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1 Introduction
Social choice theory concerns the design and formal analysis of methods for ag-
gregating the preferences of multiple agents. Examples of such methods include
voting procedures, which are used to aggregate the preferences of voters over a set
of candidates standing for election to determine which candidate should win the
election (or, more generally, to choose an alternative from a set of alternatives), or
protocols for deciding on a fair allocation of resources given the preferences of a
group of stake-holders over the range of bundles they might receive. Originating
in economics and political science, social choice theory has since found its place
as one of the fundamental tools for the study of multiagent systems. The reasons
for this development are clear: if we view a multiagent system as a “society” of
autonomous software agents, each of which has different objectives, is endowed
with different capabilities, and possesses different information, then we require
clearly defined and well-understood mechanisms for aggregating their views so as
to be able to make collective decisions in such a multiagent system.

Computational social choice, the subject of this chapter, adds an algorithmic
perspective to the formal approach of social choice theory. More broadly speak-
ing, computational social choice deals with the application of methods usually
associated with computer science to problems of social choice.

1.1 Introductory Example
Let us begin with a simple example. We shall discuss it at length, in order to
introduce some of the key concepts that will be treated more formally later in the
chapter. Consider the following situation in which there are four Dutchmen, three
Germans, and two Frenchmen who have to decide which drink will be served
for lunch (only a single drink will be served to all).1 The Dutchmen prefer Milk
to Wine to Beer, the Germans prefer Beer to Wine to Milk, and the Frenchmen
prefer Wine to Beer to Milk. These preferences can be conveniently represented
in a table where each group of agents is represented by one column.

1This is based on an example used by Donald G. Saari at a conference in Rotterdam, where
only Milk was served for lunch.
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4 3 2

Milk Beer Wine
Wine Wine Beer
Beer Milk Milk

Now, which drink should be served based on these individual preferences? Milk
could be chosen on the grounds that it has the most agents ranking it first (the
Dutch). That is, it is the winner according to the plurality rule, which only con-
siders how often each alternative is ranked in first place. However, a majority of
agents (the Germans and the French) will be dissatisfied with this choice as they
prefer any other drink to Milk. In fact, it turns out that Wine is preferred to both
Beer and Milk by a 6:3 and a 5:4 majority of voters, respectively. An alternative
with this property (defeating every other alternative in pairwise majority compar-
isons) is called a Condorcet winner. Yet another method of determining a col-
lective choice would be to successively eliminate those beverages that are ranked
first by the lowest number of agents (known as Single Transferable Vote, or STV).
This would result in Wine being eliminated first because only two agents (the

French) rank it first. Between the remaining two options, Beer is ranked higher
by the Germans and the French, and will eventually be chosen. In summary, this
example shows that collective choice is not a trivial matter, as different, seemingly
reasonable, voting rules can yield very different results.

Another important lesson that can be learned from this example concerns
strategic manipulation. Assume the collective choice is determined using the plu-
rality rule. Since preferences are private and each agent only knows his own pref-
erences with certainty, nobody can prevent the Germans from claiming that their
most-preferred drink is Wine. This will result in a more preferable outcome to
them than reporting their preferences truthfully, because they get Wine rather than
Milk, their least-preferred alternative. A seminal result in social choice theory, the
Gibbard-Satterthwaite Theorem (discussed in detail in Section 3.2.1), states that
every reasonable voting rule is susceptible to this type of manipulation.

While the example was carefully set up to avoid this, plurality and STV, as
well as many other rules, can, in general, result in multiple alternatives ending up
tied. If a social decision must be made, then we need to break this tie in some
way—for example, by flipping a coin (resulting in a randomized rule), lexico-
graphically according to the names of the alternatives, or by using another voting
rule as a tie-breaking rule (whose own ties may yet again need to be broken).
Another option is simply to “pass the buck” and declare all the tied alternatives
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to be winners, so that the output is now a subset of the alternatives. For obvious
reasons, we will generally require this subset to be nonempty. This sounds trivial,
but, for example, as we will see later in the chapter, a given election may not have
a Condorcet winner at all. As a consequence, the Condorcet winner method is not
even a well-defined voting rule. Many voting rules, however, are so-called Con-
dorcet extensions, which means that they choose the Condorcet winner whenever
one exists. This is sometimes also called the Condorcet principle. Our example
above shows that neither plurality nor STV are Condorcet extensions. An example
of a rule that is a Condorcet extension is Copeland’s rule, which chooses those
alternatives that win the most pairwise majority comparisons. If no Condorcet
winner exists, Copeland’s rule still yields one or more winners. A disadvantage
of Copeland’s rule, in contrast to, say, the plurality rule when applied to elections
with many voters and few alternatives, is that ties seem more likely here. In gen-
eral, we prefer to end up with as small a set of winners as possible, but as we will
see, this needs to be traded off against other properties.

We may even be a bit more ambitious and attempt to not only choose the win-
ner(s), but rather to rank all the alternatives, representing “society’s preferences”
over them. This can be useful, for example, if we are worried that some alterna-
tives may turn out to be unavailable and we need to quickly switch to another one.
We may also be interested in the aggregate ranking for other reasons; for exam-
ple, consider the problem of running a single query on multiple Internet search
engines, and trying to aggregate the results into a single ranking. In the example
above, we can simply rank the alternatives according to their pairwise majority
comparisons: Wine defeats both Beer and Milk in their pairwise comparisons and
so should be ranked first, and Beer defeats Milk and so should be ranked second.
As we will see later, however, this approach can result in cycles. A simple ap-
proach to ranking alternatives is to use a rule that gives each alternative a score—
such as plurality or Copeland—and sort the alternatives by aggregate score. (Note
that if the pairwise majority approach does not result in cycles, then Copeland
will agree with it.) For STV, one possibility is to sort the alternatives in inverse
order of elimination. A generally applicable approach is to take the winners, rank
them first, then vote again over the remaining alternatives, and to continue in this
fashion until all alternatives have been ranked.

We shall revisit several of these ideas again later on, when we define the frame-
works for social choice outlined here in more formal detail.
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1.2 History of the Field
There are a number of historical cases showing that the intricacies of social choice
have occupied people’s minds for a very long time [160]. Examples include the
writings of Pliny the Younger, a senator in ancient Rome around the turn of the
1st century A.D.; the 13th century Catalan philosopher, alchemist, and missionary
Ramon Llull; and the Marquis de Condorcet, a public intellectual who was active
around the time of the French Revolution.

Social choice theory as a scientific discipline with sound mathematical foun-
dations came into existence with the publication of the Ph.D. thesis of Kenneth
J. Arrow in 1951 [5], who introduced the axiomatic method into the study of ag-
gregation methods and whose seminal Impossibility Theorem shows that any such
method that satisfies a list of seemingly basic fairness requirements must in fact
amount to a dictatorial rule. Since then, much of the work in classical social
choice theory has focused on results concerning the formal possibility and impos-
sibility of aggregation methods that combine certain desirable properties—like
Pareto-optimality, monotonicity, or non-manipulability—without resulting in an
unacceptable concentration of power. Some of the landmark results include Sen’s
characterization of preference domains allowing for consistent majority decisions
[197] and the Gibbard-Satterthwaite Theorem [124, 191] mentioned earlier, which
establishes the impossibility of devising a reasonable, general voting rule that is
immune to strategic manipulation.

The first clear examples of work in computational social choice are a series of
papers by Bartholdi, Orlin, Tovey, and Trick, published around 1990 [19, 20, 17].
They argued that complexity theory, as studied in theoretical computer science, is
relevant to social choice. For instance, they analyzed the complexity of determin-
ing the winners in an intricate voting rule due to C.L. Dodgson, better known as
Lewis Carroll, the author of “Alice in Wonderland”.2 They also fielded the funda-
mental idea that complexity barriers might provide a means of protection against
strategic manipulation and other undesirable behavior. That is, while classical
social choice theory showed that it is a mathematical impossibility to devise a
voting rule that cannot be manipulated, computer science might provide the tools
for making this unwanted behavior so difficult that it can be neglected in practice.3

2It was shown later that determining the winners according to Dodgson’s rule is complete for
the complexity class Θ

p
2 [130]. This is remarkable as Θ

p
2 was considered to lack “natural” complete

problems and Dodgson’s rule was proposed long before complexity theory existed.
3As we shall see, this approach of using computational complexity as a barrier against strategic

manipulation has its limitations, but conceptually this has nevertheless been an important idea
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This groundbreaking work was followed by a small number of isolated pub-
lications throughout the 1990s. In the first few years of the 21st century, as the
relevance of social choice to artificial intelligence, multiagent systems, and elec-
tronic commerce became apparent, the frequency of contributions on problems re-
lated to social choice with a computational flavor suddenly intensified. Although
the field was still lacking a name, by 2005 contributions in what we would now
call “computational social choice” had become a regular feature at several of the
major conferences in artificial intelligence. The first workshop specifically dedi-
cated to computational social choice, and the first event to explicitly use this name,
took place in 2006 [102]. Around the same time, Chevaleyre et al. [56] attempted
the first classification of research in the area by distinguishing (a) the nature of
the social choice problem addressed, and (b) the type of formal or computational
technique used.

1.3 Applications
Social choice theory was originally developed as an abstraction of problems that
arise in political science and economics. More generally, social choice theory
provides a useful theoretical framework for the precise mathematical study of the
normative foundations of collective decision making, in a wide range of areas,
involving not only human decision-makers but also autonomous software agents.
This chapter will focus on the theoretical foundations of computational social
choice. But before we delve into the theory, let us briefly cite a few examples
of actual and potential application domains, going beyond political elections and
collective decision making in multiagent systems, where the methods we shall
cover in this chapter can be put to good use.

The first such example comes from the domain of Internet search engines.
Imagine you want to design a meta search engine that combines the search results
of several engines. This problem has a lot in common with preference aggrega-
tion. Aggregating preferences means asking each individual agent for a ranking
over the set of alternatives and then amalgamating this information into a single
such ranking that adequately represents the preferences of the group. For the meta
search engine, we ask each individual search engine for a ranking of its own, say,
20 top results and then have to aggregate this information to produce our meta
ranking. Of course, the problems are not exactly the same. For instance, some
website may not have been ranked at all by one search engine, but be in the top 5

which has inspired a good deal of exciting research.
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for another. Also, the general principles that we might want to adhere to when per-
forming the aggregation might differ: in preference aggregation, fairness will play
an important role; when aggregating search results fairness is not a goal in itself.
Nevertheless, it is clear that insights from social choice theory can inform possible
approaches for designing our meta search engine. In fact, this situation is rather
typical in computational social choice: for many modern applications, we can rely
on some of the basic insights from social choice theory, but to actually develop an
adequate solution, we do have to alter some of the classical assumptions.

There is also a less obvious application of principles of social choice to search
engines. One way of measuring the importance of a webpage is the number of
other webpages linking to it. In fact, this is a recursive notion: the importance
of our webpage also depends on the importance of the pages linking to it, which
in turn depends on the importance of the pages linking to those. This idea is the
basis for the PageRank algorithm at the core of Google’s search engine [170].
We may think of this as an election where the set of the voters and the set of the
candidates coincide (both are the set of all webpages). In this sense, the ranking
of the importance of webpages may be considered as a social choice problem.
This perspective has led to a deeper understanding of the problem, for instance,
by providing an axiomatic characterization of different ranking algorithms [3].

Another example of an application domain for which the perspective of social
choice theory can provide fruitful new insights is that of recommender systems. A
recommender system is a tool for helping users choose attractive products on the
basis of choices made by other users in the past. An important technique in this
field is collaborative filtering. By reinterpreting collaborative filtering as a pro-
cess of preference aggregation, the axiomatic method developed in social choice
theory has proven helpful in assessing and comparing the quality of different col-
laborative filtering approaches [171].

Yet another example is the problem of ontology merging, which arises in the
context of the Semantic Web. Suppose different information providers on the Se-
mantic Web provide us with different ontologies describing the same set of con-
cepts. We would like to combine this information so as to arrive at the best possi-
ble ontology representing the available knowledge regarding the problem domain.
This is a difficult problem that will require a combination of different techniques.
Social choice theory can make a contribution in those cases where we have little
information regarding the reliability of the individual providers and can only re-
sort to aggregating whatever information they provide in a “fair” (and logically
consistent) manner [174].

We shall allude to further areas of application along the way. However, our
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focus will be on theoretical foundations from here on.

1.4 Chapter Outline
In this chapter we review the foundations of social choice theory and introduce
the main research topics in computational social choice that have been identified
to date. Specifically, Section 2 introduces the axiomatic framework for study-
ing preference aggregation and discusses the most important seminal result in the
field, Arrow’s Theorem, in detail. Section 3 is an introduction to voting theory.
We present the most important voting rules and then focus on the problem of
strategic manipulation. This includes a discussion of the Gibbard-Satterthwaite
Theorem and a number of possible avenues for circumventing the impossibility
it is pointing to. Section 4 focuses on voting scenarios where the set of alterna-
tives to choose from has a combinatorial structure, as is the case when we have to
elect a committee (rather than a single official) or more generally when we have
to collectively decide on an instantiation of several variables. In Section 5 we turn
our attention to the problem of fairly allocating a number of goods to a group of
agents and discuss the problems that are characteristic for this particular type of
social choice problem. Section 6 concludes with a brief discussion of related re-
search topics in computational social choice not covered in this chapter and with
a number of recommendations for further reading.

2 Preference Aggregation
One of the most elementary questions in social choice theory is how the prefer-
ence relations of individual agents over some abstract set of alternatives can be
aggregated into one collective preference relation. Apart from voting, this ques-
tion is of broad interest in the social sciences, because it studies whether and how
a society of autonomous agents can be treated as a single rational decision-maker.
As we point out in Section 2.1, results in this framework are very discouraging.

In many practical settings, however, one is merely interested in a set of socially
acceptable alternatives rather than a collective preference relation. In Section 2.2,
we discuss the relationship between both settings and present some positive results
for the latter framework.
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2.1 Social Welfare Functions
We start by investigating social welfare functions, the simplest and perhaps most
elegant framework of preference aggregation. A social welfare function aggre-
gates preferences of individual agents into collective preferences. More formally,
we consider a finite set N = {1, . . . , n} of at least two agents (sometimes also
called individuals or voters) and a finite universe U of at least two alternatives
(sometimes also called candidates). Each agent i entertains preferences over the
alternatives in U, which are represented by a transitive and complete preference
relation %i. Transitivity requires that a %i b and b %i c imply a %i c for all
a, b, c ∈ U, and completeness requires that any pair of alternatives a, b ∈ U is
comparable, i.e., it holds that either a %i b or b %i a or both. In some cases, we
will assume preferences to be linear, i.e., also satisfying antisymmetry (a %i b and
b %i a imply that a = b), but otherwise we impose no restrictions on preference
relations. We have a %i b denote that agent i likes alternative a at least as much
as alternative b and write �i for the strict part of %i, i.e., a �i b if a %i b but
not b %i a. Similarly, ∼i denotes i’s indifference relation, i.e., a ∼i b if both a %i b
and b %i a. The set of all preference relations over the universal set of alterna-
tives U will be denoted by R(U). The set of preference profiles, associating one
preference relation with each individual agent, is then given by R(U)n.

Economists often also consider cardinal (rather than ordinal) preferences,
which are usually given in the form of a utility function that assign numerical val-
ues to each alternative. It is easy to show that, for a finite number of alternatives, a
preference relation can be represented by a utility function if and only if it satisfies
transitivity and completeness (see Exercise 1). Still, a utility function may yield
much more information than a preference relation, such as the intensity of prefer-
ences, as well as preferences over probability distributions over the alternatives.
In the absence of a common numeraire such as money, the meaning of individual
utility values and especially the inter-personal comparisons between those values
is quite controversial. Therefore, the ordinal model based on preference relations
is the predominant model in abstract social choice theory. In special domains such
as fair division (see Section 5), however, cardinal preferences are also used.

A social welfare function is a function that maps individual preference rela-
tions to a collective preference relation.

Definition 1. A social welfare function (SWF) is a function f : R(U)n → R(U).

For a given preference profile R = (%1, . . . ,%n), the resulting social preference
relation will be denoted by %.
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It was the Marquis de Condorcet who first noted that the concept of a social
preference relation can be problematic. When there are just two alternatives, com-
mon sense and several axiomatic characterizations, such as May’s Theorem [157],
suggest that alternative a should be socially preferred to alternative b if and only if
there are more voters who strictly prefer a to b than b to a. This concept is known
as majority rule. Since the majority rule provides us with social pairwise compar-
isons, it appears to be a natural candidate for an SWF. However, as demonstrated
by the Condorcet paradox [86], the majority rule can result in cycles when there
are more than two alternatives. To see this, consider the preference relations of
three voters given in Figure 1. A majority of voters (two out of three) prefers a to
b. Another majority prefers b to c and yet another one c to a. Clearly, the pair-
wise majority relation in this example is cyclic and therefore not a well-formed
preference relation. Hence, the majority rule does not constitute an SWF.

1 1 1

a b c
b c a
c a b

a

c b

Figure 1: Condorcet’s paradox [86]. The left-hand side shows the individual pref-
erences of three agents such that the pairwise majority relation, depicted on the
right-hand side, is cyclic.

In what is perhaps the most influential result in social choice theory, Arrow [5]
has shown that this “difficulty in the concept of social welfare” (as he calls it) is
not specific to the majority rule, but rather applies to a very large class of SWFs.
Arrow’s Impossibility Theorem states that a seemingly innocuous set of desiderata
cannot be simultaneously met when aggregating preferences. These desiderata are
Pareto-optimality, independence of irrelevant alternatives, and non-dictatorship;
they are defined as follows.

• An SWF satisfies Pareto-optimality if strict unanimous agreement is re-
flected in the social preference relation. Formally, Pareto-optimality re-
quires that a �i b for all i ∈ N implies that a � b.

• An SWF satisfies independence of irrelevant alternatives (IIA) if the social
preference between any pair of alternatives only depends on the individual
preferences restricted to these two alternatives. Formally, let R and R′ be
two preference profiles and a and b be two alternatives such that R|{a,b} =
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R′|{a,b}, i.e., the pairwise comparisons between a and b are identical in both
profiles. Then, IIA requires that a and b are also ranked identically in %,
i.e., % |{a,b} =%′ |{a,b}.

• An SWF is non-dictatorial if there is no agent who can dictate a strict rank-
ing no matter which preferences the other agents have. Formally, an SWF
is non-dictatorial if there is no agent i such that for all preference profiles R
and alternatives a, b, a �i b implies that a � b.

Theorem 1 (Arrow, 1951). There exists no SWF that simultaneously satisfies IIA,
Pareto-optimality, and non-dictatorship whenever |U | ≥ 3.

According to Paul Samuelson, who is often considered the founding father of
modern economics, Arrow’s Theorem is one of the significant intellectual achieve-
ments of the 20th century [188]. A positive aspect of such a negative result is that
it provides boundaries on what can actually be achieved when aggregating pref-
erences. In particular, Arrow’s Theorem shows that at least one of the required
conditions has to be omitted or relaxed in order to obtain a positive result. For in-
stance, if |U | = 2, IIA is trivially satisfied by any SWF and reasonable SWFs (such
as the majority rule) also satisfy the remaining conditions. In a much more elab-
orate attempt to circumvent Arrow’s Theorem, Young [231] proposed to replace
IIA with local IIA (LIIA), which only requires IIA to hold for consecutive pairs
of alternatives in the social ranking. By throwing in a couple of other conditions
(such as anonymity and neutrality, which will be defined in Section 3) and restrict-
ing attention to linear individual preferences, Young completely characterizes an
aggregation function known as Kemeny’s rule.

Kemeny’s Rule. Kemeny’s rule [140] yields all strict rankings that agree with
as many pairwise preferences of the agents as possible. That is, it returns

arg max
�

∑
i∈N

|� ∩ �i| .

Since there can be more than one ranking that satisfies this property, Kemeny’s
rule is not really an SWF but rather a multi-valued SWF. (Young refers to these
as social preference functions.) Alternatively, Kemeny’s rule can be characterized
using maximum likelihood estimation [231, 232].4 Over the years, Kemeny’s rule

4This is done under a model where there exists a “correct” ranking of the alternatives, and the
agents’ preferences are noisy estimates of this correct ranking. This result relies on a particular
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has been reinvented by many scholars in different fields. It is also known as the
median or linear ordering procedure [15, 53]. Kemeny’s rule is not only very
interesting from an axiomatic but also from a computational point of view. The
problem of computing a Kemeny ranking, as well as the closely related problem
of computing a Slater ranking (a ranking that agrees with the outcomes of as many
pairwise elections as possible), correspond to a computational problem on graphs
known as the minimum feedback arc set problem (in the case of Kemeny’s rule, the
weighted version of this problem). It has been shown that computing a Kemeny
ranking is NP-hard [20], even when there are just four voters [97]. Moreover,
deciding whether a given alternative is ranked first in a Kemeny ranking is Θ

p
2-

complete [131]. Nevertheless, under certain conditions, there is a polynomial-
time approximation scheme (PTAS) for the Kemeny problem [141]. For further
details on these problems, we refer to the works of Davenport and Kalagnanam
[84], Conitzer et al. [73], Alon [2], Conitzer [61], Charon and Hudry [53], Betzler
et al. [23], Hudry [135], Betzler et al. [26], Brandt et al. [48], Hudry [136], and
Ali and Meila [1].5

Rather than relaxing the explicit conditions in Arrow’s Theorem, one may call
its implicit assumptions into question. For instance, in many applications, a full
social preference relation is not needed; rather, we just wish to identify the socially
most desirable alternatives. This corresponds to the framework considered in the
following section.6

2.2 Social Choice Functions
The central objects of study in this section are social choice functions, i.e., func-
tions that map the individual preferences of the agents and a feasible subset of
the alternatives to a set of socially preferred alternatives, the choice set. Through-

noise model; if the noise model is changed, the maximum likelihood solution can result in other
SWFs, though for yet other SWFs, it can be proved that no noise model would yield that SWF as
the solution [90, 70, 209, 76]. However, the Kemeny result is robust to some other generalizations
of the model [222, 66].

5In 1995, Peyton Young predicted “that the time will come when [Kemeny’s rule] is considered
a standard tool for political and group decision making” [232]. This has not yet happened, but the
website www.votefair.org provides an interface to use Kemeny’s rule for surveys, polls, and
elections at no charge.

6This effectively reduces the codomain of the aggregation function. As we will see in Sec-
tion 3.2.2, a common technique to avoid negative results in social choice theory is to reduce the
domain of the function.
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out this chapter, the set of possible feasible sets F(U) is defined as the set of all
non-empty subsets of U. A feasible set (or agenda) defines the set of possible
alternatives in a specific choice situation at hand. The reason for allowing the
feasible set to vary is that we will later define properties that relate choices from
different feasible sets to each other [see also 200, 206].

Definition 2. A social choice function (SCF) is a function f : R(U)n × F(U) →
F(U) such that f (R, A) ⊆ A for all R and A.

2.2.1 The Weak Axiom of Revealed Preference

Arrow’s Theorem can be reformulated for SCFs by appropriately redefining
Pareto-optimality, IIA, and non-dictatorship and introducing a new property called
the weak axiom of revealed preference, as follows.

Pareto-optimality now requires that an alternative should not be chosen if
there exists another feasible alternative that all agents unanimously prefer to the
former—more precisely, a < f (R, A) if there exists some b ∈ A such that b �i a for
all i ∈ N. An SCF f is non-dictatorial if there is no agent i such that for all pref-
erence profiles R and alternatives a, a �i b for all b ∈ A \ {a} implies a ∈ f (R, A).7

Independence of irrelevant alternatives reflects the idea that choices from a set of
feasible alternatives should not depend on preferences over alternatives that are
infeasible, i.e., f (R, A) = f (R′, A) if R|A = R′|A. Interestingly, in the context of
SCFs, IIA constitutes no more than a framework requirement for social choice
and is not the critical assumption it used to be in the context of SWFs.

Finally, the weak axiom of revealed preference (WARP) demands that choice
sets from feasible sets are strongly related to choice sets from feasible subsets. Let
A and B be feasible sets such that B ⊆ A. WARP requires that the choice set of B
consists precisely of those alternatives in B that are also chosen in A, whenever this
set is non-empty. Formally, for all feasible sets A and B and preference profiles R,

if B ⊆ A and f (R, A) ∩ B , ∅ then f (R, A) ∩ B = f (R, B). (WARP)

We are now ready to state a variant of Arrow’s Theorem for SCFs.

Theorem 2 (Arrow, 1951, 1959). There exists no SCF that simultaneously satis-
fies IIA, Pareto-optimality, non-dictatorship, and WARP whenever |U | ≥ 3.

7Theorem 2 holds for an even weaker notion of non-dictatorship in which a dictator can enforce
that {a} = f (R, A).
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As the Arrovian conditions—Pareto-optimality, IIA, non-dictatorship, and
WARP—cannot be satisfied by any SCF, at least one of them needs to be ex-
cluded or relaxed to obtain positive results. Clearly, dropping non-dictatorship
is unacceptable and, as already mentioned, IIA merely states that the SCF repre-
sents a reasonable model of preference aggregation [see, e.g., 193, 29]. Wilson
[215] has shown that without Pareto-optimality only SCFs that are constant (i.e.,
completely unresponsive) or fully determined by the preferences of a single agent
are possible. Moreover, it could be argued that not requiring Pareto-optimality
runs counter to the very idea of social choice. Accordingly, the only remaining
possibility is to relax WARP.

2.2.2 Contraction and Expansion Consistency

Building on earlier work by Sen [198], Bordes [28] factorized WARP into two
separate conditions by splitting the equality in the consequence of the definition
of WARP into two inclusions. The resulting conditions are known as contraction
and expansion.

Contraction prescribes that an alternative that is chosen from some feasible
set will also be chosen from all subsets in which it is contained. Formally, SCF f
satisfies contraction if for all A, B and R,

if B ⊆ A then B ∩ f (R, A) ⊆ f (R, B). (contraction)

The intuition behind expansion is that if alternative a is chosen from some set
that contains another alternative b, then it will also be chosen in all supersets in
which b is chosen. Formally, SCF f satisfies expansion if for all A, B and R,

if B ⊆ A and B ∩ f (R, A) , ∅ then f (R, B) ⊆ B ∩ f (R, A). (expansion)

One possibility to escape the haunting impossibility of social choice is to re-
quire only contraction or expansion but not both at the same time. It turns out
that contraction and even substantially weakened versions of it give rise to im-
possibility results that retain Arrow’s spirit [199]. As an example, consider the
preference profile given in Figure 1. All of the voting rules mentioned in the
introduction (plurality, STV, and Copeland) will yield a tie between all three al-
ternatives. Hence, if any of these rules were to satisfy contraction, they would
need to yield both available alternatives in every two-element subset of {a, b, c}.
However, this is not the case for any of these subsets as each of them has a single
winner according to all three rules (in fact, it is a 2:1 majority in each case, so this
would be the case for almost any natural rule).
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Expansion consistency conditions, on the other hand, are much less restrictive.
In fact, a number of appealing SCFs can be characterized using weakenings of
expansion and inclusion-minimality. Inclusion-minimality is quite natural in this
context as one is typically interested in choice sets that are as small as possible.8

These characterizations are nice examples of how positive results can be obtained
by using the axiomatic method.

In the following, an SCF is said to be majoritarian if choice sets only depend
on the majority rule within the feasible set. For technical reasons, we further-
more assume that n is odd and that the preferences of the voters are strict, which
guarantees that the majority rule is asymmetric.

Top Cycle. The top cycle is the smallest majoritarian SCF satisfying expan-
sion [28]. It consists of the maximal elements of the transitive closure of the weak
majority relation [88, 45] and can be computed in linear time by using standard al-
gorithms for identifying strongly connected components in digraphs such as those
due to Kosaraju or Tarjan [see, e.g., 80].

Uncovered Set. The uncovered set is the smallest majoritarian SCF satisfying
a weak version of expansion [164]. Interestingly, the uncovered set consists pre-
cisely of those alternatives that reach every other alternative on a majority rule
path of length at most two [202]. Based on this characterization, computing the
uncovered set can be reduced to matrix multiplication and is thus feasible in al-
most linear time [134, 42].

Banks Set. The Banks set is the smallest majoritarian SCF satisfying a weaken-
ing of weak expansion called strong retentiveness [40]. In contrast to the previous
two SCFs, the Banks set cannot be computed in polynomial time unless P equals
NP. Deciding whether an alternative is contained in the Banks set is NP-complete
[216, 47]. Interestingly, some alternatives (and thus subsets) of the Banks set can
be found in linear time [133]. A very optimized (exponential-time) algorithm for
computing the Banks set was recently proposed by Gaspers and Mnich [122].9

8Moreover, due to the inclusive character of expansion consistency conditions, they are easily
satisfied by very undiscriminatory SCFs. For instance, the trivial SCF, which always yields all
feasible alternatives, trivially satisfies expansion (and all of its weakenings).

9Another SCF, the tournament equilibrium set [194], was, for more than 20 years, conjectured
to be the unique smallest majoritarian SCF satisfying retentiveness, a weakening of strong reten-
tiveness. This was recently disproven by Brandt et al. [49]. Deciding whether an alternative is
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Two other SCFs, namely the minimal covering set [95] and the bipartisan
set [147], have been axiomatized using a variant of contraction, which is im-
plied by WARP [43]. While the bipartisan set can be computed using a single
linear program, the minimal covering set requires a slightly more sophisticated,
yet polynomial-time, algorithm [42]. In addition to efficient computability, the
minimal covering set and the bipartisan set satisfy a number of other desirable
properties [151, 39] (see also Section 3.2.5).

3 Voting
In the previous section, we started our formal treatment of social choice and en-
countered some of the fundamental limitations that we face. The purpose of pre-
senting these limitations at the outset is of course not to convince the reader that
social choice is hopeless and we should give up on it; it is too important for that.
(One is reminded of Churchill’s quote that “democracy is the worst form of gov-
ernment except for all those other forms that have been tried from time to time.”)
Rather, it is intended to get the reader to think about social choice in a precise
manner and to have realistic expectations for what follows. Now, we can move on
to some more concrete procedures for making decisions based on the preferences
of multiple agents.

3.1 Voting Rules
We begin by defining voting rules.

Definition 3. A voting rule is a function f : R(U)n → F(U).

Of course, every SCF can also be seen as a voting rule. There are two reasons
we distinguish SCFs from voting rules. First, from a technical perspective, the
SCFs defined in the previous section were axiomatized using variable feasible
sets in order to salvage some degree of collective rationality. Second, some of
these SCFs (e.g., the top cycle) can hardly be considered voting rules because
they are not discriminatory enough. Of course, the latter is merely a gradual
distinction, but there have been attempts to formalize this [see, e.g., 10, 207, 117,
195]. When ignoring all conditions that relate choices from different feasible sets

contained in the tournament equilibrium set of a tournament is NP-hard [47]. This problem is not
known to be in NP and may be significantly harder.
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with each other, we have much more freedom in defining aggregation functions.
For simplicity, we assume throughout this section that preferences are linear, i.e.,
there are no ties in individual preference relations.

An important property that is often required of voting rules in practice, called
resoluteness, is that they should always yield a unique winner. Formally, a voting
rule f is resolute if | f (R)| = 1 for all preference profiles R. Two natural symmetry
conditions are anonymity and neutrality. Anonymity requires that the outcome of
a voting rule is unaffected when agents are renamed (or more formally, when the
individual relations within a preference profile are permuted). In a similar vein,
neutrality requires that a voting rule is invariant under renaming alternatives.

Unfortunately, in general, anonymous and neutral voting rules cannot be
single-valued. The simplest example concerns two agents and two alternatives,
each of which is preferred by one of the voters. Clearly, a single alternative can
only be chosen by breaking anonymity or neutrality.10

In the remainder of this section, we will define some of the most common
voting rules.

3.1.1 Scoring Rules

A common objection to the plurality rule is that an alternative ought to get some
credit for being ranked, say, in second place by a voter. Under a (positional) scor-
ing rule, each time an alternative is ranked ith by some voter, it gets a particular
score si. The scores of each alternative are then added and the alternatives with
the highest cumulative score are selected. Formally, for a fixed number of alter-
natives m, we define a score vector as a vector s = (s1, . . . , sm) in Rm such that
s1 ≥ · · · ≥ sm and s1 > sm. Three well-known examples of scoring rules are
Borda’s rule, the plurality rule, and the anti-plurality rule.

Borda’s rule. Under Borda’s rule alternative a gets k points from voter i if i
prefers a to k other alternatives, i.e., the score vector is (|U | − 1, |U | − 2, . . . , 0).
Borda’s rule takes a special place within the class of scoring rules as it chooses
those alternatives with the highest average rank in individual rankings. While
Borda’s rule is not a Condorcet extension, it is the only scoring rule that never
gives a Condorcet winner the lowest accumulated score [204]. Another appealing
axiomatic characterization of Borda’s rule was given by Young [228].

10Moulin [163] has shown that anonymous, neutral, and resolute voting rules exist if and only
if |U | can be written as the sum of non-trivial dividers of n.
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Plurality rule. The score vector for the plurality rule is (1, 0, . . . , 0). Hence,
the cumulative score of an alternative equals the number of voters by which it is
ranked first.

Anti-plurality rule. The score vector for the anti-plurality rule (which is some-
times also called veto) is (1, . . . , 1, 0). As a consequence, it chooses those alterna-
tives that are least-preferred by the lowest number of voters.

Due to their simplicity, scoring rules are among the most-used voting rules in
the real world. Moreover, there are various elegant characterizations of scoring
rules. In Section 2, we introduced axioms that impose consistency restrictions
on choice sets when the set of feasible alternatives varies. Alternatively, one can
focus on changes in the set of voters. A very natural consistency property with
respect to a variable electorate, often referred to as reinforcement, was suggested
independently by Smith [204] and Young [228]. It states that all alternatives that
are chosen simultaneously by two disjoint sets of voters (assuming that there is at
least one alternative with this property) should be precisely the alternatives chosen
by the union of both sets of voters. When also requiring anonymity, neutrality, and
a mild technical condition, Smith [204] and Young [229] have shown that scoring
rules are the only voting rules satisfying these properties simultaneously.

A voting procedure, popularized by Brams and Fishburn [36], that is closely
related to scoring rules is approval voting. In approval voting, every voter can
approve any number of alternatives and the alternatives with the highest number of
approvals win. We deliberately called approval voting a voting procedure, because
technically it is not really a voting rule (unless we impose severe restrictions on the
domain of preferences by making them dichotomous). Various aspects of approval
voting (including computational ones) are analyzed in a recent compendium by
Laslier and Sanver [152].

3.1.2 Condorcet Extensions

As mentioned in Section 1, a Condorcet winner is an alternative that beats every
other alternative in pairwise majority comparisons. We have already seen in the
Condorcet Paradox that there are preference profiles that do not admit a Condorcet
winner. However, whenever a Condorcet winner does exist, it obviously has to be
unique. Many social choice theorists consider the existence of Condorcet winners
to be of great significance and therefore call any voting rule that picks a Condorcet
winner whenever it exists a Condorcet extension. For aficionados of Condorcet’s
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criterion, scoring rules present a major disappointment: every scoring rule fails to
select the Condorcet winner for some preference profile [118]. This is shown by
using one universal example given in Figure 2.

6 3 4 4

a c b b
b a a c
c b c a

a’s score : 6 + 7s2

b’s score : 8 + 6s2

c’s score : 3 + 4s2

Figure 2: Example due to Fishburn [118], which shows that no scoring rule is a
Condorcet extension. Scores for the score vector (1, s2, 0) are given on the right-
hand side.

It is easily verified that alternative a is a Condorcet winner as 9 out of 17 voters
prefer a to b and 10 out of 17 voters prefer a to c. Now, consider an arbitrary
scoring rule with score vector (s1, s2, s3). Due to the linearity of scores, we may
assume without loss of generality that s1 = 1 and that s3 = 0. The resulting scores
for each alternative are given in Figure 2. Since s2 ∈ [0, 1], the score of alternative
b always exceeds that of alternatives a and c. In other words, b is the unique
winner in any scoring rule, even though a is the Condorcet winner.

We now give some examples of rules that do satisfy Condorcet’s criterion.
This list is far from complete, but it already shows the wide variety of Condorcet
extensions.

Copeland’s rule. We have already mentioned Copeland’s rule: an alternative
gets a point for every pairwise majority win, and some fixed number of points
between 0 and 1 (say, 1/2) for every pairwise tie. The winners are the alternatives
with the greatest number of points.

Maximin. Under the maximin rule, we consider the magnitude of pairwise elec-
tion results (by how many voters one alternative was preferred to the other). We
evaluate every alternative by its worst pairwise defeat by another alternative; the
winners are those who lose by the lowest margin in their worst pairwise defeats.
(If there are any alternatives that have no pairwise defeats, then they win.)

Dodgson’s rule. Dodgson’s rule yields all alternatives that can be made a Con-
dorcet winner by interchanging as few adjacent alternatives in the individual
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rankings as possible. Deciding whether an alternative is a Dodgson winner is
Θ

p
2-complete and thus computationally intractable [20, 130]. Various computa-

tional properties of Dodgson’s rule such as approximability and fixed-parameter
tractability have been studied [see, e.g., 158, 51, 24, 52]. Unfortunately, Dodg-
son’s rule violates various mild axioms that almost all other Condorcet extensions
satisfy [see, e.g., 38].

Young’s rule. Young’s rule is based on removing voters in order to obtain a
Condorcet winner. More precisely, it yields all alternatives that can be made a
Condorcet winner by removing as few voters as possible. Deciding whether an
alternative is a winner according to Young’s rule is Θ

p
2-complete [185].11 Further

computational results for Young’s rule were obtained by Caragiannis et al. [51],
Betzler et al. [24]

Nanson’s rule. Nanson’s rule is a runoff method similar to STV as described in
Section 1.1. In Nanson’s original definition, a series of Borda elections is held and
all alternatives who at any stage have no more than the average Borda score are
excluded unless all alternatives have identical Borda scores, in which case these
candidates are declared the winners. There exist two variants of Nanson’s rule due
to Fishburn and Schwartz, which exclude candidates with the lowest Borda score
(also known as Baldwin’s rule) and candidates whose Borda score is less than the
average score, respectively [167].

Ranked pairs. The ranked pairs rule generates a ranking of all alternatives (and
the first-ranked alternative can be considered the winner). It first sorts all pairwise
elections by the magnitude of the margin of victory. Then, starting with the pair-
wise election with the largest margin, it “locks in” these results in this order, so
that the winner of the current pairwise election must be ranked above the loser
in the final ranking—unless this would create a cycle due to previously locked-in
results, in which case we move on to the next pairwise election. A similar voting
rule was proposed by Schulze [192].

All SCFs mentioned in Section 2.2 (e.g., the top cycle, the uncovered set,
and the Banks set) also happen to be Condorcet extensions. This is because the

11Young [230] actually defined his rule using weak Condorcet winners (see Exercise 15). Brandt
et al. [46] have shown that the hardness result by Rothe et al. [185] carries over to Young’s original
definition.
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Condorcet criterion can be seen as a very weak variant of expansion consistency:
whenever an alternative is chosen in all two-element subsets, then it should also
be chosen from the union of all these sets. Many of the proposed Condorcet
extensions can be seen as refinements of these SCFs because they always yield
elements of, say, the top cycle or the uncovered set. Other prominent Condorcet
extensions are Kemeny’s rule and Slater’s rule (see Section 2.1).

3.1.3 Other Rules

While scoring rules and Condorcet extensions are two important classes of voting
rules, many other rules that do not fit in either class have been proposed over the
years. Two examples are STV and Bucklin’s rule.

STV. We have already mentioned the STV rule: it looks for the alternatives that
are ranked in first place the least often, removes them from all voters’ ballots (so
that some of them may now rank a different alternative first), and repeats. The
alternatives removed in the last round (which results in no alternatives being left
at all) win.

Bucklin’s rule. In the (simple version of) Bucklin’s rule, we first check whether
there is any alternative that is ranked first by more than half the voters; if so,
this alternative wins. If not, we check whether there are any alternatives that are
ranked in either first or second place by more than half the voters; if so, they win.
If not, we consider the first three positions, etc. When multiple alternatives cross
the n/2 threshold simultaneously, it is common to break ties by the margin by
which they crossed the threshold.

In order to gain more insight into the huge zoo of voting rules, various ax-
ioms that may or may not be satisfied by a voting rule have been put forward.
Sometimes a certain set of axioms completely characterizes a single voting rule
(such as the SCFs proposed in Section 2.2.2) or an interesting class of voting rules
(such as the class of scoring rules in Section 3.1.1). Another stream of research
studies the rationalization of voting rules by measuring the distance (according to
various metrics) of a given preference profile to the nearest preference profile that
satisfies certain consensus properties (e.g., being completely unanimous or ad-
mitting a Condorcet winner). This approach goes back to Dodgson’s voting rule
mentioned in Section 3.1.2 and covers many of the rules proposed in this section
[161, 99, 100].
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3.2 Manipulation
So far, we have assumed that the preferences of all voters are known. In reality,
generally the voters need to report their preferences. A significant problem is
that a voter may be incentivized to report preferences other than her true ones.
For example, consider a plurality election between three alternatives, a, b, and
c. Consider voter i with preferences a �i b �i c. Moreover, suppose that voter
i believes that almost nobody else will rank a first, but it will be a close race
between b and c. Then, i may be best off casting a vote in which b is ranked first:
he has little hope of getting a to win, so he may be better off focusing on ensuring
that at least b will win.

One may wonder why manipulation is something to be avoided. First, the
possibility of manipulation leads to fairness issues since manipulative skills are
usually not spread evenly across the population. Second, energy and resources
are wasted on determining how best to manipulate. Third, it makes it difficult to
evaluate whether the resulting outcome is in fact one that makes sense with re-
spect to the true preferences (as opposed to the reported ones). As we will see, the
question of how to manipulate is not only computationally but also conceptually
problematic. It raises various fundamental game-theoretic questions and makes
it very difficult to make predictions or theoretical statements about election out-
comes.12 There is also a result in the theory of mechanism design known as the
revelation principle that can be very informally described as saying that anything
that can be achieved by a mechanism in which agents play strategically, can also
be achieved by a mechanism in which agents are best off telling the truth, under-
lining again the importance of truthful voting (for more details see the chapter on
Mechanism Design and Auctions in this volume). Unfortunately, as we shall see,
the problem of manipulation cannot be avoided in general as every single-valued

12One reason for this is that voting games can have many different equilibria. For example, in
a plurality election, it can be an equilibrium for all voters to vote for either b or c, even though all
voters rank a first in their true preferences! This is so because if nobody else is expected to vote
for a, then it does not make sense to waste one’s vote on a. If such an equilibrium seems artificial,
imagine a society in which two parties dominate the political scene and put forward candidates b
and c, whereas a is a third-party candidate. Of course, there are other equilibria as well, which
will in general result in different winners. This makes it difficult to make any predictions about
strategic voting. One context in which we can make a sharp game-theoretic prediction of the
winner is the one in which the agents vote in sequence, one after the other, observing what the
earlier agents have voted (see also Section 4.2). Unfortunately, in this context, paradoxical results
can be exhibited where the game-theoretic outcome does not reflect the voters’ true preferences
well. For more detail, see the work of Desmedt and Elkind [89] and Xia and Conitzer [220].
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voting rule for more than two alternatives is susceptible to manipulation.

3.2.1 The Gibbard-Satterthwaite Impossibility

In order to formally capture whether voting rule f can be manipulated by voter i,
we initially make the following assumptions. First, since voters just have pref-
erences over single alternatives we assume that f is resolute (i.e., single-valued).
And second, we assume that i knows the preferences of all other voters. This latter
assumption is not entirely unreasonable in some settings (e.g., decision making in
committees) and actually makes all statements about non-manipulability particu-
larly strong because it guarantees non-manipulability even when all preferences
are known.

Formally, a resolute voting rule f is manipulable by voter i if there exist pref-
erence profiles R and R′ such that R j = R′j for all j , i and f (R′) �i f (R). (Recall
that �i corresponds to the strict part of %i (not %′i).) A voting rule is strategyproof
if it is not manipulable.

Just like an SCF, a voting rule f is non-dictatorial if there is no voter i such
that for all preference profiles R, a ∈ f (R) where a is voter i’s most preferred
alternative.13 Finally, we need a technical condition, even weaker than Pareto-
optimality, that ensures that at least three different alternatives can be returned by
the voting rule, as follows. A voting rule is non-imposing if its image contains all
singletons of F(U), i.e., every single alternative is returned for some preference
profile.

Theorem 3 (Gibbard, 1973; Satterthwaite, 1975). Every non-imposing, strate-
gyproof, resolute voting rule is dictatorial when |U | ≥ 3.

Just as for Arrow’s Theorem, we will now consider different ways to circum-
vent this impossibility by calling some of its explicit and implicit assumptions into
question.

3.2.2 Restricted Domains of Preferences

One of the implicit assumptions of the Gibbard-Satterthwaite Theorem is that the
voting rule needs to be defined for all possible preference profiles. An important
stream of research has consequently studied which restricted domains of prefer-
ences allow for strategyproof voting rules.

13For resolute voting rules, a ∈ f (R) obviously implies {a} = f (R).
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An important observation by Moulin [165] is that in every restricted domain
that always admits a Condorcet winner, the SCF that uniquely chooses the Con-
dorcet winner is strategyproof (see Exercise 9). There are many examples of such
domains. The best-known among these is the domain of single-peaked prefer-
ences. Suppose there is a linear ordering < on the alternatives, signifying which
alternatives are “smaller” than others. For example, the voters may be voting
over what the tax rate should be. In this case, the set of alternatives may be
{20%, 30%, 40%, 50%, 60%}, and clearly, 20% < 30% < . . . < 60%. They may
also be voting over possible dates for a deadline, in which case earlier dates could
be considered smaller; they may be voting over a location along a road at which
to build a building, in which case locations further to the west could be considered
“smaller”; or, more abstractly, they could be voting over political candidates, in
which case candidates further to the left of the political spectrum could be consid-
ered “smaller.”

Imposing an ordering < on the alternatives, in and of itself, of course does
not restrict the preferences yet; we must say something about how the preferences
relate to the order over the alternatives. Preferences are said to be single-peaked
with respect to the order < if the following holds: for every voter, as we move
away (according to <) from the voter’s most-preferred alternative, the alternatives
will become less preferred for that voter. Formally, a preference profile R is single-
peaked if for every x, y, z ∈ U, it holds that

if (x < y < z) or (z < y < x), then x �i y implies y �i z for every i ∈ N.

When preferences are single-peaked and there is an odd number of voters, there is
always a unique Condorcet winner. If we sort voters by < according to their most-
preferred alternative (breaking ties arbitrarily), then the ((n+1)/2)th voter is called
the median voter. His top choice is always identical to the Condorcet winner,
as was first observed by Black [27]. (The reason that the median voter’s most-
preferred alternative c is always the Condorcet winner is simple. Consider any
other alternative c′; without loss of generality, suppose c′ < c. Then, by single-
peakedness, all the voters whose most-preferred alternative is equal to or greater
than c will prefer c to c′, and these constitute more than half the voters.) Hence, to
determine a Condorcet winner, it suffices to know every voter’s top choice, even
though the voters’ preference relations contain more information than just their
most-preferred alternatives.

Now, what is the relation of all of this to the Gibbard-Satterthwaite Theorem?
The answer is that the median-voter rule, in spite of clearly allowing every alter-
native the possibility of winning and not being a dictatorial rule, is strategyproof
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when we restrict attention to preference profiles that are single-peaked. This fol-
lows immediately from the more general result by Moulin [165] that we stated
earlier, which says that any Condorcet extension is strategyproof when we only
consider profiles with a Condorcet winner. Still, it is instructive to explain the rea-
sons for strategyproofness directly. To do so, consider what a voter who did not get
his most preferred alternative elected could do. Suppose the winner a is “smaller”
than his own top choice b. If he manipulates and instead of truthfully declaring b
as his top choice decides to report a “smaller” alternative b′, then either the win-
ner will not change or the winner will become even “smaller” and thus even less
attractive. On the other hand, if he reports a “larger” alternative b′′ instead, then
he will not affect the median (and thus the winner) at all. Hence, any form of
manipulation will either damage his interests or have no effect at all. The exact
same argument would continue to hold even if instead of choosing the median, or
50th-percentile, voter, we chose the (say) 60th-percentile voter, even though this
clearly would not necessarily choose the Condorcet winner. The argument is also
easily modified to prove the stronger property of group-strategyproofness (where
a group of agents can join forces in attempting to manipulate the outcome).

Singled-peakedness has also been studied from a computational point of view.
It is very easy to check whether a preference profile is single-peaked according to
a specific given ordering <. However, it is less obvious whether it can be checked
efficiently whether a preference profile is single-peaked according to some order-
ing <. Building on previous work by Bartholdi, III and Trick [18], Escoffier et al.
[106] proposed a linear-time algorithm for this problem. In other work, Conitzer
[63] and Farfel and Conitzer [116] investigated how to elicit the voters’ prefer-
ences by asking as few queries as possible when preferences are known to be
single-peaked (with the latter paper focusing on settings where agents have most-
preferred ranges of alternatives). The computational hardness of manipulation
(which will be introduced in the next section) for other voting rules than me-
dian voting has also been examined in the context of single-peaked preferences
[213, 111, 46].

Another important domain of restricted preferences is that of value-restricted
preferences which also guarantees the existence of a Condorcet winner and sub-
sumes many other domains such as that of single-peaked preferences [197, 201].

3.2.3 Computational Hardness of Manipulation

The positive results for restricted preferences discussed above are encouraging for
settings where we can expect these restrictions to hold. Unfortunately, in many
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settings we would not expect them to hold. For example, while placing political
candidates on a left-to-right spectrum may give us some insight into what the vot-
ers’ preferences are likely to be, we would still expect many of their preferences
to be not exactly single-peaked: a voter may rank a candidate higher because
the candidate is especially charismatic, or perhaps voters are somewhat more so-
phisticated and they really consider two spectra, a social one and an economic
one. This is perhaps the main downside of the approach of restricting the voters’
preferences: we generally have no control over whether the preferences actually
satisfy the restriction, and if they do not, then there is little that we can do.

We now discuss another approach to circumventing impossibility results such
as the Gibbard-Satterthwaite Theorem. Here, the idea is that the mere theoretical
possibility of manipulation need not be a problem if in practice, opportunities
for manipulation are computationally too hard to find. So, how hard is it to find
effective manipulations? For this, we first need to clearly define the manipulation
problem as a computational problem. The best-known variant is the following,
which takes the perspective of a single voter who (somehow) already knows all the
other votes, and wishes to determine whether he can make a particular alternative
the winner.

Definition 4. In the manipulation problem for a given resolute voting rule, we are
given a set of alternatives, a set of (unweighted) votes, and a preferred alternative
p. We are asked whether there exists a single vote that can be added so that p
wins.14

One may object to various aspects of this definition. First of all, one may argue
that what the manipulator seeks to do is not to make a given alternative the winner,
but rather to get an alternative elected that is as high in his true ranking as possible.
This does not pose a problem: if the manipulator can solve the above problem,
he can simply check, for every alternative, whether he can make that alternative
win, and subsequently pick the best of those that can win. (Conversely, to get an
alternative elected that is as high in his true ranking as possible, he needs to check
first of all whether he can make his most-preferred alternative win, which comes
down to the above problem.) Another objection is that the manipulator generally
does not know the votes of all the other voters. This is a reasonable objection,
though it should be noted that as long as it is possible that the manipulator knows

14Often, the problem is defined for irresolute voting rules; in this case, the question is either
whether p can be made one of the winners, or whether p can be made the unique winner. These
questions can be interpreted to correspond to the cases where ties are broken in favor of p, and
where they are broken against p, respectively.
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the votes of all the other voters, the above problem remains a special case (and
thus, any (say) NP-hardness results obtained for the above definition still apply.

Inspired by early work by Bartholdi, III et al. [19], recent research in com-
puter science has investigated how to use computational hardness—primarily NP-
hardness—as a barrier against manipulation [see, e.g., 68, 74, 98, 129, 110]. Find-
ing a beneficial manipulation is known to be NP-hard for several rules, including
second-order Copeland [19], STV [17], ranked pairs [224], and Nanson and Bald-
win’s rules [166]. Many variants of the manipulation problem have also been
considered. In the coalitional manipulation problem, the manipulators can cast
multiple votes in their joint effort to make p win. Because the single-manipulator
case is a special case of this problem where the coalition happens to have size 1,
this problem is NP-hard for all the rules mentioned above. However, other rules
are also NP-hard to manipulate in this sense, including Copeland [109, 115],
maximin [224], and Borda [25, 85]. Finally, in the weighted version of this
problem, weights are associated with the voters, including the manipulators (a
vote of weight k counts as k unweighted votes). Here, many rules become NP-
hard to manipulate even when the number of alternatives is fixed to a small con-
stant [74, 129, 166].

In the destructive version of the problem, the goal is not to make a given alter-
native a win, but rather to make a given alternative a not win [74]. For contrast,
the regular version is called the constructive version. If the constructive version is
easy, then so is the destructive version, because to solve the destructive version it
suffices to solve the constructive version for every alternative other than a; but in
some cases, the destructive version is easy while the constructive version is not.

Computational hardness has also been considered as a way of avoiding other
undesirable behavior. This includes control problems, where the chair of the elec-
tion has (partial) control over some aspects of the election (such as which alterna-
tives are in the running or which voters get to participate) and tries to use this to
get a particular alternative to win [16, 132, 179, 75, 113]. Another example is the
bribery problem, where some interested party attempts to bribe the voters to bring
about a particular outcome [108, 112, 113].

One downside of using NP-hardness to prevent undesirable behavior—
whether it be manipulation, control, or bribery, but let us focus on manipulation—
is that it is a worst-case measure of hardness. This means that if the manipulation
problem is NP-hard, it is unlikely that there is an efficient algorithm that solves all
instances of the manipulation problem. However, there may still be an efficient
algorithm that solves many of these instances fast. If so, then computational hard-
ness provides only partial protection to manipulation, at best. It would be much
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more desirable to show that manipulation is usually hard. Recent results have cast
doubt on whether this is possible at all. For instance, it was shown that, when
preferences are single-peaked many of the manipulation problems that are known
to be NP-hard for general preferences, become efficiently solvable [111, 46]. In
other work on certain distributions of unrestricted preferences, both theoretical
and experimental results indicate that manipulation is often computationally easy
[e.g., 71, 176, 177, 218, 217, 214]. Extending a previous result by Friedgut et al.
[119], Isaksson et al. [139] have recently shown that efficiently manipulable in-
stances are ubiquitous under fairly general conditions.

Theorem 4 (Isaksson et al., 2010). Let f be a neutral resolute voting rule and
assume that preferences are uniformly distributed. The probability that a random
preference profile can be manipulated by a random voter by submitting random
preferences is at most polynomially small in |U | and n.

As a consequence, for efficiently computable, neutral, and resolute voting
rules, a manipulable preference profile with a corresponding manipulation can
easily be found by repeated random sampling. The current state of affairs on us-
ing computational hardness to prevent manipulation is surveyed by Faliszewski
and Procaccia [107].

3.2.4 Probabilistic Voting Rules

Perhaps the only weakness of the Gibbard-Satterthwaite Theorem is that it is re-
stricted to resolute voting rules [see, e.g., 206]. As we have seen in Section 3,
resoluteness is at variance with elementary fairness conditions such as anonymity
and neutrality. The most natural way to break ties yielded by an irresolute voting
rule that comes to mind is to pick a single winner at random according to some
probability distribution. In order to formalize this, Gibbard [125] proposed an
extension of voting rules called social decision schemes (SDSs), which map pref-
erence profiles to probability distributions (so-called lotteries) over alternatives.

Of course, the introduction of lotteries raises the question of how voters com-
pare lotteries with each other. The standard approach chosen by Gibbard [125]
and subsequent papers [e.g., 126, 11] is to use an expected utility model. In this
context, an SDS is strategyproof if, for any utility function that the voter may have
over the alternatives, the voter is best off reporting the ordering of the alternatives
that corresponds to his true utility function.

Standard examples of non-manipulable SDSs are random dictator rules, in
which the most preferred alternative of a randomly selected voter is chosen ac-
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cording to a probability distribution that does not depend on the voters’ prefer-
ences. While these rules are clearly fairer than rules with a fixed dictator, they
are still not entirely desirable. Unfortunately, when requiring non-imposition,
i.e., every alternative may be chosen with probability 1 under some circumstances
(e.g., when all voters unanimously agree), random dictatorships are the only non-
manipulable SDSs.

Theorem 5 (Gibbard, 1977; Hylland, 1980). Every non-imposing, non-
manipulable SDS is a random dictatorship when |U | ≥ 3.

While this might appear like the natural equivalent of the Gibbard-
Satterthwaite Theorem, it may be argued that non-imposition is rather strong in
this context. Gibbard [125] provides a different characterization that uses so-
called duple rules, in which the outcome is always restricted to two randomly
chosen alternatives (e.g., by applying the majority rule to a random pair of alter-
natives), which no longer seems so unreasonable. Following along these lines,
Barberà [12] and Procaccia [175] provide further examples and characterizations.
However, all of these SDSs require an extreme degree of randomization.15

3.2.5 Irresolute Voting Rules

The definition of manipulability for SDSs rests on strong assumptions with respect
to the voters’ preferences. In contrast to the traditional setup in social choice the-
ory, which typically only involves ordinal preferences, this model relies on the
axioms of von Neumann and Morgenstern in order to compare lotteries over al-
ternatives. The gap between the Gibbard-Satterthwaite Theorem for resolute vot-
ing rules and Gibbard’s theorem for social decision schemes has been filled by a
number of impossibility results for irresolute voting rules with varying underlying
notions of how to compare sets of alternatives with each other [see, e.g., 206, 13].

How preferences over sets of alternatives relate to or depend on preferences
over individual alternatives is a fundamental issue that goes back to the founda-
tions of decision making. There is no single correct answer to this question. Much
depends on the particular setting considered, the nature of the alternatives, and
what we can assume about the personal inclinations of the agent entertaining the
preferences. In the context of social choice the alternatives are usually interpreted
as mutually exclusive candidates for a unique final choice. For instance, assume a

15An important extension of this model studies SDSs in which the von Neumann-Morgenstern
utility functions of the voters rather than their preference relations are aggregated [see, e.g., 137,
14, 96].

30



voter prefers a to b, b to c, and—by transitivity—a to c. What can we reasonably
deduce from this about his preferences over the subsets of {a, b, c}? It stands to
reason to assume that he would strictly prefer {a} to {b}, and {b} to {c}. If a single
alternative is eventually chosen from each choice set, it is safe to assume that he
also prefers {a} to {b, c}, but whether he prefers {a, b} to {a, b, c} already depends
on (his knowledge about) the final decision process. In the case of a lottery over
all pre-selected alternatives according to a known a priori probability distribution
with full support, he would prefer {a, b} to {a, b, c}.16 This assumption is, however,
not sufficient to separate {a, b} and {a, c}. Based on a sure-thing principle which
prescribes that alternatives present in both choice sets can be ignored, it would be
natural to prefer the former to the latter. Finally, whether the voter prefers {a, c}
to {b} depends on his attitude towards risk: he might be an optimist and hope for
his most-preferred alternative, or a pessimist and fear that his least-preferred al-
ternative will be chosen. One of the most influential negative results for irresolute
rules is the Duggan-Schwartz impossibility [92].

Theorem 6 (Duggan and Schwartz, 2000). Every non-imposing, non-dictatorial
voting rule can be manipulated by an optimist or pessimist when |U | ≥ 3.

However, for weaker (incomplete) preference relations over sets more positive
results can be obtained [e.g., 39, 41]. Brandt [39], for instance, has shown that the
minimal covering set and the bipartisan set (mentioned in Section 2.2.2) are non-
manipulable when one set of alternatives is preferred to another if and only if
everything in the former is preferred to everything in the latter.

3.3 Possible and Necessary Winners
Two commonly studied computational problems in voting are the possible winner
problem and the necessary winner problem [142]. The input to these problems is
a partially specified profile of votes and a distinguished alternative c; we are asked
whether there exists some completion of the profile that results in c winning (pos-
sible winner) or whether c will in fact win no matter how the profile is completed
(necessary winner).17

There are several important motivations for studying these problems. One de-
rives from the preference elicitation problem, where we repeatedly query voters

16The posterior distribution is obtained by conditioning on the selected subset. This rules out
inconsistent lotteries like always picking b from {a, b} and a from {a,b,c}.

17Other work has considered this problem in the setting where instead of uncertainty about the
profile, there is uncertainty about the voting rule [150].
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for parts of their preferences until we know enough to determine the winner. The
necessary winner problem is of interest here, because at an intermediate stage
in the elicitation process, we will know the profile partially and may wish to
know whether we can safely terminate and declare c the winner. (The compu-
tational problem of determining whether elicitation is done was explicitly studied
by Conitzer and Sandholm [67].) The possible and necessary winner problems
also have as a special case the problems faced by a set of manipulators who know
the subprofile of the other voters (when they wish to make a given alternative win
or prevent a given alternative from winning, respectively). This latter observation
allows us to easily transfer hardness results for the manipulation problem to the
possible and necessary winner problems. In general, however, the possible and
necessary winner problems can be even harder than the corresponding manipula-
tion problems, because the possible and necessary winner problems generally also
allow individual votes to be only partially specified (which makes sense under the
elicitation interpretation, because we may so far have asked voters to compare
only certain pairs of alternatives, and not others).18

A natural way for expressing partial knowledge about the voters’ preferences
is to have a partial order over the alternatives associated with every voter. The
idea is that we know that the voters preferences must be some linear order that ex-
tends that partial order. The computational complexity of this problem for various
voting rules has been determined by Xia and Conitzer [221]. The possible winner
problem is NP-complete for rules including STV, scoring rules including Borda
and k-approval,19 Copeland, maximin, Bucklin, and ranked pairs. The necessary
winner problem is coNP-complete for all these except scoring rules, maximin,
and Bucklin, for which it can be solved in polynomial time. For plurality and
anti-plurality, both problems can be solved in polynomial time.

4 Combinatorial Domains
So far we have presented the classical mathematical framework for studying dif-
ferent variants of the problem of social choice and we have seen examples of
questions regarding the computational properties of this framework. Next, we will

18Recent work has also studied a version of the manipulation problem where the profile of
nonmanipulator votes is only partially known to the manipulator [79], which is another problem
that is closely related to the possible/necessary winner problem.

19The complexity of the possible winner problem for scoring rules has been completely charac-
terized by Betzler and Dorn [22] and Baumeister and Rothe [21].
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consider a social choice problem where computational considerations already play
a central role at the level of defining the formal framework to study this problem.
The problem in question is the problem of social choice in combinatorial do-
mains. To simplify matters, we will focus specifically on voting in combinatorial
domains.

Let us begin with an example. Suppose three agents need to agree on a menu
for dinner. The options for the starter are salad and oyster; the options for the
main course are trout and veal; and the options for the wine are red and white.
The favorite menus of our three agents are as follows.

Agent 1: salad-trout-white
Agent 2: salad-veal-red
Agent 3: oyster-veal-white

Agent 1 likes trout and naturally wants to combine this with a white wine; agent 2
likes veal (which may be paired with either red or white wine) and has a preference
for red wine; and agent 3 likes oyster and veal, which calls for a white wine. Now,
what menu should our agents choose as a group, and how should they make that
choice? Maybe the most natural approach is to use the plurality rule on each of the
three issues: there is a majority for salad, there is a majority for veal, and there is
a majority for white wine. That is, the group menu will be salad-veal-white. But
this very conceivably could be one of the worst possible choices for our agents:
like agent 2, they may very well all prefer to have a red wine with salad and veal.

What went wrong here? The problem is that the preferences of the agents over
the choices made for each of the three issues are not independent. For instance,
our little story suggested that for all of them their preferred choice of wine depends
on what starter and main course they will actually get served. But voting issue-by-
issue completely ignores this dependency, and so we should not be too surprised
if we get a paradoxical outcome.

Note also that the next most obvious approach, which would be to directly
vote on full menus does not work very well either. If we ask each agent only
for his most preferred menu (as we have done above), we will typically get three
different answers, and the best we can do is to randomly select one of the three.
We could refine this approach further, and ask, say, for their five most preferred
menus and apply, say, the Borda rule. This might lead to an acceptable solution
in our little example, but imagine we are dealing with a choice problem with 10
binary issues and thus 210 = 1024 alternatives: the most preferred alternatives of
our three agents might very well be entirely disjoint again.
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A full description of our example should actually list the full preferences of
each of our three agents over the combinatorial domain D = {salad, oyster} ×
{trout, veal}×{red,white}, i.e., over a set of eight alternatives. Note that the number
of alternatives is exponential in the number of issues. But this means that even for
examples with a slightly larger number of issues it can quickly become practically
infeasible for the agents to rank all the alternatives and communicate this ranking.
That is, there is a fundamental computational challenge hidden at the very heart of
voting in combinatorial domains: even a small problem description immediately
gives rise to a very large choice problem.

In our little example there actually is a good solution: For all three agents,
their preferences regarding the wine depend on the choices made for the starter
and the main course, while their preferences for those two issues do not depend
on anything else (we have not actually described our example in enough detail
before to be sure about the latter fact, but let us now assume that this is indeed
the case). We can use these dependencies to determine a good order in which to
vote on each of the three issues in sequence. As long as we vote on the wine at
the very end, there will not be any paradoxical outcome (nor will there be any
computational difficulty).20

So, if we first use the plurality rule to choose a starter and a main course, our
agents are likely to choose the salad and the veal. If we then fix these choices
and ask the agents to vote on the wine, they will select the red wine, yielding an
outcome (salad-veal-red) that is ideal for agent 2 and not unreasonable for the
other two.

The kind of paradox we have seen has long been observed and studied in
political science, typically under the name of “multiple-election paradoxes” [35].
As a problem that is inherently computational in nature it was first formulated by
Lang [148].

As the representation of an agent’s preferences plays a central role in social
choice in combinatorial domains, we will first review the most important knowl-
edge representation languages that have been used in the literature to this end.
We will then focus on two types of promising approaches: sequential voting and
voting by means of compactly represented preferences.

20This is assuming that agents do not vote strategically; we will discuss this point more at the
end of Section 4.2.
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4.1 Preference Representation
Suppose we want to model an agent’s preferences over a combinatorial domain
defined by ` binary variables, i.e., over a domain with 2` alternatives. There are
(2`)! different linear orders that might represent the agent’s preferences, and there
are even more possibilities if we want to also consider weak or partial orders. En-
coding such a linear order thus requires at least log(2`!), i.e., O(` · 2`), bits. If we
use an explicit representation that specifies for each pair of alternatives whether
or not our agent prefers the first of them over the second, we even need O(2` · 2`)
bits (one per pair). This will generally not be feasible in practice. Instead, we
require a compact preference representation language that will allow us to model
those preference structures that we can expect to occur in a given application sce-
nario using short expressions in that language. When choosing such a language,
we should consider its expressive power (which preference structures can it ex-
press?), its relative succinctness (can it do so using significantly less space than a
given rival language?), its complexity (how hard is it to reason about preferences
expressed in the language?), its elicitation-friendliness (does it support efficient
elicitation of preferences from the agents?), and its cognitive adequacy (is it a
“natural” form of describing preferences?) [54].

The most widely used language for compact preference representation used in
computational social choice are conditional preference networks, or CP-nets [31].

The basic idea is to induce a preference order from statements of the form “if
condition C holds, then—everything else being equal—I prefer variable X to take
value x rather than value x̄”. A CP-net is based on a directed graph on the set
of variables defining the combinatorial domain in question. Every vertex in the
graph is annotated with a table that specifies, for each possible instantiation of the
variables corresponding to the parents of that vertex, a preference order over the
possible values of the variable corresponding to that vertex. Let us consider an
example. Suppose our domain is defined by means of three variables: X (with
possible values x and x̄), Y (with possible values y and ȳ), and Z (with possible
values z and z̄). A CP-net for this domain might look like this:
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X Y Z- -
R

x � x̄ x : y � ȳ
x̄ : ȳ � y

xy : z � z̄
xȳ : z̄ � z
x̄y : z̄ � z
x̄ȳ : z̄ � z

A CP-net induces a partial order: if two alternatives differ only in the instantiation
of a single variable, then we can look up the corresponding entry in the table for
that variable to find how the two alternatives should be ranked. The full partial
order is the transitive closure of the relations we obtain by interpreting the indi-
vidual preference statements in this manner. For instance, given the CP-net above,
we prefer xyz̄ to xȳz̄, because the two differ only in their assignment to Y , and the
first statement in the table for variable Y says that when X = x, then we should
prefer Y = y over Y = ȳ, everything else being equal (i.e., Z = z̄ in both cases).
The full preference relation induced by the CP-net above is the following partial
order (where an arrow represents � and the rankings obtained by transitivity are
not shown explicitly):

xyz→ xyz̄→ xȳz̄ →
↘

x̄ȳz̄

xȳz

↗

→

↗

x̄yz̄

x̄ȳz
↘

→ x̄yz

Note that, for instance, x̄ȳz̄ and xȳz are incomparable: the CP-net does not specify
which of the two the agent prefers.

Another important family of languages for preference representation is that
of prioritized goals [148, 81]. Prioritized goals are applicable when each of the
variables defining the combinatorial domain has exactly two possible values (e.g.,
true and false, or 1 and 0). The basic idea is to describe the goals of the agent
whose preferences we are modeling as formulas of propositional logic. For exam-
ple, the formula X ∨ Y expresses the goal of having at least one of the variables
X and Y take the value true, while X → ¬(Y ∧ Z) says that whenever X is true,
then it should not be the case that both Y and Z are true as well. Usually not all
goals will be satisfiable. An agent can indicate the importance of each of his goals
by labeling it with a number, its priority level (suppose a higher number indicates
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higher importance). Different interpretations of this kind of language are possible.
One choice is the lexicographic interpretation, under which we prefer alternative
a to alternative b if there exists a k such that for every priority level above k both
a and b satisfy the same number of goals, while a satisfies more goals of priority
level k than b does. For example, if an agent has the goals X and ¬Y and the
former has higher priority than the latter, then this induces the preference order
xȳ � xy � x̄ȳ � x̄y.

Both CP-nets and prioritized goals define preferences that are ordinal: either
linear or weak orders, as commonly used in classical social choice theory, or par-
tial orders and preorders, which can be particularly appropriate for applications
in multiagent systems, where we may want to model explicitly the fact that an
agent has bounded rationality and is lacking either the computational resources or
the necessary information to completely rank all possible pairs of alternatives. In
Section 5.1, in the context of discussing fair division problems, we will see further
examples of preference representation languages, namely languages for modeling
cardinal preferences (i.e., valuation functions).

4.2 Sequential Voting
In the example above, we already mentioned the idea of voting over the issues
one at a time, in sequence. This is a very natural idea and requires relatively little
communication. A downside of sequential voting is that an agent’s preferences for
the current issue may depend on issues on which we have not yet decided. (Above,
avoiding such a situation was our motivation for deciding on the wine last.) CP-
nets allow us to formalize this idea. We say that a CP-net is legal for an order over
the issues if its graph does not have any edges pointing from issues that are later
in the order to ones that are earlier (which immediately implies that the graph is
acyclic). As a result, if all the agents’ CP-nets are legal for the order in which we
vote over issues, then each agent’s CP-net will always unambiguously specify the
agent’s preferences over the current issue, because we will have already decided
on the values of the issues on which these preferences depend. This also means
that the agents do not actually need to vote on each issue separately; they can just
submit their CP-nets, and then leave. These ideas and the properties of sequential
voting are discussed in detail by Lang and Xia [149].

It is of course still possible to force agents to use sequential voting even if
their preferences for earlier issues do depend on later issues, but in this case it is
no longer clear how they should vote. One possibility is to assume that agents
vote strategically, thinking ahead towards what is likely to happen regarding later
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issues (which may also depend on how they vote on the current issue). It should
be noted that this will, in general, change how the agents vote even when their
preferences for earlier issues do not depend on later issues. Unfortunately, as we
have discussed earlier, even when there is only a single issue, strategic voting is
quite complicated when that issue can take three or more possible values—for
example, the corresponding game has multiple equilibria. On the other hand, if
we assume that each issue can take only two possible values and that the agents’
true preferences are common knowledge, then it is clear how to vote strategically.
This is because in the last round (when voting over the last issue) the agents are
effectively voting over the two remaining alternatives, so each agent is best off

voting for his preferred one; based on this, in the second-to-last round, the agents
can predict which alternative will end up chosen in the last round as a function
of which value the current (second-to-last) issue ends up taking, so effectively
the agents are deciding between the corresponding two alternatives; and so on.
Specifically, this means that under these circumstances strategic sequential voting
is bound to result in the election of the Condorcet winner, whenever it exists [145].

On the other hand, Xia et al. [226] show that, unfortunately, for some profiles
without a Condorcet winner, strategic sequential voting results in very poor out-
comes; in fact, this happens even when the agents’ preferences for earlier issues
never depend on the agents’ preferences for later issues, because they will not
necessarily vote truthfully. (Incidentally, the strategic sequential voting process is
a special case of multistage sophisticated voting [159, 162, 128].) Xia et al. [226]
also show that the outcome can be very sensitive to the order in which the issues
are voted on, potentially giving the agenda setter a significant amount (or even
complete) control over the outcome. The complexity of this control problem has
been studied in a nonstrategic context [75].

4.3 Voting with Compactly Represented Preferences
Considerations of strategic voting aside, sequential voting is an appealing pro-
cedure when each agent’s preferences are represented by a CP-net that is legal
with respect to the same ordering. But what if this is not the case? For one,
the agents may require different orders. For example, consider one agent who
prefers veal to trout regardless of which wine is chosen, but whose preferred wine
depends on which meal is served; and another agent who prefers red to white
wine regardless of which meal is served, but whose preferred meal depends on
which wine is served. For the former agent, it would be ideal to vote on the
meal first, but for the latter, it would be ideal to vote on the wine first. Clearly,
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there is no way to order the issues that will make both agents comfortable vot-
ing on the first issue without knowing what value the second issue will take.
Moreover, it is not necessarily the interaction between multiple agents’ prefer-
ences that causes trouble: it is even possible for a single agent’s preferences to
conflict with the idea of sequential voting. For example, consider an agent who
mostly cares that the wine fits the meal, and ranks the different meal combinations
(trout,white) � (veal, red) � (veal,white) � (trout, red). For this agent, no order-
ing of the issues is satisfactory, because his preference for each issue depends on
the other issue—his CP-net is cyclic.

How can we address such preferences, without falling back on making the
agents rank all the exponentially many alternatives, but rather by making use of a
compact preference representation language, such as CP-nets? This problem has
been introduced by Lang [148] under the name of “combinatorial voting”, i.e., vot-
ing by means of ballots that are compactly represented preference structures. Un-
fortunately, the computational complexity of this approach is often prohibitively
high. For example, Lang [148] shows that computing the election winners when
each voter specifies his preferences using the language of prioritized goals and (a
suitable generalized form of) the plurality rule is used is coNP-hard, even when
each voter only states a single goal. Similarly, deciding whether there exists a
Condorcet winner is coNP-hard under the same conditions. For languages that
can express richer preference structures, the complexity of winner determination
will typically be beyond NP.

One useful property of preferences represented by a CP-net is that, if we hold
the values of all but one issue fixed, then the CP-net specifies the agent’s prefer-
ences over that remaining issue. While it is not computationally efficient to do
so, conceptually, we can consider, for every issue and for every possible setting
of the other issues, all agents’ preferences. We can then choose winners based on
these “local elections” [223, 153, 78]. For example, we can look for an alternative
that defeats all of its neighboring alternatives (that is, the alternatives that differ
on only one issue from it) in pairwise elections. Of course, there may be more
than one such alternative, or none. The maximum likelihood approach mentioned
earlier in this chapter has also been pursued in this context [225].

Developing practical algorithms for voting in combinatorial domains is one of
the most pressing issues on the research agenda for computational social choice
in the near future.
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5 Fair Division
So far we have discussed social choice in its most general and abstract form, as
the problem of choosing one or several “alternatives”, or as the problem of rank-
ing them. An alternative might be a candidate to be elected to political office or
it might be a joint plan to be executed by a group of software agents. In prin-
ciple, it might also be an allocation of resources to a group of agents. In this
section, we specifically focus on this latter problem of multiagent resource allo-
cation. To underline our emphasis on fairness considerations we shall favor the
term fair division. In the economics literature, the broad research area concerned
with determining a fair and economically efficient allocation of resources in soci-
ety is known as welfare economics. We will introduce some of the fundamental
concepts from this literature, discuss them from an algorithmic point of view, and
review their relevance to multiagent systems.

Fair division differs from the other types of social choice problems discussed
in this chapter in at least two important respects:

1. Fair division problems come with a rich internal structure: alternatives are
allocations of goods to agents and an agent’s preferences are usually as-
sumed to only depend on their own bundle.

2. In the context of fair division problems, preferences are usually assumed to
be valuation functions, mapping allocations to numerical values, rather than
binary relations for ranking allocations.

Below (in Section 5.1) we will therefore begin by reviewing preference represen-
tation languages for compactly modeling such valuation functions.

First, however, we need to fix the type of goods to be allocated. The main line
of differentiation is between divisible and indivisible goods. A classical example
of the former scenario is the fair division of a cake. While there have been a num-
ber of contributions to the cake-cutting literature in theoretical computer science
and more recently also in artificial intelligence, to date, most work in multiagent
systems has concentrated on indivisible goods. We shall therefore only give one
example here, which is illustrative of the simple and elegant solutions that have
been obtained in the field of cake-cutting. Consider the moving-knife procedure
due to Dubins and Spanier [91]:

A referee moves a knife across the cake, from left to right. Whenever
an agent shouts “stop”, he receives the piece to the left of the knife
and leaves.
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Under standard assumptions on the agents’ valuation functions (namely, continu-
ity and additivity), this procedure is proportional: it guarantees each agent at least
1
n of the full value of the cake, according to their own valuation, whatever the other
agents may do (where n is the number of agents). To see this, observe that you
are free to shout “stop” when the knife reaches a point where the piece to be cut
would be exactly 1

n according to your valuation; and if another agent shouts “stop”
earlier, then that only means that he will leave with a piece that you consider to be
of less value than 1

n . The books by Brams and Taylor [37] and by Robertson and
Webb [182] both provide excellent expositions of the cake-cutting problem.

For the remainder of this section we will focus on the problem of fairly allocat-
ing a set of indivisible goods to a group of agents. After introducing several lan-
guages for representing preferences in this context, we define the most important
criteria for measuring fairness and economic efficiency, and we review examples
of work in computational social choice concerning the complexity of computing
a fair allocation and designing protocols that can guarantee convergence to a fair
allocation. For a more extensive review of the variety of multiagent resource al-
location problems and computational aspects of fairness than is possible here we
refer to the survey article by Chevaleyre et al. [54].

5.1 Preference Representation
Let G be a finite set of indivisible goods, with ` = |G|. Each agent may receive
any subset of G. The preferences of agent i ∈ N are given by means of a valuation
function vi : 2G → R, mapping every bundle he might receive to the value he
assigns to it. Valuation functions are often assumed to be monotonic, i.e., for any
two sets of goods S and S ′, it will be the case that vi(S ) ≤ vi(S ′) whenever S ⊆ S ′.
This assumption is also known as free disposal. For many applications it makes
sense to assume that valuation functions are monotonic, while for others we also
need to be able to model undesirable goods.

An explicit representation of a valuation function vi will often not be feasible
in practice, as it requires us to specify a list of 2` numbers. However, if valuations
are “well-behaved” in the sense of exhibiting some structural regularities, then a
compact representation using a suitable preference modeling language will often
be possible.

A powerful family of languages, closely related to the prioritized goal lan-
guages discussed in Section 4.1, is based on weighted goals. This language orig-
inates in the work on penalty logic of Pinkas [172] and variants of it have been
used in many areas of artificial intelligence and elsewhere. Its relevance for pref-
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erence representation in the context of social choice has first been recognized by
Lafage and Lang [146]. The basic idea is again to have an agent express his goals
in terms of formulas of propositional logic and to assign numbers, or weights, to
these goals to indicate their importance. We can then aggregate the weights of
the goals satisfied by a given alternative to compute the value of that alternative.
The most widely used form of aggregation is to take the sum of the weights of
the satisfied goals. For example, suppose G is a set of three goods, associated
with the propositional variables p, q and r. An agent providing the weighted goals
(p ∨ q, 5) and (q ∧ r, 3) expresses the following valuation function:

v(∅) = 0 v({p, q} = 5
v({p}) = 5 v({p, r}) = 5
v({q}) = 5 v({q, r}) = 8
v({r}) = 0 v({p, q, r}) = 8

That is, obtaining one of p and q (or both) has value 5 for him, and in case he
obtains the latter, obtaining r on top of it results in an additional value of 3.

By putting restrictions on the kinds of formulas we want to admit to describe
goals, we can define different languages. For instance, we may only permit con-
junctions of atomic formulas, or we may only allow formulas of length at most 3,
and so forth. Different such languages have different properties, in view of their
expressive power, in terms of their succinctness for certain classes of valuations
functions, and regarding the computational complexity of basic reasoning tasks,
such as computing the most preferred bundle for an agent with a given set of
weighted goals. For full definitions and a detailed analysis of these properties, we
refer to the work of Uckelman et al. [211].

Weighted goal languages are closely related to other languages to be found in
the literature. For instance, k-additive functions, studied in measure theory [127],
correspond to the weighted goal language we obtain when the only admissible
logical connective is conjunction and when each formula may involve at most k
propositional variables [211]. In cooperative game theory, marginal contribution
nets [138], a language for modeling coalitional games, correspond to the language
of conjunctions of literals of arbitrary length.21 Weighted goal languages have also
been studied for other forms of aggregation than summing up the weights of the
satisfied goals [146, 210].

21In some expositions of marginal contributions nets the restriction to conjunctions of literals
is not imposed, in which case we obtain the general language of weighted goals (see, e.g., the
chapter on Computational Coalition Formation in this volume).
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Preference representation languages also play an important role in the litera-
ture on combinatorial auctions [82], where they are known as bidding languages.
In an auction, each bidder has to describe his valuation of the goods on sale to the
auctioneer, i.e., a bid amounts to the specification of a valuation function (whether
or not the bidder does so truthfully is irrelevant for the representation problem at
hand). The idea of using weighted goals has been used also in this domain [30].
The most widely used basic bidding languages, however, belong to the OR/XOR
family. An atomic bid is a bundle of goods together with a price, e.g., ({p, q}, 7).
Each bidder can provide any number of atomic bids. Under the OR-language,
the value of a bundle for the bidder is the maximum price that we can obtain by
assigning each item in the bundle to (at most) one atomic bid and summing up the
prices for those atomic bids that are covered completely by this assignment. For
example, given the bid ({p, q}, 7) or ({p, r}, 5) or ({r}, 3), the value of the bundle
{p, q, r} is 7 + 3 = 10. Under the XOR-language the value of a bundle is the price
of the most valued atomic bid it can cover. That is, the XOR-language is like the
explicit representation mentioned earlier (together with an implicit monotonicity
assumption). Combinations or OR and XOR have also been studied. Full def-
initions and results regarding the expressive power and succinctness of different
languages are available in a review article by Nisan [169].

Yet another option is to think of a valuation function as a program that takes
bundles as inputs and returns values as output. In the context of fair division, this
idea has been explored in the work of Dunne et al. [94].

While most work in fair division assumes that preferences are given in the
form of valuation functions the problem of fairly dividing goods over which agents
have ordinal preferences is also interesting. CP-nets, the most important language
for research on voting in combinatorial domains is only of very limited interest
here, because CP-nets cannot express most monotonic preferences. A possible
alternative are so-called conditional importance networks, or CI-nets [34].

5.2 Fairness and Efficiency
What makes a fair allocation of resources? More generally, what makes a good
allocation? Next we shall review several proposals for measuring the quality of
an allocation. The first set of proposals is based on the idea of a collective utility
function. Any given allocation yields some utility ui ∈ R for agent i. This utility
will usually be the result of applying agent i’s valuation function to the bundle he
receives under the allocation in question. Now we can associate an allocation with
a utility vector (u1, . . . , un) ∈ Rn.
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Definition 5. A collective utility function (CUF) is a function f : Rn → R.

That is, a CUF returns a single collective utility value for any given utility
vector (which in turn we can think of as being generated by an allocation). This
collective utility is also referred to as the social welfare of the corresponding allo-
cation. The following are the most important CUFs studied in the literature:

• Under the utilitarian CUF, fu(u1, . . . , un) :=
∑

i∈N ui, i.e., the social welfare
of an allocation is the sum of the utilities of the individual agents. This
is a natural way of measuring the quality of an allocation: the higher the
average utility enjoyed by an agent, the higher the social welfare. On the
other hand, this CUF hardly qualifies as fair: an extra unit of utility awarded
to the agent currently best off cannot be distinguished from an extra unit of
utility awarded to the agent currently worst off. Note that authors simply
writing about “social welfare” are usually talking about utilitarian social
welfare.

• Under the egalitarian CUF, fe(u1, . . . , un) := min{ui | i ∈ N}, i.e., the so-
cial welfare of an allocation is taken to be the utility of the agent worst off

under that allocation. This CUF clearly does focus on fairness, but it is
less attractive in view of economic efficiency considerations. In the special
case where we are only interested in allocations where each agent receives
(at most) one item, the problem of maximizing egalitarian social welfare is
also known as the Santa Claus Problem [9].

• A possible compromise is the Nash CUF, under which fn(u1 . . . , un) :=∏
i∈N ui. Like the utilitarian CUF, this form of measuring social welfare re-

wards increases in individual utility at all levels, but more so for the weaker
agents. For instance, the vectors (1, 6, 5) and (4, 4, 4) have the same utilitar-
ian social welfare, but the latter has a higher Nash product (and intuitively
is the fairer solution of the two). For the special case of just two agents, the
Nash product is discussed in more detail in the chapter on Negotiation and
Bargaining in this volume.

Any CUF gives rise to a social welfare ordering (SWO), a transitive and com-
plete order on the space of utility vectors (in the same way as an individual utility
function induces a preference relation). We can also define SWOs directly. The
most important example in this respect is the leximin ordering. For the following
definition, suppose that all utility vectors are ordered, i.e., u1 ≤ u2 ≤ · · · ≤ un.
Under the leximin ordering, (u1, . . . , un) is socially preferred to (v1, . . . , vn) if and

44



only if there exists a k ≤ n such that ui = vi for all i < k and uk > vk. This is a re-
finement of the idea underlying the egalitarian CUF. Under the leximin ordering,
we first try to optimize the well-being of the worst-off agent. Once our options in
this respect have been exhausted, we try to optimize the situation for the second
worst-off agent, and so forth.

SWOs have been studied using the axiomatic method in a similar manner as
SWFs and SCFs. Let us briefly review three examples of axioms considered in
this area.

• An SWO % is zero independent if u % v entails (u + w) % (v + w) for
any w ∈ Rn. That is, according to this axiom, social judgments should not
change if some of the agents change their individual “zero point”. Zero in-
dependence is the central axiom in a characterization of the SWOs induced
by the utilitarian CUF [83, 165].

• An SWO % is independent of the common utility pace if u % v entails
(g(u1), . . . , g(un)) % (g(v1), . . . , g(vn)) for any increasing bijection g : R →
R. You might think of g as a function that maps gross to net income. Then
the axiom says that we want to be able to make social judgments indepen-
dently from the details of g (modeling the taxation laws), as long as it never
inverts the relative welfare of two individuals. The utilitarian SWO fails this
axiom, but the egalitarian SWO does satisfy it.

• An SWO % satisfies the Pigou-Dalton principle if u % v whenever u can be
obtained from v by changing the individual utilities of only two agents in
such a way that their mean stays the same and their difference reduces. The
Pigou-Dalton principle plays a central role in the axiomatic characterization
of the leximin ordering [165].

For an excellent introduction to the axiomatics of welfare economics, provid-
ing much more detail than what is possible here, we refer to the book of Moulin
[165]. Broadly speaking, the additional information carried by a valuation func-
tion (on top of its ordinal content, i.e., on top of the kind of information used
in voting theory), avoids some of the impossibilities encountered in the ordinal
framework. For instance, if we enrich our framework with a monetary component
and stipulate that each agent’s utility can be expressed as the sum of that agent’s
money and his valuation for his goods (so-called quasilinear preferences), then
we can define strategyproof mechanisms that are not dictatorial. Examples are the
mechanism used in the well-known Vickrey auction and its generalizations (see
the chapter on Mechanism Design and Auctions in this volume).
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Another important fairness criterion is envy-freeness. An allocation A of goods
is envy-free if no agent would rather obtain the bundle allocated to one of the other
agents: vi(A(i)) ≥ vi(A( j)) for any two agents i and j, with A(i) and A( j) denoting
the bundles of goods allocated to i and j, respectively. Note that this concept can-
not be modeled in terms of a CUF or an SWO. If we insist on allocating all goods,
then an envy-free allocation will not always exist. A simple example is the case
of two agents and one item that is desired by both of them: in this case, neither
of the two complete allocations will be envy-free. When no envy-free allocation
is possible, then we might want to aim for an allocation that minimizes the degree
of envy. A variety of definitions for the degree of envy of an allocation have been
proposed in the literature, such as counting the number of agents experiencing
some form of envy or counting the pairs of agents where the first agent envies the
second [155, 55, 154].

A new application in multiagent systems may very well call for a new fairness
or efficiency criterion. However, any new idea of this kind should always be
clearly positioned with respect to the existing standard criteria, which are well
motivated philosophically and deeply understood mathematically.

5.3 Computing Fair and Efficient Allocations
Once we have settled on a language for modeling the valuation functions of in-
dividual agents and on an efficiency or fairness criterion we want to apply, the
question arises of how to compute an optimal allocation of goods. Algorithmic
methods that have been used in this field include linear and integer programming,
heuristic-guided search, and constraint programming. Rather than discussing spe-
cific algorithms here, let us focus on the computational complexity of the combi-
natorial optimization problems such an algorithm would have to tackle.

First, suppose we want to compute an allocation with maximal utilitarian so-
cial welfare. In the combinatorial auction literature, this problem is generally
known as the “winner determination problem” and it has received a large amount
of attention there [82]. The goal is to maximize the sum of the valuations of the
individual agents. As complexity theory is more neatly applied to decision prob-
lems, let us consider the corresponding decision problem:

We are given a profile of valuation functions (v1, . . . , vn), one for each
agent, and a number K and ask whether there exists an allocation
A : N → 2G mapping agents to bundles of goods, with A(1) ∪ · · · ∪
A(n) = G and A(i) ∩ A( j) = ∅ for any two agents i and j, such that
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fu(v1(A(1)), . . . , vn(A(n))) ≥ K, i.e., such that the utilitarian social
welfare of A is at least K.

This problem turns out to be NP-complete for any of the preference represen-
tation languages discussed [54, 82]. To show that it is in NP is usually easy. The
fact that it is NP-hard was first observed by Rothkopf et al. [187], in the context
of what is now known as the OR-language. The proof proceeds via a reduction
from a standard NP-hard problem known as Set Packing [121]: given a collection
of finite sets C and a number K, is there a a collection C′ ⊆ C of pairwise disjoint
sets such that |C′| ≥ K? Now consider any preference representation language that
allows us to specify for each agent i one bundle Bi such that vi(B) = 1 if B = Bi

(or possibly B ⊇ Bi) and vi(B) = 0 otherwise (weighted goals, the OR-language,
and the XOR-language can all do this). Then we have a one-to-one correspon-
dence between finding an allocation with a utilitarian social welfare of at least K
and finding at least K non-overlapping bundles Bi. Hence, welfare optimization
must be at least as hard as Set Packing. (The problem has also been shown to be
NP-hard to approximate [190, 233].)

Let us now briefly go over some related complexity results, but with less at-
tention to detail. Rather than stating these results precisely, we focus on some of
the crucial insights they represent and cite the original sources for further details.

• Computing allocations that are optimal under the egalitarian CUF or the
Nash CUF is also NP-hard [32, 180]. In case all valuation functions are
additive, i.e., if we can always compute the value of a bundle by adding
the values of the individual items in that bundle, then computing an allo-
cation with maximal utilitarian social welfare becomes easy (simply assign
each item to the agent giving it the highest value), but the same domain re-
striction does not render the problem polynomial when we are interested in
egalitarian social welfare or the Nash product.

• An allocation A is Pareto-optimal if there is no other allocation A′ that is
strictly preferred by some agent and not worse for any of the others. Decid-
ing whether a given allocation is Pareto-optimal is typically coNP-complete
[94, 57, 87, 54]. The crucial difference with respect to optimizing utilitarian
social welfare is that we now have to check that there is no other allocation
that is “better” (hence the switch in complexity class).

• Computing allocations that are envy-free can be significantly more diffi-
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cult.22 Bouveret and Lang [33] show that deciding whether there exists an
allocation that is both Pareto-optimal and envy-free is Σ

p
2-complete when

preferences are represented using weighted goals, even when each agent
can only distinguish between “good” (valuation 1) and “bad” (valuation 0)
bundles. When valuations are additive, then deciding whether there exists
an envy-free allocation (that allocates all goods) is still NP-complete [155].
Lipton et al. [155] also discuss approximation schemes for envy-freeness.

5.4 Convergence to Fair and Efficient Allocations
The complexity results we have reviewed above apply in situations where we have
complete information regarding the individual preferences of the agents and we
want to compute a socially optimal allocation in a centralized manner. Of course,
this is an idealized situation that we will rarely encounter in a multiagent system
in practice. Besides the algorithmic challenges highlighted above, we also need to
face the game-theoretical problem of ensuring that agents report their preferences
truthfully (in case we consider truthfulness an important desideratum). We need to
design a suitable elicitation protocol to obtain the relevant preference information
from the agents.

An alternative approach, which we shall discuss next, is as follows: rather
than centrally collecting all the agents’ preference information and determining
an optimal allocation, we let agents locally find utility-improving deals that in-
volve the exchange of some of the goods in their possession. We can then analyze
the effects that sequences of such local trading activities have on the allocations
emerging at the global level. If we give up control in this manner, we might not
always be able to reach a socially optimal allocation. Instead, we now have to ask
what quality guarantees we can still provide. This distributed approach to multia-
gent resource allocation requires us to fix a set of assumptions regarding the local
behavior of agents. For instance, we could make the assumption that each agent is
a utility-maximizer in the full game-theoretic sense. Often this will be unrealistic,
given the high complexity of computing one’s optimal strategy under all circum-
stances in this context. Instead, let us assume that agents are individually rational
and myopic. This means that we assume that an agent will agree to participate in
a deal if and only if that deal increases his utility. On the other hand, he will not
try to optimize his payoff in every single deal and he does not plan ahead beyond

22One allocation that is always envy-free is the one where nobody gets anything. To prevent
such trivialities, normally some efficiency requirement is added as well.
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the next deal to be implemented.
Formally, a deal is a pair of allocations δ = (A, A′) with A , A′, describing the

situation before and after the exchange of goods. Note that this definition permits
exchanges involving any number of agents and goods at a time. Bilateral deals,
involving only two agents, or simple deals, involving only one item, are special
cases. For the result we want to present in some detail here, we assume that a deal
may be combined with monetary side payments to compensate some of the agents
for a loss in utility. This can be modeled via a function p : N → R, mapping each
agent to the amount he has to pay (or receive, in case p(i) is negative), satisfying
p(1) + · · · + p(n) = 0, i.e., the sum of all payments made must equal the sum of
all payments received. A deal δ = (A, A′) is individually rational if there exists
a payment function p such that vi(A′(i)) − vi(A(i)) > p(i) for all agents i ∈ N,
with the possible exception of p(i) = 0 in case A(i) = A′(i). That is, a deal
is individually rational if payments can be arranged in such a way that for each
agent involved in the deal his gain in valuation exceeds the payment he has to
make (or his loss in valuation is trumped by the money he receives). We shall
assume that every deal made is individually rational in this sense. Note that we do
not force agents to make deals under these conditions; we simply assume that any
deal that is implemented is (at least) individually rational.

Now, by a rather surprising result due to Sandholm [189], any sequence of
individually rational deals must converge to an allocation with maximal utilitarian
social welfare. That is, provided all agents are individually rational and continue
to make individually rational deals as long as such deals exist, we can be cer-
tain that the resulting sequence of deals must be finite and that the final allocation
reached must be socially optimal in sense of maximizing utilitarian social welfare.
For a detailed discussion and a full proof of this result we refer to the work of En-
driss et al. [104]. The crucial step in the proof is a lemma that shows that, in fact,
a deal is individually rational if and only if it increases utilitarian social welfare.
Convergence then follows from the fact that the space of possible allocations is
finite.

How useful is this convergence result in practice? Of course, the complexity
results discussed in Section 5.3 did not just go away: finding an allocation that
maximizes utilitarian social welfare is still NP-hard. Indeed, to decide whether it
is possible to implement yet another individually rational deal, our agents do have
to solve an NP-hard problem (in practice, most of the time they might find it easy
to identify a good deal, but in the worst case this can be very hard). Also the struc-
tural complexity of the deals required (in the worst case) is very high. Indeed, if
our agents use a negotiation protocol that excludes deals involving a certain num-
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ber of agents or goods, then convergence cannot be guaranteed any longer [104].
On the other hand, a simple positive result shows that, if all valuation functions
are additive, then we can get away with a protocol that only allows agents to make
deals regarding the reallocation of one item at a time. Unfortunately, this is the
best result we can hope for along these lines: for no strictly larger class of valu-
ation functions will a simple protocol of one-item-at-a-time deals still suffice to
guarantee convergence [60].

Similar results are also available for other fairness and efficiency criteria,
such as Pareto-optimality [104], egalitarian social welfare [104], and envy-
freeness [55]. Most of the work in the field is of a theoretical nature, but the
convergence problem has also been studied using agent-based simulations [4, 50].

Some of the results in the literature are based on the same notion of myopic
individual rationality used here and others rely on other rationality assumptions.
In fact, there are two natural perspectives regarding this point. First, we might
start by postulating reasonable assumptions regarding the rational behavior of in-
dividual agents and then explore what convergence results can be proven. Second,
we might start with a convergence property we would like to be able to guarantee,
and then design appropriate rationality assumptions that will allow us to prove
the corresponding theorem. That is, we may think of a multiagent system as,
first, a system of self-interested agents we cannot control (but about which we can
make certain assumptions) or, second, as a system of agents the behavior of which
we can design and program ourselves, as a tool for distributed problem solving.
Which perspective is appropriate depends on the application at hand.

Finally, the distributed approach to multiagent resource allocation also gives
rise to new questions regarding computational complexity. For instance, we might
ask how hard it is to decide whether a given profile of valuation functions and
a given initial allocation admit a path consisting only of individually rational
deals involving the exchange of a single item each to a socially optimal allo-
cation. Questions of this kind have been studied in depth by Dunne and col-
leagues [94, 93].

6 Conclusion
This chapter has been an introduction to classical social choice theory and an ex-
position of some of the most important research trends in computational social
choice. We have argued in the beginning that social choice theory, the mathe-
matical theory of collective decision making, has a natural role to play when we
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think about the foundations of multiagent systems. As we are concluding the
chapter, we would like to relativize this statement somewhat: it is true that many
decision problems in multiagent systems are naturally modeled as problems of
social choice, but it is also true that many of the problems that one is likely to
encounter in practice will not fit the template provided by the classical formal
frameworks introduced here exactly, or will have additional structure that can be
exploited. More research is required to improve our understanding of best prac-
tices for adapting the elegant mathematical tools that computational social choice
can provide to the problems encountered by practitioners developing real multi-
agent systems. We hope that readers of this chapter will feel well equipped to
participate in this undertaking.

Let us conclude with a brief review of additional topics in computational social
choice, which we have not been able to cover in depth here, as well as with a few
pointers to further reading.

6.1 Additional Topics
In terms of social choice settings, we have covered preference aggregation, vot-
ing, and fair division. Another important area of social choice theory is matching,
which addresses the problem of how to pair up the elements of two groups that
have preferences over each other (e.g., men and women, doctors and hospitals,
or kidney donors and patients). Matching theory is particularly notable for its
many successful applications. An excellent introduction to the field is the semi-
nal monograph by Roth and Sotomayor [184]. Matching can be seen as a special
case of coalition formation where agents have preferences over the various pos-
sible partitions of the set of agents (see the chapter on Computational Coalition
Formation in this volume).

Preferences are not the only individual characteristics that the members of a
group might want to aggregate. Other examples include beliefs and judgments. In
both cases there exists a small but significant technical literature in which beliefs
and judgments, respectively, are modeled as sets of formulas in propositional logic
that need to be aggregated. The work of Konieczny and Pino Pérez [143] is a good
starting point for reading about belief merging and List and Puppe [156] survey
the literature on judgment aggregation. While belief merging grew out of the
literature on belief revision in artificial intelligence and computational logic and
always had a computational flavor to it, judgment aggregation initially developed
in the political philosophy and the philosophical logic literature and computational
aspects did not get investigated until very recently [105].
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Throughout the chapter, we have occasionally alluded to connections to mech-
anism design, a topic at the interface of social choice and game theory (see also the
chapter on Mechanism Design and Auctions in this volume). On the mechanism
design side, there has been interest in designing voting rules that are false-name-
proof [227], that is, robust to a single voter participating under multiple identities.
While this is not an inherently computational topic, it is motivated by applica-
tions such as elections that take place on the Internet. The design of such rules
has been studied both in general [62] and under single-peaked preferences [208].
Unfortunately, the results are rather negative here. To address this, other work has
extended the model, for example by making it costly to obtain additional identi-
ties [212] or by using social network structure to identify “suspect” identities [77].
An overview of work on false-name-proofness is given by Conitzer and Yokoo
[72]. Another exciting new direction in the intersection of computational social
choice and mechanism design is that of approximate mechanism design without
money [178], where the goal is to obtain formal approximation ratios under the
constraint of strategyproofness, without using payments.

In terms of techniques, we have focused on the axiomatic method, on algo-
rithms, and on computational complexity. We have also discussed the use of tools
from knowledge representation (for the representation of preferences in combina-
torial domains). A further important research trend in computational social choice
has considered communication requirements in social choice. This includes top-
ics such as the amount of information that voters have to supply before we can
compute the winner of an election [69, 196], the most efficient form of storing an
intermediate election result that will permit us to compute the winner once the re-
maining ballots have been received [59, 219], whether voters can jointly compute
the outcome of a voting rule while preserving the privacy of their individual pref-
erences [44], and the number of deals that agents have to forge before a socially
optimal allocation of goods will be found [103].

Another technique we have not discussed concerns the use of tools developed
in automated reasoning to verify properties of social choice mechanisms and to
confirm or discover theorems within social choice theory. Examples in this line
of work include the verification of proofs of classical theorems in social choice
theory in higher-order theorem proves [168], a fully automated proof of Arrow’s
Theorem for the special case of three alternatives [205], and the automated dis-
covery of theorems pertaining to the problem of ranking sets of objects [123].
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6.2 Further Reading
There are a number of excellent textbooks on classical social choice theory that are
highly recommended for further reading. General texts include those by Austen-
Smith and Banks [7] and by Gaertner [120]. Taylor [206] specifically focuses
on the manipulation problem in voting. Moulin [165] covers not only preference
aggregation and voting, but also the axiomatic foundations of welfare economics
(i.e., fair division) and cooperative game theory. Two highly recommended sur-
veys are those of Plott [173] and Sen [200].

The area of computational social choice (or certain parts thereof) has been
surveyed by several authors. Chevaleyre et al. [56] provide a broad overview of
the field as a whole. The literature on using computational complexity as a bar-
rier against manipulation in voting is reviewed by Faliszewski et al. [114] and
Faliszewski and Procaccia [107]; Faliszewski et al. [110] also discuss the com-
plexity of winner determination and control problems in depth. Chevaleyre et al.
[58] give an introduction to social choice in combinatorial domains. The survey
on multiagent resource allocation by Chevaleyre et al. [54] covers the basics of
fair division and also discusses connections to other areas relevant to multiagent
systems, particularly combinatorial auctions. Conitzer [64, 65] compares research
directions across mechanism design, combinatorial auctions, and voting. Endriss
[101] gives concise proofs of classical results such as Arrow’s Theorem and the
Gibbard-Satterthwaite Theorem, and then discusses application of logic in social
choice theory, e.g., in judgment aggregation and to model preferences in combina-
torial domains. Rothe et al. [186] provide a book-length introduction to computa-
tional social choice (in German), covering topics in voting, judgment aggregation,
and fair division, and focusing particularly on complexity questions. Finally, the
short monograph of Rossi et al. [183] on preference handling includes extensive
discussions of voting and matching from the point of view of computational social
choice.

7 Exercises
1. Level 1 A utility function u : U → R is said to represent a preference

relation on U if, for all a, b ∈ U, u(a) ≥ u(b) if and only if a % b. Show
that, when U is finite, a preference relation can be represented by a utility
function if and only if it is transitive and complete.

2. An SWF f is non-imposing if for every preference relation % there exists
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a profile R = (%1, . . . ,%n) such that f (R) =%. The purpose of this exercise
is to investigate what happens to Arrow’s Theorem when we replace the
axiom of Pareto-optimality by the axiom of non-imposition.

(a) Level 1 Show that Pareto-optimality is strictly stronger than non-
imposition. That is, show that every Pareto-optimal SWF is non-
imposing and that there exists a non-imposing SWF that is not Pareto-
optimal.

(b) Level 2 Show that Arrow’s Theorem ceases to hold when we replace
Pareto-optimality by non-imposition. That is, show that there ex-
ists a SWF that satisfies IIA and that is both non-imposing and non-
dictatorial.

3. Level 2 Prove that the four conditions in Theorem 2 are logically indepen-
dent by providing, for each of the conditions, an SCF that violates this prop-
erty but satisfies the other three.

4. Level 2 Show that every Copeland winner lies in the uncovered set and
hence reaches every other alternative on a majority rule path of length at
most two (assuming an odd number of voters).

5. Level 1 Consider the following preference profile for 100 voters (due to
Michel Balinski).

33 16 3 8 18 22

a b c c d e
b d d e e c
c c b b c b
d e a d b d
e a e a a a

Determine the winners according to plurality, Borda’s rule, Copeland’s rule,
STV, and plurality with runoff (which yields the winner of a pairwise com-
parison between the two alternatives with the highest plurality score).

6. Level 2 Give a polynomial-time algorithm that, for a given preference pro-
file, decides whether an alternative will win under all scoring rules.

7. Level 3 A Condorcet loser is an alternative that loses against every other
alternative in pairwise majority comparisons. Check which of the following
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voting rules may choose a Condorcet loser: Borda’s rule, Nanson’s rule,
Young’s rule, maximin. Prove your answers.

8. Level 3 An SCF is monotonic if a winning alternative will still win after it
has been raised in one or more of the individual preference orderings (leav-
ing everything else unchanged). Check which of the SCFs and voting rules
mentioned in this chapter satisfy monotonicity and which satisfy Pareto-
optimality. Prove your answers.

9. Level 2 Assume there is an odd number of voters and consider a restricted
domain of preferences that always admits a Condorcet winner. Show that
the voting rule that always yields the Condorcet winner is strategyproof.

10. Level 2 Assume there is an odd number of voters, and rank the alternatives
by their Copeland scores. Prove that there are no cycles in the pairwise
majority relation if and only if no two alternatives are tied in this Copeland
ranking.

11. Level 2 Recall the definition of single-peakedness. Similarly, a preference
profile R is single-caved if for every x, y, z ∈ U, it holds that if (x < y < z)
or (z < y < x), then y �i x implies z �i y for every i ∈ N. Prove or disprove
the following statements.

(a) Every preference profile for two voters and three alternatives is single-
peaked.

(b) Every preference profile for two voters and more than three alterna-
tives is single-peaked.

(c) Every single-peaked preference profile is single-peaked with respect
to the linear order given by the preferences of one of the voters.

(d) Plurality and Condorcet winners coincide for single-peaked prefer-
ences.

(e) Plurality and Condorcet winners coincide for single-caved prefer-
ences.

(f) Borda and Condorcet winners coincide for single-peaked preferences.

12. Level 4 We have seen that any non-dictatorial voting rule can be manipu-
lated when we want that rule to operate on all possible preference profiles.
We have also seen that this problem can be avoided when we restrict the
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domain of possible profiles appropriately, e.g., to single-peaked profiles.
What we have not discussed is the frequency of manipulability: how often
will we encounter a profile in which a voter has an incentive to manipu-
late? One way of studying this problem is by means of simulations: gener-
ate a large number of profiles and check for which proportion of them the
problem under consideration (here, manipulability) occurs. The standard
method for generating profiles is to make the impartial culture assumption,
under which every logically possible preference order has the same proba-
bility of occurring. For instance, if there are 3 alternatives, then there are
3! = 6 possible (strict) preference orders, so each preference order should
have probability 1

6 to be a given voter’s preference.

(a) Write a program to analyze the frequency of manipulability of some of
the voting rules introduced in this chapter under the impartial culture
assumption.

(b) While it is considered a useful base line, the impartial culture assump-
tion has also been severely criticized for being too simplistic. Indeed,
real electorates, be it in politics or multiagent systems, are unlikely to
be impartial cultures. Can you think of better methods for generating
data to test the frequency of interesting phenomena in social choice
theory?

A good starting point for further reading on generating data for studying
the frequency of social choice phenomena is the book of Regenwetter et al.
[181]. There has also been a significant amount of theoretical work on the
frequency of manipulability [recent contributions include, e.g., 8, 203, 177,
218].

13. Level 2 Show that for each of the following voting rules the manipulation
problem (with a single manipulator) can be solved in polynomial time by
providing a suitable algorithm: the plurality rule, Borda’s rule, Copeland’s
rule. Argue why your algorithms are correct and analyze their runtime in
terms of the number of voters and alternatives.

14. For some voting rules, it is possible to significantly reduce the amount of
information that the voters need to communicate by having the communica-
tion take place in rounds. A natural example is the STV rule (also known as
instant runoff voting). Instead of having each agent communicate an entire
ranking of all the alternatives at the outset, we can simply have the agents
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communicate their first-ranked alternatives; based on that, we can determine
which alternative gets eliminated first; then, the agents who had ranked that
alternative first communicate their next-most preferred alternative; etc. In
effect, this is removing the “instant” from “instant runoff voting”!

(a) Level 2 When there are n voters and m alternatives, how many bits of
communication does this protocol require in the worst case? Hints:

• If there are i alternatives left, how many bits does an agent need
to communicate to indicate its most-preferred one among them?

• If there are i alternatives left and we remove the one with the
fewest votes, what is an upper bound on how many agents need to
indicate a new most-preferred alternative among the i− 1 remain-
ing ones?

(b) Level 4 Using tools from communication complexity [144], a lower
bound of Ω(n log m) bits of information in the worst case has been
shown to hold for any communication protocol for the STV rule [69].
This leaves a gap with the result from (a). Can you close the gap,
either by giving a better protocol or a better lower bound?

15. Level 2 A weak Condorcet winner is an alternative that wins or draws
against any other alternative in pairwise contests. Just like a (normal) Con-
dorcet winner, a weak Condorcet winner need not exist for all preference
profiles. Unlike a Condorcet winner, when it does exist, a weak Condorcet
winner need not be unique. In the context of voting in combinatorial do-
mains, show that when voters model their preferences using the language of
prioritized goals and each voter only specifies a single goal, then there must
always be a weak Condorcet winner.

16. Level 1 In the context of measuring the fairness and efficiency of allocations
of goods, check which of the following statements are true. Give either a
proof (in the affirmative case) or a counterexample (otherwise).

(a) Any allocation with maximal utilitarian social welfare is Pareto-
optimal.

(b) No allocation can maximize both utilitarian and egalitarian social wel-
fare.

(c) Any allocation that is optimal with respect to the leximin ordering is
both Pareto-optimal and maximizes egalitarian social welfare.
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(d) The Nash SWO is zero independent.

(e) The Nash SWO is independent of the common utility pace.

(f) The egalitarian SWO respects the Pigou-Dalton transfer principle.

17. Level 2 The elitist CUF is defined via fel(u1, . . . , un) := max{ui | i ∈ N},
i.e., social welfare is equated with the individual utility of the agent that is
currently best off. This CUF clearly contradicts our intuitions about fair-
ness, but it might be just the right efficiency measure for some applications,
e.g., in a multiagent system where we only care about at least one agent
achieving his goal. What is the computational complexity of (the decision
variant of) the problem of finding an allocation of indivisible goods (without
money) that maximizes elitist social welfare?

(a) First state your answer (and your proof) with respect to the explicit
form of representing valuation functions (where the size of the rep-
resentation of a function is proportional to the number of bundles to
which it assigns a non-zero value).

(b) Then repeat the same exercise, this time assuming that valuation func-
tions are expressed using the language of weighted goals (without
restrictions to the types of formulas used). Hint: You might expect
that the complexity will increase, because now the input will be repre-
sented more compactly (on the other hand, as discussed in Section 5.3,
there was no such increase in complexity for the utilitarian CUF).

Note that both of these languages can express valuation functions that need
not be monotonic (that is, simply giving all the items to one agent will
usually not yield an allocation with maximal elitist social welfare).

18. Level 4 Consider a fair division problem with an odd number of agents.
Under the median-rank dictator CUF the social welfare of an allocation is
equal to the utility of the middle-most agent: fmrd(u1, . . . , un) := ui∗ , where
i∗ is defined as the (not necessarily unique) agent for which |{i ∈ N | ui ≤

ui∗}| = |{i ∈ N | ui ≥ ui∗}|. This is an attractive form of measuring social
welfare: it associates social welfare with the individual utility of a repre-
sentative agent, while being less influenced by extreme outliers than, for
instance, the utilitarian CUF. At the time of writing, most of the problems
discussed in the section on fair division have not yet been investigated for
the median-rank dictator CUF.
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(a) What is the computational complexity of computing an allocation that
is optimal under the median-rank dictator CUF? Consider this question
for different forms of representing individual valuation functions, such
as the explicit form, weighted propositional formulas, or the OR/XOR
family of bidding languages used in combinatorial auctions.

(b) Design and implement an algorithm for computing an optimal alloca-
tion under the median-rank dictator CUF, for a preference represen-
tation language of your choice. You may find it useful to consult the
literature on efficient algorithms for the winner determination problem
in combinatorial auctions to get ideas on how to approach this task.

(c) Can you devise a notion of rationality (replacing myopic individual
rationality as defined in this chapter) so that distributed negotiation
will guarantee convergence to an optimal allocation under the median-
rank dictator CUF? Are there suitable domain restrictions (limiting the
diversity of valuation functions that agents may hold) that will ensure
convergence even when negotiation is limited to structurally simple
deals (such as deals involving at most two agents at a time)?
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[143] S. Konieczny and S. Pino Pérez. Logic based merging. Journal of Philo-
sophical Logic, 40(2):239–270, 2011.

[144] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

[145] D. Lacy and E. M. S. Niou. A problem with referendums. Journal of
Theoretical Politics, 12(1):5–31, 2000.

[146] C. Lafage and J. Lang. Logical representation of preferences for group
decision making. In Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning (KR-2000), pages
457–468. Morgan Kaufmann Publishers, 2000.

[147] G. Laffond, J.-F. Laslier, and M. Le Breton. The bipartisan set of a tourna-
ment game. Games and Economic Behavior, 5:182–201, 1993.

[148] J. Lang. Logical preference representation and combinatorial vote. Annals
of Mathematics and Artificial Intelligence, 42(1–3):37–71, 2004.

[149] J. Lang and L. Xia. Sequential composition of voting rules in multi-issue
domains. Mathematical Social Sciences, 57(3):304–324, 2009.

73



[150] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner de-
termination in sequential majority voting. In Proceedings of the Twenti-
eth International Joint Conference on Artificial Intelligence (IJCAI), pages
1372–1377. AAAI Press, 2007.

[151] J.-F. Laslier. Tournament Solutions and Majority Voting. Springer-Verlag,
1997.

[152] J.-F. Laslier and M. R. Sanver, editors. Handbook on Approval Voting.
Studies in Choice and Welfare. Springer-Verlag, 2010.

[153] M. Li, Q. B. Vo, and R. Kowalczyk. Majority-rule-based preference ag-
gregation on multi-attribute domains with cp-nets. In Proceedings of the
Tenth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 659–666. IFAAMAS, 2011.

[154] C. Lindner and J. Rothe. Degrees of guaranteed envy-freeness in finite
bounded cake-cutting protocols. In Proceedings of the 5th International
Workshop on Internet and Network Economics (WINE), volume 5929 of
Lecture Notes in Computer Science (LNCS), pages 149–159. Springer-
Verlag, 2009.

[155] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th ACM Conference
on Electronic Commerce (ACM-EC), pages 125–131. ACM Press, 2004.

[156] C. List and C. Puppe. Judgment aggregation: A survey. In Handbook of
Rational and Social Choice. Oxford University Press, 2009.

[157] K. May. A set of independent, necessary and sufficient conditions for sim-
ple majority decisions. Econometrica, 20:680–684, 1952.

[158] J. McCabe-Dansted, G. Pritchard, and A. Slinko. Approximability of
Dodgson’s rule. Social Choice and Welfare, 31(2):311–330, 2008.

[159] R. D. McKelvey and R. G. Niemi. A multistage game representation of
sophisticated voting for binary procedures. Journal of Economic Theory,
18(1):1–22, 1978.

[160] I. McLean and A. B. Urken, editors. Classics of Social Choice. University
of Michigan Press, Ann Arbor, 1995.

74



[161] E. Meskanen and H. Nurmi. Closeness counts in social choice. In M. Bra-
ham and F. Steffen, editors, Power, Freedom, and Voting. Springer-Verlag,
2008.

[162] H. Moulin. Dominance solvable voting schemes. Econometrica, 47(6):
1137–1151, 1979.

[163] H. Moulin. The Strategy of Social Choice. North-Holland, 1983.

[164] H. Moulin. Choosing from a tournament. Social Choice and Welfare, 3:
271–291, 1986.

[165] H. Moulin. Axioms of Cooperative Decision Making. Cambridge Univer-
sity Press, 1988.

[166] N. Narodytska, T. Walsh, and L. Xia. Manipulation of Nanson’s and Bald-
win’s rule. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI), pages 713–718. AAAI Press, 2011.

[167] E. M. S. Niou. A note on Nanson’s rule. Public Choice, 54:191–193, 1987.

[168] T. Nipkow. Social choice theory in HOL: Arrow and Gibbard-Satterthwaite.
Journal of Automated Reasoning, 43(3):289–304, 2009.

[169] N. Nisan. Bidding languages for combinatorial auctions. In Combinatorial
Auctions, chapter 9, pages 215–232. MIT Press, 2006.

[170] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the Web. Technical Report 1999–66, Stanford
University, 1999.

[171] D. M. Pennock, E. Horvitz, and C. L. Giles. Social choice theory and rec-
ommender systems: Analysis of the axiomatic foundations of collaborative
filtering. In Proceedings of the 17th National Conference on Artificial In-
telligence (AAAI), pages 729–734. AAAI Press, 2000.

[172] G. Pinkas. Reasoning, nonmonotonicity and learning in connectionist net-
works that capture propositional knowledge. Artificial Intelligence, 77(2):
203–247, 1995.

[173] C. R. Plott. Axiomatic social choice theory: An overview and interpreta-
tion. American Journal of Political Science, 20(3):511–596, 1976.

75



[174] D. Porello and U. Endriss. Ontology merging as social choice. In Pro-
ceedings of the 12th International Workshop on Computational Logic in
Multiagent Systems (CLIMA-2011), volume 6814 of LNAI, pages 157–170.
Springer-Verlag, 2011.

[175] A. Procaccia. Can approximation circumvent Gibbard-Satterthwaite? In
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI),
pages 836–841. AAAI Press, 2010.

[176] A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-
case complexity of manipulating elections. Journal of Artificial Intelligence
Research, 28:157–181, 2007.

[177] A. D. Procaccia and J. S. Rosenschein. Average-case tractability of ma-
nipulation in voting via the fraction of manipulators. In Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 718–720. AAAI Press, 2007.

[178] A. D. Procaccia and M. Tennenholtz. Approximate mechanism design
without money. In Proceedings of the ACM Conference on Electronic Com-
merce (EC), pages 177–186, Stanford, CA, USA, 2009.

[179] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multi-winner elections:
Complexity of manipulation, control and winner-determination. In Pro-
ceedings of the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI), pages 1476–1481. AAAI Press, 2007.

[180] S. Ramezani and U. Endriss. Nash social welfare in multiagent resource
allocation. In Agent-Mediated Electronic Commerce: Designing Trad-
ing Strategies and Mechanisms for Electronic Markets, volume 59 of Lec-
ture Notes in Business Information Processing, pages 117–131. Springer-
Verlag, 2010.

[181] M. Regenwetter, B. Grofman, A. A. J. Marley, and I. M. Tsetlin. Behav-
ioral Social Choice: Probabilistic Models, Statistical Inference, and Appli-
cations. Cambridge University Press, 2006.

[182] J. Robertson and W. Webb. Cake-Cutting Algorithms. A. K. Peters, 1998.

76



[183] F. Rossi, K. B. Venable, and T. Walsh. A Short Introduction to Preferences:
Between Artificial Intelligence and Social Choice. Morgan & Claypool
Publishers, 2011.

[184] A. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game
Theoretic Modelling and Analysis. Cambridge University Press, 1990.

[185] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner
problem for Young elections. Theory of Computing Systems, 36(4):375–
386, 2003.

[186] J. Rothe, D. Baumeister, C. Lindner, and I. Rothe. Einführung in Compu-
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conditional preference network, 35
Condorcet extension, 19
Condorcet loser, 54
Condorcet paradox, 11
Condorcet winner, 4, 19
constructive manipulation, 28
contraction (axiom), 15
control of elections, 28

Copeland’s rule, 5, 20
CP-net, see conditional preference net-

work
CUF, see collective utility function

deal, 49
destructive manipulation, 28
distance rationalizability, 22
Dodgson’s rule, 6, 20
domain restrictions, 24
Duggan-Schwartz Theorem, 31

egalitarianism, 44
envy-freeness, 46
expansion (axiom), 15
explicit representation, 35, 41

false-name-proofness, 52
feasible sets, 14
frequency of manipulability, 56

Gibbard-Satterthwaite Theorem, 24
goods, 41
group-strategyproofness, 26

IIA, see independence of irrelevant al-
ternatives

impartial culture assumption, 56
independence of irrelevant alternatives

(axiom), 11, 14
independence of the common utility

pace (axiom), 45
individually rational deal, 49
individuals, 10
irresoluteness, 30

judgment aggregation, 51

82



Kemeny’s rule, 12, 22

leximin ordering, 44

majority rule, 11
manipulability, 24
manipulation problem, 27
matching, 51
maximin rule, 20
maximum likelihood approach, 12, 39
mechanism design, 23, 45, 52
median-rank dictator, 58
median-voter rule, 25
minimal covering set, 17
monotonicity (axiom), 55
moving-knife procedure, 40
multiagent resource allocation, 40
multiple-election paradox, 34

Nanson’s rule, 21
Nash product, 44
necessary winner problem, 31
neutrality (axiom), 18
non-dictatorship (axiom), 12, 14, 24
non-imposition (axiom), 24, 30, 53

OR-language, 43
ordinal preferences, 10

Pareto-optimality (axiom), 11, 14, 47
Pigou-Dalton principle (axiom), 45
plurality rule, 4, 19
plurality with runoff, 54
positional scoring rule, see scoring rule
possible winner problem, 31
preference representation language, 35,

41
preferences, 10
prioritized goals, 36

profile of preferences, 10
program-based preference representa-

tion, 43
proportionality, 41

quasilinear preferences, 45

random dictator, 29
ranked pairs (voting rule), 21
reinforcement (axiom), 19
resoluteness, 18
revelation principle, 23

SCF, see social choice function
scoring rule, 18
SDS, see social decision scheme
sequential voting, 34, 37
single transferable vote, 4, 22
single-caved preferences, 55
single-peaked preferences, 25
Slater’s rule, 13, 22
social choice function, 14
social decision scheme, 29
social preference function, 12
social welfare function, 10
social welfare ordering, 44
strategyproofness, 24
STV, see single transferable vote
SWF, see social welfare function
SWO, see social welfare ordering

top cycle, 16
tournament equilibrium set, 16

uncovered set, 16
utilitarianism, 44
utility vector, 43

valuation function, 41
value-restricted preferences, 26
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veto rule, see anti-plurality rule
voters, 10
voting rule, 17

WARP, see weak axiom of revealed
preference

weak axiom of revealed preference, 14
weak Condorcet winner, 57
weighted goals, 41
welfare economics, 40, 45

XOR-language, 43

Young’s rule, 21

zero independence (axiom), 45
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