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Abstract

We investigate a recently-devised polyhedral semantics for intermediate logics, in
which formulas are interpreted in n-dimensional polyhedra. An intermediate logic
is polyhedrally complete if it is complete with respect to some class of polyhedra. We
provide a necessary and sufficient condition for the polyhedral-completeness of a logic.
This condition, which we call the Nerve Criterion, is expressed in terms of the so-called
‘nerve’ of a poset, a construction which we employ from polyhedral geometry.

The criterion allows for the investigation of the polyhedral completeness phe-
nomenon using purely combinatorial methods. Utilising it, we show that there are
continuum many intermediate logics that are not polyhedrally-complete. We also
provide a countably infinite class of logics axiomatised by the Jankov-Fine formulas of
‘starlike trees’, which includes Scott’s Logic, all of which are polyhedrally-complete.1
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1 Introduction
The genesis of many connections between logic and geometry led to the discovery
of topological semantics for intuitionistic and modal logic, as pioneered by Marshall
Stone [Sto38], Tang Tsao-Chen [Tsa38], Alfred Tarski [Tar39] and John C. C. McKinsey
[McK41]. This semantics is now well-known. In short, one starts with a topological
space X , and interprets intuitionistic formulas inside the Heyting algebra of open sets
of X , and modal formulas inside the modal algebra of subsets of X with � interpreted
as the topological interior operator. A celebrated result due to Tarski [Tar39] states
that this provides a complete semantics for intuitionistic propositional logic (IPC) on
the one hand, and the modal logic S4 on the other. Moreover, one can even obtain
completeness with respect to certain individual spaces. Specifically, McKinsey and
Tarski showed [MT44] that for any separable metric space X without isolated points,
if IPC 0 φ, then φ has a countermodel based on X , and similarly with S4 in place of
IPC. Later, this result was refined still further by Helena Rasiowa and Roman Sikorski,
who showed that one can do without the assumption of separability [RS63].

This result traces out an elegant interplay between topology and logic; however, it
simultaneously establishes limits on the power of this kind of interpretation. Indeed,
examples of separable metric spaces without isolated points are the n-dimensional
Euclidean spaceRn and the Cantor space 2ω. What McKinsey and Tarski’s result shows
is that — topologically speaking — the logics of these spaces are the same, namely
IPC or S4. The upshot is that topological semantics does not allow logic to capture
much of the geometric content of a space.

A natural idea is that, if we want to remedy the situation and allow for the capture
of more information about a space, then we need an algebra finer than the Heyting al-
gebra of open sets, or the modal algebra of arbitrary subsets with the interior operator.
This idea was developed by Marco Aiello, Johan van Benthem, Guram Bezhanishvili
and Mai Gehrke. They consider the modal logic of chequered subsets of Rn: finite uni-
ons of sets of the form

∏n
i=1 Ci , where each Ci ⊆ R is convex ([ABB03] and [BBG03];

see also [BB07]).
This line of work was further developed in [Bez+18b], [Gab+17] and [Gab+18],

which take this algebra-refinement idea one step further. To be able to capture some
of the geometric content of a space, it is natural to restrict attention to topological
spaces and subsets which are polyhedra (of arbitrary dimension). Moreover, the set
Subo(P) of open subpolyhedra of P is a Heyting algebra under ⊆ (and a similar result
holds in the modal case). This allows for an interpretation of intuitionistic and modal
formulas in Subo(P). The main result of [Bez+18b] is that more is true. A polyhedral
analogue of Tarski’s theorem holds: these polyhedral semantics are complete for IPC
and S4.Grz. Furthermore, this approach delivers that logic can capture the dimension
of the polyhedron in which it is interpreted, via the bounded depth formulas bdn
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[CZ97, Sec. 2.4]. In particular, the polyhedron P is n dimensional iff P validates
bdn+1 and does not validate bdn+2 for n ∈ω [Bez+18b].

In this paper we make further advances in the study of polyhedral semantics. We
introduce and study polyhedral completeness for intermediate logics. We say that an
intermediate logic L is polyhedrally complete if there is a class C of polyhedra such
that L is the logic of C . It follows from [Bez+18b] that IPC and the logic BDn of
bounded depth n, for each n are polyhedrally-complete. In this paper we construct
infinitely many polyhedrally-complete logics and also show that there are continuum
many polyhedrally incomplete ones.

To this end, for each poset F we define the nerve, N (F) of F as the collection of
finite non-empty chains in F ordered by inclusion. The nerve will be our key concept
relating logic with polyhedral geometry. The nerve construction is closely related to
the operation of barycentric subdivision on a triangulation of a polyhedron. As was
already noted in [Bez+18b], given a polyhedron P, its triangulation corresponds to a
validity-preserving map from P onto F . In the algebraic terminology it corresponds to
an embedding of the Heyting algebra of upsets of F into the Heyting algebra of open
subpolyhedra of P. If a finite frame F is given by some triangulationΣ of a polyhedron
P, then N (F) corresponds to a barycentric subdivision of Σ. Exploiting this relation
we present a proof of the Nerve Criterion for polyhedral completeness: a logic L is
complete with respect to some class of polyhedra if and only if it is the logic of a class
of finite frames closed under taking nerves. Viewing this result in terms of Kripke
frames, we can say that “the logic of a polyhedron is the logic of the iterated nerves of
any one of its triangulations”. The criterion yields many negative results, showing in
particular that there are continuum-many non-polyhedrally-complete logics with the
finite model property.

Using the Nerve criterion we will also expand the known domain of polyhedrally-
complete logics. We consider logics defined using starlike trees as forbidden config-
urations — i.e. logics defined by the Jankov-Fine formulas of a collection of trees
with a special property: trees which only branch at the root. Exploiting the Nerve
Criterion, and a result by Zakharyaschev [Zak93] that all these logics have the finite
model property, we prove that every such logic is polyhedrally-complete. This yields
a countably infinite class of polyhedrally-complete logics of each finite height and of
infinite height. This class includes Scott’s logic SL. As forbidden configurations, star-
like trees have a natural geometric meaning, expressing connectedness properties of
polyhedral spaces. One might wonder if a generalisation is possible to arbitrary trees,
or even to a wider class of frames. As to the latter, some negative results are known;
see [Ada19, Corollary 4.12]. For the former, the situation is rather obscure, and it is
not clear whether it is possible to account for the additional complexity introduced by
allowing branching at higher points of the tree; see the discussion on ‘general trees’
in [Ada19, p. 61].

In a related paper [Ada+20] we look at the problem of polyhedral completeness
from a different angle. We can start with some natural class of polyhedra and try to
determine (axiomatize) its logic. This logic will by definition be polyhedrally com-
plete, however, the question of axiomatization is highly non-trivial. In [Ada+20] we
give an axiomatization of the logic of (n-dimensional) convex polyhedra via Jankov-
Fine formulas of special star-like trees. In [Gab+19] a full characterization of ‘flat’
2-dimensional polyhedral logics is announced in the setting of modal logic. In this
paper we do not discuss the modal case. We note, however, that all the results proved
in this paper transfer to the extensions of the modal logic S4.Grz.

In this paper we combine geometric methods with techniques from the logical com-
binatorics of finite frames, as well as combinatorial geometry, in order to deepen the
exciting new link recently established between logic and polyhedra. This area is still
in its infancy, and there are many interesting open problems and directions for future
research. The natural ultimate goal would be a full classification of all polyhedrally-
complete logics. But other directions present themselves, such as questions of decid-
ability, or the intriguing prospect of using logical methods to prove classical theorems
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in geometry. We briefly explore these ideas and others in the conclusion.
The paper is organised as follows. In Section 2, we give the required background on

intermediate logics and polyhedral geometry, fixing our notation. Section 3 presents
the polyhedral semantics first defined in [Bez+18b], and in Section 3.3 we further
elaborate on this link between logic and geometry at the level of morphisms. In
Section 4, we present and prove the Nerve Criterion for polyhedral-completeness
(Theorem 4.1), using techniques from rational polyhedral geometry. Making use of
this criterion, Section 5 establishes that all stable logics (as defined in [BB09]) are
polyhedrally-incomplete, of which there are continuum-many. Then in Section 6, we
define the class of ‘starlike’ logics, and prove that each one is polyhedrally-complete.
The techniques in the these two sections are entirely combinatorial. Finally, we con-
clude in Section 7 with some interesting directions for future research.

2 Preliminaries
The present paper deals with intermediate logics. In this section we remind the reader
of the relational and algebraic semantics for such logics, and survey the definitions
and results which will play their part in the forthcoming. As a main reference we use
[CZ97]. On the other side of the link is polyhedral geometry, with which we assume
rather less familiarity, and thus present in more detail.

2.1 Posets as Kripke frames
A Kripke frame for intuitionistic logic is simply a poset (F,¶). The validity relation
� between frames and formulas is defined in the usual way, see, e.g., [CZ97, Ch. 2].
Given a class of frames C, its logic is:

Logic(C) := {φ a formula | ∀F ∈ C: F � φ}

Conversely, given a logic L , define:

Frames(L ) := {F a Kripke frame | F �L}
Framesfin(L ) := {F a finite Kripke frame | F �L}

A logicL has the finite model property (fmp) if it is the logic of a class of finite frames.
Equivalently, if L = Logic(Framesfin(L )).

Let us carve out some additional vocabulary and notation. Fix a poset F . For any
x ∈ F , its upset, downset, strict upset and strict downset are defined, respectively, as
follows.

↑(x) := {y ∈ F | y ¾ x}
↓(x) := {y ∈ F | y ¶ x}
⇑(x) := {y ∈ F | y > x}
⇓(x) := {y ∈ F | y < x}

For any set S ⊆ F , its upset and downset are defined, respectively, as follows.

↑U :=
⋃

x∈U

↑(x)

↓U :=
⋃

x∈U

↓(x)

A subframe U ⊆ F is upwards-closed or a generated subframe if U = ↑U . It is downwards-
closed if ↓U = U . The Alexandrov topology on F is the set Up F of its upwards-closed
subsets. This constitutes a topology on F . In the sequel, we will freely switch between
thinking of F as a poset and as a topological space. Note that the closed sets in this
topology correspond to downwards-closed sets.
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A chain in F is X ⊆ F which as a subposet is linearly-ordered. The length of the
chain X is |X |. A chain X ⊆ F is maximal if there is no chain Y ⊆ F such that X ⊂ Y
(i.e. such that X is a proper subset of Y ). The height of F is the element of N∪ {∞}
defined by:

height(F) := sup{|X | − 1 | X ⊆ F is a chain}

For notational uniformity, say that this value is also the depth of F , depth(F). For any
x ∈ F , define its height and depth as follows.

height(x) := height(↓(x))
depth(x) := depth(↑(x))

The height of a logic L is the element of N∪ {∞} given by:

height(L ) := sup{height(F) | F ∈ Frames(L )}

A frame F has uniform height n if every top element has height n.
A top element of F is t ∈ F such that depth(t) = 0. The set of top elements in F

is denoted by Top(F); let Trunk(F) := F \ Top(F). For any x , y ∈ F , say that x is
an immediate predecessor of y and that y is an immediate successor of x if x < y and
there is no z ∈ F such that x < z < y . Write Succ(x) for the collection of immediate
successors of x .

The poset F is rooted if it has a minimum element, which is called the root, and is
usually denoted by ⊥. Define:

Frames⊥(L ) := {F ∈ Frames(L ) | F is rooted}
Frames⊥,fin(L ) := {F ∈ Framesfin(L ) | F is rooted}

A path in F is a sequence p = x0 · · · xk of elements of F such that for each i we
have x i < x i+1 or x i > x i+1. Write p : x0   xk. The path p is closed if x0 = xk. The
poset F is path-connected if between any two points there is a path.

Lemma 2.1. For F a frame, it is path-connected if and only if it is connected as a topo-
logical space.

Proof. See [BG11, Lemma 3.4].

A connected component of F is a subframe U ⊆ F which is connected as a topological
subspace and is such that there is no connected V with U ⊂ V .

Lemma 2.2. Let F be a frame.

(1) The connected components partition F.

(2) Connected components are downwards-closed and upwards-closed.

Proof. These are standard results in topology. See e.g. [Mun00, §25, p. 159].

An antichain in F is a subset Z ⊆ F in which no two elements are comparable. The
width width(F) of F is the cardinality of the largest antichain in F .

A function f : F → G is a p-morphism if for every x ∈ F we have:

f (↑(x)) = ↑( f (x))

Equivalently, f should satisfy the following conditions.

∀x , y ∈ F : (x ¶ y ⇒ f (x)¶ f (y)) (Forth)

∀x ∈ F : ∀z ∈ G : ( f (x)¶ z⇒∃y : (x ¶ y ∧ f (y) = z)) (Back)

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed set
U ⊆ F to G. Write f : F ◦→ G.

Proposition 2.3. If there is an up-reduction F ◦→ G then Logic(F) ⊆ Logic(G). In other
words, if G 2 φ then F 2 φ.

5



Proof. See [CZ97, Corollary 2.8, p. 30 and Corollary 2.17, p. 32].

Corollary 2.4. If C is any collection of frames and L = Logic(C), then:

L = Logic(Frames⊥(L ))

Proof. First, L ⊆ Logic(Frames⊥(L )). Conversely, suppose L 0 φ. Then there exists
F ∈ C such that F 2 φ, hence there is x ∈ F such that x 2 φ (for some valuation
on F), meaning that ↑(x) 2 φ. Now, ↑(x) is upwards-closed in F , hence id↑(x) is an
up-reduction F ◦→ ↑(x). Then by Proposition 2.3, we get that ↑(x) � L , so that
↑(x) ∈ Frames⊥(L ).

A finite poset T is a tree if it has a root ⊥, and every other x ∈ T \ {⊥} has exactly
one immediate predecessor. A branch in T is a maximal chain. Given any finite, rooted
poset F , its tree unravelling T (F) is the set of its strict chains which contain the root.
Define the function last: T (F)→ F by:

X 7→max(X )

Proposition 2.5. T (F) is a tree and last is a p-morphism.

Proof. See [CZ97, Theorem 2.19, p. 32].

2.2 P-congruences
An alternative way of viewing a p-morphism f : F → G is as a kind of congruence
relation on F (see [CZ97, p. 262]). This way of thinking will enable a convenient
method of constructing p-morphisms.

A p-congruence on a frame F is an equivalence relation∼ such that whenever x ¶ y
we have [x] ⊆ ↓[y]. The quotient frame F/∼ has as elements the equivalence classes
of ∼, and its relation is given by:

[x]¶ [y] ⇔ [x] ⊆ ↓[y]

The quotient map is q : F → F/∼, given by x 7→ [x].

Proposition 2.6. The quotient map is a p-morphism.

Proof. See [CZ97, Theorem 8.68(i), p. 263].

Theorem 2.7 (First Isomorphism Theorem). Let f : F → G be a surjective p-morphism.
Then relation ∼ on F defined by:

x ∼ y ⇔ f (x) = f (y)

is a p-congruence, and moreover F/∼∼= G via the map [x] 7→ f (x).

Proof. See [CZ97, Theorem 8.68(ii), p. 263].

Proposition 2.8. Let F be a frame andW be a set of pair-wise disjoint subsets of Top(F).
The relation ∼W , defined as follows, is a p-congruence.

x ∼W y ⇔ x = y or ∃W ∈W : x , y ∈W

Proof. This is immediate from the definition.

Definition 2.9. Define F/W := F/∼W . Relabel the element [x] ∈ F/W as x whenever
x ∈ F \

⋃

W . Let qW be the quotient map on ∼W .
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2.3 Heyting algebras and co-Heyting algebras
A Heyting algebra is a tuple (A,∧,∨,→, 0, 1) such that (A,∧,∨, 0, 1) is a bounded lattice
and→, called the Heyting implication, satisfies:

c ¶ a→ b ⇔ c ∧ a ¶ b

The validity relation � between Heyting algebras and formulas is defined in the usual
way; the Logic notation is extended appropriately. The logic of a Heyting algebra is
exactly the logic of its finitely generated subalgebras. Say that A is locally-finite if for
every S ⊆ A finite, the algebra 〈S〉 generated by S is finite. Topological spaces provide
important examples of Heyting algebras: for every topological space X , its collection
of open sets O (X ) forms a Heyting algebra.

Co-Heyting algebras are the duals of Heyting algebras. Specifically, a co-Heyting
algebra is a tuple (C ,∧,∨,←, 0, 1) such that (C ,∧,∨, 0, 1) is a bounded lattice, and←,
called the co-Heyting implication, satisfies:

a← b ¶ c ⇔ a ¶ b ∨ c

For more information on co-Heyting algebras, the reader is referred to [MT46, §1]
and [Rau74], where they are called ‘Brouwerian algebras’.

A Heyting algebra A may be regarded as a category. Then its dual category Aop

is a co-Heyting algebra. In the case of the Heyting algebra O (X ) of open sets in a
topological space, such a duality has a concrete realisation: the co-Heyting algebra
O (X )op is the algebra C (X ) of closed subsets of X .

2.4 Topological semantics
Given a topological space X , the collection of open sets O (X ) of X forms a Heyting
algebra. We take ∅, X , ∩ and ∪ for 0, 1, ∧ and ∨, respectively, and define the Heyting
implication→ by:

U → V := Int(UC ∪ V )

where Int denotes the topological interior operator, and −C is complement operator.

Proposition 2.10. With these assignments, O (X ) is a Heyting algebra.

Proof. See [CZ97, Proposition 8.31, p. 247].

This means that we can interpret formulas inside topological spaces. Write X � φ
for O (X ) � φ, and extend the other Heyting algebra notation to X . The completeness
result mentioned in the introduction can now be written down explicitly.

Theorem 2.11 (McKinsey-Tarski Theorem). Let X be any separable metrisable space
without isolated points. Then IPC= Logic(X ).

Proof. The original proof is in [MT44]. Helena Rasiowa and Roman Sikorski proved
this result without the separability requirement [RS63]. For a newer, more topological
proof, see [Bez+18a]. For some modern proofs of specific cases, see [BB07, §2.5,
pp. 241–250].

The topological space X also comes with a co-Heyting algebra, namely its collection
of closed sets C (X ). Co-Heyting implication on C (X ) is defined:

C ← D := Cl(C \ D)

where Cl denotes the topological closure operator. Now, the present topological set-
ting provides concrete realisation of the schema of dualities between Heyting and
co-Heyting algebras. Indeed, the complement operator −C gives an isomorphism
O (X )op ∼=C (X ).
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2.5 Finite Esakia Duality
The Alexandrov topology allows us to associate to each poset F the Heyting algebra
Up F consisting of its upwards-closed sets. The process forms part of a contravariant
equivalence of categories, known as the Esakia Duality. The finite fragment of this
duality relates finite posets with finite Heyting algebras.

The spectrum of a Heyting algebra A is defined:

Spec(A) := {X ⊆ A | X is a prime filter of A as a distributive lattice}

This constitutes a poset under subset inclusion.

Theorem 2.12. The maps Up and Spec are the object-level components of a duality
between the category of finite Kripke frames with p-morphisms and the category of finite
Heyting algebras with homomorphisms.

Proof. See [DT66]. The original proof of the general Esakia duality can be found in
[Esa74; Esa19]. Detailed proofs are also given in [CJ14] and [Mor05, §5]. In the finite
case, we have isomorphisms A ∼= UpSpec A and F ∼= SpecUp F for any finite Heyting
algebra A and finite poset F . The former is part of Brikhoff’s Representation Theorem
[Bir37]. Both isomorphisms may be found in [DP90, pp. 171-172].

Importantly, this duality is logic-preserving.

Proposition 2.13. Let F be a frame and A be a finite Heyting algebra. Then:

Logic(F) = Logic(Up F)

Logic(A) = Logic(Spec A)

Proof. For the first equality, see [CZ97, Corollary 8.5, p. 238], noting that our Kripke
frames are special cases of what are there called ‘intuitionistic general frames’. The
second equality follows from the first using the finite Esakia duality.

2.6 Jankov-Fine formulas as forbidden configurations
To every finite rooted frame Q, we associate a formula χ(Q), the Jankov-Fine formula
of Q (also called its Jankov-De Jongh formula). The precise definition of χ(Q) is some-
what involved, but the exact details of this syntactical form are not relevant for our
considerations. What matters to us is its notable semantic property.

Theorem 2.14. For any frame F, we have that F � χ(Q) if and only if F does not
up-reduce to Q.

Proof. See [CZ97, §9.4, p. 310], for a treatment in which Jankov-Fine formulas are
considered as specific instances of more general ‘canonical formulas’. An alternative
proof can be found in [Bez06, §3.3, p. 56], which gives a complete definition of χ(Q).
See also [BB09] for an algebraic version of this result.

Jankov-Fine formulas formalise the intuition of ‘forbidden configurations’. The
formula χ(Q) ‘forbids’ the configuration Q from its frames.

The following consequence of Theorem 2.14 will come in handy later on.

Corollary 2.15. Let L = Logic(C) where C is a class of frames. Then:

Frames⊥,fin(L ) = {F finite rooted frame | ∃G ∈ C: G ◦→ F}

Proof. First, if F is a finite rooted frame such that there is G ∈ C and an up-reduction
G ◦→ F , then by Proposition 2.3 we have that F ∈ Frames⊥,fin(L ). Conversely take
F finite and rooted, and assume that there is no G ∈ C with G ◦→ F . Then by The-
orem 2.14, G � χ(F) for every G ∈ C; whence L ` χ(F). By Theorem 2.14, F 2 χ(F)
implying F 2L . This yields F /∈ Frames⊥,fin(L ).
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When the poset F has a root, the condition in Theorem 2.14 can be strengthened
slightly. Let F and Q be finite posets, and let Q have root⊥. An up-reduction f : F →Q
is pointed with apex x ∈ F if we have dom( f ) = ↑(x) and f −1{⊥}= {x}.

Lemma 2.16. If there is an up-reduction F ◦→ Q then there is a pointed up-reduction
F ◦→Q.

Proof. Take f : F ◦→ Q, and choose x ∈ f −1{⊥} maximal. Then f |↑(x) is still a p-
morphism, and is moreover a pointed up-reduction F ◦→Q.

Corollary 2.17. Let F,Q be finite posets, with Q rooted. Then F � χ(Q) if and only if
there is no pointed up-reduction F ◦→Q.

2.7 Some standard logics
The logic IPC is the standard intuitionistic propositional calculus. An intermediate logic
is any consistent logic extending IPC. Classical logic, CPC, is the largest intermediate
logic.

Proposition 2.18. IPC is the logic of the class of all finite frames, i.e. it has the fmp.

Proof. See [CZ97, Theorem 2.57, p. 49].

For every n ∈ N, let BDn be the logic of all finite frames of height at most n. This
has the following axiomatisation in terms of Jankov-Fine formulas. Let Chk be the
chain (linear order) on k+ 1 elements.

Proposition 2.19. BDn is the logic axiomatised by IPC+χ(Chk).

Proof. See [CZ97, Table 9.7, p. 317, and §9].

Scott’s Logic, SL, is usually axiomatised by the Scott sentence:

SL= IPC+ IPC+ ((¬¬p→ p)→ p ∨¬p)→¬p ∨¬¬p

This logic can also be axiomatised using a forbidden configuration, as follows.

Proposition 2.20. SL= IPC+χ( ).

Proof. See [CZ97, Table 9.7, p. 317, and §9].

2.8 Polytopes, polyhedra and simplices
Every polyhedron considered here lives in some Euclidean space Rn. Take x0, . . . , xd ∈
Rn. An affine combination of x0, . . . , xd is a point r0 x0 + · · ·+ rd xd , specified by some
r0, . . . , rd ∈ R such that r0+· · ·+ rd = 1. A convex combination is an affine combination
in which additionally each ri ¾ 0. Given a set S ⊆ Rn, its convex hull Conv S is the
collection of convex combinations of its elements. A subspace S ⊆ Rn is convex if
Conv S = S. A polytope is the convex hull of a finite set. A polyhedron in Rn is a set
which can be expressed as the finite union of polytopes. Note that every polyhedron
is closed and bounded, hence compact.

A set of points x0, . . . , xd is affinely independent if whenever:

r0 x0 + · · ·+ rd xd = 0 and r0 + · · ·+ rd = 0

we must have that r0, . . . , rd = 0. This is equivalent to saying that the vectors:

x1 − x0, . . . , xd − x0

are linearly independent. Simplices are the most basic polyhedra of each dimension.
A d-simplex is the convex hull σ of d+1 affinely independent points x0, . . . , xd , which
we call its vertices. Write σ = x0 · · · xd ; its dimension is Dimσ := d.
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Proposition 2.21. Every simplex determines its vertex set: two simplices coincide if and
only if they share the same vertex set.

Proof. See [Mau80, Proposition 2.3.3, p. 32].

A face of σ is the convex hull τ of some non-empty subset of {x0, . . . , xd} (note that τ
is then a simplex too). Write τ´ σ, and τ≺ σ if τ 6= σ.

Since x0, . . . , xd are affinely independent, every point x ∈ σ can be expressed
uniquely as a convex combination x = r0 x0 + · · ·+ rd xd with r0, . . . , rd ¾ 0 and r0 +
· · · + rd = 1. Call the tuple (r0, . . . , rd) the barycentric coordinates of x in σ. The
barycentre bσ ofσ is the special point whose barycentric coordinates are ( 1

d+1 , . . . , 1
d+1 ).

The relative interior of σ is defined:

Relintσ := {r0 x0 + · · ·+ rd xd ∈ σ | r0, . . . , rd > 0}

The relative interior of σ is ‘σ without its boundary’ in the following sense. The affine
subspace spanned by σ is the set of all affine combinations of x0, . . . , xd . Then the
relative interior of σ coincides with the topological interior of σ inside this affine
subspace. Note that Cl Relintσ = σ, the closure being taken in the ambient space Rn.

For any X , Y ⊆ Rn, a function X → Y is an affine map if it is of the form x 7→
M x + b, where M is a linear transformation and b ∈ Rn. Now let P,Q be polyhedra.
A homeomorphism f : P →Q is piecewise-linear if there is a triangulation Σ of P such
that for each σ ∈ Σ the restriction f |σ is affine. Call such maps PL homeomorphisms
for short.

Proposition 2.22. The inverse of a PL homeomorphism is a PL homeomorphism.

Proof. See [RS72, p. 6].

2.9 Triangulations
A simplicial complex in Rn is a finite set Σ of simplices satisfying the following condi-
tions.

(a) Σ is ≺-downwards-closed: whenever σ ∈ Σ and τ≺ σ we have τ ∈ Σ.

(b) If σ,τ ∈ Σ, then σ∩τ is either empty or a common face of σ and τ.

The support of Σ is the set |Σ| :=
⋃

Σ. Note that by definition this set is automatically
a polyhedron. We say that Σ is a triangulation of the polyhedron |Σ|. Notice that Σ
is a poset under ≺, called the face poset. A subcomplex of Σ is subset which is itself
a simplicial complex. Note that a subcomplex, as a poset, is precisely a downwards-
closed set. Given σ ∈ Σ, its open star is defined:

o(σ) :=
⋃

{Relint(τ) | τ ∈ Σ and σ ⊆ τ}

Proposition 2.23. The relative interiors of the simplices in a simplicial complex Σ par-
tition |Σ|. That is, for every x ∈ |Σ|, there is exactly one σ ∈ Σ such that x ∈ Relintσ.

Proof. See [Mau80, Proposition 2.3.6, p. 33].

In light of Proposition 2.23, for any x ∈ |Σ| let us write σx for the unique σ ∈ Σ
such that x ∈ Relintσ.

Proposition 2.24. Let Σ be a simplicial complex, take τ ∈ Σ and x ∈ Relintτ. Then
no proper face σ ≺ τ contains x. This means that σx is the inclusion-smallest simplex
containing x.

Proof. See [Bez+18b, Lemma 3.1].

The next result is a basic fact of polyhedral geometry, and is of fundamental im-
portance in its connection with logic. For Σ a triangulation and S a subspace of the
ambient Euclidean space Rn, define:

ΣS := {σ ∈ Σ | σ ⊆ S}

This, being a downwards-closed subset of Σ, is a subcomplex of Σ.
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Lemma 2.25 (Triangulation Lemma). Any polyhedron admits a triangulation which
simultaneously triangulates each of any fixed finite set of subpolyhedra. That is, for a
collection of polyhedra P,Q1, . . . ,Qm such that each Q i ⊆ P, there is a triangulation Σ of
P such that ΣQi

triangulates Q i for each i.

Proof. See [RS72, Theorem 2.11 and Addendum 2.12, p. 16].

Remark 2.26. The term ‘polyhedron’ is ancient, and over the years it has acquired a
variety of meanings. A remark on the present terminology is in order. In one very
traditional usage (though still present in some fields today), ‘polyhedron’ is reserved
for convex sets. Another possible restriction, in line with historical terminology, is
that ‘polyhedron’ applies only to three-dimensional solids. As is standard in the field
of piecewise-linear topology however, the usage in the present paper is not subject to
these restrictions (c.f. classic textbooks [Sta67; RS72]).

Note however that the standard usage of ‘polyhedron’ is in fact more general than
the present one. In PL topology, a ‘polyhedron’ is the union of a locally-finite simplicial
complex. The latter is defined as a (possibly infinite) set Σ of simplices satisfying (a)
and (b) in our definition of ‘simplicial complex’ above, subject to the condition that
every point x ∈

⋃

Σ has an open neighbourhood which intersects only finitely-many
simplices. Now, it is a standard fact that ‘compact polyhedra’ (in the more general
sense) coincide with what we are referring to here as ‘polyhedra’ (see [RS72, The-
orem 2.2, p. 12]). Hence we are effectively using the term ‘polyhedron’ as a shorthand
for ‘compact polyhedron’; such usage is common in the literature (see, e.g. [Mau80]).

2.10 Barycentric subdivision
Triangulations allow us in some ways to approximate the structure of a polyhedron.
The finer the triangulation, the better the approximation. Barycentric subdivisions
afford us a systematic way of generating finer and finer triangulations, starting from
a base.

Let Σ, ∆ be simplicial complexes. ∆ is a subdivision or refinement of Σ, notation
∆Ã Σ, if |Σ|= |∆| and every simplex of ∆ is contained in a simplex of Σ.

Lemma 2.27. If ∆Ã Σ then for every σ ∈ Σ we have:

σ =
⋃

{τ ∈∆ | τ ⊆ σ}

Proof. Let S := {τ ∈ ∆ | τ ⊆ σ}. Clearly
⋃

S ⊆ σ. Conversely, for x ∈ σ, let
τx ∈ ∆ be such that x ∈ Relintτx . Since ∆ refines Σ, there is some ρ ∈ Σ such
that τx ⊆ ρ; assume that ρ is inclusion-minimal with this property. It follows from
[Spa66, §3, Lemma 3, p. 121] that Relintτx ⊆ Relintρ, meaning that x ∈ σ∩Relintρ.
By condition (b) on Σ, we have that σ∩ρ is face of ρ. But then by Proposition 2.24,
ρ ´ σ, since otherwise σ ∩ ρ would be a proper face of ρ containing x ∈ Relintρ.
Therefore τx ⊆ ρ ⊆ σ so that x ∈

⋃

S.

The barycentric subdivision SdΣ of Σ is particularly important kind of subdivision.
The idea is that we put a new vertex at the barycentre of each simplex in Σ, then build
up the rest of the simplicial complex around this. Spelling this in detail is somewhat
involved, and the technical details will not be needed in this paper. Hopefully the
examples in Figure 1 should provide the intuition behind the construction, but for a
full definition we refer the reader to [Mun84, §15, p. 83].

3 The algebra of open subpolyhedra
With the preliminaries in place, we are in a position to establish a link between intu-
itionistic logic and polyhedra. For this, we will be following [Bez+18b].
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Figure 1: Examples of barycentric subdivision (the right-most tetrahedron is drawn
without filled-in faces to aid clarity)

3.1 Polyhedral semantics
Given a polyhedron P, let SubP denote the collection of its subpolyhedra.

Theorem 3.1. SubP is a co-Heyting algebra, and a subalgebra of C (X ).

Proof. See [Bez+18b, Corollary 3.8]. The proof makes fundamental use of the Trian-
gulation Lemma.

Any subpolyhedron of P is by definition compact, and hence closed. Therefore it is
not surprising, once the algebraic nature of SubP is established, that it turns out to be
a co-Heyting algebra. In topology and logic, on the other hand, it is more conventional
to work with open sets and Heyting algebras. Thus, it is natural at this point to switch
to the Heyting algebra dual to SubP, which has the following concrete realisation.

Given a polyhedron P, an open subpolyhedron of P is the complement of a (com-
pact) subpolyhedron of P. Denote by SuboP the collection of open subpolyhedra in P.
It is evidently the dual of SubP, and Theorem 3.1 yields the following.

Theorem 3.2. SuboP is a Heyting algebra, and a subalgebra of O (X ).

Once we have a Heyting algebra, we can start interpreting logics. For any formula
φ, say that P � φ if and only if SuboP � φ as a Heyting algebra. Theorem 3.2 then
tells us that this interpretation is sound.

Call an intermediate logic polyhedrally-complete if it is the logic of some class of
polyhedra. The remainder of the paper will be devoted to exploring what it means for
a logic to be polyhedrally-complete.

In [Bez+18b], it is shown that IPC is polyhedrally-complete, being the logic of all
polyhedra, while BDn is the logic of all polyhedra of dimension at most n. It is also
noted that all polyhedrally-complete logics must have the finite model property. This
will also follow from Theorem 3.7 below, since triangulations are always finite.
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3.2 Triangulation subalgebras
Triangulations of polyhedra have an important algebraic correspondent. Let Σ be a
triangulation of P. Then Σ ⊆ SubP. Let Pc(Σ) be the sublattice of Subo(P) generated
by Σ.

Lemma 3.3. Pc(Σ) is a co-Heyting subalgebra of SubP.

Proof. See [Bez+18b, Lemma 3.6].

Call any algebra of the form Pc(Σ) a triangulation subalgebra. The following lemma
allows us to interrogate the ostensibly intractable structure SubP by examining its
triangulation algebras, all of which are finite.

Lemma 3.4. Every finitely-generated subalgebra of SubP is contained in some triangu-
lation algebra.

Proof. See [Bez+18b, Lemma 3.2]. Essentially, this is the content of the Triangulation
Lemma 2.25.

Turning now to the dual, every triangulation Σ of a polyhedron P gives rise to a
sub-Heyting algebra Po(Σ), which we also call a triangulation subalgebra, generated
by the complements of the simplices inΣ. Lemma 3.4 gives us the following fact about
SuboP.

Corollary 3.5. SuboP is a locally-finite Heyting algebra.

Proof. This follows from the dual of Lemma 3.4 and the fact that triangulation subal-
gebras are finite.

The algebra Po(Σ) is somewhat hard to visualise, but in fact it is exactly to dual (in
the sense of the finite Esakia Duality) of Σ, regarded as a Kripke frame.

Lemma 3.6. The map:

γ↑ : UpΣ→ Po(Σ)

U 7→
⋃

σ∈U

Relint(σ)

is an isomorphism of Heyting algebras.

Proof. See [Bez+18b, Lemma 4.3].

Now, Logic(P) is the logic of its finitely-generated subalgebras, which by the dual of
Lemma 3.4, is the logic of its triangulation algebras. Combining this with our duality
result Lemma 3.6, we obtain the following characterisation.

Theorem 3.7. The logic of a polyhedron is the logic of its triangulations.

The following additional facts about triangulation algebras will be useful later on.

Lemma 3.8. (1) Triangulation algebras determine their corresponding triangulations.
That is, for any two triangulations Σ and ∆, if Po(Σ) = Po(∆) then Σ=∆.

(2) If Σ and ∆ are triangulations which are isomorphic as posets then Po(Σ)∼= Po(∆).

(3) If ∆ refines Σ, then Po(Σ) is a subalgebra of Po(∆).

Proof. (1) It follows from conditions (a) and (b) on simplicial complexes that Pc(Σ)
consists exactly of the unions of elements of Σ, and similarly for ∆. Assume
Po(Σ) = Po(∆), so that Pc(Σ) = Pc(∆), and take σ ∈ Σ. Then σ ∈ Pc(∆), so
σ =

⋃

S for some S ⊆∆, and similarly each τ ∈ S is τ=
⋃

Tτ for some Tτ ⊆ Σ.
Hence:

σ =
⋃⋃

τ∈S

Tτ

But then by condition (b) on Σ, every ρ ∈
⋃

τ∈S Tτ must either be equal to σ
or be a proper face of σ. Since Relintσ contains no proper face of σ, we must
have σ ∈ Tτ for some τ ∈ S. But then σ ⊆ τ ⊆ σ, and so σ ∈ ∆. Applying this
argument also in the other direction, we get that Σ=∆.
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(2) This follows from Lemma 3.6.

(3) By Lemma 2.27, every σ ∈ Σ is the union of simplices in ∆. Whence Σ ⊆ Pc(∆).
Therefore, by definition Pc(Σ) ⊆ Pc(∆). By symmetry Pc(∆) ⊆ Pc(Σ).

3.3 PL homeomorphisms and polyhedral maps
Let us now consider the relationship between logic and polyhedral geometry on the
level of morphisms.

A map f : P → Q is a PL embedding if f (P) is a polyhedron and f : P → f (P) is a
PL homeomorphism.

Let P be a polyhedron and F be a poset. A function f : P → F is a polyhedral map
if the preimage of any open set in F is an open subpolyhedron of P. Note that such a
function is continuous.

Proposition 3.9. Let f : P → F be a function from a polyhedron P to a finite poset F,
and write f ∗ := f −1[−]: P (F)→P (P) for the inverse image function.

(1) The function f is polyhedral if and only if f ∗ descends to a lattice homomorphism
f ∗ : Up F → SuboP.

(2) The function f is polyhedral and open if and only if f ∗ descends to a homomorphism
of Heyting algebras f ∗ : Up F → SuboP.

Proof. Clearly f ∗ is a homomorphism of Boolean algebras, so (1) follows from the
definitions. As for (2), let us first assume that f is polyhedral and open, and take
U , V ∈ Up F with the aim of showing that f ∗(U → V ) = f ∗(U) → f ∗(V ). The left-
to-right inclusion follows from the fact that f ∗ is a lattice homomorphism. For the
right-to-left, writing XC for the complement of X , we have the following chain of
inclusions.

f [ f ∗(U)→ f ∗(V )] = f
�

Int
�

f −1[U]C ∪ f −1[V ]
��

⊆ Int
�

f
�

f −1[U]C ∪ f −1[V ]
��

( f is open)

= Int
�

f
�

f −1[UC ∪ V ]
��

⊆ Int(UC ∪ V )

= U → V

Applying f ∗ = f −1 to both sides, we get that f ∗(U)→ f ∗(V ) ⊆ f ∗(U → V ).
For the converse implication, assume that f ∗ is a Heyting algebra homomorphism.

By (1), f is polyhedral, so take W ⊆ F with the aim of showing that f −1[Int W ] =
Int( f −1[W ]). First let A := Int((↑W )C ∪W ) ∪ Int(WC) and B := Int W . A routine
calculation verifies that AC ∪ B =W , and moreover that A, B ∈ Up F . Then:

f −1[Int W ] = f ∗[A→ B]

= f ∗[A]→ f ∗[B] ( f ∗ is a homomorphism)

= Int( f ∗[A]C ∪ f ∗[B])

= Int( f ∗[AC ∪ B])

= Int( f −1[W ])

Proposition 3.10. Any PL homeomorphism f : P →Q between polyhedra, along with its
inverse g : Q→ P, induce mutually inverse isomorphisms of Heyting algebras f ∗ : SuboQ→
SuboP and g∗ : SuboP → SuboQ.

Proof. The inverse image of a subpolyhedron under a PL homeomorphism is again a
subpolyhedron [RS72, Corollary 2.5, p. 13], meaning the inverse image of an open
subpolyhedron is an open subpolyhedron. Furthermore, homeomorphisms are open
maps. Hence f ∗ : P (Q) → P (P) and g∗ : P (P) → P (Q) descend to functions as
in the statement. These are mutually inverse isomorphisms of lattices by definition.
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The fact that they also preserve Heyting implication follows just as in the proof of
Proposition 3.9.

Corollary 3.11. If P and Q are PL homeomorphic then Logic(P) = Logic(Q).

Let Σ be a simplicial complex and F be a poset. Given any function f : Σ → F ,
define the map bf : |Σ| → F by:

bf (x) := f (σx )

Proposition 3.12. When f : Σ→ F is a p-morphism, bf : |Σ| → F is an open polyhedral
map.

Proof. For any U ∈ Up F , we have that:

bf −1[U] =
⋃

{Relintσ | σ ∈ Σ and σ ∈ f −1[U]}= γ↑( f −1[U])

Since f is monotonic, f −1[U] is upwards-closed in Σ, whence as above bf −1[U] is an
open sub-polyhedron of |Σ|. Now take an open set W ⊆ |Σ|, with the aim of showing
that bf [W ] is open. Define:

Σ#W := {σ ∈ Σ | Relint(σ)∩W 6=∅}

Then:
bf [W ] = { f (σx ) | x ∈W}= f [Σ#W ]

If σ ∈ Σ#W and σ ´ τ, then as σ ⊆ τ = ClRelintτ and W is open, we have τ ∈
Σ#W ; i.e. Σ#W is upwards-closed. But now, f is open and so bf [W ] is also upwards-
closed.

4 The Nerve Criterion
Given a poset F , its nerve, N (F), is the collection of finite non-empty chains in F
ordered by inclusion.

The following theorem is one of the main contributions of the paper:

Theorem 4.1 (The Nerve Criterion). A logic is polyhedrally-complete if and only if it is
the logic of a class of finite frames closed under the nerve construction N .

The utility of the Nerve Criterion is that it transforms logic-geometric questions into
questions about finite posets, to which finite combinatorial methods are applicable.

The proof of the Nerve Criterion is given in Section 4.5, and for it we will need
to import several results from polyhedral geometry. The heart of the argument is the
classical link between nerves and barycentric subdivision.

Let Σ be a simplicial complex. The kth derived subdivision of Σ, denoted by Σ(k), is
the result of applying the barycentric subdivision operation k-times on Σ. I.e. Σ(k) =
SdkΣ. Now let A be a triangulation subalgebra of SuboP for some polyhedron P. By
Lemma 3.8 (1), there is a unique triangulation Σ of P such that A = Po(Σ). For any
k ∈ N, let A(k) := Po(Σ(k)).

Theorem 4.2. Let P be a polyhedron and let A be any triangulation subalgebra of SuboP.
For any finitely-generated subalgebra B of SuboP, there is k ∈ N such that B is isomorphic
to a subalgebra of A(k).

Sections 4.1–4.4 will be devoted to proving this theorem.

4.1 Rational polyhedra and unimodular triangulations
The intuition behind Theorem 4.2 is that any triangulation can be approximated from
any other by taking iterated barycentric subdivisions. The difficulty one might face
with spelling out such an intuition is dealing with the ‘continuum nature’ of Rn. It
might be imagined that, if we start with a triangulation Σ on irrational vertices and
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try to approximate it using the iterated barycentric subdivisions of a triangulation on
rational vertices, the approximations would never quite capture all ofΣ. The approach
taken here is effectively to show that it suffices to restrict attention to the rational case.
In order to make this idea precise, we need some definitions. For these, we will mainly
be following [Mun11].

A polytope in Rn is rational if it may be written as the convex hull of finitely many
points in Qn ⊆ Rn. A polyhedron in Rn is rational if it may be written as a union of a
finite collection of rational polytopes. A simplicial complex Σ is rational if it consists
of rational simplices. Note that when this is the case, |Σ| is a rational polyhedron.

For any x ∈ Qn ⊆ Rn, there is a unique way to write out x in coordinates as
x = ( p1

q1
, . . . , pn

qn
) such that for each i, we have pi , qi ∈ Z coprime. The denominator of

x is defined:
Den(x) := lcm{q1, . . . , qn}

Note that Den(x) = 1 if and only if x has integer coordinates. Letting q = Den(x), the
homogeneous correspondent of x is defined to be the integer vector:

ex :=
�

qp1

q1
, . . . ,

qpn

qn
, q
�

A rational d-simplexσ = x0 · · · xd is unimodular if there is an (n+1)×(n+1)matrix
with integer entries whose first d columns are fx0, . . . ,fxd , and whose determinant is
±1. This is equivalent to requiring that the set {fx0, . . . ,fxd} can be completed to a
Z-module basis of Zd+1. A simplicial complex is unimodular if each one of its simplices
is unimodular.

4.2 Farey subdivisions
In order to obtain the main result concerning barycentric subdivisions, we go via an-
other kind of subdivision which is more amenable to the rational case.

Proposition 4.3. For any x , y ∈ Qn, there is a unique m ∈ Qn such that em = ex + ey,
and this lies in the relative interior of the 1-simplex Conv {x , y}.

Proof. Let Hn+1 ⊆ Rn+1 be the hyperplane specified by:

Hn+1 := {(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = 1}

IdentifyQn with the set of rational points of Hn+1. Under this identification, em= ex+ey
lies in the affine cone:

{aex + bey | a, b > 0}

A routine computation then proves the geometrically evident fact that m is the point
of intersection of the line spanned in Rn+1 by the vector em, with the hyperplane Hn+1;
from which the result follows.

For x , y ∈Qn, let this m ∈Qn be their Farey mediant. The Farey mediant behaves in a
similar way to the barycentre of x and y .

Using the notion of Farey mediant, one can define the notion of a Farey subdivision.
Just as in the case of barycentric subdivision, the precise formulation is somewhat
involved, while the technical details are not so important for the present paper. Thus,
as before, we will present the idea, coupled with some diagrams, in order to give the
essential intuition. For a complete definition, we refer the reader to [Mun11, §5.1,
p. 55].

Let Σ1,Σ2 be rational simplicial complexes in Rn. Then Σ2 is an elementary Farey
subdivision of Σ1 if it is obtained from Σ1 by subdividing exactly one of its 1-simplices
Conv {x , y} through the introduction of the Farey mediant m of x and y as the single
new vertex of Σ2. If Σ2 can be obtained from Σ1 through finitely many successive
elementary Farey subdivisions, then we sayΣ2 is a Farey subdivision ofΣ1. See Figure 2
for examples of this operation.
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Figure 2: Examples of elementary Farey subdivisions

To relate Farey subdivisions with barycentric subdivisions, note that one may define
an elementary barycentric subdivision analogously to the Farey case, by taking a single
1-simplex and adding a new vertex at its barycentre. The following technical lemma
will be useful below; its proof uses the details of the full definition of elementary Farey
and barycentric subdivision.

Lemma 4.4. Let Σ,∆ be simplicial complexes with Σ rational, assume that γ: Σ→∆ is
an isomorphism of Σ and ∆ as posets, and take a 1-simplex σ ∈ Σ. Then the elementary
Farey subdivision of Σ along σ and the elementary barycentric subdivision of ∆ along
γ(σ) are isomorphic as posets.

Proof. Indeed, at the level of posets, elementary Farey subdivision and elementary
barycentric subdivision are the same operation: we take a 1-simplex and add a new
vertex somewhere in its interior, then construct the rest of the complex around this.
For more details see [Ale30, §III].

The following is a fundamental fact of rational polyhedral geometry, and captures
the idea of ‘rational approximation’.

Lemma 4.5 (The De Concini-Procesi Lemma). Let P be a rational polyhedron, and let
Σ be a unimodular triangulation of P. There exists a sequence (Σi)i∈N of unimodular
triangulations of P with Σ0 = Σ such that:

(a) For each i ∈ N, Σi+1 is an elementary Farey subdivision of Σi , and

(b) For any rational polyhedron Q ⊆ P, there is i ∈ N such that Σi triangulates Q.

Proof. See [Mun11, Theorem 5.3, p. 57].

4.3 From R to Q
We will now see how to relate general polyhedra to rational polyhedra, and general
simplicial complexes to unimodular simplicial complexes.
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Lemma 4.6. Let P be a polyhedron, and let Σ be a triangulation of P. There exist an
integer n ∈ N, a rational polyhedron Q ⊆ Rn, and a unimodular triangulation ∆ of Q
such that P and Q are PL-homeomorphic via a map that induces an isomorphism of Σ
and ∆ as posets.

Proof. This is a standard argument. Fix a bijection β from the vertices of Σ to the
standard basis of Rn, where n is the number of vertices in Σ. Take a simplex σ =
x0 · · · xd in Σ. Note that the points β(x0), . . . ,β(xd) are affinely independent; let
α(σ) be the d-simplex spanned by their convex hull: α(σ) := Conv{β(x0), . . . ,β(xd)}.
Since the vertices of α(σ) are standard basis elements, α(σ) is a unimodular simplex
by definition. Let fσ : σ→ α(σ) be the linear map determined by fσ(x i) = β(x i) for
each i, and let gσ : α(σ)→ σ be its inverse, determined by gσ(β(x i)) = x i .

Now, let Q :=
⋃

σ∈Σ α(σ). For any simplicesσ ´ τ, the map fσ agrees with fτ onσ.
Hence we may glue these maps together to form a map f : P → Q, i.e. f (x) = fσ(x),
where σ is any simplex of Σ containing x . Similarly, we may glue together the maps
gσ for σ ∈ Σ to form an inverse to f . By definition f is a PL homeomorphism. Finally,
note that ∆ := {α(σ) | σ ∈ Σ} is a triangulation of Q, and that f induces the poset
isomorphism σ 7→ α(σ) between Σ and ∆.

Lemma 4.7. Let Σ be a unimodular triangulation of the rational polyhedron P, and
supposeΣ′ is a Farey subdivision ofΣ. There is a triangulation∆ of P which is isomorphic
as a poset to Σ′, and k ∈ N such that Σ(k) refines ∆.

Proof. The proof works by replacing each elementary Farey subdivision by an element-
ary barycentric subdivision. We induct on the number m ∈ N>0 of elementary Farey
subdivisions needed to obtain Σ′ from Σ. If m= 1, let Conv {x , y} be the 1-simplex of
Σ being subdivided through its Farey mediant. Then the first barycentric subdivision
Σ(1) of Σ refines the elementary barycentric subdivision Σ∗ of Σ along Conv {x , y}. By
Lemma 4.4, Σ∗ and Σ′ are isomorphic.

For the induction step, suppose m> 1, and write (Σi)mi=0 for the finite sequence of
triangulations connecting Σ = Σ0 to Σ′ = Σm through elementary Farey subdivisions.
By the induction hypothesis, there is k ∈ N such that Σ(k) refines a triangulation ∆
isomorphic to Σm−1; let us fix one such isomorphism γ. Let Conv {x , y} be the 1-
simplex of Σm−1 that must be subdivided through its Farey mediant in order to obtain
Σm. Let further σ be the simplex of ∆ that corresponds to Conv {x , y} through the
isomorphism γ. Since the 1-simplices are exactly the height-1 elements of ∆, we get
that σ is a 1-simplex. Then Σ(k+1) refines ∆∗, the latter denoting the elementary
barycentric subdivision of ∆ along σ. But ∆ is isomorphic to Σm−1, and therefore by
Lemma 4.4, ∆∗ is isomorphic to Σm.

Lemma 4.8 (Beynon’s Lemma). Let P be a rational polyhedron, and let Σ be a trian-
gulation of P. There exists a rational triangulation of P which is isomorphic as a poset
to Σ.

Proof. This is the main result of [Bey77].

4.4 Putting it all together
It is time to combine all our ingredients and prove the main theorem of the chapter.

Proof of Theorem 4.2. Let Σ be the triangulation of P such that A = Po(Σ). Using
Lemma 4.6, Lemma 3.8 (2) and Proposition 3.10 we may assume without loss of gen-
erality that P is rational and Σ is unimodular. By Lemma 3.4, there is a triangulation
∆ of P such that B is isomorphic to a subalgebra of Po(∆). By Beynon’s Lemma 4.8
and Lemma 3.8 (2), we may assume that ∆ is rational (and hence each member of
B is, too). By the De Concini-Procesi Lemma 4.5, there is a Farey subdivision Σ′ of Σ
that refines∆. Therefore by Lemma 3.8 (3), B is isomorphic to a subalgebra of Po(Σ′).
By Lemma 4.7, there is k ∈ N such that Σ(k) refines Σ′ up to isomorphism. Hence by
Lemma 3.8 (3) again, A(k) contains a subalgebra isomorphic to Po(Σ′), and therefore
also a subalgebra isomorphic to B.
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4.5 Bringing nerves back onto the stage
Let us now see how to attain the Nerve Criterion from Theorem 4.2. The reason that
the nerve construction is relevant here is the following.

Proposition 4.9. Let Σ be a simplicial complex. The barycentric subdivision of Σ is
isomorphic as a poset to the nerve of Σ:

SdΣ∼=N (Σ)

Proof. Let us give an intuitive proof as to why this is the case. For more detail, we
refer the reader to [Mau80, Proposition 2.5.10, p. 51] and [RW12, §3].

In our informal definition, the construction of the barycentric subdivision of a sim-
plicial complex Σ involved putting a new vertex at the barycentre of each simplex
of Σ, and constructing the rest of SdΣ around this. Let us consider in a little more
detail what this involves. For each simplex σ ∈ Σ, we have a new 0-simplex, which
we will label {σ}. The first step in ‘building up the rest of SdΣ’ would be to add in
some 1-simplices. A little reflection and diagram staring (consider again Figure 1)
indicates that we should put a 1-simplex between {σ} and {τ} exactly when σ ≺ τ or
τ≺ σ, i.e. when {σ,τ} is a chain in Σ. Let us label such a new 1-simplex {σ,τ}. The
next stage would be to add in some 2-simplices. Some further reflection and diagram
staring should indicate that we should add a 2-simplex connecting σ, τ and ρ exactly
when {σ,τ,ρ} is a chain in Σ. Label such a 2-simplex by {σ,τ,ρ}. Continuing in this
fashion, we eventually arrive at an isomorphism SdΣ∼=N (Σ).

Corollary 4.10. For P a polyhedron and Σ a triangulation of P we have:

Logic(P) = Logic(N k(Σ) | k ∈ N)

Proof. Indeed:

Logic(P) = Logic(SuboP)

= Logic(A | A finitely-generated subalgebra of SuboP) (Lemma 3.4)

= Logic(Po(Σ
(k)) | k ∈ N) (Theorem 4.2)

= Logic(Σ(k) | k ∈ N) (as above)

= Logic(N k(Σ) | k ∈ N) (Proposition 4.9)

For the converse direction of the Nerve Criterion, we will need the following con-
struction, described in [Bez+18b]. Let F be a finite poset. Using the nerve, we define
its geometric realisation via a simplicial complex. Enumerate F = {x1, . . . , xm}, and let
e1, . . . , em be the standard basis vectors of Rm. The simplicial complex induced by F is
defined:

∇F := {Conv{ei1 , . . . , eik} | {x i1 , . . . , x ik} ∈ N (F)}
Now, the map max: N (F)→ F , which sends a chain to is maximum element, is a p-
morphism. Since∇F ∼=N (F) as posets, this induces an open polyhedral map |∇F | →
F , meaning that Logic(|∇F |) ⊆ Logic(F).

Proof of Theorem 4.1, the Nerve Criterion. Assume that L is the logic of a class C of
polyhedra. For each P ∈ C fix a triangulation ΣP , and let:

C∗ := {N k(ΣP) | P ∈ C and k ∈ N}

Then:

Logic(C∗) =
⋂

P∈C

Logic(N k(ΣP) | k ∈ N)

=
⋂

p∈C

Logic(P) (Corollary 4.10)

= Logic(C) =L
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Conversely, assume thatL = Logic(D), where D is a class of finite frames closed under
N . Let:

D∗ := {|∇(F)|: F ∈ D}

We will show that L = Logic(D∗). First suppose that L 0 φ, so that F 2 φ for some
F ∈ D. Then we have that |∇(F)| 2 φ, so that Logic(D∗) 0 φ. Conversely, suppose
that Logic(D∗) 0 φ, so that |∇(F)| 2 φ for some F ∈ D. By definition ∇(F) is a
triangulation of |∇(F)|, hence by Corollary 4.10 there is k ∈ N such that ∇(F)(k) 2 φ.
But∇(F)∼=N (F) by definition, and so by Proposition 4.9 we getN k+1(F)∼=∇(F)(k).
Thus, as D is closed under N , we get that L 0 φ.

5 Polyhedrally incomplete logics
In this section, we use the Nerve Criterion to provide a negative result concerning
polyhedral completeness, showing that every stable logic is polyhedrally-incomplete,
of which there are contiuum many.

A logic L is stable if Frames⊥(L ) is closed under monotone images (see [BB17],
where stable logics are first defined).

Proposition 5.1. The following well-known logics2 are all stable.

(i) The logic of weak excluded middle, KC= IPC+ (¬p ∨¬¬p).

(ii) Gödel-Dummett logic, LC= IPC+ (p→ q)∨ (q→ p).

(iii) LCn = LC+BDn.

(iv) The logic of bounded width n, BWn = IPC+
∨n

i=0(pi →
∨

j 6=i p j).

(v) The logic of bounded top width n, defined:

BTWn :=
∧

0¶i< j¶n

¬(¬pi ∧¬p j)→
n
∨

i=0

(¬pi →
∨

j 6=i

¬p j)

(vi) The logic of bounded cardinality n, defined:

BCn := p0 ∨ (p0→ p1)∨ ((p0 ∧ p1)→ p2)∨ · · · ∨ ((p0 ∧ · · · ∧ pn−1)→ pn)

Proof. See [BB17, Theorem 7.3].

In fact:

Theorem 5.2. There are continuum-many stable logics.

Proof. See [BB17, Theorem 6.13].

Theorem 5.3. Every stable logic has the finite model property.

Proof. See [BB17, Theorem 6.8].

Hence, stable logics are good candidates for polyhedrally-complete logics. How-
ever:

Theorem 5.4. If L is a stable logic other than IPC, and Frames(L ) contains a frame
of height at least 2, then L is not polyhedrally-complete.

Proof. Let L be a polyhedrally-complete stable logic of height at least 2. We show
that L = IPC.

By the Nerve Criterion 4.1, there is a class C of finite frames closed under N such
that L = Logic(C). Since Frames(L ) contains a frame of height at least 2, we must
have L 0 BD1. Since L = Logic(C), there is therefore F ∈ C such that height(F)¾ 2.
This means there are x0, x1, x2 ∈ F with x0 < x1 < x2. Without loss of generality, we
may assume that x2 is a top element and that x1 is an immediate predecessor of x2

2For more information on these logics see [CZ97, Table 4.1, p. 112].
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and x0 an immediate predecessor of x1. Now, by assumption N k(F) ∈ C for every
k ∈ N. Let us examine the structure of these frames a little. Note that {x0, x1, x2} is a
chain. Let X be a maximal chain in ⇓(x0). We have the following relations occurring
in N (F).

X ∪ {x0}

X ∪ {x0, x1} X ∪ {x0, x2}

X ∪ {x0, x1, x2}

Moreover, by assumptions on x0, x1, x2 and X , we have that X ∪ {x0, x1, x2} is a top
element of N (F), with X ∪ {x0, x1} and X ∪ {x0, x2} immediate predecessors, and
X ∪ {x0} an immediate predecessor of those. So, we may apply this argument once
more, to obtain the following structure sitting at the top of N 2(F).

Iterating, we see that at the top of N k(F) we have the following structure.

z

· · ·
· · ·

2k−1 top nodes

Let z be the base element of this structure, as indicated. Now, take k ∈ N and let
{t1, . . . , tm} be the top nodes ofN k(F) produced by this construction, where m= 2k−1.
By Proposition 2.3, ↑(z) ∈ Frames⊥(L ).

Let now G be an arbitrary poset with up to m elements {y1, . . . , ym} (possibly with
duplicates) plus a root ⊥. Define f : ↑(z)→ G as follows.

x 7→
§

yi if x = t i ,
⊥ otherwise.

Then f is monotonic. Since L is stable, this means that G ∈ Frames⊥(L ). Thus
(since, by Proposition 2.18 and Corollary 2.4, IPC is the logic of finite rooted frames)
we get that L = IPC.

6 Polyhedrally complete logics: starlike complete-
ness
In this section, we use the Nerve Criterion to establish a class of logics which are
polyhedrally-complete. These logics are axiomatised using the forbidden configura-
tion method of Jankov-Fine formulas. The proofs in this section largely involve com-
binatorial manipulations of posets.
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6.1 Starlike trees
A tree T is a starlike tree if every x ∈ T \{⊥} has at most one immediate successor. The
terminology ‘starlike’ comes from graph theory [WS79]. If we were to place the root
of a starlike tree at the centre of a diagram and arrange its branches radially outward,
it would look like a star.

It will be useful to carve out some notation with which we can conveniently point
to each starlike tree (up to isomorphism). Note that a starlike tree is determined by
the multiset of its branch heights. The following notation is inspired by that used in
the theory of multisets.

Let n1, . . . , nk, m1, . . . , mk ∈ N>0, with n1, . . . , nk distinct. Then let us define T =
〈nm1

1 · · ·n
mk
k 〉 as the starlike tree with the property that if we remove the root ⊥ we

are left with exactly, for each i, mi chains of length ni . Let 〈ε〉 = •, the singleton
poset. Call α = nm1

1 · · ·n
mk
k (or ε) the signature of T . We will always assume that

n1 > n2 > · · ·> nk.
In other words, T = 〈nm1

1 · · ·n
mk
k 〉 is composed of, for each i, mi branches of length

ni+1. See Figure 3 for some examples of starlike trees together with their signatures.
We will sometimes write 10 for ε.

Let α= nm1
1 · · ·n

mk
k be a signature. The length of α is defined as |α| := m1+· · ·+mk.

Let |ε| := 0. For j ¶ |α|, the jth height, α( j), is ni , where:

m1 + · · ·+mi−1 ¶ j < m1 + · · ·+mi

Let α and β be signatures. Say that α ¶ β if |α| ¶ |β | and for every j ¶ |α| we
have α( j) ¶ β( j). Visually, this means that if we represent α = nm1

1 · · ·n
mk
k on a grid

as a block n1-tall and m1-wide, followed by a block n2-tall and m2-wide, and so on,
and similarly for β , that β covers α. Considering the examples in Figure 3, we have
the following relations:

13 < 3 · 12 < 32 · 2 · 1, 2< 3 · 12

Remark 6.1. When α= nm1
1 · · ·n

mk
k and β are signatures, we have α¶ β if and only if

|α|¶ |β | and for every i ¶ k, we have:

β(m1 + · · ·+mi)¾ ni

Proposition 6.2. If α¶ β then there is a p-morphism 〈β〉 → 〈α〉.

Proof. Let us first fix labellings on 〈α〉 and 〈β〉. Label the root of 〈α〉 with ⊥. We
may arrange the branches of 〈α〉 in a sequence so that the jth branch has height
α( j). Let us label the non-root elements of the jth branch in ascending order as
a( j, 1), . . . , a( j,α( j)), and similarly for 〈β〉, with b( j, i) for j ¶ |β | and i ¶ β( j).

Now, define f : 〈β〉 → 〈α〉 as follows. Note, for j ¶ |α|, we have α( j) ¶ β( j). For
i ¶ β( j) let:

f (b( j, i)) := a( j,min(i,α( j)))

For j > |α| and i ¶ β( j), let:

f (b( j, i)) := a(1,α(1))

A routine calculation shows that f is a p-morphism.

〈2〉 〈13〉 〈3 · 12〉 〈32 · 2 · 1〉

Figure 3: Some examples of starlike trees
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Note that the starlike tree 〈k〉 is the chain on k+1 elements, Chk. We will use this
former notation for chains from now on. For k ∈ N>0, the k-fork is the starlike tree
〈1k〉.

6.2 Starlike logics
We are now in a position to define the principle class of logics that will be investigated
in this section. Let S := {α signature | α 6= 12}. Take Λ ⊆ S (possibly infinite). The
starlike logic SFL(Λ) based on Λ is the logic axiomatised by IPC plus χ(〈α〉) for each
α ∈ Λ. Write SFL(α1, . . . ,αk) for SFL({α1, . . . ,αk}).

Proposition 6.3. SL= SFL(2 · 1). So Scott’s logic is a starlike logic.

Proof. See [CZ97, §9 and Table 9.7, p. 317].

Let us examine what SFL(Λ) ‘means’ in terms of its class of frames. The formula
χ(〈α〉) turns out to express a kind of connectedness property. Let us first see some
new terminology.

Let F be a finite poset. Define C(F) to be the set of connected components of F .
The connectedness type c(F) of F is the signature nm1

1 · · ·n
mk
k such that C(F) contains

for each i exactly mi sets of height ni − 1, and nothing else. Let c(∅) := ε.
Remark 6.4. Note that when F is connected, c(F) = n+ 1, where n= height(F).

Let α > ε be a signature. An α-partition of F is a partition:

F = C1 t · · · t C|α|

into open sets such that C j has height at least α( j)− 1. For notational uniformity, say
that F has an ε-partition if F =∅.
Remark 6.5. So an α-partition is an open partition in which the number and heights
of the connected components are specified by α.

Lemma 6.6. A finite poset F has an α-partition if and only if α¶ c(F).

Proof. Let β := c(F), and write α = nm1
1 · · ·n

mk
k . We may assume β > ε. Then we can

partition F into its connected components:

F = Ĉ1 t · · · t Ĉ|β |

such that Ĉ j has height β( j)−1. Take α¶ β . We construct an α-partition (C j | j ¶ |α|)
in blocks. First, since α ¶ β , we have that β(m1) ¾ n1. This means that each of
Ĉ1, . . . , Ĉm1

has height at least n1. Let C1, . . . , Cm1
be these components Ĉ1, . . . , Ĉm1

.
Next, we have that β(m1 + m2) ¾ n2, meaning that each of Ĉm1+1, . . . , Ĉm1+m2

has
height at least n2. Let Cm1+1, . . . , Cm1+m2

be these components. Continue constructing
(C j | j ¶ |α|) in this fashion. Note that we don’t run out, since |α| ¶ |β |. Finally, take
the remaining |β | − |α| components and add them to C1.

Conversely, assume that (C j | j ¶ |α|) is an α-partition of F . First note that since
this is an open partition, we must have that |α|¶ |C(F)|= |β |. Now consider C1. Let:

Γ := {l ¶ |β |: Ĉl ⊆ C1}

Since C1 is open and closed, for each Ĉl , either Ĉl ⊆ C1 or Ĉl ∩ C1 =∅. Hence:

C1 =
⋃

l∈Γ
Ĉl

Because each Ĉl is upwards- and downwards-closed, this means that:

height(C1) =max
�

height(Ĉl)
�

� l ∈ Γ
	

Therefore, as β(1) is maximal in {β( j) | j ¶ |β |}, we get that α(1)¶ β(1).
Applying this argument inductively on F \ C1, we get that α¶ β = c(F).
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Corollary 6.7. When F is connected, F has an α-partition if and only if α = k, where
k ¶ height(F) + 1.

Let F be a poset and α be a signature. F is α-connected if there is no x ∈ F such
that there is an α-partition of ⇑(x).
Remark 6.8. By Lemma 6.6, this is equivalent to requiring that α 6¶ c(⇑(x)) for each
x ∈ F .

We can now express the meaning of χ(〈α〉) on frames.

Proposition 6.9. For F a finite poset and α any signature, F � χ(〈α〉) if and only if F
is α-connected.

Proof. First label the elements of 〈α〉 as in the proof of Proposition 6.2. Assume that
F 2 χ(〈α〉). Then by Corollary 2.17 there is a pointed up-reduction f : F → 〈α〉 with
apex x . This means that f −1[〈α〉 \ {⊥}] = ⇑(x). For each j ¶ |α|, let:

C j := f −1{a( j, 1), . . . , a( j,α( j))}

Since {a( j, 1), . . . , a( j,α( j))} is upwards-closed, so is C j . Note that the C j ’s are disjoint.
Hence (C j | j ¶ k) is an open partition of ⇑(x). Now, pick x1 ∈ f −1{a( j, 1)}. Since f is
a p-morphism, there is x2 ∈ f −1{a( j, 2)} with x1 < x2. Continuing in this fashion, we
find a chain of length α( j) in C j , whence height(C j) ¾ α( j)− 1. But then (C j | j ¶ k)
is an α-partition of ⇑(x), meaning that F is not α-connected.

Conversely, assume that F is not α-connected, so that there is x ∈ F and an α-
partition (C j | j ¶ k) of ⇑(x). For each C j , we have, by definition, that height(C j) ¾
α( j)−1. Hence by Proposition 2.19 there is a p-morphism f j : C j → 〈α( j)−1〉. Define
f : ↑(x)→ 〈α〉 as follows.

y 7→
§

⊥ if y = x ,
f j(y) if y ∈ C j

Then f is a p-morphism, so an up-reduction F ◦→ 〈α〉.

Remark 6.10. In particular it follows that BDn = IPC+χ(〈n+1〉). This is just Propos-
ition 2.19 of course.

The last matter to resolve before moving on to consider the completeness of starlike
logics is their number. For this we make use of Higman’s Lemma. A quasi-well-order is
a preorder which is well-founded and has no infinite antichain. Given a preorder I , let
I<ω be the set of finite sequences of elements of I ordered by (x1, . . . , xn)¶ (y1, . . . , ym)
if and only if there is f : {1, . . . n} → {1, . . . , m} injective such that for each k ¶ n we
have xk ¶ y f (k).

Lemma 6.11 (Higma’s Lemma, [higman52]). If I is a quasi-well-order then so is I<ω.

Proposition 6.12. There are exactly countably-many starlike logics.

Proof. It suffices to show that there is no infinite antichain of starlike trees with respect
to p-morphic reduction. In light of Proposition 6.2, it therefore suffices to show that
there is no infinite antichain of signatures with respect to the ordering defined on
them. Now, we can recast signatures as (monotonic decreasing) finite sequences of
integers. Indeed, the signature α is determined by the sequence (α(1), . . . ,α(|α|)). In
this way, the set of signatures is seen to be a suborder of ω<ω. Now, (ω,¶) is clearly
a quasi-well-order, and hence by Higman’s Lemma ??, so is ω<ω. Thus there is no
infinite antichain of signatures, as required.

6.3 Starlike completeness
The main theorem to be proved in this section is the following.

Theorem 6.13. Every starlike logic is polyhedrally-complete.

As an immediate consequence, we obtain:
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Corollary 6.14. Scott’s Logic is polyhedrally-complete.

Remark 6.15. The starlike logic SFL(2 · 1,13) is particularly important geometrically.
In [Ada+20], it is shown that this is the logic of all convex polyhedra.

In order to prove Theorem 6.11, we introduce the following new validity concept
on frames. Let F be a poset and φ be a formula. F nerve-validates φ, notation F �N φ,
if for every k ∈ N we have N k(F) � φ.

Remark 6.16. Since, as already remarked in Section 4.5, we always have the p-morphism
max: N (G)→ G, for every G, by Proposition 2.3 this is equivalent to requiring that
N k(F) � φ for infinitely-many k ∈ N.

Lemma 6.17. A logic L is polyhedrally-complete if and only if it has the finite model
property and every rooted finite frame of L is the up-reduction of a poset which nerve-
validates L .

Proof. Assume that L is polyhedrally-complete. Then by the Nerve Criterion 4.1 it is
the logic of a class C of finite frames which is closed under N , and so has the fmp.
Then by Corollary 2.15, every finite rooted frame F of L is the up-reduction of some
F ′ ∈ C. Since C ⊆ Frames(L ) and is closed under N , such an F ′ nerve-validates L .

Conversely, let C be the class of all finite rooted frames which nerve-validate L .
Note that C is closed under N . Further, clearly L ⊆ Logic(C). To see the reverse
inclusion, suppose thatL 0 φ. SinceL has the fmp, there is F ∈ Frames⊥,fin(L ) such
that F 2 φ. By assumption, F is the up-reduction of F ′ ∈ C. Then by Proposition 2.3,
F ′ 2 φ, meaning that Logic(C) 0 φ.

Lemma 6.18. Every starlike logic has the finite model property.

Proof. In [Zak93, Corollary 0.11], Zakharyaschev shows that every logic axiomatised
by the Jankov-Fine formulas of trees has the finite model property.

With Lemma 6.16, we can now use Lemma 6.15 to produce a proof of Theorem 6.11.
Given a rooted finite frame F of SFL(Λ), we proceed as follows.

(1) We examine what it means for a frame to nerve-validate χ(〈α〉).

(2) We see that it can be assumed that F is graded (a structural property of posets
defined below).

(3) Using this additional structure, we construct a frame F ′ and the p-morphism
F ′→ F , with the property that F ′ �N SFL(Λ)

The reader will have noticed that the difork 〈12〉 is omitted from the definition of
a starlike logic, and consequently from the Main Theorem 6.11. In fact, polyhedral
semantics is quite fond of this tree: when we take it as a forbidden configuration,
the resulting landscape of polyhedrally-complete logics is as sparse as possible, as is
shown below.

Proposition 6.19. Let L be a polyhedrally-complete logic containing SFL(12). Then
L = CPC, the maximum logic.

Proof. Suppose for a contradiction thatL is a polyhedrally-complete logic containing
SFL(12) other than CPC. By the Nerve Criterion 4.1, L = Logic(C) where C is a
class of finite posets closed under N . Since L 6= CPC, there must be F ∈ C with
height(F)¾ 1. This means that F has a chain x0 < x1. As in the proof of Theorem 5.4,
we may assume that x1 is a top element of F and that x0 is an immediate predecessor
of x1. Take X a maximal chain in ⇓(x0). Then, as in that proof, we obtain the following
structure lying at the top of N (F).

X ∪ {x0}

X ∪ {x0, x1}

X ∪ {x1}
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Applying the nerve once more, we obtain the following structure at the top ofN 2(F).

Z

Since C is closed underN , we get thatN 2(F) ∈ Frames(L ). But ⇑(Z)maps p-morph-
ically onto 〈12〉, contradicting that L ` χ(〈12〉).

6.4 Nerve-validation
While validatingχ(〈α〉) corresponds toα-connectedness (as shown in Proposition 6.9),
nerve-validating χ(〈α〉) corresponds to α-nerve-connectedness. Let F be a poset and
x < y in F . The diamond and strict diamond of x and y are defined, respectively:

l(x , y) := ↑(x)∩ ↓(y)
m(x , y) := l(x , y) \ {x , y}

A poset F is α-diamond-connected if there are no x < y in F such that there is
an α-partition of m(x , y). The poset F is α-nerve-connected if it is α-connected and
α-diamond-connected.

With a slight conceptual change, α-connectedness and α-diamond-connectedness
can be harmonised as follows. For any poset F , we take a new element ∞, and let
F̌ := F ∪{∞}, where∞ lies above every element of F . Then F is α-nerve-connected
if and only if there are no x < y in F̌ for which there is an α-partition of m(x , y).

Theorem 6.20. Let F be a finite poset and take α ∈ S . Then F �N χ(〈α〉) if and only
if F is α-nerve-connected.

Proof. Assume that F is not α-nerve-connected with the aim of showing F 2N χ(〈α〉).
Choose x < y in F̌ such that m(x , y) has an α-partition. That is, there is an open
partition (C j | j ¶ |α|) of m(x , y) such that height(C j) = α( j). Choose a chain X ⊆
F which is maximal with respect to (i) x , y ∈ X (ignoring the case y = ∞), and
(ii) X ∩ m(x , y) = ∅. I will show that ⇑(X )N (F) has an α-partition. Note that by
maximality of X , elements Y ∈ ⇑(X )N (F) are determined by their intersection Y ∩
m(x , y). For j ¶ |α|, let:

bC j := {Y ∈ ⇑(X )N (F) | Y ∩ C j 6=∅}

Take j, l ¶ |α| distinct. Since both C j and Cl are upwards- and downwards-closed in
m(x , y), there is no chain Y ∈ ⇑(X )N (F) such that Y ∩ C j 6= ∅ and Y ∩ Cl 6= ∅. This
means that:

(1) bC j and bCl are disjoint.

(2) For any Y ∈ ⇑(X )N (F) we have Y ∈ bC j if and only if Y ∩ m(x , y) ⊆ C j . Hence
each bC j is upwards- and downwards-closed in ⇑(X )N (F).

Furthermore, since (C j | j ¶ |α|) covers m(x , y), we get that (bC j | j ¶ |α|) covers
⇑(X )N (F). Finally, any maximal chain in bC j is a sequence of chains Y0 ⊂ · · · ⊂ Yl such
that |Yi+1 \ Yi |= 1; this then corresponds to a maximal chain in C j . Therefore:

height(bC j) = height(C j)

Ergo (bC j | j ¶ |α|) is anα-partition of ⇑(X )N (F), meaning thatN (F) is notα-connected.
Then, by Proposition 6.9, N (F) 2 χ(〈α〉), hence by definition F 2N χ(〈α〉).

For the converse direction, we will show that if F is α-nerve-connected, then so
is N (F), which will give the result by induction (note that α-nerve-connectedness is
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Figure 4: The set-up when X has more than one gap

stronger than α-connectedness, and hence by Proposition 6.9 if N k(F) is α-nerve-
connected then N k(F) � χ(〈α〉)). So assume that F is α-nerve-connected. We will
first prove α-connectedness. Take X ∈ N (F) with the aim of showing that ⇑(X )N (F)
has no α-partition.

Firstly, assume that X has more than one ‘gap’; that is, there are distinct w1, w2 ∈
F \ X such that X ∪{w1} and X ∪{w2} are still chains, but such that there exists z ∈ X
with w1 < z < w2. Take Y, Z ∈ ⇑(X )N (F). We will use the two gaps to juggle elements
between the two sets so as to provide a path Y   Z which never touches X (i.e. lies
in ⇑(X )N (F)). For i ∈ {1,2}, let ui ∈ X ∩⇓(wi) be greatest and vi ∈ X ∩⇑(wi) be least.
See Figure 4 for a representation of the situation. Now, without loss of generality, we
may assume that Y ∩m(u1, v1) 6=∅ (we may add w1 to Y , noting that w1 ∈ m(u1, v1)).
Similarly, we may assume that Y ∩m(u2, v2) 6=∅, and likewise for Z . We then have the
following path in ⇑(X )N (F) (note that some of the sets along the path may be equal,
but in all cases the path is still there):

Y

Y \ m(u1, v1)

(Y \ m(u1, v1))∪ {w1}

X ∪ {w1}

(Z \ m(u1, v1))∪ {w1}

Z \ m(u1, v1)

Z

Here, the gap m(u2, v2) is used ensure that Y \m(u1, v1) and Z \m(u1, v1) are not equal
to X , and the fact that we have v1 ¶ z ¶ u2 ensures that all these sets are indeed in
N (F). Hence, ⇑(X )N (F) is path-connected so connected. Therefore, by Corollary 6.7,
it suffices to show that height(⇑(X )N (F))< height(F). But this is immediate from the
definition of N .

Hence we may assume that X has exactly one gap (when X has no gaps, ⇑(X )N (F) =
∅). This means that there are x , y ∈ X with x < y such that X ∩m(x , y) =∅ and X is
maximal outside of m(x , y). As before then, elements Y ∈ ⇑(X )N (F) are determined by
their intersection Y ∩m(x , y). Suppose that ⇑(X )N (F) has an α-partition (bC j | j ¶ |α|).
For each j ¶ |α|, let:

C j :=
⋃

bC j ∩m(x , y)

Note that
⋃

j¶|α| C j = m(x , y). For each j ¶ |α|, since bC j is downwards-closed, we have
that, for z ∈ m(x , y):

z ∈ C j ⇔ ∃Y ∈ bC j : z ∈ Y ⇔ X ∪ {z} ∈ bC j
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This means in particular that the C j ’s are pairwise disjoint. Further, if z ∈ C j and
w ∈ m(x , y) with w< z, then X ∪ {w, z} is a chain, and so as bC j is upwards-closed, we
have X ∪ {w, z} ∈ bC j , meaning that w ∈ C j; similarly when w > z. Whence each C j is
upwards- and downwards-closed. Finally, as above, maximal chains in bC j correspond
to maximal chains in C j of the same length, whence:

height(bC j) = height(C j)

But then (C j | j ¶ |α|) is an α-partition of m(x , y), contradicting the fact that F is
α-nerve-connected.

This shows that N (F) is α-connected. What about α-diamond-connectedness? In
fact we can show this without using any assumptions on F . Take X , Y ∈ N (F) with
X ⊂ Y We will show that m(X , Y )N (F) has no α-partition. We may assume that |Y \X |¾
2, otherwise m(X , Y )N (F) =∅. Note that this means in particular that α > 1, since F is
α-connected. If |Y \X |= 2, then m(X , Y )N (F) is the antichain on two elements, which,
since α 6= 12 by assumption, has no α-partition. So assume that |Y \ X | ¾ 3; we will
show that in fact m(X , Y )N (F) is connected. Take distinct Z , W ∈ m(X , Y )N (F). Choose
z ∈ Z \ X and w ∈ W \ X . Since |Y \ X | ¾ 3, we have that X ∪ {z, w} ∈ m(X , Y )N (F).
Hence the following is a path in m(X , Y )N (F):

Z

X ∪ {z}

X ∪ {z, w}

X ∪ {w}

W

Therefore, m(X , Y )N (F) is connected. Finally, note that:

height(m(X , Y )N (F))¶ height(N (F)) = height(F)

Remark 6.21. Note that the proof shows an interesting property of the formulasχ(〈α〉):
we have F �N χ(〈α〉) if and only if N (F) � χ(〈α〉). This is not true in general. For
example, formulas expressing bounded width can take many iterations of the nerve
construction to become falsified.

6.5 Graded posets
The next step is to show that we can put F ∈ Frames⊥,fin(SFL(Λ)) into a special form.
The following definition comes from combinatorics (see e.g. [Sta97, p. 99]).

Definition 6.22 (Graded poset). A rank function on a poset F is a map ρ : F → N
such that:

(i) whenever x is minimal in F , we have ρ(x) = 0,

(ii) whenever y is the immediate successor of x , we have ρ(y) = ρ(x) + 1.

If F is non-empty and has a rank function, then it is graded.

The notion of gradedness has a strong visual connection. When a poset is graded,
we can draw it out in well-defined layers such that any element’s immediate successors
lie entirely in the next layer up.

Proposition 6.23. Let F be a finite poset.

(1) F is graded if and only if for every x ∈ F, all maximal chains in ↓(x) have the same
length.

(2) When F is graded, ρ(x) = height(x) for every x ∈ F, and height(F) =maxρ[F].

(3) Rank functions, when they exist, are unique.
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Proof. (1) See [Sta97, p. 99]. Assume that F is graded, and take X a maximal chain
in ↓(x) for some x ∈ F . Let k = ρ(x) We will show that |X | = k + 1. Since
X is a chain, the ranks of each of its elements are distinct. Since X is maximal,
x ∈ X . Suppose for a contradiction that there is j < k such that there is no x ∈ X
of rank j. We may assume that j is minimal with this property. We can’t have
j = 0, since otherwise X wouldn’t contain any minimal element, so wouldn’t be
a maximal chain. Hence, there is y ∈ X with ρ(y) = j − 1. Let z be next in X
after y . Then y has an immediate successor w such that w ¶ z. By definition,
ρ(w) = j, so w /∈ X . But X ∪ {w} is a chain, contradicting the maximality of X .

Therefore, |X |= k+ 1.

Conversely, define ρ : F → N by:

x 7→ height(x)

Let us check that ρ is a rank function. (i) Clearly, when x is minimal, ρ(x) = 0.
(ii) Suppose for a contradiction that there are x , y ∈ F , with y an immediate
successor of x , such that ρ(y) 6= ρ(x) + 1. First, by definition, ρ(y)> ρ(x), so
we must have ρ(y) > ρ(x) + 1. Choose maximal chains X ⊆ ↓(x), Y ⊆ ↓(y).
Note that by assumption:

|Y |> |X |+ 1

But now, since y is an immediate successor of x , both X∪{y} and Y are maximal
chains in ↓(y) of different heights.

(2) This follows from the proof of (1).

(3) This follows from (2).

Corollary 6.24. (1) Every tree is graded.

(2) For any finite poset F, its nerveN (F) is graded, with rank function given byρ(X ) =
|X | − 1.

Proof. For (2), note that for any X ∈ N (F) we have height(X ) = |X | − 1.

6.6 Gradification in the presence of Scott’s tree
The task now is, given a finite rooted frame F of SFL(Λ), to find a finite graded rooted
frame F ′ of SFL(Λ) and a p-morphism f : F ′→ F . We will do this using two different
methods, depending on whether or not we have Scott’s tree 〈2 ·1〉 present. Let us first
consider the case 2 · 1 ∈ Λ. The following lemmas show us that this case is not too
complicated.

Lemma 6.25. Take Λ ⊆ S such that 2 · 1 ∈ Λ but n /∈ Λ for any n ∈ N.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(2 · 1).

(2) Otherwise, let k ∈ N>0 be minimal such that 1k ∈ Λ. Then SFL(Λ) = SFL(2·1,1k).

Proof. (1) Take α ∈ Λ. Then by assumption α(1) ¾ 2, hence, as α 6= n, we have
2 · 1¶ α. Then by Proposition 6.2 there is a p-morphism 〈α〉 → 〈2 ·1〉. Hence by
the semantic meaning of Jankov-Fine formulas, Theorem 2.14, we have that any
frame validating χ(〈2 · 1〉) will also validate χ(〈α〉). This means that SFL(Λ) ⊆
SFL(2 · 1). The converse direction is immediate.

(2) Take α ∈ Λ. If α(1) ¾ 2 then by Proposition 6.2 there is a p-morphism 〈α〉 →
〈2 · 1〉. If α(1) < 2. Since α 6= ε, we have α(1) = 1, meaning that α = 1l for
some l ∈ N>0. By assumption k ¶ l. But then 1k ¶ α, giving that there is a
p-morphism 〈α〉 → 〈1k〉. It follows that for any α ∈ Λ, 〈α〉 up-reduces to either
〈2 ·1〉 or 〈1k〉. By Theorem 2.14, any frame validating χ(〈2 ·1〉) and χ(〈1k〉) will
also validate χ(〈α〉). This implies that SFL(Λ) ⊆ SFL(2 · 1,1k). The converse
direction is obvious.
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Corollary 6.26. Take Λ ⊆ S such that 2 · 1 ∈ Λ and there is n ∈ N with n ∈ Λ; assume
that n is the minimal such natural number.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(n, 2 · 1).

(2) Otherwise, let k ∈ N>0 be minimal with 1k ∈ Λ. Then SFL(Λ) = SFL(n, 2 · 1,1k).

Proof. This follows from Lemma 6.23 and the fact that when n1 < n2 every frame
validating χ(〈n1〉) also validates χ(〈n2〉).

Using this, the ‘meaning’ of SFL(Λ) can be expressed relatively simply. Note that
this meaning is expressed in terms of the depth of elements x ∈ F . Up until this point
we have mainly been concerned with the height of elements.

Lemma 6.27. Take Λ ⊆ S such that 2 · 1 ∈ Λ, and let F be a finite poset. Let n ∈ N be
minimal such that n ∈ Λ, or ∞ if no such signature is present. Similarly, let k ∈ N>0

be minimal with 1k ∈ Λ, or ∞. Then F � SFL(Λ) if and only if the following three
conditions are satisfied for every x ∈ F.

(i) We have height(F)< n.

(ii) Whenever depth(x) = 1, we have |⇑(x)|< k.

(iii) Whenever depth(x)> 1, the set ⇑(x) is connected.

Proof. By Corollary 6.24 and the fact that F � χ(〈n〉) if and only if height(F)¶ n−1,
it suffices to treat the case n=∞. Now by Lemma 6.23, SFL(Λ) = SFL(2 ·1,1k)when
k <∞, and SFL(Λ) = SFL(2 · 1) otherwise.

Assume that F � SFL(Λ). (ii) In the case k <∞, take x ∈ F with depth(x) = 1.
Note that ⇑(x) is an antichain, so ({y} | y ∈ ⇑(x)) is an open partition of ⇑(x).
Since x � χ(〈1k〉), by Lemma 6.6 and Proposition 6.9 we must have |⇑(x)| < k.
(iii) Now take x ∈ F with depth(x) > 1, and suppose for a contradiction that ⇑(x)
is disconnected. Then we can partition ⇑(x) into disjoint upwards-closed sets U , V .
Since depth(x) > 1, one of U and V (say U) must have height at least 1. But then
(U , V ) is a (2 ·1)-partition of ⇑(x), contradicting that F � χ(〈2 ·1〉) by Proposition 6.9.

Conversely, assume that F 2 SFL(Λ) We will show that one of (ii) and (iii) is
violated. If F 2 χ(〈2 ·1〉), then by Proposition 6.9 there is x ∈ F and a (2 ·1)-partition
(U , V ) of ⇑(x). But then height(U)¾ 1, meaning that depth(x)> 1, and furthermore
⇑(x) is disconnected, violating (iii). So let us assume that k <∞, that F � χ(〈2 · 1〉)
but that F 2 χ(〈1k〉). Again, we get x ∈ F and a 1k-partition (C1, . . . , Ck) of ⇑(x). We
must have that height(C1) = 0, otherwise (C1, C2 ∪ · · · ∪ Ck) is a (2 · 1)-partition of
⇑(x). Similarly height(Ci) = 0 for every i ¶ k. This means that depth(x) = 1, and
that |⇑(x)|¾ k, violating (ii).

Theorem 6.28. Let Λ ⊆ S be such that 2 ·1 ∈ Λ. Let F be a finite rooted poset such that
F � SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′ → F
such that F ′ � SFL(Λ).

This is the the ‘gradification’ theorem. Let us outline the construction before coming
to the full proof.

• We first split F up into its tree unravelling T (F).

• We then lengthen branches so that the tree has a uniform height.

• Lastly, we join top nodes of this tree in order to recover any α-connectedness
that we lost.

See Figure 5 for an example of this process.

Proof. Let n := height(F). We may assume ε /∈ Λ. If 2 ∈ Λ, then by Remark 6.10,
n¶ 1, so F is already graded. So assume that 2 /∈ Λ.

Start with the tree unravelling T = T (F) of F . Form a new tree T0 by replacing
each top node t ∈ Top(T ) with a chain of new elements t∗(0), . . . , t∗(mt), where

30



F T (F) T0 F ′

Figure 5: An example of gradification in the presence of Scott’s tree

mt = n−height(t). The relations between these new elements and the rest of T is as
follows:

t∗(0)< · · ·< t∗(mt),

x < t∗(0) ⇔ x < t ∀x ∈ T

Note that in T0 all branches have the same length n + 1. Define the p-morphism
g : T0→ T by:

x 7→
§

x if x ∈ Trunk(T ),
last(t) if x = t∗(i) for some t ∈ Top(T ) and i ¶ mt

Form F ′ from T0 by identifying, for top nodes t, s ∈ Top(T ), the elements t∗(mt) and
s∗(ms) whenever last(t) = last(s). That is, let F ′ := T0/W , where:

W := {{t∗(mt) | last(t) = u} | u ∈ Top(F)}

Note that we have a p-morphism f = last ◦ g ◦ qW : F ′ → F . Furthermore, F is
clearly finite and rooted. As to gradedness, take x ∈ F ′ with the aim of showing
that all maximal chains in ↓(x) are of the same length, utilising Proposition 6.21. If
x ∈ Trunk(F ′), then ↓(x)F ′ is a linear order. So assume that x ∈ Top(F ′). Then any
maximal chain X in ↓(x) corresponds to a branch of T0, and therefore has length n+1.

Let us now use Lemma 6.25 to verify that our construction preserves α-connected-
ness for α ∈ Λ and complete the proof. Let k ∈ N>0 be minimal such that 1k ∈ Λ, or∞
if no such signature is present. For u ∈ Top(F) let bu be the equivalence class of those
elements t∗(mt) such that last(t) = u. Note that by construction, for x ∈ Trunk(T )
and u ∈ Top(F):

x < bu ⇔ last(x)< u (?)

We need to check the three conditions of Lemma 6.25.

(i) Note that height(F ′) = height(F).

(ii) For any x ∈ F ′ with depth(x) = 1, either x ∈ Trunk(T ) or x = t∗(nt − 1) for
some top node t ∈ T . In the former case, the fact that |⇑(x)|¶ k follows from (?)

and the fact that |⇑(last(x))F |¶ k. In the latter case we have ⇑(x) =
¦

Ùlast(t)
©

.

(iii) Similarly, for any x ∈ F ′ with depth(x) > 1, either x ∈ Trunk(T ) or x = t∗(r)
for some top node t ∈ T and r < nt − 1. In the latter case, ⇑(x) is a chain, so
connected. For the former case, it suffices to show that any two top elements
bu,bv ∈ ⇑(x) are connected by a path in ⇑(x). Note that depth(last(x))F > 1.
Now, since F � χ(〈2 · 1〉), by Lemma 6.25 there is a path u  v in ⇑(last(x))F .
We may assume that this path is of form given in Figure 6 (a), where w0, . . . , wk

are top nodes in F . Using (?), this path then translates into a path bu  bv as in
Figure 6 (b), where yi ∈ last

−1{ai} ∩ ⇑(x) for each i.
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· · ·
yk−2

Õwk−1

yk−1

cwk

Figure 6: The form of the paths in ⇑(last(x))F and ⇑(x)F ′

x

F

x

T (F)

x

T0

x

F ′

Figure 7: The technique in the proof of Theorem 6.26 does not work in general

6.7 Gradification without Scott’s tree
Now that the situation 2 · 1 ∈ Λ has been dealt with, let us turn to the case 2 · 1 /∈ Λ.
Unfortunately, the proof of Theorem 6.26 crucially relied on the fact that the original
frame F was (2 · 1)-connected. Consider for instance the frame F given in Figure 7,
which at x is not (2 · 1)-connected. If we apply the construction to F , we end up
with a frame F ′ in which x sits below two connected components of height 1, that is,
c(⇑(x)F ′) = 22.3 Hence F ′ is not 22-connected, while F is. Taking 2 ·1 away from Λ is
a double-edged sword however, since it allows for more complex constructions in F ′.

The following reusable lemma will come in handy a couple of times.

Lemma 6.29. Let f : F ′→ F be a surjective p-morphism between finite posets, and take
x ∈ F ′. Assume that for any y, z ∈ Succ(x) there is a path y   z in ⇑(x) whenever there
is a path f (y)  f (z) in ⇑( f (x)). Then:

C(⇑(x)) = { f −1[C] | C ∈ C(⇑( f (x)))}

In particular, if height( f −1[C]) = height(C) for any C ∈ C(⇑( f (x))) then:

c(⇑(x)) = c(⇑( f (x))

Proof. Note that, since f is a p-morphism and F and F ′ are finite, { f −1[C] | C ∈
C(⇑( f (x)))} is a partition of ⇑(x) into upwards- and downwards-closed sets. So it
suffices to show that f −1[C] is connected for every C ∈ C(⇑( f (x))). Take y0, z0 ∈
f −1[C]. Since f −1[C] is downwards-closed in ⇑(x), there are y, z ∈ Succ(x)∩ f −1[C]
such that y ¶ y0 and z ¶ z0. Then f (y), f (z) ∈ C , so by assumption there is a path
f (y)  f (z) in ⇑( f (x)). But then by assumption there is a path y   z in ⇑(x), which
lies in f −1[C] since the latter is upwards- and downwards-closed.

Theorem 6.30. Let Λ ⊆ S be such that 2 ·1 /∈ Λ. Let F be a finite rooted poset such that
F � SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′ → F
such that F ′ � SFL(Λ).

The construction works in two steps as follows (see Figure 8 for an example).

• Again, we start by splitting F up into its tree unravelling T (F).

3Recall that C(F) is the set of connected components of F and that c(F) of F is the signature nm1
1 · · ·n

mk
k such

that C(F) contains for each i exactly mi sets of height ni − 1, and nothing else.
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F T (F) F ′

Figure 8: An example of gradification in the absence of Scott’s tree.

a0
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c1

b1

a2

c2

b2

a3

Figure 9: The relations between the zigzag points in case l = 3.

• Then, in order to connect the frame back up again while ensuring that it remains
graded, we construct ‘zigzag roller-coasters’ connecting top nodes of different
heights.

Proof of Theorem 6.28. As in the proof of Theorem 6.26, we may assume that ε, 1, 2 /∈
Λ.

Start with T = T (F). For every two distinct p, q ∈ Top(T ) such that last(p) =
last(q) = t, we will build a ‘roller-coaster’ structure Z(p, q), which will furnish a bridge
between p and q. Every such structure Z(p, q) is independent, so that they can all
be added to T at the same time. First note that by Corollary 6.22, T is graded; let
ρ : T → N be its rank function.

Now, take distinct p, q ∈ Top(T ) such that last(p) = last(q) = t. Let l := ρ(q)−
ρ(p). By swapping p and q, we may assume that l ¾ 0. We will join p and q with
a zigzagging path, which consists of lower points a0, . . . , al , upper points b0, . . . , bl−1

and intermediate points c0, . . . , cl−1. The relations between these points are as follows
(see Figure 9).

ai < ci < bi , ai+1 < bi

Consider p∧q (i.e. the intersection of p and q, regarded as strict chains containing
the root), and let k := ρ(p) − ρ(p ∧ q) − 1. Note that k ¾ 0 since p and q are
incomparable. Moreover, k ¾ 1. Indeed, suppose for a contradiction that k = 0,
so that p is an immediate successor of p ∧ q. Then last(p) is an immediate successor
of last(p ∧ q). But last(q) = last(p), so we have, as strict chains:

p = (p ∧ q)∪ {last(p)}= (p ∧ q)∪ {last(q)}= q

contradicting that p and q are distinct.
To ensure that the new poset F ′ is still graded, we need to dangle some scaffolding

down from the zigzag path to p∧q. Below each lower point ai we will dangle a chain
of k+ i − 1 points d(i, 1), . . . , d(i, k+ i − 1). The relations are as follows:

d(i, 1)< d(i, 2)< · · ·< d(i, k+ i − 1)< ai
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p

q

p ∧ q

Figure 10: The zigzag path and the ladder structure in place.

Finally, let Z(p, q) denote the whole structure of the zigzag path plus the dangling
scaffolding. Attach Z(p, q) to T by adding the following relations and closing under
transitivity (see Figure 10).

a0 < p, al < q, ∀i : p ∧ q < d(i, 1)

Let F ′ be the result of adding Z(p, q) to T for every pair p, q, and define the function
f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T
last(p) if x ∈ Z(p, q) for some p, q

First, let us see that f is a p-morphism. The (Forth) condition follows from the fact
that last is monotonic, and that:

• if x ¶ y with x ∈ T and y ∈ Z(p, q), then by construction x ¶ p ∧ q, meaning
that f (x) = last(x)¶ last(p ∧ q)¶ last(p) = f (y), and

• if x ¶ y with x ∈ Z(p, q) and y ∈ T , then by construction y ∈ {p, q}, so that
f (x) = last(p) = f (y).

The (Back) condition follows from the fact that last is open, and that each Z(p, q)
maps to a top node.

Second, for any pair p, q, we can extend the rank function ρ to the new structure
Z(p, q) as follows (as indicated by the heights of the nodes in Figure 10):

ρ(ai) = ρ(p) + i − 1

ρ(bi) = ρ(p) + i + 1

ρ(ci) = ρ(p) + i

ρ(d(i, j)) = ρ(p ∧ q) + j

To see that, thus extended, ρ is still a rank function, it suffices to check that the newly-
ranked Z(p, q) fits into T as a ranked structure. That is, we need to check the following
equations.

ρ(p) = ρ(a0) + 1

ρ(q) = ρ(al) + 1

ρ(d(i, 1)) = ρ(p ∧ q) + 1

But these follow by definition. In this way we see that F ′ is graded.
Finally, it remains to be shown that F � SFL(Λ). So take x ∈ F . First, whenever

x ∈ Z(p, q) for some p, q, by construction ⇑(x) isα-connected for every signature other
than ε, 12, 2 · 1 and k where k ¾ height(F) + 1. Hence we may assume that x ∈ T .
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Figure 11: The form of the paths in ⇑(last(x)) and ⇑(x)

Let us use Lemma 6.27. Take y, z ∈ Succ(x) such that there is a path f (y)  f (z) in
⇑(last(x)), with the aim of finding a path y   z in ⇑(x).

Assume that y ∈ Z(p, q) for some p, q. Then since y ∈ Succ(x) and x ∈ T , by
construction x = p ∧ q. All of Z(p, q) is connected in ⇑(x), hence there is a path
y   p. Let p′ ∈ T be the immediate successor of x which lies below p (this exists
since T is a tree). Then we have a path y   p′ in ⇑(x). Therefore, we may assume
that y ∈ T , and similarly that z ∈ T .

So, we have a path last(y)  last(z). We now proceed in a similar fashion to the
proof of Theorem 6.26. We may assume that the path last(y)  last(z) has the form
in Figure 11 (a), where t0, . . . , tk are top nodes in F . Let u0 := y and uk := z. For each
i ∈ {1, . . . , k− 1}, choose ui ∈ last

−1{ai}. For i ∈ {0, . . . , k− 1}, take pi , qi ∈ last
−1{t i}

such that ui ¶ pi and ui+1 ¶ qi . For each such i, since last(pi) = last(qi), there is a
path pi   qi which lies in Z(pi , qi), and hence lies in ⇑(x). Compose all these paths
as in Figure 11 to form a path y   z in ⇑(x) as required.

It now remains to show that if C ∈ C(⇑(last(x))), then height( f −1[C]) = height(C).
First, since f is a p-morphism, height( f −1[C]) ¾ height(C). Conversely, let X ⊆
f −1[C] be a maximal chain. Assume X intersects with some Z(p, q). Then we can
replace the part X ∩ (Z(p, q)∪{p, q}) with the unique maximal chain in ⇑(p∧q)T con-
taining q (this exists since T is a tree). Then by construction this does not decrease
the length of X nor does it move X outside of f −1[C] (since the latter is upwards- and
downwards-closed). Therefore, we may assume that X ⊆ T , so X corresponds to a
chain last[X ] of the same length in C .

Therefore, by Lemma 6.27 we get that c(⇑(x)) = c(⇑(last(x)). Applying Lemma 6.6,
we have that ⇑(x) has an α-partition if and only if ⇑(last(x)) has an α-partition.

6.8 Nervification
We now find ourselves, having suitably prepared F , in a position to make use of its
additional graded structure. The general method of the final construction, in which
we transform F into a frame which nerve-validates SFL(Λ), is the same as in The-
orem 6.26 and Theorem 6.28. We begin with the tree unravelling T (F), perform
some alterations, then rejoin top nodes. A key difference here is that we won’t rejoin
every top node to every other top node whose ‘last’ value is the same. Instead, we line
up all the top nodes mapping to the same element and link each top node to at most
two other top nodes: its neighbours. See Figure 12 for an example of the construction.

Definition 6.31. Let T be a finite tree. Then for each x ∈ T , we have that ↓(x) is a
chain. For k ¶ height(x), let x (k) be the element of this chain which has height k. Let
x (−k) be the element which has height height(x)− k.
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F T (F) F ′

Figure 12: An example of nervification, using the graded structure of F

Definition 6.32. For n ∈ N, let Sn := S \ {1k | k < n}.

Theorem 6.33. Take Λ ⊆ S and let F be a finite graded rooted poset of height n such
that F � SFL(Λ). Then there is a poset F ′ and a p-morphism f : F ′ → F such that
F ′ � SFL(Λ) and such that F ′ is α-diamond-connected for every α ∈ Sn.

Proof of Theorem 6.31. We may assume that ε, 1 /∈ Λ. Further, if 2 ∈ Λ, then height(F) =
1, so F is already α-diamond-connected for every α ∈ Sn. Hence we may assume that
2 /∈ Λ.

Once more, start with T = T (F). Chop off the top nodes: let T ′ := Trunk(T ). For
each t ∈ Top(F), we will add a new structure W (t), which lies only above elements
of T ′. Let ρ : F → N be the rank function on F . Note that ρ ◦ last: T → N is the rank
function on T .

Take t ∈ Top(F). Enumerate last−1{t}= {p1, . . . , pm}. For each i ¶ m− 1, define:

ri := pi ∧ pi+1

li := ρ(last(ri))

ki := ρ(t)−ρ(last(ri))− 1

Note that ki ¾ 1 just as in the proof of Theorem 6.28. Since F is graded and T is a
tree, we have that:

|m(ri , pi)
T |= |m(ri , pi+1)

T |= ki

In other words, p(li )i = p(li )i+1 = ri . We will construct a ‘chevron’ structure which joins
p(−1)

i to p(−1)
i+1 . For each i ¶ m−1, take new elements a(i, 1), . . . , a(i, ki), and add them

to T ′ using the following relations.

a(i, 1)< · · ·< a(i, ki), ∀ j ¶ ki : p(l+ j)
i , p(l+ j)

i+1 < a(i, j)

Let W (t) be this new structure (i.e. the chain {a(i, 1) < · · · < a(i, ki)} in place). See
Figure 13 and Figure 14 for examples of this process of adding chevrons.

The process of adding W (t) is independent for each t ∈ Top(F). Let F ′ be the
result of adding every W (t) to T ′. Define f : F ′→ F by:

f (x) :=
§

last(x) if x ∈ T ′

t if x ∈W (t) for some t ∈ Top(F)

Since we have made sure that each W (t) contains, for each pi ∈ last−1{t}, a node
above p(−1)

i which maps to t, and that all of the new structure maps to a top node, f
is a p-morphism.

Let us see that F ′ � SFL(Λ). Take x ∈ F ′. If x ∈ W (t) for some t, then ⇑(x)
is either empty or a chain, hence ⇑(x) � SFL(Λ). So we assume that x ∈ T ′. The
verification is now very similar to that in Theorem 6.28, making use of Lemma 6.27.
Take y, z ∈ Succ(x) such that there is a path f (y)   f (z) in ⇑(last(x)). As in the
proof of Theorem 6.28, by construction of W (t) we may assume that y, z ∈ T ′. Just
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Figure 14: The chevron structure in a more complex case involving three branches.
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as in that proof, we can construct a path y   z from the path f (y)  f (z), using the
fact that whenever t ∈ ⇑(last(x))∩Top(F), any w, v ∈ f −1{t} are connected by a path
in ⇑(x)F ′ (this is how we constructed F ′). It is straightforward then to check that if
C ∈ C(⇑(last(x))) we have height( f −1[C]) = height(C), giving that:

c(⇑(x)) = c(⇑(last(x)))

To complete the proof, let us see that F ′ is α-diamond-connected for every α ∈ Sn.
Take x , y ∈ F ′ with x < y and consider m(x , y). There are several cases.

(a) Case y ∈ T ′. We have that m(x , y)F
′
= m(x , y)T

′
, which is linearly-ordered since

T ′ is a tree; hence it is connected and of height at most n− 2.

Hence y = a(i, j) for a(i, j) ∈W (t) a new element. Let pi , pi+1, ri , li be as above.

(b) Case x ∈W (t). Note that by construction m(x , y) is linearly-ordered.

(c) Case x = p(l+e)
i for some e. If we have height(m(x , y)) = 1, then e = i − 1 and

m(x , y) is the antichain on two elements, which is α-connected. Otherwise, by
construction, a(i, j − 1) ∈ m(x , y) which is connected to everything.

(d) Case x = p(l+e)
i+1 for some e. This is symmetric.

(e) Case x = ri . Again, if height(m(x , y))) = 1 then j = 1 and m(x , y) is the
antichain on two elements, otherwise a(i, 1) ∈ m(x , y) which is connected to
everything.

(f) Otherwise, x < ri (since T ′ is a tree). Then ri ∈ m(x , y) which is connected to
everything.

6.9 Putting it all together
After a fair bit of labour, we now have all the ingredients we need for our proof. Let
us put them together.

Proof of Theorem 6.11. By Lemma 6.15 and Lemma 6.16, we need to show that every
finite rooted frame of SFL(Λ) is the up-reduction of one which nerve-validates SFL(Λ);
in fact this up-reduction is just a p-morphism. So take such a frame F . We may
assume that F is graded: when we have 2 · 1 ∈ Λ, apply Theorem 6.26, otherwise
apply Theorem 6.28. Then by Theorem 6.31, there is a frame F ′ and a p-morphism
f : F ′→ F such that F ′ is α-nerve-connected for every α ∈ Λ (note that by Remark 6.10
we must have Λ ⊆ Sn where n = height(F)). Then, by Theorem 6.18, F ′ nerve-
validates SFL(Λ), which completes the proof.

7 Conclusion
We hope to have demonstrated that the Heyting algebra SuboP opens up a rich con-
nection between logic and polyhedral geometry, which is given life by the sustained
import of geometrical ideas. The link between triangulations and nerves utilised in
[Bez+18a] for polyhedral completeness for IPC and S4.Grz has been developed fur-
ther in this paper culminating in the Nerve Criterion. This is a product of the unison
of logic with non-trivial arguments from rational polyhedral geometry.

The Nerve Criterion is exploited to chart out a class of polyhedrally-complete logics
axiomatised by the Jankov-Fine formulas of starlike trees. The proof that a starlike
logic is polyhedrally-complete utilises a number of combinatorial techniques on finite
posets. Such logics have a clear geometric meaning and play an important part in
polyhedral semantics. Indeed, the largest starlike logic PLn of height n is shown in
[Ada+20] to coincide with the logic of convex polyhedra of dimension n, while the
logic of all convex polyhedra

PL= SFL(2 · 1,13) = IPC+χ(〈2 · 1〉) +χ(〈13〉)
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The proofs of these results blend combinatorial and geometric ideas, and serve as a
fitting culmination of the various strands of this new approach.

Polyhedral semantics for intermediate and modal logic is a very young area, and
there are many open problems and directions for future research. We pick out just a
few of these.

One ultimate goal would be a complete classification of polyhedrally complete lo-
gics. The results in this paper and in [Ada+20] take several steps towards such a
classification, and chart out key features of the landscape. Identifying more polyhed-
rally complete logics would be the next immediate task in this direction.

The possibility of moving to a richer language is always available to us. One mo-
tivation for this is that with the present semantics, logic cannot capture any of the
homology of the polyhedron in which it is interpreted. This is because formula satis-
faction is always local in a polyhedron (this fact is not so pronounced in the present
paper, where satisfaction at points of a polyhedron is eschewed in favour of the more
abstract notion of triangulation). Homology seems a rather natural aspect for a lo-
gic to express; indeed, its axiomatic method is a well-developed line of research (see
[Hat02, §2.3, p. 160]). Perhaps the addition of a universal modality will enable this
expression.
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