
Lifschitz Realizability for Homotopy Type Theory

MSc Thesis (Afstudeerscriptie)

written by

Dimitrios Koutsoulis
(born May 27, 1992 in Marousi, Attica, Greece)

under the supervision of Andrew Swan and Benno van den Berg, and
submitted to the Examinations Board in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
November 26, 2019 Benno van den Berg (co-supervisor)

Nick Bezhanishvili
Jaap van Oosten
Andrew Swan (supervisor)
Yde Venema (chair)

Abstract

This thesis explores a potential development of the constructive tradition of
Russian Constructive Mathematics (RUSS) inside Homotopy Type Theory
(HoTT). A short introduction to Type Theory is provided. Fragments of
RUSS are then formalized inside it, alongside the Lesser Limited Principle
of Omniscience (LLPO). A construction that follows closely Van Oosten’s
generalization of Lifschitz Realizability is carried out to culminate with a
consistency result; that of our selection of RUSS axioms and LLPO under
HoTT.

Acknowledgement

I want to thank Andrew for guiding me throughout the thesis-writing process.
You have been incredibly patient with me. I also want to thank Benno for
taking care of the organizational aspects of the defense along with the defense
committee and the rest of the audience for taking the time to be there.

I want to extend my gratitude to all the friendly students I met while study-
ing for the MoL. I should explicitly mention the invaluable consultations
with House Baljuwenlaan residents Davide, Georgi, Kristoffer, Nachiket and
frequents Chase, David, Hrafn, Robin, Wijnand, Yao and my AI confidante
May.

Also props to Adrien, Mina, Nuno, Romain and Zhuoye for their good taste
in media and apparel.

1

Contents

1 Introduction 4
1.1 Structure of the Thesis . 5

2 Type Theory 6
2.1 Type Construction Operations 7
2.2 Judgmental Equality . 11
2.3 On paths . 12
2.4 Equivalence . 13
2.5 Univalent Type Theory . 15
2.6 (Definitionally) Extensional Type Theory 16
2.7 Logic . 16

3 Modalities 18

4 Computability 24

5 The Lesser Limited Principle of Omniscience 26

6 Russian Constructive Mathematics & LLPO under Univa-
lence 35
6.1 Null types in E ′ . 39
6.2 CT, LLPO and MP are consistent with Univalent Type Theory 46

7 Conclusion 50

Appendices 52

A Constructive Arithmetic 52

2

A.1 Rational numbers . 52
A.2 Real numbers . 53

B Formal Type Theory 54

3

Chapter 1

Introduction

Russian Constructive Mathematics (RUSS) is a school of constructive math-
ematics in which computability plays a central role. For reference, consider
an axiomatization of RUSS on top of Bishop’s Mathematics [BR87a]. Prac-
titioners of RUSS often have an extended array of axioms to pick from in
addition to the aforementioned axiomatization. One of these axioms is called
Church’s Thesis and states that all functions from N to N are computable.
Another one is Markov’s Principle which states that any binary sequence of
arbitrary length which is not 1 everywhere must be 0 somewhere.

This thesis focuses on a variant of RUSS with the axioms of Church’s Thesis,
Markov’s Principle and the Lesser Limited Principle of Omniscience (LLPO)
with the aim of proving that this theory, when formalized in Homotopy
Type Theory (HoTT), is consistent (Note that unlike the first two axioms,
traditionally LLPO is not an axiom of RUSS, yet we choose to include it
in our theory.). That is, we first formalize the above in a fragment of
the variant of Martin-Löf’s Type Theory (TT) with axiom of Univalence
presented in [Uni13]. We then show that the resulting theory has a model.
To achieve this, using a model of TT from [SU19], which satisfies univalence,
Church’s Thesis and Markov’s Principle, as a starting point, we follow a
method inspired by the generalization of Lifschitz Realizability to toposes
described in [Oos96], where the Lifschitz realizability subtopos is presented
as the topos of sheaves over a local operator. Essentially, the construction
on the effective topos involves defining a morphism j : Ω → Ω with certain
properties, where Ω is the subobject classifier of the topos. Then a process

4

called ‘sheafification’ based on j is carried out to reach the desired subtopos.
Analogously, in the words of Section 3.3 of [RSS17], our Ω in TT is what
we call a ‘subuniverse of propositions’, then sheafification corresponds to
nullification in our case.

As a sidenote, in the rest of this text we always refer to Univalent Type
Theory (UTT) instead Homotopy Type Theory. This is because we want
to stress the fact that the fragment of Type Theory we work with is rather
barebones. Normally HoTT is founded on top of TT by extending it with
the axiom of Univalence and a handful of higher inductive types. Our UTT
assumes Univalence but we don’t bother to equip it with all the usual higher
inductive types. Nevertheless, we expect it to be possible, in accordance with
Remark 3.23 of [RSS17], for the model of UTT that we are constructing to
inherit higher inductive types from the overlying model.

1.1 Structure of the Thesis

This thesis can be divided into two parts. The second part constitutes the
main result of this thesis. The first part is meant to provide the necessary
foundation for the reader to be able to follow the argumentation in the second
part.

The first one starts with Chapter 2 which provides a short introduction to
a variant of Martin-Löf’s Type Theory. Chapter 3 introduces modalities
and nullification which are the most important tools in our disposal. The
following chapters 4 and 5 formalize a bit of Recursion Theory and the Lesser
Limited Principle of Omniscience in Type Theory. Some exposition is also
provided when it comes to the latter, as well as some motivating results that
justify our interest in it.

The second part is Chapter 6. This one can be further divided into two parts.
The prologue of the chapter, up to and including Proposition 6.6, comprises
an amendment of a fragment of [SU19] and works towards procuring an
intermediate model. The reader not familiar with [SU19] might be inclined
to have only a cursive look at this prologue. The rest of the chapter, in which
we extract a model of the desired theory from ‘inside’ the intermediate model,
is self-contained.

5

Chapter 2

Type Theory

Martin-Löf’s intensional Type Theory is a formal language and deductive
system, that is self sufficient in the sense that it need not be formulated as
a collection of axioms on top of some other formal system like First Order
Logic, instead its deductive system can be built on top of its own formal
language. The version of it that we will be considering in this text is the one
used in [Uni13]. This chapter presents, in a concise manner, definitions and
results found in chapters 1-5 of [Uni13].

Central to Type Theory is the notion of Type. Every term a in Type The-
ory we come across, must lie in some type A, which we denote as a : A.
Types themselves are terms of Universes, which are types and terms them-
selves. To avoid impredicativity we assume a countable hierarchy of universes
U1,U2,U3, . . . which is cumulative i.e. every universe includes all previous uni-
verses and their types. While working in type theory we usually simplify our
view of this hierarchy and pick some U , of arbitrary index that we do not
specify, to use as our workspace.

For the deductive part of Type Theory, we interpret propositions as types.
Proving proposition P amounts to providing some inhabitant p : P . This
is in agreement with the BHK interpretation. Type Theory is rich in type
formation rules that gives us the breadth required to do Intuitionistic Logic
inside of it.

6

2.1 Type Construction Operations

In this section we go over all the types of Type Theory we need. When
working out proofs in TT, we use the constructs presented here. Nevertheless,
this is an informal presentation meant to reflect a formal system like the one
in Appendix B.
Remark 2.1. Each new type construction will be presented in the form of a
type forming operation, introduction terms and an induction term/principle.
Roughly speaking, a type forming operation takes as arguments types

A1, A2, . . . , An

and returns a composite type A, the introduction terms describe how to
introduce new terms of type A and the induction term describes how to use
those new terms i.e. defines outgoing functions from A by describing how
they act on those terms given by the introduction terms.

We have the following list of types at our disposal.

• Given types A,B : U we can define the type A→ B : U of functions
from A to B. We can use λ-abstraction to construct elements of this
type. λx.Φ lies in A → B iff for a : A we have Φ[a/x] : B (where
Φ[a/x] is the result of replacing all free occurences of x in Φ with a).
We may also right it as λ(x : A).Φ to make clear which type it lies
in. For f : A → B and a : A we have that the application of f on a,
denoted as f(a) or f a, lies in B, so f a : B.

Functions whose type is of the form A→ U i.e. the codomain is U are
called families of types. They are of special interest because they can
be viewed as types themselves; types indexed by terms of the domain
type. So if B : A → U is such a family of types, then its inhabitants
would be the collection of inhabitants of all B(a)’s for all a : A. This
last sentence is not sanctioned by formal type theory and only serves
to make the introduction of the first dependent type, the dependent
function type, easier.

• Given some type A : U and a family of types B over A, B : A→ U , we
have the type of dependent functions or dependent products∏

a:A

B(a)

7

where for f :
∏

a:AB(a) and x : A we have f(x) : B(x). As in the
case of non-dependent functions, we can use lambda abstraction to
construct elements of a dependently-typed function type. That way,
λx.Φ lies in

∏
a:AB(a) iff B is of the form λy.Ψ and for all a : A we

have Φ[a/x] : Ψ[a/y].

• Given A,B : U we can define the product type A × B : U . For a : A
and b : B we have the pair (a, b) : A× B. We also have the projection
functions

pr1 : A×B → A : (a, b) 7→ a

pr2 : A×B → B : (a, b) 7→ b

We sometimes use the notation x.pri to refer to pri x. We also make
use of the alias fst for pr1 and snd for pr2.

We also have the following induction principle

indA×B :
∏

C:A×B→U

(∏
a:A

∏
b:B

C((a, b))
)
→

∏
x:A×B

C(x)

indA×B(C, f, (a, b)) :≡ f(a)(b)

So given two functions f : A→ C and g : B → C we can construct an
h : A×B → C such that h((a, b)) ≡

(
f(a), g(b)

)
for all a : A, b : B.

• Given A : U and family of types B over A, B : A → U , we can define
the dependent pair type (the dependent version of the product type)∑

a:A

B(a)

Given x : A and b : B(x) we can construct the pair (x, b) :
∑

a:AB(a).
We have two projection functions, similar to the case of the product
type.

pr1 :
∑
a:A

B(a)→ A : (a, b) 7→ a

pr2 :
∏

x:
∑

a:AB(a)

B(pr1 x) : (a, b) 7→ b

Like in the case of the product type, we make use of the dot notation
x.pri here too, along with the aliases fst and snd.

8

The induction principle is the following

ind∑
a:AB(a) :

∏
C:

∑
a:AB(a)→U

(∏
a:A

∏
b:B(a)

C((a, b))
) ∏
x:
∑

a:AB(a)

C(x)

ind∑
a:AB(a)(C, f, (a, b)) :≡ f(a)(b)

• Given A,B : U we can construct the coproduct type A+ B. We can
construct elements of A+B using the functions

inl : A→ A+B

inr : B → A+B

One can guess the induction principle

indA+B :
∏

C:A+B→U

(∏
a:A

C(inl a)
)
→
(∏
b:B

C(inr b)
)
→

∏
x:A+B

C(x)

indA+B(C, fA, fB, inl a) :≡ fA a

indA+B(C, fA, fB, inr b) :≡ fB b

• Given x, y : A we have the identity type x =A y : U (we omit the index
A whenever it’s easily deduced). An element of this type amounts to a
proof that x and y are equal and we call the element a path between x
and y. For every x : A we have idpx : x =A x. The relevant induction
principle describes how we can use elements of an identity type

ind=A
:

∏
C:

∏
x,y:A(x=Ay)→U

(∏
x:A

C(x, x, idpx)
)
→
∏
x,y:A

∏
(p:x=Ay)

C(x, y, p)

The relevant computation rule gives us the judgmental (definitional)
equality

ind=A
(C, c, x, x, idpx) ≡ c x

Definition 2.2. We call a type A a mere proposition or simply a propo-
sition, if for every a, b : A we have a = b.

9

• For every type A : U there exists its propositional truncation ‖A‖.
We also have the truncation map | · | : A → ‖A‖ so that for every
element a : A there exists |a| : ‖A‖. Finally, ‖A‖ is a mere proposition.

Given mere proposition B and f : A → B, the recursion principle
gives us g : ‖A‖ → B such that g(|a|) ≡ f(a) for all a : A. This
recursion principle will prove itself an indispensable tool in the sections
to come. Whenever, in the midst of a proof, the current goal B is a
mere proposition and we have access to some witness a : ‖A‖, we are
allowed by the recursion principle to assume that we have a′ : A and
use it to construct a proof of B.

• We have an empty type ⊥ : U with the induction principle

ind⊥ :
∏
A:U

∏
C:A→U

∏
x:⊥

C x

• We have a unit type 1 : U for which we have a term ∗ : 1 and a witness
of
∏

x,y:1 x = y.

• We have the 2 type with terms 0 : 2 and 1 : 2 and the induction
principle

ind2 :
∏

C:2→U

C(0)→ C(1)→
∏
x:2

C(x)

ind2(C, c0, c1, 0) ≡ c0

ind2(C, c0, c1, 1) ≡ c1

• We have the type of natural numbers N : U equiped with 0 : N and
succ : N→ N. There is also the induction principle

indN :
∏

C:N→U

C(0)→
(∏

:N

C(n)→ C(succ n)
)
→
∏
n:N

C n

indN(C, f0, fs, 0) :≡ f0

indN(C, f0, fs, succ n) :≡ fs
(
n, indN(C, f0, fs, n)

)
Remark 2.3. Sometimes, when constructing a term of some type, we say
that we take cases on it or some other type. By this we mean that we are
invoking a type’s induction or recursion principle. As an example, suppose

10

we have A,B,A + B : U and C : A + B → U and want to construct a
term of

∏
x:A+B C(x). We can do so by taking cases on A + B, i.e. provide

an fA :
∏

a:AC(inl a) which ‘describes where in C we send elements of A’
and an fB :

∏
b:B C(inr b). We have effectively made use of the induction

principle of the coproduct.
Remark 2.4. We sometimes say that we can decide whether A + B. This
is just a shorthand for ‘we can construct a witness of A+B’ and is inspired
by the saying ‘we can decide P’ where P is a mere proposition and we mean
that we can prove P + (P → ⊥) which would also be a mere proposition.
Remark 2.5. Induction principles might appear to give us access only to
dependent functions. They actually give us access to non-dependent func-
tions too. Let C : A→ U be the family of types that forms the codomain of
the resulting function of the induction principle. If for all a : A, C(a) ≡ B
where B : U then we can form a non-dependent function f : A→ B.

2.2 Judgmental Equality

This would be a good place to talk a bit more about the closure properties
of judgmental/definitional equality ≡. Essentially, we demand that ≡ is
a congruence relation built upon those judgmental equalities we introduce
elsewhere, as part of enriching our type theory with type formers, in addition
to being closed under these:

• For any term a : A we have a ≡ a.

• For terms λx. t and u such that the application (λx. t) u is legal
according to their typings, we have (λx. t) u ≡ t[u/x], where t[u/x] is
the result of replacing all free occurences of x in t with u.

• If t ≡ t′ and s ≡ s′ and the application t(s) is legal, then t(s) ≡ t′(s′).

• Closed under lambda abstraction, i.e. if t ≡ t′ then λx. t ≡ λx. t′.

After closing under the above, we drop from ≡ all pairs of terms that belong
to (judgmentally) unequal types.
Remark 2.6. We sometimes introduce judgmental equalities with a colon
on the left :≡. This is just a stylistic choice, i.e. the colon can be ignored.

11

Remark 2.7. When working in type theory, we may freely replace terms
with those judgmentally equal to them. This liberty is justified, as one
would expect, by the inclusion of relevant inference rules in the underlying
formal system of Type Theory.

This concludes our informal presentation of the primitives of Type Theory.
We will continue with definitions and results using the tools we laid out
above.

2.3 On paths

In this section we go over some results about manipulating identity paths.
Lemma 2.8. We can construct the following function with infix notation,
which we call concatenation of paths

· :
∏
A:U

∏
a1,a2,a3:A

(a1 =A a2)→ (a2 =A a3)→ (a1 =A a3)

where A, a1, a2, a3 are implicit arguments and the two paths that follow are
explicitly provided.

Proof. By the induction principle of identity types, it’s enough to work out
only the case where a1 ≡ a2 and the first explicit argument is idpa1 . We
invoke the induction principle once more to get a2 ≡ a3. We then have
a1 ≡ a3 and idpa1 : a1 =A a3.

Corollary 2.9. Concatenating idpa with itself results in itself.

idpa · idpa = idpa

Lemma 2.10. We can invert paths. Formally, we have a function

(·)−1 :
∏
A:U

∏
a1,a2:A

(a1 =A a2)→ (a2 =A a1)

Proof. By the principle of induction we can assume a1 ≡ a2. We can then
replace the goal with a1 =A a1 which is inhabited by idpa1 .

Corollary 2.11. Inverting idpa results in itself.

idp−1
a = idpa

12

Corollary 2.12. Concatenating a path with its inverse results in idp. More
specifically, for p : a =C b

p · p−1 = idpa

p−1 · p = idpb

Lemma 2.13. Applying any function f : A → B to a1, a2 : A such that
p : a1 =A a2 gives us a path apf (p) : f(a1) =B f(a2). We name this action
on paths and this instance, action of f on p.
Formally,

ap :
∏
A,B:U

∏
f :A→B

∏
a1,a2:A

(a1 =A a2)→
(
f(a1) =B f(a2)

)
Proof. Assume the hypotheses A,B, f, a1, a2 and p : a1 =A a2 as above.
We need a witness of f(a1) =B f(a2). We use induction on the identity
type a1 =A a2. So we have to show that for idpa1 : a1 =A a2, we have
f(a1) =B f(a2). By idpa1 we have a1 ≡ a2 which means we can rewrite
the goal as f(a1) =B f(a1), for which we have a witness in the form of
idpf(a1).

Lemma 2.14. For A : U and family C : A → U , if we have p : x =U y
and z : C x then we can transport z over p and get an inhabitant of C y.
Formally

transport :
∏
x,y:A

∏
p:x=Ay

∏
C:A→U

C(x)→ C(y)

Proof. By the induction principle of identity types, we have x ≡ y which
allows us to deduce C(x) ≡ C(y) and thus z : C(y).

2.4 Equivalence

Before going over what it means for two types to be equivalent, we have to
work out some preliminary notions.
Definition 2.15. Let f, g :

∏
a:AB(a) where B : A→ U . We call a function

of the following type a homotopy between f and g

f ∼ g :≡
∏
a:A

f(a) = g(a)

13

Definition 2.16. We call a type A a set if for every a, b : A we have that
a =A b is a mere proposition.
Definition 2.17. We call a type A contractible if there exists a : A such
that for all x : A it holds that x = a.
Formally

isContr A :≡
∑
x:A

∏
a:A

x = a

Definition 2.18. Given some map f : A→ B, a fiber of it over some point
y : B is

fibf y :≡
∑
x:A

(
f(x) = y

)
Definition 2.19. We say that a map f : A → B has contractible fibers
if for every b : B, the type fibf (b) is contractible.
Formally,

hasContrFibers f :≡
∏
b:B

isContr(fibf b)

One way to see this, albeit naive from a set-theoretic point of view, is that
we require for every element of the codomain to have exactly one element
of the domain mapped to it by f . Note that for any map f , the type
hasContrFibers(f) is a mere proposition.

We form a notion of equivalence of types based on maps with contractible
fibers. Whenever we have some f : A → B with contractible fibers, we say
that the types A and B are equivalent and write A ' B which we define
as

A ' B :≡
∑

f :A→B

hasContrFibers f

To motivate this, note that whenever we have A ' B, we can form f : A→ B
and g : B → A so that f ◦ g ∼ idB and g ◦ f ∼ idA. f and g are called each
other’s quasi-inverse. It also holds the other way around, if there exist f, g
like above, then both of them have contractible fibers. Another way to show
that A ' B is to provide some f : A → B and g1, g2 : B → A such that
f ◦ g1 ∼ idB and g2 ◦ f ∼ idA. In these situations, g1 is called a right inverse
of f and g2 a left inverse. Finally, the equivalence of types we introduced
just now is an equivalence relation on U . More exposition on equivalence can
be found in chapter 4 of [Uni13].

14

We will now see some Type Theory variants that expand a bit upon what
we’ve laid out in this section. Before embarking on that, we present the
notion of function extensionality which we do not require to hold in the
type theory presented in this chapter, yet holds in both of the variants below.
As a prerequisite to it, we define the function

happly : (f = g)→ (f ∼ g)

for arbitrary functions f, g :
∏

a:AB a, where A : U , B : A → U . We do so
using induction on the identity path f = g which reduces it to providing a
witness for f a =B(a) g a assuming f ≡ g. Clearly f a ≡ g a so idpf(a) :
f a =B(a) g a.
Axiom 2.20 (Function extensionality). happly has contractible fibers.

Function extensionality, when true, allows us to equate functions that agree
on all inputs.

2.5 Univalent Type Theory

We get the flavour of Univalent Type Theory (UTT) that interests us by
assuming the axiom of Univalence.
Lemma 2.21. We can define the following function

idtoequiv : (A =U B)→ (A ' B)

Proof. The definition of idtoequiv can be found in section 2.10 of [Uni13].

Axiom 2.22 (Univalence). idtoequiv has contractible fibers.

In UTT we usually assume that the universe U that we are working in is
univalent which means that for all A,B : U

(A =U B) ' (A ' B)

Function extensionality follows from univalence.

15

2.6 (Definitionally) Extensional Type Theory

Extensional Type Theory (ETT) is not consistent with the Univalent Type
Theory defined above. To get ETT we assume the following axiom.
Axiom 2.23. Whenever we have an inhabitant p : a =C b we can infer
a ≡ b.

This axiom simplifies the landscape considerably. Starting with it and using
induction on identity types one can eventually deduce that p ≡ idpa. Thus,
the higher path structure of types collapses and types behave similarly to sets.
Additionally, function extensionality follows from the above axiom.

This is enough talk about variants of Type Theory.

2.7 Logic

Our informal deductions in Type Theory will be reminiscent of First Or-
der Logic ones. To be able to use a similar verbiage, we will set down a
handful of types, corresponding to the connectives that let us form well-
formed formulas in FOL. When working intuitionistically we might say that
we have actual/there exists actual a : A of some A : U and this constitutes
a constructive proof of A under the ‘propositions as types’ regime as seen
in [Uni13]. In accordance to this and the BHK interpretation, we have the
following translation of FOL connectives and quantifiers. Assume A,B : U
and C : A→ U .

• A ∧B is A×B.

• A ∨B is A+B.

• ¬A is A→ ⊥.

• ∀a ∈ A, C(a) is simply translated to
∏

a:AC(a).

• Finally, existence ∃a ∈ A, C(a) is interpreted as
∑

a:AC(a).

We would also like a way to form non-constructive statements in Type The-
ory. To do so we would need a way to say that some type C is inhabited
without providing a specific witness c : C, which would have the undesirable
effect of providing more information than a classical statement of existence.

16

An effective way to do so is to provide a witness of the truncation ‖C‖ and
say that C is merely inhabited. So to work non-constructively we restrict our-
selves to using only mere propositions. This approach is called ‘propositions
as mere propositions’ in [Uni13].

• When we talk of conjunction A∧B, where A and B are mere proposi-
tions, we mean the product A×B.

• We interpret A ∨ B, where A and B are mere propositions, as the
truncation ‖A+B‖.

• ¬A is A→ ⊥.

• We interpret ∀a ∈ A, P (a), where P (a) is a mere proposition for all
a ∈ A, as

∏
a:A P (a).

• We interpret ∃a ∈ A, P (a), where P (a) is a mere proposition for all
a ∈ A, as ‖

∑
a:A P (a)‖

Note that the above are all chosen so that they preserve mere propositions,
e.g. A × B is a mere proposition. The use of the above notation is inter-
changeable in the sections to follow. We will try to specify whether a type
is merely or actually inhabited to avoid ambiguity whenever needed.

17

Chapter 3

Modalities

In this chapter we introduce modalities, their definition and important results
about them, adapted from [RSS17] and Section 7.7 of [Uni13].
Definition 3.1. A modality is any function © : U → U with the following
properties.

1. For every type A we have a function η©A : A → ©A called the modal
unit.

2. for every A : U and every type family B : ©A → U we have the
induction principle

ind© :
(∏
a:A

©(B(η©A a))
)
→
∏
z:©A

©(B z)

where A and B are implicit arguments of ind© and can be derived from
context.

3. For every f :
∏

a:A©(B(η©A a)) and every a : A, there is a path

ind©(f)(η©A a) = f a

4. For all z, z′ : © A, the function η©z=z′ : (z = z′) → ©(z = z′) is an
equivalence.

Lemma 3.2. Given A : U , if η©A : A → ©A has a left inverse, then A '
©A.

Proof. Assume the hypotheses of the lemma. We need to show that A ' ©A.
We already have a left inverse so producing a right inverse for η©A would

18

be enough to show equivalence. Let f : ©A → A be the left inverse, i.e.
f◦η©A ∼ idA. We then have η©A ◦f◦η

©
A ∼ η©A ◦idA and η©A ◦f◦η

©
A ∼ id©A◦η©A .

This translates to

h :
∏
a:A

η©A ◦ f (η©A a) = id©A (η©A a)

We define the following function by assuming a : A and applying the relevant
modal unit to h a

h′ :
∏
a:A

©
(
η©A ◦ f (η©A a) = id©A (η©A a)

)
We then use the induction principle of the modality to get

ind© h′ :
∏
z:©A

©
(
η©A ◦ f (z) = id©A (z)

)
Then, by the equivalence mentioned in the fourth datum of Definition 3.1 we
have a quasi-inverse r for the modal unit ηη©A ◦f (z)=id©A (z), which we use to
construct

λ (z :©A). r
(
(ind© h′) (z)

)
:
∏
z:©A

η©A ◦ f (z) = id©A (z)

We’ve proven η©A ◦ f ∼ id©A which means that f is the right inverse of η©A .
Since the modal unit has both a left and a right inverse, we can conclude
that A ' ©A.

The usefulness of this lemma lies in that it makes it easier for us to provide
a proof of equivalence between a type and its image under ©, when they
are so. These types are of special interest to us because they form a

∑
-

closed reflective subuniverse of U . We shall define a predicate to tell them
apart.
Definition 3.3. We define isModal© : U → Prop as such

isModal© A :≡ hasContrFibers η©A

Definition 3.4. Given modality © : U → U , the
∑

-closed reflective sub-
universe of U is encoded by the following type

U© ≡
∑
A:U

isModal©(A)

19

That the subuniverse is
∑

-closed means that for X such that isModal©(X)
and Q : X → U such that

∏
x:X isModal©(Q(x)), we have isModal©(Σx:XQ(x)).

The reflective modifier refers to the fact that for each f : A → B there is
a canonical way to construct its reflection, f ′ : ©A → ©B. We simply
compose f with the modal unit η©B and use the induction principle of the
modality on the result.
Example 3.5. Propositional truncation is a modality as it possesses the
required data outlined in Definition 3.1. Its reflective subuniverse is the
universe of mere propositions.
Example 3.6. Double negation is another modality. It sends type A to
¬¬A ≡

(
(A→ ⊥)→ ⊥

)
. The modal unit is the straightforward

λ(a : A). λ(g : A→ ⊥). g(a)

We should now have a look at some important properties of modalities.
Proposition 3.7. For all A : U , we have isModal©(©A).
Lemma 3.8. For A,B : U such that isModal B we have

(A→ B) ' (©A→ B)

Proof. Note that (A → B) ' (A → ©B) and (©A → B) ' (©A → ©B),
since B is modal. So we reduce our goal to

(A→©B) ' (©A→©B)

We need only provide a quasi-inverse for

(− ◦ η©A) : (©A→©B)→ (A→©B)

to conclude the proof. We propose ind as the quasi-inverse. We first show(
ind◦(−◦η©A)

)
∼ id©A→©B. Let g :©A→©B. We need ind(g◦η©A) = g.

By function extensionality it’s enough to show that∏
x:©A

ind(g ◦ η©A)(x) = g(x)

So, for every x, we are trying to provide a witness for an identity path of terms
in ©B. By the fourth datum of Definition 3.1 and the relevant induction

20

principle, with implicit arguments A and x 7→ ind(g◦η©A)(x) = g(x) :©A→
U , we can reduce it to constructing a witness for∏

a:A

ind(g ◦ η©A)(η©A a) = g(η©A a)

A witness of this type is secured for us, once again by the definition of
modalities, the third item with g ◦ η©A as f .

The proof of
(
(− ◦ η©A) ◦ ind

)
∼ idA→©B is similar to the above, with some

steps being even more immediate.

It is easy to generalize the above lemma to dependent functions.
Corollary 3.9. For A : U and B :©A→ U
such that

∏
x:©A isModal©(B x) we have(∏

a:A

B(η©A a)
)
'
(∏
x:©A

B(x)
)

Theorem 3.10. Reflective subuniverses are closed under dependent products.
That is, for the subuniverse of © and B : A→ U such that∏

a:A isModal©(B(a)), we have that isModal©(
∏

a:AB(a)).

Proof. By Lemma 3.2 it is enough to provide a left inverse for

η©∏
a:AB(a) :

(∏
a:A

B(a)
)
→©

(∏
a:A

B(a)
)

First, for a : A, consider eva : (
∏

x:AB(x)) → B(a) defined by eva(f) :≡
f(a). By isModal B(a) we have that there exists η−1

B a, quasi-inverse of ηB a.
We define

h :≡ λ(f :©
∏
x:A

B x). λ(a : A). η−1
B a

(
ind∏

x:AB x, B a(ηB(a) ◦ eva) f
)

and we propose h as the left inverse. In case the notation above is hard to
discern, we note the typing

ind∏
x:AB x, B a :

(∏
x:A

B x→©B a
)
→
((
©
∏
x:A

B x
)
→©B a

)

21

By function extensionality, it’s enough to show that for g :
∏

a:AB a,

h(η©∏
a:AB(a) g) = g

By function extensionality we reduce this to

h(η©∏
a:AB(a) g) a = g a

for a : A. First, note that we have

h(η©∏
a:AB(a) g) a ≡ η−1

B a

(
ind∏

x:AB x, B a(ηB(a) ◦ eva) (η©∏
a:AB(a) g)

)
By the definition of modalities we have

ind∏
x:AB x, B a(ηB(a) ◦ eva) (η©∏

a:AB(a) g) = ηB(a)(eva g)

so by action on paths we get

η−1
B a

(
ind∏

x:AB x, B a(ηB(a) ◦ eva) (η©∏
a:AB(a) g)

)
= η−1

B a

(
ηB(a)(eva g)

)
By the definition of a quasi-inverse η−1

B a(ηB(a)(eva g)) = eva g which is then
equal to g a. We concatenate the paths needed to reach the desired equality

h(η©∏
a:AB(a) g) a = g a

Definition 3.11. For B : A→ U , we call X B-null if the map

λx.λb.x : X → (B(a)→ X)

is an equivalence for all a : A.

Nullification at a family of types is an example of a modality, as laid
out in [RSS17], where it is presented as a higher inductive type, complete
with constructors and eliminators. To avoid listing all these trappings, we
will instead look at the important properties LB : U → U should have to be
considered a nullification operator.

• It must have all the data required for it to be a modality.

22

• The subuniverse associated with it is the subuniverse of B-null types
of U , i.e. the modal, under LB, types in U are the B-null types in U .
In particular, for all X : U , LB(X) must be B-null.

We will now go over some important properties of nullification. Given that
we did not present here the specific construction that comprises nullification,
we will not bother with the proofs of these properties. We will instead request
that the reader assumes they hold true and point to their actual proofs in
[RSS17].

Nullification behaves nicely across universes. The following proposition is
adapted from Lemma 2.24 of [RSS17].
Proposition 3.12. For nullification operator © : U → U and universe U ′
higher in hierarchy than U (i.e. U : U ′) we have that there is a canonical way
to construct ©′ : U ′ → U ′ (the canonical extension of © to U ′) and that the
following statements hold true.

• For X : U we have isModal© X ↔ isModal©′ X.

• For X : U the induced map ©′X →©X is an equivalence.

©′ is defined by nullifying at the same family of types as © since the same
family resides in the higher universe too. The induced map mentioned in
the second item refers to the one we get by starting with η©X : X → ©X
and, with item (i) in mind, apply the modality induction principle of ©′ to
η©X .

The modality of greatest interest to us will be a nullification at a family of
mere propositions i.e. we nullify at some B where B : A→ Prop. This sort
of modality is what is called a left exact modality in [RSS17] as shown in
Corollary 3.11 of the aforementioned text. Because of this, Theorem 3.10 of
[RSS17] applies to our modality.
Proposition 3.13. If © is a nullification at a family of mere propositions,
then the subuniverse U© :≡

∑
X:U isModal©X is itself ©′ modal, for any

©′ which is the canonical extension of © to some U ′ such that U : U ′.

The significance of this lies in that it establishes an equivalence between ULB
and L′BULB in U ′ where U : U ′. This equivalence will come in handy later
in Section 6.2, when we will inductively apply LB to a type’s construction
hoping for the resulting type to be equivalent to the one we started with, or
at least similar enough.

23

Chapter 4

Computability

We quickly have a look at a spoonful of Recursion theory which we formalize
in Type theory. The reader is expected to be somewhat familiar with Turing
machines, as we will not be delving into their technical details.
Definition 4.1. A partial function is a function with a subset of the
naturals as its domain.
Formally

f :
(∑

n:N

P n
)
→ N

where P : N → Prop is a family of propositions over N, which works as the
characteristic function of the domain of the partial function f .

A standard result in Recursion theory is that there exists a Turing ma-
chine that enumerates all Turing Machines. We assume a fixed enumeration
T1, T2, . . . that we refer to going forward.
Definition 4.2. Church’s thesis (CT) is an axiom to be assumed, which
states that every function N→ N is computable. Formally in Type theory∏

f :N→N

∥∥∥∑
e:N

∏
x:N

∑
z:N

T (e, x, z)× U(z) = f(x)
∥∥∥

where T is Kleene’s predicate, e identifies a Turing machine, x is some input
to f and its corresponding Turing machine Te, finally z is the computation
history that Te goes through when given x as the input, with U(z) being the
output at the end of the computation.

24

In other words, Church’s thesis assures us that for every f : N → N there
exists some computable function that agrees with it on every input. For a
more complete development of Recursion Theory in a constructive setting, we
point to [TD88] and [BR87a] which use intuitionistic arithmetic and Bishop’s
constructive mathematics, respectively, as the foundation. This chapter was
inspired by the latter.

25

Chapter 5

The Lesser Limited Principle of
Omniscience

We define the Lesser Limited Principle of Omniscience, which we append to
our theory of Russian Constructive Mathematics. The rest of the chapter,
which the reader may skip as it does not come up again, is dedicated to pro-
viding background information on LLPO. More specifically, we are interested
in clarifying how much ‘non-constructive power’ we get by adopting it.

In the following definition s is, in places, taken to be an implicit argument.
In the sections to follow, terms and types that use it implicitly, are supplied
with explicit arguments when the need to be clear arises.
Definition 5.1 (LLPO). The Lesser Limited Principle of Omniscience, states
that given binary sequence s : N → 2 and the fact that there is at most one
occurence of 1 in the sequence, formally

atMost1one s :
∏
n1:N

∏
n2:N

s(n1) = 1→ s(n2) = 1→ n1 = n2

we can then have by the LLPO a witness for podd∨peven, where podd (with s as
an implicit argument) is the statement that for all odd positions n, s(n) = 0,
formally podd ≡

∏
n:N(odd(n) = 1) → s(n) = 0, and odd : N → 2 with

odd n = 1 iff n is odd. Similarly for peven.

We now provide an alternative equivalent formulation of LLPO.

26

Definition 5.2 (LLPO’). LLPO’ states that for any s : 2N we have that(∏
n:N

(
s n = 1×

∏
m:N

m < n→ s m = 0
)
→ odd n

)

∨(∏
n:N

(
s n = 1×

∏
m:N

m < n→ s m = 0
)
→ even n

)
In other words, LLPO’ says that for any binary sequence either the first
non-zero position is odd, if it exists, or it’s even, if it exists.
Lemma 5.3. LLPO is equivalent to LLPO’.

Proof.

(LLPO → LLPO’) Let s : 2N. Define ζi : {1, . . . , i} → 2 by primitive
recursion: we define ζ1(1) :≡ s(1). For every i : N, i > 1, define ζi as such:
for n : {1, . . . , i} we can decide whether (n = i) + (n < i). We take cases
on this. If n < i then let ζi(n) :≡ ζi−1(n). Otherwise, if n = i then first
decide whether

∏
m:{1,...,i−1} ζi−1(m) = 0 holds or not. If it holds then we let

ζi(i) :≡ s(i). Otherwise we set ζi(i) :≡ 0.

We have effectively defined ζ :
∏

i:N 2{1,...,i} : i 7→ ζi. We define s′ : 2N :
n 7→ ζ(n)(n). One can easily verify that atMost1one s′. By LLPO we have
podd(s

′)∨peven(s′). Our goal is a mere proposition so we ignore the truncation
of the disjunction and take cases on the coproduct. Wlog we only deal with
the case podd(s

′). By inr our goal is reduced to proving∏
n:N

(
s n = 1×

∏
m:N

m < n→ s m = 0
)
→ even n

Consider n : N such that s n = 1 and for any m < n, s m = 0. We need to
show that n is even. We can decide whether even(n) + odd(n). In the left
case we are done. In the right case we have n to be odd. Since for all m < n,
s(m) = 0 and s(n) = 1 we have that ζn(n) = 1 and by extension s′(n) = 1.
This contradicts the fact that n is odd and podd(s

′).

(LLPO← LLPO’) Let s : 2N such that atMost1one s. We apply LLPO’ to s
to get a witness of the consequent disjunction. We drop the truncation and

27

wlog pick the left constituent of the coproduct. So we have

p :
∏
n:N

(
s n = 1×

∏
m:N

m < n→ s m = 0
)
→ odd n

We choose to show peven s. So, for n : N, even(n), we need to show s n = 0.
We can decide whether (s n = 0) + (s n = 1). The first case is trivial.
Suppose s n = 1. We want to reach falsum so that we can resolve the case
using Ex Falso. We reduce this to showing n to be odd which comes in
contradiction with it being even. odd(n) would follow from p if we only had∏

m:Nm < n→ s m = 0. So, consider m : N, m < n. We can decide whether
(s m = 0) + (s m = 1). In the left case we are done and in the right one we
have by atMost1one(s) that m = n, but by m < n we can deduce m 6= n,
contradiction.

LLPO can be viewed as a weaker form of the Law of Excluded Middle.
Lemma 5.4. The Law of Excluded Middle implies the Lesser Limited Prin-
ciple of Omniscience.

Proof. By LEM we have a witness l1 : podd∨¬podd. Since this is a coproduct,
by the relevant principle of induction, it’s enough to prove LLPO from the
disjuncts.

• podd ⇒ LLPO, trivially.

• ¬podd, alongside LEM, implies that there exists odd ne : N such that
s(ne) = 1. We can now prove

∏
n:N even(n) → s(n) = 0. Let n : N

such that even(n) is true. By the definition of s, s(n) = 0 ∨ s(n) = 1.
We invoke the principle of induction of coproducts and prove LLPO
from the disjuncts.

– s(n) = 0, in this case we are done.

– s(n) = 1. By atMost1one we have n = ne ⇒ n even and odd
which is a contradiction c : ⊥. Ex Falso, efq : ⊥ → s(n) = 0.
Then efq(c) : s(n) = 0.

28

Lemma 5.5. If we replace the consequent of LLPO with its double negation,
let’s call it LLPO¬¬, then we can prove it in Type Theory.

LLPO¬¬ :≡
∏
s:2N

(
atMost1one(s)→ ¬¬

(
podd(s) ∨ peven(s)

))
Proof. From LEM ⇒ LLPO we have LEM ⇒LLPO¬¬ by effectively the
same proof. Since we invoke LEM only twice, we can propose the double
negation of these two instances of LEM where the need arises, show that
they are provable in our context and then drop the double negation since
it’s a modality and the goal is of the same modality. We effectively use the
same method as when we drop truncations around hypotheses when proving
mere propositions, only this time we are working with the double negation
modality.

Like earlier in the chapter, we let s be an implicit argument to reduce clutter.
The first instance we come across is

podd ∨ ¬podd

We want to prove ¬¬(podd ∨ ¬podd). Assume q : (podd ∨ ¬podd) → ⊥. We
compose q with | · | to get

q′ : (podd + ¬podd)→ ⊥

We then have
q′ ◦ inl : ¬podd

and
q′ ◦ inr : ¬¬podd

which lead us to falsum.

The second instance is∥∥∥ ∑
ne:Odd

s(ne) = 1
∥∥∥ ∨ ¬∥∥∥ ∑

ne:Odd

s(ne) = 1
∥∥∥

Assume the negation of the above

q : ¬
(∥∥∥ ∑

ne:Odd

s(ne) = 1
∥∥∥ ∨ ¬∥∥∥ ∑

ne:Odd

s(ne) = 1
∥∥∥)

29

towards contradiction. We compose with |·| to rid ourselves of the truncation

q′ : ¬
(∥∥∥ ∑

ne:Odd

s(ne) = 1
∥∥∥+ ¬

∥∥∥ ∑
ne:Odd

s(ne) = 1
∥∥∥)

We then have
q′ ◦ inr : ¬¬

∥∥∥ ∑
ne:Odd

s(ne) = 1
∥∥∥

and
q′ ◦ inl : ¬

∥∥∥ ∑
ne:Odd

s(ne) = 1
∥∥∥

Contradiction.

Definition 5.6. The Axiom of Countable Choice (ACC) is adapted from
its set-theoretic counterpart and states that if for every n : N there exists
(merely) some b : ‖B n‖, where B : N→ U is a family of h-sets over N, then
there merely exists some f :

∏
n:NB n.

More concisely (∏
n:N

∥∥B n
∥∥)→ ∥∥∥∏

n:N

B n
∥∥∥

The following lemma and its proof are adapted from Theorem 1.5 of [BR87a].
Lemma 5.7. Under Church’s thesis, the following type is inhabited∑
F :N→N→2

((∏
m:N

atMost1one F (m)
)
×
(∏
f :N→2

∥∥ ∑
m,k:N

F (m, 2k + f m) = 1
∥∥))

Proof. First we provide a witness

G :
∑

F :N→N→2

∏
n:N

atMost1one F (n)

For n,m : N we pick the indexed Tn Turing machine of our enumeration. We
can decide whether m is odd or even.

• If it’s odd, then there exists actual k : N such that m = 2k + 1. If k
is the Gödel number of the computation history that Tn goes through
when given n as the input, furthermore, if it halts at the end of this
computation with output 1 then set G.fst n m :≡ 1. Otherwise set
G.fst n m :≡ 0.

30

• If it’s even, then there exists actual k such that m = 2k. We work as in
the odd case, with the only difference being that we set G.fst n m :≡ 1
iff the output of the halting computation is 0.

Having defined G.fst it’s easy to see that G.snd has a straightforward proof,
which we omit.

We now define
Q : (N→ N→ 2)→ U

by

Q F :≡
∏

f :N→2

∥∥ ∑
m,k:N

F (m, 2k + f m) = 1
∥∥

We want to prove Q G.fst. Consider arbitrary f : N → 2. By CT we have
that there exists, merely, e : N such that Te computes f , furthermore there
exists z : N which z is the Gödel number of the halting computation that Te
goes through when given e as an input and lastly Te halts at the end of this
computation and outputs j : N where j = f e. Since it’s decidable whether j
is 0 or 1, we can take cases on it. In both cases we have G.fst(e, 2z+ j) = 1.

We conclude the proof by providing G.fst as the first component and the
product of G.snd with Q G.fst as the second.

The following theorem and its proof are adapted from Corollary 1.6 of [BR87a].
Theorem 5.8.

ACC × CT × LLPO → ⊥

Proof. Let G be the witness we reached in our proof of Lemma 5.7. Let
F :≡ G.fst. By LLPO we can procure

f :
∏
n:N

‖podd(F n) + peven(F n)‖

By the ACC we get

f ′ :
∥∥∏
n:N

podd(F n) + peven(F n)
∥∥

Since our goal is ⊥, which is an h-prop, we can ignore the truncation and act
as if we have access to

f ′′ :
∏
n:N

podd(F n) + peven(F n)

31

Let e :
(
podd(F n) + peven(F n)

)
→ 2 be the function that sends inl :

podd(F n) + peven(F n) to 1 and inr to 0. It’s easy to see that the following
holds

q :
∏
n:N

(
(e ◦ f ′′ n = 1)→ podd(F n)

)
×
(
(e ◦ f ′′ n = 0)→ peven(F n)

)
By G.snd we have that there exist m, k : N such that we have

l : F (m, 2k + e ◦ f ′′ m) = 1

This should normally be truncated, but given the context, we are allowed to
drop it.

We then take cases on (e ◦ f ′′ m = 0) + (e ◦ f ′′ m = 1).

• If e ◦ f ′′ m = 0 then by q m we have peven(F m). This contradicts l.

• Similarly, e ◦ f ′′ m = 1 is also in contradiction with l.

In either case we reach falsum, concluding the proof.

For those interested in constructive analysis, here’s a consequence of LLPO.
Theorem 5.9. LLPO implies

∏
x:R x ≤ 0 ∨ x ≥ 0.

Proof. Let x : R. We define sequence s1 : 2N as such: for n : N, xn is a
rational. So we can decide (xn < − 1

n
) + (xn ≥ − 1

n
). In the left case define

s1 n :≡ 1 and in the right case s1 n :≡ 0. Similarly define s2 so that for n : N
decide (xn >

1
n
) + (xn ≤ 1

n
) and let s2 n :≡ 1 if xn >

1
n

and s2 n :≡ 1 if
xn ≤ 1

n
. Define s : 2N by interleaving s1 and s2, so that s(2n + 1) :≡ s1(n)

and s(2n) :≡ s2(n). We apply LLPO’ to s and take cases on the resulting
coproduct, after dropping the truncation. Wlog we deal only with

p :
∏
n:N

(
s n = 1× (

∏
m:N

m < n→ s m = 0)
)
→ odd n

We will try to prove x ≤ 0 which can then be followed by inl to conclude the
main goal. So we need to show that

∏
n:N xn ≤

1
n
. Let l : N. xl is a rational

so we have that (xl ≤ 1
l
) + (xl >

1
l
). We take cases on this coproduct. The

left case is trivial.

32

In the right case, we have s2 l = 1 which implies s 2l = 1. We will construct
a witness, by induction on N, of ∏

n:N

(
(∑
m:N

(
(m < n)× (s m = 1)× (

∏
k:N

k < m→ s k = 0)
))

+(∏
m:N

m < n→ s m = 0
)

)
which we will use to prove our current goal, by arriving at a contradiction.
We name our witness to be constructed f . f(0) is trivial to construct by
showing that no natural is below 0 and using inr. We assume that we have
some f(n) for n : N and want to define f(succ n). We take cases on f(n).
In the left case we have an actual m less than n such that s(m) = 1 and s is
constantly zero below it. By definition n < succ n so m < succ n. This fact
along with s m = 1 and the constantness of s to 0 below m can be combined
into a triplet to which we apply inl to get our definition of f(succ n).

In the right case we have
∏

m:Nm < n→ s m = 0. Note that we can decide
(s n = 0) + (s n = 1). We take cases on this. In the left case we simply
apply inr to the fact that s is constantly 0 below succ n and we are done.
In the right we can use n as the candidate for the triplet and then apply inl

to the triplet.

We are done with defining f . We now want to construct a witness k :∑
n:N(s n = 1)×

∏
m:Nm < n. We take cases on f 2l. The left case is trivial.

In the right case we have that for every n : N less than 2l, s n = 0 and we
already have s 2l = 1 as a hypothesis, these two facts are enough to conclude
the case. By p(k) we have that k.fst is odd. So there exists natural m such
that k.fst = 2m + 1. We can decide whether (xm < − 1

m
) + (xm ≥ − 1

m
)

and we do take cases on it.

First we look at the right case where xm ≥ − 1
m

. This implies that s1(m) = 0
and by extension s(k.fst) = s(2m+ 1) = 0. Contradiction, since s(k.fst) =

33

1. In the left case we have xm < − 1
m

. But then abs(xl − xm) > 1
l

+ 1
m

this
is in contradiction with our assumption that x is a real number.

34

Chapter 6

Russian Constructive
Mathematics & LLPO under
Univalence

In this chapter we present the main result of this text, which is showing that
Univalent Type Theory is consistent with Church’s thesis, Markov’s principle
and LLPO. Markov’s Principle is the following statement(∏

n:N

(P n+ ¬P n)
)
→
(
¬
∏
n:N

¬P n
)
→
∥∥∥∑
n:N

P n
∥∥∥

where P : N→ Prop is a family of propositions over N. Informally, Markov’s
Principle states that if we have a collection of decidable propositions and the
fact that not all of them are false, then one of them must be true.

To reach the consistency result, we will work with models and results pre-
sented in [SU19]. First, some quick terminology. A cwf (category with fam-
ilies) model of type theory is a categorical construction which ‘realizes’ all
data of formal TT presented in Appendix B.

A quick overview of the overarching proof goes like this:
Start with a model of ETT+CT+MP. Show that this model satisfies a state-
ment that will go by the name of IP’. Construct, based on the underlying
structure of this model, another model of UTT+CT+MP+IP’. Identify the
null - with respect to LLPO - types of this model to retrieve a model of

35

UTT+CT+MP+LLPO.
We proceed with the actual proof.

As the first step towards our goal, we consider the cwf model built on top
of the category of internal cubical objects in Asm(K1). For the category
of assemblies over Kleene’s first model, Asm(K1), we direct the reader to
Chapter 1 of [Oos08]. We call this model E . By Theorem 3.10 of [SU19] E
satisfies Assumption 3.1 of the same paper. So it is a model of extensional
type theory. Furthermore, Church’s Thesis and Markov’s Principle hold in
it, as shown in the proof of theorem 6.4. of [SU19].

In addition to the above, we expect, given Lemma 5.6 of [RS18], that E
validates the following ‘Independence Principle’(∏

s:2N

P s→
(∏
n:N

s n = 0
)
→
∥∥∥∑

z:N

Q s z
∥∥∥)

→
(∏
s:2N

P s→
∥∥∥∑

z:N

(∏
n:N

s n = 0
)
→ Q s z

∥∥∥)
where P : 2N → Prop and Q : 2N → N → Prop are families of propositions.
Putting it plainly, if the left hand side of the above is true, then z : N does
not depend on the proof of the constantness of s to 0.
Definition 6.1. Given f : C → D we say that it’s constant if for any
c1, c2 : C, f(c1) = f(c2).
Formally,

isConst f :≡
∏

c1,c2:C

f(c1) = f(c2)

Remark 6.2. Let A :≡
∑

a:2N atMost1one a. When referring to elements of
A we implicitly mean the first part of the pair. Let

B : A→ U

B :≡ λ a. podd a+ peven a

We set as our new subgoal to reach an Orton-Pitts model, as seen in Section
3 of [SU19], which models UTT, CT and MP. We call this model to be
constructed E ′. Furthermore, we require that N is ‖B‖-null in this model.

36

To make sure that this last requirement is met, we would like the following
instance of IP to hold in it.

∏
a:A

∏
h:
∑

k:B a→N isConst(k)

(

(∏
s:2N

((∏
n:N

s(n) = a(2 · n)
)
∨
(∏
n:N

s(n) = a(2 · n+ 1)
))
→

(∏
n:N

s n = 0
)
→
∥∥∥∑

z:N

∏
p:B a

k p = z
∥∥∥)

→
(∏
s:2N

((∏
n:N

s(n) = a(2 · n)
)
∨
(∏
n:N

s(n) = a(2 · n+ 1)
))
→

∥∥∥∑
z:N

(∏
n:N

s n = 0
)
→
∏
p:B a

k p = z
∥∥∥))

The fact that N is ‖B‖-null, follows from this in Intensional Type Theory.
Our plan of action shall be to compromise and find a consequent of it, IP’,
weaker than IP in ETT but strong enough to imply ‖B‖-nullness of N in
UTT, that has the right form so that by Corollary 6.2 of [SU19] we get our
E ′ that satisfies IP’. Note that we have been and will be working in ETT
up until the construction of E ′ is finalized. This is because we are proving
results pertinent to E .

We drop the truncation around ‖
∑

z:N
∏

p:B a k p = z‖ and since this is the
consequent of the antecedent, the resulting statement is weaker than the
original IP. We then uncurry 4 times to reach what we propose as our IP’,
a function that takes four arguments in the form of a quaternary dependent
pair

37

a : A

h :
∑

k:B a→N

isConst(k)

:

(∏
s̄:2N

((∏
n:N

s̄(n) = a(2 · n)
)

+
(∏
n:N

s̄(n) = a(2 · n+ 1)
))
→

(∏
n:N

s̄ n = 0
)
→
∑
z̄:N

∏
p:B a

h.fst p = z̄

)
r :

∑
s:2N

((∏
n:N

s(n) = a(2 · n)
)

+
(∏
n:N

s(n) = a(2 · n+ 1)
))

and has return type∥∥∥∑
z:N

(∏
n:N

s n = 0
)
→
∏
p:B a

h.fst p = z
∥∥∥

The observant reader should have noticed that the disjunctions in the third
and fourth arguments have been replaced with coproducts. This seemingly
makes the unnamed third argument weaker which would have the undesirable
effect of potentially strengthening IP’ beyond IP. Luckily the consequent of
is a mere proposition which means that swapping disjunction for coproduct
does not actually change the strength of the argument. In the case of r the
argument becomes stronger, which is satisfactory in itself. So we have the
following lemma.
Lemma 6.3. IP implies IP’.

So IP’ holds in E , since IP holds in it. We need the following lemma and its
corollary to bundle together CT, MP and IP’.
Lemma 6.4. Consider families of types B1, B2 where Bi : Ai → U and
Ai : U , i ∈ {1, 2}.

Define B : A1 + A2 → U , B(inl a) :≡ B1(a) for a : A1 and B(inr a) :≡
B2(a) for a : A2. Then the following type∏

a:A1

‖B1 a‖ ×
∏
a:A2

‖B2 a‖

is equivalent to ∏
a:A1+A2

‖B a‖

38

Proof. (⇒) Suppose that we have p :
∏

a:A1
‖B1 a‖ ×

∏
a:A2
‖B2 a‖. We want

to construct a function
∏

a:A1+A2
‖B a‖. We use induction on the coproduct

and wlog work out only the case
∏

a:A1
‖B(inl a)‖. For a : A1 we have that

p.fst(a) is a witness of ‖B(inl a)‖.

(⇐) Suppose q :
∏

a:A1+A2
‖B a‖. We want to construct a witness for∏

a:A1
‖B1 a‖×

∏
a:A2
‖B2 a‖. We do so by constructing witnesses for both of

the constituents of the product. Wlog we do that only for
∏

a:A1
‖B1 a‖. Let

a : A1. Then q(inl a) : ‖B1 a‖, by the definition of B.

Corollary 6.5. The above lemma generalizes from the case of two families
of types B1, B2 to a finite collection of families B1, . . . , Bn.

This fact enables us to reformulate a finite collection of statements, each
one in the correct form, to a single statement in that same form which is
equivalent to their conjunction. So, given that CT, MP and IP’ are in the
right form required by Theorem 6.1 of [SU19], by the corollary above and
said theorem, we have that there exists Orton-Pitts model E ′ of UTT, CT,
MP and IP’.
Proposition 6.6. E ′ is an Orton-Pitts model of UTT in which CT, MP and
IP’ hold.

6.1 Null types in E ′

The proofs in this section are all about ‖B‖-nullness i.e. equivalence between
function types (see Definition 3.11). We work in the context of Intensional
Type Theory. Our approach in showing that some F : C → D is a map with
contractible fibers, is to provide for any d : D (merely) some c : C such that
f(c) = d and then show that such a c is unique (its type is a proposition),
where C,D are said function types.
Lemma 6.7. N is ‖B‖-null in E ′.

Proof. Given a : A and f : ‖B a‖ → N we need to prove that there exists
unique f ′ : 1 → N through which f factors, in the sense that f = f ′ ◦ g,
where g : ‖B a‖ → 1 is the sole inhabitant of its function space. Functions
with 1 as their domain are constant. We therefore need to find some z : N
so that λ . z is f ′. To that end, we will use IP’ which we’ve proven true in

39

E ′. We invoke it twice. In both times, the first three arguments shall be the
same. The choice for the first argument, a, is evident.

We provide the composition f ◦ | · | : B a→ N as h.fst of second argument.
We need to provide a witness for the second part of h, isConst(f ◦ | · |).
Let q1, q2 : B a. We need to show that f |q1| = f |q2|. Since ‖B a‖ is
a proposition, we have |q1| = |q2| and then by action on paths we get the
desired equality.

We need to construct a witness for the third argument. Let s̄ : 2N such
that s̄ is constantly equal to 0 and at the same time it is actually equal
to the odd subsequence of a or to the even one i.e.

(∏
n:N s̄(n) = a(2 ·

n)
)

+
(∏

n:N s̄(n) = a(2 · n + 1)
)
. We take cases on this coproduct. Wlog

suppose that
∏

n:N s̄(n) = a(2 · n). We can use this to construct a witness
evenSubseqIsZero : B a. We then put forward f |evenSubseqIsZero| as z̄.
Recall that we’ve set h.fst to be f ◦ | · |. We need to show that for arbitrary
p : B a, we have f |p| = f |evenSubseqIsZero|. This follows from ‖B a‖
being a proposition and action on paths.

Finally, for argument r we provide the odd s1 and even s2 subsequences of
a, along with proofs that they are indeed subsequences of a and we get hold
of z1 : N and z2 : N respectively, along with

ζi :
(∏
n:N

si n = 0
)
→
∏
p:B a

(
f(|p|) = zi

)
for i ∈ {1, 2}. Recall that the current goal is a mere proposition, namely that
merely exists some f ′, that is why we can act as if we have actual z1 and z2.
Equality on N is decidable, therefore (z1 = z2) + (z1 6= z2) is provable.

We will first prove that the existence of a candidate for f ′ follows from both
constituents of the coproduct.

• First the case where z1 = z2. We arbitrarily pick z1 and propose
f ′ :≡ λ . z1 : 1 → N. By function extensionality we reduce proving
f = f ′ ◦ g to proving f c = f ′(g c) for arbitrary c : ‖B a‖.
Since our goal is a mere proposition (N is a set, so equality on it is a
proposition), we can act as if we have access to an actual b : B a. We
take cases on b.

– In the first case we have podd which trivially leads us to b1 :∏
n:N s1 = 0. We then have ζ1(b1)(b) : f(|b|) = z1. Since ‖B a‖ is

40

a mere proposition, we have |b| = c. By action on paths on this
and f we get f c = z1. By definition, f ′(g(c)) = z1, which we
concatenate with f(c) = z1 to get f c = f ′(g c) and conclude this
case.

– In the case where peven, we similarly construct b2 :
∏

n:N s2 = 0.
We then have ζ2(b2)(b) : f(|b|) = z2. The proof follows closely the
previous case, only this time around we have to include z1 = z2 in
the concatenation of paths.

• Now consider the case z1 6= z2. For any n : N, a n = 1 is decidable.
Suppose that

∏
n:N a n 6= 1. Then a and by extension s1 and s2 are con-

stantly 0. We use these facts to construct b : B a and bi :
∏

n:N si = 0
and then concatenate ζi(b)(bi) like before to get z1 = f b = z2. This
contradicts z1 6= z2. We have proven ¬

∏
n:N a n 6= 1. By Markov’s

Principle there exists n1 : N such that a n1 = 1. We pick the sub-
sequence s0 with parity opposite to n1 and let f ′ be always equal to
the corresponding z0. We prove

∏
n:N s0 n = 0 by induction on N and

cases on (s0 n = 0) + (s0 n = 1). In the case where s0 n = 1 we can
reach falsum because n will have to be both even and odd (in a) by
atMost1one a. Ex falso trivializes this case. Now that we have estab-
lished this too, we can construct b : B a and have enough arguments
for IP’ to output the desired equality f b = z0 which proves homotopy
between f and (λ . z0) ◦ g.

We still need to prove the uniqueness of f ′. Since 1 is finite and equality on
N is decidable, we can decide equality on the function space

p :
∏

f1,f2:1→N

f1 = f2 + f1 6= f2

We will use this to prove that
∑

h:1→N f = h ◦ g is a mere proposition,
which entails the uniqueness of f ′. Consider h1, h2 : 1 → N such that
f = hi ◦ g, i ∈ {1, 2}. By p we have (h1 = h2) + (h1 6= h2). We use
induction on the coproduct. The left case is trivial. For the right case we
have q : h1 6= h2 and we will first try to prove B a→ ⊥ as a stepping stone.
Consider b : B a. Since h1 ◦ g = f = h2 ◦ g, by homotopy h1(g b) = h2(g b).
We can then prove

∏
∗:1 h1(∗) = h2(∗). By function extensionality h1 = h2.

But this contradicts q, so we reach ⊥. We’ve just proven τ : B a → ⊥.

41

We still have to prove h1 = h2, the main goal. By Lemma 5.5 we have
(B a→ ⊥)→ ⊥ and by τ we get ⊥. We conclude the proof by Ex Falso.

Lemma 6.8. In E ′ if C,D are ‖B‖-null then so is C +D.

Proof. We need to show that for f : ‖B a‖ → C + D there exists unique
f ′ : 1→ C+D such that f = f ′◦e, where e : ‖B a‖ → 1 is the sole inhabitant
of its function space. We will first show that a candidate f ′ merely exists
and follow that up with a proof of uniqueness.

We define
g : C +D → 2

using components
gC :≡ λ . 0 : C → 2

gD :≡ λ . 1 : D → 2

Recall that in E ′ we have access to a witness of IP’ which takes the following
arguments in the form of a 4-product

a : A

h :
∑

f̄ :B a→C+D

isConst(f̄)

:

(∏
s̄:2N

((∏
n:N

s̄(n) = a(2 · n)
)

+
(∏
n:N

s̄(n) = a(2 · n+ 1)
))
→

(∏
n:N

s̄ n = 0
)
→
∑
z:2

∏
b:B a

g(f̄ b) = z

)
r :

∑
s:2N

((∏
n:N

s(n) = a(2 · n)
)

+
(∏
n:N

s(n) = a(2 · n+ 1)
)

and returns ∥∥∥∑
z:2

(∏
n:N

r.fst n = 0
)
→
∏
b:B a

g(f̄ b) = z
∥∥∥

We provide this with the arguments required, two times, where f̄ in the
return type (shorthand for h.fst) is f composed with the truncation map
| · | : B a→ ‖B a‖ and isConst(f̄) follows from composition with | · |.

For the unnamed third argument we work as in the proof of Lemma 6.7.
Suppose that we have s̄ : 2N equal to the odd or even subsequence of a and

42

always equal to 0. We take cases on whether it’s equal to the odd or even
subsequence. Wlog suppose it’s equal to the odd one. We use inl on this
fact to get b0 : B a. We then propose g(f̄ b0) as z. We still need to show that
for any b : B a we have g(f̄ b) = g(f̄ b0). Since f̄ ≡ f ◦ | · | and |b| = |b0|, by
action on paths we have f̄ b = f̄ b0. We use action on paths again to reach
the desired equality g(f̄ b) = g(f̄ b0).

For the fourth argument we use s1 the odd subsequence of a the first time
and s2 the even one the second time.

In return, we get a witnesses
zi : 2

and
ζi :
(∏
n:N

si n = 0
)
→
∏
b:B a

g(f |b|) = zi

for i ∈ {1, 2}. Note that we dropped the truncation since our goal is a mere
proposition, therefore we can act as if we have an actual z1, z2 and ζ1, ζ2.

We shift our attention to proving a new subgoal in the form of∥∥∥∑
z:2

∏
b:‖B a‖

g(f b) = z
∥∥∥

By decidability of equality of naturals we have that z1 = z2 + z1 6= z2. We
take cases on this.

• First the case where z1 = z2. Wlog propose z1 as z. We have to
show that

∏
b:‖B a‖ g(f b) = z1. Let b : ‖B a‖. Equality on 2 is a

proposition, as can be easily proven by induction on it, so the current
goal g(f b) = z1 is a proposition. We can therefore act as if we have
some b′ : B a. We take cases on this. Wlog we only deal with the case
where the odd subsequence s1 is constant to 0. We cast ζ1 upon this
fact to conjure a proof of

∏
b:B a g(f |b|) = z1. So g(f |b′|) = z1. Since

|b′| = b, by action on paths we have g(f b) = g(f |b′|). We concatenate
the two paths to reach g(f b) = z1 and conclude the case.

• Now the case where z1 6= z2. We copy the following passage almost
verbatim from earlier in the chapter.

For any n : N, a n = 1 is decidable. Suppose that
∏

n:N a n 6= 1. Then
a and by extension s1 and s2 are constantly 0. We use these facts to

43

construct b : B a and bi :
∏

n:N si = 0 and then concatenate ζi(b)(bi)
like before to get z1 = f b = z2. This contradicts z1 6= z2. We have
proven ¬

∏
n:N a n 6= 1. By Markov’s Principle there exists n1 : N such

that a n1 = 1.

Now, let s0 be the subsequence opposite of the parity of n1. We want to
show that

∏
n:N s0 n = 0. Let n : N. It’s decidable whether s0 n = 0 or

s0 n = 1. The first case is a direct proof while the second leads to a con-
tradiction with atMost1one(a) and 1 appearing in both subsequences,
which we can resolve by Ex Falso. Now that we have s0 to be constant
to 0, we propose the corresponding z0 as z and apply the corresponding
ζ0 to get a proof of

∏
b:B a g(f |b|) = z0. From

∏
n:N s0 n = 0 we can

immidiately get b0 : B a. So we have g(f |b0|) = z0. For any b : ‖B a‖
we have |b0| = b and by action on paths we get g(f b) = g(f |b0|). We
concatenate with the above to get g(f b) = z0 and conclude the case.

We’ve proven

ȳ :
∥∥∥∑

z:2

∏
b:‖B a‖

g(f b) = z
∥∥∥

Given that the current goal, which is proving the mere existence of candidate
f ′, is a proposition, we can ignore the truncation and work with

y :
∑
z:2

∏
b:‖B a‖

g(f b) = z

We can prove that
y = 0 + y = 1

We use induction on this coproduct to prove our goal. Without loss of
generality, we argue only for the case of y = 0. We would like to have
an h : ‖B a‖ → C such that inl ◦ h = f .

44

1

C

B a ‖B a‖ C +D 2

f ′h′

inl

f̄

|·| f

h

e

g

To that end we will first try to construct

h̄ :
∏

b:‖B a‖

∑
c:C

inl(c) = f(b)

Let b : ‖B a‖. First, note that we can prove

ξ :
∏

a:C+D

((∑
c:C

inl c = a
)

+
(∑
d:D

inr d = a
))

by induction on C +D. We then take cases on

ξ(f b) :
(∑
c:C

inl c = f b
)

+
(∑
d:D

inr d = f b
)

• If c̄ :
∑

c:C inl c = f b, we define h̄ b :≡ c̄.

• If
∑

d:D inl d = f b, then g(f b) = 1 but since y = 0 we also have
g(f b) = 0. Contradiction. This case is resolved by Ex Falso.

Now that we have h̄ in our hands, we will use it to construct h which should
satisfy inl ◦ h = f as stated earlier. Let b : ‖B a‖. Define h b :≡ fst(h̄ b).
Now, in order to show that inl◦h = f , we just show, by function extension-
ality, that inl(h b) = f b. This follows directly from the definitions of h and
h̄.

Since C is ‖B‖-null, there exists h′ : 1 → C such that h = h′ ◦ e. Observe
that inl ◦ h′ : 1→ C +D, furthermore (inl ◦ h′) ◦ e = f . We have found a
valid candidate for f ′, what is left is to show it’s unique.

Consider any f ′ candidate. We can construct a f ′C : 1→ C so that f ′ factors
through it, f ′ = inl ◦ f ′C , with our construction being similar to that of h

45

earlier. We want to show that f ′ = inl◦h′ or inl◦f ′C = inl◦h′. We will show
that h′ = f ′C . Since C is ‖B‖-null,

∑
k:1→C k ◦ e = h is a mere proposition.

Therefore showing h′ = f ′C is reduced to showing f ′C ◦e = h. We use function
extensionality. We know that for arbitrary b : ‖B a‖, inl(f ′C◦e b) = inl(h b).
By 2.12.1 of [Uni13] we have (inl a1 = inl a2) ' (a1 = a2). We can then
deduce that f ′C ◦ e b = h b. This concludes the proof of uniqueness of h′.

Lemma 6.9. 2 is ‖B‖-null in E ′.

Proof. It is easy to see that 2 ' (1 + 1). Since 1 is trivially ‖B‖-null, by
Lemma 6.8 we have that 1 + 1 is ‖B‖-null and by extension the same holds
for 2.

Lemma 6.10. In E ′ if C is ‖B‖-null then for any c1, c2 : C, the identity
type c1 =C c2 : U is ‖B‖-null.

Proof. Follows immediately from the fact that L‖B‖ is a modality and the
fourth datum of Definition 3.1.

6.2 CT, LLPO and MP are consistent with

Univalent Type Theory

The proof of the main result of this text requires dealing with models of Type
Theory. Before considering models of TT, one might want to have a look
at what Intensional Type Theory actually is. Appendix B provides a short
description of a formal system in which the informal derivations we do in the
rest of this text are meant to be taking place.

We sketch out a null types model E ′‖B‖ as defined in Section 5 Definition 5.1

of [SU19] based on E ′ from before. The types of this model are the ‖B‖-null
types of E ′, more precisely a type in E ′‖B‖ is a tuple of a ‖B‖-null type in E ′
along with a proof of ‖B‖-nullness in E ′. The witnesses of these types are
also inherited from E ′. Same for contexts. We claim that this model of UTT

46

satisfies CT, MP and LLPO. To prove this claim we first need to procure
some tools.
Remark 6.11. When we say that the types and witnesses carry over, we
mean that if Γ `E ′ A : U and A is ‖B‖-null in E ′ then Γ `E ′‖B‖ JAKE ′ : U where

JAKE ′ is the construct in E ′ that realizes Γ `E ′ A : U . We omit the index of
U , even while using the formal variant of TT, in the interest of readability.
Lemma 6.12. The types N, 2, 1 of E ′ carry over to E ′‖B‖ and are each equal

to their corresponding N, 2, 1 of E ′‖B‖ in E ′‖B‖. Similarly, if C is a ‖B‖-null
type in E ′ then identity types of witnesses of it, carry over to E ′‖B‖ and are
equal to their correspondent there. Same for dependent products and sums,
if in E ′ C : D → U such that C(d) is ‖B‖-null for all d : D then

∏
d:D C(d)

carries over to E ′‖B‖ and equals its correspondent and if in addition C is

‖B‖-null too in E ′, then
∑

d:D C(d) carries over and equals its correspondent
too.

Proof. The types N and 2 are ‖B‖-null in E ′ as shown in Lemma 6.7 and
its corollary. It’s trivial to show that the unit type 1 is ‖B‖-null too. ‖B‖-
nullness of dependent products and sums under the assumptions above, follow
from Theorem 3.10 and the fact that nullification is a modality and there-
fore forms a

∑
-closed reflective subuniverse as seen in Definition 3.4. ‖B‖-

nullness of identity types follows once again from the fact that nullification
is a modality and the fourth datum of Definition 3.1.

We’ve proven that these types carry over to E ′‖B‖. What is left, is to show
that they are equal to their corresponding construction in E ′‖B‖, i.e. in the
case of the dependent product we would have to show that for C : D → U ,
where C and D are types in E ′‖B‖, the type J

∏
d:D C(d)KE ′ in E ′‖B‖ is equal to

the local
∏

d:D C(d) in E ′‖B‖.

Since we are working under univalence, equality follows from equivalence.
We can prove this using the data of these inductive types, constructors like
succ, 0 and the induction principles, which all carry over to E ′‖B‖ since their

types are ‖B‖-null in E ′. We omit the details on how this is done and direct
those looking for more exposition on how this should be carried out to Section
5.4 of [Uni13] which talks about universal properties of inductive types.

It should be mentioned that the above applies to coproducts too, whose case
we work out in detail, to elucidate the more general case above.

47

Example 6.13. Let Γ `E ′‖B‖ C : U , Γ `E ′‖B‖ D : U and Γ `E ′‖B‖ C + D : U .

We have that
Γ `E ′‖B‖ JC +DKE

′
: U

and
Γ `E ′‖B‖ p :

(
(C +D) = JC +DKE

′)
Proof. Since C,D are types in E ′‖B‖, they must be ‖B‖-null types in E ′. By

Lemma 6.8 we have that Γ `E ′‖B‖ JC + DKE ′ : U . It only remains to show

that JC + DKE ′ is equal to C + D in E ′‖B‖. Since this is a UTT model, by
univalence it’s enough to show that the types are equivalent. The coproduct
data of JC +DKE ′ in E ′ are available in E ′‖B‖, since their types must be ‖B‖-
null by Theorem 3.10. We name them ind1, inl1 and inr1 to distinguish
them from those of Γ `E ′‖B‖ C +D : U whose we denote with ind2, inl2 and

inr2. It’s easy to verify that

(ind2 inl1 inr1) : (C +D)→ JC +DKE
′

and
(ind1 inl2 inr2) : JC +DKE

′ → (C +D)

form a pair of quasi-inverses and conclude the proof of equivalence.

Theorem 6.14. CT, MP and LLPO hold in the model E ′‖B‖ of UTT.

Proof. We first work out the proof for CT. CT is the following type∏
f :N→N

∥∥∥∑
e:N

∏
x:N

∑
z:N

T (e, x, z)× U(z) = f(x)
∥∥∥

which, after adopting the alias CT for the above type, would be the construct
`E ′‖B‖ CT : U in the model E ′‖B‖. Note that T and U are both functions from

N to N, so the results in Lemma 6.12 extend to them. With this in mind,
along with the general result of Lemma 6.12 and Corollary 5.6 of [SU19], we
can deduce, by induction on type formation, that there is a path p in E ′‖B‖
between

`E ′‖B‖ CT : U

48

and the type

`E ′‖B‖

s ∏
f :N→N

L‖B‖
∥∥∥∑

e:N

∏
x:N

∑
z:N

T (e, x, z)× U(z) = f(x)
∥∥∥{E ′ : U

which is the carried over ‖B‖-null type in E ′

`E ′
∏

f :N→N

L‖B‖
∥∥∥∑

e:N

∏
x:N

∑
z:N

T (e, x, z)× U(z) = f(x)
∥∥∥ : U

So we need only find a witness of this last type in E ′ which would carry over
to the same type in E ′‖B‖ and could be transported along p to conclude the
case of CT. This type can be proved to follow from the interpretation of CT
in E ′

`E ′ CT : U
which we know to be inhabited by Proposition 6.6.

For MP we follow exactly the same steps as for CT.

For LLPO we first reduce proving

`E ′‖B‖ LLPO : U

to providing a witness for

a : A `E ′‖B‖ ‖B a‖ : U

where LLPO ≡
∏

a:A‖B a‖ for A and B presented in Remark 6.2. Then work
as in the case for CT and prove a path p between

a : A `E ′‖B‖ ‖B a‖ : U

and
a : A `E ′‖B‖

q
L‖B‖ ‖B a‖

yE ′
: U

By Corollary 5.5 of [SU19] we have a witness of the last type. We transport
it over p to conclude the proof.

With the above theorem in mind along with Theorem 5.8 we can deduce the
following corollary.
Corollary 6.15. ACC does not hold in E ′‖B‖.

49

Chapter 7

Conclusion

It was already shown in [SU19] that Church’s Thesis and Markov’s Principle
are consistent with Univalent Type Theory. Adopting LLPO in the above
composite theory, it being a considerable source of non-constructivity, could
raise worries of contradiction. Worries are eased as CT and LLPO have been
shown in [RS18] to be consistent in the setting of Constructive Set Theory.
Worries are finally laid to rest as we produce a non-trivial (the empty type
is not inhabited) model of UTT, LLPO, CT and MP.

We’ve essentially advanced a tiny bit the investigation of how many assump-
tions about ‘choice’ one can get away with, in a theory that includes CT,
and still remain consistent.

50

Appendices

51

Appendix A

Constructive Arithmetic

Following [BR87b] we develop a constructive theory of rational and real num-
bers.

A.1 Rational numbers

We define the rationals as Q :≡
∑

n,m:Im 6= 0 where I is the type of integers
(may be defined as the product of 2 and N), m is the denominator and n the
numerator. We now need to codify the usual notion of equality of rationals
into type theory. We define it as the infix predicate

.
= :≡

∏
q1,q2:Q

(q1.fst · q2.snd) = (q2.fst · q1.snd)

which can be proved to be an equivalence relation. This sort of equality
between rationals is the only one that interests us and at no point will we be
refering to the type theoretic primitive equality between Q witnesses, without
explicit mention that we are doing so.

Similarly for order we use

q1 < q2 :≡ (q1.fst · q2.snd) < (q2.fst · q1.snd)

where the < in the right hand side of the definition is order defined on the
naturals. As expected, we define ≤ as the coproduct of < and

.
=.

52

Defining the usual operations on rationals and showing that the usual rela-
tions hold is straightforward.

A.2 Real numbers

We define the reals as Cauchy sequences of rationals

R :≡
∑
s:QN

∏
n,m:N

(
abs
(
s(n)− s(m)

)
≤ n−1 +m−1

)
where abs is the absolute value on rationals. We also define abs on a real
number x to be the maximum out of x and −x, max(x,−x), where max is
defined component-wise, max(x, y)n :≡ max(xn, yn).

Addition and subtraction on reals are also defined component-wise, (x ±
y)n :≡ x2n + y2n. We won’t be needing multiplication so we skip it entirely.
Rationals are embedded in the reals as constant sequences of themselves,
since if q : Q then rq :≡ λ . q is clearly a valid first component of a real
number.

We codify equality on reals as such

.
= :≡

∏
x,y:R

∏
n:N

abs
(
x.fst(n)− y.fst(n)

)
≤ 2

n

This, like the rational dot equality, is what we mean when talk about equality
between reals, not the type theoretic primitive.

We define what it means for a real number to be positive

positive : R→ U

positive :≡ λ(x : R).
∑
n:N

x.fst(n) >
1

n

We define the order predicate ‘<’ on reals with infix notation

x < y :≡ positive
(
abs(y − x)

)
We define ≤ as follows

x ≤ y :≡
∏
n:N

(
y.fst(n)− x.fst(n)

)
≥ − 1

n

53

Appendix B

Formal Type Theory

Building blocks of the formal system will be juxtaposed against their informal
counterparts. We direct those looking for a full description to Appendices A.1
and A.2 of [Uni13]. When working informally, at any given point we have a
collection of assumptions about variables and their typings that are available
to be used in completing the next step of our derivation. This is captured
by the context which is a list of typings x1 : A1, x2 : A2, . . . , xn : An of
variables xi and their types Ai. Each xi must be distinct.
Example B.1. As one would guess

x1 : 2, x2 : 2, x3 : (x1 =2 x2)

is a legitimate context.

The deductive system of TT is a sort of a sequent calculus where we infer
sequents called judgments which come in three forms.

The first one is Γ ` a : A where Γ is a context and a : A the statement that
a is a term of type A. Both a and A are composed exclusively by terms over
Γ. By terms over Γ we mean terms that can appear in the right hand side
of valid judgments with Γ as the left hand side, e.g. b is a term over Γ if
Γ ` b : B can be inferred in our system.

The second form is Γ ` a1 ≡ a2 : A and is the formalization of the statement
a1 ≡ a2 for a1, a2 : A.

The rules of inferrence prescribe how we are allowed to combine said terms
and derive valid judgments. The judgment Γ ` a : A corresponds to the

54

exact step of an informal derivation where we construct the witness a : A
using terms over Γ which we constructed in earlier steps of the same deriva-
tion. As one might expect, the deductive system is populated with inference
rules that allow us to deduce valid judgments from collections of others; to
illustrate

J1, J2, . . . , Jn
J

All the constructions and rules described in Section 2.1 should and can be
transcribed in this form. Note that some parts of Section 2.1 need not be
formalized separately but can instead be special cases of one another. As an
example, with this in mind, in our system, non-dependent functions are just
special cases of dependent functions and formally we do not distinguish be-
tween the two. Specifically, families of types B : A→ U which we presuppose
in our informal treatment of dependent products, are formally expressed by
types over contexts a : A ` B. Another example is the product type which
is formalized as a dependent sum type.

The third form of judgments asserts the correctness of a context. We write
it as Γ ctx. There are also two rules that let us build valid contexts. One
affirming the empty context’s validity and can be the root of a deduction
tree

· ctx
and one which lets us extend a given context Γ with a type over it (a term
which, under the assumptions in Γ, can be inferred to be of type Ui for some
i : N)

Γ ` A : Ui
(Γ, x : A) ctx

where x must differ from all variables in Γ.
Example B.2. Consider the case of constructing a function. Suppose that
the current context is Γ, x : A where x is a variable. If we can deduce that
b : B (where b, B might not be ground terms but instead contain variables like
x or those in Γ) then this corresponds to a valid judgment Γ, x : A ` b : B.
Formally, this is captured by the rule

Γ, x : A ` b : B

Γ ` λ(x : A).b :
∏

x:AB

Note that the function and its type
∏

x:AB are allowed to be dependent, as

55

we allowed b and B to be open terms containing variables, that is why there
is no point in specifying B(x).
Example B.3. Suppose, like in the previous example that we are in the
situation captured by the judgment Γ, x : A ` b : B. Suppose that we also
have a term a over Γ i.e. Γ ` a : A. Then we should be able to deduce that
application of λ(x : A). b on a would be judgmentally equal to b[a/x] which
is the result of replacing all occurences of x in b with a. Also both should be
of type B[a/x]. These facts are captured by the following three judgments

Γ, x : A ` b : B, Γ ` a : A

Γ `
(
λ(x : A).b

)
(a) : B[a/x]

Γ, x : A ` b : B, Γ ` a : A

Γ ` b[a/x] : B[a/x]

Γ, x : A ` b : B, Γ ` a : A

Γ `
((
λ(x : A).b

)
(a) ≡ b[a/x]

)
: B[a/x]

The formal system has enough rules to enable deducing all the properties of
judgmental equality we mentioned in the definition of identity types.

56

Bibliography

[BR87a] Douglas Bridges and Fred Richman. “RUSSIAN CONSTRUC-
TIVE MATHEMATICS”. In: Varieties of Constructive Mathemat-
ics. London Mathematical Society Lecture Note Series. Cambridge
University Press, 1987. doi: 10.1017/CBO9780511565663.004.

[BR87b] Douglas Bridges and Fred Richman. “THE FOUNDATIONS OF
CONSTRUCTIVE MATHEMATICS”. In: Varieties of Construc-
tive Mathematics. London Mathematical Society Lecture Note Se-
ries. Cambridge University Press, 1987. doi: 10.1017/CBO9780511565663.
002.

[Oos08] Jaap van Oosten. Realizability, Volume 152: An Introduction to Its
Categorical Side. San Diego, USA: Elsevier Science, 2008. isbn:
0444515844, 9780444515841.

[Oos96] Jaap van Oosten. “Two Remarks on the Lifschitz Realizability
Topos”. In: The Journal of Symbolic Logic 61.1 (1996), pp. 70–79.
issn: 00224812. url: http://www.jstor.org/stable/2275598.

[RS18] Michael Rathjen and Andrew Swan. Lifschitz Realizability as a
Topological Construction. 2018. arXiv: 1806.10047 [math.LO].

[RSS17] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in
homotopy type theory. 2017. eprint: arXiv:1706.07526v3.

[SU19] Andrew Swan and Taichi Uemura. On Church’s Thesis in Cubical
Assemblies. 2019. eprint: arXiv:1905.03014v1.

57

https://doi.org/10.1017/CBO9780511565663.004
https://doi.org/10.1017/CBO9780511565663.002
https://doi.org/10.1017/CBO9780511565663.002
http://www.jstor.org/stable/2275598
http://arxiv.org/abs/1806.10047
arXiv:1706.07526v3
arXiv:1905.03014v1

[TD88] “Chapter 3 Arithmetic”. In: Constructivism in Mathematics. Ed.
by A.S. Troelstra and D. van Dalen. Vol. 121. Studies in Logic
and the Foundations of Mathematics. Elsevier, 1988, pp. 113–183.
doi: https://doi.org/10.1016/S0049- 237X(09)70528- 2.
url: http://www.sciencedirect.com/science/article/pii/
S0049237X09705282.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Uni-
valent Foundations of Mathematics. first-edition-1194-g81c15ec. In-
stitute for Advanced Study: https://homotopytypetheory.org/
book, 2013.

58

https://doi.org/https://doi.org/10.1016/S0049-237X(09)70528-2
http://www.sciencedirect.com/science/article/pii/S0049237X09705282
http://www.sciencedirect.com/science/article/pii/S0049237X09705282
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Introduction
	Structure of the Thesis

	Type Theory
	Type Construction Operations
	Judgmental Equality
	On paths
	Equivalence
	Univalent Type Theory
	(Definitionally) Extensional Type Theory
	Logic

	Modalities
	Computability
	The Lesser Limited Principle of Omniscience
	Russian Constructive Mathematics & LLPO under Univalence
	Null types in E'
	CT, LLPO and MP are consistent with Univalent Type Theory

	Conclusion
	Appendices
	Constructive Arithmetic
	Rational numbers
	Real numbers

	Formal Type Theory

