ll say more about Pettigrew’s argument in §3.2.3.2.
54The following should support our claim:

Because mathematics is a dignified and vitally important endeavor, one ought to
try to take mathematical assertions literally, “at face value.” This is just to
hypothesize that mathematicians probably know what they are talking about, at least
most of the time, and that they mean what they say. Another motivation for the
desideratum comes from the fact that scientific language is thoroughly intertwined
with mathematical language. It would be awkward and counterintuitive to provide
separate semantic accounts for mathematical and scientific language, and yet another
account of how various discourses interact (Shapiro [1997, p. 3]) In sum, the ante
rem structuralist interprets statements of arithmetic, analysis, set theory, and the
like, at face value. What appear to be singular terms are in fact singular terms that
denote bona fide objects (Shapiro [1997, p. 11]) Moreover, if we take the language of
mathematics, as reformulated in the idiom of mathematical logic, at face value, then
we are committed to the existence of numbers, sets, and so forth, and have endorsed
realism in ontology (Shapiro [1997, p. 46], all highlights are ours)
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2.2 Universalist MS

The emerging notions are crucially distinct: Pettigrew’s notion allows us to
formulate an objection55 against non-eliminativism that Shapiro’s version would
block. A proper inquiry into the notion of ‘face value’ is material for Further Work.

Returning to Pettigrew’s dedicated free variables construal of ordinary
mathematical terms, the number theorist’s assertion that 2 ` 3 “ 5 wears its
logical form on the surface, provided that 2, 3, 5 and ` are understood as
N-dedicated free variables;56 in other words, the grammatical form of ordinary
mathematical discourse can be recovered by the logical, real form suggested by the
universalist construal. This brings the universalist semantics closer to the face
value of mathematical discourse.57 We will refer back to Pettigrew’s construal of
mathematical terms as free variables below when engaging with non-eliminativist
accounts of reference; Pettigrew [2008]’s argument will then be used to add fuel to
the fire set by the Semantic objection to non-eliminativism (§3.2.3.2).

It is clear what makes this view structuralist : it is what holds in all systems
satisfying (say) arithmetic that counts, thus accounting for the indifference
underlying methodological structuralism. Unlike relativist’s bottom-up approach
pealing off the non-structural properties of ’mathematical objects’ of reference by
the arbitrariness of choice, universalism takes a top-down approach by only
building structural properties into (the discourse about) ’mathematical objects’ to
begin with.

Several objections have been raised against universalism.

1. The58 same ’actuality-commitment’ objection formulated regarding relativism
applies mutatis mutandis to universalism, including the best case scenario
commitment to sets;59

4. Universalism misconstrues ordinary mathematical discourse:60 what appear to
be singular statements about certain entities, universalism construes as general
statements about related elements in all systems of the same isomorphism-
type. Pettigrew [2008]’s ameliorating strategy will may be employed to tackle

55The second strand of the Semantic objection (§3.2.3.2).
56This approach works under the assumption of a quantificational account of instantial terms; see

Breckenridge and Magidor [2012, §2.1.2] for a critique. Shapiro [2008] suggests a similar approach
similar in the context of the Automorphism problem (see §3.2.0).

57Again, we appeal to the distinction made above between a strong and a weak interpretation
of a face value construal of mathematical discourse. In this sense, what Pettigrew’s suggestion
does for universalism is to provide it with the means to recapture a weak face value construal of
ordinary mathematical discourse.

58We use the numbers mentioned in front to index particular objections across different
eliminativist views. For instance, 1 here is essentially the same objection 1 leveraged against
relativism, while objection 4 (following) has not been mentioned before, but it will be mentioned
later on in connection with modal structuralism (§2.3).

59See Reck and Price [2000], Hellman [2005].
60See Shapiro [1997], Leitgeb [forthcoming,a, p. 10].
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2.3 Modal MS

such concerns (§3.2.3).61

2.3 Modal MS

Geoffrey Hellman’s modal structuralism62 aims to be a full-eliminativist version of
structuralism, in that it does away not only with structures as sui generis entities,
but with commitment to abstract objects in general. In this sense it is sometimes
characterized as a ”structuralism without structures”.63

Concerning the interpretation of mathematical discourse, modal structuralism
resembles universalism. However, the universalist construal is endowed with a modal
dimension. Given a arithmetical statement ϕpN, s, 0q, modal structuralism construes
it as follows:

(Univl) l@X, y, fpPA2pX, y, fq Ñ ϕpX, y, fqq

The background logic is second-order, while the modality is taken as primitive and
is governed by S5 modal logic.64 The modal construal doesn’t need to rely on the
actual existence of a system satisfying the Dedekin-Peano axioms to avoid vacuity.
What she needs instead is the possibility of such a system:

(Existl) ♦DX, y, f PA2pX, y, fq

Just like in the case of universalism above, one can use dedicated variables as
suggested by Pettigrew [2008] to tackle concerns related to a misconstrual of
ordinary mathematical discourse.

Relating this to matters metaphysical, the modalist proceeds as follows. Second-
order comprehension is formulated such as to avoid commitment to cross-world
relations:

(Compl) lDR@x1, ...,@xnpRpx1, ..., xnq Ø ϕq

where φ doesn’t contain R free or modalities. Comp, however, carries commitment
to classes as it stands, since we use second-order quantification over relations which
are conceived of as classes. This is where the modalist deploys a complex machinery

61See Hellman and Shapiro [2019, p. 67] for mentioning Pettigrew’s reply and suggesting that it
is successful in defending modal structuralism.

62Introduced in Hellman [1989].
63E.g. Hellman and Shapiro [2019, p. 65].Of course, as we characterized it, eliminativists

generally rule out structures as sui generis entities. However, semi-eliminativists require a
background ontology of abstract objects, commonly sets (at their best), sometimes replacing
structures with set theoretic representatives, be it pragmatically (naivists) or semantically
(relativists); modal structuralism doesn’t require any such background ontology, which makes
it a true heaven for nominalists.

64Without the Barcan formula, such as to avoid inference from ♦Dxϕ to Dx♦ϕ.
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2.4 Concluding to non-eliminativism

of plural quantification replacing second-order quantification65 which, coupled with
mereology, avoids quantification over abstracta entirely, assuming the possibility of
a countably infinite system taken as an axiom, itself only using plural quantification
and the language of mereology:

(Ax 8) There are some individuals, one of which is an atom, each of
which combined with an atom not part of it is also one of them.66

This already provides us with a version of Existl only using plural quantifiers and
mereological notions, avoiding vacuity. Finally, mereological comprehension is given
as follows:

(Σ Comp) DxΦpxq Ñ Dy@zpy ˝ z Ø Dupz ˝ u^ Φpuqqq

where ˝, intended to mean overlap in this context, is defined in terms of the primitive
parthood relation. Summing up, modal structuralism is ontologically neutral in the
sense of avoiding any sort of quantification over abstract objects: mathematical
discourse is conceived of modally in an otherwise universalist fashion, second-order
quantification is eliminated in favour of plural quantification so as to do away with
classes and possibilia, and mereology is employed to deal with collections of objects
as wholes.

Several objections have been raised against modal structuralism:

4. Just like universalism, modal structuralism has been also objected against on
grounds of misconstruing ordinary mathematical discourse, the same objection
applying mutatis mutandis to its case.

5. The modality involved is primitive, which leaves us in the dark concerning
the nature and the choice of states in the modal space, as well raising
epistemological questions concerning access to the relevant modal
knowledge.67

2.4 Concluding to non-eliminativism

Our focus in this essay is non-eliminativist structuralism; we conclude this section
by highlighting the role played by the above objections in motivating the view. It
is shown that a double metasemantic motivation assumes center stage in
non-eliminativists’ discourse; this aspect constitutes the core of some
contemporary objections raised against non-eliminativism discussed later on
(§3.2.3).

65So Compl above should rather be rendered ass lDxx@x1, ...,@xnppx1, ..., xnq ă xxØ ϕq. This
doesn’t carry commitment to classes, but only to pluralities.

66Hellman and Shapiro [2019, p. 64].
67See Hellman [2001], Hellman [2005], Hellman and Shapiro [2019, p. 70].
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2.4 Concluding to non-eliminativism

Introducing sui generis non-eliminativist structuralism,68 Stewart Shapiro
appeals to Paul Benacerraf’s second seminal contribution to the philosophy of
mathematics. Benacerraf’s ”Mathematical Truth”69 formulates the realism vs
anti-realism dispute in the case of mathematics as a dilemma between semantic
and epistemological desiderata. On the one hand, mathematical discourse appears
to have the same face value structure as ordinary or scientific ones; since the latter
are arguably best provided with Tarskian semantic understanding, semantic
continuity suggests that mathematical discourse should better be itself understood
in a similar manner, which seemingly leads to realism (both in ontology and truth
value) about (presumably) abstract mathematical objects. However, a double
faced problem emerges for the realist, who has troubles accounting for both the
epistemology of abstracta, as well as their roles in understanding the empirical
realm (what is usually called the ’applicability problem’). On the other hand, the
anti-realist is in a much better position to account for the latter; however, her
ways usually go through construing the ’real’ or ’logical’ form of the mathematical
discourse in ways which depart from those provided in the ordinary and scientific
cases, endangering semantic uniformity which in the least calls for an account of
the schism. However, the anti-realist arguably fails to provide sufficient principled
grounds for such facts. So goes Benacerraf’s dilemma: on the one hand, realism
satisfies semantic continuity, while it brings about seemingly intractable
epistemological and metaphysical problems; anti-realism, on the other hand, could
arguably better manage these, but it brings about seemingly intractable debts to
explain semantic diversity, or otherwise provide an alternative semantic account
for the ordinary and scientific discourses.

On the background of methodological structuralism in mathematics, the dispute
between realists and anti-realists gets translated to one between non-eliminativists
and eliminativists, respectively. One could complain that the horns of the dilemma
misrepresent the situation in this case: we have, after all, considered two versions
of eliminativism which take mathematical discourse at face-value, namely naivism
and relativism. This is where Benacerraf [1965] comes to the fore pointing out that
such reductions of mathematical ontology fall short of being satisfactory since they
attribute too much structure to purported mathematical objects.

In this context, Shapiro argues that realist structuralism – i.e.
non-eliminativism – could provide satisfactory answers to the realist challenges of
the kind the traditional, non-structuralist realism could not appeal to; moreover,
the non-eliminativist could better solve its debts than the eliminativist could pay
hers. Naivism and relativism being arguably ruled out by the arguments of
Benacerraf [1965], universalism and modal structuralism are ruled out by semantic
considerations: unlike the realist, the eliminativist viciously misconstrues

68See Shapiro [1997, p. 3].
69Benacerraf [1973].
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Non-eliminativist MS

mathematical discourse. Provided that non-eliminativism can pay its realist debts
in a way non-eliminativism couldn’t pay hers, non-eliminativism wins the day. The
semantic motivation is central to the early non-eliminativist structuralist’s
justification against eliminativism.

Similar semantic concerns are also employed by recent non-eliminativists in
defense of their view. For instance, Hannes Leitgeb argues similarly against
universalism (and modal structuralism) upon introducing his non-eliminativist
unlabeled-graph theoretic approach to mathematical structures:70

At least prima facie, the fact that the universalist reconstruction of
arithmetic seems semantically to deviate more than necessary from
mathematical practice should count against it. (...) [O]ne cannot help
but wonder whether there might be a coherent way of combining the
ontological benefits of universalist eliminative structuralism with the
semantic benefits of relativist eliminative structuralism. This thought
leads us to non-eliminative structuralism, the second large family of
structuralist positions (...) (Leitgeb [forthcoming,a, p. 11])

This constitutes what we will later on refer to as the central metasemantic
motivation71 for commitment to structures: structures provide us with the means
to make the reference of mathematical terms scrutable, while delivering the best of
both relativist and universalist worlds (as Leitgeb would have it):72 mathematical
terms are genuinely referential (as in relativism), albeit their reference would be
crucially scrutable and would not commit us to predicating foreign properties of
mathematical objects (as in universalism).

With these in mind, we can now approach the core of the present essay and start
our discussion of non-eliminativism.

3 Non-eliminativist MS

We first present Stewart Shapiro early Sui Generis Structuralism (§3.1), followed
by several of the most important problems and objections leveraged against it
(§3.2). The latter will constitute the canon against which we shall assess the fresh
approaches considered later on. We point out that most of the problems rely on

70Discussed below in §3.4.2.
71We borrow this expression from Assadian [2018], who stresses its centrality in the non-

eliminativist discourse trying to induce commitment to structures as entities over and above
systems. See also Linnebo and Pettigrew [2014, p. 277], seemingly implying that if structures
cannot provide us with semantic benefits of the sort the eliminativist doesn’t have at her disposal,
then one of the ”main advantages” of endorsing structures is lost.

72See Assadian [2018, p. 3201-2]’s discussion of the value of the Uniqueness thesis for non-
eliminativism, drawing on comments made by Shapiro [1997, p. 141].
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3.1 Non-eliminativism in 1997

the positionalist component of Shapiro’s view and go on to present
non-positionalism – and its discontents (§3.3). Returning to positionalism, we
showcase three recent approaches which aim to provide us with a satisfactory
non-eliminativist account of mathematical structure (§3.4).

3.1 Non-eliminativism in 1997

Stewart Shapiro [1997]73 formulates an early articulation of non-eliminative
positional structuralism, Sui Generis Structuralism (SGS), whose intuitive
metaphysical outlook can be sketched as follows. Ante rem structures are
understood as ”abstract types exemplifying ‘what all particular realizations thereof
have in common’ ”;74 in this sense, structures are like Platonic structural
universals, structured entities shared by all their instances.75 Like Platonic
universals, structures are ante rem in that they are freestanding, their existence
being independent of both their systems and the mind of the mathematician.
Structures are sui generis in that they are not analyzed away in terms of another
kind of entities, this also being what deems the account non-eliminativist. Places
in structures are themselves objects in Shapiro’s theory (thence ‘positionalism’).
On this background, mathematical objects are identified with positions in
structures; mathematical theories in general are about structures, assertoric
mathematical theories are about one structure in particular - the unique structure
characterized by their second-order axiomatic scaffolding - while their objects are
places in it.

On the semantic side, ordinary mathematical discourse is interpreted at face
value: mathematical vocabulary comprises singular terms denoting properties,
structures and positions therein. For instance, the arithmetical term ‘0’ denotes,
the natural number 0, that is, the first – predecessor-free – place in the natural
number structure, the latter constituting the subject matter of arithmetic and the
semantic value of ‘N’ in mathematical discourse. Crucially, and as a hallmark of
contemporary structuralism,76 structures are unique up to isomorphism, which is

73Other notable early proponents of non-eliminativist structuralism are Michael Resnik [1997]
(anticipated in Resnik [1981] and Resnik [1982]) and Charles Parsons [1990]. However, Shapiro’s
SGS was at the time arguably the most articulated view of the three and, as such, it has been
the most widely engaged with and criticised. We will focus on it in this section. However, the
publication of both Shapiro [1997] and Resnik [1997] propelled the discussion of non-eliminativism
after 1997, which motivates this section’s title.

74Hellman and Shapiro [2019, p. 54]. Also, echoing Dedekind:

A structure is the abstract form of a system, highlighting the interrelationships among
the objects, and ignoring any features of them that do not affect how they relate to
other objects in the system. (Shapiro [1997, p. 74])

75Shapiro says slightly more on this topic only later on in Shapiro [2008, §4].
76Steve Awodey [2014, p. 1]’s cherished ”Principle of Structuralism: Isomorphic objects are
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3.1 Non-eliminativism in 1997

arguably the central tenant in the non-eliminativist semantic project. This feature
allows us to employ a standard Tarskian semantic account for the ordinary
mathematical discourse, fulfilling semantic continuity and providing for the
metasemantic motivation recommending non-eliminativism. What makes this
account structuralist is the presupposed aboutness of mathematical theories: quite
literally, mathematical theories are about structures, i.e. entities whose
isomorphism suffices for identity; mathematical objects, on the other hand, are
purely structural objects, i.e. objects possessing only structural properties.

Concerning the formal scaffolding of SGS, Shapiro [1997] introduces
mathematical structures through an axiomatic ante rem structure theory modeled
upon ZFC, with the notable addition of the Coherence axiom. Coherence is the
”main principle behind structuralism”, holding that ”any coherent theory
characterizes a structure, or a class of structures”:77 in this setting, ‘coherent’ is a
primitive predicate for formulas modeled upon ‘joint satisfiability’ in model theory.

In nuce, the background logic of ante rem structure theory is full second-order
with identity. Structures and positions therein are entities in the first-order
domain of the theory, with two sorts of corresponding variables (and quantifiers).
Systems are defined as collections of positions from (one or more) structures,
together with relations and functions on them; in this framework, structures are
also systems, which are values of the second-order variables of structure theory.
Intuitively, systems are ”concrete” collections of objects with relations on them
such as set theoretic structures for instance.

Shapiro endorses the Quinean dictum ”no entity without identity”.78 Concerning
the identity criteria for the objects of structure theory – i.e. entities in its first
order domain, structures and positions therein – Shapiro has notoriously little to
say. Shapiro concedes79 to postulate an identity criterion for structures in terms of

identical.” Although Shapiro [2006] gives up on uniqueness of structures, and with it on his previous
semantic project, all the views presented below validate the ”Principle of Structuralism.”

77Shapiro [1997, p. 95].
78Quine [1969, p. 23]. The following is from a paragraph criticizing Resnik [1997] on grounds of

floating this principle:

[T]he Quinean dictum “no entity without identity.” Quine’s thesis is that within a
given theory, language, or framework, there should be definite criteria for identity
among its objects. There is no reason for structuralism to be the single exception to
this. If we are to have a theory of structures, we need an identity relation on them.
(Shapiro [1997, p. 92])

Given Shapiro’s maxims concerning positions in structures, we are entitled to assume that Quine’s
principle should not be dropped in their case either.

79Three remarks. Shapiro concedes to postulate this criterion of identity for structures only
after making the remark that their identity is to be taken as primitive (Shapiro [1997, p. 93]).
It is unclear what the meaning of this remark is. Second, Shapiro points out that one could
also replace isomorphism in Id-Struct with Resnik’s more coarse-grained notion of ’structure-
equivalence’, which would identify some structures with different signatures, such as xN, 0, s,`,ˆy
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3.1 Non-eliminativism in 1997

isomorphism:

(Id-Struct) S = S1 ” S – S1

The identity relation on structures matches isomorphism between structures.
Shapiro motivates Id-Struct invoking Ockham’s razor: there is no use for multiple
isomorphic structures in the ontology. Given Id-Struct, (coherent and) categorical
theories characterize one and only one structure: existence comes by Coherence,
while Id-Struct grants uniqueness. Let S be a structure, Y a system and [Y] be the
structure of Y.80 If S = [Y] we say that Y instantiates S and we have the following
principle connecting structures with the systems instantiating them:

(Inst) S = [Y] ” S – Y

Instantiation is analyzed as isomorphism between systems and structures.81

Concerning identity between positions from within the same structure
(intra-structural identities), one is driven by Shapiro’s famous slogans82 to
conclude that their identity is governed by a version of Leibniz’ Principle of
Identity of Indiscernibles formulated in terms of structural properties:

and xN, 0, s,`,ˆ,ăy. This is rejected on grounds of technical inconvenience. Finally, postulating
an identity criterion for structures diverges from Resnik’s approach, who takes identity between
structures, as well as identities between positions from distinct structures, to be indeterminate,
holding that there is ”no fact of the matter” concerning their obtaining or failure to do so; see e.g.
Resnik [1997, p. 244].

80The use of the term forming operator [¨] is justified given Inst. The intended meaning of the
operator is that of a function such that, given a system X as argument, it returns an objects, the
structure of X. As such, it has to be the case that given any system X, [X] exists and, moreover, it
is unique. Existence comes by Coherence (assuming that the system is characterized by a coherent
collection of formulas), while uniqueness is granted since [X] ‰ [Y] Ñ X ‰ Y, which follows by
the counterpositive of the left to right direction of Convergence in the next footnote, which is a
consequence of Inst.

81We note that Inst entails each of the following, assuming that structures are systems:

1. Id-Struct: S = S1 ” S – S1

2. Convergence: X – Y ” [X] = [Y]

3. Fixed-Pt: S = [S]

4. Isomorphism: X – [X]

where S is a structure, X is a system and [X] is the structure of X; we use different sorts of variables
to mark systems and structures apart given that (i) some views would draw a sharp distinction
between them and (ii) we want to be able to talk about (ante rem) uninstantiated structures, as well
as about structures corresponding to particular systems. Conversely, Isomorphism together with
Id-Struct (sometimes called ‘Uniqueness’, e.g. Assadian [2018, p. 3201]) entail Inst (Isomorphism
alone only entails the left to right direction of Inst). This shows that Inst is equivalent to Id-Struct
together with Isomorphism. If structures are not systems, then neither Fixed-Pt, nor Id-Struct
would follow from Inst, although Inst would still follow from their conjunction.

82Such as ”[t]here is no more to the individual numbers “in themselves” than the relations they
bear to each other” (Shapiro [1997, p. 73]).
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(Id-Posit) @x, ypx “ y ” @ΦSpΦSpxq ” ΦSpyqqq

where ΦS’s are structural properties of S. Id-Posit holds that instantiating the
same structural properties is sufficient for identity within a structure. When it
comes to identity between places in distinct structures (cross-structural identities),
Shapiro [1997] advocates relativity in ontology, holding these to be a matter of
contextual decision or convention. In this sense, statements of identity concerning
places in distinct structures (say natural 0 and real 0, 0N “ 0R) are semantically
indeterminate, while semantic indeterminacy is backed by ontological
indeterminacy.83

SGS has been criticized extensively and alternative non-eliminative versions of
structuralism have emerged focusing on satisfactory replies to one criticism or
another. We review several problems and objections leveraged against SGS, while
ultimately having a wider scope and concerning non-eliminativism in general.

3.2 Non-eliminativist troubles

We operate a pragmatic distinction between problems and objections to guide our
discussion below. We characterize problems as collections of mutually conflicting
statements. Objections, by contrast, are arguments meant to conclude to the
rejection of a certain theory itself. Objections customarily go by showing how one
or more problems concerning a certain theory cannot be solved without rejecting
its solid core. The Individuation objection below (§3.2.1.3) is a good example,
while what we will call the Automorphism problem (§3.2.1.2) is one of its central
components.

We divide the problems discussed in three distinct albeit related clusters:
Problems of Identity, Problems of Objects and Problems of Reference.84 The
problems in each group contain the roots of one objection against
non-eliminativism, and each of these objections concludes rejecting
non-eliminativism. This list is not exhaustive: notable omissions include
objections relying on floating a general principle of extendibility for structures, as

83The following quotes should back our inline statements:

But it makes no sense to pursue the identity between a place in the natural-number
structure and some other object, expecting there to be a fact of the matter. Identity
between natural numbers is determinate; identity between numbers and other sorts
of objects is not, and neither is identity between numbers and the positions of other
structures. (Shapiro [1997, p. 79]) We point toward a relativity of ontology, at least in
mathematics. Roughly, mathematical objects are tied to the structures that constitute
them. (Shapiro [1997, p. 80]) The point here is that cross-identifications like these are
matters of decision, based on convenience, not matters of discovery. (Shapiro [1997,
p. 81])

84We owe the idea of such a division to Leitgeb [forthcoming,b].
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well as worries related to SGS’ Coherence Axiom.85 Their omission changes
nothing concerning our verdicts below.

3.2.1 Problems of Identity

This section introduces two problems concerning the identities of positions in
structures: the problem of Cross-structural Identifications and the Automorphism
problem. The latter plays a central role in the Individuation objection introduced
right thereafter.

3.2.1.1 Cross-structural Identities Problem. Shapiro [1997] holds that
cross-structural identity statements are indeterminate, their assertion relying on
category mistakes. For instance, when the teacher writing a closed integral on the
blackboard asks the class whether it’s value is a natural number or not, she is
seemingly cross-structurally identifying natural numbers with certain real
numbers. Similarly, when the set theorist holds that the natural number 2 is
tH, tHuu, she is seemingly identifying natural numbers with von Neumann
ordinals.86 Shapiro holds that in such cases mathematicians employ the ‘is’ of fiat,
by which they are ruling in a semantically indeterminate case of identity for the
purposes of the present context. Shapiro holds that semantic indeterminacy is
underscored by ontological indeterminacy: ‘ 2R “ 2N ’ is indeterminate because it
is indeterminate whether in reality 2R “ 2N. However, ontological indeterminacy
conflicts with the realist outlook of non-eliminativism: if mathematical entities are
places in structures and such places are objects, then their identity has to be
completely determinate.87

85Both problems were first formulated in Hellman [2001], their last iteration probably being
Hellman and Shapiro [2019]. In nuce, the extendibility principle is credited to Ernst Zermelo and
it states that every mathematical domain of objects can be extended and, as such, there is no
(completed) totality of mathematical objects. However, given its commitment to full second order
comprehension, SGS is committed to a totality of positions in structures, violating extendibility
in all its generality; see Hellman and Shapiro [2019, p. 58]. Concerning the primitive notion
‘coherent’, the issue is that if explained formally, then it would come close to Hilbert’s notion of
‘formal consistency’ and the Coherence Axiom would be akin to his idea that consistency suffices for
mathematical existence, which has been proven untenable by Gödel’s Incompleteness Theorems;
however, the alternative is ‘coherent’ should be identified with second order logical possibility,
which turns the Coherence Axiom into a problematic criterion of actual existence; see Hellman
and Shapiro [2019, p. 61].

86This problem is related to Gottlob Frege’s Caesar Problem. Right after suggesting Hume’s
Principle as a contextual account of numbers and number denoting terms – the number of F ’s is
the same as the number of G’s if and only if there is a one-to-one correspondence between F and
G – Frege criticizes it on the ground that it doesn’t settle cross-structural identity statements:
for instance, it doesn’t say anything concerning the statement ‘2 = Caesar’. For a discussion in
the context of structuralism, see Shapiro [1997, p. 79ff], Shapiro [2006, p. 122ff]. For the original
problem, see Frege and Austin [trans, §56, §66].

87MacBride [2005, p. 577].
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Shapiro [2006, p. 128] rejects the ontological indeterminacy: distinct structures
are disjoint and, as such, unambiguous cross-structural identity statements are
strictly speaking false. However, the falsity view conflicts with mathematical
practice: ordinary mathematical discourse contains many statements of identity
concerning entities from distinct structures, while many mathematically interesting
questions concern conjectured cross-structural identities. On the face of it, the
falsity view would deem such discourse false and such questions spurious; we are
thereby owed an account of such identifications in mathematical practice.88

3.2.1.2 The Automorphism Problem. 89

Consider the group of integers under addition: xZ,`y. Any element of Z is
distinct from its inverse under addition, i.e. 1 is distinct from ´1 , 2 is distinct from
´2 and so on and so forth; this is a mathematical fact which would better not be
opposed on philosophical grounds.

Arguably, another fact is that any inverse integers z and ´z are structurally
indiscernible by properties in the given group structure:90 there is no structural
property had by one but not by the other. This is underlined by the non-rigidity of
Z:

Rigid system: A system is rigid if and only if it has only one
automorphism.91

In particular, a mapping f : ZÑ Z holding 0 in place and taking any other element
to its inverse can be shown to be an isomorphism; we call such distinct elements

88Shapiro [2006, p. 128ff] credits ordinary uses involving apparent cases of indeterminacy such
as those above to semantic indeterminacy on the part of mathematical terms: the numeral ‘2’, for
instance, is ambiguous between natural, rational, real, complex etc. readings.

89Originally formulated in Burgess [1999], Keränen [2001], independently. The Automorphism
problem and the Individuation objection that follows it have close semantic correlates which will
be discussed in §3.2.3. We are only concerned with their ontological aspects in this section.

90The status of this ”fact” depends to some degree on the notion of structural property one is
working with. As noticed before, Korbmacher and Schiemer [2018] distinguish between two distinct
notions of structural property: isomorphism invariance and definability in terms of the primitive
vocabulary of the theory characterizing the structure concerned. We opted for isomorphism
invariance (§1.1) without discussing Schiemer and Wigglesworth; however, we point out that the
alternative notion – definability in the primitive vocabulary – makes this fact even more pressing. It
is a well-known model-theoretic fact that no non-0 element of xZ,`y can be defined in its signature.
Zero is defined as 0 :“ ιxpx`x “ xq, while difference is defined as x´ y “ z :” y` z “ x. Finally,
given a non-0 element z of Z, one can actually define its additive inverse as ´z :“ ιxpz ` x “ 0q.
xZ,`y is the same as xZ, 0,`,´y.

91The envisaged unique automorphism is the identity mapping. An automorphism is an
isomorphism where the domain and the codomain coincide. In model theory, an isomorphism
is a structure preserving map between L-models, i.e. a bijection preserving constants, relations
and functions: for relations, for instance, given two L Y tP u-models xD, Iy and xD1, I 1y with P a
unary predicate symbol, if f : D – D1, then d P P I if and only if fpdq P P I

1

.
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which are connected by some non-trivial automorphism ‘symmetric’. Symmetric
elements are structurally indiscernible by properties.92

Finally, we remember that SGS holds that positions are identical if and only if
they have the same structural properties. However, given that any (non-0) integer
has the same structural properties as its inverse, we’d be lead to conclude that SGS
is committed to identifying every non-0 integer with its inverse, which is anathema
for any attempted account of mathematics.

This is the Automorphism problem. Sticking with our illustrative xZ,`y, it can
be sketchily summarized as follows:

1. 1 ‰ ´1;

2. 1 and ´1 are structurally indiscernible in xZ,`y;

3. ID-Posit: structurally indiscernible positions are identical.

Since the positionalist holds that mathematical objects are positions in structures,
then 3 and 2 imply that 1 “ ´1, blatantly contradicting 1.

There are many important mathematical structures which contain symmetric
positions, the complex field (i and ´i are symmetric) and the Euclidean space
(any two points are symmetric) being only two of the commonly mentioned cases.
There are even more somewhat trivial mathematical structures such as those called
by Shapiro ’simple cardinal structures’ – represented by unlabeled graphs with no
relations on them – which would also be ruled out of existence by SGS as presented
above. All these cases pose a similar problem as that sketched above concerning the
group of additive integers.

3.2.1.3 The Individuation Objection. Jukka Keränen [2001] turns the
Automorphism problem into an objection aimed at rejecting non-eliminativism.93

In good Quinean fashion of the kind Shapiro seemed willing to endorse,94

Keränen holds that every theory should provide an account of identity for the
objects in its domain of quantification. This, Keränen holds, is a ”metaphysical
requirement”: objects, after all, are properly individuated entities, i.e. entities
having determinate identity criteria.95

Keränen identifies essentially two ways one can provide an identity account: (i)
substantially, by general properties – roughly, properties possibly being multiply
instantiated – or otherwise (ii) somewhat trivializing the matter, by (ii.1) invoking

92A model theorist would say that they have the same 1-types. See Ladyman et al. [2012] and
Button and Walsh [2018] for detailed analyses of discernibility and distinctness in models.

93Also Keränen [2006] which is a reply to Shapiro [2006]’s reply to the Keränen’s article quoted
inline.

94See footnote 78 (Page 29).
95Keränen [2001, p. 313].
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haecceities or, rejecting the need to formulate any identity principle, (ii.2) by taking
identity as primitive.

Regarding the first option (i), Shapiro [1997]96 notoriously holds that
mathematical entities only have isomorphism invariant structural properties.
Keränen argues that, among the general properties, only structural properties
which can be specified by formulae with one free variable and not containing
individual constants are of this kind and he insists that the structuralist should
provide identity criteria exclusively invoking such properties;97 his argument can
be sketched as follows. Structural properties essentially expressed by formulas
containing multiple free variables – structural relations – fare no better in
discerning positions in non-rigid structures than do their single-variable
counterparts. Concerning the involvement of individual constants in the
specification of the relevant properties, their use would eventually lead to vicious
regress. For instance, 1 and -1 would be distinguished by a property such as
x ` x “ 2, in turn requires that the identity of 2 has been already properly
provided; but trying to provide for its identity would involve another entity in
equal need of individuation, ending up in regress. The structuralist might
alternatively attempt to employ non-structural properties. However, since such
properties are notoriously not invariant under isomorphism, this option would
arguably amount to a full blown rejection of non-eliminativist structuralism.

So, the argument concludes, structuralism would better only employ structural
properties free of any constants in her account of identity for positions in structures.
However, the Automorphism problem rules out this path.

It is so we are driven to consider trivial identity accounts, the second collection
of options (ii).98 Haecceities (ii.1) are properties which are extensionally equivalent
to self-identity: given an object a, its haecceity is a property which a and only
a satisfies, such as λxpx “ aq. The structuralist could employ such properties to
account for the distinctness of, say, 1 and ´1: the former, but not the latter, satisfies
λxpx “ 1q. However, haecceities are a notoriously non-structural sort of property,
giving rise to the same objection mentioned before in connection with invoking non-
structural, albeit general properties: such an account, Keränen argues, amounts to
a rejection of the ontological project of realist structuralism.

One is thus led to give up any attempt to formulate a principle of identity for
positions in structures and rely on primitive identity facts (ii.2). However,
Keränen holds that such a move would burden the non-eliminativist with the task
of explaining why no such principle could be formulated. Moreover, it would be
metaphysically dubious to hold that there are distinct but otherwise utterly
indiscernible objects, whose distinctness is not backed by any fact of the matter –

96Shapiro [2006, p. 115ff] notoriously qualifies earlier ”slogans”, holding that only the essential
properties of positions in structures are structural.

97Keränen [2001, p. 315-319].
98Keränen [2001, p. 327-328].
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that is, holding onto metaphysically primitive identity facts. Therefore the
structuralist would have to postulate other facts grounding identity facts, and such
facts would most likely appeal to haecceities, collapsing this option into the
previous one and suffering its defeat.

Option (ii) is thus seemingly ruled out as well. Keränen concludes that the
non-eliminativist cannot pay her debts: although an account of identity is the core
requirement placed upon any theory characterizing a domain of objects (more
pressingly so when those object are introduced by the theory), the
non-eliminativist is unable to accomplish this task with respect to positions in
structures.

This is Keränen’s Individuation objection. The non-eliminativist is seemingly
bound to hold that positions in structures are individuated by their structural
properties. However, once mathematical entities are identified with positions, the
thesis misfires giving rise to the Identity problem, revealing a tension withing the
structuralist view which, Keränen argues, should lead to the rejection of
non-eliminative structuralism.

The Individuation objection has been discussed at length in the literature. All
the options considered and shortly dismissed by Keränen’s found their own advocates
and have been further articulated. We sketch a map of the now classical views on
the matter.

James Ladyman [2005] formulated a more fine-grained identity principle for
positions in structures in terms of structural relations. Even though symmetric
integers are indiscernible by monadic structural properties, Ladyman points out
that they are nonetheless discernible by structural relations : z ` p´zq “ 0, while it
is not the case that z ` z “ 0, showing that for any non-0 integer, the relation ’x is
the additive inverse of y’ – Apx, yq :“ y` x “ 0 – is a structural relation which sets
apart integers from their inverses: given an integer z, Apz,´zq but not Apz, zq. In
general, any two elements which are in a symmetric albeit irreflexive relation can
be discerned by such means. This shows that Keränen is wrong in holding that
structural relations are no more discerning than properties.99 The suggestion is
then to amend Id-Posit as follows:

(Id-Posit-Rel) @ S @x, ypx “ y ” @R@z pRpx, zq ” Rpy, zqqq

where R is a (dyadic) structural relation. Borrowing a piece of useful terminology
from Ladyman et al. [2012], we define as follows:

(Absolute Discernability) Elements a and b are absolutely discernible
in a system X if and only if they are discernible by (monadic) structural
properties ;

99Keränen [2001, p. 324]. See MacBride [2006, p. 67] for an objection against weak discernibility
through relations.
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(Weak Discernability) Elements a and b are weakly discernible in a
system X if and only if they are discernible by a symmetric and irreflexive
(dyadic) structural relation.100

Ladyman et al. [2012] show that weak discernability is more discerning than
absolute discernability (regardless of the language concerned) and, in general, that
weak discernability is the most discerning relation on systems short of outright
distinctness: if a and b are not weakly discernible, then they are utterly
indiscernible in the system considered, i.e. there is no structural (n-adic) relation
holding of one but not of the other in that system.101 If structures are systems, as
Shapiro [1997] holds, then these results also hold of structures. In this sense,
Id-Posit-Rel is the most discerning principle on structures: if it fails to discern a
and b, then no principle does so, including Id-Posit.102 Id-Posit-Rel solves the
Automorphism problem as it appears for many important mathematical
structures: the additive group of integers, the complex field and the euclidean
space. Symmetric entities in these structures are weakly discernible, albeit not
absolutely so.

However, the Automorphism problem keeps its ground for structures which
contain elements which are not related by symmetric and irreflexive relations103 –
e.g. the simple cardinal structures (e.g. Figure 1) – which lead to further
attempted solutions to cover these cases. Some symmetric positions in such
structures are utterly indiscernible: the nodes of the dumbbell graph, for instance,
are utterly indiscernible in the above sense and, since they are distinct, the
Automorphism problem would show its face if such structures are allowed for.

Tim Button [2006] provides a non-trivial account of identity for positions in
structures. Following a dim suggestion mentioned by Keränen himself in a
footnote,104 Button suggests to draw a distinction between basic and constructed
structures and provide a realist account of the former, while endorsing

100Definition 3.1 of Ladyman et al. [2012] introduces five grades or notions of discernibility in
systems: intrinsic, absolute, relative, weak and outright distinctness. Intrinsically discernible
entities are discernible by an intrinsic property definable in the signature of the system, relatively
discernible ones by a relation definable in the same signature, while distinctness is the meta-
theoretic, language independent discernibility. Absolute and weak discernibility are as defined
inline, the latter being the notion suggested in Ladyman [2005]. The authors study these notions
and their comparative strengths in four first-order sort of languages: with or without identity, with
or without constants, and combinations thereof. For the extended discussion, see Ladyman et al.
[2012, p. 170ff]. For similar discussions on notions of discernability in systems and structures, see
also Ladyman [2020], Ketland [2011], Caulton and Butterfield [2012] and Button and Walsh [2018,
§15].

101Ladyman et al. [2012], Theorems 5.1 and 7.1.
102We gloss over the fact that the authors use a notion of structural properties as properties

definable in the signature of the system. See Korbmacher and Schiemer [2018]. For the purposes
at hand, their notion and ours (§1.1) overlap.

103E.g. Ketland [2006, p. 309]
104Keränen [2001, p. 328], footnote 27. It is swiftly rejected on grounds of (i) not being able to
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© ©

Figure 1: The dumbbell graph, a simple cardinal structure.

eliminativist customs with respect to the latter:105 ruling that non-rigid structures
are constructed from rigid, basic ones, the Automorphism problem is thereby done
with by dispelling with non-rigid structures from the ontology. ‘Trivial’ accounts
of identity have found their own fair share of defenders. Shapiro [2006] endorses
primitive identity and suggests dropping any Leibnizian type of identity principle
in favour of primitive identity, fully embracing utterly indiscernible entities.106

Leitgeb and Ladyman [2008] suggest that identity is a structural property of
structures and identity facts concerning positions in structures are grounded in the
identity of the very structure they belong to. Shapiro as well as Leitgeb and
Ladyman are far from holding such facts as somewhat metaphysically dubious and
feel no need to fall back on some kind of haecceitism.107 Recent structuralist
accounts embracing primitive identity are Unlabeled Graph-theoretic
Structuralism (§3.4.3 below) and some defenders of Fregean Abstractionist in re
Structuralism (discussed in §3.4.1 below). Finally, and although enjoying little
success, haecceitism has found its own defenders, for instance Bermúdez [2007].108

3.2.2 Problems of Objects

This section discusses the problems of Permutation, Circularity and Structural
Properties. The latter alongside with the Automorphism problem (introduced
previously in §3.2.1.2) are employed at the end to formulate MacBride’s ”bad
news/old news” objection.

3.2.2.1 The Permutation Problem. 109

account for all non-rigid mathematical structures and (ii) it would apply eliminativist means to
many important mathematical structures, essentially giving in too eliminativism. Button dispels
both worries.

105The label ‘hybrid’ is also mentioned by Keränen [2001], whose second objection against this
view states that ”adopting ahybrid position of the sort envisaged here would in any case amount
to rejecting realist structuralism proper” (our italics).

106Alongside Keränen [2001], Button [2006] contains a swift rejection of utter indiscernibles. But
see Assadian [2019a] for a defense of utter indiscernibles.

107See Assadian [2019a] for a defense of utter indiscernibles.
108See Menzel [2016] for a critique.
109As concerning non-eliminativist structuralism, the Permutation problem was originally raised

in Hellman [2001, p. 195-196] and later in Hellman [2005, p. 546]; Ketland [2015, §2] elaborates
on the matter. It has been recently expanded and given a semantic dimension in Assadian [2018,
§4]; we draw on Bahram Assadian’s exposition in this section. The roots of this problem can be
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Suppose that the non-eliminativist notion of structure is coherent and consider
the following structure:

S: © © ©

[a] [b] [c]

S can be categorically characterized by a purely second-order and coherent formula
ΦS.110 The labels [a], [b] and [c] may be regarded as parameters – or free variables
as in §2.2 or Skolem constants as in §3.4 – introduced by existential elimination
performed on ΦS and meant as an aid in distinguishing S’s positions. Consider
further the following π-permuted111 copy of S:

Sπ: © © ©

[c] [b] [a]

Clearly S – Sπ and, arguably, both are structures (if S is, as we assumed). However,
following model theory and since the non-eliminativist holds that structures are
systems we are driven to conclude that S ‰ Sπ. Therefore there are distinct albeit
isomorphic structures, contradicting a core non-eliminativist principle holding that
isomorphic structures are identical:

(Id-Struct) S = S1 ” S – S1

We can summarize the Permutation problem as follows:

1. S is a structure;

2. S – Sπ;

3. Sπ is a structure;

4. S ‰ Sπ;

5. Id-Struct.

1 and 2 are seemingly non-negotiable. 1 lends credibility to 3, while the model
theoretic construction suggests 4. 1 through 4 entail that there are distinct
isomorphic structures, an embarrassment of riches contradicting 5.

traced back to Benacerraf [1965] objection against traditional mathematical Platonism (see §1.1).

110
ΦS :“ Dx1, x2, x3rrx1 ‰ x2 ^ x1 ‰ x3 ^ x2 ‰ x3s^

rRpx1, x2q ^  Rpx1, x3q ^  Rpx2, x3q ^  Rpx1, x1q ^  Rpx2, x2q ^  Rpx3, x3qs^

@yry “ x1 _ y “ x2 _ y “ x3ss
111See §1.1 for the model-theoretic permutation construction.
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Since no assumption concerning the nature of the structure S was made, the
Permutation problem is a general threat to the non-eliminativist notion of
structure, with overarching consequence for non-eliminativist semantics (see the
Singular Reference problem in §3.2.3.1). We notice that the Permutation problem
is more general than the Automorphism problem, in that the latter, unlike the
former, only appears for non-rigid structures, whereas Permutation plagues all
structures whatsoever.

3.2.2.2 The Circularity Problem. 112

The non-eliminativist holds that structures are systems, i.e. entities consisting
of a domain of positions together with distinguished relations on them. Structures
are then individuated as follows: S1 = x D, R1, ..., Rny. For instance, consider again
the structure:

S: © © ©

[a] [b] [c]

As a system, S may be characterized as xD “ t[a], [b], [c]u, R = t([a], [b]), ([b],
[a])uy.

The structuralist also holds that positions are individuated by their relations
with the other objects in their hosting structure. We can render non-eliminativist
slogans concerning the identity of positions formally. Given a position [x] in a

structure S1, the identity of [x] is t (y1, ..., ykq
RS1

i | [x] = y1 _ ..._ [x] = yku, where
RS1

i is a structural relation on S1; in plain English, the identity of positions in
structures is fully characterized by their relations with other positions in the very
same structure.113 For instance, the identity of [a] in S is t([a],[b])R, ([b], [a])Ru =

112The original problem is formulated in Hellman [2001, p. 194-195]. Hellman traces this problem
back to Bertrand Russell’s remarks agaisnt Richard Dedekind’s views:

Moreover it is impossible that the ordinals should be, as Dedekind suggests, nothing
but the terms of such relations as constitute a progression. If they are to be anything
at all, they must be intrinsically something; they must differ from other entities as
points from instants, or colours from sounds. (...) And in any case, Dedekind does
not show us what it is that all progressions have in common, nor give any reason
for supposing it to be the ordinal numbers, except that all progressions obey the same
laws as ordinals do, which would prove equally that any assigned progression is what
all progressions have in common. (Russell [2009, p. 251])

For modern formulations of the problem, see also Hellman [2005, p. 546] and MacBride [2006].
Leitgeb [forthcoming,b, p. 12-3] interprets the Circularity problem epistemically; Linnebo [2007,
p. 69-70] and Nodelman and Zalta [2014, p. 64] interpret it ontologically. We think that both are
partially right, and moreover that the problem has also a semantic side.

113A similar gloss of the structuralist slogans is proposed in Wigglesworth [2018b], discussed
below in §3.4.3.
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R. This is arguably an intuitive depiction of early non-eliminativists’ statements
on the matter.

We can easily notice that the identity of R depends on [a], since [a] appears in
the identity of R. However, the identity of [a] itself depends on R, since R figures in
the identity of [a]. In Hellman’s own words:

Thus the notion of an ante rem structure seems to involve a vicious
circularity: such a structure is supposed to consist of purely structural
relations among purely structural objects, but understanding either of
these requires already understanding the other. Whereas the
Keränen–Burgess objection granted the relations and raised questions
about how these alone could determine the objects (unless the structures
are rigid), this objection questions such talk of relations in the first
place, and thereby the very notion of ”Dedekind abstraction,” which is
supposed to lead to them. (Hellman [2005, p. 545], highlight in the
original)

On the ontological side, we end up with a circular case of identity dependence:
both positions and structures should be ontologically prior to each other and both
have their identities seemingly depending on one another. This, it is held, is
unacceptable.114 This problem also has semantic and epistemic counterparts.
Semantically, the problem is that reference to relations and thus to structures
would proceed through reference to positions, while reference to positions itself
presupposes reference to the relations on structures, seemingly vitiating the
possibility of reference to either. On the epistemic side, it appears that
understanding structures presupposes an understanding of their positions, while
understanding positions relies on an understanding of structures themselves,
seemingly tuning both pursuits impossible.

3.2.2.3 The Problem of Structural Properties. 115

Non-eliminativists hold that positions in structures only have structural
properties, while mathematical objects are identified with such positions in
mathematical structures.

First, this thesis faces counterexamples. Mathematical entities have
non-structural properties such as ‘being the number of the planets in the Solar
system’,116 which as it happens holds true of the natural number 8. But then a
certain position in the natural number structure has this property, against
non-eliminativist claims.

114Linnebo [2007, p. 69] provides a slightly different interpretation of this objection.
115This problem has been first formulated by John Burgess [1999].
116In June 2020, and at least since 2015. See MacBride [2005, p. 584] for an argument that

our counting practices commit us to accepting that mathematical objects have non-structural
properties.
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Second, the thesis is incoherent. If the non-eliminativist is right, then all
positions in structures have the property ‘having only structural properties’.
However, this is not itself a structural property.117

3.2.2.4 MacBride’s Objection. Fraser MacBride [2005, p. 582-586] employs
the Automorphism problem (§3.2.1.2) and the previous problem of Structural
Properties to build up a damning dilemma for the non-eliminativist:
non-eliminativism either has absurd consequences such as ‘i “ ´i’ (really bad
news), or otherwise collapses into ”good old-fashioned Platonism” (old news
indeed). Structuralists such as Shapiro utter slogans such as the following:

There is no more to the individual numbers “in themselves” than the
relations they bear to each other. (Shapiro [1997, p. 73])

MacBride holds that renouncing such theses would be giving up any pretense that
non-eliminativism is anything more than Platonism. The question is how to interpret
such claims, and MacBride comes up with two allegedly exhaustive interpretations:

1. Object Reductionism: Mathematical objects – positions in structures – are
nothing more than bundles of structural properties;

2. Property Reductionism: Mathematical properties are fully reducible to
structural properties.

If we endorse an object reductionist reading of the slogans (horn number 1), then
non-eliminativism is committed to a principle of Identity of Indiscernibles in terms
of structural properties which entails that e.g. i “ ´i, facing the Automorphism
problem, which is really bad news. The non-eliminativist, MacBride concludes,
cannot reduce mathematical objects to bundles of mathematical properties and is
thus committed to a dual ontology of positions and and relations.

Endorsing property reductionism (horn number 2) on the other hand, avoids
the Automorphism problem since it allows for distinct albeit structurally
indiscernible mathematical objects. However, this option falls prey to the problem
of Structural Properties: mathematical objects, the problem shows, have
properties which are not reducible to structural ones. But this reads like old news :
the non-eliminativist is committed to irreducible mathematical objects which
possess non-structural properties, which is essentially, MacBride holds, the
traditional Platonist position.

What else could distinguish non-eliminativism from traditional Platonism?
MacBride considers what is probably the one big difference between the two:
structuralists, unlike Platonists, hold that mathematical objects are positions in

117Burgess [1999, p. 287].
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structures. However, this thesis can be upheld only if positions are objects;
MacBride argues that positions are better provided with a nominalist account.118

This is MacBride’s dilemma. Endorsing Identity of Indiscernibles requires a
non-eliminativist solution to the Automorphism problem; however, dropping it and
endorsing property reductionism requires a non-eliminativist ontological articulation
of positions in structures such as to lend credibility to the thesis that positions are
bona fide objects. MacBride holds that none has been achieved.

MacBride’s dilemma has been relatively little discussed in the literature.
Maybe the most straightforward reply to this objection can be provided in a
non-positionalist setting: after all, MacBride might be instructed, structuralism is
not about mathematical objects, but about the subject matter of mathematical
theories, namely mathematical structures, which are to be conceived as
non-positional entities (e.g. as second order propositional functions as suggested in
§3.3 below): nothing bad, nor old about that (at least not in the sense of this
dilemma).

In a positionalist setting however, Øystein Linnebo [2007] provides an early
discussion concerning possible articulations of the distinction between
non-eliminative structuralism and traditional mathematical Platonism. Linnebo
identifies two main non-eliminativist motifs or theses distinguishing positions in
structures from other ordinary, including Platonistic, sorts of objects. First, the
Incompleteness claims119 hold that positions are crucially incomplete in some
sense. Intrinsic Incompleteness holds that positions have no intrinsic properties,
while Non-Structural Incompleteness holds that positions have no non-structural
properties. However, both Incompleteness claims are found deeply wanting: the
former since no meaningful notion of intrinsicness can be articulated in a
mathematical setting, mathematical objects presumably having all their properties

118The argument runs as follows (MacBride [2005, p. 585-586]). If positions are objects, then
they must play a role in an account of order; that is, they should play a role in explaining why aRb
rather than bRa, where xRy is a asymmetric relation. The customary explanation of such facts
holds that R obtains for pa, bq when a fits into the x place and b into the y place of the relation;
bRa fails because b and a don’t fit into the right slots. If places are objects, however, then further
explanation is needed: why a’s filling x and b’s filling y suffices for aRb rather than bRa?

If we chose to answer we must seemingly follow the same logic: it suffices because x and y
themselves have a certain order in xRy, which obtains in virtue of a further relation holding
between the places x and y, say xR˚y, explaining it. However, we would need an even further
relation vR˚˚w explaining the obtaining of xR˚y rather than yR˚x; it can be easily seen that this
leads to a vicious infinite regress undermining the purported explanation.

We can, on the other hand, break the explanatory chain and postulate as a primitive, brute fact
that the places x and y are ordered as in xRy; however, in that case places play no role in the
account of order, since the order itself (aRb and not bRa) could be taken as a brute fact to start
with. So positions as objects would be the fifth wheel to the cart (a popular saying in Romania),
better dropped than carried (this was presumably slightly more sensible in the older days when
wheels were made of wood and heavy).

119Linnebo [2007, §2].
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necessarily; the latter since it faces the problem of Structural Properties presented
above. So Incompleteness presumably fails to set non-eliminativists free of
MacBride’s embrace.

However, crucially, Linnebo identifies a second sort of claims made by
non-eliminativists towards delineating their view from Platonism, namely the
Dependence claims.120 Linnebo pins down two Dependence claims:
non-eliminativists hold both that positions depend on the other positions in their
structure (ODO), as well as that positions depend on their very structure (ODS),
both unlike ordinary objects. ODO certainly faces the ontological flavour of the
Circularity problem as presented above, but Linnebo argues that (i) it is unclear
that non-circular dependence chains are problematic in general and (ii) the
requirement that related objects have already had their identities grounded prior
to their relating begs the question against the non-eliminativist if not supported
by independent argument; none such has been provided in the literature. As such,
even if ODO is presumably dismissed by (i), ODS is left standing and unaffected
by either (i) or (ii); crucially, ODS itself, Linnebo argues, suffices for
non-eliminativist purposes, holding mathematical entities to be subject to upward
dependence which is unlike ordinary and Platonic objects.121 Circularity is
ultimately solved by dropping the requirement that relata should have their
identities grounded prior to the relations involving them, so as to save at least
ODS, if not also ODO.122

The notion of dependence involved in ODO and ODS is discussed123 and Linnebo
settles on weak identity existence: every individuation of a position makes use of
entities which also suffice for individuation any of the other positions in the structure
(ODO), while every individuation of any position in a structure makes use of entities
which also suffice to individuate the structure itself (ODS). Given an in re, Fregean
Abstractionist analysis of mathematical structures, Linnebo shows that upwards
weak identity grounding claims hold for mathematical structures such as the Klein
four-group and, in general, by structures corresponding to assertoric mathematical
theories.124 However, Linnebo argues that upwards grounding claim fails in some

120Linnebo [2007, §3].
121Linnebo [2007, p. 71].
122Wigglesworth [2018b] also provides an analysis of grounding in mathematical structuralism

which endorses reflexive grounding relations.
123Linnebo [2007, §7]. Drawing on Kit Fine and E.J. Lowe, Linnebo operates a distinction between

existence and identity dependence, while another distinction is introduced by Linnebo himself
between strong and weak dependence. Linnebo provides an analysis mathematical structures
along Fregean Abstractionist lines (similar to those we are about to present in §3.4.1) and shows
that some (Linnebo [2007, §6]) albeit not all (Linnebo [2007, §5]) mathematical objects satisfy the
non-eliminativist’s Dependence claims.

124Understood as those which can be arrived at by a kind of Dedekind abstraction on systems;
see Linnebo [2007, p. 76].
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other mathematical structures such as the set theoretic universe.125

Invoking an articulation of non-eliminativism through the Dependence claims
doesn’t answer MacBride’s second horn worries right away : as MacBride points
out, we need a prior, independent reason to believe in positions as objects before
identifying them as mathematical entities. However, Linnebo’s Abstractionist
account provides an antidote to this worry: if positions are conceived of as logical
objects abstracted from systems and their elements, then there is seemingly no
point in worrying about their existence. This provides in re non-eliminativism
with the means to answer MacBride’s dilemma. We will raise the question anew
when discussing contemporary ante rem non-eliminativist and positionalist views
in §3.4. However, we notice that even if positions are objects, the structuralist
might still be in trouble if the kind of objects involved are, besides their label,
essentially nothing but Platonic individuals; on a closer look, in this respect, both
the Incompleteness and the Dependence claims are, even when considered apart
from one another, key. However, if some account of positions validates some
version of Dependence or Incompleteness and, on top of that, it provides us with
an otherwise satisfactory and competitive philosophical account of mathematics,
then the very theoretical virtues recommending this as an account of mathematics
would provide us with as implicit motivation for believing in positions.

3.2.3 Problems of Reference

This section introduces the problem of Singular Reference and the related Semantic
objections.

3.2.3.1 The Problem of Singular Reference. Non-eliminativists126 hold
that ordinary mathematical terms perform singular reference to structures and
positions therein. For instance, ‘Z’ denotes the integer structure while ‘´1’ denotes
a particular position in this structure.127 Consider the structure S once more:

S: © © ©

[a] [b] [c]

125Linnebo [2007, §5].
126This problem is routed via semantic relatives of the Permutation and Automorphism problems

discussed above. The route following Automorphism can be traced back to Shapiro [2008]; the
Permutation route is explored in Assadian [2018, §4] as the Permutation plight.

127E.g. Hellman and Shapiro [2019, p. 55]. Remember the central metasemantic motivation
Shapiro as well as recent non-eliminativists employ in defending their view (§2.4): unlike
eliminativists, the realist holds that she can provide a face value reading of ordinary mathematical
discourse, where the value on the face of the latter has it that mathematical terms are true singular
terms denoting mathematical objects and structures.
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The suggestion is that, in light of Id-Struct, mathematical terms such as ‘N’ refer
to the structure satisfying a certain categorical theory or condition.128 Similarly
concerning terms such as ‘0’ in PA2 aiming to denote mathematical entities, the
suggestion is that, they pick out the entity uniquely instantiating a certain structural
property.129 So the non-eliminativist says: S is the ΦS structure, for some categorical
condition ΦS, while [a] is the φ[a] position of S, for some structural property defined
by φ[a] and uniquely instantiated by [a].

However, this account faces a problem on two fronts: concerning reference to
structures and their contents, as well as to symmetric positions in non-rigid
structures. First, concerning reference to structures and their contents,130 even if
structures are unique up to isomorphism – that is, if the Permutation problem is
dispelled – it is not sufficient that the non-eliminativist simply asserts that
mathematical vocabulary picks out structures and their positions, as opposed to
systems and their elements: she also needs to provide us with an account
explaining why structures and their positions are more eligible to attract the
reference of mathematical terms than do systems and their elements. Lacking such
an account, her claims that mathematical vocabulary performs singular reference
to structures is hardly more than an ungrounded fiat : as far as the
non-eliminativist’s discourse goes, there is nothing substantial ruling out systems
as referents of mathematical terms.

Second, concerning symmetric positions in non-rigid structures,131 the
non-eliminativist owes us an account of reference explaining how mathematical
terms could perform singular reference to one and only one of the positions from a
symmetric pair. Given the account sketched above and looking at the purported

128One can phrase it formally as follows (where S is a mathematical term denoting mathematical
structures): S :“ ιΣpΦSpΣq^StructurepΣqq, where ι is a term-forming definite description operator
picking out the unique entity satisfying a certain formula, while ΦS is a categorical condition
characterizing the isomorphism type of S (see §3.2.2.1)

129Formally, if [a] is such a term: [a] :“ ιxpφ[a]pxq ^ Positionpx, Sqq, where φ[a] is formula in the
language of S expressing a structural property only possessed by [a] from among the positions of
S.

130Assadian [2018, §4] presents this route of the problem of singular reference as the ”Permutation
plight”, formulated as an analysis of the replies the non-eliminativist might provide to the
Permutation problem as presented above; Assadian’s conclusion is that even if the Permutation
problem is solved and uniqueness up to isomorphism of structures is granted, the non-eliminativist
still owes us as account of reference magnetism explaining why mathematical vocabulary picks out
structures and their positions, as opposed to systems and their elements. Other have also raised
this objection, e.g. Button and Walsh [2016, p. 288] and the sources quoted there.

131Shapiro [2008] considers the problem of singular reference via the Automorphism problem: he
endorses utter indiscernibles as a solution to the ontological problem raised by symmetric elements,
but recognizes its semantic counterpart discussed in this section as independently problematic,
aiming to provide solutions in Shapiro [2008] as well as in Shapiro [2012]. In the end, Shapiro
drops a singular singular reference to indiscernibles and holds such terms seemingly referring to
indiscernibles are free variables.
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structure S, since S is non-rigid and [a] and [b] are symmetric positions thereof,
there is no such formula φ[a] that [a] and only [a] satisfies among the positions of S;
any such formula would be as well satisfied by [b], and vice versa. Once again,
lacking such an account, non-eliminativist’s claims that mathematical terms
perform singular reference are hardly more than ungrounded fiats.

Either way, the non-eliminativist is faced with an embarrassment of riches
giving rise to indeterminacy of reference which, if left unmitigated, undermines the
prospects of the advertised singular reference account for mathematical terms.

3.2.3.2 The Semantic Objections. We present two related albeit mostly
independent objections, united in their conclusion that non-eliminativism is
ultimately unmotivated. First, we present an objection based on Bahram Assadian
[2018, §5]’s recent critique;132 second, to add fuel to the fire, we twist Richard
Pettigrew [2008]’s argument to reach the same conclusion, as we will show, albeit
driving in Assadian’s opposite direction.

Given the problem of Singular Reference introduced above, a singular reference
account for mathematical terms is still pending: Assadian argues that absent such
an account, non-eliminativists fail to provide us with any distinctly
non-eliminativist account of reference whatsoever, dealing severe damage to the
metasemantic motivation brought about against eliminativism.

132Our presentation of Bahram Assadian [2018]’s arguments requires a caveat explaining both the
way we understand their original formulation, as well as the way we distribute their content in this
essay. Assadian presents what are meant to be two distinct objections against non-eliminativism
– or, better, positionalism, as his footnote 3 points out – albeit the two are meant to complement
each other.

The first objection appears in §4 and is labeled the ‘permutation plight’: starting from the
Permutation problem (formulated close to §3.2.2.1 in the present essay), Assadian argues that the
structuralist owes us an account of singular reference for the mathematical vocabulary yielding
reference to structures rather then systems; absent this, non-eliminativists cannot deliver on
their metasemantic promises, i.e. a singular reference account for the mathematical terms. We
reformulated the Permutation plight as the problem of singular reference above (§3.2.3.1), largely
independent from the Permutation problem; this choice is due to our impression that the problem
raised is a general debt of the non-eliminativist, unrelated to Permutation related concerns.

The second objection appears in §5 and is labeled the ‘reference plight’: starting from the
previous conclusion, Assadian identifies three alternative accounts of reference, of which two are
pursued and shown that the eliminativist could just as well employ them; as such, Assadian
concludes that the non-eliminativist – most likely, modulo the third option, which is left for further
work – fails to provide any account of reference which makes up for the metasemantic motivation
widely employed to support her view against the eliminativist (as shown in §2.4 in this essay and
argued by Assadian in §3). This is the argument we detail in the present section as the first
Semantic objection, starting from the problem of singular reference.

We can see how Assadian’s objections are meant to supplement each other: the permutation
plight conditionally rules out singular reference, while the reference plight aims to rule out the
alternatives, undermining the metasemantic motivation. Given its centrality for non-eliminativism,
as Assadian [2018, §3] argues, this arguably undermines non-eliminativism altogether.
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Non-eliminativists seemingly have three options concerning reference to
mathematical entities:

1. Simulated reference (related to §2.2);

2. Arbitrary reference (related to §2.1);

3. Singular reference to arbitrary objects.

The last option is not pursued: in general, an account of structures and positions
therein as arbitrary objects is not covered by Assadian’s comments.133

Simulated reference (1) is specific to free variables, Skolem constants or
parameters:134 such terms are meant as purely distinguishing terms, aiding in
talking about the positions of some structure as purely distinct entities; since they
could refer to any entity whatsoever, far from genuine, their sort of ‘reference’ is a
simulation only preserving distinguishability. Simulated reference has been already
employed by eliminativists, as Pettigrew suggests above. In this sense, besides its
failure to be genuine reference, it fails to to be a distinctive non-eliminativist
semantic account of ordinary mathematical discourse. A fortiori, it fails to provide
any motivation for commitment to structures. Arbitrary reference (2) has also
been employed by non-eliminativists, invoking a Carnapian structural relativist
account (see §2.1). As such, just like the previous option, arbitrary reference fails
to be a distinctly non-eliminativist account of reference.135

Assadian concludes that, modulo a successful account of non-eliminativist
singular reference to structures as arbitrary objects (3) or otherwise, the
non-eliminativist has nothing semantic to weigh in her favour against her
eliminativist contender: that is, the metasemantic motivation for committing to
structures and endorsing her view is entirely voided.136

133Attempting to fill in this gap is a task for further work. Employing Kit Fine and Tennant
[1983]’s theory of arbitrary objects, Leon Horsten [2019]’s has recently formulated an account
of structures as arbitrary objects (Generic Structuralism). Unfortunately, this view won’t be
discussed in the essay at hand.

134See Pettigrew [2008]’s suggestion in §2.2 for an instance, where such terms are called ‘dedicated
free variables’; Shapiro [2012] calls them ‘parameters’, while Ketland [2015] calls them ‘Skolem
constants’. Assadian calls this type of reference ‘Skolemite reference’.

135Both Assadian [2018, p. 3212] and Pettigrew [2008, p. 320] raise a further objection against
this view, holding that it would bring about semantic facts which do not supervene on use,
broadly construed. Both authors find this unacceptable. The thesis that there are irreducible
or fundamental semantic facts is labeled ’Semantic Sovereignty’ by Kearns and Magidor [2012]
and minutely defended. We point out that there are non-eliminativists who don’t trouble over the
failure of Semantic Sovereignty, for instance Hannes Leitgeb [forthcoming,b].

136Linnebo and Pettigrew [2014, p. 277] suggest a similar objection highlighting the centrality
of the metasemantic benefits for endorsing structures as entities over and above systems. One
might complain however that both Assadian’s objection, as well as the one we derive from
Pettigrew’s argument in what follows, rely on some kind of semantic-concerns-aside sort of priority
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Apart from showing that non-eliminativism cannot pay its debts, a similar
conclusion can be reached by showing that eliminativism can do better than
expected. Richard Pettigrew [2008] employs the palliative dedicated free variables
strategy applied to the universalist interpretation of mathematical discourse (see
§2.2) to conclude that ”whatever philosophical reasons there are for rejecting the
[non-eliminativist] interpretation, the [eliminativist] need not appeal to them to
motivate her position” and, as such, ”[h]er position begins the battle for
philosophical plausibility with the same virtues as the [non-eliminativist]
account.”137 Pettigrew’s conclusion can be understood to provide additional fuel to
the non-eliminativist’s motivational collapse: given the centrality of the
metasemantic motivation (see §2.4), such conclusions can be leveraged against
non-eliminativism following Assadian’s strategy.

Pettigrew [2008]’s argument runs as follows. As shown in §2.2, the eliminativist
can construe ordinary mathematical discourse close to its surface grammatical
form, by rendering mathematical terms as dedicated free variables.
Non-eliminativists might nonetheless insist that mathematical terms are singular
terms, not free variables, and that eliminativist construal is still misconstrual.
However, Pettigrew shows that there is no uniform agreement among
mathematicians as to whether mathematical terms are proper names or rather free
variables. Furthermore, Pettigrew argues that there is no syntactic test
distinguishing between singular terms and free variables; moreover, any semantic

of eliminativism over non-eliminativism. This is true in a chronological order: eliminativist options
came to the philosophical structuralist table earlier than their non-eliminativist counterparts. This
is part of the reason why non-eliminativism has been marketed as a better version of philosophical
structuralism, chiefly on metasemantic grounds. As such, eliminativism might have the flavour that
it is the default option to fall back on whenever there is nothing weighing in another direction.
However, temporal priority is hardly a valid ground in such matters. The objector might then focus
on another aspect: eliminativism is ontologically lighter than non-eliminativism, the former, unlike
the later, not bringing about an additional exotic layer of structures as entities over and above
their systems. In this case the eliminativist would argue that Ockham’s razor suggests erasing
the structures and make do with systems, or nothing at all. This is how we interpret Assadian’s
thought on the matter.

137Pettigrew [2008, p. 330]; we replace Pettigrew’s ‘aristotelian’ and ‘platonist’ terminology with
‘eliminativist’ and ‘non-eliminativist’, respectively. Right before these, Pettigrew states:

In conclusion, I submit that the discourse of arithmetic provides no evidence that
tells in favour of the [non-eliminativist] interpretation of that discourse and against
the [eliminativist] interpretation. Equally, there are no considerations that tell in
favour of the [eliminativist] interpretation and against the [non-eliminativist]. On
the question of whether there are metaphysical or epistemological considerations that
favour one over the other, I will say nothing. (Pettigrew [2008, p. 330])

As such, we don’t mean to imply that Pettigrew himself endorses our argument concerning the
overall worth or motivation of endorsing non-eliminativism. Anything to this effect is our own
twist of his argument. Pettigrew’s contemporary views on the matter – set-theoretic eliminativism
coupled with a nominalist approach to sets – may be found in Pettigrew [2018].
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test which could distinguish the two categories is essentially question begging.138

We push close inspection of these arguments to further work: our claim is that
Pettigrew’s point can be employed towards Assadian’s conclusion, only if these
arguments are substantially correct.

On the one hand, Assadian shows that non-eliminativists cannot live up to their
standards and cannot deliver on their promises. On the other hand, Pettigrew’s
argument can be employed to pull things in the opposite direction: in light of the
indeterminacy of ordinary mathematical discourse, eliminativists can after all stand
up reasonable semantic demands. Either way, lowering non-eliminativists or raising
their counterparts, leads us to the same likely conclusion: the non-eliminativist faces
motivational collapse, undermining justified belief in the existence of structures.

3.2.4 Summing Up

Figure 2 should provide the reader with a clear picture of the problems and
objections discussed above, alongside the main relations holdintg among them:

Identity

Cross-structural

Automorphism

Individuation

Object

Permutation

Circularity

Struct-Properties

MacBride’s Dilemma

Reference

Singular Reference

Semantic

Figure 2: A canon of non-eliminativist concerns

The top row items represent the three clusters of problems, the items in the
middle mention the problems in each cluster, while the bottom row names the three
corresponding objections. Of course, as seen above, their relations are a tiny bit more
complex than represented here: Automorphism plays a role in MacBride’s dilemma,
Permutation and Automorphism are closely related to two different branches of
the Singular Reference problem and, as such, to the Semantic objection, while the
Semantic objection itself is a composite of two, mostly separate arguments. However,

138Pettigrew [2008, §3].
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we’ll keep the picture clean for better comprehension. With the sole exception of
the Reference concerns (§3.2.3), all canonical items crucially involve positions in
structures conceived of as bona fide objects. As Bahram [Assadian, 2016, §6.2]
argues with respect to several of the canonical items, we can see that whenever
we invoke Identity or Objects’s problems, instead of ‘non-eliminativism’ we should
rather mention positionalism, the view that structures are endowed with a domain of
positions (§1.1): positionalism, it appears, is the true root of most non-eliminativist
evil. We take a look at an alternative in the following section.

3.3 A Detour Through Non-Positionalism

Following the train of thought concluding the previous section, a non-eliminativist
might find it sensible to hold onto realism with respect to mathematical structures,
while endorsing an eliminativist approach to positions therein. This is
non-positionalism.139

The core idea is to provide an understanding of structures satisfying the following
desiderata:

I. Structures are not eliminated;

II. Structures have no domain of positions;

III. Structures are what isomorphic systems have in common.

That is, the aim is to formulate a non-eliminativist version of structuralism (I), which
is non-positionalist (II) and accounts for the methodological structuralist intuition
that structures are what isomorphic systems have in common (III). The last item is
captured by a (weaker) version of what we called Id-Struct in §3.1:

(Convergence) [X] = [Y] ô X – Y140

Ketland [2015, §3] mentions four accounts of structures which arguably satisfy these
conditions:

1. Structures are equivalence classes of isomorphic systems (or otherwise the
property of being isomorphic to a given system);

2. Category-theoretic structures;

3. Structures are logical objects governed by a primitive abstraction principle
(Convergence);

139In our terminology above, the non-positionalist implicitly holds that structures are not
systems. Daniel Isaacson [2011] and Jeffrey Ketland [2015] have both articulated versions of
non-positionalism. We are sketching Ketland [2015]’s suggestion in what follows.

140Following the notation used in §3.1: X and Y are systems, [X] and [Y] are their respective
structures. Ketland [2015, §3] calls it Leibniz Abstraction.
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4. Structures are categorical second-order propositional functions expressed by
the a second-order categorical diagram formula.

Drawing on Carnapian ideas,141 Ketland articulates the latter option. We
consider a toy, finite case and afterwards mention the infinite intricacies. Consider
the following labeled graph:

X: © © ©

1 2 3

We can characterize X up to isomorphism by a purely second-order logical formula
ΦX : for any model M, M satisfies ΦX if and only if M is isomorphic to X.142

Although the third desiderata is thus in sight, the non-positionalist cannot quite
identify the structure of X with ΦX : since these are linguistic entities, doing so
would allow for isomorphic systems Y whose ΦY , although equivalent to ΦX , is a
notational variant of ΦX and thus distinct. In general, only this much would be
granted:

X – Y ô ΦX ” ΦY

Φ characterizations of isomorphic systems are logically equivalent, albeit not
necessarily identical. However, the propositional function expressed by ΦX and ΦY

is the same, that is, an entity to the effect that there are precisely three elements
and only two distinct ones are related to one another. If we express such
propositional functions as xΦXy and xΦY y, then the following is a plausible
assumption concerning the relations holding between formulas and the
propositional functions expressed:143

141We sketched some of these ideas in §2.1 when discussing relativism.
142Describe X in model theoretic terms as a σ-model X = xD “ t1, 2, 3u, σ “ t ‘1’,‘2’,‘3’u, Iy,

where D is X’s domain, σ is its signature and I is an interpretation function. In general, in case σ
doesn’t contain a name for each element in D, then we can extend σ to σ` containing a constant
for each element in D, and adapt I accordingly; we would then consider X as a σ`-model. A
literal is a closed σ-formula or the negation of such a formula; let Litσ be the collection of literals.
The diagram formula of X is then is then diagX =

Ź

tϕ P Litσ|X ( ϕu; since σ is finite, then
Litσ is also finite (up to logical equivalence) and so diagX is a finite σ-formula. It is a model
theoretic result that M ( diagN if and only if there is an embedding h : N ÑM. Furthermore,
let domX “ @y

Ž

ty “ n|n P Du, where n is a constant in σ such that Ipnq “ n P D; again, since
D is finite, domX is finite itself. Then φX “ diagX ^ domX characterizes a surjective embedding
(i.e. an isomorphism) and thus it is a formula such that for all σ-modelsM, M ( ΦX if and only
if M – X. In general, the formula ΦX “ Dx1, x2, x3φX rx1{1.x2{2.x3{3s is a purely second-order
logical formula categorically characterizing X: for any modelM,M ( ΦX if and only ifM – X.
However, in the case of an infinite modelM, diagM and domM and thus ΦM may be infinite and
thus we need to appeal to infinitary logics.

143Ketland [2015, p. 30].
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ΦX ” ΦY ô xΦXy “ xΦY y

Plausibly, the propositional functions expressed by logically equivalent formulas
are identical. Putting these together, we conclude that: xΦXy “ xΦY y ô X – Y.
The propositional functions expressed by formulas categorically characterizing
isomorphic systems are identical. Ketland’s suggestion is then to identify the
structure of a system with the propositional function expressed by its diagram
formula: rXs :“ xΦXy.

144 As such, Convergence holds as well: [X] = [Y] ” X – Y,
satisfying the third desiderata. In this context, instantiation is understood as
follows: X instantiates [A] if and only if X ( ΦA.

From the viewpoint of someone who was already prepared to assent to
mathematical structures, there is seemingly no obstacle in believing in such
propositional functions and, therefore, the account may be held non-eliminativist.
Furthermore, there is no domain of positions in [X] and therefore the account is
non-positionalist, satisfying the second desiderata and avoiding the trouble.
However, the non-eliminativist still has to provide a semantic account of ordinary
mathematical terms: Ketland [2015, §7.2] suggests to understand these as Skolem
constants, i.e. freshly added constants which substitute the quantified variables in
ΦX .145

The case of infinite structures brings about the intricacies mentioned above. The
underlying idea is the same as in the finite case; however, there are systems whose
characterizing formula Φ is infinite and, as such, appeal to infinitary logics (i.e.
logics allowing for infinite formulas) is required. Ketland carries out a construction
of diagram formulas in both finite and infinite cases in the fifth section.

Some might complain, for instance, that natural numbers should be elements
or positions in the natural natural number structure: what else could they be?
However, Ketland holds that natural numbers are sui generis entities characterized
by Frege’s Hume’s Principle: N[S] = N[P ] ” S „ P , that is, the number of S’s is the
same as the number of P ’s if and only if there is a one-to-one correspondence between
S and P . The collection of natural numbers would then be N :“ tx|DX : x “ NrXsu;
the natural numbers with the natural order, xN,ăy (alongside any set theoretic
reduction thereof) would then instantiate the natural number structure, xΦpN,ăqy.
However, the natural numbers are not the natural number structure, nor positions
therein: the former, unlike the latter, suffer from the permutation objection, whereas
the latter, unlike the former, is a propositional function without any domain of
distinguished elements, avoiding thus many of the pitfalls discussed in the previous
section.

Regardless of its virtues, non-positionalism doesn’t provide us with a unified

144This is likely carrying commitment to a version of in re non-eliminativism.
145The name is reminiscent of Skolemization in model theory: given a consistent theory, for every

formula ϕpxq in its language, add a fresh constant c to its vocabulary such that Dxϕpxq Ñ ϕpcq is
a theorem. This is essentially similar to Pettigrew’s strategy in §2.2.
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account of ordinary mathematical practices, from everyday counting to theoretical
endeavours: the former would be conceived in terms of cardinalities and natural
numbers, while the latter is the study of certain propositional functions only
related to (say) natural numbers in that the progression of numbers instantiates it,
as do many other systems. If possible, we would better avoid such discontinuities.
In general, this means that non-positionalism falls prey to the a particularly
vicious form of the Singular Reference problem: since there are no positions in
structures, the non-positionalist cannot provide us with a singular reference
account for mathematical terms. In turn, this exposes non-positionalism to both
fronts of the Semantic objection: it is not only the threat that the metasemantic
motivation (§2.4) might not constitute reason enough for endorsing structures, but
also that the metasemantic motivation itself it utterly absent. We are thus driven
to consider contemporary positionalist reactions to the problems and objections
mentioned in the previous section.

3.4 Positionalism

After introducing mathematical structuralism and discussing early versions of
philosophical structuralism, notably eliminativist, we introduced Shapiro [1997]’s
early articulation of non-eliminativism and considered extended criticisms against
it. Noticing that many of these criticisms concern positions in structures, we
briefly mentioned several versions of non-positional non-eliminativism and
reviewed Ketland [2015]’s own articulation of it. However, several notable versions
of positionalist non-eliminativism aim to solve the problems raised by positions in
structures rather than avoid them altogether by doing away with positions to start
with. These views articulate distinct notions of structural objects which aim to
dispel the worries raised against SGS. We are now going to review three of the
most influential such views in the literature: Fregean Abstractionist Structuralism
(FAS), Object Theoretic Structuralism (OTS) and Unlabeled Graph-theoretic
Structuralism (UGS).

3.4.1 Fregean Abstractionist Structuralism

This section introduces Øystein Linnebo and Richard Pettigrew’s original Fregean
Abstractionist Structuralism (FAS),146 alongside Georg Schiemer and John
Wigglesworth’s updated version thereof.147 Further on, we asses FAS against the
canonical objections listed in §3.2 and conclude with a summary of FAS’
performance against these.148

146Linnebo and Pettigrew [2014]. For an axiomatic account of mathematical structures based on
Fregean abstraction principles which will not be discussed in this essay, see Leach-Krouse [2017].

147Schiemer and Wigglesworth [2017].
148The following remark in by Richard Dedekind seem to point in the Abstractionist direction:
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3.4.1.1 Theory. Linnebo and Pettigrew provide a characterization of
non-eliminativism resulting in three core theses:

(Instantiation) Systems are isomorphic to their structures;

(Purity) All fundamental properties of positions in structures are
structural properties;

(Uniqueness) [X] is unique in satisfying Instantiation and Purity.
(Linnebo and Pettigrew [2014, p. 273])

Instantiation ”is essential in order to give the semantics for mathematical language
that the non-eliminative structuralist proposes.”149 Purity is a restricted form of
the Non-Structural-Incompleteness claim (discussed at the end of §3.2.2) and it is
a central tenant of the non-eliminative structuralist understanding of
mathematical objects. Uniqueness is, alongside Instantiation, crucial for realizing
the metasemantic motivation presented above (§2.4). These are in turn taken as
desiderata of the Fregean Abstractionist account of structure: the aim is to show
that they are substantial consequences of FAS.

Abstraction principles were introduced by Gottlob Frege and revived later on by
neo-logicists. The idea is that of a relation (usually an equivalence)150 on a given
domain of objects abstracting away from these a new sort thereof corresponding to
classes of appropriately related objects from the domain. For instance, neo-logicists
hold that natural numbers are governed by Hume’s Principle (HP):

(HP) N[P] = N[S] ô P „ S

‘N’ is an abstraction operator on properties, ‘S’ and ‘P’ express properties and ‘„’ is
one-to-one correspondence between S and P; ‘N[P]’ should be read as ‘the number of
Ps’. HP introduces numbers into the discourse by providing their identity conditions
and governing terms denoting them; to give an idea of the power of abstraction
principles, PA2 can be derived from HP in second order logic.151

If in the consideration of a simply infinite system N set in order by a transformation
φ we entirely neglect the special character of the elements; simply retaining their
distinguishability and taking into account only the relations to one another in which
they are placed by the order-setting transformation φ, then are these elements called
natural numbers or ordinal numbers or simply numbers, and the base-element 1 is
called the base-number of the number series N. (Dedekind and Behman [trans,
Definition 73])

We point out that Linnebo and Pettigrew distance themselves from Dedekind Abstractionism.
149Linnebo and Pettigrew [2014, p. 272].
150This condition can be relaxed under some conditions; see Payne [2013].
151Abstraction principles are plagued by the so called Bad Company Objection: presumably

coherent abstraction principles cannot be well delineated from inconsistent ones, such as Frege’s
infamous Basic Law V. Some authors suggest to tackle this problem by only allowing for predicative
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According to FAS, structures are governed by the following Structure Abstraction
(SA) principle:152

(SA) [X] = [Y] ô X – Y

The structure of X (denoted by [X]) is the same as the structure of Y if and only if
X is isomorphic to Y, where X and Y are systems and where [¨] is an abstraction
operator on systems yielding their structures, sui generis mathematical objects
which correspond to the systems’ isomorphism types. In order to avoid the
Burali-Forti paradox,153 systems are required to be set-sized. Furthermore,
positions in structures are governed by Position Abstraction (PoA):

(PoA) [x]X = [x1]X1 ô Dfpf : X – X1 ^ fpxq “ x1q

The position corresponding to an element x from a system X (denoted by [x]X) is
the same as the position corresponding to an element x1 from a system X1 (denoted
by [x1]X1) if and only if there is an isomorphism f between X and X1 which takes
x to x1. For instance, looking at the Zermelo and von Neumann ordinals with
their respective orders, Z “ xZ,ăZy and ω “ xω,ăωy, Structure Abstraction yields
that [Z] = [ω]; looking at their third elements according to their respective orders,
Position Abstraction yields that [ttHuu]Z = [tH, tHuu]ω, since f : txu ÞÑ tx, txuu
is an isomorphism between Z and ω which relates these elements appropriately.154

Given a system X = xD,R1, ..., Rny, in light of PoA we can explicitly characterize
[X] as a positional entity. The domain of [X] can be given as fallows:

(Domains of Structures) [D]X = t[x]X|x P Du.

The domain of [X] contains all and only positions corresponding to elements of X.
Furthermore, relations on [D]X can be defined similarly. Given X and an k-ary
relation R on D:

(Relations on Structures) [R]Xpx1, ..., xkq if and only if there are
elements u1, ..., uk in D such that for each i, ruisX “ xi and
Rpu1, ..., ukq.

Positions are [R]X-related in [X] if and only if there are corresponding elements
which are R-related in X; in the monadic case, a position [x]X has property [P ]X if
an only if P pxq obtains in X. These yield a positional characterization of [X]:

abstraction principles, while recovering their strength through a dynamic approach; see Studd
[2016] and Linnebo [2018]. Schiemer and Wigglesworth [2017] will employ dynamic abstraction in
their amendments to FAS.

152Linnebo and Pettigrew [2014, p. 274]. We labeled this principle ‘Convergence’ in §3.3. However,
the status of SA in the present context is radically different than that of Convergence in Ketland
[2015].

153Hazen [1985, p. 253-254] points out this peril.
154With fpHq “ H.
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(Positional Structure) [X] = x [D]X, [R1]X, ..., [Rn]X y

Finally, with an eye on the Purity thesis, given a system X and a relation R on [X]’s
positions, fundamental relations are defined as follows:

(Fundamental Relations) R is a fundamental relation on [X] if and
only if there is a relation R1 on the elements of X such that R = [R1]X.

Fundamental relations on structures are those abstracted from a relation on some
underlying system. In light of the above principles and definitions, Instantiation
and Purity should be formally recaptured as follows:

(Instantiation) [X] – X;

(Purity) [R]Xp[x1]X, ..., [xn]Xq ô Rpx1, ..., xnq, where x1, ..., xn belong
to the domain of X.155

We provisionally make the following two substantial assumptions:

(i) Every structure is the result of abstraction on some system (in re
structuralism);

(ii) The systems on which abstraction is operated are all rigid.

Linnebo and Pettigrew argue that, under these assumptions, FAS satisfies all three
theses: Propositions 5.1 and 5.2156 state that Instantiation and Purity,
respectively, are satisfied, while Uniqueness follows by Instantiation given SA.157

This is all neat looking, but Schiemer and Wigglesworth [2017] show that Purity
fails even under the restrictive assumptions (i) and (ii) if relations on structures
are extensional, that is, if relations are conceived of as fully characterized by their
extensions. There are two related problems in this case. First, strictly speaking,
relations on structures are not structural relations. Remember that we characterized
(§1.1) structural relations as isomorphism invariant relations; however, Relations on
Structures only yields relations obtaining on the domains of structures, and not on
the domains of systems as well. Since structures are isomorphic to their systems,
then relations on structures are not structural relations.158

155This formulation of Purity captures the original meaning only roughly: notice that it is not the
structural property itself that holds in systems isomorphic to the structure, but a correspondent
of it in the system. See the first of Schiemer and Wigglesworth’s objections below.

156Linnebo and Pettigrew [2014, p. 276-7].
157If (i) fails, then Uniqueness doesn’t fallow from FAS. If (ii) fails, then Instantiation is flouted:

structures abstracted from non-rigid systems are not in general isomorphic to their systems. Given
(ii) and in light of the seeming centrality of non-rigid structures in mathematics, Linnebo and
Pettigrew eventually abandon FAS. John Wigglesworth [2018a] provides a reply to this objection,
discussed below when engaging with the Automorphism problem. An alternative route was taken
by Bahram Assadian [2016, §6.4], who presents non-positionalist Abstractionism.

158Schiemer and Wigglesworth [2017, p. 10].
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Second, Schiemer and Wigglesworth show that under an extensional account of
relations, Linnebo and Pettigrew’s restricted version of Purity is plagued by the
same problem of Structural Properties that it was originally meant to avoid by
restricting the Incompleteness claim to fundamental properties. This is so because
on an extensional account it follows that every relation on structures is
fundamental,159 entailing that positions in structures have no non-structural
relations; however, as the problem of Structural Properties highlights, positions in
structures do have non-structural relations.

Consequently, Schiemer and Wigglesworth amend FAS with an intensional
account of relations carried out in the framework of Kripke models and resulting in
a dynamic and predicative version of abstraction which allows for a natural
alternative definition of fundamental relations avoiding the previous pitfalls and
proving the restricted version of the Purity thesis. In nuce, the main idea is to
conceive of systems as states in a Kripke model endowed with an accessibility
relation relating all and only isomorphic systems; in this setting, relations are
intensional: a relation is a function which given a system/state as input, it yields
as output a class of appropriately sized collections (corresponding to the arity of
the function) of entities from the domain of the input state; crucially, relations
have local domains, and locally extensionally equivalent relations are not identical.
Against this background, abstraction principles are conceived of as predicative and
dynamic operators on Kripke models, giving rise to extensions of the original
models containing in addition the positional structures corresponding to each
isomorphism type represented by some system included in the model.

Systems are characterized as before. Variable domain Kripke (VDK) models are
defined as follows:

(VDK model)M “ xD,W,„, νy is a variable domain Kripke model if
and only if:

• D is a domain of objects;

• W is a collection of systems with domains subsets D;

• „ is an accessibility relation on W ;

• For w P W , νpwq “ Dw Ď D.

159Schiemer and Wigglesworth [2017, p. 11]. The argument runs as follows: Let R be a relation on
a structure [X]; this is without loss of generality since we consider an in re version of structuralism,
by assumption (ii). By Instantiation, there is an isomorphism f : [X] Ñ X; f induces a relation Q
on X such that Qpx1, ..., xnq if and only if R([x1]X, ..., [xn]X). By Relations on Structures, [Q]X is
a relation on [X] such that [Q]X([x1]X, ..., [xn]X) if and only if Qpx1, ..., xnq. Notice that it follows
that R([x1]X, ..., [xn]X) if and only if [Q]X([x1]X, ..., [xn]X). By Fundamental Relations, [Q]X is
a fundamental relation on [X]. However, if relations on structures are extensional, then R = [Q]X.
Hence R is a fundamental relation on [X]; generalizing, all relations on structures are fundamental
and thus all relations of positions in structures are structural relations.
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Such models have a domain of objects (D) and a domain of states which in our case
are systems (W ) such that, as expected, each w in W has itself a local domain which
is a subset of D; intuitively, all sets will be in D and some local domain would be
Dω, i.e. the von Neumann ordinals, while ω itself would be an element in W . We
will say more about the accessibility relation after introducing intensional relations
on such models:

(Intensional Relation) Given a VDK model M “ xD,W,„, νy, an
n-ary intensional relation R is a function R : W Ñ PpDnq (where Dn is
the collection of all n-tuples of elements from D).

The core idea behind intensional relations is that extensional equivalence is not
sufficient for identity in the case of relations. This is precisely captured by the
above definition, from which it follows that if R and Q are intensional relations,
then R “ Q ô @w P W pRw “ Qwq, where Rw “ Rpwq is the local extension of R
at w. This as the identity criterion for intensional relations. A classical example of
extensionally equivalent albeit intensionally distinct relations is provided by the
relations ‘creature with kidney’ and ‘creature with heart’: it is true that, in
actuality, any creature having one also possesses the other, but the properties are
seemingly nonetheless distinct. Intuitively, intensional relations can avoid the
argument leading from an arbitrary relation on structures to the conclusion that it
is a fundamental relation: relations having the same local extension are not
thereby the same relation, since their local extensions in another system might be
distinct. Furthermore, intensional relations on structures can strictly speaking be
structural relations, since they have local domains on the elements of the
isomorphic systems. These two features of intensional relations show that they
afford an answer to Schiemer and Wigglesworth’s above objections to Linnebo and
Pettigrew’s abstractionist account. Given a relational language L, we extend the
definition above to L-models:

(VDK L-model)M “ xD,W,„, νy is a VDK L-model if and only if:

• M is a VDK model;

• for all ‘R’ P L: νp‘R’q is an intensional relation R on M;

• For w, v P W : w „ v ô w – v.

In the definition of a VDK L-model, isomorphism between systems, w – v, is defined
as follows:

(Systems’ Isomorphism) For all w, v P W , w – v if an only if there
is a bijection f : Dw Ñ Dv such that for all n-ary intensional relations
R and for all x1, ..., xn P Dw: Rwpx1, ..., xnq ô Rvpfpx1q, ..., fpxnqq.

Further on, an extension of a VDK L-model is defined as usual:
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(VDK L-model extension) Let M “ xD,W,„, νy and
M1 “ pD1,W 1,„1, ν 1q be variable domain L-Kripke models. M1 is an
extension of M if and only if D Ď D1, W Ď W 1, „Ď„1 and ν Ď ν 1.

Abstraction principles are now introduced as abstraction operators on the systems
(W ) or the objects (D) of a VDK L-model M. Structure abstraction is then
expresses as follows:

(SAi) Given a VDK L-model M “ xD,W,„, νy, [¨]: W Ñ WS is a
structure abstraction operator such that for all w, v P W : [w] = [v]
ô w „ v. Then WS “ t[w]|w P W u, with W XWS “ H.

SAi is a predicative abstraction principle:160 none of the [w]’s are in W itself.
Given a system w in W , [¨] introduces a fresh entity which corresponds to w’s
isomorphism type; all these newly abstracted objects are collected in WS and, as a
consequence of their mode of introduction, their identity matches isomorphism.
Similarly, abstraction for positions is defined as follows:

(PoAi) Given a VDK L-model M “ xD,W,„, νy, [¨]: D Ñ DP is a
position abstraction operator such that for all w, v P W , for all a P Dw

and b P Dv: [a]w “ [b]v ô Df : w – v ^ fpaq “ b. Then DP “ t

[a]w|a P Dw, w P W u, with D XDP “ H.161

As in the case of structures, PoAi is a predicative abstraction principle itself. We
are now aiming to extend the original VDK L-model M to an extended model
containing WS and DP in its domains; but first we have to define the local domain
of relations on the new abstracted domains:

(Intensional Relations on Structures) Given a VDK L-modelM “

xD,W,„, νy and an intensional relation R onM, the expansion of R to
WS is a function R˚ such that:

1. For all w P W , R˚w “ Rw;

2. For all u P WS, for all d1, ..., dn P Du: pd1, ..., dnq P R
˚
u if and only if

there are v P W and b1, ..., bn P Dv such that

160This is important since predicative abstraction principles are ‘good’: none of them is subject
to the sort of issues plaguing some non-predicative principles. In this sense, predicative abstraction
principles are a way of answering the Bad Company Objection. The reverse of the medal is that
predicative principles are in many cases too weak to yield rich mathematical domains (e.g. the set
theoretic universe). However, dynamic abstraction can make up for the lack in deductive power.
See Linnebo [2018]. In what follows, Schiemer and Wigglesworth themselves employ dynamic
abstraction.

161We hold onto the structure notation introduced before; we trust that no confusion will emerge.
For instance, it is clear that the abstraction operator for positions is distinct than the abstraction
operator for structures, defined in SAi.
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(a) di “[bi]v, for all i ď n;

(b) pb1, ..., bnq P Rv.

This follows Linnebo and Pettigrew’s definition introduced above. We can now
proceed to define the model extensions induced by the abstraction operators for
structures and positions:

(Abstract Extension) Let M “ xD,W,„, νy be a VDK L-model.
M˚ “ xD˚,W ˚,„˚, ν˚y is the abstract extension of M, where:

• D˚ “ D YDP;

• W ˚ “ W YWS;

• for all w, v P W ˚: w „˚ v ” pw „ v _ w “[v]_[w]“ vq;

• Concerning ν˚:

– for w P W : ν˚pwq “ νpwq;

– for w P WS: ν˚pwq “ t[a]v|a P Dv, v P W, v „
˚ wu;

– for ‘R’ P L: νp‘R’q “ R˚.

This concludes the construction of M˚, a model containing all systems as well as
their corresponding structures abstracted from these systems along with positions
in these structures. Having supposed that all systems in W are rigid (assumption
(ii) above), it can be easily shown that the Instantiation thesis holds.162 Moreover,
we notice that in this framework all structures are the result of abstraction on
some system.163 Uniqueness can then be also shown to obtain: if u, v P WS and
[w]“ u – v “[w1], then by Instantiation w – u – v – w1 and so w – w1 and hence
by SAi it fallows that u “[w] = [w1]“ v, concluding that u “ v. To verify that the
Purity thesis also holds, we need to just a little more defining. Structural relations,
can be precisely recaptured in this framework as follows:

(Structural Relations) A property P is a structural property of [w]
if and only if for all systems v P W and all isomorphisms f :[w]– v, if
a P P[w] then fpaq P Pv.

164

162We notice that each u P WS can be provided with a positional characterization: u “

xνpuq, R˚1 puq, ..., R
˚
npuqy. Assuming that all systems are rigid, it is then routine to show that if

u “ rws, then u – w.
163Corresponding to assumption (i) above, we suppose that W only contains systems and no

structures. We can also notice that in this framework structures are not systems, against Shapiro’s
view. Assadian [2016, §???] suggests this feature as another way to characterize the distinction
between in re and ante rem non-eliminativism: structures are systems on an ante rem conception
of structure, whereas on an in re conception they are not.

164This can be easily generalized to n-ary relations.
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Structural relations are, once again, isomorphism invariant relations. We still need
to formulate the crucial definition of fundamental relation in this framework. First,
Schiemer and Wigglesworth introduce the notion of definable relation:

(Definable relation) Let M “ xD,W,„, νy be a VDK L-model, and
let X“ xνpXq, R1X , ..., RnX

y be a LX-system in W . An n-ary intensional
relation R is LX-definable if and only if there exists an LX-formula
ϕpx1, ..., xnq such that for all v P W , for all b1, ..., bn P Dv:
pd1, ..., dnq P Rv ô v ( ϕpd1, ..., dnq.

An intesional relation is L-definable if and only if there is a L-formula which locally
holds of a tuple of entities when and only when their tuple is in the local domain
of the relation. Given a system and a relation from among those holding on it, this
notion is meant to yield the primitive relations of the system, or the relations which
are definable in terms of the primitive ones. We finally define fundamental relations
on structures:

(Fundamental relation) An n-ary relation R on the positions of a pure
structure [w] is fundamental if and only if there exists an n-ary relation
Q on the objects of an L-system w and a formula ϕ P L such that:

1. Q is defined by ϕ;

2. R is an extension of Q.

Fundamental relations on structures are extensions of relations which are definable in
the systems of the structure concerned. Schiemer and Wigglesworth point out that
binding fundamental relations to definability in languages introduces an essential
linguistic component into our notion of mathematical object; in general, the stronger
(e.g. higher order) the language, the more properties would turn out to be definable
and, as such, the more properties would be fundamental. In light of Purity, this
means that as we go up in language order, more and more properties would be
fundamental and thus more and more properties would be165 structural; the more
expressive a language, the more ‘concrete’ the structures it describes, the more
properties count as structural.

Schiemer and Wigglesworth mention three virtues of this notion of fundamental
relation. First, all intuitively fundamental relations turn out fundamental on this
definition. Second, if R is an n-ary relation definable by some formula ϕ in the
language of w, then the extension of R at Σpwq contains an n-tuple of positions if
and only if those positions are the abstracts of the elements in some n-tuple in the

165That is, if Purity holds, as we shortly show it does. For the potential perils the kind of
language relativity arrived at poses in the realist context, see Schiemer and Wigglesworth [2017,
p. 21]. Wigglesworth [2018a] will also defend the language relativity of mathematical structures.
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extension of R at w.166 Finally, and crucial in the proof below, if ϕ defines R, then
ϕ also defines R˚, the extension of R.167 We can now prove that the Purity thesis
is a consequence of FAS.

(Purity) Let a be a position in [w]. If R is a fundamental property of
a in [w], then R is a structural property of a in [w].168

The proof can be found in Schiemer and Wigglesworth [2017, p. 24].169 This is
Fregean Abstractionist Structuralism. We conclude by answering the three
programmatic questions. First, structures and positions are sui generis logical
objects abstracted from systems and their elements (Question 1). The identity of
structures and positions is governed by the implicit definitions provided by
abstraction principles (Question 2); however, as it stands, this will be shown
unsuccessful in what follows. It is frequently held that the terms introduced by
abstraction principles are singular terms performing singular reference; as such,
terms introduced by FAS’ abstraction principles are presumably performing
singular reference to mathematical structures and positions therein (Question 3).

3.4.1.2 Against the Canon. The problem of Cross-structural identities is
settled in the negative by FAS: since distinct structures are abstracted from
non-isomorphic systems, none of their positions are related by isomorphisms and
hence, by POAi, their domains are disjoint. This is a theorem of FAS and, as such,
non-negotiable. Ordinary mathematical practice seemingly identifying positions
from distinct structures are explained away as cases of semantic indeterminacy.

We’ve been assuming that all systems are rigid (ii) precisely because the
Automorphism problem looms in FAS, and it is this problem that eventually leads
Linnebo and Pettigrew [2014, p. 278] to give up the view; Schiemer and
Wigglesworth’s amendments are no aid against Automorphism either. Consider
the following unlabeled graph:

G2: © ©

a b

Since f : G2 Ñ G2 with fpaq “ b and fpbq “ a is an automorphism (and thus an
isomorphism), then PoA yields that [a]G2 = [b]G2 . But then the positional
characterization of structures yields that the structure [G2] is the following:

166Formally: R˚Σpwq “ txσpx1q, ..., σpxnqy|px1, ..., xnq P Rwu.
167Schiemer and Wigglesworth [2017, p. 22] provide a short proof.
168Schiemer and Wigglesworth [2017, p. 23], Proposition 1.
169We notice that Schiemer and Wigglesworth take [w] to be a model theoretic L-structure when

carrying out this proof; however, if all systems are in our originalM, then WS doesn’t contain any
set theoretic structures. In other words, abstract structures are not set theoretic entities, but sui
generis mathematical entities. Therefore this is more of a plausible argument than a strict proof.
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[G2]: ©

[a]G2

In Linnebo and Pettigrew’s jargon, this is a case of Instantiation failure.170 PoA
collapses distinct but symmetric elements on the same positions in the corresponding
structure and, as such, e.g. additive inverses in the group of integers, as well as i and
´i in the complex field would be identified. It is easy to see that a similar reasoning
applies to PoAi, leading to the same result: using the same isomorphism f form G2

to G2 (this time conceived of as elements of W ), PoAi yields that [a]G2 = [b]G2 . We
do not hold that in general PoA and PoAi validate the the same identities, although
we find this likely; however, at least in the case at hand, they both validate [a]G2 =
[b]G2 and hence give rise to the Automorphism problem.

Drawing on Leitgeb and Ladyman [2008], John Wigglesworth [2018a] has
recently presented a solution to the Automorphism problem on behalf of FAS. The
formal idea is twofold. First, Wigglesworth insists on the model-theoretic
understanding of systems as language dependent L-models, i.e. models of the

170Linnebo and Pettigrew [2014, p. 277-8] propose two remedies to the Automorphism problem
in FAS. First, it is suggested that PoA be entirely dropped and only structure abstraction left
standing. The authors complain employing a form of the Semantic objection against this option:
by endorsing it ”we lose one of the main advantages of the [non-eliminative] structuralist position,
namely, an account of the subject matter of mathematics that equips us with a straightforward
semantics for mathematical language.” (See Ketland [2015] for reiterating this suggestion and
Assadian [2016, §6.4] for carrying it out in some detail as a version of Hybrid Structuralism.) The
second option is to amend PoA as follows:

(PoA1) [x]X = [x1]X1 ô Dfpf : X – X1q ^ @fpf : X – X1 Ñ fpxq “ x1q

However, the relation characterized on the right hand side is not an equivalence relation since it
is not reflexive: given the graph G2, for instance, PoA would yield that [a]G2 = [b]G2 , whereas
now PoA1 yields [a]G2

‰[a]G2
, since besides identity, f : G2 Ñ G2 with fpaq “ b, fpbq “ a is an

isomorphism which doesn’t send a to a. Both consequences seem equally unacceptable. However,
see Payne [2013] for a discussion of non-reflexive abstraction principles in the context of negative
free logic. We leave this for further work.
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language L.171 Given a relational language L,172 a system X “ xDX, νXy is a
L-intepretation or L-model where DX is a domain of objects and
νX : LÑ PpDXn

q is an interpretation function taking any n-ary relation symbol in
L to a collection of n-tuples from DX. An isomorphism between L-systems X and
Y is then a bijection f : DX Ñ DY such that for all n-ary relations R P L and for
all x1, ..., xn P D

X: xx1, ..., xny P ν
XpRq if and only if xfpx1q, ..., fpxnqy P ν

YpRq.
This definition is meant to replace Systems’ Isomorphism above. Both
structure as well as positions abstraction is now performed on such systems.

Second, non-rigid systems should be rigidified before performing abstraction on
them: following Leitgeb and Ladyman [2008] argument to the effect that
mathematical practice regards identity as an intrinsic relation of structures,173

Wigglesworth suggests to enrich systems with enough structure to achieve this.
Given the language L and the L-system X mentioned above, given an element
x P DX, an identity predicate Px for x is a predicate such that νXpPxq “ txu. Let
L˚ be the identity expansion of L, that is, the expansion of L with predicates for
every x P DX: L˚ “ L Y tPx|x P DXu. Then νX can be extended accordingly so as
to obtain the L˚-system X˚, the identity expansion of X. Consider again the graph
G2: its corresponding signature is L “ tRpx, yqu, and viewed as a L-system
G2 “ xDG2 “ ta, bu, νG2 “ txR, txa, by, xb, ayuyuy. The identity expanded L˚-system
G˚2 is then rigid: since a P νXpPaq “ tau while b R νXpPaq, it follows that any
function such that fpaq “ b is not an isomorphism on G˚2 . And this holds in
general: given a (rigid or not) L-system X, its identity expansion X˚ is rigid. The
suggestion is to amend FAS174 so as to perform abstraction on systems in two

171Wigglesworth [2018a, §4]. This insistence comes against what Wigglesworth calls the intuitive,
language free notion of isomorphism, e.g. implicitly employed above in the definition of Systems’
Isomorphism (§3.4.1). Wigglesworth quotes two arguments against the intuitive notion of a
system/structure. First, consider

X = xDX “ ta, b, xa, ayu, RX “ txa, ayuy

Y = xDY “ ta, b, xa, byu, RY “ txa, byuy

Both X and Y are defined as language free sets of sets, endowed with a domain (DX and DY) and
a simple relation (RX and RY, respectively). What set theoretic structures are X and Y ? To see
that their language free characterizations above are ambiguous, we can show that it is ambiguous
whether X and Y are isomorphic or not. If RX and RY are both monadic relations, then X and
Y are isomorphic; however, if they are both binary relations (or at least one of them is) then they
are not isomorphic (there is an element with a reflexive edge in X but none in Y). This argument
is formulated in Halvorson [2016, p. 593] while discussing the semantic view of theories. A second
quoted argument holds that the characterization of isomorphism associated to the language free
notion of systems is incoherent, since it allows for elementarily non-equivalent systems which are
nonetheless isomorphic (Halvorson [2013], Glymour [2013]).

172The restriction to relational languages is not substantial.
173Leitgeb and Ladyman [2008, p. 392].
174Notice that this strategy fits as well on Schiemer and Wigglesworth [2017]’s dynamic

abstractionist account.
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steps. Given an L-system X:

1. Build up the L˚-system X˚;

2. Perform abstraction on X˚ and its elements.

According to Wigglesworth suggestion, the structure of X is then [X˚], while if
x P DX, then [x]X˚ P [D]X˚ .

Wigglesworth discusses several potential problems arising for this account,
among which its plausibility as a rational reconstruction of mathematical practice,
the induced language relativity and the relation to haecceitism; we won’t engage
with any of these in this section, but would rather formulate a further worry
ourselves. Wigglesworth says:

After the first step of moving to an expanded L˚-system, the second step
uses abstraction to obtain [X˚], which is the intended pure structure of
X. (Wigglesworth [2018a, §4], substituting in our notation)

We remember that Linnebo and Pettigrew insisted on the the Instantiation thesis as
a central component of a non-eliminativist semantic account, and that Wigglesworth
account is precisely meant to save FAS from Instantiation failure. However, strictly
speaking, Instantiation fails in this context. [X˚] is a L˚-structure, whereas X is only
a L-structure and, therefore, [X˚] fl X.175 However, we have two options. First, we
can read Wigglesworth suggestion as that, in actuality, the systems considered in
mathematical practice are never like X, but rather like its identity expansion X˚,
having all their elements absolutely discernible; in this case, we would actually
only be interested in X˚ to start with. However, this is hardly defensible, since
mathematicians are, as a matter of fact, ordinarily engaging with non-rigid systems.
Alternatively, if [X˚] is a L˚-structure, we can consider its restriction to L and
consider it as a L´structure, in which case indeed [X˚] – X; however, in that
case, as an L-system, [X˚] is not rigid anymore. We leave an assessment of this
worry for further work. Concluding the cluster of identity problems, we notice that
the Individuation objection is thereby answered by providing a trivial account of
identity for mathematical objects: identity and distinctness are primitive relations
of mathematical systems.

We can now consider the cluster of problems concerning objects. Drawing on
Harold Hodes [1984]’s original argument against the ability of terms introduced by
Fregean abstraction principles to perform singular reference, Bahram Assadian
[2019b, p. 181] presents and expands upon a version of the Permutation problem
plaguing singular reference to mathematical entities on the part of mathematical
terms introduced by abstraction principles. Assadian doesn’t explicitly consider

175Only systems with the same signature can be isomorphic. L and L˚ could be identical; however,
they are not so in general.
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such principles in a structuralist context and, moreover, they don’t consider
dynamic abstraction principles of the kind employed by Schiemer and
Wigglesworth in formulating FAS; however, although we do not aim to provide an
analysis and full critical assessment of the Permutation argument in the dynamic
and structuralist context at hand, we present the argument and list the problem
for further work.

Assadian applies the Permutation argument to the case number theoretic terms
as governed by Hume’s Principle (see above). Let’s call numberer a second order
cardinality function from first-order concepts to objects, such that two concepts are
mapped to the same object if and only if the concepts are one-to-one correlated.
Let A be a numberer such that non-instantiated concepts are assigned 0, uniquely,
doubly, triply concepts are assigned 1, 2, 3, respectively, and so on. Let B be another
numberer just like A, except that it assigns 5 to concepts fourthly instantiated, and
4 to concepts which are fifthly instantiated. Consider now a language, New English,
just like common English except for the following:

• the numeral ‘4’ denotes 5;

• the numeral ‘5’ denotes 4;

• ’successor’ denotes a function just like the one denoted in English, except that:
sp3q = 5; sp5q “ 4; sp4q “ 6.

This and their consequences (e.g. ssp3q “ 4) are the only differences between New
English and English. The questions is now: why is English and the numberer A the
case, rather than New English and the numberer B?

... III IV V VI ...

A: ... 3 4 5 6 ...

... ‘3’ ‘4’ ‘5’ ‘6’ ...

B: ... 3 5 4 6 ...

I represents uniquely instantiated concepts, II represents doubly instantiated ones,
III triply and so on. If IVi is some fourthly instantiated concept, then ApIViq “ 4,
while BpIViq “ 5. What makes numberer A with LA standard, while B with LB
non-standard? Notice that linguistic use facts are the same in both cases: fourthly
instantiated objects are said to be ‘4’ in both languages, while fifthly instantiated
ones said to be ‘5’ in both. So use cannot help us distinguish between the two. The
question for the abstractionist is then: what makes A rather than B standard or
intended, if anything? The problem might be formulated as a dilemma. Either B
is as eligible as the ‘standard’ numberer, or it is not. If it B is just as eligible as A
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is, then number words introduced by Fregean abstraction principles are referentially
indeterminate and so they do not perform singular reference. If B is less eligible
than A, then the abstractionist owes us an account of why A, rather than B, is
the intended numberer. However, the argument goes, there is no such account,
since there is nothing making A intended as opposed to B. Assadian concludes to
referential indeterminacy.

We could seemingly apply the same argument against the referential determinacy
of terms introduced by Structure Abstraction.176 Call a structurer a first-order
isomorphism-type function from systems to objects, particularly structures, such
that two systems are mapped onto the same object if and only if they are isomorphic.
Let X and Y be two distinct structurers of Isomorphism types II and III, respectively,
only differing with respect the assignments they make to systems isomorphic to X
= xta, buy and Y = xta, bu, txa, by, xb, ayuy such that [X]X “ ‚ ‚ and [X]Y “ ‚-‚, and
the other way around.177

I II III IV V ...

X : ‚ ‚ ‚ ‚-‚ ‚ ‚ ‚ ‚-‚ ‚ ...

‘G0’ ‘G1’ ‘G2’ ‘G3’ ‘G4’ ...

Y : ‚ ‚-‚ ‚ ‚ ‚ ‚ ‚ ‚-‚ ‚ ...

With similar linguistic potential readjustments, in this case the question for the
abstractionist is what makes X intended rather than Y and, as in the case of HP,
we could conclude to referential indeterminacy for terms meant to refer to structures
and introduced through SApiq.

However, structurer Y is flouting the structuralist abstractionist endeared
Instantiation thesis which is also a consequence of FAS: for all systems Z, the
structure of Z is isomorphic to Z ([Z] – Z). Therefore we should have [X]X – X
and [X]Y – X as well, although we notice that

[X]Y “ ‚-‚ fl tta, buu “ X

plausibly against Instantiation.178 Y is not an eligible structurer after all. Following
a similar reasoning, since it would be found to be the only structurer satisfying
Instantiation, X is the privileged, intended structurer in general. Therefore the
Hodes-Assadian Permutation argument fails for Structure Abstractionpiq.

176Static as well as dynamic versions of SA would be seemingly affected in the same degree.
177For a uniform notation with the previous discussion on structuralist abstractionism, we use e.g.

‘[X]X ’ instead of ‘X (X)’ to mean ‘the structure corresponding to system X according to structurer
X ’.

178The explicit positional characterization of [X]Y is xtrasX, rbsXu, txrasX, rbsXy, xrbsX, rasXyuy.

68



3.4 Positionalism

A version of the Permutation argument plagues nonetheless terms introduced by
Position Abstraction, in its static and dynamic versions as well. Call positioner a
first-order function from elements-cum-systems to objects, such that two elements
form their respective systems are mapped on the same object if and only if they
are related by an isomorphism between their hosting systems. Let R and Q be two
positioners, and let system X be xta, b, cu, txb, cyuy such that rasRX “ α, rbsRX “ β,
rcsRX “ γ, rasQX “ β, rbsQX “ α and rcsQX “ γ.179

R: α β γ

X: a b c

Q: β α γ

The abstractionist seemingly cannot provide us with grounds for choosing one unique
object as rasX, presumably the position corresponding to the element a of X. As
such, as far as the abstractionist structuralist said or implied, both rasRX and rasQX
would do, and hence both positional structures induced by R and Q,180 [X]R and
[X]Q, could as well be the the structure of X, conflicting with Uniqueness.

Drawing on Bahram Assadian [2018, §4]’s general discussion of the Permutation
problem for non-eliminativism, the abstractionist has two options:181 holding that
one of [X]R and [X]Q is not a structure, but a system; alternatively, holding that
[X]R = [X]Q. However, none of these is an option for the structuralist. Regarding
the former, the abstractionist structuralist should provide an account concerning
which of [X]R and [X]Q is the original and which the permuted copy; however, this
task is as hopeless as that of explaining why any of them would be privileged over
the other, that is, why one would be a structure while the other not. Concerning the
second reply, [X]R = [X]Q, it implies that R “ Q and, in general, that positioners
are unique. However, this seems highly implausible: after all, positioners are just
functions mapping elements-cum-systems onto objects according to a certain rule
and, as such, there is no constraint on the objects in the codomain of the positioner,
nor any further constraint on the assignments.

A further and seemingly more natural reply for the abstractionist is to accept
the conclusion, albeit hold that none of [X]R and [X]Q are structures, in particular
that none is [X]: structures are fully characterized by isomorphism, while [X]R and

179Aiming at a uniform notation, as before, we write ‘rasRX ’ for ‘RpX, aq’, meaning ‘the position
associated to the element a from system X by the positioner R’.

180For instance, the structure induced by R, [X]R is xtrasRX , rbs
R
X , rcs

R
X u, txrbs

R
X , rcs

R
X yuy “

xtα, β, γu, txβ, γyuy.
181Assadian discusses a third option, credited to Shapiro [2006]: embracing the conclusion of

permutations and holding that there might be many structures corresponding to some isomorphism
type. However, regardless of other complaints, this option is not available to the endorser of FAS
to start with, since Uniqueness is a consequence of FAS.
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[X]Q are isomorphic albeit distinct and, as such, they are both only systems. In
the static abstractionist case, this option implies that structures don’t afford a
positional characterization and, as such, they are not positional entities. However,
we notice that Structure Abstraction is not directly affected by Permutation only
because Instantiation holds, which in turn only holds because structures can be
characterized as positional entities (Positional Structure above). This raises the
spectrum of Permutation over non-positionalist abstractionist views taking
Structure Abstraction as the sole abstraction principle and which, as such, don’t
allow for a positional characterization of structures.182 This is, however, material
for further work.

In the dynamic case, however, things are not so clear. Presumably, neither [X]R,
nor [X]Q are in the original domain of systems W , since they contain entities of
the form rxsRX which are not in DP . Therefore they should be in WS and thus be
structures, against the supposition that both are systems. However, they cannot
be structures on the dynamic account either, since by SAi it follows that [X]R =
[X]Q if and only if X „ X, which implies that [X]R = [X]Q, leading back to the
issues introduced above. We leave his discussion open for further work and flag the
Permutation problem as a potentially problematic case for FAS.

We focused on the Automorphism and the Permutation problems as FAS faces
them; we will only be sketchy concerning FAS’ performance against the remaining
canonical problems and objections. Since the identities of structures and positions
therein are grounded in systems and their elements, FAS faces none of the versions
of the Circularity problem – metaphysical, semantic and epistemic.183 The problem
of Structural Properties is one of the main motivations leading to the formulation
and later emendation of FAS and, as such, we discussed it above in some detail,
highlighting the way it is dealt with within FAS. Consequently, MacBride’s
dilemma is seemingly toothless against FAS as well: unlike traditional Platonism,
mathematical objects are positions in structures, which are unlike Platonic
abstract objects in that both Incompleteness and Dependence holds of them (see
the end of §3.2.2.4).

The problem of Singular Reference is at least as pressing for FAS as the
Permutation problem. If the Permutation problem has a bite off FAS’ Uniqueness
thesis, then referential indeterminacy looms and there is no prospect of singular
reference for mathematical terms introduced via structuralist abstraction
principles.184 The first branch of the Semantic objection is highly reliant on the
problem of Singular Reference: if FAS cannot secure singular reference to the
terms introduced by abstraction, then it seemingly fails to provide a strong face
value semantics for ordinary mathematical discourse, undermining the original

182E.g. Assadian [2016, §6.4].
183See e.g. Wright [1983].
184Assadian [2019b, §3] formulates a further argument from semantic idleness concluding against

singular reference for mathematical terms introduced through abstraction principles.
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metasemantic motivation against eliminativism. FAS also fails to provide
additional support for non-eliminativism and, as such, it doesn’t have a say in
managing the second breach of the objection.

3.4.1.3 Summing up. Figure 3 depicts in red the neuralgic canonical items
FAS has left unsolved.

Identity

Cross-structural

Automorphism

Individuation

Object

Permutation

Circularity

Struct-Properties

MacBride’s Dilemma

Reference

Singular Reference

Semantic

Figure 3: FAS against the canon

The conclusions formulated at the end of each of these three expository sections
in this manner are by no means intended to be last words on the matter; rather,
they are meant as directions for further enquiry.

3.4.2 Object Theoretic Structuralism

Edward Zalta and Uri Nodelman formulate Object Theoretic Structuralism (OTS)
based on an axiomatic theory of abstract objects.185 We begin with a sketch of
Object Theory, followed by a presentation of its application as a foundation of non-
eliminativist structuralism; finally, we test the theory against our canonical problems
and objections and conclude with a map of the neuralgic spots.

3.4.2.1 Theory. Object Theory (OT) is an axiomatic theory of abstract
objects formulated in a typed language in the framework of higher-order logic
together with S5 modal logic (with first- and second-order Barcan formulas),
alongside the machinery of λ-terms and (rigid) definite descriptions ι-terms. Due

185We draw on Nodelman and Zalta [2014]. Object Theory was introduced in Zalta [1983].
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to space limitations, we will be brief and omit types. Most importantly, OT
employs two sorts of predication: exemplification and encoding. Exemplification
(F pxq, ’x exemplifies property F’) is the classical sort of predication employed in
predicate logic; objects are complete exemplification-wise, meaning that for every
property, objects either exemplify it or its negation. Encoding (xF , ’x encodes
property F’) is the novel addition which, unlike the former, allows for objects
being incomplete in the following sense: objects might encode neither a property,
nor its complement.186 The central idea is that abstract objects are defined by
properties which are then understood to constitute these objects which, in turn,
are therefore said to encode these properties. Encoding predication is governed by
an axiom schema, ♦xF Ñ lxF : possibly encoding a property implies necessarily
encoding it.

OT uses a primitive predicate E!x with the intended meaning that ’x is concrete’.
Ordinary objects are defined as possibly concrete objects (O!pxq :“ ♦E!pxq), while
abstract objects are all other objects, those that are not possibly concrete (A!pxq :“
 ♦E!pxq).187

Identity between objects is explicitly defined in the theory: ordinary objects
are identical if and only if, necessarily, they exemplify the same properties, while
abstract objects are identical if and only if, necessarily, they encode the same
properties.188 Identity for properties is defined as necessary co-codification: F and
G are identical if and only if, necessarily, they are encoded by the same objects;
identity of propositions is defined in terms of identity of properties, using λ
notation.189 To Second-order comprehension for properties (easily adapted to
relations) is formulated as follows:

(Comp) DFl@xpFx ” ϕq, where ϕ is a formula not containing any
encoding subformulas.190

The main difference between ordinary and abstract objects is that only the latter
encode properties; this is formalized in the first of the two non-logical axioms of OT:

(No Encoding for O!x) O!xÑ l DF pxF q;

The second axiom of OT provides us with the required field of abstract objects:

(Comprehension for A!x) DxpA!x^@F pxF ” ϕqq, where x is not free
in ϕ.

186x is incomplete :“ DF p xF^ xF q, where F denotes the negation of the property F (Nodelman
and Zalta [2014, p. 53]).

187See Linsky and Zalta [1995] for more on encoding properties.
188x “ y :“ pO!x ^ O!y ^ l@F pF pxq ” F pyqqq _ pA!pxq ^ A!pyq ^ l@F pxF ” yF qq (Nodelman

and Zalta [2014, p. 43]).
189F “ G :“ l@xpxF ” xGq; p “ q :“ rλx.ps “ rλy.qs (Nodelman and Zalta [2014, p. 43]).
190The condition is required on pain of incosnsitency. We notice cross-worlds properties are

allowed for.
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Given identity as previously defined, it is a theorem that the abstract object in the
second axiom is unique for each ϕ.191

Further on, Zalta and Nodelman provide an analysis of mathematical discourse
in OT, which yields a natural structuralist construal of mathematics.192 An abstract
object x is a situation if and only if x only encodes propositional properties, where
propositional properties are properties in which all terms are bound.193 Truth of a
proposition p in a situation x (x ( p) is then defined as x’s encoding the propositional
property corresponding to p.194 For a theory T, the following is then a theorem of
OT:

(Identity of T) T “ ιxpA!x^ @F pxF ” DppT ( p^ F “ rλx.psqqq

This serves as a characterization195 of the theory: T is the abstract object encoding
all and only those propositional properties corresponding to true propositions in T.
Notice that talking of truth in T is justified since the left to right direction of the
right hand side embedded equivalence shows that T is a situation. According to
the interpretation provided here, a theory is constituted (in the same sense in which
the properties encoded by an abstract object constitute it) by its truths, i.e. its
theorems (including its axioms).

OT may be employed to provide a semantic account for theoretical discourse
involving abstract objects. Zalta and Nodelman formulate rules for importing the
truths of a theory into OT, extending OT and bringing the given theory against
the ontological background provided by OT. Let T be a theory: if t and P are a
singular term and a relation of T, respectively, let tT and PT be their T-indexed
counterparts (’the t/P of T’). The following rule is then applied:

(Importation Rule) For each theorem ϕ of T, add the truth T ( ϕ˚

to OT, where ϕ˚ is the result of replacing all occurrences of all terms
t1, ..., tn, P1, ..., Pm in ϕ with their respective T-indexed counterparts.

191The second axiom is really typed:

DxtpAxty!x^ @F xtypxF ” ϕqq

This provides us with abstract objects encoding functions and relations of various orders. Similarly,
we will implicitly assume a typed formulation for most of the principles to follow.

192The authors distinguish between natural and theoretical mathematics: the former is the kind
of mathematics as employed in counting, measurements and other ’ordinary’ applications, while
the latter is the kind of mathematics done in the context of an explicit theory and mostly concerned
with things such as proving theorems and relations between different theories. See Zalta [2000]
for more on this distinction. The exercise in the foundations of non-eliminativist structuralism
developed in Nodelman and Zalta [2014, §2.2 ff] is chiefly concerned with theoretical mathematics.

193If p is a sentence, thereby expressing a proposition, then λy.p is a propositional property, where
y might substitute a term from p. Formally, situations are defined as follows: x is a situation
:“ A!x^ @F pxF Ñ DppF “ rλy.psqq (Nodelman and Zalta [2014, p. 45]).

194p is true in x, x ( p, if and only if xrλy.ps (Nodelman and Zalta [2014, p. 45]).
195The authors highlight that this is not a definition (Nodelman and Zalta [2014, p. 45]), since

T appears on both sides of the identity sign.
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This way one can import the theorems of T into object theory as truths under the
scope of the theory operator.196 The entities of a theory T can then be characterized
as follows:

(Reduction of Individuals) tT “ ιxpA!x^ @F pxF ” T ( F ptTqqq

This is a theorem of OT (when the truths of T have been imported) and it serves as
a characterization of the entities denoted by the singular terms and the predicates
making up the primitive vocabulary of the theory.197 The 0 of PA2 would then
be characterized as the abstract object encoding all and only those properties that
PA2 holds to be exemplified by 0PA2 .198 Finally, the meaning of the mathematical
statements is recovered through the following theorem:

(Equivalence Theorem) tTF ” T ( F ptTq

The meaning of an arithmetical (i.e. PA2) statement such as ’1 is a number’, that
is, ’PA2 $ Np1q’, is construed by the object theorist as 1Trλx.Npxqs. But a similar
Equivalence theorem holds for all types of objects in OT, and therefore the proper
analysis would rather be: 1T rλx.NT pxqs. For another example, ‘2 is less than π in
R’, i.e. R $ 2 ă π is construed as 2Rrλx.x ăR πRs.

199

We can now explicitly formulate Object Theoretic Structuralism on these
foundations, i.e. provide a structuralist interpretation to the OT rendering of
theoretical mathematics. Given a theory T, its corresponding structure is defined
as follows:

(Structure) The structure T :“ The theory T

Structures just are theories constituted by their truths. However, truths are not
elements of structures; their elements are defined as follows:

(Elements of Structures): x is an element of a structure T :”

T ( @ypy ‰T xÑ DF pF pxq ^  F pyqqq

196The authors argue that truths such as PA2 ( p1` 3 “ 4q˚ are analytic in OT (Nodelman and
Zalta [2014, p. 47]). Moreover, they show that the Importation Rule validates a Rule of Closure
which ensures that reasoning under the theory operator is classical:

(Rule of Closure) If p1, ..., pn $ q and T ( p1, ..., T ( pn, then T ( q

where $ is logical consequence.
197An analog result holds for PT’s; see Nodelman and Zalta [2014, p. 48].
198That is: 0PA2 “ ιxpA!x^ @F pxF ” PA2

( F p0PA2qqq.
199The meaning of the sentence ’2 is less than π in R’, as used in ordinary mathematical discourse

would then be: πRpăR p2Rrλx, Y, z.xY zsqq.
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where “T is the identity predicate of the theory T and the formula on the right
hand side is one of the truths imported from T into OT.200 Intuitively, elements
of T are those abstract objects κT which are absolutely-discernible (see §3.2.1) in
T, i.e. by T-properties, from any other entity in T.201 Relations of structures are
defined similarly:

(Relations of Structures): R is a relation of structure T :” T (

@SpS ‰T RÑ DF pF pRq ^  F pSqqq

This is Object Theoretic Structuralism. Several core non-eliminativist
structuralist claims can be readily shown to hold well in OTS. First, elements of
mathematical structures are incomplete objects in the encoding sense of
predication: for instance, since E! is not a term of any mathematical theory, then
no mathematical object, i.e. element of a mathematical structure, encodes E! and
none encodes E!.202

Moreover, Zalta and Nodelman hold that mathematical objects are incomplete in
a right, structuralist way.203 More to the point, they argue that a restricted version
of Linnebo [2007]’s Non-Structural Incompleteness claim204 formulated in terms of
essential properties as suggested in Shapiro [2006] also holds in OTS. Define the
essential properties of abstract objects as the properties they encode;205 then the
following holds:

(E-Incompleteness Thesis) All essential properties of mathematical
objects are structural properties.206

200We notice that this understanding of elementhood goes in the direction of Gottlob Frege’s
conception of object as a properly individuated entity. It also gets divorced from one of the
strands of the Quinean paradigm holding that objects are those entities in the first-order domain
of quantification of theories. However, it fits well with another, more Fregean strand of the Quinean
paradigm, usually formulated by mentioning the slogan ”no entity without identity.”

201We will say more concerning strongly-indiscernibles shortly when discussing the Automorphism
problem. The notion of ‘elementhood’ assumed by OT might look ad hoc. OT is meant to capture
set theory as well; one may ask how OT’s notion of elementhood fits with the set theoretic notion;
we won’t pursue this question in these pages.

202That is: for all mathematical structures T and all their objects tT, T* E!ptTq and T* E!ptTq.
Therefore, by the Equivalence Theorem,  tTE! and  tTE!. However, one should notice that most
abstract abstract objects are incomplete encoding wise. Only those abstract objects which are
abstracted away from concrete objects might be held encoding complete (Nodelman and Zalta
[2014, p. 45]), but these are relatively ‘few’. In this sense, the kind of incompleteness exhibited by
mathematical objects is not peculiarly mathematical.

203But see the previous footnote.
204See the discussion of Linnebo [2007] concluding our discussion of MacBride’s dilemma in §3.2.2.
205That is: for an abstract object x, F is an essential property of x :” xF ; see Zalta [2006] for

this notion of essence. They distinguish essential properties from necessary exemplifications, which
are defined as lF pxq.

206Linnebo [2007, p. 65] distinguishes between NS-Incompleteness and I-Incompleteness, i.e.
having no non structural properties and having all their intrinsic properties being structural,
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Given OT we need to modify the notion of structural property suggested in §1.1.
An alternative can be formulated:

(T-Structural Property) F is a structural property of xT :”

T ( F pxTq

To see that the E-Incompleteness thesis holds, consider an essential property F of
tT. Since tT encodes F (tTF ), the Equivalence Theorem yields that T ( F ptTq,
which is just what it means for F to be a structural property of tT. OT postulates
that elements of structures are bound to their theories and, moreover, that they
only encode those properties yielded by their hosting theories:207 E-Incompleteness
is an immediate consequence of OTS.

Furthermore, a version of Linnebo [2007]’s weak downwards identity dependence
thesis also holds in OTS:208

(ODO): Any individuation of a mathematical object t in a structure T
involves entities which also suffice for individuating the other objects in
T.209

This can be seen as follows. Given the definition of identity for abstract objects,
abstract objects are essentially characterized by the properties they encode. Let
T be a mathematical theory, and let tT be an element of T. By the Equivalence
Theorem, tT only encodes T-structural properties; that is, any individuation of tT
will be crucially grounded in facts of the form T ( F ptTq, involving T. However,
the identity of any element of T is grounded similarly in T and its theorems and,
as such, T suffices for the individuation of all the other elements in T. But then
any individuation of tT makes use of entities (T) which suffice to individuate any
element of T, proving ODO. A fortiori, this also shows that elements weakly depend
on their structures:

(ODS): Any individuation of a mathematical object t in a structure T
involves entities which also suffice for individuating T.

We conclude the presentation of OTS by explicitly answering our three
programmatic questions. Mathematical structures, i.e. theories on the background
of OT, are abstract objects encoding all and only those propositional properties

respectively; the thesis that all their essential properties are structural may then be called E-
Incompleteness.

207We notice resemblance to universalism in §2.2 in this respect.
208Also discussed at the end of MacBride’s dilemma in §3.2.2. Nodelman and Zalta [2014, §4.2]

also discusses this, holding that mathematical objects in a structure depend on the other objects
in the same structure because all are grounded in the same kind of facts of the form T ( p; we
essentially prove that Linnebo’s very weak dependence claim strictly holds in OTS.

209Linnebo [2007, p. 78].
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corresponding to their truths (Question 1). ‘Positions’ or ‘elements’ of structures
are themselves abstract objects encoding all and only those properties recognized
by their hosting structures as holding of them; the identity of positions is governed
by the structural-properties they encode (Question 2). Finally, reference to
structures and their elements is – with some exceptions to be discussed below –
singular reference (Question 3). We can discuss OTS against our canonical
measuring stick.

3.4.2.2 Against the Canon. The problem of Cross-identities is decided in
the negative by OTS: mathematical objects are bound to the theories/structures
providing the properties they encode, there being no overlap between structures.
Since the conception of mathematical objects is essentially bound to the
theory/structure they are elements of, then objects from distinct structures encode
different properties and hence are distinct abstract objects.210 Notice that this is a
theorem of OT and thus non-negotiable for OTS. The mathematical practice of
‘identifying’ (what on a non-eliminativist interpretation are) mathematical objects
from different structures is explained in terms of embeddings.

We need to take a closer look into OTS’ notion of elementhood before discussing
the Automorphism problem. First, entities which are not absolutely discernible
are not elements of structures: given the definition of elementhood – elements are
those entities corresponding to singular terms of the theory which are absolutely-
discernible in T from any other entity quantified over by the theory – distinct entities
which are not discernible by properties in a theory are not elements of that theory.
OTS tackles the Automorphism problem by denying that there are structures which
contain elements which are not absolutely discernible. However, this raises the
spectrum of denying solid mathematical facts: the group of additive integers, for
instance, is undeniably a mathematical object – after all, denying the existence
of such structures is one way to formulate the absurdities older non-eliminativist
conceptions such as SGS were lead into. The crucial difference is subtle: OTS
doesn’t deny the existence of structures such as the additive group of integers or the
complex field, neither ends up identifying symmetric elements; it rather holds that
such entities are not bona fide elements of such structures, ordinary claims to the

210Nodelman and Zalta [2014, p. 59-60]. Zalta and Nodelman add:

To think otherwise is to suppose that abstract objects and relations are somehow out
there, independent of our theories of them, waiting to be discovered. (Nodelman and
Zalta [2014, p. 59-60]) Such relations are not ‘out there waiting to be discovered’, but
are the way that our various theories of them describe them to be. (Nodelman and
Zalta [2014, p. 62])

According to OTS, mathematical objects are theory- or structure-laden in a constitutive sense:
there is nothing to them outside the structure. In this sense, structures are indeed prior to their
objects. This is a strong version of structuralism, if anything is. The authors point out that Frege’s
Caesar problem is also thereby avoided (Nodelman and Zalta [2014, footnote 18]).
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contrary being regarded as spurious. But this cannot be the end of the story: for all
properties FC, both iC and ´iC (of complex analysis) would have C ( F piCq if and
only if C ( F p´iCq and, therefore, by the Equivalence Theorem, both iC and ´iC
would encode the same properties; hence, given the definition of identity for abstract
objects, iC “ ´iC, which by Equivalence again would lead to C ( iC “C ´iC, which
is absurd since C ( i ‰C ´i. However, that is only if iC and ´iC are objects at
all: Zalta and Nodelman hold that strong-indiscernibles are not elements, chiefly
because they are not objects (abstract or otherwise) at all.211

This claim requires a semantic account of such terms, alongside imposing
semantic adjustments to the construal of ordinary mathematical discourse. Zalta
and Nodelman’s suggestion is formulated as follows:212

(Normalizing Procedure) Let T be a mathematical theory with
singular terms t1 and t2 such that T $ t1 ‰ t2 while T
$ @F pF pt1q ” F pt2qq. Let ϕp...t1...q be a formula of LT such that T
$ ϕp...t1...q. Then (1) replace ϕp...t1...q with DxpΦ^ ϕp...x...qq, where Φ
is the formula ’introducing’ t1 into the language (do the same for t2, if
necessary).213 Only afterwards (2) apply the Importation rule.

The Normalizing Procedure eliminates apparent reference to symmetric entities
through paraphrase of ordinary discourse. This way there are no genuine singular
terms seemingly denoting strongly indiscernible entities in T, nor in the T-truths
imported in OT: every structure is essentially rigid. What are then such terms as i
and ´i in ordinary mathematical discourse? Following Shapiro [2008], Zalta and
Nodelman suggest that such terms are implicitly bounded free variables. Such
terms do not strictly speaking refer and, in ultimate analysis, they are not part of
the theories mentioning them on their surface grammar. The solution provided to
the Automorphism problem implicitly furnishes an answer to the Individuation
objection: OT rules out distinct albeit indiscernible objects from its ontology. As
such, the corresponding theories/structures are not absurdly eliminated
themselves.

211The following summarizes it:

The point is that, ontologically speaking, there is no need to worry about what
constitutes the numerical diversity of i and –i. ‘i’ and ‘–i’ do not denote distinct
abstract objects—they are arbitrary names used by mathematicians as labels on a
structural symmetry of C. (Nodelman and Zalta [2014, p. 71])

See also Murphy [forthcoming] for a discussion of OTS and its treatment of apparent commitment
to indiscernibles.

212Nodelman and Zalta [2014, p. 70-71].
213For instance, i in complex analysis is introduced through i2 ` 1 “ 0. The suggestion is then

as follows: for complex analysis replace any theorem ϕp...i...q with Dxpx2` 1 “ 0^ϕp...x...qq; here
Φ is x2 ` 1 “ 0. For a discussion of the group of integers, dense linear orders without endpoints
and so on, see Nodelman and Zalta [2014, p. 66-69]. In short, their resolution in such cases is that
some theories do not have any elements, but rather be constituted entirely by relations.
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The Permutation problem doesn’t arise in OTS: structures are constituted by
their theorems/truths, while their elements are their definable entities, i.e.
abstract objects serving as referents of singular terms and only encoding theory
bound structural properties. Since elements are constituted by their relations
which are themselves constituted by the structures/theories, no permutation of the
domain could be meaningfully constructed. The Circularity problem is
addressed214 and replied: both the identities of structures and those of their
elements are grounded in ”invariances” in the use of singular terms, and that of
relational and singular terms denoting their elements. Ultimately, these are
grounded in further facts which do not themselves depend on their identities.
Therefore any sort of ontological, circularity is avoided. The problem of Structural
Properties is also solved: positions in structures do have non-structural properties
exemplification-wise and, as such, no contradiction arises when identifying
mathematical objects with positions in structures.215 Concerning MacBride’s
dilemma, it can be easily seen that OTS may strive on both horns: it takes no
damage from the Individuation objection while holding that mathematical objects
are individuated by structural properties; meanwhile, it validates versions of both
the Incompleteness thesis and Dependence thesis and hence it certainly avoids
collapse into Platonism.

Concerning the problem of Singular Reference, OTS can secure singular
reference for all mathematical terms. However, OTS has to recast some apparent
singular terms purporting to refer to distinct indiscernible entities as bound
variables. Reference to mathematical structures and their elements as opposed to
systems is explained in terms of linguistic use: structures are certain objects
wholly determined by the properties they encode, given by their axioms and their
logical consequences; since systems would have distinct properties, then they are
not the intended subject matter of mathematical theories. Finally, the crucial
Semantic objections are only partly replied: OTS provides a natural account of
singular reference to structures and their positions, providing for a distinctly
non-eliminativist account validating the metasemantic motivation. However,
concerning the second Semantic objection, OTS provides no further motivation for
endorsing structures besides its presumed semantic virtues.

3.4.2.3 Summing up. We conclude Object Theoretic Structuralism taking
stock in Figure 4.

Further objections have been leveraged against the underlying Object Theory,216

214Nodelman and Zalta [2014, p. 64].
215That is, since, plausibly, in predicating non-structural properties of mathematical objects

the exemplification sense of predication is employed, rather than the encoding sense thereof. No
incoherency is forthcoming either: ‘only encoding structural properties’ is not itself a property
encoded by positions in structures, but one exemplified by them.

216Assadian [2016, p. 72ff] presents two objections, the first concerning OTS and its
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Figure 4: OTS against the canon

both concerning its performance withing a structuralist account of mathematics, as
well as a general linguistic account of predication. However, this is not the place to
review object Theory in its entirety.

3.4.3 Unlabeled Graph-theoretic Structuralism

In this section we present Hannes Leitgeb’s account of structures as unlabeled
graphs.217 We first introduce Unlabeled Graph-theoretic Structuralism (UGS),
followed by its assessment against the canonical problems and objections presented
above; we conclude with a performance map as in the case of OTS.

3.4.3.1 Theory. Unlabeled Graph Theory (UGT)218 is a second-order
axiomatic theory of unlabeled graphs, formulated in terms of three primitive
notions: GraphpGq, V ertexpv,Gq and Connectedpv, w,Gq, meant to express ‘G is
an unlabeled graph’, ‘v is a vertex in G’ and ‘v and w are connected by an edge in
G’, respectively.219 The first order domain of UGT contains graphs and vertices
therein; variables x, y range over first order entities in general, while v, w are

‘mathematical’ virtues, involving mixed predication in mathematical contexts; another objection
involves faulty attribution of abstract referents in cases of failed reference to concrete entities.

217This theory is introduced in writing in Leitgeb [forthcoming,a] and Leitgeb [forthcoming,b]:
the former introduces the theory of unlabeled graphs as sui generis structures (UGT), while the
latter discusses many of the objections leveraged against previous versions of non-eliminativism.

218Introduced in Leitgeb [forthcoming,a, §4].
219Labeled and unlabeled graphs are usually defined set theoretically. Leitgeb [forthcoming,a, §3]

contains an informative discussion of labeled and unlabeled graphs in the mathematical literature.
UGT provides an alternative to the mathematical orthodoxy, treating unlabeled graphs as sui
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reserved for vertices and G,G1 for graphs. UGT’s second order domain contains
extensional properties (sets/classes), relations and functions on its first order
domain, for which X, R and f are dedicated variables, respectively. Three
simplifying assumptions are made: graphs are undirected, graphs contain no loops
and there is no overlap of graphs; all these will be reflected in UGT axioms which
can be later dropped or modified for further extensions.

UGT’s logical system is governed by four logical principles underlying full
SOL220 including full second order comprehension schemas for relations and
functions,221 the principle of identity of indiscernibles (PII) governing the identity
of graphs and vertices,222 extensionality governing the identity of properties,
relations and functions223 and, finally, the choice axiom.224 Given comprehension
and extensionality, the class V pGq of all vertices in a graph G exists and is unique
and can be defined as follows:

(Vertex class) @G@XpV pGq “ X Ø @xpXpxq Ø V ertexpx,Gqqq

The non-logical axioms of UGT are divided into general and existential axioms.
The first general axiom of UGT reflects the simplifying assumptions that graphs are
undirected (iii) and do not reflexive edges (ii):

(G1) @G@v, wpConnectedpv, w,Gq Ñ

(i) V ertexpv,Gq ^ V ertexpw,Gq^

(ii) v ‰ w^

(iii) Connectedpw, v,Gqq

The second axiom states that vertices are not themselves graphs and graphs are
disjoint:

(G2) @G@vpV ertexpv,Gq Ñ

(i)  Graphpvq^

(ii)  DG1pG ‰ G1 ^ V ertexpv,G1qqq

The third axiom provides a distinctively structuralist identity criterion for graphs
in term of isomorphisms:

generis mathematical objects. Unless explicitly mentioned otherwise, ‘graph’ stands for ‘unlabeled
graph’ in what follows.

220@G... and DG... abbreviate @xpGraphpxq Ñ ...q and DxpGraphpxq ^ ...q, respectively.
221(L1) DRn@x1, ..., xnpR

npx1, ..., xnq Ø ϕrx1, ..., xnsq, with Rn not free in ϕ; Functionalpϕq Ñ
Df@v, wpfpvq “ w Ø ϕrv, wsq, f not free in ϕ.

222(L2) @x, ypx “ y Ø @XpXpxq Ø XpY qqq.
223(L3) @Rn, SnpRn “ Sn Ø @x1, ..., xnpR

npx1, ..., xnq Ø Snpx1, ..., xnqqq, @f, gpf “ g Ø
@xpfpxq “ gpxqqq.

224(L4) @Rn`1p@x1, ..., xnDyR
n`1px1, ..., xn, yq Ñ Dfn@x1, ..., xnR

n`1px1, ..., xn, fpx1, ..., xnqqq.
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(G3) @G,G1pG “ G1 Ø G – G1q225

The first existential axiom asserts the existence of the trivial-graph (G0), i.e. a
graph with only one vertex and no edges:

(E1) DGD!vV ertexpv,Gq

The second and third existential axioms of UGT correspond to ordinary
mathematical operations on graphs, using ”old” graphs to build up new ones by
adding (new and isolated) vertices and edges (between preexisting vertices),
respectively:

(E2) @GDG1Dv1pV ertexpv1, G1q ^ Isolatedpv1, G1q^

DfpIsomorphismpf,G,G1 ´ tv1uqqq226

(E3) @G@v, wppV ertexpv,Gq ^ V ertexpw,Gq^

v ‰ w ^ Connectedpv, w,Gqq Ñ

(i) DG1Dv1Dw1pConnectedpv1, w1, G1q^

(ii) DfpIsomorphismpf,G,G1 ´ tv1, w1uq ^ v1 “ fpvq ^ w1 “ fpwqqqq

We can already prove the existence and uniqueness of each finite unlabeled graph, i.e.
unlabeled graphs with finitely many vertices227, starting with the trivial-graph (E1)
and going bottom-up adding vertices and/or edges (by E2 and E3), while relying on
the structuralist identity axiom for graphs (G3) for uniqueness. For instance, the
existence and uniqueness of the dumbbell graph G1 (the graph with two vertices
and no edges) is granted by the following consequence the previous axioms:

(G1) D!G1Dv1, v2pv1 ‰ v2 ^ V ertexpv1, G1q ^ V ertexpv2, G1q^

 Connectedpv1, v2q ^ @wpV ertexpw,G1q Ñ pw “ v1 _ w “ v2qq

G1is the result of taking the graph G0 (by E1 and G3) and adding an isolated
vertex (by E2) concluding that it is unique (by G3). Similar results grant the
existence and uniqueness of all finite graphs. Moreover, facts concerning the number
of automorphisms of a certain graph as well as facts concerning the cardinality of

225Where isomorphism (–) between graphs is defined as the existence of a bijective and structure-
preserving map, the latter two being defined in terms of the primitive vocabulary of UGT (Leitgeb
[forthcoming,a, p. 19]).

226Here (and, ceteris paribus, in E3 below) Isomorphismpf,G,G1 ´ tv1uq is an abbreviation for
a complex formula in the language of UGT stating that is an isomorphism between G and the
subgraph of G1 resulting after removing the vertex v1 form G1. This complication is due to the
requirement that graphs are disjoint (G1) and thus that strictly speaking the new graph G1 doesn’t
result by adding a vertex (or edge) to G; UGT handles such cases by essentially establishing the
existence of an embedding h : G1 Ñ G.

227Leitgeb [forthcoming,a, p. 20], Theorem 1.
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graphs are also derivable, using the second order resources, from the above above.
Leitgeb’s Metatheorem 1 establishes the consistency of the above axioms relative
to ZFC.228 Leitgeb showcases the power of UGT up to this point by showing that
various graph-theoretic notions can be defined229 and relations between graphs and
other mathematical entities can be studied.230

Taking subgraphs of given graphs is another ordinary operation of graphs yielding
new ones from old, which suggests capturing the idea in a subgraph axiom:

(E4) @G@Xpp@vpXpvq Ñ V ertexpv,Gqqq Ñ

DG1DfpIsomorphismpf,G|X , G
1qqq231

Other natural operations on graphs such as the union of two graphs and product
of two graphs232 can be formulated in UGT and added as axioms supplementing
the above list. Last but not least, infinite graphs are brought into existence by an
infinite graph axiom postulating the existence of an infinite (countable) graph:

(E8) DGDv0, v1pV ertexpv0, Gq^V ertexpv1, Gq^Connectedpv0, v1, Gq^

(i) @wpConnectedpw,w0, Gq Ñ w “ w1q^

(ii) DfpIsomorphismpf,G,G´ tv0uq ^ fpv0q “ v1qq
233

Graphs postulated by E8 look as follows:

G8: © © © © ¨ ¨ ¨

v0 v1

228Leitgeb [forthcoming,a, p. 22].
229Leitgeb defines subgraphs and proper subgraphs (Leitgeb [forthcoming,a, p. 24], D4 and D5,

respectively).
230This is possible by adding the axioms governing the mathematical objects of interest to UGT,

extending the first order domain of with the newly added mathematical entities. Adding the
axioms PA2 to UGT, for instance, one can define walks in a graph (Leitgeb [forthcoming,a, p. 23],
D3) and go on to label graphs by natural numbers, define connectedness of graphs and so on.

231Isomorphismpf,G|X , G
1q is an abbreviation of a lengthy UGT formula (Leitgeb

[forthcoming,a, p. 24]) to the effect that there is an isomorphism between the restriction of G to
those of its nodes in a class X and G1. The notion discussed above, Isomorphismpf,G,G1 ´ tvuq,
is a particular case of the one here. Like before, the intricacies are due to disjointness of graphs
(G2).

232Which Leitgeb [forthcoming,a, p. 25] recommends adding as axioms E5 and E6. Further
axioms mirroring natural operations such as composition of graphs, taking n-cubes of graphs etc.
would make for further axioms E7, E8 etc.

233The infinite graph G8 is ‘built up’ employing Dedekind infinity: there is a bijection between
the graph and a proper subgraph of it.
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By the identity criteria for graphs, G8 is unique. Once G8 has been added to the
first order domain, many more infinite graphs are brought into the picture applying
the existential axioms introduced above. This open-endedly concludes UGT and
Leitgeb’s constructive endeavour with an eye on further extensions.

The main argument favouring UGT over set theoretic reconstructions of
unlabeled graphs is that the former, unlike the latter, resembles the
mathematician’s practice when engaging with graphs (Leitgeb [forthcoming,a,
p. 35]) and, as such, if UGT is otherwise satisfactory, then it should have the
upper hand as an account of graphs. Moreover, the success of UGT provides the
non-eliminativist with a powerful example, shedding some hope against objections
aiming to undermine the very coherence of non-eliminativism.

UGT provides an account of a certain kind of mathematical objects, namely
unlabeled graphs, as sui generis objects whose identity is governed by isomorphism
(G3). Leitgeb’s suggestion is then the following: UGT may be employed as an
account of sui generis mathematical structures in general ; we label this view
Unlabeled Graph-theoretic Structuralism (UGS). Structures are not set theoretic
entities endowed with a domain of positions and relations on them and, in this
sense, structures are not systems: unlike structures, systems are entities in the
second order domain of UGT, largely conceived of set theoretically. However,
structures are positional entities: given a structure S (we switch to structure
notation from this point on), V pSq (defined above) is a set containing all and only
the vertices of S, which are in turn mathematical objects which serve of referents
of mathematical terms; this answers our Question 1. While the identity of
structures is governed by the genuinely structuralist principle identifying
isomorphic structures, the identity of positions is governed by PII (L2); we will see
how UGS avoids the Automorphism problem when assessing it against the canon.
In this sense, mathematical objects are not structural objects: they possess many
non-structural properties such as ‘being the RGB number of my favourite color’
and so on.234 As such, the Incompleteness claim235 fails for positions in structures.
However, what sets apart positions from Platonic individuals is a version of
Linnebo’s Dependence claim. We detail John Wigglesworth [2018b]’s account of
the matter in the next paragraph to complete our answer to Question 2. Before
that, answering Question 3, we mention that UGS largely provides a singular
reference account of mathematical terms, with a caveat to be mentioned when
discussing the problem of Singular Reference in the next section.

John Wigglesworth [2018b]’s furnishes an account of dependence in UGS236 We

234Even though structures are unique up to isomorphism, structures may be isomorphic to
systems.

235See the end of §3.2.2.4, discussing Linnebo [2007]’. Probably a meaningful version of the E-
Incompleteness thesis can be formulated in terms of the essential properties of vertices, similar to
the one discussed in the previous sections concerning OTS.

236Wigglesworth’s wider aim is to provide an account of dependence in mathematical
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remind the reader that Linnebo [2007] identifies two dependence claims endorsed
by early non-eliminativists and which can distinguish their objects as positions in
structures from Platonic abstracta. Linnebo construes these claims as weak
identity dependence claims. Recasting them in the idiom of grounding,
Wigglesworth construes (metaphysical) dependence as a relation of partial ground,
whereas grounding is understood in Finean terms as a metaphysically explanatory
relation. In this sense, a collection of facts Γ fully grounds a fact F if and onlu if
the obtaining of the facts in Γ completely explain the obtaining of F . A fact G
partially grounds another fact F is and only if G is part of a collection of facts Γ
which fully grounds F . Wigglesworth holds that the grounding relation involved in
ODO is partial, whereas that involved in ODS is the relation of full ground.
Roughly speaking, given a structure S and a position x in it, Linnebo’s dependence
claims become the following:

(ODO) The identity of x partly grounds the identity of any other
position in S;

(ODS) The identity of S fully grounds the identity of every position
therein.

To make these precise, Wigglesworth provides an account of the identities of
unlabeled graphs and their vertices. We render this talk in terms of essence: what
Wigglesworth calls the identity of a structure S (IdpSq), we understand as the
essence of S, and similarly for positions. Given a structure S and a position n of S,
Wigglesworth defines:

IdpSq :“ tGraphpS1q|S1 – Su “ tSu

Idpnq :“ tpn1, n2q|Connectedpn1, n2, Sq ^ pn “ n1 _ n “ n2qu “ ES
n
237

structuralism, showcasing the peculiarities of mathematical objects as opposed to ordinary entities.
Drawing on Linnebo [2007] discussion and account of dependence in terms of Abstraction principles,
Wigglesworth tries to provide an alternative which is not biased in favour of either in re or ante
rem versions of no-eliminativism. Finally, proofs of the Linnebo’s ODO and ODS weak identity
dependence claims are provided.

237Supporting these definitions, we can quote Leitgeb saying:

While unlabeled graphs are what they are in virtue of their structure, which is reflected
by their identity criterion (G3), vertices in unlabeled graphs are what they are in virtue
of the structure (the unlabeled graph) they belong to, and the identity and difference
relations for the nodes of a graph belong to that very structure. There is quite simply
more to the structure of the unlabeled graph G1 than what is tracked by the mere
existence of an automorphism that sends a to b: just taken by itself, the existence of
such an automorphism would be compatible both with a “ b and with a a ‰ b , and
there is no reason whatsoever to preclude either of these cases ”ex cathedra”, let alone
on alleged ”structuralist” grounds. (Leitgeb [forthcoming,b, p. 5])

E is reminiscent of the set theoretic treatment of graphs as ordered pairs of a non-empty collection

85



3.4 Positionalism

In plain English, the identity of unlabeled graphs is its isomorphism class, which by
G3 is the singleton of the graph; the identity of a vertex is the collection of edges
involving it. while that of vertices is given as the collection of edges involving them.
The Dependence claims are then rendered as follows:

(ODO) For all vertices n1, n2 of a graph S, the fact that Idpn1q “ En1

partially grounds the fact that Idpn2q “ En2 ;

(ODS) For all mathematical objects n of a graph S, the fact that S has
identity IdpSq fully grounds the fact that Idpnq “ En.

Let’s first consider ODO. Let Γn1 “ tIdpnq “ En|n P V pGq ^ n ‰ n1u238 i.e. the
collection of (all but one) facts to the effect that the identity of some vertex n of G is
En. Then ODO can be reformulated as follows (since n1 was universally quantified):

(ODO) For all vertices n2 of a graph G, the obtaining of all the facts
in Γn2 fully grounds the fact that Idpn2q “ En2 .

239

Metaphysicians commonly agree that grounding claims entail corresponding
necessity claims: if ∆ fully grounds F , then necessarily if all the facts in ∆ obtain,
then F obtains. In the case of ODO we have:

(ODOl) For all vertices n2 of S: lpΓn2 obtain Ñ Idpn2q “ En2q
240

Discussing the domain of l , Wigglesworth suggests that l ranges over possible
unlabeled graphs.241 Interpreting the necessity involved as such arguably gives us
both of the following:

of vertices and another possibly empty of edges. G1 above, for instance, would be set theoretically
characterized as G1 “ xD,Ey. However, this characterization can be recovered to some extent
in UGT. In this sense, D would be V pG1q (which is uniquely characterized as shown above)
and E would be given by Comprehension (L1) as the relation corresponding to the formula
Connectedpx, y,G1q. We will sometimes employ the set theoretic notation, without thereby
committing to sets.

238The necessity claim corresponding to ODO would be trivialized - and, with it, ODO itself - if
the fact that Idpn2q “ En2

would be itself in Γn2
. See below.

239This is a slightly modified version of Wigglesworth formulation. The original version was
mentioning n1 explicitly; however, that would be redundant since the identity fact corresponding
to n1 is itself part of Γ.

240There is already a slight problem here. The ODOl would be trivialized if the fact that
Idpn2q “ En2 would be itself in Γn2 ; therefore, following the argument concluding that the necessity
claim entails ODO, ODO itself would thus be trivialized. This suggest that Γn2

must not contain
the identity fact corresponding to n2. However, if we do not include the identity fact corresponding
to n2 in Γn2

, then it is unclear what we should do in the case of G0, the graph with only one vertex
and no edges: on the face of it, this graph would provide a counterexample to ODO if adding of
nodes is not mentioned, as Wigglesworth omits to do. One solution would be to consider graphs
which differ from G0 in that they have more vertices, which would allow a similar proof to the one
in Wigglesworth [2018b, p. 230]. However, G0 would have to be mentioned as a special case.

241Metaphysical necessity would trivialize the matter in this case since supposedly if mathematical
entities exist, they exist necessarily and have their identity as such.
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ODO ñ ODOl

ODOl ñ ODO

The latter is commonly regarded as false when l is rendered as metaphysical
necessity. Counterexamples involve cases in which metaphysically necessary
existents figure in the consequent of the embedded conditional. Consider Socrates
and the number 2: if the number 2 exists necessarily, then necessarily if Socrates
exists, then the number 2 exists. But of course we wouldn’t want to conclude that
the existence of Socrates (fully) grounds existence facts concerning numbers.
However, given the interpretation at hand having l range over the domain of
possible graphs, such consequences do not follow, since we allow for failure of
metaphysical necessities – the number 2, for instance, may fail to have the identity
that it actually has, although, if it exists, then it is presumably metaphysically
necessary that it has its actual identity.242 Provided that this argument is
successful (which we won’t debate here) a proof of ODOl would arguably be a
proof of ODO. Wigglesworth proves the counterpositive of ODOl:

(ODOl) For all vertices n2 of S: lpIdpn2q ‰ En2 Ñ Γ don’t obtainq

Wigglesworth’s proof proceeds as follows:

Proof. Consider a graph G with n2 in V pGq and let G1 be like G except that Idpn2q “

EG1

n2
‰ En2 .

243 This means that for some x, y vertices of both G and G1 with n2 “ x

or n2 “ y, either (i) EG Q px, yq R EG1 or (ii) EG1 Q px, yq R EG.244 Without loss of
generality, suppose n2 “ x. Notice that then y ‰ n2 (since we explicitly ruled out
loops in G1 above),245 so let y be some vertex n3 ‰ n2. Then Idpn3q “ EG1

n3
‰ En3 ,

since pn2, n3q belongs to En3 but not to EG1

n3
in the (i) case, or vice versa in the (ii)

case. So Idpn3q ‰ En3 . But notice that Idpn3q “ En3 is a fact in Γ (since n3 ‰ n2).
Hence some fact in Γ fails to obtain, so Γ don’t obtain, completing the proof.

Wigglesworth proceeds similarly to show ODSl and, following the previous
argument, ODS itself.

(ODSl) For all vertices of G and n in V pGq, for all graphs G1:

G1 P IdpGq Ñ En “ EG1

n

242A related worry is discussed: since Socrates doesn’t exist in any unlabeled graph, than his non-
existence would seemingly be grounded in any fact whatsoever. However, Wigglesworth comments
that this only shows that one should not evaluate existence grounding statements concerning
Socrates - or any medium sized physical object - with respect to possible graphs.

243We assume that actually Idpn2q “ EGn2
since, actually, n2 is a vertex of G; we write En2

instead of EGn2
, but EG

1

n2
when G1 ‰ G.

244Where EG “
Ť

n in V pGqE
G
n .

245Maybe except for the identity relation Wigglesworth [2018b, p. 231].
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Proof. Let G1 be arbitrary and suppose that G1 P IdpGq “ tGu. Therefore G1 “ G
and hence EG1

n “ En, as required.246

3.4.3.2 Against the Canon. In general, Leitgeb claims that ”UGT does not
suffer from any problem of identity.”247 The problem of Cross-structural identities
is settled in the negative by G2: vertices belong to one and only one graph. It
is suggested that ordinary mathematical statements seemingly identifying positions
from distinct structures rely on semantic indeterminacy and should be understood in
terms of existing embeddings connecting the positions concerned. However, unlike
the case of FAS and OTS, since G2 is not used in any of the results concerning graph
existence and uniqueness, if some such identification is found irresistible, then G2
may be dropped and UGT could proceed unhindered. Further on, UGS’ solution to
the Automorphism problem relies on a conception of structures in which identity is
an intrinsic relation.248 For instance, UGT yields that the dumbbell graph (G1) is
unique and can be defined as follows:

G1 :“ ιGpDv1, v2pv1 ‰ v2 ^ V ertexpv1, Gq ^ V ertexpv2, Gq^

 Connectedpv1, v2q^@wpV ertexpw,Gq Ñ pw “ v1_w “ v2qqq
249

G1 is the unique entity in the first order domain of UGT satisfying the embedded
condition, which itself yields that G1 contains two and only two distinct positions:
Leitgeb holds that vertices depend on graphs for their identity, while graphs come
along with their own identity relation in the sense just specified.250 It is also clear
that PII doesn’t cause troubles in this setting: as mentioned above, the general
Incompleteness claim fails for positions in UGS. In this sense, positions in
structures contain non-structural properties, including haecceities (by second order
comprehension), which in turn suffice for avoiding the absurd collapse of
symmetric vertices.251 The Individuation objection is also thereby replied by

246Wigglesworth proves again the counterpositive (Wigglesworth [2018b, p. 231-232]). However,
the direct proof presented here is seemingly a better choice. In general, Wigglesworth account
suffers from several problems, of which we only mention one here. Presumably, for x, y in some
structure G, we assume that we have Idpxq “ Idpyq Ñ x “ y; this is what a true identity property
or essence should grant in the least. However, consider symmetric vertices, say those of G1 above
and label them a and b. Notice that Idpaq “ Ea “ H “ Eb “ Idpbq. But then it follows that
a “ b, which is false since a ‰ b in virtue of the nature of G1 (as explained above). And similarly
for G2 etc. This is a version of the Automorphism Problem and it shows that En cannot be an
identity property or essence for n.

247Leitgeb [forthcoming,b, p. 3].
248As first suggested in Leitgeb and Ladyman [2008].
249Adding the ideology of definite descriptions to UGT.
250Leitgeb [forthcoming,b, p. 4].
251Leitgeb [forthcoming,b, p. 10] discusses a potential confusion that might seemingly lead to the

Automorphism problem in UGT. The crucial morale avoiding this pitfall is that sets, second order
entities, are not graphs, first order entities. For instance, G0 ‰ V pG0q, even if the vertices of G0
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essentially rejecting the early structuralist slogans holding that positions in
structures only contain structural albeit non-identity involving properties.

Regarding the Permutation problem, Leitgeb holds that Sπ is crucially not a
structure itself, but a system: structures are unique up to isomorphism and,
therefore, any permutation on their domain results in systems thereof which are,
unlike structures, second order entities of UGT.252 Embarrassment of riches is
thereby avoided since classes are not equally suitable reductions or referents of
mathematical structures and mathematical terms (more on this below when we
discuss the problem of Singular Reference). Concerning the Circularity problem,
Leitgeb holds that structures and their positions are ontologically individuated as
a whole, positions and structures depending on each other. Similarly, structures
and their positions are grasped altogether at once, being utterly impossible to
separate them in epistemic order.253 The problem of Structural Properties is
replied by essentially embracing its conclusion: mathematical objects, positions in
structures, do have non-structural properties, against the early structuralist
intuitions, but without thereby giving up non-eliminativism. Finally, concerning
MacBride’s dilemma, UGS rejects the structuralist slogans (for reasons which are
independent of the Automorphism or Structural properties problems) and so it is a
candidate for the old news horn concluding to collapse into Platonism. However,
UGS satisfies a version of the Dependence claim and, as such, positions are unlike
Platonic objects in that they are crucially dependent on their hosting structures.
Concerning the status of positions in structures as objects, Leitgeb254 argues that
vertices exist in UGT according to ontological criteria that made a career in
philosophical debates – e.g. ”to be is to be the value of a bound variable” – at
least since Quine on: positions, i.e. vertices, just like structures, i.e. graphs, figure
in the UGT’s first order domain of quantification.

Leitgeb considers the problem of Singular Reference in §3.1; however, given the
way we understand and formulate it in this essay, Leitgeb’s reply misses the point
when arguing that it is dispelled once the Permutation problem is successfully
replied. As we understand it, the Permutation problem, if applicable, undermines
reference to structures even if it has already been established that mathematical
reference is attracted to structures rather than systems. However, as we already
explained, we understand the morale of Assadian [2018]’s (somewhat misleadingly
labeled the) permutation plight as highlighting that even if the Permutation
objection is replied and structures are thereby unique up to isomorphism, the
non-eliminativist faces the quest of explaining why would mathematical
vocabulary pick out or be attracted to structures at all, rather than pick out or be

are the elements of V pG0q, being thereby isomorphic: the former is a first order entity, the latter
is a class, which is a second order entity instantiating or exemplifying, in this case, G0.

252Leitgeb [forthcoming,b, p. 11ff].
253Leitgeb [forthcoming,b, p. 13].
254Leitgeb [forthcoming,b, p. 13].
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attracted to systems instead. Leitgeb fails to engage with this problem. Leitgeb
highlights crucial differences between graphs and systems:255

1. Graphs are simple, while systems are composed;

2. Isomorphic graphs are identical (G3), while the identity of systems is governed
by extensionality (L3);

3. Taking subgraphs requires the existence of a suitable structure preserving map,
while any non-empty subset of a set serves as the domain of a system;

4. Graphs, unlike systems, have no set theoretic structure;

5. Graphs cannot be defined from systems, while systems may be defined in terms
of graphs and their vertices.

All these aspects set apart structures from systems in UGT; however, UGS is
called upon to explain why structures, rather than systems, attract the reference of
mathematical terms. An answer to this problem unavoidably appeals to differences
between the two types of objects: however, it asks for more than a list of
differences, requiring an explanation concerning the way these differences
contribute to increased eligibility or reference magnetism on the side of
structures/graphs with respect to the mathematical vocabulary. Although
highlighting the above differences, Leitgeb doesn’t provide any such explanation.
We can speculate that certain use facts provide an explanation of reference
magnetism, as follows. Given methodological structuralism, mathematical practice
only determine its subject matter up to isomorphism. This certainly doesn’t
exclude that mathematical structures have radically richer identity criteria, in
spite of our ignorance or deficient means of expression (i.e. invoking epistemic or
semantic insufficiencies, respectively, instead of a sort of ontological
incompleteness). However, if there are suitable mathematical objects whose
identity criterion is isomorphism, then such objects are more eligible referents for
the mathematical vocabulary as employed in the mathematical practice. As such,
given difference number 2 on Leitgeb’s list, graphs, provided that they exist, rather
than systems, attract mathematical reference. This is certainly a tentative
account; however, it provides the prospect that UGS could answer the Singular
Reference problem.

Concerning the other front of the Singular Reference problem, Leitgeb provides
an arbitrary reference account for terms purportedly referring to symmetric
positions of non-rigid structures, along the lines of Schiemer and Gratzl [2016]’s
account presented in §2.1 above.256 For instance, looking at G1 once again,

255Leitgeb [forthcoming,b, p. 11-12].
256Leitgeb [forthcoming,b, p. 15-16].
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Leitgeb’s suggestion is to add the axioms of ε-calculus to UGT and then define as
follows:

a :“ εvpV ertexpv,G1qq

b :“ εvpV ertexpv,G1q ^ v ‰ aq

Informally, the idea is to have mathematical terms purporting to denote symmetric
positions pick out one of these arbitrarily.257 In spite of appeal to arbitrary
reference in such cases, Leitgeb258 argues that UGS, unlike eliminativism, can
secure singular reference to structures themselves and positions in rigid structures;
that is, she can live up to to non-eliminativist semantic standards covering most
part of mathematical discourse. When she seemingly doesn’t do so and appeals to
arbitrary reference instead, however, she is only reflecting in her account peculiar
features of the mathematical structures concerned, unlike the eliminativist who
would construe all mathematical discourse in terms of such peculiarities.

However, Assadian [2018] complains against arbitrary reference on two
grounds.259 First, arbitrary reference is not a distinctively structuralist sort
thereof260 and, as such, it voids the metasemantic motivation for endorsing
structures. However, as Leitgeb points out, this worry is not substantiated:
arbitrary reference is rather a telling exception to the mostly singular sort of
reference secured by UGS. Assadian’s second complaint highlights that arbitrary
reference brings about primitive semantic facts, which flies against philosophical
orthodoxy; we suspend judgement on this issue and postpone its inspection to
further work. We can now notice that this thereby also answers the first horn of
the Semantic objection: the non-eliminativist is presumably able deliver singular
reference for mathematical terms, at least for the most part. The second horn of
the objection is not tackled in Leitgeb’s essays; the question persists whether the
semantic motivation suffices for endorsing structures and, if not – as the specter of
the second Semantic objection threatens – whether there is any additional
motivation for non-eliminativism besides the semantic desiderata.

3.4.3.3 Summing up. Figure 5 summarizes the performance of UGS against
the objections leveraged against early versions of non-eliminativism:

257Leitgeb prefers this account over an account of such terms as free variables performing
simulated reference (as we labeled it in §3.2.3.2), in light of two arguments. First, unlike the
simulated reference account, epsilon terms are not variables and thus not bound to be a temporary
stipulation within a process of existential elimination. Second, an explicit definition of terms
referring to symmetric positions as epsilon terms allows us to deductively derive their distinctness
from the the identity of the graph itself. This feature provides us with an understanding of the
way symmetric positions are distinct in virtue of the identity of the very structure they figure in.

258Leitgeb [forthcoming,b, p. 18].
259Assadian [2018, p. 3212].
260See e.g. its employment by relativists, §2.1 above.
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Figure 5: UGS against the canon

In spite of our tentative reply, we flag the problem of Singular Reference for
further work. Moreover, in spite of the fact that we find Leitgeb’s reply to the first
horn of the Semantic objection satisfactory – holding that the non-eliminativist,
unlike the eliminativist, can provide a singular reference account for most structures
and mathematical theories, while when it cannot it is rather because of matching a
peculiarity of the structure concerned – we flag the Semantic objection since nothing
has been said concerning the second strand thereof to defend the non-eliminativist,
and the present author sees nothing in sight.

4 Conclusion

We have now achieved our goal and reviewed in some detail three contemporary
positionalist approaches to mathematical structuralism which,for the most part,
succeed in overcoming many of the concerns plaguing early versions of
non-eliminativism. We hereby conclude the present essay with a short summary
and an eye on further work.

After introducing the topic and essential piece of terminology, we followed a
quasi-historical route to modern mathematical structuralism: starting with Paul
Benacerraf’s seminal articles, we discussed eliminativism introducing useful
ideology along the way, and we formulated the discontents which feed a line of
reasoning being frequently invoked by non-eliminativists to motivate their view,
labeled the ‘metasemantic motivation’ (inspired by Assadian [2018, p. 3205]).
Further on, we dived into non-eliminativism and introduced an early articulation
thereof, Stewart Shapiro’s Sui Generis Structuralism, followed by an extensive
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discussion of many of the the problems and ensuing objections leveraged against it;
we gathered together all these in a canon aiming to assess newly emerging
articulations against it. However, we pointed out that most of items in our canon
only plague positionalist versions of non-eliminativism and thereby took a detour
through non-positionalism; after presenting a particular articulation of it, we
concluded with several misgivings motivating the return to positionalism and
review newly emerging versions thereof. In this order, we introduced in some detail
Øystein Linnebo and Richard Pettigrew’s Fregean Abstractionist Structuralism,
Edward Zalta and Uri Nodelman’s Object Theoretic Structuralism and Hannes
Leitgeb’s Graph Theoretic Structuralism. Assessing each of these views against
our canonical concerns, we found that, for the most part, each of these is
successfully replied: only Abstractionism is plagued by a problem outside our
reference cluster, namely Permutation, while Object Theoretic Structuralism only
faces the second strand of the Semantic objection calling for extra-semantic
motivation for non-eliminativism. However, unlike the other two, Object Theoretic
Structuralism received further criticism, some of it related to the underlying
Object Theory itself; a full assessment is but material for further work.

Before saying a few words about loose ends and further work, we highlight the
status of our humble thesis, and qualify it. As we said in §1, there is indeed gas
left in the non-eliminativist structuralist tank. However, the Semantic objection,
both the version mounted by Bahram Assadian in recent work, as well the version
extending Richard Pettigrew’s argument, threaten to undermine commitment to
structures entirely; with the metasemantic motivation gone – either because
non-eliminativists cannot live up to their promises and provide a singular reference
account of mathematical terms (the first strand of the Semantic objection), or
otherwise because eliminativists can do better than expected in providing a literal
interpretation of ordinary mathematical discourse (its second strand) – ontological
parsimony seemingly recommends eliminativism on independent grounds and, as
such, non-eliminativism would seemingly stand defeated.

An inquiry into a notion of ‘face value’ or ‘literal’ construal of ordinary
mathematical discourse (as suggested in §2.2) would certainly be consequential
concerning the strength of the second strand of the Semantic objection, and, as
such, probably for the fate of non-eliminativism in general. Moreover, interwoven
with this, another crucial task for assessing the second strand of the Semantic
objection is an enquiry into syntactic and semantic criteria which can be
effectively employed to distinguish between singular terms and free variables in
ordinary mathematical discourse (as suggested at the end of §3.2.3.2). Meanwhile,
looking for alternative, non-semantic motivation for non-eliminativism is a task
that is mostly independent of the former two. However, instead of looking for
non-semantic grounds for believing in structures, we can also enrich the semantic
motivation itself. For instance, linking the discussion of non-eliminativism with
that concerning the proper construal and semantics of instantial terms could in

93



Conclusion

principle provide further grounds for endorsing structures: if, for instance, an
account of instantial terms identifying them with Finean arbitrary objects is
successful then, arguably given the centrality of instantial terms in mathematical
practice (as documented by e.g. Martino [2018]), this would shed some plausibility
over Leon Horsten [2019]’s Generic Structuralism. The present essay is
significantly incomplete by omitting the latter from among the positionalist views
considered; besides largely completing the picture of contemporary
non-eliminativist positionalist views, the introduction of arbitrary objects – as
originally proposed in Fine and Tennant [1983], and Fine [1985] and employed in
formulating a version of abstractionist structuralism in Fine [1998] related but
unlike Generic Structuralism and Fregean Abstractionism – would have provided
us with the means of completing the assessment of Assadian [2018]’s Singular
Reference problem and, as such, it would have impacted on the first strand of the
Semantic objection against non-eliminativism. We flag this task here for further
work.

Last but by far not least, as mentioned in passing at the beginning of this
essay, a joint assessment of scientific and mathematical structuralism would be a
most interesting endeavour. Finally, all the items making up our paragraph long
list of notable omissions are in sight for further work, most interestingly – from
our enthusiastic point of view – category theoretic structuralism, homotopy type
theoretic structuralism and Modal Set-Theoretic Structuralism.
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