The nerve criterion and polyhedral completeness of intermediate logics

Sam Adam-Day, Nick Bezhanishvili, David Gabelaia, Vincenzo Marra

Abstract

We investigate a recently-devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. We provide a necessary and sufficient condition for the polyhedral-completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of the so-called 'nerve' of a poset, a construction which we employ from polyhedral geometry.

The criterion allows for the investigation of the polyhedral completeness phenomenon using purely combinatorial methods. Utilising it, we show that there are continuum many intermediate logics that are not polyhedrally-complete. We also provide a countably infinite class of logics axiomatised by the Jankov-Fine formulas of 'starlike trees', which includes Scott's Logic, all of which are polyhedrally-complete. ${ }^{1}$

Contents

1 Introduction 2
2 Preliminaries 4
2.1 Posets as Kripke frames 4
2.2 P-congruences 6
2.3 Heyting algebras and co-Heyting algebras 7
2.4 Topological semantics 7
2.5 Finite Esakia Duality 8
2.6 Jankov-Fine formulas as forbidden configurations 8
2.7 Some standard logics 9
2.8 Polytopes, polyhedra and simplices 9
2.9 Triangulations 10
2.10 Barycentric subdivision 11
3 The algebra of open subpolyhedra 11
3.1 Polyhedral semantics 12
3.2 Triangulation subalgebras 13
3.3 PL homeomorphisms and polyhedral maps 14
4 The Nerve Criterion 15
4.1 Rational polyhedra and unimodular triangulations 15
4.2 Farey subdivisions 16
4.3 From \mathbb{R} to \mathbb{Q}. 17
4.4 Putting it all together 18
4.5 Bringing nerves back onto the stage 19

[^0]5 Polyhedrally incomplete logics 20
6 Polyhedrally complete logics: starlike completeness 21
6.1 Starlike trees 22
6.2 Starlike logics 23
6.3 Starlike completeness 24
6.4 Nerve-validation 26
6.5 Graded posets 28
6.6 Gradification in the presence of Scott's tree 29
6.7 Gradification without Scott's tree 32
6.8 Nervification 35
6.9 Putting it all together 37
7 Conclusion 38

1 Introduction

The genesis of many connections between logic and geometry led to the discovery of topological semantics for intuitionistic and modal logic, as pioneered by Marshall Stone [Sto38], Tang Tsao-Chen [Tsa38], Alfred Tarski [Tar39] and John C. C. McKinsey [McK41]. This semantics is now well-known. In short, one starts with a topological space X, and interprets intuitionistic formulas inside the Heyting algebra of open sets of X, and modal formulas inside the modal algebra of subsets of X with \square interpreted as the topological interior operator. A celebrated result due to Tarski [Tar39] states that this provides a complete semantics for intuitionistic propositional logic (IPC) on the one hand, and the modal logic $\mathbf{S 4}$ on the other. Moreover, one can even obtain completeness with respect to certain individual spaces. Specifically, McKinsey and Tarski showed [MT44] that for any separable metric space X without isolated points, if IPC $\nvdash \phi$, then ϕ has a countermodel based on X, and similarly with S4 in place of IPC. Later, this result was refined still further by Helena Rasiowa and Roman Sikorski, who showed that one can do without the assumption of separability [RS63].

This result traces out an elegant interplay between topology and logic; however, it simultaneously establishes limits on the power of this kind of interpretation. Indeed, examples of separable metric spaces without isolated points are the n-dimensional Euclidean space \mathbb{R}^{n} and the Cantor space 2^{ω}. What McKinsey and Tarski's result shows is that - topologically speaking - the logics of these spaces are the same, namely IPC or S4. The upshot is that topological semantics does not allow logic to capture much of the geometric content of a space.

A natural idea is that, if we want to remedy the situation and allow for the capture of more information about a space, then we need an algebra finer than the Heyting algebra of open sets, or the modal algebra of arbitrary subsets with the interior operator. This idea was developed by Marco Aiello, Johan van Benthem, Guram Bezhanishvili and Mai Gehrke. They consider the modal logic of chequered subsets of \mathbb{R}^{n} : finite unions of sets of the form $\prod_{i=1}^{n} C_{i}$, where each $C_{i} \subseteq \mathbb{R}$ is convex ([ABB03] and [BBG03]; see also [BB07]).

This line of work was further developed in [Bez+18b], [Gab+17] and [Gab+18], which take this algebra-refinement idea one step further. To be able to capture some of the geometric content of a space, it is natural to restrict attention to topological spaces and subsets which are polyhedra (of arbitrary dimension). Moreover, the set $\operatorname{Sub}_{0}(P)$ of open subpolyhedra of P is a Heyting algebra under \subseteq (and a similar result holds in the modal case). This allows for an interpretation of intuitionistic and modal formulas in $\mathrm{Sub}_{0}(P)$. The main result of $[\mathrm{Bez}+18 \mathrm{~b}]$ is that more is true. A polyhedral analogue of Tarski's theorem holds: these polyhedral semantics are complete for IPC and S4.Grz. Furthermore, this approach delivers that logic can capture the dimension of the polyhedron in which it is interpreted, via the bounded depth formulas bd $_{n}$
[CZ97, Sec. 2.4]. In particular, the polyhedron P is n dimensional iff P validates bd_{n+1} and does not validate bd_{n+2} for $n \in \omega$ [Bez+18b].

In this paper we make further advances in the study of polyhedral semantics. We introduce and study polyhedral completeness for intermediate logics. We say that an intermediate logic L is polyhedrally complete if there is a class \mathscr{C} of polyhedra such that L is the logic of \mathscr{C}. It follows from [Bez+18b] that IPC and the logic $\mathbf{B D}_{n}$ of bounded depth n, for each n are polyhedrally-complete. In this paper we construct infinitely many polyhedrally-complete logics and also show that there are continuum many polyhedrally incomplete ones.

To this end, for each poset F we define the nerve, $\mathscr{N}(F)$ of F as the collection of finite non-empty chains in F ordered by inclusion. The nerve will be our key concept relating logic with polyhedral geometry. The nerve construction is closely related to the operation of barycentric subdivision on a triangulation of a polyhedron. As was already noted in [Bez +18 b], given a polyhedron P, its triangulation corresponds to a validity-preserving map from P onto F. In the algebraic terminology it corresponds to an embedding of the Heyting algebra of upsets of F into the Heyting algebra of open subpolyhedra of P. If a finite frame F is given by some triangulation Σ of a polyhedron P, then $\mathscr{N}(F)$ corresponds to a barycentric subdivision of Σ. Exploiting this relation we present a proof of the Nerve Criterion for polyhedral completeness: a logic L is complete with respect to some class of polyhedra if and only if it is the logic of a class of finite frames closed under taking nerves. Viewing this result in terms of Kripke frames, we can say that "the logic of a polyhedron is the logic of the iterated nerves of any one of its triangulations". The criterion yields many negative results, showing in particular that there are continuum-many non-polyhedrally-complete logics with the finite model property.

Using the Nerve criterion we will also expand the known domain of polyhedrallycomplete logics. We consider logics defined using starlike trees as forbidden configurations - i.e. logics defined by the Jankov-Fine formulas of a collection of trees with a special property: trees which only branch at the root. Exploiting the Nerve Criterion, and a result by Zakharyaschev [Zak93] that all these logics have the finite model property, we prove that every such logic is polyhedrally-complete. This yields a countably infinite class of polyhedrally-complete logics of each finite height and of infinite height. This class includes Scott's logic SL. As forbidden configurations, starlike trees have a natural geometric meaning, expressing connectedness properties of polyhedral spaces. One might wonder if a generalisation is possible to arbitrary trees, or even to a wider class of frames. As to the latter, some negative results are known; see [Ada19, Corollary 4.12]. For the former, the situation is rather obscure, and it is not clear whether it is possible to account for the additional complexity introduced by allowing branching at higher points of the tree; see the discussion on 'general trees' in [Ada19, p. 61].

In a related paper [Ada+20] we look at the problem of polyhedral completeness from a different angle. We can start with some natural class of polyhedra and try to determine (axiomatize) its logic. This logic will by definition be polyhedrally complete, however, the question of axiomatization is highly non-trivial. In [Ada+20] we give an axiomatization of the logic of (n-dimensional) convex polyhedra via JankovFine formulas of special star-like trees. In [Gab+19] a full characterization of 'flat' 2-dimensional polyhedral logics is announced in the setting of modal logic. In this paper we do not discuss the modal case. We note, however, that all the results proved in this paper transfer to the extensions of the modal logic S4.Grz.

In this paper we combine geometric methods with techniques from the logical combinatorics of finite frames, as well as combinatorial geometry, in order to deepen the exciting new link recently established between logic and polyhedra. This area is still in its infancy, and there are many interesting open problems and directions for future research. The natural ultimate goal would be a full classification of all polyhedrallycomplete logics. But other directions present themselves, such as questions of decidability, or the intriguing prospect of using logical methods to prove classical theorems
in geometry. We briefly explore these ideas and others in the conclusion.
The paper is organised as follows. In Section 2, we give the required background on intermediate logics and polyhedral geometry, fixing our notation. Section 3 presents the polyhedral semantics first defined in [Bez+18b], and in Section 3.3 we further elaborate on this link between logic and geometry at the level of morphisms. In Section 4, we present and prove the Nerve Criterion for polyhedral-completeness (Theorem 4.1), using techniques from rational polyhedral geometry. Making use of this criterion, Section 5 establishes that all stable logics (as defined in [BB09]) are polyhedrally-incomplete, of which there are continuum-many. Then in Section 6, we define the class of 'starlike' logics, and prove that each one is polyhedrally-complete. The techniques in the these two sections are entirely combinatorial. Finally, we conclude in Section 7 with some interesting directions for future research.

2 Preliminaries

The present paper deals with intermediate logics. In this section we remind the reader of the relational and algebraic semantics for such logics, and survey the definitions and results which will play their part in the forthcoming. As a main reference we use [CZ97]. On the other side of the link is polyhedral geometry, with which we assume rather less familiarity, and thus present in more detail.

2.1 Posets as Kripke frames

A Kripke frame for intuitionistic logic is simply a poset (F, \leqslant). The validity relation \vDash between frames and formulas is defined in the usual way, see, e.g., [CZ97, Ch. 2]. Given a class of frames \mathbf{C}, its logic is:

$$
\operatorname{Logic}(\mathbf{C}):=\{\phi \text { a formula } \mid \forall F \in \mathbf{C}: F \vDash \phi\}
$$

Conversely, given a logic \mathscr{L}, define:

$$
\begin{gathered}
\operatorname{Frames}(\mathscr{L}):=\{F \text { a Kripke frame } \mid F \vDash \mathscr{L}\} \\
\operatorname{Frames}_{\text {fin }}(\mathscr{L}):=\{F \text { a finite Kripke frame } \mid F \vDash \mathscr{L}\}
\end{gathered}
$$

A logic \mathscr{L} has the finite model property (fmp) if it is the logic of a class of finite frames. Equivalently, if $\mathscr{L}=\operatorname{Logic}\left(\operatorname{Frames}_{\text {fin }}(\mathscr{L})\right)$.

Let us carve out some additional vocabulary and notation. Fix a poset F. For any $x \in F$, its upset, downset, strict upset and strict downset are defined, respectively, as follows.

$$
\begin{aligned}
& \uparrow(x):=\{y \in F \mid y \geqslant x\} \\
& \downarrow(x):=\{y \in F \mid y \leqslant x\} \\
& \Uparrow(x):=\{y \in F \mid y>x\} \\
& \Downarrow(x):=\{y \in F \mid y<x\}
\end{aligned}
$$

For any set $S \subseteq F$, its upset and downset are defined, respectively, as follows.

$$
\begin{aligned}
& \uparrow U:=\bigcup_{x \in U} \uparrow(x) \\
& \downarrow U:=\bigcup_{x \in U} \downarrow(x)
\end{aligned}
$$

A subframe $U \subseteq F$ is upwards-closed or a generated subframe if $U=\uparrow U$. It is downwardsclosed if $\downarrow U=U$. The Alexandrov topology on F is the set $U p F$ of its upwards-closed subsets. This constitutes a topology on F. In the sequel, we will freely switch between thinking of F as a poset and as a topological space. Note that the closed sets in this topology correspond to downwards-closed sets.

A chain in F is $X \subseteq F$ which as a subposet is linearly-ordered. The length of the chain X is $|X|$. A chain $X \subseteq F$ is maximal if there is no chain $Y \subseteq F$ such that $X \subset Y$ (i.e. such that X is a proper subset of Y). The height of F is the element of $\mathbb{N} \cup\{\infty\}$ defined by:

$$
\operatorname{height}(F):=\sup \{|X|-1 \mid X \subseteq F \text { is a chain }\}
$$

For notational uniformity, say that this value is also the depth of F, depth (F). For any $x \in F$, define its height and depth as follows.

$$
\begin{aligned}
\operatorname{height}(x) & :=\operatorname{height}(\downarrow(x)) \\
\operatorname{depth}(x) & :=\operatorname{depth}(\uparrow(x))
\end{aligned}
$$

The height of a logic \mathscr{L} is the element of $\mathbb{N} \cup\{\infty\}$ given by:

$$
\operatorname{height}(\mathscr{L}):=\sup \{\operatorname{height}(F) \mid F \in \operatorname{Frames}(\mathscr{L})\}
$$

A frame F has uniform height n if every top element has height n.
A top element of F is $t \in F$ such that depth $(t)=0$. The set of top elements in F is denoted by $\operatorname{Top}(F)$; let $\operatorname{Trunk}(F):=F \backslash \operatorname{Top}(F)$. For any $x, y \in F$, say that x is an immediate predecessor of y and that y is an immediate successor of x if $x<y$ and there is no $z \in F$ such that $x<z<y$. Write $\operatorname{Succ}(x)$ for the collection of immediate successors of x.

The poset F is rooted if it has a minimum element, which is called the root, and is usually denoted by \perp. Define:

$$
\begin{aligned}
\text { Frames }_{\perp}(\mathscr{L}) & :=\{F \in \operatorname{Frames}(\mathscr{L}) \mid F \text { is rooted }\} \\
\text { Frames }_{\perp, \text { fin }}(\mathscr{L}) & :=\left\{F \in \operatorname{Frames}_{\text {fin }}(\mathscr{L}) \mid F \text { is rooted }\right\}
\end{aligned}
$$

A path in F is a sequence $p=x_{0} \cdots x_{k}$ of elements of F such that for each i we have $x_{i}<x_{i+1}$ or $x_{i}>x_{i+1}$. Write $p: x_{0} \rightsquigarrow x_{k}$. The path p is closed if $x_{0}=x_{k}$. The poset F is path-connected if between any two points there is a path.
Lemma 2.1. For F a frame, it is path-connected if and only if it is connected as a topological space.

Proof. See [BG11, Lemma 3.4].
A connected component of F is a subframe $U \subseteq F$ which is connected as a topological subspace and is such that there is no connected V with $U \subset V$.
Lemma 2.2. Let F be a frame.
(1) The connected components partition F.
(2) Connected components are downwards-closed and upwards-closed.

Proof. These are standard results in topology. See e.g. [Mun00, §25, p. 159].
An antichain in F is a subset $Z \subseteq F$ in which no two elements are comparable. The width width (F) of F is the cardinality of the largest antichain in F.

A function $f: F \rightarrow G$ is a p-morphism if for every $x \in F$ we have:

$$
f(\uparrow(x))=\uparrow(f(x))
$$

Equivalently, f should satisfy the following conditions.

$$
\begin{gather*}
\forall x, y \in F:(x \leqslant y \Rightarrow f(x) \leqslant f(y)) \tag{Forth}\\
\forall x \in F: \forall z \in G:(f(x) \leqslant z \Rightarrow \exists y:(x \leqslant y \wedge f(y)=z)) \tag{Back}
\end{gather*}
$$

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed set $U \subseteq F$ to G. Write $f: F \circ G$.
Proposition 2.3. If there is an up-reduction $F \circ G$ then $\operatorname{Logic}(F) \subseteq \operatorname{Logic}(G)$. In other words, if $G \not \models \phi$ then $F \not \models \phi$.

Proof. See [CZ97, Corollary 2.8, p. 30 and Corollary 2.17, p. 32].
Corollary 2.4. If \mathbf{C} is any collection of frames and $\mathscr{L}=\operatorname{Logic}(\mathbf{C})$, then:

$$
\mathscr{L}=\operatorname{Logic}\left(\operatorname{Frames}_{\perp}(\mathscr{L})\right)
$$

Proof. First, $\mathscr{L} \subseteq \operatorname{Logic}\left(\right.$ Frames $\left._{\perp}(\mathscr{L})\right)$. Conversely, suppose $\mathscr{L} \nvdash \phi$. Then there exists $F \in \mathrm{C}$ such that $F \not \vDash \phi$, hence there is $x \in F$ such that $x \not \models \phi$ (for some valuation on F), meaning that $\uparrow(x) \not \models \phi$. Now, $\uparrow(x)$ is upwards-closed in F, hence $\mathrm{id}_{\uparrow(x)}$ is an up-reduction $F \circ \uparrow(x)$. Then by Proposition 2.3, we get that $\uparrow(x) \vDash \mathscr{L}$, so that $\uparrow(x) \in$ Frames $_{\perp}(\mathscr{L})$.

A finite poset T is a tree if it has a root \perp, and every other $x \in T \backslash\{\perp\}$ has exactly one immediate predecessor. A branch in T is a maximal chain. Given any finite, rooted poset F, its tree unravelling $\mathscr{T}(F)$ is the set of its strict chains which contain the root. Define the function last: $\mathscr{T}(F) \rightarrow F$ by:

$$
X \mapsto \max (X)
$$

Proposition 2.5. $\mathscr{T}(F)$ is a tree and last is a p-morphism.
Proof. See [CZ97, Theorem 2.19, p. 32].

2.2 P-congruences

An alternative way of viewing a p-morphism $f: F \rightarrow G$ is as a kind of congruence relation on F (see [CZ97, p. 262]). This way of thinking will enable a convenient method of constructing p-morphisms.

A p-congruence on a frame F is an equivalence relation \sim such that whenever $x \leqslant y$ we have $[x] \subseteq \downarrow[y]$. The quotient frame F / \sim has as elements the equivalence classes of \sim, and its relation is given by:

$$
[x] \leqslant[y] \quad \Leftrightarrow \quad[x] \subseteq \downarrow[y]
$$

The quotient map is $q: F \rightarrow F / \sim$, given by $x \mapsto[x]$.
Proposition 2.6. The quotient map is a p-morphism.
Proof. See [CZ97, Theorem 8.68(i), p. 263].
Theorem 2.7 (First Isomorphism Theorem). Let $f: F \rightarrow G$ be a surjective p-morphism. Then relation \sim on F defined by:

$$
x \sim y \quad \Leftrightarrow \quad f(x)=f(y)
$$

is a p-congruence, and moreover $F / \sim \cong G$ via the $\operatorname{map}[x] \mapsto f(x)$.
Proof. See [CZ97, Theorem 8.68(ii), p. 263].
Proposition 2.8. Let F be a frame and \mathscr{W} be a set of pair-wise disjoint subsets of $\operatorname{Top}(F)$. The relation $\sim_{\mathscr{W}}$, defined as follows, is a p-congruence.

$$
x \sim_{\mathscr{W}} y \quad \Leftrightarrow \quad x=y \text { or } \exists W \in \mathscr{W}: x, y \in W
$$

Proof. This is immediate from the definition.
Definition 2.9. Define $F / \mathscr{W}:=F / \sim_{\mathscr{W}}$. Relabel the element $[x] \in F / \mathscr{W}$ as x whenever $x \in F \backslash \bigcup \mathscr{W}$. Let $q_{\mathscr{W}}$ be the quotient map on $\sim_{\mathscr{W}}$.

2.3 Heyting algebras and co-Heyting algebras

A Heyting algebra is a tuple $(A, \wedge, \vee, \rightarrow, 0,1)$ such that $(A, \wedge, \vee, 0,1)$ is a bounded lattice and \rightarrow, called the Heyting implication, satisfies:

$$
c \leqslant a \rightarrow b \quad \Leftrightarrow \quad c \wedge a \leqslant b
$$

The validity relation \vDash between Heyting algebras and formulas is defined in the usual way; the Logic notation is extended appropriately. The logic of a Heyting algebra is exactly the logic of its finitely generated subalgebras. Say that A is locally-finite if for every $S \subseteq A$ finite, the algebra $\langle S\rangle$ generated by S is finite. Topological spaces provide important examples of Heyting algebras: for every topological space X, its collection of open sets $\mathscr{O}(X)$ forms a Heyting algebra.

Co-Heyting algebras are the duals of Heyting algebras. Specifically, a co-Heyting algebra is a tuple $(C, \wedge, \vee, \leftarrow, 0,1)$ such that $(C, \wedge, \vee, 0,1)$ is a bounded lattice, and \leftarrow, called the co-Heyting implication, satisfies:

$$
a \leftarrow b \leqslant c \quad \Leftrightarrow \quad a \leqslant b \vee c
$$

For more information on co-Heyting algebras, the reader is referred to [MT46, §1] and [Rau74], where they are called 'Brouwerian algebras'.

A Heyting algebra A may be regarded as a category. Then its dual category $A^{\text {op }}$ is a co-Heyting algebra. In the case of the Heyting algebra $\mathscr{O}(X)$ of open sets in a topological space, such a duality has a concrete realisation: the co-Heyting algebra $\mathscr{O}(X)^{\mathrm{op}}$ is the algebra $\mathscr{C}(X)$ of closed subsets of X.

2.4 Topological semantics

Given a topological space X, the collection of open sets $\mathscr{O}(X)$ of X forms a Heyting algebra. We take \varnothing, X, \cap and \cup for $0,1, \wedge$ and \vee, respectively, and define the Heyting implication \rightarrow by:

$$
U \rightarrow V:=\operatorname{Int}\left(U^{\mathrm{C}} \cup V\right)
$$

where Int denotes the topological interior operator, and $-{ }^{\mathrm{C}}$ is complement operator. Proposition 2.10. With these assignments, $\mathscr{O}(X)$ is a Heyting algebra.

Proof. See [CZ97, Proposition 8.31, p. 247].
This means that we can interpret formulas inside topological spaces. Write $X \vDash \phi$ for $\mathscr{O}(X) \vDash \phi$, and extend the other Heyting algebra notation to X. The completeness result mentioned in the introduction can now be written down explicitly.
Theorem 2.11 (McKinsey-Tarski Theorem). Let X be any separable metrisable space without isolated points. Then IPC $=\operatorname{Logic}(X)$.

Proof. The original proof is in [MT44]. Helena Rasiowa and Roman Sikorski proved this result without the separability requirement [RS63]. For a newer, more topological proof, see [Bez+18a]. For some modern proofs of specific cases, see [BB07, §2.5, pp. 241-250].

The topological space X also comes with a co-Heyting algebra, namely its collection of closed sets $\mathscr{C}(X)$. Co-Heyting implication on $\mathscr{C}(X)$ is defined:

$$
C \leftarrow D:=\mathrm{Cl}(C \backslash D)
$$

where Cl denotes the topological closure operator. Now, the present topological setting provides concrete realisation of the schema of dualities between Heyting and co-Heyting algebras. Indeed, the complement operator $-^{C}$ gives an isomorphism $\mathscr{O}(X)^{\mathrm{op}} \cong \mathscr{C}(X)$.

2.5 Finite Esakia Duality

The Alexandrov topology allows us to associate to each poset F the Heyting algebra Up F consisting of its upwards-closed sets. The process forms part of a contravariant equivalence of categories, known as the Esakia Duality. The finite fragment of this duality relates finite posets with finite Heyting algebras.

The spectrum of a Heyting algebra A is defined:

$$
\operatorname{Spec}(A):=\{X \subseteq A \mid X \text { is a prime filter of } A \text { as a distributive lattice }\}
$$

This constitutes a poset under subset inclusion.
Theorem 2.12. The maps Up and Spec are the object-level components of a duality between the category of finite Kripke frames with p-morphisms and the category of finite Heyting algebras with homomorphisms.

Proof. See [DT66]. The original proof of the general Esakia duality can be found in [Esa74; Esa19]. Detailed proofs are also given in [CJ14] and [Mor05, §5]. In the finite case, we have isomorphisms $A \cong \operatorname{Up} \operatorname{Spec} A$ and $F \cong \operatorname{Spec} \operatorname{Up} F$ for any finite Heyting algebra A and finite poset F. The former is part of Brikhoff's Representation Theorem [Bir37]. Both isomorphisms may be found in [DP90, pp. 171-172].

Importantly, this duality is logic-preserving.
Proposition 2.13. Let F be a frame and A be a finite Heyting algebra. Then:

$$
\begin{gathered}
\operatorname{Logic}(F)=\operatorname{Logic}(\operatorname{Up} F) \\
\operatorname{Logic}(A)=\operatorname{Logic}(\operatorname{Spec} A)
\end{gathered}
$$

Proof. For the first equality, see [CZ97, Corollary 8.5, p. 238], noting that our Kripke frames are special cases of what are there called 'intuitionistic general frames'. The second equality follows from the first using the finite Esakia duality.

2.6 Jankov-Fine formulas as forbidden configurations

To every finite rooted frame Q, we associate a formula $\chi(Q)$, the Jankov-Fine formula of Q (also called its Jankov-De Jongh formula). The precise definition of $\chi(Q)$ is somewhat involved, but the exact details of this syntactical form are not relevant for our considerations. What matters to us is its notable semantic property.
Theorem 2.14. For any frame F, we have that $F \vDash \chi(Q)$ if and only if F does not up-reduce to Q.

Proof. See [CZ97, §9.4, p. 310], for a treatment in which Jankov-Fine formulas are considered as specific instances of more general 'canonical formulas'. An alternative proof can be found in [Bez06, §3.3, p. 56], which gives a complete definition of $\chi(Q)$. See also [BB09] for an algebraic version of this result.

Jankov-Fine formulas formalise the intuition of 'forbidden configurations'. The formula $\chi(Q)$ 'forbids' the configuration Q from its frames.

The following consequence of Theorem 2.14 will come in handy later on.
Corollary 2.15. Let $\mathscr{L}=\operatorname{Logic}(\mathbf{C})$ where \mathbf{C} is a class of frames. Then:

$$
\text { Frames }_{\perp, \text { fin }}(\mathscr{L})=\{F \text { finite rooted frame } \mid \exists G \in \mathrm{C}: G \leftrightarrow F\}
$$

Proof. First, if F is a finite rooted frame such that there is $G \in \mathrm{C}$ and an up-reduction $G \circ \rightarrow F$, then by Proposition 2.3 we have that $F \in \operatorname{Frames}_{\perp, \text { fin }}(\mathscr{L})$. Conversely take F finite and rooted, and assume that there is no $G \in \mathrm{C}$ with $G \circ \rightarrow F$. Then by Theorem 2.14, $G \vDash \chi(F)$ for every $G \in \mathbf{C}$; whence $\mathscr{L} \vdash \chi(F)$. By Theorem 2.14, $F \not \vDash \chi(F)$ implying $F \not \models \mathscr{L}$. This yields $F \notin$ Frames $_{\perp, \text { in }}(\mathscr{L})$.

When the poset F has a root, the condition in Theorem 2.14 can be strengthened slightly. Let F and Q be finite posets, and let Q have root \perp. An up-reduction $f: F \rightarrow Q$ is pointed with apex $x \in F$ if we have $\operatorname{dom}(f)=\uparrow(x)$ and $f^{-1}\{\perp\}=\{x\}$.
Lemma 2.16. If there is an up-reduction $F \circ Q$ then there is a pointed up-reduction $F \circ Q$.
Proof. Take $f: F \rightarrow Q$, and choose $x \in f^{-1}\{\perp\}$ maximal. Then $\left.f\right|_{\uparrow(x)}$ is still a pmorphism, and is moreover a pointed up-reduction $F \circ Q$.

Corollary 2.17. Let F, Q be finite posets, with Q rooted. Then $F \vDash \chi(Q)$ if and only if there is no pointed up-reduction $F \circ Q$.

2.7 Some standard logics

The logic IPC is the standard intuitionistic propositional calculus. An intermediate logic is any consistent logic extending IPC. Classical logic, CPC, is the largest intermediate logic.
Proposition 2.18. IPC is the logic of the class of all finite frames, i.e. it has the fmp.
Proof. See [CZ97, Theorem 2.57, p. 49].
For every $n \in \mathbb{N}$, let $\mathbf{B D}_{n}$ be the logic of all finite frames of height at most n. This has the following axiomatisation in terms of Jankov-Fine formulas. Let Ch_{k} be the chain (linear order) on $k+1$ elements.
Proposition 2.19. BD_{n} is the logic axiomatised by IPC $+\chi\left(\mathrm{Ch}_{k}\right)$.
Proof. See [CZ97, Table 9.7, p. 317, and §9].
Scott's Logic, SL, is usually axiomatised by the Scott sentence:

$$
\mathbf{S L}=\mathrm{IPC}+\mathrm{IPC}+((\neg \neg p \rightarrow p) \rightarrow p \vee \neg p) \rightarrow \neg p \vee \neg \neg p
$$

This logic can also be axiomatised using a forbidden configuration, as follows.
Proposition 2.20. SL $=\mathrm{IPC}+\chi$ ($8, \rho$).
Proof. See [CZ97, Table 9.7, p. 317, and §9].

2.8 Polytopes, polyhedra and simplices

Every polyhedron considered here lives in some Euclidean space \mathbb{R}^{n}. Take $x_{0}, \ldots, x_{d} \in$ \mathbb{R}^{n}. An affine combination of x_{0}, \ldots, x_{d} is a point $r_{0} x_{0}+\cdots+r_{d} x_{d}$, specified by some $r_{0}, \ldots, r_{d} \in \mathbb{R}$ such that $r_{0}+\cdots+r_{d}=1$. A convex combination is an affine combination in which additionally each $r_{i} \geqslant 0$. Given a set $S \subseteq \mathbb{R}^{n}$, its convex hull Conv S is the collection of convex combinations of its elements. A subspace $S \subseteq \mathbb{R}^{n}$ is convex if Conv $S=S$. A polytope is the convex hull of a finite set. A polyhedron in \mathbb{R}^{n} is a set which can be expressed as the finite union of polytopes. Note that every polyhedron is closed and bounded, hence compact.

A set of points x_{0}, \ldots, x_{d} is affinely independent if whenever:

$$
r_{0} x_{0}+\cdots+r_{d} x_{d}=\mathbf{0} \quad \text { and } \quad r_{0}+\cdots+r_{d}=0
$$

we must have that $r_{0}, \ldots, r_{d}=0$. This is equivalent to saying that the vectors:

$$
x_{1}-x_{0}, \ldots, x_{d}-x_{0}
$$

are linearly independent. Simplices are the most basic polyhedra of each dimension. A d-simplex is the convex hull σ of $d+1$ affinely independent points x_{0}, \ldots, x_{d}, which we call its vertices. Write $\sigma=x_{0} \cdots x_{d}$; its dimension is $\operatorname{Dim} \sigma:=d$.

Proposition 2.21. Every simplex determines its vertex set: two simplices coincide if and only if they share the same vertex set.
Proof. See [Mau80, Proposition 2.3.3, p. 32].
Aface of σ is the convex hull τ of some non-empty subset of $\left\{x_{0}, \ldots, x_{d}\right\}$ (note that τ is then a simplex too). Write $\tau \preccurlyeq \sigma$, and $\tau \prec \sigma$ if $\tau \neq \sigma$.

Since x_{0}, \ldots, x_{d} are affinely independent, every point $x \in \sigma$ can be expressed uniquely as a convex combination $x=r_{0} x_{0}+\cdots+r_{d} x_{d}$ with $r_{0}, \ldots, r_{d} \geqslant 0$ and $r_{0}+$ $\cdots+r_{d}=1$. Call the tuple $\left(r_{0}, \ldots, r_{d}\right)$ the barycentric coordinates of x in σ. The barycentre $\widehat{\sigma}$ of σ is the special point whose barycentric coordinates are $\left(\frac{1}{d+1}, \ldots, \frac{1}{d+1}\right)$. The relative interior of σ is defined:

$$
\text { Relint } \sigma:=\left\{r_{0} x_{0}+\cdots+r_{d} x_{d} \in \sigma \mid r_{0}, \ldots, r_{d}>0\right\}
$$

The relative interior of σ is ' σ without its boundary' in the following sense. The affine subspace spanned by σ is the set of all affine combinations of x_{0}, \ldots, x_{d}. Then the relative interior of σ coincides with the topological interior of σ inside this affine subspace. Note that ClRelint $\sigma=\sigma$, the closure being taken in the ambient space \mathbb{R}^{n}.

For any $X, Y \subseteq \mathbb{R}^{n}$, a function $X \rightarrow Y$ is an affine map if it is of the form $x \mapsto$ $M x+b$, where M is a linear transformation and $b \in \mathbb{R}^{n}$. Now let P, Q be polyhedra. A homeomorphism $f: P \rightarrow Q$ is piecewise-linear if there is a triangulation Σ of P such that for each $\sigma \in \Sigma$ the restriction $\left.f\right|_{\sigma}$ is affine. Call such maps PL homeomorphisms for short.
Proposition 2.22. The inverse of a PL homeomorphism is a PL homeomorphism.
Proof. See [RS72, p. 6].

2.9 Triangulations

A simplicial complex in \mathbb{R}^{n} is a finite set Σ of simplices satisfying the following conditions.
(a) Σ is \prec-downwards-closed: whenever $\sigma \in \Sigma$ and $\tau \prec \sigma$ we have $\tau \in \Sigma$.
(b) If $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau$ is either empty or a common face of σ and τ.

The support of Σ is the set $|\Sigma|:=\bigcup \Sigma$. Note that by definition this set is automatically a polyhedron. We say that Σ is a triangulation of the polyhedron $|\Sigma|$. Notice that Σ is a poset under \prec, called the face poset. A subcomplex of Σ is subset which is itself a simplicial complex. Note that a subcomplex, as a poset, is precisely a downwardsclosed set. Given $\sigma \in \Sigma$, its open star is defined:

$$
\mathrm{o}(\sigma):=\bigcup\{\operatorname{Relint}(\tau) \mid \tau \in \Sigma \text { and } \sigma \subseteq \tau\}
$$

Proposition 2.23. The relative interiors of the simplices in a simplicial complex Σ partition $|\Sigma|$. That is, for every $x \in|\Sigma|$, there is exactly one $\sigma \in \Sigma$ such that $x \in \operatorname{Relint} \sigma$.
Proof. See [Mau80, Proposition 2.3.6, p. 33].
In light of Proposition 2.23, for any $x \in|\Sigma|$ let us write σ^{x} for the unique $\sigma \in \Sigma$ such that $x \in \operatorname{Relint} \sigma$.
Proposition 2.24. Let Σ be a simplicial complex, take $\tau \in \Sigma$ and $x \in \operatorname{Relint} \tau$. Then no proper face $\sigma \prec \tau$ contains x. This means that σ^{x} is the inclusion-smallest simplex containing x.
Proof. See [Bez+18b, Lemma 3.1].
The next result is a basic fact of polyhedral geometry, and is of fundamental importance in its connection with logic. For Σ a triangulation and S a subspace of the ambient Euclidean space \mathbb{R}^{n}, define:

$$
\Sigma_{S}:=\{\sigma \in \Sigma \mid \sigma \subseteq S\}
$$

This, being a downwards-closed subset of Σ, is a subcomplex of Σ.

Lemma 2.25 (Triangulation Lemma). Any polyhedron admits a triangulation which simultaneously triangulates each of any fixed finite set of subpolyhedra. That is, for a collection of polyhedra P, Q_{1}, \ldots, Q_{m} such that each $Q_{i} \subseteq P$, there is a triangulation Σ of P such that $\Sigma_{Q_{i}}$ triangulates Q_{i} for each i.
Proof. See [RS72, Theorem 2.11 and Addendum 2.12, p. 16].
Remark 2.26. The term 'polyhedron' is ancient, and over the years it has acquired a variety of meanings. A remark on the present terminology is in order. In one very traditional usage (though still present in some fields today), 'polyhedron' is reserved for convex sets. Another possible restriction, in line with historical terminology, is that 'polyhedron' applies only to three-dimensional solids. As is standard in the field of piecewise-linear topology however, the usage in the present paper is not subject to these restrictions (c.f. classic textbooks [Sta67; RS72]).

Note however that the standard usage of 'polyhedron' is in fact more general than the present one. In PL topology, a 'polyhedron' is the union of a locally-finite simplicial complex. The latter is defined as a (possibly infinite) set Σ of simplices satisfying (a) and (b) in our definition of 'simplicial complex' above, subject to the condition that every point $x \in \bigcup \Sigma$ has an open neighbourhood which intersects only finitely-many simplices. Now, it is a standard fact that 'compact polyhedra' (in the more general sense) coincide with what we are referring to here as 'polyhedra' (see [RS72, Theorem 2.2, p. 12]). Hence we are effectively using the term 'polyhedron' as a shorthand for 'compact polyhedron'; such usage is common in the literature (see, e.g. [Mau80]).

2.10 Barycentric subdivision

Triangulations allow us in some ways to approximate the structure of a polyhedron. The finer the triangulation, the better the approximation. Barycentric subdivisions afford us a systematic way of generating finer and finer triangulations, starting from a base.

Let Σ, Δ be simplicial complexes. Δ is a subdivision or refinement of Σ, notation $\Delta \triangleleft \Sigma$, if $|\Sigma|=|\Delta|$ and every simplex of Δ is contained in a simplex of Σ.
Lemma 2.27. If $\Delta \triangleleft \Sigma$ then for every $\sigma \in \Sigma$ we have:

$$
\sigma=\bigcup\{\tau \in \Delta \mid \tau \subseteq \sigma\}
$$

Proof. Let $S:=\{\tau \in \Delta \mid \tau \subseteq \sigma\}$. Clearly $\bigcup S \subseteq \sigma$. Conversely, for $x \in \sigma$, let $\tau^{x} \in \Delta$ be such that $x \in \operatorname{Relint} \tau^{x}$. Since Δ refines Σ, there is some $\rho \in \Sigma$ such that $\tau^{x} \subseteq \rho$; assume that ρ is inclusion-minimal with this property. It follows from [Spa66, §3, Lemma 3, p. 121] that Relint $\tau^{x} \subseteq \operatorname{Relint} \rho$, meaning that $x \in \sigma \cap \operatorname{Relint} \rho$. By condition (b) on Σ, we have that $\sigma \cap \rho$ is face of ρ. But then by Proposition 2.24, $\rho \preccurlyeq \sigma$, since otherwise $\sigma \cap \rho$ would be a proper face of ρ containing $x \in \operatorname{Relint} \rho$. Therefore $\tau^{x} \subseteq \rho \subseteq \sigma$ so that $x \in \bigcup S$.

The barycentric subdivision $\operatorname{Sd} \Sigma$ of Σ is particularly important kind of subdivision. The idea is that we put a new vertex at the barycentre of each simplex in Σ, then build up the rest of the simplicial complex around this. Spelling this in detail is somewhat involved, and the technical details will not be needed in this paper. Hopefully the examples in Figure 1 should provide the intuition behind the construction, but for a full definition we refer the reader to [Mun84, §15, p. 83].

3 The algebra of open subpolyhedra

With the preliminaries in place, we are in a position to establish a link between intuitionistic logic and polyhedra. For this, we will be following [Bez+18b].

Figure 1: Examples of barycentric subdivision (the right-most tetrahedron is drawn without filled-in faces to aid clarity)

3.1 Polyhedral semantics

Given a polyhedron P, let Sub P denote the collection of its subpolyhedra.
Theorem 3.1. SubP is a co-Heyting algebra, and a subalgebra of $\mathscr{C}(X)$.
Proof. See [Bez+18b, Corollary 3.8]. The proof makes fundamental use of the Triangulation Lemma.

Any subpolyhedron of P is by definition compact, and hence closed. Therefore it is not surprising, once the algebraic nature of Sub P is established, that it turns out to be a co-Heyting algebra. In topology and logic, on the other hand, it is more conventional to work with open sets and Heyting algebras. Thus, it is natural at this point to switch to the Heyting algebra dual to $\operatorname{Sub} P$, which has the following concrete realisation.

Given a polyhedron P, an open subpolyhedron of P is the complement of a (compact) subpolyhedron of P. Denote by $\operatorname{Sub}_{0} P$ the collection of open subpolyhedra in P. It is evidently the dual of SubP, and Theorem 3.1 yields the following.
Theorem 3.2. $\mathrm{Sub}_{0} P$ is a Heyting algebra, and a subalgebra of $\mathscr{O}(X)$.
Once we have a Heyting algebra, we can start interpreting logics. For any formula ϕ, say that $P \vDash \phi$ if and only if $\operatorname{Sub}_{0} P \vDash \phi$ as a Heyting algebra. Theorem 3.2 then tells us that this interpretation is sound.

Call an intermediate logic polyhedrally-complete if it is the logic of some class of polyhedra. The remainder of the paper will be devoted to exploring what it means for a logic to be polyhedrally-complete.

In [Bez+18b], it is shown that IPC is polyhedrally-complete, being the logic of all polyhedra, while $\mathbf{B D}_{n}$ is the logic of all polyhedra of dimension at most n. It is also noted that all polyhedrally-complete logics must have the finite model property. This will also follow from Theorem 3.7 below, since triangulations are always finite.

3.2 Triangulation subalgebras

Triangulations of polyhedra have an important algebraic correspondent. Let Σ be a triangulation of P. Then $\Sigma \subseteq \operatorname{Sub} P$. Let $\mathrm{P}_{\mathrm{c}}(\Sigma)$ be the sublattice of $\operatorname{Sub}_{o}(P)$ generated by Σ.
Lemma 3.3. $\mathrm{P}_{\mathrm{c}}(\Sigma)$ is a co-Heyting subalgebra of SubP.
Proof. See [Bez+18b, Lemma 3.6].
Call any algebra of the form $P_{c}(\Sigma)$ a triangulation subalgebra. The following lemma allows us to interrogate the ostensibly intractable structure Sub P by examining its triangulation algebras, all of which are finite.
Lemma 3.4. Every finitely-generated subalgebra of SubP is contained in some triangulation algebra.

Proof. See [Bez+18b, Lemma 3.2]. Essentially, this is the content of the Triangulation Lemma 2.25.

Turning now to the dual, every triangulation Σ of a polyhedron P gives rise to a sub-Heyting algebra $P_{0}(\Sigma)$, which we also call a triangulation subalgebra, generated by the complements of the simplices in Σ. Lemma 3.4 gives us the following fact about Sub $_{0} P$.
Corollary 3.5. Sub $_{0} P$ is a locally-finite Heyting algebra.
Proof. This follows from the dual of Lemma 3.4 and the fact that triangulation subalgebras are finite.

The algebra $\mathrm{P}_{0}(\Sigma)$ is somewhat hard to visualise, but in fact it is exactly to dual (in the sense of the finite Esakia Duality) of Σ, regarded as a Kripke frame.
Lemma 3.6. The map:

$$
\begin{aligned}
\gamma^{\uparrow}: \mathrm{Up} \Sigma & \rightarrow \mathrm{P}_{\mathrm{o}}(\Sigma) \\
U & \mapsto \bigcup_{\sigma \in U} \operatorname{Relint}(\sigma)
\end{aligned}
$$

is an isomorphism of Heyting algebras.
Proof. See [Bez+18b, Lemma 4.3].
Now, Logic (P) is the logic of its finitely-generated subalgebras, which by the dual of Lemma 3.4, is the logic of its triangulation algebras. Combining this with our duality result Lemma 3.6, we obtain the following characterisation.
Theorem 3.7. The logic of a polyhedron is the logic of its triangulations.
The following additional facts about triangulation algebras will be useful later on.
Lemma 3.8. (1) Triangulation algebras determine their corresponding triangulations. That is, for any two triangulations Σ and Δ, if $\mathrm{P}_{0}(\Sigma)=\mathrm{P}_{0}(\Delta)$ then $\Sigma=\Delta$.
(2) If Σ and Δ are triangulations which are isomorphic as posets then $\mathrm{P}_{0}(\Sigma) \cong \mathrm{P}_{0}(\Delta)$.
(3) If Δ refines Σ, then $\mathrm{P}_{0}(\Sigma)$ is a subalgebra of $\mathrm{P}_{0}(\Delta)$.

Proof. (1) It follows from conditions (a) and (b) on simplicial complexes that $\mathrm{P}_{\mathrm{c}}(\Sigma)$ consists exactly of the unions of elements of Σ, and similarly for Δ. Assume $\mathrm{P}_{\mathrm{o}}(\Sigma)=\mathrm{P}_{\mathrm{o}}(\Delta)$, so that $\mathrm{P}_{\mathrm{c}}(\Sigma)=\mathrm{P}_{\mathrm{c}}(\Delta)$, and take $\sigma \in \Sigma$. Then $\sigma \in \mathrm{P}_{\mathrm{c}}(\Delta)$, so $\sigma=\bigcup S$ for some $S \subseteq \Delta$, and similarly each $\tau \in S$ is $\tau=\bigcup T_{\tau}$ for some $T_{\tau} \subseteq \Sigma$. Hence:

$$
\sigma=\bigcup \bigcup_{\tau \in S} T_{\tau}
$$

But then by condition (b) on Σ, every $\rho \in \bigcup_{\tau \in S} T_{\tau}$ must either be equal to σ or be a proper face of σ. Since Relint σ contains no proper face of σ, we must have $\sigma \in T_{\tau}$ for some $\tau \in S$. But then $\sigma \subseteq \tau \subseteq \sigma$, and so $\sigma \in \Delta$. Applying this argument also in the other direction, we get that $\Sigma=\Delta$.
(2) This follows from Lemma 3.6.
(3) By Lemma 2.27, every $\sigma \in \Sigma$ is the union of simplices in Δ. Whence $\Sigma \subseteq P_{c}(\Delta)$. Therefore, by definition $P_{c}(\Sigma) \subseteq P_{c}(\Delta)$. By symmetry $P_{c}(\Delta) \subseteq P_{c}(\Sigma)$.

3.3 PL homeomorphisms and polyhedral maps

Let us now consider the relationship between logic and polyhedral geometry on the level of morphisms.

A map $f: P \rightarrow Q$ is a PL embedding if $f(P)$ is a polyhedron and $f: P \rightarrow f(P)$ is a PL homeomorphism.

Let P be a polyhedron and F be a poset. A function $f: P \rightarrow F$ is a polyhedral map if the preimage of any open set in F is an open subpolyhedron of P. Note that such a function is continuous.
Proposition 3.9. Let $f: P \rightarrow F$ be a function from a polyhedron P to a finite poset F, and write $f^{*}:=f^{-1}[-]: \mathscr{P}(F) \rightarrow \mathscr{P}(P)$ for the inverse image function.
(1) The function f is polyhedral if and only if f^{*} descends to a lattice homomorphism $f^{*}: \operatorname{Up} F \rightarrow \operatorname{Sub}_{0} P$.
(2) The function f is polyhedral and open if and only if f * descends to a homomorphism of Heyting algebras $f^{*}: \mathrm{Up} F \rightarrow \operatorname{Sub}_{0} P$.
Proof. Clearly f^{*} is a homomorphism of Boolean algebras, so (1) follows from the definitions. As for (2), let us first assume that f is polyhedral and open, and take $U, V \in \mathrm{Up} F$ with the aim of showing that $f^{*}(U \rightarrow V)=f^{*}(U) \rightarrow f^{*}(V)$. The left-to-right inclusion follows from the fact that f^{*} is a lattice homomorphism. For the right-to-left, writing X^{C} for the complement of X, we have the following chain of inclusions.

$$
\begin{aligned}
f\left[f^{*}(U) \rightarrow f^{*}(V)\right]= & f\left[\operatorname{Int}\left(f^{-1}[U]^{\mathrm{C}} \cup f^{-1}[V]\right)\right] \\
\subseteq & \operatorname{Int}\left(f\left[f^{-1}[U]^{\mathrm{C}} \cup f^{-1}[V]\right]\right) \quad \text { (} f \text { is open) } \\
= & \operatorname{Int}\left(f\left[f^{-1}\left[U^{\mathrm{C}} \cup V\right]\right]\right) \\
\subseteq & \operatorname{Int}\left(U^{\mathrm{C}} \cup V\right) \\
& =U \rightarrow V
\end{aligned}
$$

Applying $f^{*}=f^{-1}$ to both sides, we get that $f^{*}(U) \rightarrow f^{*}(V) \subseteq f^{*}(U \rightarrow V)$.
For the converse implication, assume that f^{*} is a Heyting algebra homomorphism. By (1), f is polyhedral, so take $W \subseteq F$ with the aim of showing that $f^{-1}[\operatorname{Int} W]=$ $\operatorname{Int}\left(f^{-1}[W]\right)$. First let $A:=\operatorname{Int}\left((\uparrow W)^{\mathrm{C}} \cup W\right) \cup \operatorname{Int}\left(W^{\mathrm{C}}\right)$ and $B:=\operatorname{Int} W$. A routine calculation verifies that $A^{\mathrm{C}} \cup B=W$, and moreover that $A, B \in \mathrm{Up} F$. Then:

$$
\begin{array}{rlr}
f^{-1}[\operatorname{Int} W] & =f^{*}[A \rightarrow B] \\
& =f^{*}[A] \rightarrow f^{*}[B] & \\
& =\operatorname{Int}\left(f^{*}[A]^{C} \cup f^{*}[B]\right) \\
& =\operatorname{Int}\left(f^{*}\left[A^{C} \cup B\right]\right) \\
& =\operatorname{Int}\left(f^{-1}[W]\right) &
\end{array}
$$

Proposition 3.10. Any PL homeomorphism $f: P \rightarrow Q$ between polyhedra, along with its inverse $g: Q \rightarrow P$, induce mutually inverse isomorphisms of Heyting algebras $f^{*}: \operatorname{Sub}_{0} Q \rightarrow$ $\operatorname{Sub}_{0} P$ and $g^{*}: \operatorname{Sub}_{0} P \rightarrow \operatorname{Sub}_{0} Q$.

Proof. The inverse image of a subpolyhedron under a PL homeomorphism is again a subpolyhedron [RS72, Corollary 2.5, p. 13], meaning the inverse image of an open subpolyhedron is an open subpolyhedron. Furthermore, homeomorphisms are open maps. Hence $f^{*}: \mathscr{P}(Q) \rightarrow \mathscr{P}(P)$ and $g^{*}: \mathscr{P}(P) \rightarrow \mathscr{P}(Q)$ descend to functions as in the statement. These are mutually inverse isomorphisms of lattices by definition.

The fact that they also preserve Heyting implication follows just as in the proof of Proposition 3.9.

Corollary 3.11. If P and Q are $P L$ homeomorphic then $\operatorname{Logic}(P)=\operatorname{Logic}(Q)$.
Let Σ be a simplicial complex and F be a poset. Given any function $f: \Sigma \rightarrow F$, define the map $\widehat{f}:|\Sigma| \rightarrow F$ by:

$$
\widehat{f}(x):=f\left(\sigma^{x}\right)
$$

Proposition 3.12. When $f: \Sigma \rightarrow F$ is a p-morphism, $\widehat{f}:|\Sigma| \rightarrow F$ is an open polyhedral map.

Proof. For any $U \in U \mathrm{Up} F$, we have that:

$$
\widehat{f}^{-1}[U]=\bigcup\left\{\operatorname{Relint} \sigma \mid \sigma \in \Sigma \text { and } \sigma \in f^{-1}[U]\right\}=\gamma^{\uparrow}\left(f^{-1}[U]\right)
$$

Since f is monotonic, $f^{-1}[U]$ is upwards-closed in Σ, whence as above $\widehat{f}^{-1}[U]$ is an open sub-polyhedron of $|\Sigma|$. Now take an open set $W \subseteq|\Sigma|$, with the aim of showing that $\widehat{f}[W]$ is open. Define:

$$
\Sigma \# W:=\{\sigma \in \Sigma \mid \operatorname{Relint}(\sigma) \cap W \neq \varnothing\}
$$

Then:

$$
\widehat{f}[W]=\left\{f\left(\sigma^{x}\right) \mid x \in W\right\}=f[\Sigma \# W]
$$

If $\sigma \in \Sigma \# W$ and $\sigma \preccurlyeq \tau$, then as $\sigma \subseteq \tau=\mathrm{ClRelint} \tau$ and W is open, we have $\tau \in$ $\Sigma \# W$; i.e. $\Sigma \# W$ is upwards-closed. But now, f is open and so $\widehat{f}[W]$ is also upwardsclosed.

4 The Nerve Criterion

Given a poset F, its nerve, $\mathscr{N}(F)$, is the collection of finite non-empty chains in F ordered by inclusion.

The following theorem is one of the main contributions of the paper:
Theorem 4.1 (The Nerve Criterion). A logic is polyhedrally-complete if and only if it is the logic of a class of finite frames closed under the nerve construction \mathscr{N}.

The utility of the Nerve Criterion is that it transforms logic-geometric questions into questions about finite posets, to which finite combinatorial methods are applicable.

The proof of the Nerve Criterion is given in Section 4.5, and for it we will need to import several results from polyhedral geometry. The heart of the argument is the classical link between nerves and barycentric subdivision.

Let Σ be a simplicial complex. The k th derived subdivision of Σ, denoted by $\Sigma^{(k)}$, is the result of applying the barycentric subdivision operation k-times on Σ. I.e. $\Sigma^{(k)}=$ $\mathrm{Sd}^{k} \Sigma$. Now let A be a triangulation subalgebra of $\mathrm{Sub}_{0} P$ for some polyhedron P. By Lemma 3.8 (1), there is a unique triangulation Σ of P such that $A=\mathrm{P}_{\mathrm{o}}(\Sigma)$. For any $k \in \mathbb{N}$, let $A^{(k)}:=\mathrm{P}_{\mathrm{o}}\left(\Sigma^{(k)}\right)$.
Theorem 4.2. Let P be a polyhedron and let A be any triangulation subalgebra of $\mathrm{Sub}_{0} P$. For any finitely-generated subalgebra B of $\operatorname{Sub}_{0} P$, there is $k \in \mathbb{N}$ such that B is isomorphic to a subalgebra of $A^{(k)}$.

Sections 4.1-4.4 will be devoted to proving this theorem.

4.1 Rational polyhedra and unimodular triangulations

The intuition behind Theorem 4.2 is that any triangulation can be approximated from any other by taking iterated barycentric subdivisions. The difficulty one might face with spelling out such an intuition is dealing with the 'continuum nature' of \mathbb{R}^{n}. It might be imagined that, if we start with a triangulation Σ on irrational vertices and
try to approximate it using the iterated barycentric subdivisions of a triangulation on rational vertices, the approximations would never quite capture all of Σ. The approach taken here is effectively to show that it suffices to restrict attention to the rational case. In order to make this idea precise, we need some definitions. For these, we will mainly be following [Mun11].

A polytope in \mathbb{R}^{n} is rational if it may be written as the convex hull of finitely many points in $\mathbb{Q}^{n} \subseteq \mathbb{R}^{n}$. A polyhedron in \mathbb{R}^{n} is rational if it may be written as a union of a finite collection of rational polytopes. A simplicial complex Σ is rational if it consists of rational simplices. Note that when this is the case, $|\Sigma|$ is a rational polyhedron.

For any $x \in \mathbb{Q}^{n} \subseteq \mathbb{R}^{n}$, there is a unique way to write out x in coordinates as $x=\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n}}{q_{n}}\right)$ such that for each i, we have $p_{i}, q_{i} \in \mathbb{Z}$ coprime. The denominator of x is defined:

$$
\operatorname{Den}(x):=\operatorname{lcm}\left\{q_{1}, \ldots, q_{n}\right\}
$$

Note that $\operatorname{Den}(x)=1$ if and only if x has integer coordinates. Letting $q=\operatorname{Den}(x)$, the homogeneous correspondent of x is defined to be the integer vector:

$$
\tilde{x}:=\left(\frac{q p_{1}}{q_{1}}, \ldots, \frac{q p_{n}}{q_{n}}, q\right)
$$

A rational d-simplex $\sigma=x_{0} \cdots x_{d}$ is unimodular if there is an $(n+1) \times(n+1)$ matrix with integer entries whose first d columns are $\widetilde{x_{0}}, \ldots, \widetilde{x_{d}}$, and whose determinant is ± 1. This is equivalent to requiring that the set $\left\{\widetilde{x_{0}}, \ldots, \widetilde{x_{d}}\right\}$ can be completed to a \mathbb{Z}-module basis of \mathbb{Z}^{d+1}. A simplicial complex is unimodular if each one of its simplices is unimodular.

4.2 Farey subdivisions

In order to obtain the main result concerning barycentric subdivisions, we go via another kind of subdivision which is more amenable to the rational case.
Proposition 4.3. For any $x, y \in \mathbb{Q}^{n}$, there is a unique $m \in \mathbb{Q}^{n}$ such that $\tilde{m}=\tilde{x}+\tilde{y}$, and this lies in the relative interior of the 1-simplex $\operatorname{Conv}\{x, y\}$.
Proof. Let $H_{n+1} \subseteq \mathbb{R}^{n+1}$ be the hyperplane specified by:

$$
H_{n+1}:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{n+1}=1\right\}
$$

Identify \mathbb{Q}^{n} with the set of rational points of H_{n+1}. Under this identification, $\tilde{m}=\tilde{x}+\tilde{y}$ lies in the affine cone:

$$
\{a \tilde{x}+b \tilde{y} \mid a, b>0\}
$$

A routine computation then proves the geometrically evident fact that m is the point of intersection of the line spanned in R^{n+1} by the vector \tilde{m}, with the hyperplane H_{n+1}; from which the result follows.

For $x, y \in \mathbb{Q}^{n}$, let this $m \in \mathbb{Q}^{n}$ be their Farey mediant. The Farey mediant behaves in a similar way to the barycentre of x and y.

Using the notion of Farey mediant, one can define the notion of a Farey subdivision. Just as in the case of barycentric subdivision, the precise formulation is somewhat involved, while the technical details are not so important for the present paper. Thus, as before, we will present the idea, coupled with some diagrams, in order to give the essential intuition. For a complete definition, we refer the reader to [Mun11, §5.1, p. 55].

Let Σ_{1}, Σ_{2} be rational simplicial complexes in \mathbb{R}^{n}. Then Σ_{2} is an elementary Farey subdivision of Σ_{1} if it is obtained from Σ_{1} by subdividing exactly one of its 1-simplices Conv $\{x, y\}$ through the introduction of the Farey mediant m of x and y as the single new vertex of Σ_{2}. If Σ_{2} can be obtained from Σ_{1} through finitely many successive elementary Farey subdivisions, then we say Σ_{2} is a Farey subdivision of Σ_{1}. See Figure 2 for examples of this operation.

Figure 2: Examples of elementary Farey subdivisions

To relate Farey subdivisions with barycentric subdivisions, note that one may define an elementary barycentric subdivision analogously to the Farey case, by taking a single 1 -simplex and adding a new vertex at its barycentre. The following technical lemma will be useful below; its proof uses the details of the full definition of elementary Farey and barycentric subdivision.
Lemma 4.4. Let Σ, Δ be simplicial complexes with Σ rational, assume that $\gamma: \Sigma \rightarrow \Delta$ is an isomorphism of Σ and Δ as posets, and take a 1-simplex $\sigma \in \Sigma$. Then the elementary Farey subdivision of Σ along σ and the elementary barycentric subdivision of Δ along $\gamma(\sigma)$ are isomorphic as posets.

Proof. Indeed, at the level of posets, elementary Farey subdivision and elementary barycentric subdivision are the same operation: we take a 1 -simplex and add a new vertex somewhere in its interior, then construct the rest of the complex around this. For more details see [Ale30, §III].

The following is a fundamental fact of rational polyhedral geometry, and captures the idea of 'rational approximation'.
Lemma 4.5 (The De Concini-Procesi Lemma). Let P be a rational polyhedron, and let Σ be a unimodular triangulation of P. There exists a sequence $\left(\Sigma_{i}\right)_{i \in \mathbb{N}}$ of unimodular triangulations of P with $\Sigma_{0}=\Sigma$ such that:
(a) For each $i \in \mathbb{N}, \Sigma_{i+1}$ is an elementary Farey subdivision of Σ_{i}, and
(b) For any rational polyhedron $Q \subseteq P$, there is $i \in \mathbb{N}$ such that Σ_{i} triangulates Q.

Proof. See [Mun11, Theorem 5.3, p. 57].

4.3 From \mathbb{R} to \mathbb{Q}

We will now see how to relate general polyhedra to rational polyhedra, and general simplicial complexes to unimodular simplicial complexes.

Lemma 4.6. Let P be a polyhedron, and let Σ be a triangulation of P. There exist an integer $n \in \mathbb{N}$, a rational polyhedron $Q \subseteq \mathbb{R}^{n}$, and a unimodular triangulation Δ of Q such that P and Q are PL-homeomorphic via a map that induces an isomorphism of Σ and Δ as posets.
Proof. This is a standard argument. Fix a bijection β from the vertices of Σ to the standard basis of \mathbb{R}^{n}, where n is the number of vertices in Σ. Take a simplex $\sigma=$ $x_{0} \cdots x_{d}$ in Σ. Note that the points $\beta\left(x_{0}\right), \ldots, \beta\left(x_{d}\right)$ are affinely independent; let $\alpha(\sigma)$ be the d-simplex spanned by their convex hull: $\alpha(\sigma):=\operatorname{Conv}\left\{\beta\left(x_{0}\right), \ldots, \beta\left(x_{d}\right)\right\}$. Since the vertices of $\alpha(\sigma)$ are standard basis elements, $\alpha(\sigma)$ is a unimodular simplex by definition. Let $f_{\sigma}: \sigma \rightarrow \alpha(\sigma)$ be the linear map determined by $f_{\sigma}\left(x_{i}\right)=\beta\left(x_{i}\right)$ for each i, and let $g_{\sigma}: \alpha(\sigma) \rightarrow \sigma$ be its inverse, determined by $g_{\sigma}\left(\beta\left(x_{i}\right)\right)=x_{i}$.

Now, let $Q:=\bigcup_{\sigma \in \Sigma} \alpha(\sigma)$. For any simplices $\sigma \preccurlyeq \tau$, the map f_{σ} agrees with f_{τ} on σ. Hence we may glue these maps together to form a map $f: P \rightarrow Q$, i.e. $f(x)=f_{\sigma}(x)$, where σ is any simplex of Σ containing x. Similarly, we may glue together the maps g_{σ} for $\sigma \in \Sigma$ to form an inverse to f. By definition f is a PL homeomorphism. Finally, note that $\Delta:=\{\alpha(\sigma) \mid \sigma \in \Sigma\}$ is a triangulation of Q, and that f induces the poset isomorphism $\sigma \mapsto \alpha(\sigma)$ between Σ and Δ.
Lemma 4.7. Let Σ be a unimodular triangulation of the rational polyhedron P, and suppose Σ^{\prime} is a Farey subdivision of Σ. There is a triangulation Δ of P which is isomorphic as a poset to Σ^{\prime}, and $k \in \mathbb{N}$ such that $\Sigma^{(k)}$ refines Δ.
Proof. The proof works by replacing each elementary Farey subdivision by an elementary barycentric subdivision. We induct on the number $m \in \mathbb{N}^{>0}$ of elementary Farey subdivisions needed to obtain Σ^{\prime} from Σ. If $m=1$, let $\operatorname{Conv}\{x, y\}$ be the 1 -simplex of Σ being subdivided through its Farey mediant. Then the first barycentric subdivision $\Sigma^{(1)}$ of Σ refines the elementary barycentric subdivision Σ^{*} of Σ along $\operatorname{Conv}\{x, y\}$. By Lemma 4.4, Σ^{*} and Σ^{\prime} are isomorphic.

For the induction step, suppose $m>1$, and write $\left(\Sigma_{i}\right)_{i=0}^{m}$ for the finite sequence of triangulations connecting $\Sigma=\Sigma_{0}$ to $\Sigma^{\prime}=\Sigma_{m}$ through elementary Farey subdivisions. By the induction hypothesis, there is $k \in \mathbb{N}$ such that $\Sigma^{(k)}$ refines a triangulation Δ isomorphic to Σ_{m-1}; let us fix one such isomorphism γ. Let $\operatorname{Conv}\{x, y\}$ be the 1simplex of Σ_{m-1} that must be subdivided through its Farey mediant in order to obtain Σ_{m}. Let further σ be the simplex of Δ that corresponds to $\operatorname{Conv}\{x, y\}$ through the isomorphism γ. Since the 1 -simplices are exactly the height-1 elements of Δ, we get that σ is a 1 -simplex. Then $\Sigma^{(k+1)}$ refines Δ^{*}, the latter denoting the elementary barycentric subdivision of Δ along σ. But Δ is isomorphic to Σ_{m-1}, and therefore by Lemma 4.4, Δ^{*} is isomorphic to Σ_{m}.
Lemma 4.8 (Beynon's Lemma). Let P be a rational polyhedron, and let Σ be a triangulation of P. There exists a rational triangulation of P which is isomorphic as a poset to Σ.
Proof. This is the main result of [Bey77].

4.4 Putting it all together

It is time to combine all our ingredients and prove the main theorem of the chapter.
Proof of Theorem 4.2. Let Σ be the triangulation of P such that $A=\mathrm{P}_{\mathrm{o}}(\Sigma)$. Using Lemma 4.6, Lemma 3.8 (2) and Proposition 3.10 we may assume without loss of generality that P is rational and Σ is unimodular. By Lemma 3.4, there is a triangulation Δ of P such that B is isomorphic to a subalgebra of $\mathrm{P}_{\mathrm{o}}(\Delta)$. By Beynon's Lemma 4.8 and Lemma 3.8 (2), we may assume that Δ is rational (and hence each member of B is, too). By the De Concini-Procesi Lemma 4.5, there is a Farey subdivision Σ^{\prime} of Σ that refines Δ. Therefore by Lemma 3.8 (3), B is isomorphic to a subalgebra of $\mathrm{P}_{\mathrm{o}}\left(\Sigma^{\prime}\right)$. By Lemma 4.7, there is $k \in \mathbb{N}$ such that $\Sigma^{(k)}$ refines Σ^{\prime} up to isomorphism. Hence by Lemma 3.8 (3) again, $A^{(k)}$ contains a subalgebra isomorphic to $\mathrm{P}_{\mathrm{o}}\left(\Sigma^{\prime}\right)$, and therefore also a subalgebra isomorphic to B.

4.5 Bringing nerves back onto the stage

Let us now see how to attain the Nerve Criterion from Theorem 4.2. The reason that the nerve construction is relevant here is the following.
Proposition 4.9. Let Σ be a simplicial complex. The barycentric subdivision of Σ is isomorphic as a poset to the nerve of Σ :

$$
\mathrm{Sd} \Sigma \cong \mathscr{N}(\Sigma)
$$

Proof. Let us give an intuitive proof as to why this is the case. For more detail, we refer the reader to [Mau80, Proposition 2.5.10, p. 51] and [RW12, §3].

In our informal definition, the construction of the barycentric subdivision of a simplicial complex Σ involved putting a new vertex at the barycentre of each simplex of Σ, and constructing the rest of $\operatorname{Sd} \Sigma$ around this. Let us consider in a little more detail what this involves. For each simplex $\sigma \in \Sigma$, we have a new 0 -simplex, which we will label $\{\sigma\}$. The first step in 'building up the rest of $\operatorname{Sd} \Sigma$ ' would be to add in some 1 -simplices. A little reflection and diagram staring (consider again Figure 1) indicates that we should put a 1-simplex between $\{\sigma\}$ and $\{\tau\}$ exactly when $\sigma \prec \tau$ or $\tau \prec \sigma$, i.e. when $\{\sigma, \tau\}$ is a chain in Σ. Let us label such a new 1 -simplex $\{\sigma, \tau\}$. The next stage would be to add in some 2 -simplices. Some further reflection and diagram staring should indicate that we should add a 2 -simplex connecting σ, τ and ρ exactly when $\{\sigma, \tau, \rho\}$ is a chain in Σ. Label such a 2 -simplex by $\{\sigma, \tau, \rho\}$. Continuing in this fashion, we eventually arrive at an isomorphism $\operatorname{Sd} \Sigma \cong \mathscr{N}(\Sigma)$.
Corollary 4.10. For P a polyhedron and Σ a triangulation of P we have:

$$
\operatorname{Logic}(P)=\operatorname{Logic}\left(\mathscr{N}^{k}(\Sigma) \mid k \in \mathbb{N}\right)
$$

Proof. Indeed:

$$
\begin{array}{rlr}
\operatorname{Logic}(P) & =\operatorname{Logic}\left(\operatorname{Sub}_{0} P\right) & \\
& =\operatorname{Logic}\left(A \mid A \text { finitely-generated subalgebra of } \operatorname{Sub}_{\mathrm{o}} P\right) & \\
& =\operatorname{Logic}\left(\mathrm{P}_{\mathrm{o}}\left(\Sigma^{(k)}\right) \mid k \in \mathbb{N}\right) & \text { (Themm 3.4) } \\
& =\operatorname{Logic}\left(\Sigma^{(k)} \mid k \in \mathbb{N}\right) \\
& =\operatorname{Logic}\left(\mathscr{N}^{k}(\Sigma) \mid k \in \mathbb{N}\right) & \text { (as above) }
\end{array}
$$

For the converse direction of the Nerve Criterion, we will need the following construction, described in [Bez+18b]. Let F be a finite poset. Using the nerve, we define its geometric realisation via a simplicial complex. Enumerate $F=\left\{x_{1}, \ldots, x_{m}\right\}$, and let e_{1}, \ldots, e_{m} be the standard basis vectors of \mathbb{R}^{m}. The simplicial complex induced by F is defined:

$$
\nabla F:=\left\{\operatorname{Conv}\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\} \mid\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \in \mathscr{N}(F)\right\}
$$

Now, the map max: $\mathscr{N}(F) \rightarrow F$, which sends a chain to is maximum element, is a pmorphism. Since $\nabla F \cong \mathscr{N}(F)$ as posets, this induces an open polyhedral map $|\nabla F| \rightarrow$ F, meaning that Logic $(|\nabla F|) \subseteq \operatorname{Logic}(F)$.

Proof of Theorem 4.1, the Nerve Criterion. Assume that \mathscr{L} is the logic of a class C of polyhedra. For each $P \in \mathrm{C}$ fix a triangulation Σ_{P}, and let:

$$
\mathbf{C}^{*}:=\left\{\mathscr{N}^{k}\left(\Sigma_{P}\right) \mid P \in \mathbf{C} \text { and } k \in \mathbb{N}\right\}
$$

Then:

$$
\begin{align*}
\operatorname{Logic}\left(\mathbf{C}^{*}\right) & =\bigcap_{P \in \mathrm{C}} \operatorname{Logic}\left(\mathscr{N}^{k}\left(\Sigma_{P}\right) \mid k \in \mathbb{N}\right) \\
& =\bigcap_{p \in \mathrm{C}} \operatorname{Logic}(P) \tag{Corollary4.10}\\
& =\operatorname{Logic}(\mathbf{C})=\mathscr{L}
\end{align*}
$$

Conversely, assume that $\mathscr{L}=\operatorname{Logic}(\mathbf{D})$, where \mathbf{D} is a class of finite frames closed under \mathcal{N}. Let:

$$
\mathbf{D}_{*}:=\{|\nabla(F)|: F \in \mathbf{D}\}
$$

We will show that $\mathscr{L}=\operatorname{Logic}\left(\mathbf{D}_{*}\right)$. First suppose that $\mathscr{L} \nvdash \phi$, so that $F \nvdash \phi$ for some $F \in \mathbf{D}$. Then we have that $|\nabla(F)| \nvdash \phi$, so that $\operatorname{Logic}\left(\mathbf{D}_{*}\right) \nvdash \phi$. Conversely, suppose that $\operatorname{Logic}\left(\mathbf{D}_{*}\right) \nvdash \phi$, so that $|\nabla(F)| \not \models \phi$ for some $F \in \mathbf{D}$. By definition $\nabla(F)$ is a triangulation of $|\nabla(F)|$, hence by Corollary 4.10 there is $k \in \mathbb{N}$ such that $\nabla(F)^{(k)} \not \models \phi$. But $\nabla(F) \cong \mathscr{N}(F)$ by definition, and so by Proposition 4.9 we get $\mathscr{N}^{k+1}(F) \cong \nabla(F)^{(k)}$. Thus, as D is closed under \mathscr{N}, we get that $\mathscr{L} \nvdash \phi$.

5 Polyhedrally incomplete logics

In this section, we use the Nerve Criterion to provide a negative result concerning polyhedral completeness, showing that every stable logic is polyhedrally-incomplete, of which there are contiuum many.

A logic \mathscr{L} is stable if Frames ${ }_{\perp}(\mathscr{L})$ is closed under monotone images (see [BB17], where stable logics are first defined).
Proposition 5.1. The following well-known logics ${ }^{2}$ are all stable.
(i) The logic of weak excluded middle, $\mathrm{KC}=\mathrm{IPC}+(\neg p \vee \neg \neg p)$.
(ii) Gödel-Dummett logic, $\mathbf{L C}=\mathbf{I P C}+(p \rightarrow q) \vee(q \rightarrow p)$.
(iii) $\mathrm{LC}_{n}=\mathrm{LC}+\mathrm{BD}_{n}$.
(iv) The logic of bounded width $n, \mathbf{B W}_{n}=\mathbf{I P C}+\bigvee_{i=0}^{n}\left(p_{i} \rightarrow \bigvee_{j \neq i} p_{j}\right)$.
(v) The logic of bounded top width n, defined:

$$
\mathbf{B T W}_{n}:=\bigwedge_{0 \leqslant i<j \leqslant n} \neg\left(\neg p_{i} \wedge \neg p_{j}\right) \rightarrow \bigvee_{i=0}^{n}\left(\neg p_{i} \rightarrow \bigvee_{j \neq i} \neg p_{j}\right)
$$

(vi) The logic of bounded cardinality n, defined:

$$
\mathbf{B C}_{n}:=p_{0} \vee\left(p_{0} \rightarrow p_{1}\right) \vee\left(\left(p_{0} \wedge p_{1}\right) \rightarrow p_{2}\right) \vee \cdots \vee\left(\left(p_{0} \wedge \cdots \wedge p_{n-1}\right) \rightarrow p_{n}\right)
$$

Proof. See [BB17, Theorem 7.3].
In fact:
Theorem 5.2. There are continuum-many stable logics.
Proof. See [BB17, Theorem 6.13].
Theorem 5.3. Every stable logic has the finite model property.
Proof. See [BB17, Theorem 6.8].
Hence, stable logics are good candidates for polyhedrally-complete logics. However:
Theorem 5.4. If \mathscr{L} is a stable logic other than IPC, and $\operatorname{Frames}(\mathscr{L})$ contains a frame of height at least 2 , then \mathscr{L} is not polyhedrally-complete.

Proof. Let \mathscr{L} be a polyhedrally-complete stable logic of height at least 2 . We show that $\mathscr{L}=$ IPC.

By the Nerve Criterion 4.1, there is a class \mathbf{C} of finite frames closed under \mathscr{N} such that $\mathscr{L}=\operatorname{Logic}(\mathbf{C})$. Since Frames (\mathscr{L}) contains a frame of height at least 2 , we must have $\mathscr{L} \nvdash \mathbf{B D}_{1}$. Since $\mathscr{L}=\operatorname{Logic}(\mathbf{C})$, there is therefore $F \in \mathbf{C}$ such that height $(F) \geqslant 2$. This means there are $x_{0}, x_{1}, x_{2} \in F$ with $x_{0}<x_{1}<x_{2}$. Without loss of generality, we may assume that x_{2} is a top element and that x_{1} is an immediate predecessor of x_{2}

[^1]and x_{0} an immediate predecessor of x_{1}. Now, by assumption $\mathscr{N}^{k}(F) \in \mathrm{C}$ for every $k \in \mathbb{N}$. Let us examine the structure of these frames a little. Note that $\left\{x_{0}, x_{1}, x_{2}\right\}$ is a chain. Let X be a maximal chain in $\Downarrow\left(x_{0}\right)$. We have the following relations occurring in $\mathscr{N}(F)$.

Moreover, by assumptions on x_{0}, x_{1}, x_{2} and X, we have that $X \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ is a top element of $\mathscr{N}(F)$, with $X \cup\left\{x_{0}, x_{1}\right\}$ and $X \cup\left\{x_{0}, x_{2}\right\}$ immediate predecessors, and $X \cup\left\{x_{0}\right\}$ an immediate predecessor of those. So, we may apply this argument once more, to obtain the following structure sitting at the top of $\mathscr{N}^{2}(F)$.

Iterating, we see that at the top of $\mathscr{N}^{k}(F)$ we have the following structure.

Let z be the base element of this structure, as indicated. Now, take $k \in \mathbb{N}$ and let $\left\{t_{1}, \ldots, t_{m}\right\}$ be the top nodes of $\mathscr{N}^{k}(F)$ produced by this construction, where $m=2^{k-1}$. By Proposition 2.3, $\uparrow(z) \in$ Frames $_{\perp}(\mathscr{L})$.

Let now G be an arbitrary poset with up to m elements $\left\{y_{1}, \ldots, y_{m}\right\}$ (possibly with duplicates) plus a root \perp. Define $f: \uparrow(z) \rightarrow G$ as follows.

$$
x \mapsto \begin{cases}y_{i} & \text { if } x=t_{i}, \\ \perp & \text { otherwise. }\end{cases}
$$

Then f is monotonic. Since \mathscr{L} is stable, this means that $G \in \operatorname{Frames}_{\perp}(\mathscr{L})$. Thus (since, by Proposition 2.18 and Corollary 2.4, IPC is the logic of finite rooted frames) we get that $\mathscr{L}=$ IPC.

6 Polyhedrally complete logics: starlike completeness

In this section, we use the Nerve Criterion to establish a class of logics which are polyhedrally-complete. These logics are axiomatised using the forbidden configuration method of Jankov-Fine formulas. The proofs in this section largely involve combinatorial manipulations of posets.

6.1 Starlike trees

A tree T is a starlike tree if every $x \in T \backslash\{\perp\}$ has at most one immediate successor. The terminology 'starlike' comes from graph theory [WS79]. If we were to place the root of a starlike tree at the centre of a diagram and arrange its branches radially outward, it would look like a star.

It will be useful to carve out some notation with which we can conveniently point to each starlike tree (up to isomorphism). Note that a starlike tree is determined by the multiset of its branch heights. The following notation is inspired by that used in the theory of multisets.

Let $n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{k} \in \mathbb{N}^{>0}$, with n_{1}, \ldots, n_{k} distinct. Then let us define $T=$ $\left\langle n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}\right\rangle$ as the starlike tree with the property that if we remove the root \perp we are left with exactly, for each i, m_{i} chains of length n_{i}. Let $\langle\epsilon\rangle=\bullet$, the singleton poset. Call $\alpha=n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ (or ϵ) the signature of T. We will always assume that $n_{1}>n_{2}>\cdots>n_{k}$.

In other words, $T=\left\langle n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}\right\rangle$ is composed of, for each i, m_{i} branches of length $n_{i}+1$. See Figure 3 for some examples of starlike trees together with their signatures. We will sometimes write 1^{0} for ϵ.

Let $\alpha=n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ be a signature. The length of α is defined as $|\alpha|:=m_{1}+\cdots+m_{k}$. Let $|\epsilon|:=0$. For $j \leqslant|\alpha|$, the j th height, $\alpha(j)$, is n_{i}, where:

$$
m_{1}+\cdots+m_{i-1} \leqslant j<m_{1}+\cdots+m_{i}
$$

Let α and β be signatures. Say that $\alpha \leqslant \beta$ if $|\alpha| \leqslant|\beta|$ and for every $j \leqslant|\alpha|$ we have $\alpha(j) \leqslant \beta(j)$. Visually, this means that if we represent $\alpha=n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ on a grid as a block n_{1}-tall and m_{1}-wide, followed by a block n_{2}-tall and m_{2}-wide, and so on, and similarly for β, that β covers α. Considering the examples in Figure 3, we have the following relations:

$$
1^{3}<3 \cdot 1^{2}<3^{2} \cdot 2 \cdot 1, \quad 2<3 \cdot 1^{2}
$$

Remark 6.1. When $\alpha=n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ and β are signatures, we have $\alpha \leqslant \beta$ if and only if $|\alpha| \leqslant|\beta|$ and for every $i \leqslant k$, we have:

$$
\beta\left(m_{1}+\cdots+m_{i}\right) \geqslant n_{i}
$$

Proposition 6.2. If $\alpha \leqslant \beta$ then there is a p-morphism $\langle\beta\rangle \rightarrow\langle\alpha\rangle$.
Proof. Let us first fix labellings on $\langle\alpha\rangle$ and $\langle\beta\rangle$. Label the root of $\langle\alpha\rangle$ with \perp. We may arrange the branches of $\langle\alpha\rangle$ in a sequence so that the j th branch has height $\alpha(j)$. Let us label the non-root elements of the j th branch in ascending order as $a(j, 1), \ldots, a(j, \alpha(j))$, and similarly for $\langle\beta\rangle$, with $b(j, i)$ for $j \leqslant|\beta|$ and $i \leqslant \beta(j)$.

Now, define $f:\langle\beta\rangle \rightarrow\langle\alpha\rangle$ as follows. Note, for $j \leqslant|\alpha|$, we have $\alpha(j) \leqslant \beta(j)$. For $i \leqslant \beta(j)$ let:

$$
f(b(j, i)):=a(j, \min (i, \alpha(j)))
$$

For $j>|\alpha|$ and $i \leqslant \beta(j)$, let:

$$
f(b(j, i)):=a(1, \alpha(1))
$$

A routine calculation shows that f is a p-morphism.

Figure 3: Some examples of starlike trees

Note that the starlike tree $\langle k\rangle$ is the chain on $k+1$ elements, Ch_{k}. We will use this former notation for chains from now on. For $k \in \mathbb{N}^{>0}$, the k-fork is the starlike tree $\left\langle 1^{k}\right\rangle$.

6.2 Starlike logics

We are now in a position to define the principle class of logics that will be investigated in this section. Let $\mathscr{S}:=\left\{\alpha\right.$ signature $\left.\mid \alpha \neq 1^{2}\right\}$. Take $\Lambda \subseteq \mathscr{S}$ (possibly infinite). The starlike logic $\operatorname{SFL}(\Lambda)$ based on Λ is the logic axiomatised by IPC plus $\chi(\langle\alpha\rangle)$ for each $\alpha \in \Lambda$. Write $\operatorname{SFL}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ for $\operatorname{SFL}\left(\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}\right)$.
Proposition 6.3. $\mathrm{SL}=\mathrm{SFL}(2 \cdot 1)$. So Scott's logic is a starlike logic.
Proof. See [CZ97, §9 and Table 9.7, p. 317].
Let us examine what $\operatorname{SFL}(\Lambda)$ 'means' in terms of its class of frames. The formula $\chi(\langle\alpha\rangle)$ turns out to express a kind of connectedness property. Let us first see some new terminology.

Let F be a finite poset. Define $\mathfrak{C}(F)$ to be the set of connected components of F. The connectedness type $\mathrm{c}(F)$ of F is the signature $n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ such that $\mathfrak{C}(F)$ contains for each i exactly m_{i} sets of height $n_{i}-1$, and nothing else. Let $\mathrm{c}(\varnothing):=\epsilon$.
Remark 6.4. Note that when F is connected, $\mathrm{c}(F)=n+1$, where $n=\operatorname{height}(F)$.
Let $\alpha>\epsilon$ be a signature. An α-partition of F is a partition:

$$
F=C_{1} \sqcup \cdots \sqcup C_{|\alpha|}
$$

into open sets such that C_{j} has height at least $\alpha(j)-1$. For notational uniformity, say that F has an ϵ-partition if $F=\varnothing$.
Remark 6.5. So an α-partition is an open partition in which the number and heights of the connected components are specified by α.
Lemma 6.6. A finite poset F has an α-partition if and only if $\alpha \leqslant \mathrm{c}(F)$.
Proof. Let $\beta:=\mathrm{c}(F)$, and write $\alpha=n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$. We may assume $\beta>\epsilon$. Then we can partition F into its connected components:

$$
F=\hat{C}_{1} \sqcup \cdots \sqcup \hat{C}_{|\beta|}
$$

such that \hat{C}_{j} has height $\beta(j)-1$. Take $\alpha \leqslant \beta$. We construct an α-partition $\left(C_{j}|j \leqslant|\alpha|)\right.$ in blocks. First, since $\alpha \leqslant \beta$, we have that $\beta\left(m_{1}\right) \geqslant n_{1}$. This means that each of $\hat{C}_{1}, \ldots, \hat{C}_{m_{1}}$ has height at least n_{1}. Let $C_{1}, \ldots, C_{m_{1}}$ be these components $\hat{C}_{1}, \ldots, \hat{C}_{m_{1}}$. Next, we have that $\beta\left(m_{1}+m_{2}\right) \geqslant n_{2}$, meaning that each of $\hat{C}_{m_{1}+1}, \ldots, \hat{C}_{m_{1}+m_{2}}$ has height at least n_{2}. Let $C_{m_{1}+1}, \ldots, C_{m_{1}+m_{2}}$ be these components. Continue constructing $\left(C_{j}|j \leqslant|\alpha|)\right.$ in this fashion. Note that we don't run out, since $|\alpha| \leqslant|\beta|$. Finally, take the remaining $|\beta|-|\alpha|$ components and add them to C_{1}.

Conversely, assume that $\left(C_{j}|j \leqslant|\alpha|)\right.$ is an α-partition of F. First note that since this is an open partition, we must have that $|\alpha| \leqslant|\mathfrak{C}(F)|=|\beta|$. Now consider C_{1}. Let:

$$
\Gamma:=\left\{l \leqslant|\beta|: \hat{C}_{l} \subseteq C_{1}\right\}
$$

Since C_{1} is open and closed, for each \hat{C}_{l}, either $\hat{C}_{l} \subseteq C_{1}$ or $\hat{C}_{l} \cap C_{1}=\varnothing$. Hence:

$$
C_{1}=\bigcup_{l \in \Gamma} \hat{C}_{l}
$$

Because each \hat{C}_{l} is upwards- and downwards-closed, this means that:

$$
\operatorname{height}\left(C_{1}\right)=\max \left\{\operatorname{height}\left(\hat{C}_{l}\right) \mid l \in \Gamma\right\}
$$

Therefore, as $\beta(1)$ is maximal in $\{\beta(j)|j \leqslant|\beta|\}$, we get that $\alpha(1) \leqslant \beta(1)$.
Applying this argument inductively on $F \backslash C_{1}$, we get that $\alpha \leqslant \beta=c(F)$.

Corollary 6.7. When F is connected, F has an α-partition if and only if $\alpha=k$, where $k \leqslant \operatorname{height}(F)+1$.

Let F be a poset and α be a signature. F is α-connected if there is no $x \in F$ such that there is an α-partition of $\Uparrow(x)$.
Remark 6.8. By Lemma 6.6, this is equivalent to requiring that $\alpha \nless \mathrm{c}(\Uparrow(x))$ for each $x \in F$.

We can now express the meaning of $\chi(\langle\alpha\rangle)$ on frames.
Proposition 6.9. For F a finite poset and α any signature, $F \vDash \chi(\langle\alpha\rangle)$ if and only if F is α-connected.

Proof. First label the elements of $\langle\alpha\rangle$ as in the proof of Proposition 6.2. Assume that $F \not \models \chi(\langle\alpha\rangle)$. Then by Corollary 2.17 there is a pointed up-reduction $f: F \rightarrow\langle\alpha\rangle$ with apex x. This means that $f^{-1}[\langle\alpha\rangle \backslash\{\perp\}]=\Uparrow(x)$. For each $j \leqslant|\alpha|$, let:

$$
C_{j}:=f^{-1}\{a(j, 1), \ldots, a(j, \alpha(j))\}
$$

Since $\{a(j, 1), \ldots, a(j, \alpha(j))\}$ is upwards-closed, so is C_{j}. Note that the C_{j} 's are disjoint. Hence $\left(C_{j} \mid j \leqslant k\right)$ is an open partition of $\Uparrow(x)$. Now, pick $x_{1} \in f^{-1}\{a(j, 1)\}$. Since f is a p-morphism, there is $x_{2} \in f^{-1}\{a(j, 2)\}$ with $x_{1}<x_{2}$. Continuing in this fashion, we find a chain of length $\alpha(j)$ in C_{j}, whence height $\left(C_{j}\right) \geqslant \alpha(j)-1$. But then $\left(C_{j} \mid j \leqslant k\right)$ is an α-partition of $\Uparrow(x)$, meaning that F is not α-connected.

Conversely, assume that F is not α-connected, so that there is $x \in F$ and an α partition $\left(C_{j} \mid j \leqslant k\right)$ of $\Uparrow(x)$. For each C_{j}, we have, by definition, that height $\left(C_{j}\right) \geqslant$ $\alpha(j)-1$. Hence by Proposition 2.19 there is a p-morphism $f_{j}: C_{j} \rightarrow\langle\alpha(j)-1\rangle$. Define $f: \uparrow(x) \rightarrow\langle\alpha\rangle$ as follows.

$$
y \mapsto \begin{cases}\perp & \text { if } y=x \\ f_{j}(y) & \text { if } y \in C_{j}\end{cases}
$$

Then f is a p-morphism, so an up-reduction $F \circ\langle\alpha\rangle$.
Remark 6.10. In particular it follows that $\mathbf{B D}_{n}=\mathbf{I P C}+\chi(\langle n+1\rangle)$. This is just Proposition 2.19 of course.

The last matter to resolve before moving on to consider the completeness of starlike logics is their number. For this we make use of Higman's Lemma. A quasi-well-order is a preorder which is well-founded and has no infinite antichain. Given a preorder I, let $I^{<\omega}$ be the set of finite sequences of elements of I ordered by $\left(x_{1}, \ldots, x_{n}\right) \leqslant\left(y_{1}, \ldots, y_{m}\right)$ if and only if there is $f:\{1, \ldots n\} \rightarrow\{1, \ldots, m\}$ injective such that for each $k \leqslant n$ we have $x_{k} \leqslant y_{f(k)}$.
Lemma 6.11 (Higma's Lemma, [higman52]). If I is a quasi-well-order then so is $I^{<\omega}$.
Proposition 6.12. There are exactly countably-many starlike logics.
Proof. It suffices to show that there is no infinite antichain of starlike trees with respect to p-morphic reduction. In light of Proposition 6.2, it therefore suffices to show that there is no infinite antichain of signatures with respect to the ordering defined on them. Now, we can recast signatures as (monotonic decreasing) finite sequences of integers. Indeed, the signature α is determined by the sequence ($\alpha(1), \ldots, \alpha(|\alpha|)$). In this way, the set of signatures is seen to be a suborder of $\omega^{<\omega}$. Now, (ω, \leqslant) is clearly a quasi-well-order, and hence by Higman's Lemma ??, so is $\omega^{<\omega}$. Thus there is no infinite antichain of signatures, as required.

6.3 Starlike completeness

The main theorem to be proved in this section is the following.
Theorem 6.13. Every starlike logic is polyhedrally-complete.
As an immediate consequence, we obtain:

Corollary 6.14. Scott's Logic is polyhedrally-complete.
Remark 6.15. The starlike logic $\operatorname{SFL}\left(2 \cdot 1,1^{3}\right)$ is particularly important geometrically. In [Ada+20], it is shown that this is the logic of all convex polyhedra.

In order to prove Theorem 6.11, we introduce the following new validity concept on frames. Let F be a poset and ϕ be a formula. F nerve-validates ϕ, notation $F \vDash_{\mathcal{N}} \phi$, if for every $k \in \mathbb{N}$ we have $\mathscr{N}^{k}(F) \vDash \phi$.
Remark 6.16. Since, as already remarked in Section 4.5, we always have the p-morphism $\max : \mathscr{N}(G) \rightarrow G$, for every G, by Proposition 2.3 this is equivalent to requiring that $\mathscr{N}^{k}(F) \vDash \phi$ for infinitely-many $k \in \mathbb{N}$.
Lemma 6.17. A logic \mathscr{L} is polyhedrally-complete if and only if it has the finite model property and every rooted finite frame of \mathscr{L} is the up-reduction of a poset which nervevalidates \mathscr{L}.

Proof. Assume that \mathscr{L} is polyhedrally-complete. Then by the Nerve Criterion 4.1 it is the logic of a class C of finite frames which is closed under \mathscr{N}, and so has the fmp. Then by Corollary 2.15, every finite rooted frame F of \mathscr{L} is the up-reduction of some $F^{\prime} \in \mathbf{C}$. Since $\mathbf{C} \subseteq \operatorname{Frames}(\mathscr{L})$ and is closed under \mathscr{N}, such an F^{\prime} nerve-validates \mathscr{L}.

Conversely, let \mathbf{C} be the class of all finite rooted frames which nerve-validate \mathscr{L}. Note that C is closed under \mathscr{N}. Further, clearly $\mathscr{L} \subseteq \operatorname{Logic}(\mathbf{C})$. To see the reverse inclusion, suppose that $\mathscr{L} \nvdash \phi$. Since \mathscr{L} has the fmp, there is $F \in$ Frames $_{\perp, \text { fin }}(\mathscr{L})$ such that $F \not \models \phi$. By assumption, F is the up-reduction of $F^{\prime} \in \mathbf{C}$. Then by Proposition 2.3, $F^{\prime} \not \models \phi$, meaning that $\operatorname{Logic}(\mathbf{C}) \nvdash \phi$.

Lemma 6.18. Every starlike logic has the finite model property.
Proof. In [Zak93, Corollary 0.11], Zakharyaschev shows that every logic axiomatised by the Jankov-Fine formulas of trees has the finite model property.

With Lemma 6.16, we can now use Lemma 6.15 to produce a proof of Theorem 6.11. Given a rooted finite frame F of $\operatorname{SFL}(\Lambda)$, we proceed as follows.
(1) We examine what it means for a frame to nerve-validate $\chi(\langle\alpha\rangle)$.
(2) We see that it can be assumed that F is graded (a structural property of posets defined below).
(3) Using this additional structure, we construct a frame F^{\prime} and the p-morphism $F^{\prime} \rightarrow F$, with the property that $F^{\prime} \vDash_{\mathcal{N}} \operatorname{SFL}(\Lambda)$
The reader will have noticed that the difork $\left\langle 1^{2}\right\rangle$ is omitted from the definition of a starlike logic, and consequently from the Main Theorem 6.11. In fact, polyhedral semantics is quite fond of this tree: when we take it as a forbidden configuration, the resulting landscape of polyhedrally-complete logics is as sparse as possible, as is shown below.

Proposition 6.19. Let \mathscr{L} be a polyhedrally-complete logic containing $\operatorname{SFL}\left(1^{2}\right)$. Then $\mathscr{L}=$ CPC, the maximum logic.

Proof. Suppose for a contradiction that \mathscr{L} is a polyhedrally-complete logic containing $\operatorname{SFL}\left(1^{2}\right)$ other than CPC. By the Nerve Criterion $4.1, \mathscr{L}=\operatorname{Logic}(\mathbf{C})$ where C is a class of finite posets closed under \mathscr{N}. Since $\mathscr{L} \neq \mathrm{CPC}$, there must be $F \in \mathrm{C}$ with height $(F) \geqslant 1$. This means that F has a chain $x_{0}<x_{1}$. As in the proof of Theorem 5.4, we may assume that x_{1} is a top element of F and that x_{0} is an immediate predecessor of x_{1}. Take X a maximal chain in $\Downarrow\left(x_{0}\right)$. Then, as in that proof, we obtain the following structure lying at the top of $\mathscr{N}(F)$.

Applying the nerve once more, we obtain the following structure at the top of $\mathscr{N}^{2}(F)$.

Since \mathbf{C} is closed under \mathscr{N}, we get that $\mathscr{N}^{2}(F) \in \operatorname{Frames}(\mathscr{L})$. But $\Uparrow(Z)$ maps p-morphically onto $\left\langle 1^{2}\right\rangle$, contradicting that $\mathscr{L} \vdash \chi\left(\left\langle 1^{2}\right\rangle\right)$. $\{$

6.4 Nerve-validation

While validating $\chi(\langle\alpha\rangle)$ corresponds to α-connectedness (as shown in Proposition 6.9), nerve-validating $\chi(\langle\alpha\rangle)$ corresponds to α-nerve-connectedness. Let F be a poset and $x<y$ in F. The diamond and strict diamond of x and y are defined, respectively:

$$
\begin{gathered}
\mathfrak{\downarrow}(x, y):=\uparrow(x) \cap \downarrow(y) \\
\mathfrak{N}(x, y):=\mathfrak{\imath}(x, y) \backslash\{x, y\}
\end{gathered}
$$

A poset F is α-diamond-connected if there are no $x<y$ in F such that there is an α-partition of $\mathbb{N}(x, y)$. The poset F is α-nerve-connected if it is α-connected and α-diamond-connected.

With a slight conceptual change, α-connectedness and α-diamond-connectedness can be harmonised as follows. For any poset F, we take a new element ∞, and let $\check{F}:=F \cup\{\infty\}$, where ∞ lies above every element of F. Then F is α-nerve-connected if and only if there are no $x<y$ in \check{F} for which there is an α-partition of $\mathbb{N}(x, y)$.
Theorem 6.20. Let F be a finite poset and take $\alpha \in \mathscr{S}$. Then $F \vDash_{\mathcal{N}} \chi(\langle\alpha\rangle)$ if and only if F is α-nerve-connected.

Proof. Assume that F is not α-nerve-connected with the aim of showing $F \not \nvdash \mathcal{N} \chi(\langle\alpha\rangle)$. Choose $x<y$ in \check{F} such that $\mathfrak{N}(x, y)$ has an α-partition. That is, there is an open partition $\left(C_{j}|j \leqslant|\alpha|)\right.$ of $\mathbb{N}(x, y)$ such that height $\left(C_{j}\right)=\alpha(j)$. Choose a chain $X \subseteq$ F which is maximal with respect to (i) $x, y \in X$ (ignoring the case $y=\infty$), and (ii) $X \cap \mathfrak{N}(x, y)=\varnothing$. I will show that $\Uparrow(X)^{\mathcal{N}(F)}$ has an α-partition. Note that by maximality of X, elements $Y \in \Uparrow(X)^{\mathcal{N (F)}}$ are determined by their intersection $Y \cap$ $\mathbb{I}(x, y)$. For $j \leqslant|\alpha|$, let:

$$
\widehat{C}_{j}:=\left\{Y \in \Uparrow(X)^{\mathscr{N}(F)} \mid Y \cap C_{j} \neq \varnothing\right\}
$$

Take $j, l \leqslant|\alpha|$ distinct. Since both C_{j} and C_{l} are upwards- and downwards-closed in $\mathbb{N}(x, y)$, there is no chain $Y \in \Uparrow(X)^{\mathscr{X (F)}}$ such that $Y \cap C_{j} \neq \varnothing$ and $Y \cap C_{l} \neq \varnothing$. This means that:
(1) \widehat{C}_{j} and \widehat{C}_{l} are disjoint.
(2) For any $Y \in \Uparrow(X)^{\mathcal{H}(F)}$ we have $Y \in \widehat{C}_{j}$ if and only if $Y \cap \Uparrow \mathbb{N}(x, y) \subseteq C_{j}$. Hence each \widehat{C}_{j} is upwards- and downwards-closed in $\Uparrow(X)^{\mathscr{N (F)}}$.
Furthermore, since $\left(C_{j}|j \leqslant|\alpha|)\right.$ covers $\hat{\mathbb{H}}(x, y)$, we get that $\left(\widehat{C}_{j}|j \leqslant|\alpha|)\right.$ covers $\Uparrow(X)^{\mathcal{N}(F)}$. Finally, any maximal chain in \widehat{C}_{j} is a sequence of chains $Y_{0} \subset \cdots \subset Y_{l}$ such that $\left|Y_{i+1} \backslash Y_{i}\right|=1$; this then corresponds to a maximal chain in C_{j}. Therefore:

$$
\operatorname{height}\left(\widehat{C}_{j}\right)=\operatorname{height}\left(C_{j}\right)
$$

$\operatorname{Ergo}\left(\widehat{C}_{j}|j \leqslant|\alpha|)\right.$ is an α-partition of $\Uparrow(X)^{\mathcal{N}(F)}$, meaning that $\mathscr{N}(F)$ is not α-connected. Then, by Proposition 6.9, $\mathscr{N}(F) \not \models \chi(\langle\alpha\rangle)$, hence by definition $F \nvdash_{\mathcal{N}} \chi(\langle\alpha\rangle)$.

For the converse direction, we will show that if F is α-nerve-connected, then so is $\mathscr{N}(F)$, which will give the result by induction (note that α-nerve-connectedness is

Figure 4: The set-up when X has more than one gap
stronger than α-connectedness, and hence by Proposition 6.9 if $\mathscr{N}^{k}(F)$ is α-nerveconnected then $\mathcal{N}^{k}(F) \vDash \chi(\langle\alpha\rangle)$). So assume that F is α-nerve-connected. We will first prove α-connectedness. Take $X \in \mathscr{N}(F)$ with the aim of showing that $\Uparrow(X)^{\mathcal{N (F}(F)}$ has no α-partition.

Firstly, assume that X has more than one 'gap'; that is, there are distinct $w_{1}, w_{2} \in$ $F \backslash X$ such that $X \cup\left\{w_{1}\right\}$ and $X \cup\left\{w_{2}\right\}$ are still chains, but such that there exists $z \in X$ with $w_{1}<z<w_{2}$. Take $Y, Z \in \Uparrow(X)^{\mathscr{N}(F)}$. We will use the two gaps to juggle elements between the two sets so as to provide a path $Y \rightsquigarrow Z$ which never touches X (i.e. lies in $\left.\Uparrow(X)^{\mathcal{N (F)}}\right)$. For $i \in\{1,2\}$, let $u_{i} \in X \cap \Downarrow\left(w_{i}\right)$ be greatest and $v_{i} \in X \cap \Uparrow\left(w_{i}\right)$ be least. See Figure 4 for a representation of the situation. Now, without loss of generality, we may assume that $Y \cap \mathbb{N}\left(u_{1}, v_{1}\right) \neq \varnothing$ (we may add w_{1} to Y, noting that $w_{1} \in \mathbb{1}\left(u_{1}, v_{1}\right)$). Similarly, we may assume that $Y \cap \hat{N}\left(u_{2}, v_{2}\right) \neq \varnothing$, and likewise for Z. We then have the following path in $\Uparrow(X)^{\mathscr{N}(F)}$ (note that some of the sets along the path may be equal, but in all cases the path is still there):

Here, the gap $\mathbb{N}\left(u_{2}, v_{2}\right)$ is used ensure that $Y \backslash \mathbb{I}\left(u_{1}, v_{1}\right)$ and $Z \backslash \mathbb{I}\left(u_{1}, v_{1}\right)$ are not equal to X, and the fact that we have $v_{1} \leqslant z \leqslant u_{2}$ ensures that all these sets are indeed in $\mathscr{N}(F)$. Hence, $\Uparrow(X)^{\mathcal{N}(F)}$ is path-connected so connected. Therefore, by Corollary 6.7, it suffices to show that height $\left(\Uparrow(X)^{\mathcal{H}(F)}\right)<$ height (F). But this is immediate from the definition of \mathscr{N}.

Hence we may assume that X has exactly one gap (when X has no gaps, $\Uparrow(X)^{\mathcal{H}(F)}=$ $\varnothing)$. This means that there are $x, y \in X$ with $x<y$ such that $X \cap \hat{\mathbb{y}}(x, y)=\varnothing$ and X is maximal outside of $\mathbb{1}(x, y)$. As before then, elements $Y \in \Uparrow(X)^{\mathcal{H C}(F)}$ are determined by their intersection $Y \cap \hat{v}(x, y)$. Suppose that $\Uparrow(X)^{\mathcal{N (F)}}$ has an α-partition $\left(\widehat{C}_{j}|j \leqslant|\alpha|)\right.$. For each $j \leqslant|\alpha|$, let:

$$
C_{j}:=\bigcup \widehat{C}_{j} \cap \hat{\mathbb{N}}(x, y)
$$

Note that $\bigcup_{j \leqslant|\alpha|} C_{j}=\mathbb{N}(x, y)$. For each $j \leqslant|\alpha|$, since \widehat{C}_{j} is downwards-closed, we have that, for $z \in \mathbb{I}(x, y)$:

$$
z \in C_{j} \quad \Leftrightarrow \quad \exists Y \in \widehat{C}_{j}: z \in Y \quad \Leftrightarrow \quad X \cup\{z\} \in \widehat{C}_{j}
$$

This means in particular that the C_{j} 's are pairwise disjoint. Further, if $z \in C_{j}$ and $w \in \mathbb{N}(x, y)$ with $w<z$, then $X \cup\{w, z\}$ is a chain, and so as \widehat{C}_{j} is upwards-closed, we have $X \cup\{w, z\} \in \widehat{C}_{j}$, meaning that $w \in C_{j}$; similarly when $w>z$. Whence each C_{j} is upwards- and downwards-closed. Finally, as above, maximal chains in \widehat{C}_{j} correspond to maximal chains in C_{j} of the same length, whence:

$$
\operatorname{height}\left(\widehat{C}_{j}\right)=\operatorname{height}\left(C_{j}\right)
$$

But then $\left(C_{j}|j \leqslant|\alpha|)\right.$ is an α-partition of $\mathbb{t}(x, y)$, contradicting the fact that F is α-nerve-connected. \&

This shows that $\mathscr{N}(F)$ is α-connected. What about α-diamond-connectedness? In fact we can show this without using any assumptions on F. Take $X, Y \in \mathscr{N}(F)$ with $X \subset Y$ We will show that $\mathbb{1}(X, Y)^{\mathscr{N}(F)}$ has no α-partition. We may assume that $|Y \backslash X| \geqslant$ 2, otherwise $\mathfrak{N}(X, Y)^{\mathcal{N}(F)}=\varnothing$. Note that this means in particular that $\alpha>1$, since F is α-connected. If $|Y \backslash X|=2$, then $\mathfrak{N}(X, Y)^{\mathcal{N}(F)}$ is the antichain on two elements, which, since $\alpha \neq 1^{2}$ by assumption, has no α-partition. So assume that $|Y \backslash X| \geqslant 3$; we will show that in fact $\hat{\mathbb{V}}(X, Y)^{\mathcal{N (}(F)}$ is connected. Take distinct $Z, W \in \widehat{\mathbb{N}}(X, Y)^{\mathscr{N}(F)}$. Choose $z \in Z \backslash X$ and $w \in W \backslash X$. Since $|Y \backslash X| \geqslant 3$, we have that $X \cup\{z, w\} \in \mathbb{I}(X, Y)^{\mathscr{N (F})}$. Hence the following is a path in $\mathfrak{N}(X, Y)^{\mathcal{N}(F)}$:

Therefore, $\mathbb{N}(X, Y)^{\mathcal{N}(F)}$ is connected. Finally, note that:

$$
\operatorname{height}\left(\mathbb{N}(X, Y)^{\mathscr{N}(F)}\right) \leqslant \operatorname{height}(\mathscr{N}(F))=\operatorname{height}(F)
$$

Remark 6.21. Note that the proof shows an interesting property of the formulas $\chi(\langle\alpha\rangle)$: we have $F \vDash_{\mathcal{N}} \chi(\langle\alpha\rangle)$ if and only if $\mathscr{N}(F) \vDash \chi(\langle\alpha\rangle)$. This is not true in general. For example, formulas expressing bounded width can take many iterations of the nerve construction to become falsified.

6.5 Graded posets

The next step is to show that we can put $F \in \operatorname{Frames}_{\perp, \text { fin }}(\mathbf{S F L}(\Lambda))$ into a special form. The following definition comes from combinatorics (see e.g. [Sta97, p. 99]).
Definition 6.22 (Graded poset). A rank function on a poset F is a map $\rho: F \rightarrow \mathbb{N}$ such that:
(i) whenever x is minimal in F, we have $\rho(x)=0$,
(ii) whenever y is the immediate successor of x, we have $\rho(y)=\rho(x)+1$.

If F is non-empty and has a rank function, then it is graded.
The notion of gradedness has a strong visual connection. When a poset is graded, we can draw it out in well-defined layers such that any element's immediate successors lie entirely in the next layer up.

Proposition 6.23. Let F be a finite poset.
(1) F is graded if and only if for every $x \in F$, all maximal chains in $\downarrow(x)$ have the same length.
(2) When F is graded, $\rho(x)=\operatorname{height}(x)$ for every $x \in F$, and height $(F)=\max \rho[F]$.
(3) Rank functions, when they exist, are unique.

Proof. (1) See [Sta97, p. 99]. Assume that F is graded, and take X a maximal chain in $\downarrow(x)$ for some $x \in F$. Let $k=\rho(x)$ We will show that $|X|=k+1$. Since X is a chain, the ranks of each of its elements are distinct. Since X is maximal, $x \in X$. Suppose for a contradiction that there is $j<k$ such that there is no $x \in X$ of rank j. We may assume that j is minimal with this property. We can't have $j=0$, since otherwise X wouldn't contain any minimal element, so wouldn't be a maximal chain. Hence, there is $y \in X$ with $\rho(y)=j-1$. Let z be next in X after y. Then y has an immediate successor w such that $w \leqslant z$. By definition, $\rho(w)=j$, so $w \notin X$. But $X \cup\{w\}$ is a chain, contradicting the maximality of X. \& Therefore, $|X|=k+1$.
Conversely, define $\rho: F \rightarrow \mathbb{N}$ by:

$$
x \mapsto \operatorname{height}(x)
$$

Let us check that ρ is a rank function. (i) Clearly, when x is minimal, $\rho(x)=0$. (ii) Suppose for a contradiction that there are $x, y \in F$, with y an immediate successor of x, such that $\rho(y) \neq \rho(x)+1$. First, by definition, $\rho(y)>\rho(x)$, so we must have $\rho(y)>\rho(x)+1$. Choose maximal chains $X \subseteq \downarrow(x), Y \subseteq \downarrow(y)$. Note that by assumption:

$$
|Y|>|X|+1
$$

But now, since y is an immediate successor of x, both $X \cup\{y\}$ and Y are maximal chains in $\downarrow(y)$ of different heights. \&
(2) This follows from the proof of (1).
(3) This follows from (2).

Corollary 6.24. (1) Every tree is graded.
(2) For any finite poset F, its nerve $\mathscr{N}(F)$ is graded, with rank function given by $\rho(X)=$ $|X|-1$.
Proof. For (2), note that for any $X \in \mathscr{N}(F)$ we have height $(X)=|X|-1$.

6.6 Gradification in the presence of Scott's tree

The task now is, given a finite rooted frame F of $\operatorname{SFL}(\Lambda)$, to find a finite graded rooted frame F^{\prime} of $\operatorname{SFL}(\Lambda)$ and a p-morphism $f: F^{\prime} \rightarrow F$. We will do this using two different methods, depending on whether or not we have Scott's tree $\langle 2 \cdot 1\rangle$ present. Let us first consider the case $2 \cdot 1 \in \Lambda$. The following lemmas show us that this case is not too complicated.
Lemma 6.25. Take $\Lambda \subseteq \mathscr{S}$ such that $2 \cdot 1 \in \Lambda$ but $n \notin \Lambda$ for any $n \in \mathbb{N}$.
(1) If there is no $k \in \mathbb{N}^{>0}$ such that $1^{k} \in \Lambda$, then $\operatorname{SFL}(\Lambda)=\operatorname{SFL}(2 \cdot 1)$.
(2) Otherwise, let $k \in \mathbb{N}^{>0}$ be minimal such that $1^{k} \in \Lambda$. Then $\operatorname{SFL}(\Lambda)=\operatorname{SFL}\left(2 \cdot 1,1^{k}\right)$.

Proof. (1) Take $\alpha \in \Lambda$. Then by assumption $\alpha(1) \geqslant 2$, hence, as $\alpha \neq n$, we have $2 \cdot 1 \leqslant \alpha$. Then by Proposition 6.2 there is a p-morphism $\langle\alpha\rangle \rightarrow\langle 2 \cdot 1\rangle$. Hence by the semantic meaning of Jankov-Fine formulas, Theorem 2.14, we have that any frame validating $\chi(\langle 2 \cdot 1\rangle)$ will also validate $\chi(\langle\alpha\rangle)$. This means that $\operatorname{SFL}(\Lambda) \subseteq$ $\mathrm{SFL}(2 \cdot 1)$. The converse direction is immediate.
(2) Take $\alpha \in \Lambda$. If $\alpha(1) \geqslant 2$ then by Proposition 6.2 there is a p-morphism $\langle\alpha\rangle \rightarrow$ $\langle 2 \cdot 1\rangle$. If $\alpha(1)<2$. Since $\alpha \neq \epsilon$, we have $\alpha(1)=1$, meaning that $\alpha=1^{l}$ for some $l \in \mathbb{N}^{>0}$. By assumption $k \leqslant l$. But then $1^{k} \leqslant \alpha$, giving that there is a p-morphism $\langle\alpha\rangle \rightarrow\left\langle 1^{k}\right\rangle$. It follows that for any $\alpha \in \Lambda,\langle\alpha\rangle$ up-reduces to either $\langle 2 \cdot 1\rangle$ or $\left\langle 1^{k}\right\rangle$. By Theorem 2.14, any frame validating $\chi(\langle 2 \cdot 1\rangle)$ and $\chi\left(\left\langle 1^{k}\right\rangle\right)$ will also validate $\chi(\langle\alpha\rangle)$. This implies that $\operatorname{SFL}(\Lambda) \subseteq \operatorname{SFL}\left(2 \cdot 1,1^{k}\right)$. The converse direction is obvious.

Corollary 6.26. Take $\Lambda \subseteq \mathscr{S}$ such that $2 \cdot 1 \in \Lambda$ and there is $n \in \mathbb{N}$ with $n \in \Lambda$; assume that n is the minimal such natural number.
(1) If there is no $k \in \mathbb{N}^{>0}$ such that $1^{k} \in \Lambda$, then $\operatorname{SFL}(\Lambda)=\operatorname{SFL}(n, 2 \cdot 1)$.
(2) Otherwise, let $k \in \mathbb{N}^{>0}$ be minimal with $1^{k} \in \Lambda$. Then $\operatorname{SFL}(\Lambda)=\operatorname{SFL}\left(n, 2 \cdot 1,1^{k}\right)$.

Proof. This follows from Lemma 6.23 and the fact that when $n_{1}<n_{2}$ every frame validating $\chi\left(\left\langle n_{1}\right\rangle\right)$ also validates $\chi\left(\left\langle n_{2}\right\rangle\right)$.

Using this, the 'meaning' of $\operatorname{SFL}(\Lambda)$ can be expressed relatively simply. Note that this meaning is expressed in terms of the depth of elements $x \in F$. Up until this point we have mainly been concerned with the height of elements.
Lemma 6.27. Take $\Lambda \subseteq \mathscr{S}$ such that $2 \cdot 1 \in \Lambda$, and let F be a finite poset. Let $n \in \mathbb{N}$ be minimal such that $n \in \Lambda$, or ∞ if no such signature is present. Similarly, let $k \in \mathbb{N}^{>0}$ be minimal with $1^{k} \in \Lambda$, or ∞. Then $F \vDash \operatorname{SFL}(\Lambda)$ if and only if the following three conditions are satisfied for every $x \in F$.
(i) We have height $(F)<n$.
(ii) Whenever $\operatorname{depth}(x)=1$, we have $|\Uparrow(x)|<k$.
(iii) Whenever $\operatorname{depth}(x)>1$, the set $\uparrow(x)$ is connected.

Proof. By Corollary 6.24 and the fact that $F \vDash \chi(\langle n\rangle)$ if and only if height $(F) \leqslant n-1$, it suffices to treat the case $n=\infty$. Now by Lemma $6.23, \operatorname{SFL}(\Lambda)=\operatorname{SFL}\left(2 \cdot 1,1^{k}\right)$ when $k<\infty$, and $\operatorname{SFL}(\Lambda)=\operatorname{SFL}(2 \cdot 1)$ otherwise.

Assume that $F \vDash \operatorname{SFL}(\Lambda)$. (ii) In the case $k<\infty$, take $x \in F$ with depth $(x)=1$. Note that $\Uparrow(x)$ is an antichain, so $(\{y\} \mid y \in \Uparrow(x))$ is an open partition of $\Uparrow(x)$. Since $x \vDash \chi\left(\left\langle 1^{k}\right\rangle\right)$, by Lemma 6.6 and Proposition 6.9 we must have $|\Uparrow(x)|<k$. (iii) Now take $x \in F$ with $\operatorname{depth}(x)>1$, and suppose for a contradiction that $\Uparrow(x)$ is disconnected. Then we can partition $\Uparrow(x)$ into disjoint upwards-closed sets U, V. Since depth $(x)>1$, one of U and V (say U) must have height at least 1 . But then (U, V) is a $(2 \cdot 1)$-partition of $\Uparrow(x)$, contradicting that $F \vDash \chi(\langle 2 \cdot 1\rangle)$ by Proposition 6.9. \&

Conversely, assume that $F \not \models \operatorname{SFL}(\Lambda)$ We will show that one of (ii) and (iii) is violated. If $F \not \models \chi(\langle 2 \cdot 1\rangle)$, then by Proposition 6.9 there is $x \in F$ and a (2•1)-partition (U, V) of $\Uparrow(x)$. But then height $(U) \geqslant 1$, meaning that depth $(x)>1$, and furthermore $\Uparrow(x)$ is disconnected, violating (iii). So let us assume that $k<\infty$, that $F \vDash \chi(\langle 2 \cdot 1\rangle)$ but that $F \not \models \chi\left(\left\langle 1^{k}\right\rangle\right)$. Again, we get $x \in F$ and a 1^{k}-partition $\left(C_{1}, \ldots, C_{k}\right)$ of $\Uparrow(x)$. We must have that height $\left(C_{1}\right)=0$, otherwise $\left(C_{1}, C_{2} \cup \cdots \cup C_{k}\right)$ is a (2•1)-partition of $\Uparrow(x)$. Similarly height $\left(C_{i}\right)=0$ for every $i \leqslant k$. This means that depth $(x)=1$, and that $|\Uparrow(x)| \geqslant k$, violating (ii).

Theorem 6.28. Let $\Lambda \subseteq \mathscr{S}$ be such that $2 \cdot 1 \in \Lambda$. Let F be a finite rooted poset such that $F \vDash \operatorname{SFL}(\Lambda)$. Then there is a finite graded rooted poset F^{\prime} and a p-morphism $f: F^{\prime} \rightarrow F$ such that $F^{\prime}=\mathbf{S F L}(\Lambda)$.

This is the the 'gradification' theorem. Let us outline the construction before coming to the full proof.

- We first split F up into its tree unravelling $\mathscr{T}(F)$.
- We then lengthen branches so that the tree has a uniform height.
- Lastly, we join top nodes of this tree in order to recover any α-connectedness that we lost.

See Figure 5 for an example of this process.
Proof. Let $n:=\operatorname{height}(F)$. We may assume $\epsilon \notin \Lambda$. If $2 \in \Lambda$, then by Remark 6.10, $n \leqslant 1$, so F is already graded. So assume that $2 \notin \Lambda$.

Start with the tree unravelling $T=\mathscr{T}(F)$ of F. Form a new tree T_{0} by replacing each top node $t \in \operatorname{Top}(T)$ with a chain of new elements $t^{*}(0), \ldots, t^{*}\left(m_{t}\right)$, where

Figure 5: An example of gradification in the presence of Scott's tree
$m_{t}=n-\operatorname{height}(t)$. The relations between these new elements and the rest of T is as follows:

$$
\begin{gathered}
t^{*}(0)<\cdots<t^{*}\left(m_{t}\right), \\
x<t^{*}(0) \Leftrightarrow \quad \Leftrightarrow \quad \forall x \in t
\end{gathered}
$$

Note that in T_{0} all branches have the same length $n+1$. Define the p-morphism $g: T_{0} \rightarrow T$ by:

$$
x \mapsto \begin{cases}x & \text { if } x \in \operatorname{Trunk}(T), \\ \operatorname{last}(t) & \text { if } x=t^{*}(i) \text { for some } t \in \operatorname{Top}(T) \text { and } i \leqslant m_{t}\end{cases}
$$

Form F^{\prime} from T_{0} by identifying, for top nodes $t, s \in \operatorname{Top}(T)$, the elements $t^{*}\left(m_{t}\right)$ and $s^{*}\left(m_{s}\right)$ whenever last $(t)=\operatorname{last}(s)$. That is, let $F^{\prime}:=T_{0} / \mathscr{W}$, where:

$$
\mathscr{W}:=\left\{\left\{t^{*}\left(m_{t}\right) \mid \operatorname{last}(t)=u\right\} \mid u \in \operatorname{Top}(F)\right\}
$$

Note that we have a p-morphism $f=$ last $\circ g \circ q_{\mathscr{W}}: F^{\prime} \rightarrow F$. Furthermore, F is clearly finite and rooted. As to gradedness, take $x \in F^{\prime}$ with the aim of showing that all maximal chains in $\downarrow(x)$ are of the same length, utilising Proposition 6.21. If $x \in \operatorname{Trunk}\left(F^{\prime}\right)$, then $\downarrow(x)^{F^{\prime}}$ is a linear order. So assume that $x \in \operatorname{Top}\left(F^{\prime}\right)$. Then any maximal chain X in $\downarrow(x)$ corresponds to a branch of T_{0}, and therefore has length $n+1$.

Let us now use Lemma 6.25 to verify that our construction preserves α-connectedness for $\alpha \in \Lambda$ and complete the proof. Let $k \in \mathbb{N}^{>0}$ be minimal such that $1^{k} \in \Lambda$, or ∞ if no such signature is present. For $u \in \operatorname{Top}(F)$ let \widehat{u} be the equivalence class of those elements $t^{*}\left(m_{t}\right)$ such that $\operatorname{last}(t)=u$. Note that by construction, for $x \in \operatorname{Trunk}(T)$ and $u \in \operatorname{Top}(F)$:

$$
x<\widehat{u} \Leftrightarrow \operatorname{last}(x)<u
$$

We need to check the three conditions of Lemma 6.25.
(i) Note that height $\left(F^{\prime}\right)=\operatorname{height}(F)$.
(ii) For any $x \in F^{\prime}$ with $\operatorname{depth}(x)=1$, either $x \in \operatorname{Trunk}(T)$ or $x=t^{*}\left(n_{t}-1\right)$ for some top node $t \in T$. In the former case, the fact that $|\Uparrow(x)| \leqslant k$ follows from (\star) and the fact that $\left|\Uparrow(\operatorname{last}(x))^{F}\right| \leqslant k$. In the latter case we have $\Uparrow(x)=\{\widehat{\operatorname{last}(t)}\}$.
(iii) Similarly, for any $x \in F^{\prime}$ with $\operatorname{depth}(x)>1$, either $x \in \operatorname{Trunk}(T)$ or $x=t^{*}(r)$ for some top node $t \in T$ and $r<n_{t}-1$. In the latter case, $\Uparrow(x)$ is a chain, so connected. For the former case, it suffices to show that any two top elements $\widehat{u}, \widehat{v} \in \Uparrow(x)$ are connected by a path in $\Uparrow(x)$. Note that depth $(\operatorname{last}(x))^{F}>1$. Now, since $F \vDash \chi(\langle 2 \cdot 1\rangle)$, by Lemma 6.25 there is a path $u \rightsquigarrow v$ in $\Uparrow(\operatorname{last}(x))^{F}$. We may assume that this path is of form given in Figure 6 (a), where w_{0}, \ldots, w_{k} are top nodes in F. Using (\star), this path then translates into a path $\widehat{u} \rightsquigarrow \widehat{v}$ as in Figure 6 (b), where $y_{i} \in \operatorname{last}^{-1}\left\{a_{i}\right\} \cap \Uparrow(x)$ for each i.
(a)

(b)

Figure 6: The form of the paths in $\Uparrow(\operatorname{last}(x))^{F}$ and $\Uparrow(x)^{F^{\prime}}$

Figure 7: The technique in the proof of Theorem 6.26 does not work in general

6.7 Gradification without Scott's tree

Now that the situation $2 \cdot 1 \in \Lambda$ has been dealt with, let us turn to the case $2 \cdot 1 \notin \Lambda$. Unfortunately, the proof of Theorem 6.26 crucially relied on the fact that the original frame F was $(2 \cdot 1)$-connected. Consider for instance the frame F given in Figure 7, which at x is not $(2 \cdot 1)$-connected. If we apply the construction to F, we end up with a frame F^{\prime} in which x sits below two connected components of height 1 , that is, $c\left(\Uparrow(x)^{F^{\prime}}\right)=2^{2} .{ }^{3}$ Hence F^{\prime} is not 2^{2}-connected, while F is. Taking $2 \cdot 1$ away from Λ is a double-edged sword however, since it allows for more complex constructions in F^{\prime}.

The following reusable lemma will come in handy a couple of times.
Lemma 6.29. Let $f: F^{\prime} \rightarrow F$ be a surjective p-morphism between finite posets, and take $x \in F^{\prime}$. Assume that for any $y, z \in \operatorname{Succ}(x)$ there is a path $y \rightsquigarrow z$ in $\Uparrow(x)$ whenever there is a path $f(y) \rightsquigarrow f(z)$ in $\Uparrow(f(x))$. Then:

$$
\mathfrak{C}(\Uparrow(x))=\left\{f^{-1}[C] \mid C \in \mathfrak{C}(\Uparrow(f(x)))\right\}
$$

In particular, if height $\left(f^{-1}[C]\right)=\operatorname{height}(C)$ for any $C \in \mathfrak{C}(\Uparrow(f(x)))$ then:

$$
c(\Uparrow(x))=c(\Uparrow(f(x))
$$

Proof. Note that, since f is a p-morphism and F and F^{\prime} are finite, $\left\{f^{-1}[C] \mid C \in\right.$ $\mathfrak{C}(\Uparrow(f(x)))\}$ is a partition of $\Uparrow(x)$ into upwards- and downwards-closed sets. So it suffices to show that $f^{-1}[C]$ is connected for every $C \in \mathfrak{C}(\Uparrow(f(x)))$. Take $y_{0}, z_{0} \in$ $f^{-1}[C]$. Since $f^{-1}[C]$ is downwards-closed in $\Uparrow(x)$, there are $y, z \in \operatorname{Succ}(x) \cap f^{-1}[C]$ such that $y \leqslant y_{0}$ and $z \leqslant z_{0}$. Then $f(y), f(z) \in C$, so by assumption there is a path $f(y) \rightsquigarrow f(z)$ in $\Uparrow(f(x))$. But then by assumption there is a path $y \rightsquigarrow z$ in $\Uparrow(x)$, which lies in $f^{-1}[C]$ since the latter is upwards- and downwards-closed.
Theorem 6.30. Let $\Lambda \subseteq \mathscr{S}$ be such that $2 \cdot 1 \notin \Lambda$. Let F be a finite rooted poset such that $F \vDash \operatorname{SFL}(\Lambda)$. Then there is a finite graded rooted poset F^{\prime} and a p-morphism $f: F^{\prime} \rightarrow F$ such that $F^{\prime} \vDash \operatorname{SFL}(\Lambda)$.
The construction works in two steps as follows (see Figure 8 for an example).

- Again, we start by splitting F up into its tree unravelling $\mathscr{T}(F)$.

[^2]

Figure 8: An example of gradification in the absence of Scott's tree.

Figure 9: The relations between the zigzag points in case $l=3$.

- Then, in order to connect the frame back up again while ensuring that it remains graded, we construct 'zigzag roller-coasters' connecting top nodes of different heights.

Proof of Theorem 6.28. As in the proof of Theorem 6.26, we may assume that $\epsilon, 1,2 \notin$ Λ.

Start with $T=\mathscr{T}(F)$. For every two distinct $p, q \in \operatorname{Top}(T)$ such that $\operatorname{last}(p)=$ $\operatorname{last}(q)=t$, we will build a 'roller-coaster' structure $Z(p, q)$, which will furnish a bridge between p and q. Every such structure $Z(p, q)$ is independent, so that they can all be added to T at the same time. First note that by Corollary $6.22, T$ is graded; let $\rho: T \rightarrow \mathbb{N}$ be its rank function.

Now, take distinct $p, q \in \operatorname{Top}(T)$ such that $\operatorname{last}(p)=\operatorname{last}(q)=t$. Let $l:=\rho(q)-$ $\rho(p)$. By swapping p and q, we may assume that $l \geqslant 0$. We will join p and q with a zigzagging path, which consists of lower points a_{0}, \ldots, a_{l}, upper points b_{0}, \ldots, b_{l-1} and intermediate points c_{0}, \ldots, c_{l-1}. The relations between these points are as follows (see Figure 9).

$$
a_{i}<c_{i}<b_{i}, \quad a_{i+1}<b_{i}
$$

Consider $p \wedge q$ (i.e. the intersection of p and q, regarded as strict chains containing the root), and let $k:=\rho(p)-\rho(p \wedge q)-1$. Note that $k \geqslant 0$ since p and q are incomparable. Moreover, $k \geqslant 1$. Indeed, suppose for a contradiction that $k=0$, so that p is an immediate successor of $p \wedge q$. Then last (p) is an immediate successor of last $(p \wedge q)$. But last $(q)=\operatorname{last}(p)$, so we have, as strict chains:

$$
p=(p \wedge q) \cup\{\operatorname{last}(p)\}=(p \wedge q) \cup\{\operatorname{last}(q)\}=q
$$

contradicting that p and q are distinct. \&
To ensure that the new poset F^{\prime} is still graded, we need to dangle some scaffolding down from the zigzag path to $p \wedge q$. Below each lower point a_{i} we will dangle a chain of $k+i-1$ points $d(i, 1), \ldots, d(i, k+i-1)$. The relations are as follows:

$$
d(i, 1)<d(i, 2)<\cdots<d(i, k+i-1)<a_{i}
$$

Figure 10: The zigzag path and the ladder structure in place.

Finally, let $\mathrm{Z}(p, q)$ denote the whole structure of the zigzag path plus the dangling scaffolding. Attach $\mathrm{Z}(p, q)$ to T by adding the following relations and closing under transitivity (see Figure 10).

$$
a_{0}<p, \quad a_{l}<q, \quad \forall i: p \wedge q<d(i, 1)
$$

Let F^{\prime} be the result of adding $\mathrm{Z}(p, q)$ to T for every pair p, q, and define the function $f: F^{\prime} \rightarrow F$ by:

$$
f(x):= \begin{cases}\operatorname{last}(x) & \text { if } x \in T \\ \operatorname{last}(p) & \text { if } x \in Z(p, q) \text { for some } p, q\end{cases}
$$

First, let us see that f is a p-morphism. The (Forth) condition follows from the fact that last is monotonic, and that:

- if $x \leqslant y$ with $x \in T$ and $y \in Z(p, q)$, then by construction $x \leqslant p \wedge q$, meaning that $f(x)=\operatorname{last}(x) \leqslant \operatorname{last}(p \wedge q) \leqslant \operatorname{last}(p)=f(y)$, and
- if $x \leqslant y$ with $x \in Z(p, q)$ and $y \in T$, then by construction $y \in\{p, q\}$, so that $f(x)=\operatorname{last}(p)=f(y)$.
The (Back) condition follows from the fact that last is open, and that each $Z(p, q)$ maps to a top node.

Second, for any pair p, q, we can extend the rank function ρ to the new structure $\mathrm{Z}(p, q)$ as follows (as indicated by the heights of the nodes in Figure 10):

$$
\begin{gathered}
\rho\left(a_{i}\right)=\rho(p)+i-1 \\
\rho\left(b_{i}\right)=\rho(p)+i+1 \\
\rho\left(c_{i}\right)=\rho(p)+i \\
\rho(d(i, j))=\rho(p \wedge q)+j
\end{gathered}
$$

To see that, thus extended, ρ is still a rank function, it suffices to check that the newlyranked $Z(p, q)$ fits into T as a ranked structure. That is, we need to check the following equations.

$$
\begin{gathered}
\rho(p)=\rho\left(a_{0}\right)+1 \\
\rho(q)=\rho\left(a_{l}\right)+1 \\
\rho(d(i, 1))=\rho(p \wedge q)+1
\end{gathered}
$$

But these follow by definition. In this way we see that F^{\prime} is graded.
Finally, it remains to be shown that $F \vDash \operatorname{SFL}(\Lambda)$. So take $x \in F$. First, whenever $x \in Z(p, q)$ for some p, q, by construction $\Uparrow(x)$ is α-connected for every signature other than $\epsilon, 1^{2}, 2 \cdot 1$ and k where $k \geqslant$ height $(F)+1$. Hence we may assume that $x \in T$.
(a)

Figure 11: The form of the paths in $\Uparrow(\operatorname{last}(x))$ and $\Uparrow(x)$

Let us use Lemma 6.27. Take $y, z \in \operatorname{Succ}(x)$ such that there is a path $f(y) m f(z)$ in \Uparrow (last (x)), with the aim of finding a path $y \rightsquigarrow z$ in $\Uparrow(x)$.

Assume that $y \in Z(p, q)$ for some p, q. Then since $y \in \operatorname{Succ}(x)$ and $x \in T$, by construction $x=p \wedge q$. All of $Z(p, q)$ is connected in $\Uparrow(x)$, hence there is a path $y \rightsquigarrow p$. Let $p^{\prime} \in T$ be the immediate successor of x which lies below p (this exists since T is a tree). Then we have a path $y \leadsto p^{\prime}$ in $\Uparrow(x)$. Therefore, we may assume that $y \in T$, and similarly that $z \in T$.

So, we have a path last $(y) \rightsquigarrow$ last (z). We now proceed in a similar fashion to the proof of Theorem 6.26. We may assume that the path last $(y) \rightsquigarrow \operatorname{last}(z)$ has the form in Figure 11 (a), where t_{0}, \ldots, t_{k} are top nodes in F. Let $u_{0}:=y$ and $u_{k}:=z$. For each $i \in\{1, \ldots, k-1\}$, choose $u_{i} \in$ last $^{-1}\left\{a_{i}\right\}$. For $i \in\{0, \ldots, k-1\}$, take $p_{i}, q_{i} \in$ last $^{-1}\left\{t_{i}\right\}$ such that $u_{i} \leqslant p_{i}$ and $u_{i+1} \leqslant q_{i}$. For each such i, since last $\left(p_{i}\right)=\operatorname{last}\left(q_{i}\right)$, there is a path $p_{i} \rightsquigarrow q_{i}$ which lies in $Z\left(p_{i}, q_{i}\right)$, and hence lies in $\Uparrow(x)$. Compose all these paths as in Figure 11 to form a path $y m z$ in $\Uparrow(x)$ as required.

It now remains to show that if $C \in \mathfrak{C}(\Uparrow(\operatorname{last}(x)))$, then height $\left(f^{-1}[C]\right)=$ height (C). First, since f is a p-morphism, height $\left(f^{-1}[C]\right) \geqslant$ height (C). Conversely, let $X \subseteq$ $f^{-1}[C]$ be a maximal chain. Assume X intersects with some $Z(p, q)$. Then we can replace the part $X \cap(Z(p, q) \cup\{p, q\})$ with the unique maximal chain in $\Uparrow(p \wedge q)^{T}$ containing q (this exists since T is a tree). Then by construction this does not decrease the length of X nor does it move X outside of $f^{-1}[C]$ (since the latter is upwards- and downwards-closed). Therefore, we may assume that $X \subseteq T$, so X corresponds to a chain last $[X]$ of the same length in C.

Therefore, by Lemma 6.27 we get that $\mathrm{c}(\Uparrow(x))=\mathrm{c}(\Uparrow(\operatorname{last}(x))$. Applying Lemma 6.6, we have that $\Uparrow(x)$ has an α-partition if and only if $\Uparrow(\operatorname{last}(x))$ has an α-partition.

6.8 Nervification

We now find ourselves, having suitably prepared F, in a position to make use of its additional graded structure. The general method of the final construction, in which we transform F into a frame which nerve-validates $\operatorname{SFL}(\Lambda)$, is the same as in Theorem 6.26 and Theorem 6.28. We begin with the tree unravelling $\mathscr{T}(F)$, perform some alterations, then rejoin top nodes. A key difference here is that we won't rejoin every top node to every other top node whose 'last' value is the same. Instead, we line up all the top nodes mapping to the same element and link each top node to at most two other top nodes: its neighbours. See Figure 12 for an example of the construction.
Definition 6.31. Let T be a finite tree. Then for each $x \in T$, we have that $\downarrow(x)$ is a chain. For $k \leqslant \operatorname{height}(x)$, let $x^{(k)}$ be the element of this chain which has height k. Let $x^{(-k)}$ be the element which has height height $(x)-k$.

Figure 12: An example of nervification, using the graded structure of F

Definition 6.32. For $n \in \mathbb{N}$, let $\mathscr{S}_{n}:=\mathscr{S} \backslash\left\{1^{k} \mid k<n\right\}$.
Theorem 6.33. Take $\Lambda \subseteq \mathscr{S}$ and let F be a finite graded rooted poset of height n such that $F \vDash \operatorname{SFL}(\Lambda)$. Then there is a poset F^{\prime} and a p-morphism $f: F^{\prime} \rightarrow F$ such that $F^{\prime} \vDash \operatorname{SFL}(\Lambda)$ and such that F^{\prime} is α-diamond-connected for every $\alpha \in \mathscr{S}_{n}$.

Proof of Theorem 6.31. We may assume that $\epsilon, 1 \notin \Lambda$. Further, if $2 \in \Lambda$, then height $(F)=$ 1 , so F is already α-diamond-connected for every $\alpha \in \mathscr{S}_{n}$. Hence we may assume that $2 \notin \Lambda$.

Once more, start with $T=\mathscr{T}(F)$. Chop off the top nodes: let $T^{\prime}:=\operatorname{Trunk}(T)$. For each $t \in \operatorname{Top}(F)$, we will add a new structure $W(t)$, which lies only above elements of T^{\prime}. Let $\rho: F \rightarrow \mathbb{N}$ be the rank function on F. Note that $\rho \circ$ last: $T \rightarrow \mathbb{N}$ is the rank function on T.

Take $t \in \operatorname{Top}(F)$. Enumerate last $^{-1}\{t\}=\left\{p_{1}, \ldots, p_{m}\right\}$. For each $i \leqslant m-1$, define:

$$
\begin{gathered}
r_{i}:=p_{i} \wedge p_{i+1} \\
l_{i}:=\rho\left(\operatorname{last}\left(r_{i}\right)\right) \\
k_{i}:=\rho(t)-\rho\left(\operatorname{last}\left(r_{i}\right)\right)-1
\end{gathered}
$$

Note that $k_{i} \geqslant 1$ just as in the proof of Theorem 6.28. Since F is graded and T is a tree, we have that:

$$
\left|\mathfrak{N}\left(r_{i}, p_{i}\right)^{T}\right|=\left|\mathbb{N}\left(r_{i}, p_{i+1}\right)^{T}\right|=k_{i}
$$

In other words, $p_{i}^{\left(l_{i}\right)}=p_{i+1}^{\left(l_{i}\right)}=r_{i}$. We will construct a 'chevron' structure which joins $p_{i}^{(-1)}$ to $p_{i+1}^{(-1)}$. For each $i \leqslant m-1$, take new elements $a(i, 1), \ldots, a\left(i, k_{i}\right)$, and add them to T^{\prime} using the following relations.

$$
a(i, 1)<\cdots<a\left(i, k_{i}\right), \quad \forall j \leqslant k_{i}: p_{i}^{(l+j)}, p_{i+1}^{(l+j)}<a(i, j)
$$

Let $W(t)$ be this new structure (i.e. the chain $\left\{a(i, 1)<\cdots<a\left(i, k_{i}\right)\right\}$ in place). See Figure 13 and Figure 14 for examples of this process of adding chevrons.

The process of adding $W(t)$ is independent for each $t \in \operatorname{Top}(F)$. Let F^{\prime} be the result of adding every $W(t)$ to T^{\prime}. Define $f: F^{\prime} \rightarrow F$ by:

$$
f(x):= \begin{cases}\operatorname{last}(x) & \text { if } x \in T^{\prime} \\ t & \text { if } x \in W(t) \text { for some } t \in \operatorname{Top}(F)\end{cases}
$$

Since we have made sure that each $W(t)$ contains, for each $p_{i} \in$ last $^{-1}\{t\}$, a node above $p_{i}^{(-1)}$ which maps to t, and that all of the new structure maps to a top node, f is a p-morphism.

Let us see that $F^{\prime} \vDash \operatorname{SFL}(\Lambda)$. Take $x \in F^{\prime}$. If $x \in W(t)$ for some t, then $\Uparrow(x)$ is either empty or a chain, hence $\Uparrow(x) \vDash \operatorname{SFL}(\Lambda)$. So we assume that $x \in T^{\prime}$. The verification is now very similar to that in Theorem 6.28, making use of Lemma 6.27. Take $y, z \in \operatorname{Succ}(x)$ such that there is a path $f(y) m f(z)$ in $\Uparrow(\operatorname{last}(x))$. As in the proof of Theorem 6.28, by construction of $W(t)$ we may assume that $y, z \in T^{\prime}$. Just

F

T

$T^{\prime}+W(t)$

Figure 13: The chevron structure in a case with two branches.

Figure 14: The chevron structure in a more complex case involving three branches.
as in that proof, we can construct a path $y \rightsquigarrow z$ from the path $f(y) \rightsquigarrow f(z)$, using the fact that whenever $t \in \Uparrow(\operatorname{last}(x)) \cap \operatorname{Top}(F)$, any $w, v \in f^{-1}\{t\}$ are connected by a path in $\Uparrow(x)^{F^{\prime}}$ (this is how we constructed F^{\prime}). It is straightforward then to check that if $C \in \mathfrak{C}(\Uparrow(\operatorname{last}(x)))$ we have height $\left(f^{-1}[C]\right)=$ height (C), giving that:

$$
\mathrm{c}(\Uparrow(x))=\mathrm{c}(\Uparrow(\operatorname{last}(x)))
$$

To complete the proof, let us see that F^{\prime} is α-diamond-connected for every $\alpha \in \mathscr{S}_{n}$. Take $x, y \in F^{\prime}$ with $x<y$ and consider $\mathbb{N}(x, y)$. There are several cases.
(a) Case $y \in T^{\prime}$. We have that $\mathfrak{N}(x, y)^{F^{\prime}}=\mathfrak{N}(x, y)^{T^{\prime}}$, which is linearly-ordered since T^{\prime} is a tree; hence it is connected and of height at most $n-2$.
Hence $y=a(i, j)$ for $a(i, j) \in W(t)$ a new element. Let $p_{i}, p_{i+1}, r_{i}, l_{i}$ be as above.
(b) Case $x \in W(t)$. Note that by construction $\mathfrak{N}(x, y)$ is linearly-ordered.
(c) Case $x=p_{i}^{(l+e)}$ for some e. If we have height $(\mathbb{y}(x, y))=1$, then $e=i-1$ and $\mathbb{N}(x, y)$ is the antichain on two elements, which is α-connected. Otherwise, by construction, $a(i, j-1) \in \mathbb{N}(x, y)$ which is connected to everything.
(d) Case $x=p_{i+1}^{(l+e)}$ for some e. This is symmetric.
(e) Case $x=r_{i}$. Again, if height $\left.(\mathbb{N}(x, y))\right)=1$ then $j=1$ and $\mathfrak{N}(x, y)$ is the antichain on two elements, otherwise $a(i, 1) \in \mathbb{1}(x, y)$ which is connected to everything.
(f) Otherwise, $x<r_{i}$ (since T^{\prime} is a tree). Then $r_{i} \in \mathbb{1}(x, y)$ which is connected to everything.

6.9 Putting it all together

After a fair bit of labour, we now have all the ingredients we need for our proof. Let us put them together.

Proof of Theorem 6.11. By Lemma 6.15 and Lemma 6.16, we need to show that every finite rooted frame of $\operatorname{SFL}(\Lambda)$ is the up-reduction of one which nerve-validates $\operatorname{SFL}(\Lambda)$; in fact this up-reduction is just a p-morphism. So take such a frame F. We may assume that F is graded: when we have $2 \cdot 1 \in \Lambda$, apply Theorem 6.26 , otherwise apply Theorem 6.28. Then by Theorem 6.31, there is a frame F^{\prime} and a p-morphism $f: F^{\prime} \rightarrow F$ such that F^{\prime} is α-nerve-connected for every $\alpha \in \Lambda$ (note that by Remark 6.10 we must have $\Lambda \subseteq \mathscr{S}_{n}$ where $n=$ height (F)). Then, by Theorem 6.18, F^{\prime} nervevalidates $\operatorname{SFL}(\Lambda)$, which completes the proof.

7 Conclusion

We hope to have demonstrated that the Heyting algebra $\operatorname{Sub}_{0} P$ opens up a rich connection between logic and polyhedral geometry, which is given life by the sustained import of geometrical ideas. The link between triangulations and nerves utilised in [Bez+18a] for polyhedral completeness for IPC and S4.Grz has been developed further in this paper culminating in the Nerve Criterion. This is a product of the unison of logic with non-trivial arguments from rational polyhedral geometry.

The Nerve Criterion is exploited to chart out a class of polyhedrally-complete logics axiomatised by the Jankov-Fine formulas of starlike trees. The proof that a starlike logic is polyhedrally-complete utilises a number of combinatorial techniques on finite posets. Such logics have a clear geometric meaning and play an important part in polyhedral semantics. Indeed, the largest starlike logic $\mathbf{P L}_{n}$ of height n is shown in [Ada +20] to coincide with the logic of convex polyhedra of dimension n, while the logic of all convex polyhedra

$$
\mathbf{P L}=\mathbf{S F L}\left(2 \cdot 1,1^{3}\right)=\mathbf{I P C}+\chi(\langle 2 \cdot 1\rangle)+\chi\left(\left\langle 1^{3}\right\rangle\right)
$$

The proofs of these results blend combinatorial and geometric ideas, and serve as a fitting culmination of the various strands of this new approach.

Polyhedral semantics for intermediate and modal logic is a very young area, and there are many open problems and directions for future research. We pick out just a few of these.

One ultimate goal would be a complete classification of polyhedrally complete logics. The results in this paper and in [Ada+20] take several steps towards such a classification, and chart out key features of the landscape. Identifying more polyhedrally complete logics would be the next immediate task in this direction.

The possibility of moving to a richer language is always available to us. One motivation for this is that with the present semantics, logic cannot capture any of the homology of the polyhedron in which it is interpreted. This is because formula satisfaction is always local in a polyhedron (this fact is not so pronounced in the present paper, where satisfaction at points of a polyhedron is eschewed in favour of the more abstract notion of triangulation). Homology seems a rather natural aspect for a logic to express; indeed, its axiomatic method is a well-developed line of research (see [Hat02, §2.3, p. 160]). Perhaps the addition of a universal modality will enable this expression.

References

[ABB03] Marco Aiello, Johan van Benthem and Guram Bezhanishvili. 'Reasoning about space: the modal way'. In: Journal of Logic and Computation 13.6 (2003), pp. 889-920.
[Ada+20] Sam Adam-Day, Nick Bezhanishvili, David Gabelaia and Vincenzo Marra. 'The logic of convex polyhedra'. Draft manuscript. 2020.
[Ada19] Sam Adam-Day. 'Polyhedral Completeness in Intermediate and Modal Logics'. MA thesis. ILLC, Universiteit van Amsterdam, 2019. URL: https://eprints.illc.uva.nl/1690/1/ MoL-2019-08.text.pdf.
[Ale30] James W. Alexander. 'The Combinatorial Theory of Complexes'. In: Annals of Mathematics 31.2 (1930), pp. 292-320.
[BB07] Johan van Benthem and Guram Bezhanishvili. 'Modal logics of space'. In: Handbook of Spatial Logics. Ed. by Marco Aiello, Ian E. Pratt-Hartmann and Johan van Benthem. Springer, 2007, pp. 217298. ISBN: 9781402055874.
[BB09] Guram Bezhanishvili and Nick Bezhanishvili. 'An algebraic approach to canonical formulas: Intuitionistic case'. In: Review of Symbolic Logic 2.3 (2009), pp. 517-549.
[BB17] Guram Bezhanishvili and Nick Bezhanishvili. 'Locally finite reducts of Heyting algebras and canonical formulas'. In: Notre Dame Journal of Formal Logic 58.1 (2017), pp. 21-45.
[BBG03] Johan van Benthem, Guram Bezhanishvili and Mai Gehrke. 'Euclidean hierarchy in modal logic'. In: Studia Logica 75.3 (2003), pp. 327-344.
[Bey77] W. M. Beynon. 'On rational subdivisions of polyhedra with rational vertices'. In: Canadian Journal of Mathematics 29.2 (1977), pp. 238-242.
[Bez+18a] Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan and Jan van Mill. 'A New Proof of the McKinsey-Tarski Theorem'. In: Studia Logica 106.6 (2018), pp. 1291-1311.
[Bez+18b] Nick Bezhanishvili, Vincenzo Marra, Daniel Mcneill and Andrea Pedrini. 'Tarski's Theorem on Intuitionistic Logic, for Polyhedra'. In: Annals of Pure and Applied Logic 169.5 (2018), pp. 373-391.
[Bez06] Nick Bezhanishvili. 'Lattices of intermediate and cylindric modal logics'. PhD thesis. Institute for Logic, Language and Computation, Universiteit van Amsterdam, 2006.
[BG11] Guram Bezhanishvili and David Gabelaia. ‘Connected Modal Logics'. In: Archive for Mathematical Logic 50 (2011), pp. 287-317.
[Bir37] Garrett Birkhoff. 'Rings of sets'. In: Duke Mathematical Journal 3.3 (Sept. 1937), pp. 443-454.
[CJ14] Sergio A. Celani and Ramon Jansana. 'Easkia Duality and Its Extensions'. In: Leo Esakia on Duality in Modal and Intuitionistic Logics. Ed. by Guram Bezhanishvili. Outstanding Contributions to Logic 4. Springer Netherlands, 2014.
[CZ97] Alexander Chagrov and Michael Zakharyaschev. Modal logic. Oxford Logic Guides 35. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1997.
[DP90] Brian Davey and Hilary Priestly. Introduction to Lattices and Order. Cambridge Mathematical Textbooks. Cambridge University Press, 1990.
[DT66] Dick De Jongh and Anne Troelstra. 'On the connection of partially ordered sets with some pseudo-Boolean algebras'. In: Indagationes Mathematicae 28 (1966), pp. 317-329.
[Esa19] Leo Esakia. Heyting Algebras. Duality Theory. Ed. by Guram Bezhanishvili and Wesley H. Holliday. Springer, Trends in Logic 50. 2019.
[Esa74] Leo Esakia. ‘Topological Kripke models'. Russian. In: Doklady Akademii Nauk SSSR 214.2 (1974), pp. 298-301.
[Gab+17] David Gabelaia, Kristina Gogoladze, Mamuka Jibladze, Evgeny Kuznetsov and Levan Uridia. 'An Axiomatization of the d-logic of Planar Polygons'. In: TbiLLC. 2017.
[Gab+18] David Gabelaia, Kristina Gogoladze, Mamuka Jibladze, Evgeny Kuznetsov and Maarten Marx. Modal logic of planar polygons. 2018. arXiv: 1807. 02868 [math.LO].
[Gab+19] David Gabelaia, Mamuka Jibladze, Evgeny Kuznetsov and Levan Uridia. Characterization of flat polygonal logics. Abstract of talk to be given at the conference Topology, Algebra, and Categories in Logic, Nice. 2019. URL: https://math.unice.fr/tacl/ assets/2019/abstracts.pdf.
[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401.
[Mau80] Charles R. F. Maunder. Algebraic Topology. First published by Van Nostrand Reinhold in 1970. Cambridge University Press, 1980. ISBN: 9780486691312.
[McK41] J. C. C. McKinsey. 'A Solution of the Decision Problem for the Lewis systems S2 and S4, with an Application to Topology'. In: The Journal of Symbolic Logic 6.4 (1941), pp. 117-134. Issn: 00224812.
[Mor05] Patrick J. Morandi. Dualities in Lattice Theory. Available online at http://sierra.nmsu.edu/morandi/notes/Duality. pdf. 2005.
[MT44] John C. C. McKinsey and Alfred Tarski. ‘The Algebra of Topology'. In: Annals of Mathematics 45.1 (1944), pp. 141-191. ISSN: 0003486X.
[MT46] John C. C. McKinsey and Alfred Tarski. 'On Closed Elements in Closure Algebras'. In: Annals of Mathematics 47.1 (1946), pp. 122-162.
[Mun00] James R. Munkres. Topology. Second edition. Prentice Hall, Incorporated, 2000. ISBN: 9780131816299.
[Mun11] Daniele Mundici. Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic 35. Springer, 2011. ISBN: 9789400708402.
[Mun84] J.R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984. ISBN: 9780201054873.
[Rau74] Cecylia Rauszer. 'Semi-Boolean algebras and their applications to intuitionistic logic with dual operations'. In: Fundamenta Mathematicae 83 (1974), pp. 219-249.
[RS63] Helena Rasiowa and Roman Sikorski. The mathematics of metamathematics. Monografie Matematyczne 41. Warsaw: Państwowe Wydawnictwo Naukowe, 1963.
[RS72] Colin P. Rourke and Brian J. Sanderson. Introduction to PiecewiseLinear Topology. Springer-Verlag, 1972. ISBN: 978-3-540-111023.
[RW12] Andrew Ranicki and Michael Weiss. 'On The Algebraic L-theory of Delta-sets'. In: Pure and Applied Mathematics Quarterly 8.1 (2012).
[Spa66] Edwin H. Spanier. Algebraic Topology. Springer-Verlag New York, 1966.
[Sta67] R. Stallings John. Lectures on Polyhedral Topology. Tata Institute of Fundamental Research Lectures on Mathematics 43. Notes by G. Ananda Swarup. Bombay: Tata Institute of Fundamental Research, 1967.
[Sta97] Richard P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics 49. Cambridge University Press, 1997.
[Sto38] Marshall Harvey Stone. 'Topological representations of distributive lattices and Brouwerian logics'. In: Časopis pro pěstování matematiky a fysiky 67.1 (1938), pp. 1-25.
[Tar39] Alfred Tarski. 'Der Aussagenkalkul Und Die Topologie'. In: Journal of Symbolic Logic 4.1 (1939). English translation in [tarski1983logic], pp. 26-27.
[Tsa38] Tang Tsao-Chen. 'Algebraic postulates and a geometric interpretation for the Lewis calculus of strict implication'. In: Bulletin of the American Mathematical Society 44.10 (Oct. 1938), pp. 737-744.
[WS79] Mamoru Watanabe and Allen J. Schwenk. 'Integral starlike trees'. In: Journal of the Australian Mathematical Society 28.1 (1979), pp. 120-128.
[Zak93] Michael Zakharyaschev. 'A Sufficient Condition for the Finite Model Property of Modal Logics above K4'. In: Logic Journal of the IGPL 1.1 (July 1993), pp. 13-21. ISSN: 1367-0751.

[^0]: ${ }^{1}$ This paper is based on [Ada19].

[^1]: ${ }^{2}$ For more information on these logics see [CZ97, Table 4.1, p. 112].

[^2]: ${ }^{3}$ Recall that $\mathfrak{C}(F)$ is the set of connected components of F and that $\mathrm{c}(F)$ of F is the signature $n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}$ such that $\mathfrak{C}(F)$ contains for each i exactly m_{i} sets of height $n_{i}-1$, and nothing else.

