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Abstract. Suppose you want to design a voting rule that can be used
to elect a committee or parliament by asking each voter to approve of
a subset of the candidates standing. There are several properties you
may want that rule to satisfy. First, voters should enjoy some form
of proportional representation. Second, voters should not have an in-
centive to misrepresent their preferences. Third, outcomes should be
Pareto efficient. We show that it is impossible to design a voting rule
that satisfies all three properties. We also explore what possibilities
there are when we weaken our requirements. Of special interest is the
methodology we use, as a significant part of the proof is outsourced
to a SAT solver. While prior work has considered similar questions
for the special case of resolute voting rules, which do not allow for
ties between outcomes, we focus on the fact that, in practice, most
voting rules allow for the possibility of such ties.

1 INTRODUCTION
When several people need to aggregate their possibly diverging
views to arrive at an acceptable compromise, then they may wish to
delegate this task to a voting rule [1, 9]. Whether a given voting rule
is an adequate tool for this purpose in a given context depends on the
formal properties it satisfies. Properties of interest might relate to the
operational simplicity of a rule, to its fairness, or to the level of pro-
tection it can provide against undesirable strategic behaviour. In this
paper, we continue a recent line of research in AI [29, 8, 10, 11, 25]
aimed at improving our understanding of the opportunities available
when designing normatively appealing voting rules by encoding the
problem of deciding whether there exists a rule that satisfies a certain
combination of properties as a query to a SAT solver [7]. We specifi-
cally focus on so-called multiwinner voting rules with approval bal-
lots. Under such a rule each voter is asked to indicate which of the
candidates available for election she approves of. The rule then elects
a fixed number of those candidates.

While the bulk of past research on voting has focused on the case
of single-winner voting rules with ranked ballots, where voters re-
port rankings of the candidates and we need to elect a single such
candidate, and while many of the seminal results in the field relate to
that particular model of voting [20, 28, 13], there recently has been
much renewed interest in multiwinner voting [15] and the norma-
tive properties of multiwinner voting rules with approval ballots in
particular [2, 27, 25]. Indeed, many real-world decision making sce-
narios are naturally modelled as multiwinner elections. Examples in-
clude electing a parliament or any other kind of committee, but also,
for instance, deciding which of a number of projects to spend public
money on. Asking for approvals rather than rankings is attractive due
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to its convenience for the voters. When designing a voting rule, we
will often be interested in the following properties:

• Proportionality: Sufficiently large subgroups of voters with suf-
ficiently coherent views should get adequate representation. For
instance, when electing a committee of k members and one in k
voters votes only for candidate c, then c should get elected.

• Strategyproofness: Voters should have no incentive to misrepre-
sent their views. For instance, if you find candidates a and b ac-
ceptable, then you should not feel that voting for just one of them
will increase your chances of getting at least one of them elected.

• Efficiency: Outcomes should be Pareto efficient. In particular,
swapping an elected with an unelected candidate should never
make an outcome better for some but no worse for the other voters.

In recent work—using the SAT-based approach we also adopt here—
Peters [25, 26] was able to show that, for certain natural ways of
making these requirements precise, it is mathematically impossible to
design a multiwinner voting rule with approval ballots that meets all
of them. This is an important finding, complementing known results
for the single-winner model of voting such as the seminal Gibbard-
Satterthwaite Theorem [20, 28]. It clearly maps out the limitations
we are subject to when designing a voting rule. However, Peters’
result only applies to resolute rules. These are deterministic rules
that must return a single winning set of candidates for every pos-
sible profile. This is a demanding requirement that, in fact, is not
met by any of the standard voting rules that have been proposed in
the literature [15]: any reasonable rule will sometimes have to re-
port a tie. This raises the question whether dropping the resolute-
ness requirement will lead to more favourable results. Unfortunately,
analysing (potentially) irresolute rules is significantly more com-
plex than analysing resolute rules. Indeed, for the standard model
of single-winner voting the most influential attempt at addressing
the same shortcoming in the Gibbard-Satterthwaite Theorem, the
Duggan-Schwartz Theorem [13], was published over two decades af-
ter that original result. One of the difficulties involved is that there are
multiple ways in which to formalise strategyproofness for irresolute
rules and there is still ongoing research on the topic today [10, 11].

Contribution. In this paper, we prove a new impossibility theorem
for multiwinner voting rules with approval ballots that applies to res-
olute and irresolute rules alike. A significant part of this proof has
been derived automatically, with the help of a SAT solver. In broad
terms, we show that it is impossible to design a rule that is propor-
tional, immune to strategic manipulation, and Pareto efficient, i.e.,
we show that dropping the resoluteness requirement does not pro-
vide a way out of the impossibility established by Peters. In fact,
there are a number of different ways in which one could reasonably
formalise these normative principles. We prove our theorem for one



specific formalisation that is particularly strong and that appears par-
ticularly natural to us. However, we also acknowledge that alternative
formalisations may be of interest as well. This, arguably, is where the
benefits of the SAT-based approach we use are most evident: having
automated a core part of the proof makes it easy to experiment with
a large number of variants of the same kind of result. We explore this
opportunity and report and comment on several such variants.

Related work. The approach of proving impossibility theorems in
social choice theory with the help of a SAT solver was initiated by
Tang and Lin [29]. The fundamental idea at the core of this approach
is that, if we fix the relevant parameters of the social choice scenario
we are interested in (such as the number of voters and the number
of alternatives in a voting scenario), then we can represent the re-
quirements imposed by the axioms we want to study as formulas in
propositional logic. We can then use a SAT solver to check whether
the conjunction of these formulas is satisfiable—if it is not, then we
have found an impossibility theorem for that particular choice of pa-
rameters. Intuitively, such an impossibility will often generalise to
all settings with larger choices of parameters and it is often possi-
ble (though sometimes difficult) to prove this intuition formally cor-
rect. Tang and Lin analysed social welfare functions and resolute
voting rules in this manner, and the SAT-based approach has also
been applied to irresolute voting rules [8, 10, 11], to resolute multi-
winner voting rules [25], to preference extension schemes [18], and
to matching mechanisms [14]. For an introduction to the approach,
we refer to the recent survey article by Geist and Peters [19]. The
broader interest of the SAT-based approach for economic theory has
been discussed by Chatterjee and Sen [12].

Paper outline. The remainder of this paper is organised as follows.
We first formalise the model of voting and the core axioms we are
going to be working with in Section 2. We then state and prove our
main theorem in Section 3, before discussing a range of interesting
variants of this result in Section 4 and concluding in Section 5.

Code. The code written to generate the SAT instances we used to
obtain the results discussed in this paper is available online [23].

2 THE MODEL
In this section we recall the familiar model of multiwinner voting
with approval ballots [22, 15], fixing in particular the assumptions
we are going to make regarding the preferences of voters. We also
define three axioms encoding normative properties that arguably any
multiwinner voting rule should enjoy. (In Section 4 we are going to
discuss several alternatives to these assumptions and axioms.)

Throughout, for any given set S and k ∈ N, we use 2S to denote
the set of all subsets of S (i.e., the powerset of S) and we use [S]k to
denote the set of all subsets of S with exactly k elements each.

2.1 Multiwinner Voting with Approval Ballots
Fix a finite set N = {1, . . . , n} of voters, a finite set C of candidates
with m = |C|, and a natural number k < m. We are asked to choose
a committee X ⊆ C of size |X| = k on the basis of a profile A =
(A1, . . . , An) submitted by the voters, where the ballot Ai ⊆ C of a
given voter i ∈ N is the set of candidates she approves of. We want to
delegate this choice to a voting rule F . As most reasonable rules will
sometimes be unable to differentiate between two or more equally
good committees, a voting rule formally is a function F mapping any
given profile of approval ballots to a nonempty set of committees:

F : (2C)n → 2[C]k \ {∅}

Thus, a voting rule might be irresolute. We say that F is resolute in
case |F (A)| = 1 for every profile A ∈ (2C)n.

A basic example for a voting rule is approval voting (AV), which
amounts to electing the candidates that receive the most approvals:

FAV(A) = argmax
X∈[C]k

∑
i∈N

|Ai ∩X|

Another example is a rule known as proportional approval voting
(PAV), going back to a proposal by Thiele [31] from 1895. Under this
rule, voter i assigns a score of 1+ 1

2
+ 1

3
+ · · ·+ 1

p
to committee X ,

with p being the number of candidates on which X agrees with Ai.
We then elect the committees that maximise the sum of these scores:

FPAV(A) = argmax
X∈[C]k

∑
i∈N

|Ai∩X|∑
`=1

1

`

Observe that neither FAV nor FPAV are resolute, and the same is true
for basically every other natural definition of a voting rule—unless
we specifically combine it with a tie-breaking rule. This is why, in
this paper, we explicitly focus on rules that might be irresolute.

2.2 Inducing Preferences from Approval Sets
When pondering the merits and demerits of different voting rules,
we sometimes need to refer to the preferences of the voters over the
committees such a rule might elect. But note that the model of mul-
tiwinner voting we use here does not come with an inherent notion
of preference: voters express their views by specifying which candi-
dates they approve of, not which committees they prefer. To be able
to infer such preferences, we need to make additional assumptions
on how these two concepts relate to each other.

Consider a voter i ∈ N whose truthfully held approval set is Ai ⊆
C. We are going to assume that the associated (cardinality-based)
preference order of voter i is the unique weak order <Ai on [C]k

satisfying the following condition for all committees X,X ′ ∈ [C]k:

X <Ai X
′ if and only if |Ai ∩X| > |Ai ∩X ′|

Thus, we assume that a voter will rank any two committees in terms
of the number of candidates they include that she approves of. (In
Section 4.4 we are also going to consider a weaker assumption.) We
write X �Ai X ′ in case X <Ai X ′ and X ′ 6<Ai X , meaning that
voter i (with approval set Ai) strictly prefers X to X ′.

Recall that voting rules return sets of committees. Thus, when rea-
soning about the preferences of voters over different outcomes, we
must compare different sets of committees, not just different com-
mittees. A host of different preference extensions have been defined
in the literature to model this process [4]. Here we are going to make
what is probably the weakest of assumptions one can reasonably
make in this context, namely that a voter weakly prefers a nonempty
set X of committees over another nonempty set X ′ if she weakly
prefers every committee in X to every committee in X ′. This is the
so-called Kelly extension [21]. We may interpret this definition as the
voter in question being cautious: she will commit to (weakly) prefer-
ring X to X ′ only in this most clear-cut of cases.

Formally, if <Ai reflects the preferences of voter i over commit-
tees, then her preference relation <CAU

Ai
over nonempty sets of com-

mittees is the unique preorder satisfying the following condition:

X <CAU
Ai
X ′ if and only if (∀X ∈ X ) (∀X ′ ∈ X ′)X <Ai X

′

Observe that <CAU
Ai

is not a complete relation: it will leave many pairs
of sets of committees unranked. We write X �CAU

Ai
X ′ in case voter i

strictly prefers X to X ′, i.e., in case X <CAU
Ai
X ′ and X ′ 6<CAU

Ai
X .



2.3 Axioms: Normative Properties of Voting Rules
What makes for a good voting rule? To narrow down the field of con-
tenders, let us define a few axioms, i.e., intuitively appealing prop-
erties of rules. The first one encodes a basic efficiency requirement:
a good voting rule should not have committee X ′ amongst its win-
ning committees when there is another committee X that is weakly
preferred by all (and strictly preferred by at least one) of the voters.

Axiom 1. F is Pareto efficient if, for any profile A and any two
committees X,X ′ ∈ [C]k with X <Ai X ′ for all voters i ∈ N and
X �Ai X

′ for at least one of them, it is the case that X ′ 6∈ F (A).

The second axiom encodes the idea that we do not want to incen-
tivise voters to manipulate elections by misrepresenting the set of
candidates they truthfully approve of. To define it, we require some
additional terminology: two profiles A and A′ are i-variants of each
other (with i ∈ N being one of the voters) if Aj = A′j for all vot-
ers j ∈ N \ {i}. We write A =−i A′ in this case. Thus, in the
truthful profile A voter i can move to exactly those (untruthful) pro-
files A′ for which A =−i A

′.

Axiom 2. F is immune to manipulation by cautious voters if, for
any voter i ∈ N and any two profiles A and A′ that are i-variants
of each other, it is the case that F (A′) 6�CAU

Ai
F (A).

We also say that F is (Kelly)-strategyproof. Note that in case F (A)
and F (A′) are incomparable according to the relation <CAU

Ai
, the for-

mulation of our axiom presupposes that no manipulation will take
place. Thus, given that the Kelly extension is highly incomplete, this
is a very undemanding strategyproofness axiom. (We are going to
consider alternative forms of preference extension, and thus alterna-
tive notions of strategyproofness, in Section 4.2.)

The third axiom encodes the idea that voters should enjoy some
form of proportional representation. Several such axioms have been
put forward in the literature [2, 27]. The basic idea is that any suffi-
ciently large group of voters with sufficiently similar views regarding
the candidates should get appropriate representation in the commit-
tee elected. Following Peters [25], we define a very undemanding
proportionality axiom that is implied by every other formulation of
proportionality in the literature we are aware of. This axiom imposes
requirements on the outcome of a rule F only for the special case
of so-called party-list profiles, which are profiles A with Ai = Aj

or Ai ∩ Aj = ∅ for all voters i, j ∈ N . Such profiles arise when
the set of candidates C can be partitioned into parties and each voter
approves of all members of some party and only those.

Axiom 3. F is minimally proportional if, for any candidate c ∈ C
and any party-list profile A with |{i ∈ N : Ai = {c}}| > n

k
, it is

the case that c ∈ X for all committees X ∈ F (A).

Thus, if n
k

of the n voters approve of c alone and we need to elect a
committee of size k, then c should get elected with certainty. In fact,
the axiom is even weaker than that and requires this conclusion to be
drawn only in case the profile in question is a party-list profile.2

It will sometimes be useful to be able to assume a slightly stronger
variant of the proportionality axiom that applies not only to party-
list profiles with one party with a single member c, but rather more
generally to profiles in which some voters approve only of c and the
others only approve of candidates other than c. The following lemma

2 The restriction to party-list profiles ensures that minimal proportionality is
implied also by similar axioms proposed in the literature on apportionment,
which deals with voters voting for parties rather than candidates [3].

shows that we can invoke the axiom on this broader range of profiles
as well—if we can assume strategyproofness. Our proof closely fol-
lows Peters [25], who establishes a similar result for resolute rules.

Lemma 1. For any voting rule F that is minimally proportional
and immune to manipulation by cautious voters, for any candidate
c ∈ C, and for any profile A with |{i : Ai = {c}}| > n

k
and

{i : c ∈ Ai} = {i : Ai = {c}}, it is the case that c ∈ X for all
committees X ∈ F (A).

Proof. Let F , c, and A be as specified in the claim. For the sake of
contradiction, suppose that c 6∈ X for some committee X ∈ F (A).
Given c and A, let us define a new party-list profile A′:

A′i =

{
{c} if Ai = {c}
C \ {c} otherwise

Then, due to F being minimally proportional, we get that c ∈ X for
all X ∈ F (A′). Now consider a cautious voter i with true approval
set A′i = C \ {c} and corresponding preference order <CAU

A′i
. She

agrees on exactly k − 1 candidates (all but c) with all committees
X ∈ F (A′) and on at least k − 1 candidates with all conceivable
committees X ∈ [C]k, so she cannot do worse than F (A′). On the
other hand, by our assumption, she agrees on all k candidates with
some committee X ∈ F (A). Thus, F (A) �CAU

A′i
F (A′).

Note that this is the case for all voters i with A′i = C \ {c}. Now
imagine a sequence of profiles, starting with A′, with the voters i
with A′i = C \ {c} switching to Ai one by one, ending in A. Then
there must be a first point at which some committee X with c 6∈ X
is amongst the winners. Then, if we think of the profile just before
that point as the truthful profile, we have found a situation in which
there exists a cautious voter that can manipulate the rule in her favour.
Thus, we have found a contradiction to one of our assumptions.

3 THE IMPOSSIBILITY THEOREM
In this section we state and prove our main result, which shows that it
is impossible to simultaneously satisfy all of the normative desider-
ata for a voting rule we have formulated earlier. This impossibility
theorem applies under certain assumptions on n, m, and k:

Theorem 1. Let k > 3, let m > k, and let n be a multiple of k.
Then no voting rule for n voters to elect committees of size k from a
pool of m candidates can be simultaneously minimally proportional,
Pareto efficient, and immune to manipulation by cautious voters.

To simplify exposition of our proof of Theorem 1, let us call F a
good voting rule for (n,m, k) if it is a voting rule for n voters to
elect committees of size k from a pool of m candidates and if that
rule is minimally proportional, Pareto efficient, and immune to ma-
nipulation by cautious voters. Thus, the claim made by Theorem 1
is that there exists no good voting rule for any triple (n,m, k) with
k > 3, m > k, and n being a multiple of k.

We are going to prove this claim using an inductive argument.
We first provide a proof of the base case, which is the case of
(n,m, k) = (3, 4, 3). This part of the proof we have been able to
generate in an automated manner with the help of a SAT solver. Sec-
tion 3.1 is devoted to discussing this approach and presenting the
resulting proof of the base case in a human-readable form. Then,
in Section 3.2, we (manually) prove three lemmas that permit us to
generalise our result for the base case to Theorem 1 as stated above.
Finally, in Section 3.3 we demonstrate that each of the axioms fea-
turing in Theorem 1 is necessary to obtain the impossibility stated.
We also made use of a SAT solver for this task.



Peters [25, 26] proved a similar result for the special case of reso-
lute voting rules,3 and our proof proceeds in a similar manner as his
original proof. We are going to further comment on the connections
between his result and our Theorem 1 in Section 4.

3.1 Automated Proof of the Base Case
For fixed parameters (n,m, k), we can model voting rules in propo-
sitional logic using variables of the form pA,X , one for each profile
A ∈ (2C)n and committee X ∈ [C]k. The idea is that pA,X is true if
and only if the voting rule we are modelling will elect committee X
in profile A. Recall that there may be more than one winning com-
mittee in any given profile. So every assignment of truth values to
variables corresponds to a voting rule—except for assignments that,
for some profile A, make pA,X false for every committee X . Such a
truth assignment does not correspond to a voting rule, because such
a “rule” would return an empty set of winning committees for that
profile. Thus, for a given choice of (n,m, k), there is a bijection be-
tween the set of all voting rules and the set of all truth assignments
that are models of the following formula:

ϕAT-LEAST-ONE =
∧

A∈(2C)n

∨
X∈[C]k

pA,X

We can now encode our axioms in a similar fashion, further narrow-
ing down the set of voting rules. Expressing Pareto efficiency is easy:

ϕPARETO =
∧

A∈(2C)n

∧
X∈[C]k

X dominated in A

¬pA,X

In fact, for a fixed choice of (n,m, k), every possible axiom can be
expressed in propositional logic. This follows from the fact that an
axiom is just a way of singling out some subset of the set of all vot-
ing rules, together with the fact that for every possible set of truth
assignments there exists a propositional formula that is true for ex-
actly those assignments. Nevertheless, in practice, some axioms are
more naturally and/or more compactly expressed than others.

Expressing Kelly-strategyproofness is significantly more demand-
ing than expressing Pareto efficiency:

ϕSP =
∧
i∈N

∧
A=−iA′

∧
X ′�CAU

Ai
X

DIFF(A,X ) ∨ DIFF(A′,X ′)

where DIFF(A,X ) =
∨

X∈X

¬pA,X ∨
∨

X∈[C]k\X

pA,X

Here A and A′ are understood to be ranging over all profiles that are
i-variants of each other, and X and X ′ are understood to be ranging
over all nonempty sets of k-committees for which voter i would rank
X ′ strictly above X in case she is a cautious voter. Observe how
DIFF(A,X ) encodes the requirement that the set of winning com-
mittees for profile A must be different from the set X . So ϕSP says
that, if voter i prefers outcome X ′ to X , then either X cannot be the
truthful outcome (in profile A) or X ′ cannot be the outcome for any
profile A′ that i can reach from the truthful profile A.

Finally, expressing the axiom of minimal proportionality, once
again, is relatively straightforward:

ϕPROP =
∧
c∈C

∧
A∈(2C )n

s.t. A is party-list and
|{i:Ai={c}}|>

n
k

∧
X∈[C]k

s.t. c 6∈X

¬pA,X

3 The formulation of Peters’ result in his original paper on the topic [25] has
a small mistake (it is missing a counterpart to our Pareto efficiency axiom).
For a full and correct statement, we refer to his dissertation [26].

Now, if we fix n and k as well as C (and thus m), then the conjunc-
tion of our four formulas is satisfiable if and only if there exists a
good voting rule for this choice of parameters.

For n = 3 and m = 4 there are (24)3 = 4096 possible profiles,
and for m = 4 and k = 3 there are 4 possible committees. So we
require 4096×4 = 16384 propositional variables to express the for-
mulas corresponding to our base case of (3, 4, 3). The conjunction
of our four formulas is a formula in CNF. It actually is a conjunction
of close to 11 million clauses (over 99% of them are used to express
the strategyproofness axiom). We have written a Python script that,
on a mid-range laptop, can generate these clauses in around 20 min-
utes and then save them in a text file, using a standard file format
for CNF formulas (the so-called DIMACS format). We can then use
a state-of-the-art SAT solver, such as LINGELING [6], to determine
whether our formula is satisfiable. Running LINGELING on the for-
mula for (3, 4, 3) returns an answer in under 10 seconds: the formula
is unsatisfiable. Thus, there exists no good voting rule for (3, 4, 3).

Of course, some may find this rather unsatisfactory a proof. What
if there is a mistake in the script generating the CNF formula? And
what if the SAT solver has a bug? Fortunately, SAT solving tech-
nology also provides us with a way out here. We can use a tool for
extracting a minimal unsatisfiable subset (MUS) of the set of clauses
corresponding to our formula, which allows us to pinpoint the precise
source of the unsatisfiability of the formula and thus the impossibil-
ity of designing a good voting rule. Applying the state-of-the-art tool
MUSER2 [5] to our formula yields, in around 45 seconds, an MUS
of 120 clauses (referring to 16 different profiles). This would, in prin-
ciple, allow us to manually verify the impossibility. However, as we
are going to see next, a smart combination of analytic and computer-
generated insights gives rise to a much simpler proof.

Lemma 2. There exists no good voting rule for (3, 4, 3).

Proof. By Lemma 1, minimal proportionality and immunity to ma-
nipulation by cautious voters together imply a subtly stronger form
of the proportionality axiom, which we can encode using the same
approach as before. If we replace ϕPROP by this moderately longer
formula and apply MUSER2 again, we obtain an MUS of just 14
clauses that make reference to just three distinct profiles:

A = { {c, d}, {a, c, d}, {b, c, d} }
A′ = { {c, d}, {a}, {b, c, d} }
A′′ = { {c, d}, {a, c, d}, {b} }

It is easy to extract a human-readable proof from the MUS found.
For the sake of contradiction, suppose F is a voting rule for N =
{1, 2, 3}, C = {a, b, c, d}, and k = 3 that is minimally proportional,
Pareto efficient, and immune to manipulation by cautious voters. Due
to Pareto efficiency, c and d must be part of every winning committee
for each of the three profiles above. Furthermore, due to Lemma 1, a
must get elected in profile A′ and b must get elected in profile A′′.
Thus, we have F (A′) = {{a, c, d}}, F (A′′) = {{b, c, d}}, and
F (A) ⊆ {{a, c, d}, {b, c, d}}. Now consider voter 2 in profile A
and suppose she is cautious. Due to F being immune to manipula-
tion by this voter in this profile, we cannot have {b, c, d} ∈ F (A), as
she then would have an incentive to deviate to A′. By analogous rea-
soning about voter 3 contemplating deviating to A′′ from A we also
cannot have {a, c, d} ∈ F (A). Hence, F (A) = ∅, in contradiction
to the requirements for a well-defined voting rule.

3.2 Inductive Lemmas
We now prove three lemmas that each demonstrate that the existence
of a good voting rule for a given set of parameters implies the ex-



istence of a voting rule for a different set of parameters that, in a
certain sense, are “smaller”. These technical results confirm a basic
intuition: designing a good voting rule tends to be easier for fewer
voters, fewer candidates, and smaller target sizes of the committees
to be elected. Our first lemma concerns the number of candidates.

Lemma 3. If there exists a good voting rule for (n,m + 1, k) with
m > k, then also for (n,m, k).

Proof. Suppose we are given a good voting rule F defined for a
set N of n voters and a pool C ∪ {c?} of m + 1 candidates that
can be used to elect committees of size k. Then we can design a new
rule F ′ for the reduced pool C of candidates as follows:

F ′(A) =

{
F (A) if |

⋃
i∈N Ai| > k

{X ∈ [C]k |
⋃

i∈N Ai ⊆ X} otherwise

Observe that F ′ is well-defined: even in the first case, it will never
return a committee that includes c?. This follows from the Pareto
efficiency of F and the fact that c? 6∈ Ai for all voters i ∈ N .

It is now easy to verify that F ′ is both minimally proportional and
Pareto efficient. So it remains for us to show that F ′ is also strat-
egyproof for cautious voters. Given that F has this property, there
certainly can never be a successful manipulation taking us from one
profile with k or more approved candidates to another such profile.
There also can be no manipulation when there are fewer than k ap-
proved candidates in the truthful profile, given that F ′ makes all vot-
ers maximally happy in that case. The only remaining case is when
there are at least k approved candidates in the truthful profile A and
some voter i reduces her approval set from Ai to A′i to push the over-
all number of approved candidates below k, thereby ensuring that all
of the candidates in A′i will get elected with certainty. But this means
that in the manipulated profile all voters other than i get all of the
candidates they approve of elected with certainty. Thus, even if all
other voters get all of their candidates elected, there still are |A′i| or
more spots that can be filled with candidates approved of by voter i.
Due to the Pareto efficiency of F , under profile A all those spots will
get filled with candidates approved of by voter i. Hence, also in this
case she has no incentive to manipulate.

Our next lemma shows that we can reduce the number of voters as
well, at least in situations where m = k+1. We use a direct reduction
from n = q · k down to n = k.

Lemma 4. If there exists a good voting rule for (n,m, k) with m =
k + 1 and n being a multiple of k, then also for (k,m, k).

Proof. Suppose we are given a good voting rule F for q · k voters to
elect committees of size k from a pool of k+ 1 candidates. We need
to design a voting rule F ′ for just k voters with the same properties.
For any profile A of approval ballots submitted by k voters, let qA
denote the profile for q · k voters we obtain when we concatenate q
copies of A. Let us define F ′ as follows:

F ′(A) = F (qA)

We now need to show that F ′ satisfies our three axioms:

• Proportionality. For F ′, with the number of voters being equal to
the committee size, minimal proportionality requires that c ∈ X
for all X ∈ F ′(A) if A is a party-list profile in which at least
one voter reports {c}. But for any such profile, qA is a party-list
profile in which at least q voters report {c}, which is the quota
required to guarantee c ∈ X for all X ∈ F (qA). Hence, minimal
proportionality of F implies minimal proportionality of F ′.

• Efficiency. For any two committees X and X ′, X Pareto-
dominates X ′ under profile A if and only if it does under profile
qA. Hence, Pareto efficiency of F implies Pareto efficiency of F ′.

• Strategyproofness. We are going to exploit the fact that when there
is exactly one more candidate in the pool than we have to elect,
then any given voter can only distinguish between good commit-
tees (including all the candidates she approves of) and bad com-
mittees (missing exactly one candidate she approves of). So a vot-
ing rule might return (a) a set of only good committees, (b) a set
including both good and bad committees, or (c) a set of only bad
committees. Under the Kelly extension, outcomes of type (a) are
all equally good and strictly better than all other outcomes, out-
comes of type (c) are all equally bad and strictly worse than all
other outcomes, and outcomes of type (b) are all incomparable to
each other. Crucially for our purposes, this means that any two
outcomes belonging to the same class are either equally good or
incomparable to each other, and therefore that the relation 6�CAU

Ai

between outcomes must be a transitive relation.
Suppose a cautious voter i is considering to manipulate F ′ in pro-
file A by changing her ballot, resulting in a new profile A′ with
A =−i A

′. Recall that F ′(A) = F (qA) and F ′(A′) = F (qA′)
and note that qA and qA′ differ on exactly q ballots. Now suppose
we start in profile qA and let those q voters switch, one by one, to
the ballots they report in qA′. Consider the resulting sequence:

qA = A0, A1, . . . , Aq = qA′

Due to the strategyproofness of F we obtain:

F (A1) 6�CAU
Ai

F (A0)
F (A2) 6�CAU

Ai
F (A1)

...
F (Aq) 6�CAU

Ai
F (Aq−1)

Now, due to the transitivity of 6�CAU
Ai

, we get F (Aq) 6�CAU
Ai

F (A0)
and thus also F ′(A′) 6�CAU

Ai
F ′(A). In other words, voter i has no

incentive to manipulate F ′ in profile A.

This completes the proof.

Our final lemma shows that we can also reduce k, the target size for
committees. This reduction works only under certain constraints on
n and m (which, however, is sufficient for our purposes).

Lemma 5. If there exists a good voting rule for (n+1,m+1, k+1)
with m = k + 1 and n = k, then also for (n,m, k).

Proof. Suppose we are given a good voting rule F for k + 1 voters
to elect committees of size k + 1 from a pool of k + 2 candidates.
We need to construct a new voting rule F ′ for k voters to elect com-
mittees of size k from a reduced pool of just k + 1 candidates. Let
c? be the additional candidate featuring only in the original pool. We
define F ′ as follows, for any given profile A = (A1, . . . , Ak):

F ′(A) = {X \ {c?} | X ∈ F (A1, . . . , Ak, {c?}) }

Thus, we create a k + 1st dummy voter, assume she approves of
only the dummy candidate c?, invoke F to obtain a set of winning
committees, and then remove c? from each of these committees.

We first need to show that F ′ only returns committees of size k.
But by Lemma 1, every committee X in F (A1, . . . , Ak, {c?}) has
to include c?. Thus, removing c? from any such committee of size
k + 1 indeed leaves us with a committee of size k.

It remains for us to show that F ′ is good, i.e., that it is minimally
proportional, Pareto efficient, and strategyproof for cautious voters:



• Proportionality. When the number of voters equals the commit-
tee size, minimal proportionality reduces to the following require-
ment: for any candidate c, if at least one voter reports {c} in a
party-list profile, then all winning committees must include c. But
this property is immediately seen to transfer from F to F ′.

• Efficiency. As we have seen, every X ∈ F (A1, . . . , Ak, {c?})
includes c?, so the final voter is fully satisfied. Hence, Pareto effi-
ciency of F ensures that there is no Pareto-superior way of filling
the remaining k seats on the committees as far as the first k voters
are concerned. Thus, Pareto efficiency of F also transfers to F ′.

• Strategyproofness. A voter whose preferences depend on the num-
ber of elected candidates she approves of and who does not ap-
prove of c? will prefer X to X ′ if and only if she prefers X \{c?}
to X ′ \ {c?}. Thus, strategyproofness also transfers immediately.

This completes the proof.

We are now ready to prove our main result.

Proof of Theorem 1. For the sake of contradiction, suppose there ex-
ists a good voting rule for (n,m, k) with k > 3, m > k, and
n = q · k. Then, by m − k − 1 applications of Lemma 3, the same
must be true for (q ·k, k+1, k). By a single application of Lemma 4,
it must also hold for (k, k+1, k) and, by a further k−3 applications
of Lemma 5, for (3, 4, 3). But the latter contradicts Lemma 2.

3.3 Necessity of Assumptions for the Impossibility
One may ask whether Theorem 1 can be strengthened further and
whether the impossibility it establishes will prevail also under less
stringent assumptions. Next, we show that this is not the case, in
the sense that each of the three axioms it appeals to is a necessary
requirement for obtaining the impossibility result. Indeed, if we drop
one of the axioms, then we instead obtain a possibility result, i.e., we
are able to formulate a voting rule that satisfies all of the remaining
requirements.

Proposition 1 below follows immediately from the relevant defini-
tions. Proposition 2 follows from known properties of PAV [2].

Proposition 1. FAV is Pareto efficient and immune to manipulation
by cautious voters.

Proposition 2. FPAV is Pareto efficient and minimally proportional.

Finding a voting rule that is proportional and strategyproof (though
not Pareto efficient) is much more challenging, but SAT solving
can help here as well. Applying LINGELING to the conjunction of
ϕAT-LEAST-ONE, ϕSP, and ϕPROP for (3, 4, 3) returns a satisfying model.
This shows that there exists a voting rule for these parameters that
satisfies the two axioms. The model returned fully describes a voting
rule of the desired kind. However, it does so in an explicit form, by
listing the set of committees returned for each of the 4096 profiles.
By successively encoding and adding further axioms that impose a
certain amount of structure (such as the well-known anonymity and
neutrality axioms), we were able to arrive at a more interpretable rep-
resentation of a rule, which allowed us to prove the following result.

Proposition 3. There exists a voting rule for 3 voters for electing
committees of size 3 from a pool of 4 candidates that is minimally
proportional and immune to manipulation by cautious voters.

Proof. Let N = {1, 2, 3}, C = {a, b, c, d}, and k = 3. For any
given profile A, let N?(A) ⊆ N be the largest set of voters each

approving at least one candidate with |
⋃

i∈N?(A) Ai| 6 |N?(A)|.4
Define the rule F ? as follows:

F ?(A) = {X ∈ [C]k |
⋃

i∈N?(A) Ai ⊆ X }

F ? is minimally proportional, as a voter who only approves of a sin-
gle candidate c in some profile A will always belong to N?(A).

To see that F ? is immune to manipulation by cautious voters, first
observe that a member of the coalition N?(A) never has an incen-
tive to manipulate in profile A. Any other voter can alter the outcome
only by changing her ballot so as to join this coalition of voters de-
termining the outcome. We distinguish two cases. First, a voter who
is not part of the coalition cannot successfully manipulate by adding
more candidates to her ballot, as such a move would never make her
join the coalition deciding the outcome. Second, a simple case dis-
tinction shows that a voter who is not part of the coalition also cannot
successfully manipulate by dropping candidates from her ballot. To
see this, keep in mind that there are only two other agents to consider
and that our voting rule must elect all but one of the four candidates.
The main insight here is the fact that the set of candidates approved
by the new coalition formed after the manipulator has dropped some
candidates from her ballot will never include all of the candidates
she truthfully approves of (otherwise that coalition would have been
feasible in the truthful profile already).

We note that the techniques developed in this paper do not allow us
to infer anything about the possibility of designing a rule that is pro-
portional and strategyproof for larger values of the parameters than
those considered in Proposition 3. Nevertheless, we have been able
to verify—again with the help of a SAT solver—that Proposition 3
also holds for (3, 5, 3) and (3, 5, 4). However, the rules establish-
ing this possibility look very different from the one defined in the
proof above. So these results do not suggest any obvious approach
for defining rules that are proportional and strategyproof for arbitrary
values of our parameters.

Finally, the condition of k dividing n featuring in the statement
of Theorem 1 is necessary for at least certain values of the parame-
ters. Indeed, for (4, 4, 3) the formula encoding the voting-rule design
problem turns out to be satisfiable. At an intuitive level, this may be
explained by the fact that the proportionality axiom is at its most de-
manding when n is divisible by k and at its least demanding when
n is the successor of a number divisible by k. Whether or not the
impossibility persists for all triples (n,m, k) from certain values on-
wards is an open question of some technical interest. Having said
this, answering this question arguably would only have a limited im-
pact on the design of voting rules in practice, given that the designer
usually cannot control the exact number of voters participating.

4 VARIANTS AND DISCUSSION
Our main result shows that it is impossible to design an approval-
based multiwinner voting rule that is proportional, strategyproof, and
efficient. To be precise, we have shown this to be true only for one
specific combination of choices for how to formalise these axioms.
These choices are reasonable and our axioms are logically weaker
than other, similarly reasonable formulations, meaning that the the-
orem is logically stronger than most reasonable variants would be.
Still, other such variants may be of interest to some readers and not
all reasonable variants are logically weaker than our result.

4 Note that N?(A) is always uniquely defined for the case of 3 voters and 4
candidates. The same construction is not possible for arbitrary n and m.



In this section, we therefore discuss some of these variants. Our
objective here is not to provide further fully-fledged theorems relying
on subtly different assumptions, but rather to point out what possibil-
ities there are and, specifically, to highlight the utility of SAT solving
techniques for such an exploration, which allowed us to efficiently
and conveniently check whether a given combination of axioms is a
promising candidate for either a possibility or an impossibility result.

4.1 Varying the Proportionality Axiom
The axiom of minimal proportionality is a technical axiom that cap-
tures a certain feature one would expect any “proportional” voting
rule to exhibit, but it may appear to have a certain air of arbitrari-
ness about it. Other proportionality axioms formulated in the litera-
ture, such a justified representation and extended justified represen-
tation [2], may appear more natural. They indeed are, but they also
imply minimal proportionality. Thus, Theorem 1 of course remains
valid if we use one of these proportionality axioms instead.

4.2 Varying the Strategyproofness Axiom
Our strategyproofness axiom requires that no agent can deviate to
another profile under which the worst committee elected is at least as
good as the best committee elected under the truthful profile, and fur-
thermore the best committee elected is strictly better than the worst
committee elected under the truthful profile. We do not impose any
constraints on how a manipulator changes her ballot. It turns out that
the impossibility remains valid, at least for the case of (3, 4, 3), if we
assume that voters will only ever attempt to manipulate by dropping
candidates from their approval sets. This can be easily verified using
a SAT solver (and is also evident from the proof of Lemma 2).

If we assume that voters will only try to manipulate by adding
candidates, then another query to the SAT solver reveals that PAV for
(3, 4, 3) is immune to manipulation by cautious voters (on top of, by
Proposition 2, meeting all other requirements).

The Kelly preference extension leads to a very weak strate-
gyproofness axiom, making Theorem 1 particularly strong in this
respect.5 Of course, if we replace Kelly-strategyproofness with a
more demanding axiom, such as Fishburn-strategyproofness [16]
or Gärdenfors-strategyproofness [17], then the impossibility we es-
tablished will persist. Of particular interest is the notion of strate-
gyproofness used in the Duggan-Schwartz Theorem [13]. In its for-
mulation by Taylor [30], it requires immunity to manipulation by
both optimistic and pessimistic voters.

An optimistic voter is a voter who believes that ties will always
be broken in her favour; a pessimistic voter is a voter who believes
that ties will always be broken in the worst possible way. The corre-
sponding preference extensions can be defined as follows:

X <OPT
i X ′ if and only if (∃X ∈ X ) (∀X ′ ∈ X ′)X <i X

′

X <PES
i X ′ if and only if (∃X ′ ∈ X ′) (∀X ∈ X )X <i X

′

Observe that requiring immunity to manipulation by both optimistic
and pessimistic voters is strictly more demanding a requirement than
immunity to manipulation by cautious voters, so Theorem 1 remains
true if we use this notion of manipulation instead.

But what if we assume that either all voters are optimists or all vot-
ers are pessimists? Consulting the SAT solver for parameters (3, 4, 3)
shows that rules that are minimally proportional, Pareto efficient, and

5 For comparison, for irresolute single-winner voting rules with ranked pref-
erences, Kelly-strategyproofness allows for possibility results [21, 10].

immune to manipulation by either optimistic or pessimistic voters
(but not both!) exist. In the case of manipulation by pessimistic vot-
ers, this possibility result however is very brittle: if we strengthen
minimal proportionality to the proportionality axiom featuring in the
statement of Lemma 1, then we obtain an impossibility.6

4.3 Varying the Efficiency Axiom
Peters [26] used a less demanding efficiency axiom than the standard
notion of Pareto efficiency we have used here. His axiom of weak ef-
ficiency merely requires that, provided at least k candidates have re-
ceived at least one approval each, no candidate who has not received
any approvals will be part of any of the committees selected:

if |
⋃

i∈N Ai| > k then X ⊆
⋃

i∈N Ai for all X ∈ F (A)

Interestingly, if we replace Pareto efficiency by weak efficiency in
the statement of Theorem 1, then that theorem ceases to hold and we
obtain a possibility result, at least for parameters (3, 4, 3). Indeed, as
another query to the SAT solver demonstrates, the rule F ? shown to
be minimally proportional and immune to manipulation by cautious
voters defined in the proof of Proposition 3 satisfies weak efficiency
as well. Of course, in practice we certainly would hope to be able
to use a rule that is Pareto efficient and not just weakly efficient.7

Nevertheless, this observation provides some intriguing insight into
how relaxing the resoluteness requirement can turn an impossibility
result into a possibility result.

4.4 Varying the Assumptions on Preferences
Recall how, in Section 2.2, we defined the preferences of agent i over
alternative committees in terms of the cardinality of the intersections
of those committees with her true approval set Ai. An alternative
approach would be to only commit to voter i weakly preferring com-
mittee X to committee X ′ in case Ai∩X ⊇ Ai∩X ′. This approach
has the advantage of requiring us to make less specific assumptions
about voters, but it has the disadvantage of making the preference re-
lations induced by approval sets incomplete. Recall that the manner
in which we define preferences affects both our efficiency axiom and
our strategyproofness axiom.8

If we change the encoding of Pareto efficiency and Kelly-
strategyproofness from the cardinality-based to this set-based notion
of preference, then the SAT solver returns a possibility for the case
of (3, 4, 3). Interestingly, Peters’ impossibility theorem for resolute
rules [25, 26] also goes through for set-based preferences. So this
finding constitutes another example that highlights how imposing
resoluteness increases the chances of encountering an impossibility.

5 CONCLUSION
We have proved a new impossibility theorem in social choice the-
ory regarding the design of multiwinner voting rules with approval
ballots that are proportional, strategyproof, and efficient. This result

6 Thus, Lemma 1 ceases to hold if we replace immunity to manipulation by
cautious voters with immunity to manipulation by pessimistic voters.

7 Having said this, as one anonymous reviewer of this paper has pointed out,
there are examples for reasonable rules being discussed in the literature
(e.g., a sequential variant of PAV) that are not Pareto efficient [24].

8 The standard approach to defining preference extensions [4] assumes that
the underlying preference relation is complete. Our definitions of <CAU

i ,
<OPT

i , and <PES
i are well-defined and intuitively appealing also when <i is

incomplete. Still, developing a theory of extensions of incomplete prefer-
ences would be a deserving topic for future research in its own right.



applies even for the arguably weakest possible formulations of the
core axioms we have been interested in, namely proportionality and
strategyproofness, together with the standard formulation of Pareto
efficiency. At the same time, our result relies on a specific assump-
tion on how preferences are induced by the number of elected candi-
dates a voter approves of, and there is room for follow-up work that
explores different assumptions regarding this matter.

Whether or not the reader is interested in the specific contribution
to social choice theory we have been able to make here, we believe
that our work convincingly demonstrates the significant benefits of
the SAT-based approach when working with the axiomatic method.
Maybe more so than in previous contributions of this kind, what ax-
ioms to focus on has been entirely unclear at the start of our inves-
tigation. We encoded more than 25 different variants of the axioms
we eventually selected to feature in our main result and it would have
been much harder, maybe impossible, to carry out this kind of inves-
tigation using purely analytic methods alone. This study thus high-
lights the great potential of SAT solving technology, and indeed AI
methods more generally, for formal investigations into the normative
adequacy of methods for collective decision making.
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