
Syntactic logical relations for System F with recursive types and
call-by-name semantics

MSc Thesis (Afstudeerscriptie)

written by

Tex Aston Felix Schönlank
(born 1998-12-13 in Levallois-Perret, France)

under the supervision of dr. Benno van den Berg and prof. dr. Herman Geuvers, and
submitted to the Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 27, 2020 dr. Ekaterina Shutova (Chair)

dr. Benno van den Berg (Supervisor)
prof. dr. Herman Geuvers (Daily supervisor)
dr. Bahareh Afshari
dr. Piet Rodenburg

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Abstract

We consider the second-order typed lambda calculus with full, or impredicative, polymorph-
ism—i.e. System F—and contravariant iso-recursive types. (This language also appears under
the names λ∀µ and Fµ.) We equip it with call-by-name operational semantics.

Appel and McAllester devised a logical relations-based model for this language—minus the
polymorphism—under call-by-value semantics.[4] Their goal was to obtain a relation that was
sound w.r.t. contextual equivalence. The problem of type recursion was addressed by introducing
a step index.

Ahmed expanded upon Appel-McAllester’s work on these step-indexed logical relations by
adding universally and existentially quantified types.[3, 16] They also adapted the model and
proved its transitivity, soundness, and completeness.

We in turn adapt part of Ahmed’s work to our language: we leave out the existential types
and transpose the definitions and theorems from Ahmed’s call-by-value to our call-by-name
semantics. Transitivity of our semantic model remains an open problem and no attempt is made
to obtain completeness. The key contribution of this thesis, then, is an analogue of Ahmed’s
soundness proof. We show that our semantic model for a call-by-name language is sound w.r.t.
contextual equivalence. This yields the following proof technique in our language: in order to
prove that two terms or programs e, e′ are contextually equivalent, one need only show that they
are related in the semantics.

The use of this proof technique is further discussed. Free theorems in the style of Wadler
are investigated.[18] The obvious theorems turn out not to hold because of non-termination, a
product of contravariant recursive types. We find that we can manually adjust the statements for
non-termination such that they do hold, but find no general means of making these adjustments.

Acknowledgements

Mama, Papa, and Broer, thank you. (Since long before the Master of Logic, my mother and I
joke that if I ever write acknowledgements for something important, she deserves to be mentioned
right at the top. The moment has come and as it turns out, I am not joking.) Although to this
day you don’t really know what my thesis is about,1 I could always count on your involvement.
When I felt frustrated you supported me, when I needed help you advised me, when I felt MoL-
unworthy you corrected me, when I was planning my further career you thought along with me,
and when I wanted to share my love for a theorem you walked around the kitchen with me until
you understood. My thanks go to you more than to anyone.

Maximilian, thank you for becoming my first friend in Amsterdam. I thought the best I
would get out of Information theory would be a proof of Shannon’s theorem, but it turned out
to be you. After class—or the collaboration session or whatever—we walked to your home in
Noord and its ever charming owner. Having had an unpleasantly turbulent first period, I smiled
all the way home as I knew that Amsterdam had at least yielded a friend.

The intensity of the MoL made it a very welcome fact that I had just befriended the inventor
of napping and doing nothing. I learned many things from you, those being only two of them.
I will also fondly remember our hallway conversations that, through the magical words “let’s go
for a walk”, were turned into midgnight discussions in the Outside on whether wheat sponges
should doch or not be considered bread.

Jori, thank you for becoming my second friend in Amsterdam. We had spoken quite a few
times—on the rare occasions that you appeared at the ILLC—but it was not until the fourth
week of Set theory that we became friends. It was our shared dislike of cooperation that led
us to cooperate. This resulted in a friendship based on: minimising cooperation on homework;
clæssic memes; observations about Salsa Shop employees; the Kerguelen Islands; schemes, often
revolving around migration and citizenship; mysteries involving my neighbours. I would have
preferred a world with no pandemic, where we would have explored more of Amsterdam together.
But whatever it takes, I know I can make it through.

Co-ouders and Ckasper, thank you for letting me go literally, and not letting me go at all
figuratively. Whether or not to leave Leuven behind was my biggest life decision thus far, and
you listened to all my doubts and worries, before and after I left. You are the most prominent
reason that I feel at home in Leuven. I feared things would be unpleasantly different between us
everytime I would see diens again, but it has become clear that even though we don’t meet that
often, what we have is probably for life.

Benno, thank you for being a good academic mentor. I don’t know what my MoL career
would have looked like without your help, but it almost certainly wouldn’t be as good as it
turned out now. You helped me pursue my interests by undertaking projects outside of the
ILLC, something I would probably not have achieved without you. You thought along with my
plans and introduced me to…

Herman, thank you for being a good thesis supervisor. You were not only approachable and
a nice person, but also thorough and good at understanding and answering my more vague or
hypothetical questions. You did a good job of introducing me to the field. Most importantly,
you taught me why doors sometimes miss their top corner.

Tanja, I wish I could tell you what I thank you for, but you helped me with so many things
I am afraid they don’t form a set but a proper class. You helped me register at and apply for
many different things and you have stamps and signed forms that make all the angry bureaucratic
spirits go away. You also knew me way before I knew you, which is impressive because there are

1 In fact, you don’t even really know what my master is about. Then again, looking at the courses I took the
past two years, I must admit that even I don’t really know what my master is about.

≈ 90 of us and there’s only one of you.
Then there are some people and circumstances that I am thankful to and for, respectively.

I will not address those people (or those circumstances) in the second person, since they will
almost certainly not read this.

I am thankful for finding the Any Blue choir. The degree to which I felt at home in Amsterdam
increased dramatically after joining and I think the correlation was causal. I believe there is no
purpose for me in life if I don’t sing.

Mi estas dankema al Klára, pro ria Esperanta naskiĝtagfesto, kiu estis ege memorinda kaj
sen kiu mi kredeble neniam lernus Esperanton.

I am thankful for Pati Pati’s asking me back—twice—on their rehearsal weekends. It eased
my departure from Leuven as they too make me feel at home there.

Finally, I am thankful to de Heks, de Rokers, de Nachtwinkel, de Andere heks, de Zeeman,
de Onzedelijken, and de Rijko’s. Their behaviour and sometimes their mere presence lit up my
otherwise occasionally lonely Amsterdam life. A special word of thanks goes to de AirBnB’ers of
course. Though I followed their story from the beginning, many questions remain unanswered.
Perhaps I will never know where the five guitars went, what photos they were developing on the
floor, whereto the carved wooden door leads, or if those things really were enormous waffle irons.

I conclude with an anecdote. In the second year of my bachelor of informatics in Leuven,
when I did know I wanted to study something else somewhere else, but not what or where, my
mother randomly came up to my room one day and said: “Hey, I found a master in Amsterdam
that you might find interesting. It’s called the Master of Logic.” It took a year of hesitation, a
few days of sitting in on Category theory, Set theory, and Modal logic lectures, and one encounter
with a person with the Hilbert curve tattooed on their forearm for me to decide I wanted to do
the MoL. It was a good decision.

Contents

1 Introduction 1
1.1 Motivation and situation . 1
1.2 Structure of this thesis . 2
1.3 Conventions and notation . 3

2 Language 5
2.1 Syntax: types and terms . 5

2.1.1 The problem . 8
2.1.2 The solution . 9

2.2 The type relation . 11
2.3 Operational semantics . 15
2.4 Discussion . 19

2.4.1 Type-level recursion . 19
2.4.2 Diverging terms and term-level recursion 20
2.4.3 Type uniqueness . 22
2.4.4 Differences with Ahmed’s language . 23

3 Unary relation and type-safety 25
3.1 Forming a hypothesis . 25
3.2 Setting the precise goal . 26
3.3 Definitions . 27
3.4 Proof of the fundamental property . 31

3.4.1 Variable . 32
3.4.2 Term application . 32
3.4.3 Term abstraction . 34
3.4.4 Type application . 34
3.4.5 Type abstraction . 37
3.4.6 Type unfolding . 38
3.4.7 Type folding . 39

3.5 Conclusion . 39

4 Binary relation and contextual equivalence 41
4.1 Examples . 42
4.2 Definitions . 44

4.2.1 Contexts and contextual equivalence . 45
4.2.2 Binary step-indexed logical relation . 47
4.2.3 Statement of the theorem . 50

4.3 Fundamental property of the logical relation . 50

4.3.1 Variable . 51
4.3.2 Term application . 51
4.3.3 Term abstraction . 52
4.3.4 Type application . 53
4.3.5 Type abstraction . 54
4.3.6 Type unfolding . 54
4.3.7 Type folding . 55
4.3.8 Conclusion . 55

4.4 Context monotonicity and contextual equivalence 56
4.5 Discussion . 57

4.5.1 Examples revisited . 57
4.5.2 Free theorems . 59

5 Related work 63

Appendices 65

A Recursive term sets are well-defined 67
A.1 Existence . 67
A.2 Uniqueness . 69

B Contextual equivalence 71

Chapter 1

Introduction

1.1 Motivation and situation
The concept of equivalence of computer programs is an important one. For instance, in a complex
program consisting of multiple separate modules, a suitable notion of program equivalence might
allow the programmer to replace an existing module with a more efficient one, without breaking
the intercompatibility. Another example might be a compiler, which translates the source into
the target program. Knowledge of program equivalence can help reason about the compiler’s
behaviour and correctness.[3] The ultimate goal is then to have the source program be equivalent
to the target, possibly via a chain of equivalences between intermediate representations.

There are multiple different notions of program equivalence.[10, p. 246] Some of them are
based on the language’s operational semantics, while others involve denotational semantics and
mathematical apparatus like cartesian-closed categories and domain theory.[11, 1, 15, 13] We will
concern ourselves with the operational notion of contextual equivalence. (The notation for the
contextual equivalence of two terms e, e′ is e ≈ctx e′.) Loosely speaking, a context can be seen
as a program with one “hole” or “slot” into which another program must be placed in order to
obtain a finished program. Two programs A and B are then considered contextually equivalent
iff inserting A into any suitable context results in a program with no observable differences from
inserting B into the same context.[10, p. 249] Of course, the meaning of suitable context and
observable difference are to be made precise.

Proving two terms’ operational contextual equivalence directly is rather difficult, because of
the universal quantification over all suitable contexts.[10] Even when the set of suitable contexts
is defined inductively, the obvious attack route of proof by induction can turn out fruitless. The
standard solution is to devise sound (and sometimes complete) proof techniques for contextual
equivalence by showing that an easier-to-prove property is a sufficient condition for contextual
equivalence. Some of these techniques and properties are syntactic in nature and some semantic.
Among them are techniques involving bisimulations [17], domain theory [13], admissible relations,
and biorthogonality or >>-closure.[12]

In this thesis, we apply one of these known techniques, namely logical relations, which are
term relations defined by induction on the terms’ types. We then prove that our logical relation is
indeed sound w.r.t. contextual equivalence, i.e. relatedness of two terms under the logical relation
implies their contextual equivalence. In this, we follow a line of work by, amongst others, Appel
and McAllester and Ahmed on syntactic logical relations—syntactic as opposed to relations
involving abstract semantics and, with it, significant mathematical structures.[4, 3, 7, 2] The
relevant (programming) language is the second-order lambda calculus with full polymorphism

1

and contravariant iso-recursive types. We will refer to this language as λ∀µ.
The central contribution of this thesis, then, is that the language for which we create the

logical relation differs crucially from those of Appel-McAllester and Ahmed: our language has
call-by-name (CBN) instead of call-by-value (CBV) operational semantics. Though this is not the
only difference, it is the most crucial one. Informally, in CBV semantics, a function application
is deferred until the argument is fully evaluated, i.e. evaluated to a value. Values form the
well-defined subset of terms of which we declare they count as valid program results (such as
booleans or integers, in some programming languages). In CBN semantics, a function application
is reduced as soon as the left-hand side, i.e. the function, has taken the shape of a lambda
abstraction. The occurrences of the lambda’s variable are then all replaced by the unevaluated
argument, as if they were not replaced by the intended argument (a value) but only by a token
or name for it.

We replicate Ahmed’s development of a semantics based on a sound syntactic logical relation
for λ∀µ,[3] which we will call �. Due to the differences between Ahmed’s language and ours,
we must redo Ahmed’s work from the ground up, making several crucial changes along the way.
The bulk of the work of this thesis was in getting the definition of this semantics right.

Recursive types preclude the well-foundedness of logical relations defined inductively on types.
We avert this problem using the same technique as Appel-McAllester and Ahmed: we stratify the
relation by parametrising the relation over a step-index and inducing on this index instead of on
the terms’ types. However, while Ahmed goes on to also prove the potentially desirable property
of completeness w.r.t. contextual equivalence,[3] we content ourselves with mere soundness. In
fact, the author believes completeness does not even hold for the logical relation defined in this
thesis. Also, Appel and McAllester intended for their relation to be transitive but did not prove
it. Part of Ahmed’s contribution was to show the obvious proof attempt strands, and to “repair”
the definition and prove the resulting transitivity. We make no attempt at transitivity. Our
relation � suffers from roughly the same problem as Appel-McAllester’s, namely that no proof
of transitivity is known to the author (although no counterexample has been found either).

We then go on to prove soundness of � w.r.t. ≈ctx. Finally, we put our relation to use and
investigate by example which terms are related by � and which are not. We regard a free theorem
in the style of Wadler [18]. We find that not even the simplest free theorem, stating that all terms
of type ∀α.α→ α are essentially the identity function, holds. This is due to the possibility of
non-termination introduced by recursive types. Such problems were predicted by Pierce.[10] We
do, however, find an alternative translation of free theorems to our semantics that account for
non-termination and thus do hold in our semantics. Unfortunately, these alternative translations
require some manual work. We have not found a uniform formalisation deriving such alternative
translations from Wadler-style free theorems.

1.2 Structure of this thesis
As mentioned, we closely follow the work of Ahmed.[3] In Chapter 2, we define the set of terms,
its type system `, and its operational semantics: call-by-name, explicitly typed lambda calculus
with full, impredicative polymorphism and contravariant iso-recursive types, where folded-up
types are considered values. This differs from Ahmed’s language in the following ways. First,
as mentioned, Ahmed’s language uses call-by-value semantics. Second, our types are explicit
or “Church-style”. This contrasts with Ahmed’s implicit or “Curry-style” types, where term-
level (type-level) lambda abstractions mention no type (type variable) and type-level function
application requires no type to which to instantiate. Third, Ahmed defines term foldings (a
notion related to recursive types) to be evaluation contexts just like term unfoldings. This leads

2

to Ahmed’s language being non-deterministic. We make things slightly easier for ourselves by
regarding folded-up terms as values, which yields determinism.

In Chapter 3, we set ourselves the goal of proving our language is type-safe. A term e is safe
iff every evaluation path starting from e ends in a term that is either a value or itself reducible.
(Informally, e “never gets stuck”.) Type-safety then means that all typeable terms are safe. Note
that this is not the same as strong normalisation, which says that every evaluation path starting
at a typeable term is finite.

To prove type-safety, we define a unary logical relation � similar to Ahmed’s, by a mutually
recursive definition of sets parametrised over a step-index. It relates the necessary (type) envir-
onments ∆ and Γ, a term e, and a type τ . We state the fundamental property of �, namely that
every well-typed term is in �. In symbols: `⊆� or ∆;Γ ` e : τ ⇒ ∆;Γ � e : τ . We prove this by
induction on the typing rules, with one compatibility lemma per rule. The second and last part
of the proof is then to show that whenever a (closed) term e is in � with empty environments,
e is safe. In symbols: ∅; ∅ � e : τ ⇒ safe e. Combined with the first part, we then get that all
typeable terms e are safe: ∅; ∅ ` e : τ ⇒ safe e. Note that this is the definition of type-safety.

In Chapter 4, we build up to and prove the main theorem of this thesis, using an argu-
mentation structure similar to Ahmed’s proof of soundness.[3] After some examples to build
up intuition for the concept, we rigorously define the contextual equivalence relation ≈ctx for
terms. This includes a formalisation of the notions of suitable context and observable difference
mentioned earlier. We then define a second logical relation �, similar to � from Chapter 3 but
expecting two terms. The theorem we want to prove, then, is the soundness of the relation w.r.t.
contextual equivalence.

In the first part of the proof, we show that � is reflexive on well-typed terms: `⊆ � or
∆;Γ ` e : τ ⇒ ∆;Γ � e � e : τ . We do this by induction on the rules of `, in a way similar to our
proof in Chapter 3.

In the second part, we deviate slightly from Ahmed’s argumentation structure: we introduce
the concept of monotonicity for contexts. We prove by induction that all suitable contexts are
monotonic, reusing the compatibility lemmas from the first part of the proof. The theorem is
then obtained by a direct proof of soundness, using the reflexivity of � and monotonicity of
suitable contexts.

The final section, then, discusses some aspects of �. Among other things, we revisit the
example term pairs from the first section of this chapter and formally prove or refute their con-
textual equivalence. We also discuss two standard free theorems and the adjustments necessary
for them to hold in our semantics.

1.3 Conventions and notation
The following is a list of some conventions and notations that might deviate from the standard
notation to which the reader is used.

• In this thesis, we use “-” as a “hole” to define ad-hoc functions. For example, in Chapter 3,
we will encounter a set denoted Vk

∆JτKδ. The notation V -
∆JτKδ is used to refer to the

function that maps k onto Vk
∆JτKδ. This practice requires some understanding of context,

since strictly speaking, the domain and codomain of the function are not clear.

• Another note on functions: the application of functions to arguments is mostly written
without parentheses around the arguments. The notation f x is used for what the reader
might be used to writing as f(x). This is true not only for terms in the calculus, e.g.
(λx : τ. e) e′, but also for functions in the mathematical realm. For example, in the thesis

3

we will encounter mathematical operations that will be applied to terms. The subsequent
application of such operations γ and δ (of which the reader need not yet know the meaning)
to a term e is not written δ(γ(e)) but δ (γ e) or even (δ ◦ γ) e. (Note that δ and γ are not
part of the term string, they are mathematical operations that transform the term.)

• The notation A → B is used to denote the set of functions from A to B. Consequently,
we speak of functions as being elements of such sets and write f ∈ A → B instead of
f : A→ B. For sets of all partial functions we use ⇀, for finite partial functions ⇀fin.
These arrow operators associate to the right. An example: f ∈ A ⇀ B → C means that
f is a partial function mapping some elements a ∈ A to total functions from B to C.
We also let function application associate to the left. This allows for easy expression of
multivariable functions using “currying”: f a b is the element of C to which b is mapped
by (f a) ∈ B.

• Tuples are written with angle brackets: 〈t1, t2, . . . , tn〉.

• When X is a binary relation, X∗ denotes the reflexive transitive closure of X. When X is
any other set, X∗ denotes the Kleene closure of X (the set of all finite words over X).

• Zero is a natural number.

• For brevity, we use logical symbols in the meta-language.
Universal quantification in logical formulas and the meta-language is written ∀x ∈ A, y1, y2 ∈
B, . . . : φ(x, y1, y2). When A,B are clear, we sometimes leave them out.
Logical implication is written ⇒ instead of →, to avoid confusion with mathematical func-
tion sets (e.g. N → N)) and the type constructor (e.g. τ1 → τ2). Also, ⇒ binds less strongly
than ∧,∨,¬, while the (meta-)quantifiers ∀,∃ bind least strongly of all.

• The following are some association rules for type and term strings.
In general, application of mathematical functions to components of term or type strings
bind most strongly: δ τ → σ is the same as (δ τ) → σ. The only exception is formed by
single substitutions, e.g. γ e[e′/x] is the same as γ (e[e′/x]).
The scope of ∀ and µ extends as far to the right as possible, e.g. ∀α.τ → µβ.β → α is the
same as ∀α.(τ1 → µβ.(β → α)).
The same holds true for λ and Λ: λx :τ. in e Λα.e′ e′′ is the same as λx :τ. (in e (Λα.(e′ e′′))).

4

Chapter 2

Language

In this chapter, we define the essential notions in order to be able to speak of a typed lambda
calculus. We do not yet concern ourselves with the results that we will prove in Chapter 3 and
Chapter 4. We start the next section by defining the language’s syntactical elements: we specify
what terms and types in our language are. Simple as this sounds, it will require a bit of attention
to detail. In lambda calculus, there is a reduction rule (namely β-reduction) which, when not
defined carefully, displays unintended behaviour. We will explain and make use of the standard
solution to this problem, namely the Barendregt convention.[5]

The second section, then, continues the discussion of types and terms by discussing their
relation. It defines how terms are assigned a type.

The subsequent section defines the operational semantics of the language, i.e. how lambda
terms reduce to others. We prove an important property of the language that will be used in
the rest of the thesis, namely that our operational semantics is deterministic.

The last section contains a discussion of some language properties that we can already observe
without bringing in the step-indexed logical relations of the next chapters. We will discuss
recursion, diverging terms, unicity of types, and the differences between our language and the
one defined by Ahmed.[3]

2.1 Syntax: types and terms
We start by defining types and terms syntactically, as strings. We then introduce a few of the
rules in the operational semantics and show that a naive following of these rules would lead to
problems. An equivalence relation between type strings is established, as well as one between
term strings. This allows us to redefine types and terms as equivalence classes of type strings
and term strings, respectively. For the sake of simplicity and readability, we opt for carefully
delineated abuse of notation. Despite types and terms being classes, we will talk about them as if
they were strings. The Barendregt convention—Barendregt themself referred to it as the variable
convention—then, is to refer to these strings by specific representatives. This will avoid the
problems created by the naive rules. Readers familiar with this problem can skip Section 2.1.1,
and those familiar with the Barendregt convention can skip Section 2.1.2 as well.

As mentioned in the introduction, the language we will be working with is the fully poly-
morphic lambda calculus with recursive types. This means that the set of types must be closed
w.r.t. functions, universal quantification, and type folding. In contrast with Ahmed’s language[3],
ours uses explicit, Church-style typing, which means that term-level lambda abstractions mention

5

the term’s expected type, type-level abstractions mention the type variable, and type applications
mention the type to which the term is applied.

Definition 1 (Types as strings). We define the set Type of type strings inductively using the
following grammar:

τ ::= α | τ → τ | ∀α.τ | µα.τ
where α ranges over a countably infinite set TVar of type-level variables. Throughout this
document, unless noted otherwise, we let α, β ∈ TVar and we let τ, σ ∈ Type.

Definition 2 (Terms as strings). We define the set Term of term strings inductively using the
following grammar:

e ::= x | λx :τ. e | e e | Λα.e | e τ | in e | out e

where x ranges over a countably infinite set Var of variables. Throughout this document, unless
noted otherwise, we let x, y ∈ Var, e ∈ Term.

In order to define the naive rules of the operational semantics, we first need to define the
notions of free (type) variables in type and term strings and their corresponding naive substi-
tutions. Type variables occur in type and term strings, while term variables only occur in term
strings. We also speak of type- and term-level variables’ individual occurrences in type or term
strings as being free or bound.

Definition 3 (Free type variables). We define two functions with the same name, ftv. (Since
their domains are disjoint, this should not lead to confusion.)

The first maps a type string onto its set of free type variables: ftv ∈ Type → P TVar. It is
defined by recursion on the type string, as displayed in Fig. 2.1.

The second maps a term string onto its set of free type variables: ftv ∈ Term → P TVar and
is defined by recursion on the term string. It is displayed in Fig. 2.1.

We also speak of type variables’ separate occurrences as being free or bound. An occurrence
of α in a type or term string is called a bound occurrence iff it appears within the scope of an
appropriate binder, otherwise it is a free occurrence. For type strings, the appropriate binders
for α are ∀α and µα. For term strings, it is only Λα.

Definition 4 (Syntactic type substitution). We define what it means to substitute a type string
for a free type variable, both in type strings and in term strings.

Given two type strings τ, τ ′ and a type variable α. Then the type string τ [τ ′/α] is defined
recursively w.r.t. τ as displayed in Fig. 2.2.

Given a term string e, a type string τ ′ and a type variable α. Then the term string e[τ ′/α]
is defined recursively w.r.t. e as displayed in Fig. 2.2.

Definition 5 (Free variables). We define a function fv which maps a term string onto its set of
free variables: fv ∈ Term → P Var. It is defined by recursion on the term string, as follows:

fvx := {x},
fvλx :τ. e := fv e \ {x},
fv(e1 e2) := fv e1 ∪ fv e2,

fvΛα.e := fv e,
fv(e τ) := fv e,
fv in e := fv e,

fv out e := fv e.

6

ftvα := {α},
ftv(τ1 → τ2) := ftv τ1 ∪ ftv τ2,

ftv(∀α.τ) := ftv τ \ {α},
ftv(µα.τ) := ftv τ \ {α}.

ftvx := ∅,
ftvλx :τ. e := ftv τ ∪ ftv e,
ftv(e1 e2) := ftv e1 ∪ ftv e2,

ftvΛα.e := ftv e \ {α},
ftv(e τ) := ftv e ∪ ftv τ,
ftv in e := ftv e,

ftv out e := ftv e.

Figure 2.1: The recursive definitions of the free type variable functions, which both
are called ftv. Note how the ftv function on terms makes use of the ftv functions on
types, but not the other way around. Therefore, the definitions are wellfounded.

α[τ ′/α] := τ ′,

β[τ ′/α] := β if α 6= β,

(τ1 → τ2)[τ
′/α] := τ1[τ

′/α] → τ2[τ
′/α],

(∀α.τ)[τ ′/α] := ∀α.τ ,
(∀β.τ)[τ ′/α] := ∀β.τ [τ ′/α] if α 6= β,

(µα.τ)[τ ′/α] := µα.τ ,

(µβ.τ)[τ ′/α] := µβ.τ [τ ′/α] if α 6= β,

x[τ ′/α] := x,

(λx :τ. e)[τ ′/α] := λx :τ [τ ′/α]. e[τ ′/α],

(e1 e2)[τ
′/α] := e1[τ

′/α] e2[τ
′/α],

(Λα.e)[τ ′/α] := Λα.e,

(Λβ.e)[τ ′/α] := Λβ.e[τ ′/α] if α 6= β,

(e τ)[τ ′/α] := e[τ ′/α] τ [τ ′/α],

(in e)[τ ′/α] := in e[τ ′/α],
(out e)[τ ′/α] := out e[τ ′/α]

Figure 2.2: The recursive definitions of syntactic type substitution on types (left) and
terms (right). Note how the definition for terms makes use of the one for types, but
not the other way around. Therefore, the definitions are wellfounded.

7

We also speak of term variables’ separate occurrences as being free or bound. An occurrence
of x in a term string is called a bound occurrence iff it appears within the scope of an appropriate
binder, λx, otherwise it is a free occurrence.

Definition 6 (Syntactic term substitution). We define what it means to substitute a term string
for a (free) variable in another term string. Given two term strings e, e′ and a variable x. Then
the type string e[e′/x] is defined recursively w.r.t. e as follows:

x[e′/x] := e′,

y[e′/x] := y if x 6= y,

(λx :τ. e)[e′/x] := λx :τ. e,

(λy :τ. e)[e′/x] := λy :τ. e[e′/x] if x 6= y,

(e1 e2)[e
′/x] := e1[e

′/x] e2[e
′/x],

(Λα.e)[e′/x] := Λα.e[e′/x],

(e τ)[e′/x] := e[e′/x] τ,

(in e)[e′/x] := in e[e′/x],
(out e)[e′/x] := out e[e′/x].

We give a few examples of these concepts.

Example 7 (Free and bound variables and substitutions). In the following examples, the bound
variables are underlined once and the corresponding binder in whose scope they appear are un-
derlined twice. The free variables are not underlined.

λx :∀α.α. λy :∀α.α. y

λx :∀α.α. λx :∀α.α. x y

λx :∀α.α. λx :α. x x

(Λα.λx :α. λy :α. x) β y

(λx :α. λy :α. x)[β/α] y = (λx :β. λy :β. x) y

(λy :β. x)[y/x] = (λy :β. y)

2.1.1 The problem
Remark 8. Readers already familiar with the problem of naive substitution can skip this section.

Armed with these purposefully naive definitions, we will define the minimal number of rules
of the operational semantics necessary to uncover the problem. Let us suppose we have (at least)
the following two rules in our language:

7→app
(λx :τ. e) e′ 7→ e[e′/x]

7→tapp
(Λα.e) τ 7→ e[τ/α] ,

where of course the rules should be regarded as schemas parametrised in x, τ, e, e′, α. We will
consider two out of many possible example strings that display unintended behaviour.

Example 9. First define these two term strings:

t := λx :τ. λy :τ. x,

T := Λα.Λβ.λx :α. x,

8

where τ does not really matter that much and can be taken to be, e.g., ∀α′.α′. The term t is to be
interpreted as the function taking two arguments of type τ and returning the first one, ignoring
the second. In other words, t e1 e2 will evaluate to e1. The reader must understand that in order
to achieve this meaning of t, we would have been equally happy writing it down as λy :τ. λx :τ. y
or λa : τ. λb : τ. a. It is not the names of the variables that matter, but how they relate to one
another. T , then, takes two type variables and returns the identity function λx : α. x for the
first type it was given. Here also, the value returned by T does not depend on the second (type)
argument.

Now for the problematic part, which is similar to Example 7. Suppose we want to apply t to
y, which is a valid term and might have some meaning to us in context. We follow the rule 7→app
and see that t y = (λx : τ. λy : τ. x) y 7→ (λy : τ. x)[y/x] = λy : τ. y. We thus see that t y evaluates
to the identity function on τ . Thus t y e2 7→ (λy : τ. y) e2 7→ e2, which contradicts the intuitive
meaning we gave to t, whenever y 6= e2.

The problem with the t in Example 9 lies in the fact that y, which has a meaning outside of
λy :τ. x, is substituted for x and therefore its meaning is overwritten by the binder λy. In other
words, the free y got “captured” by λy.

A similar thing happens when we apply T to β and some other type τ ′. The intended
meaning of T is such that T β τ ′ evaluates to λx :β. x, but it turns out that T β τ ′ 7→ (Λβ.λx :
α. x)[β/α] τ ′ = (Λβ.λx : β. x) τ ′ 7→ (λx : β. x)[τ ′/β] = λx : τ ′. x, i.e. it evaluates to the identity
function on τ ′ instead of on β. Again, the problem is the first step: the β that is substituted for
α is captured by the binding Λβ in the scope of which it appears.

A final remark: we have seen a term-level variable being captured during a term substitution
in a term and a type-level variable being captured during a type substitution in a term. The
same problem can arise in a type-level variable being captured during a term substitution in
a term. We now consider the fourth and last substitution problem: capturing of a type-level
variable during a type substitutino in a type.

Consider the type
τ := ∀β.α→ α,

intuitively meaning the type of functions taking a type and ignoring it, returning a function
from α to α. Suppose we want to substitute β for α in τ . We want the result to be the type of
functions still ignoring their given type variable, now returning a function from β to β. However,
τ [β/α] = ∀β.β → β does not match this description: functions of this type will not ignore the
type they are given, as the type of their returned value depends on it. Once again, this problem
is caused by capturing of β by the binder ∀β.

2.1.2 The solution
Remark 10. In this section, we introduce the Barendregt convention. We expand it to typed
lambda calculus and adapt it to types mentioned within terms and to types themselves. The reader
may want to skip this section if at least one of the following holds: 1) the fairly experienced reader
may want to skip this section, or 2) the reader is content with the explanation “we rename bound
(type) variables in types and terms such that we never get into trouble”.

We observed that the problem with substitutions as defined so far is that they let free variables
be captured upon substitution. Simply disallowing substitutions whenever capturing would occur
is not an option, since, like we saw, such situations can arise and are legitimate. Instead, we
follow the solution presented by Barendregt.[5, Chapter 2] [8] Since Barendregt’s solution was
written with untyped lambda calculus in mind, it covers only terms. We supplement it with an
analogue for types.

9

We first define a binary equivalence relation between terms—for historical reasons, Baren-
dregt calls this α-convertibility—indicating that one can be changed into the other by renaming
bindings of type and term variables. Then we redefine terms to be equivalence classes of term
strings under this relation, reserving term string for the old notion of terms. We then do a similar
thing for types. The problem is then solved by the Barendregt convention, which installs require-
ments on the representatives of types and terms that we will keep implicit throughout the rest of
this thesis. This allows us to have the best of both worlds by discussing representatives—which
is less cumbersome than considering their classes—without worrying about incorrectness.

Definition 11 (Term equality up to bound (type) variable names). We define a binary relation
 bv on term strings. We say that e1 bv e2 iff exactly one of the following holds:

1. There is some subterm λx :τ. e′1 of e1 and a “fresh” variable y not appearing in e′1 (neither
bound nor free), such that e2 is equal to e1 except that λx :τ. e′1 is replaced by λy :τ. e′1[y/x].

2. There is some subterm Λα.e′1 of e1 and a “fresh” type variable β not appearing in e′1 (neither
bound nor free), such that e2 is equal to e1 except that Λα.e′1 is replaced by Λβ.e′1[β/α].

We then say that e1 and e2 are equal up to bound (type) variables iff e1 ∗
bv e2.

We see that, in general, bv is not reflexive, transitive, or symmetric. However, ∗
bv is

not only reflexive and transitive—it is so by definition—but also symmetric, and therefore an
equivalence relation. We do not formally prove this, but make it plausible through Example 13.

Example 12. We provide a few examples of situations where term equality up to bound (type)
variable names does or does not hold. Note that most of the terms used are nonsensical.
(Whenever two different symbols are used for variables, we will assume they are indeed different
variables.)

We see that λx :τ. x x bv λy :τ. y y.
The following equality does not hold because two substitutions have been made at once: λx :

τ. λy :τ. y 6 bv λx
′ :τ. λy′ :τ. y′.

This variant also does not hold: λx : τ. λy : τ. y 6 bv λx
′ : τ. λy′ : τ. x′. This time, the error is

that the variable y in third position was replaced by x′ instead of by y′.
Regarding renaming of types within terms, we see that Λα.λx :α. x α 6 bv Λβ.λx :α. x β. The

reason is that we must rename all appearances of α: not only the one in the type application x α,
but also the one appearing in the type annotation x : α.

The last two examples show that the freshness condition is important. First, we see that
Λα.((Λβ.e) (e′ α)) 6 bv Λβ.((Λβ.e) (e′ β)) since the choice of β as a new variable is not fresh.
In this example, no real problem occurred, since the free variable α was replaced with β which
happened still to be free. However, the following example shows how using a non-fresh variable
can in fact go wrong: Λα.((Λβ.e α) (e′ α)) 6 bv Λβ.Λβ.((e β) (e′ β)). (In both examples, we can
assume that e, e′ contain no type variables for simplicity.)

Example 13 (∗
bv is symmetric). Let us assume that y 6= x. We note that λx : τ. λx : τ. x bv

λy : τ. λx : τ. x but not the other way around. It would require that x appears neither free nor
bound in λx : τ. x, which is not the case. However, we show that we are able to connect the two
again in multiple steps, i.e. λy : τ. λx : τ. x ∗

bv λx : τ. λx : τ. x. We prove through a simple chain
of bv connections, where z is fresh variable equal neither to x nor to y:

λy :τ. λx :τ. x

 bvλy :τ. λz :τ. z

 bvλx :τ. λz :τ. z

 bvλx :τ. λx :τ. x.

10

Definition 14 (Type equality up to bound type variable names). We define a binary relation
 bvt on type strings. We say that τ1 bvt τ2 iff exactly one of the following holds:

1. There is some type string ∀α.τ ′1 occurring as a substring in tau1 and a “fresh” type variable
β not appearing in τ ′1 (neither bound nor free), such that τ2 is equal to τ1 except that ∀α.τ ′1
is replaced by ∀β.τ ′1[β/α].

2. The same holds, but with ∀ replaced by µ.

We then say that τ1 and τ2 are equal up to bound type variables iff τ1 ∗
bvt τ2.

Definition 15 (Types and terms as equivalence classes). We redefine Type to be the quotient of
the set of type strings (i.e. the previous definition of Type) over the relation ∗

bvt of type equality
up to bound type variable names.

We similarly redefine Term to be the quotient of the set of term strings (i.e. the previous
definition of Term) over the relation ∗

bv of type equality up to bound (type) variable names.

Convention 16 (Due to Barendregt). Although types are equivalence classes of type strings and
similarly for terms, we will nonetheless refer to them using representatives. Within definitions,
propositions, theorems, and similar contexts, all strings representative of types or terms mentioned
in the context are implicitly assumed to be as follows. Every type variable α in a binder ∀α or µα
in a type string, or in a binder Λα in term string, is different from all type variables that occur
free in any of the type or term strings mentioned in the context. Similarly, every term variable
x in a binder λx in a term string is different from all term variables that occur free in any
of the term strings mentioned in the context. Note that through a simple cardinality argument,
such suitable representatives always exist as long as we have finitely many of them in any given
context.

Regarding the operations on types and terms that we have defined so far: those can be rein-
terpreted very well as operations on classes of strings instead of on strings, without reformulation.
For example, it is clear that if e ∗

bv e
′, then fv e = fv e′ and similarly for ftv and for types. The

problem that needed solving was that of variable capture. Indeed, when we look at, e.g., this
excerpt from the definition of term substitutions:

(λy :τ. e)[e′/x] := λy :τ. e[e′/x] if x 6= y

and think of Example 9 again, we see that the problem of capture arises only when y ∈ fv e′.
Fortunately, we now have the Barendregt convention that tells us that this cannot occur. In this
definition of term substitutions, λy : τ. e and e′ are both to be seen as “term string mentioned
in the context” of the definition. Therefore, the y in the binder λy must be different from term
variables free in e′, so y /∈ fv e′. Similar things hold for the other substitutions and their variable
capture problems.

One can even go so far as to say that x is term string mentioned in the context, and therefore
y = x is impossible since x ∈ fvx. This would imply that some cases in the substitution
definitions can be omitted.

2.2 The type relation
In this section, we define which terms are to be considered of which type and under which
circumstances. The fact that we are working in a polymorphic language requires us not only to
use an environment to keep track of the types of term variables, but also a type environment for
the type variables.

11

Definition 17 (Environment). We define Env to be the set of all finite partial functions from
Var to Type:

Env := Var ⇀fin Type.
Throughout this document, unless noted otherwise, we let Γ ∈ Env. The empty environment, i.e.
the Γ with domΓ = ∅, we denote · or ∅. When x /∈ domΓ, we let Γ, (x : τ) denote the function
that maps every x′ ∈ domΓ to Γ x′ and maps x to τ . Note that if x ∈ domΓ, then Γ, (x : τ) is
not defined.

Definition 18 (Type environment). We define TEnv to be the set of all finite subsets of TVar:

TEnv := Pfin TVar .

Throughout this document, unless noted otherwise, we let ∆ ∈ TEnv. The empty type environ-
ment ∆ = ∅ is also denoted ·. When α /∈ ∆ we let ∆, α denote the set ∆ ∪ {α}. Note that if
α ∈ ∆, then ∆, α is not defined.

We also introduce the notion that types and environments can be wellformed w.r.t. a type
environment:

Definition 19 (Type wellformedness). We define the relation ∆ ` τ inductively:

∆ 3 α

∆ ` α
∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

∆, α ` τ
∆ ` µα.τ

.

We say that a type τ is closed iff · ` τ . The set of all closed types is written CType.
We then also say that

∆ ` Γ :⇔ ∀x ∈ domΓ : ∆ ` Γ x.

Remark 20 (Inductive definition with rules). The reader might not be used to inductive defin-
itions using such rules. Informally, what is meant in Definition 19 is that ` is the smallest
relation over TEnv and Type satisfying, or closed under, the mentioned rules. More formally,
it means that `:=

⋂
{S ⊆ Env ×Type |φ1(S)∧ . . .∧φ4(S)}, where φi(S) is a formula expressing

that S is closed under the i-th rule. Such a formula is a rephrasing of the rule as an implication,
where mentionings of . . . ` . . . are replaced by 〈. . . , . . .〉 ∈ S and all variables are universally
quantified. For example, the first three rules would become:

φ1(S) := ∀∆, α : ∆ 3 α⇒ 〈∆, α〉 ∈ S,

φ2(S) := ∀∆, τ1, τ2 : 〈∆, τ1〉 ∈ S ∧ 〈∆, τ2〉 ∈ S ⇒ 〈∆, τ1 → τ2〉 ∈ S,

φ3(S) := ∀∆, α, τ : 〈(∆, α), τ〉 ∈ S ⇒ 〈∆,∀α.τ〉 ∈ S.

We also prove the following statement. Although it might seem quite obvious, we choose to
prove it in full. It provides for a good introduction to the concept of proof by induction on rules
and to applying the Barendregt convention. If the reader feels confident with both concepts,
they can skip the proof. It provides no interesting further insight.

Lemma 21 (Characterisation of wellformedness of types). ∆ ` τ ⇔ ftv τ ⊆ ∆.

Proof. We start with the proof that ∆ ` τ implies ftv τ ⊆ ∆. We do so by induction on
the wellformedness ∆ ` τ of τ . This means that we define a set S := {〈∆, τ〉 | ftv τ ⊆ ∆}
and prove that S is closed under all the rules by which the type wellformedness relation `
is defined in Definition 19. The fact that ` is defined inductively by them then means that,
by definition, `⊆ S. This will result in the following—informally written—chain of reasoning:
(∆ ` τ) ⇔ (〈∆, τ〉 ∈`) ⇒ (〈∆, τ〉 ∈ S) ⇔ (ftv τ ⊆ ∆).

12

• Suppose that α ∈ ∆. We must prove that ftvα ⊆ ∆. This is clearly the case: ftvα =
{α} ⊆ ∆ since α ∈ ∆.

• Suppose that 〈∆, τ1〉 and 〈∆, τ2〉 are elements of S. We must prove that 〈∆, τ1 → τ2〉 ∈ S.
Indeed, ftv(τ1 → τ2) = ftv τ1 ∪ ftv τ2 ⊆ ∆ by assumption.

• Suppose that 〈(∆, α), τ1〉 ∈ S. (Note that the mentioning of (∆, α) implicitly assumes that
α /∈ ∆. We must prove that 〈∆,∀α.τ1〉 ∈ S. We see that ftv∀α.τ1 = ftv(τ1) \ {α} and
ftv(τ1) ⊆ (∆, α), by assumption. Thus ftv(τ1) \ {α} ⊆ ∆, which finishes the proof.

• The case for µ types is completely analogous to the previous case for ∀ types.

We now prove the other direction: ftv τ ⊆ ∆ implies ∆ ` τ , for all τ and ∆. This time,
we cannot use a proof by induction on the type wellformedness relation, since it appears in
the conclusion of the implication and not its premise. We also cannot induce on the statement
ftv τ ⊆ ∆. Therefore, we choose to induce on the fact that τ is a type. Remember that not
only the type wellformedness definition is an inductive one, but the definition of Type is as well.
More precisely, we perform an induction proof on τ ∈ Type, within which we generalise over ∆.
Formally, we again define a set S := {τ | ∀∆ : ftv τ ⊆ ∆ ⇒ ∆ ` τ}, and prove that it is closed
under the rules by which Type is defined.

• First, the type variable case. Let τ be any type variable α. We must prove that τ = α ∈ S.
We therefore fix a ∆ and suppose ftv τ ⊆ ∆. We see that ftv τ = {α}, and thus α ∈ ∆,
which implies ∆ ` τ by definition.

• Now, we assume τ1, τ2 ∈ S and ftv(τ1 → τ2) ⊆ ∆. We must prove that ∆ ` τ1 → τ2. We
note that ftv τ1 ⊆ ∆ and ftv τ2 ⊆ ∆. By induction, then ∆ ` τ1 and ∆ ` τ2. This means,
by definition, that ∆ ` τ1 → τ2.

• (The following case is most interesting, because it involves the Barendregt convention.)
Assume τ ∈ S and ftv(∀α.τ) ⊆ ∆. We must prove that ∆ ` ∀α.τ . we note that ftv(∀α.τ) =
ftv τ \ {α}. Thus, ftv τ ⊆ ∆ ∪ {α}.
For didactic purposes, we will temporarily forget the Barendregt convention. This mis-
guided reasoning is written in italics. Either α ∈ ∆ or α /∈ ∆. In the first case, we apply
the induction hypothesis τ ∈ S to ftv τ ⊆ ∆∪{α} = ∆. We get that ∆ ` τ . This is where
we get stuck: we need (∆, α) ` τ to arrive at the wanted conclusion ∆ ` ∀α.τ .
However, the Barendregt convention tells us that, since ∀α.τ was mentioned in the premise,
α is a bound variable that must therefore be chosen different from all (free) variables in
∆. We conclude that α /∈ ∆. The proof now follows smoothly: ftv τ ⊆ ∆ ∪ {α} = (∆, α)
implies (∆, α) ` τ and, finally, ∆ ` ∀α.τ .

• The case for µ types is completely analogous to the previous case for ∀ types.

We end this section with its major definition, the type relation.

Definition 22 (Type relation). We define a type relation `.1 A typing judgment takes the
form ∆;Γ ` e : τ and relates a type environment ∆ ∈ TEnv, an environment Γ ∈ Env, a term

1 Note that the symbol ` is the same as the one used for type wellformedness. Since the relations have different
arities, it should always be clear which one of the two relations is meant.

13

e ∈ Term and a type τ ∈ Type. We define the relation inductively using the following rules:

∆ ` Γ
:var

∆;Γ ` x : Γ x

∆;Γ, (x : τx) ` e : τe
:abs

∆;Γ ` λx :τx. e : τx → τe

∆;Γ ` e : τ ′ → τ ∆;Γ ` e′ : τ ′
:app

∆;Γ ` e e′ : τ

∆, α; Γ ` e : τ ∆ ` Γ
:tabs

∆;Γ ` Λα.e : ∀α.τ
∆;Γ ` e : ∀α.τ ∆ ` τ ′

:tapp
∆;Γ ` e τ ′ : τ [τ ′/α]

∆; Γ ` e : τ [µα.τ/α]
:muin

∆;Γ ` in e : µα.τ

∆;Γ ` e : µα.τ
:muout

∆;Γ ` out e : τ [µα.τ/α]

Instead of ·; · ` e : τ we occasionally write ` e : τ or even e : τ , and say that e is well-typed
or typeable.

We are now in the position to explain why we refer to our language as having iso-recursive
types. The rules :muin and :muout state that e can be folded and unfolded, respectively, in order
to fold and unfold its type. iso-recursion, then, is the term used for type systems like these,
where this folding and unfolding must be done explicitly. Had the rules been such that e is of
type τ [µα.τ/α] iff it is of type µα.τ , without the need for out and in, we would have spoken of
an equi-recursive type system.

We can also explain why we said our recursive types are contravariant in the introduction.
Contravariant type recursion allows the relevant type variable to appear anywhere within the
type. This contrasts with covariant type recursion, where the type variable can only appear
positively. When viewing a type as a nested application of the type constructors →,∀, µ to
type variables—or as a tree with type variables in the leaves and type constructors in the other
nodes—then a variable occurs positively iff it appears on the left-hand side of an even number
of → constructors. Otherwise, it occurs negatively. Looking at the type rules :muin and :muout,
we see that that we installed no positivity constraint. In the discussion in Section 2.4.2, the
difference between covariant and contravariant type recursion will become more clear. For a
thorough explanation involving type algebra, we refer to [6, Sec. 9C].

Finally, we clarify the last unexplained assertion made about the language’s type system in
the introduction. It was said that the language has “full, impredicative polymorphism”. There are
multiple type systems that are considered polymorphic, and full, impredicative, strong, or System
F-style polymorphism is one of them.[8] It is contrasted with weak or predicative polymorphism, a
system in which quantification over type variables can happen only at the “outside” of types. For
example, ∀α.α→ α and ∀α.∀β.α→ β are considered types, but ∀α.α→ ∀β.β is not, since the
quantification ∀β happens within a type constructor different from ∀. Our type system clearly
does not have that restriction and is therefore considered impredicative.

Example 23. We show an example derivation of the type of a term. We use the following
abbreviations: τB := ∀α.α→ α→ α; ∆ := (β); Γ := (f : β, g : β).

The term of which we will be deriving the type is (λx : τB. x β f g) (Λα.λy :α. λz :α. z). For

14

reasons of space, we first derive the type of the left-hand side:

β ` Γ, (x : τB))
:var

β; Γ, (x : τB)) ` x : τB β ` β
:tapp

β; Γ, (x : τB)) ` x β : β → β → β

β ` Γ, (x : τB))
:var

β; Γ, (x : τB)) ` f : β
:app

β; Γ, (x : τB)) ` x β f : β → β

β ` Γ, (x : τB))
:var

β; Γ, (x : τB)) ` g : β
:app

β; Γ, (x : τB)) ` x β f g : β
:abs

β; Γ ` λx :τB. x β f g : τB → β

and then of the right-hand side:

(β, α) ` Γ, (y : α, z : α)
:var

(β, α); Γ, (y : α, z : α) ` z : α
:abs

(β, α); Γ, (y : α) ` λz :α. z : α→ α
:abs

(β, α); Γ ` λy :α. λz :α. z : α→ α→ α
:tabs

β; Γ ` Λα.λy :α. λz :α. z : τB

We combine the two derivation trees into one large one, which gives us the type of the whole
term:

...
β; Γ ` λx :τB. x β f g : τB → β

...
β; Γ ` Λα.λy :α. λz :α. z : τB

:app
β; Γ ` (λx :τB. x β f g) (Λα.λy :α. λz :α. z) : β

2.3 Operational semantics
In this section, we describe the way in which lambda terms reduce or evaluate to other terms.
We first introduce the concept of values. The values should be thought of as exactly the set
of lambda terms of which we declare that we accept them as valid results of a program. The
subsequent definition of evaluation contexts, then, allows for a clean and uniform definition of
the actual operational semantics. We close the section with some extra notation that will come
in handy and proofs that the operational semantics is deterministic and never increases a term’s
free (type) variables.

We start with the definition of a value.

Definition 24 (Value). We define the set Val of values in our language to be a subset of Term
according to the following grammar:

v ::= λx :τ. e | Λα.e | in e

Throughout this document, unless noted otherwise, we let v ∈ Val.

It might not be obvious to the reader why we choose to regard functions as values. After
all, one could think of a function as an unfinished thing which will only return a value after
sufficiently many arguments of the right type have been given to it. However, the reader will
notice that we have no built-in atomic types representing concepts one would expect in a “real-
world” programming language, like natural numbers or booleans. We therefore encode these
concepts into polymorphic functions. For example, the two boolean values true and false can
be encoded as polymorphic functions taking two arguments where, by convention, true always

15

returns the first and false returns the second argument. Similarly, we can encode a natural
number n as a polymorphic function that takes a function f and a suitable argument x and
applies f to x exactly n times. This is known as the encoding into Church numerals.[5, 6]

true := Λα.λx :α. λy :α. x,

false := Λα.λx :α. λy :α. y,

n := Λα.λf :α→ α. λx :α. f (. . . (f︸ ︷︷ ︸
n

x) . . .).

There are certain constructs in the language, among which the application of terms to terms
or types, which can be seen as evaluation contexts. The purpose of this definition is mainly to
make the definition of the operational semantics shorter and more uniform. The meaning of this
becomes clear in the definition of the operational semantics.

Definition 25 (Evaluation context). We define the set ECtxt of evaluation contexts using the
following grammar:

E ::= (-) | E e | E τ | out E

Throughout this document, unless noted otherwise, we let E ∈ ECtxt.
We also define a substitution for evaluation contexts. Substitution of a term e for the hole

(-) in evaluation context E is denoted E[e] and is defined inductively in the natural way, clearly
making E[e] a term:

(-)[e] := e

(E e′)[e] := E[e] e′

(E τ)[e] := E[e] τ

(out E)[e] := out (E[e]).

Definition 26 (Operational semantics). We inductively define a binary relation 7→ on Term
using the following rules:

7→app
(λx :τ. e) e′ 7→ e[e′/x]

7→tapp
(Λα.e) τ 7→ e[τ/α]

7→outin
out (in e) 7→ e

e 7→ e′ 7→ectxt
E[e] 7→ E[e′]

If e 7→∗ e′, we say that e reduces to e′.

Notation 27. We say that a term e is irreducible iff it is not at the left-hand side of any tuple
in 7→:

irred e :⇔ @e′ : e 7→ e′.

We use the notation e ⇓k e′ for the statement e 7→k e′ ∧ irred e′. We say that e evaluates to
e′ in k steps.

Similarly, we use e ⇓ e′ for e 7→∗ e′ ∧ irred e′ and we say that e evaluates to e′.
We then also use and e ⇓ and e ⇓k for ∃e′ : e ⇓ e′ and ∃e′ : e ⇓k e′, respectively. Here, the

terminology is that e terminates.

16

We can immediately make a few observations about these rules. First, we see that there are
no rules governing how values are evaluated. Therefore, values are irreducible. This aligns with
the intuitive meaning we gave to Val earlier. Values are not further reduced, precisely because
we regard them as valid program results. Whether the converse, ∀e : irred e ⇒ e ∈ Val, holds,
is the subject of Chapter 3.

Second, we see that all four rules dictate how to reduce some filled-in evaluation context.
The rule 7→ectxt shows how to reduce an evaluation context filled in with a term e that itself
can be reduced, namely by reducing e first. The three other rules show how to reduce evaluation
contexts filled in with specific sorts of values. We see that these rules remove at least one layer
of structure in the process, e.g. in 7→app, the λx construct around e is reduced away. This gives
a justification for the term evaluation context: if a term is an evaluation context filled in with
e, then we first reduce e until it is fully evaluated before we let it interact with the context in
which it is located.

Example 28. As an example, we provide the derivation of a reduction path for a term. We will
leave out the type annotations in lambda abstractions for legibility.

We start with the term (λx.(out(x β f)) g) (Λα..λy.inλz.z).
We apply the rule 7→app: (out((Λα..λy.inλz.z) β f)) g. From here, there is no rule that we

can apply without making further assumptions. In fact, we will have to go several levels deep, as
the following derivation tree shows:

7→tapp
(Λα.λy.inλz.z) β 7→ λy.inλz.z

7→ectxt
(Λα.λy.inλz.z) β f 7→ (λy.inλz.z) f

7→ectxt
out((Λα.λy.inλz.z) β f) 7→ out((λy.inλz.z) f)

7→ectxt
(out((Λα.λy.inλz.z) β f)) g 7→ (out((λy.inλz.z) f)) g

The next step, starting from (out((λy.inλz.z) f)) g, requires a similar but slightly less deep
tree: 7→app

(λy.inλz.z) f 7→ inλz.z
7→ectxt

out((λy.inλz.z) f) 7→ out(inλz.z)
7→ectxt

(out((λy.inλz.z) f)) g 7→ (out(inλz.z)) g

The final two steps can then be done without deep trees. The term (out(inλz.z)) g evaluates
to (λz.z) g by application of 7→ectxt, since out(inλz.z)7→outinλz.z. The final application, then,
is (λz.z) g 7→appg.

A useful result that we can prove about the operational semantics is that it is deterministic.
In other words, every term reduces to at most one new term. Thus, if we consider all possible
reduction paths starting from a term, there is no branching.

Lemma 29 (Determinism). For all terms a, b, c ∈ Term such that a 7→ b ∧ a 7→ c, we have that
b = c. This means that a 7→k b ∧ a 7→k c also implies b = c, by induction on k.

Proof. By induction on the structure of a. First of all, the cases a = x, a = λx : τ. e, a = Λα.e,
a = in e are trivial since they make a irreducible. The remaining cases are proved by generalising
on b, c and realising that a 7→ b ∧ a 7→ c can only be caused by one of two operational semantics
rules, exactly one of which requires the use of the induction hypothesis. Looking at the reduction
rules and considering the non-overlap between Val and the set of reducible terms, we can already
see that there is no term two which two different rule schemas apply.

17

• a = e1 e2. Then, a 7→ b and a 7→ c are both applications of 7→app or both of 7→ectxt.
In the first case, say e1 = λx : τ. e′1, which yields b = c = e′1[e2/x]. In the second case,
there are eb, ec such that e1 7→ eb and a = e1 e2 7→ eb e2 = b, and similarly with e1 7→ ec
for c. We apply the induction hypothesis to e1, eb, ec and find that eb = ec. Therefore,
b = eb e2 = ec e2 = c.

• a = e τ . Similar. Either the two reductions are both applications of 7→tapp or both of
7→ectxt. In the first case, say e = Λα.e′, which yields b = c = e′[τ/α]. In the second case,
there are eb, ec such that e 7→ eb and a = e τ 7→ eb τ = b, and similarly with e τ 7→ ec τ
for c. We apply the induction hypothesis to e, eb, ec and find that eb = ec. Therefore,
b = eb e2 = ec e2 = c.

• a = out e. Again, similar. Either the two reductions are both applications of 7→outin
or both of 7→ectxt. In the first case, say e = in e′, which yields b = c = e′. In the
second case, there are eb, ec such that e 7→ eb and a = out e 7→ out eb = b, and similarly
e 7→ ec. We apply the induction hypothesis to e, eb, ec and find that eb = ec. Therefore,
b = out eb = out ec = c.

The final result of this section discusses free (type) variables in terms. It turns out that
during the reduction of a term, its set of free variables can only decrease. Neither do bound
variables suddenly become free or do they appear out of nowhere.

Definition 30 (Closed terms and closed values). We define the set of closed terms CTerm :=
{e ∈ Term | fv e = ∅ ∧ ftv e = ∅} and the set of closed values CVal := CTerm ∩ Val.

Lemma 31 (Free (type) variables decrease with 7→). Given terms a, b ∈ Term such that a 7→ b.
Then fv a ⊇ fv b and ftv a ⊇ ftv b. By transitivity and reflexivity of set inclusion, this property
thus also holds if we replace 7→ with 7→∗. We can also phrase this as: fv and ftv are monotonic
functions from Term, 7→∗ to Var ,⊇ and TVar ,⊇, respectively.

Proof. By induction on the 7→ relation, where the cases a = x, a = λx :τ. e, a = Λα.e, a = in e
are trivial since they make a irreducible. We prove the remaining cases separately.

• a = e1 e2. Then, fv a = fv e1 ∪ fv e2 and ftv a = ftv e1 ∪ ftv e2.
a 7→ b is an application of either 7→app or 7→ectxt. In the first case, say e1 = λx :τ. e′1. Then
b = e′1[e2/x]. We see that fv b ⊆ (fv e′1\{x})∪ fv e2 = fv a2 and ftv b ⊆ ftv e′1∪ ftv e2 ⊆ ftv a.
In the second case, say that e1 7→ e′1. Then b = e′1 e2. Thus, fv b = fv e′1 ∪ fv e2 ⊆
fv e1 ∪ fv e2 = fv a and ftv b = ftv e′1 ∪ ftv e2 ⊆ ftv e1 ∪ ftv e2 = ftv a, both by the induction
hypothesis.

• a = e τ . Then, fv a = fv e and ftv a = ftv e ∪ ftv τ .
a 7→ b is an application of either 7→tapp or 7→ectxt. In the first case, say e = Λα.e′. Then
b = e′[τ/α]. We see that fv b = fv e′ = fv e = fv a, while ftv b ⊆ (ftv e′ \ {α}) ∪ ftv τ =
ftv e ∪ ftv τ = ftv a.3

In the second case, say that e 7→ e′. Then b = e′ τ . Thus, fv b = fv e′ ⊆ fv e = fv a and
ftv b = ftv e′ ∪ ftv τ ⊆ ftv e ∪ ftv τ = ftv a, both by the induction hypothesis.

2 The subset assertion is not an equality if there is no x free in e′1, since then b = e′1[e2/x] = e′1. Note also
that fv e1 = fv e′1 \ {x}.

3 The subset assertion is not an equality if there is no α free in e′, since then b = e′[τ/α] = e′. Note also that
ftv e = ftv e′ \ {x}.

18

• a = out e. Then, fv a = fv e and ftv a = ftv e.
a 7→ b is an application of either 7→outin or 7→ectxt. Both cases are obvious and allow fv
and ftv to move through the out and in constructs.

Corollary 32. Given terms a, b ∈ Term such that a ∈ CTerm and a 7→∗ b. Then b ∈ CTerm.

2.4 Discussion
In this section, we provide some discussion of the language we just defined. Most observations
will not be directly useful in proving the results of this thesis. Those will be introduced and
proved in the next two chapters. This section is meant for properties of the language that cannot
naturally be discussed elsewhere, but are worth mentioning and exploring nonetheless. We will
first provide the reader with a motivation for recursive mu-types (we assume the reader already
understands the use of the functions and universally quantified types). Then, we will show that
our language admits terms with infinite reduction paths and arbitrary recursion. In the third
section, we show that in contrast with derivation of reduction paths in the operational semantics,
our type relation is not deterministic, i.e. there are terms that receive multiple types. Finally,
we take the time to compile a list of important differences between the call-by-value language as
defined by Ahmed[3] and our call-by-name language.

2.4.1 Type-level recursion
At this point, the reader might wonder what the actual use of µ and type recursion is. In short,
µ should be thought of as the least fixpoint operator on the type level. In this section, we will
illustrate this with an example. In order not to spend too much time on details, we will approach
this subject in a not-so-rigorous manner.

A way of looking at the set N of natural numbers is that it is the smallest set (up to iso-
morphism as sets, i.e. bijection) such that expanding it with one new element does not change
it (up to isomorphism). We will not go into the mathematics of this.

Claim 33 (Characterisation of N up to isomorphism). N is the smallest set X such that X+1 ∼=
X, with + denoting disjoint union and 1 any singleton set.

We will translate the characterisation of N into our lambda calculus. Then, we will look for
a type that loosely satisfies this lambda calculus analogue of the characterisation and thus can
fulfill the role of “natural number type”. We will see that µ-recursive types are the way to achieve
this.

We now find analogues in our language for both disjoint unions and singletons, starting
with the latter. The first term that comes to the reader’s mind when looking at the type
τid := ∀α.α→ α is probably the polymorphic identity function, id := Λα.λx :α. x. Indeed, it is
clearly of this type: ·; · ` id : τid. As we will see in Chapter 4 id is in some sense the only term of
type τid. We therefore choose to regard τid as the “singleton type” and we will sometimes write
it as 1:

1 := τid = ∀α.α→ α.

The second concept to translate into our language is that of disjoint unions. Given two types
τ, σ, we want to construct a new type that seems to “contain” all terms of type τ as well as those
of type σ. We also want a term to be contained twice if it happens to be of both types. We draw

19

inspiration from the standard set-theoretic definition of A + B, which uses a labeling “trick”:
A+ B := ({0} × A) ∪ ({1} × B). We can therefore use the following definition of disjunction[8]
and its accompanying constructors:

τ + σ := ∀α.(τ → α) → (σ → α) → α,

inl(τ, σ) := λx :τ.Λα.λf :τ → α. λg :σ → α. f x,

inr(τ, σ) := λx :τ.Λα.λf :τ → α. λg :σ → α. g x,

where by the Barendregt convention, α /∈ fv τ, fvσ. Here, inl and inr provide the same labeling
we had in disjoint unions of sets. Indeed, we can see that if e is of type τ , then inl(τ, σ) e is
of type τ + σ, and similarly for σ and inr(τ, σ). Thus, if e is both of type τ and σ, it is still
contained twice: inl(τ, σ) e and inr(τ, σ) e are meaningfully different.

Now that we have translated all necessary concepts, we can formulate the analogue of the
characterisation of N completely within the terminology of our lambda calculus:

We are looking for a smallest type τ∗ such that τ∗ ∼= τ∗ + 1.

It turns out that τ := µα.α+ 1 comes close to satisfying this isomorphism requirement.
Given an argument t of type τ . We can unfold t to out t of type (µα.α+ 1) + 1. This last
type is equal to τ + 1, so we are done. The other way around, given an argument t′ of type
τ + 1 = (µα.α+ 1) + 1 = (α+ 1)[µα.α+ 1/α], we can fold it into in t′ of type µα.α+ 1 = τ .

Note that several imperfections remain. First, we have not addressed minimality of τ . In
fact, we have not even truly made it precise. Second, the two-way operation we described is not
exactly an isomorphism. In one direction, we find that although in out t and t seem to be very
similar in some sense, they are not equal. In the other direction we see that out in t′ is also
different from t, although we do have out in t 7→ t. As this section is merely meant to give the
reader an idea of the use of µ-recursive types, we do not intend to fix these problems.

Besides defining the natural numbers, we could also add other concepts to the language
through the use of recursive types. For example, consider the fact that for any set L, its Kleene
closure L∗ = L0+L1+L2+ . . ., representing lists over L, has the property that L∗ ∼= 1+(L×L∗),
where L0 = 1. Then defining something analogous to cartesian products but for types could start
a search for a type τ such that τ ∼= 1 + (τL × τ), for any given type τL. This search would then
lead us to τ := µα.1 + (τL × α).

2.4.2 Diverging terms and term-level recursion
In this section, we turn to some interesting terms that can be constructed in our language λ∀µ.
We will see that we can create terms whose reduction never finishes, which we will call diverging
terms. For this, we will get inspiration from the untyped lambda calculus. We will also find there
is a term in our language that can perform arbitrary recursion, again taken from the untyped
lambda calculus. We close the section by making it plausible that the first two things were in
fact special cases of a stronger statement: the entirety of the untyped lambda calculus can be
embedded into λ∀µ. It would lead us to far to prove this, though.

Divergence Let us start with diverging terms. In the untyped lambda calculus, one has the
term Ω := ω ω, where ω := λ. x x. Its only reduction path is Ω 7→ Ω 7→[5] We wish to
translate this term to our language in such a way that the translation is well-typed. This poses
the immediate problem that we need to provide types for the lambda abstractions. However, the
following loose argumentation will get us there.

20

We start with the idea of ω := λx : τ1. x x and Ω := ω ω. However, this does not work. If
·; · ` ω : τ1 → τ2, for Ω to be well-typed we need ω to accept type τ1 → τ2 and thus τ1 = τ1 → τ2.
This is impossible with our finite type strings. Fortunately, we can “solve this type equation”
using type recursion: we make up our mind and define ω := λx : µα.α→ τ2. (out x) x. We
see that this leads to ·; · ` ω : (µα.α→ τ2) → τ2. This still leaves us with an untypeable
Ω = ω ω, since the left-hand ω expects the right hand ω to be of type µα.α→ τ2 instead of
µα.(µα.α→ τ2) → τ2. These last two types are very similar however, and we find that one
alteration of Ω does the trick: Ω := ω (in ω). It is an easy exercise to see that ·; · ` Ω : τ2. We
conclude that we can define such a term for any type τ ∈ CType:4

Ωτ := ω (in ω) = (λx :µα.α→ τ . (out x) x) (in λx :µα.α→ τ . (out x) x).

Now that we successfully translated the untyped lambda calculus term Ω into λ∀µ, we must
still prove that it diverges. This turns out to be rather straightforward (we leave out the sub-
scripts for readability):

Definition 34 (Basic divergent term). We say that Ωτ is the basic divergent term of type τ :

Ω = ω (in ω) = (λx :µα.α→ τ . (out x) x) (in λx :µα.α→ τ . (out x) x)
7→ ((out x) x)[in ω/x]
= (out (in ω)) (in ω)
7→ ω (in ω)
= Ω.

Since Ω /∈ Val and 7→ is deterministic, this means that Ω 6⇓.
These discoveries combine into the following proposition:

Proposition 35 (Every type has a diverging term). Given a type τ such that ∆ ` τ . Then there
exists a term Ωτ such that ∆; · ` Ωτ : τ and Ωτ 6⇓. We will often refer to it as Ω instead of Ωτ .

Proof. We provide the term

Ωτ := ω (in ω) = (λx :µα.α→ τ . (out x) x) (in λx :µα.α→ τ . (out x) x).

The proof of divergence has been done. We now turn to the type derivation. First, we provide
a derivation tree for ω. We use Γ as an abbreviation for (x : µα.α→ τ).

∆ ` µα.α→ τ
:var

∆;Γ ` x : µα.α→ τ
:muout

∆;Γ ` out x : (µα.α→ τ) → τ

∆ ` µα.α→ τ
:var

∆;Γ ` x : µα.α→ τ
:app

∆;Γ ` (out x) x : τ
:abs

∆; · ` λx :µα.α→ τ . (out x) x : (µα.α→ τ) → τ

From here, deriving the full derivation tree for the term Ω is not difficult:

...
∆; · ` ω : (µα.α→ τ) → τ

...
∆; · ` ω : (µα.α→ τ) → τ

:muin
∆; · ` in ω : µα.α→ τ

:app
∆; · ` Ω : τ

4 We can make this slightly more general and say that ∆ ` τ implies that ∆; · ` Ωτ : τ .

21

Note that the term would not have been typeable if our type recursion had been covariant.
This makes it such that, even though α appears negatively in the type µα.α→ τ of x, the
unfolding out x is still welltyped. Since Ω does not terminate, Mendler’s strong normalisability
theorem states that it would not be welltyped in a system with only covariant recursive types.[6,
Sec. 9C]

Term-level recursion Not only can we recreate the basic divergent term Ω from the untyped
lambda calculus, we can also recreate the fixpoint combinator Y . For a more detailed explanation
of Y , why it is called a fixpoint combinator, and what it has to do with recursion, we refer to
[5]. The process of translation from untyped to typed lambda calculus is similar to what we did
for Ω. In the untyped lambda calculus, Y := λf. (λx. f (x x)) (λx. f (x x)). We again find that
for every type τ , there is a translation to λ∀µ:

Y := λf :τ → τ. (λx :µα.α→ τ . f ((out x) x)) (in λx :µα.α→ τ . f ((out x) x)).

In slight contrast with the fixpoint combinator in the untyped lambda calculus, this one does
not have the property that Y F 7→∗ F (Y F) for any term F . It does come very close, though:

Y F 7→ ((λx :µα.α→ τ . f ((out x) x)) (in λx :µα.α→ τ . f ((out x) x)))[F/f]
= (λx :µα.α→ τ . F ((out x) x)) (in λx :µα.α→ τ . F ((out x) x))
7→ F ((out in λx :µα.α→ τ . F ((out x) x)) (in λx :µα.α→ τ . F ((out x) x))).

If we abbreviate T := λx :µα.α→ τ . F ((out x) x), then we found that

Y F 7→ T (in T) 7→ F ((out in T) (in T)).

We see that this is not exactly the same as F (Y F) or even F (T (in T)), although we do see
that upon evaluation the out-in pair gets cancelled out.

In general We conjecture that we can translate any term from the untyped lambda calculus
into λ∀µ. We define the type L := µα.α→ α such that (α→ α)[L/α] = L→ L. The translation
of an untyped term e is written e and is defined recursively as follows:

x := x,

λx. e := in λx :L. e,
e1 e2 := (out e1) e2.

We conjecture the following about the typing of the terms’ translations.

Conjecture 36. Given a term e in the untyped lambda calculus. Say that the free variables of
e are x1, . . . , xn. Then ·; (x1 : L), . . . , (xn : L) ` e : L.

We formalise no conjecture on the relation between a term’s semantics and its tranlation’s
semantics, as this would lead us too far.

2.4.3 Type uniqueness
We find that the typing relation is non-functional. In other words, λ∀µ allows for terms to have
multiple types. As this is worthy of mentioning but not extremely insightful, we pay minor
attention to it.

22

The crux lies in :muin. Though we will not reproduce it here, we found that an induction proof
of type uniqueness fails only at this rule. The reason is the following. In general, if τ1[µα.τ1/α] =
τ2[µα.τ2/α], it is not the case that µα.τ1 = µα.τ2. Take for example the pair of types τ1 := α
and τ2 := µα.α. (Note that the latter, being an equivalence class of type strings, is equal to
µβ.β and contains no free α.) Then τ1[µα.τ1/α] = µα.α is equal to τ2[µα.τ2/α] = τ2 = µα.α.
Nevertheless, µα.τ1 = µα.α is different from µα.τ2 = µα.µα.α.

We have discovered that the most obvious direction of attack to prove type uniqueness does
not go through in this particular case. But a stronger statement holds: type uniqueness is simply
not true, i.e. we can find a term that is assigned multiple different types by our type relation `.
We will make use of our knowledge of the “problematic” typing rule :muin.

Proposition 37 (Counterexample against type uniqueness). There are types τ, σ and a term e
such that τ 6= σ, while both ·; · ` e : τ and ·; · ` e : σ.

Proof. We consider the term Ωµα.α as defined in Prop. 35, but refer to it as Ω for brevity. Since
· ` µα.α, we have ·; · ` Ω : µα.α. As discussed before, we then know by :muin that both
·; · ` in Ω : µα.α and ·; · ` in Ω : µα.µα.α.

2.4.4 Differences with Ahmed’s language
In this section, we reiterate over some differences between the language used by Ahmed[3] and our
language λ∀µ. The first, perhaps most noticeable difference is that our language has no built-in
existential types. As it turns out, it is possible to define some form of existential types using
universal types, which we do have, but nonetheless they do not occur as part of the language
definition.[8]

CBV vs. CBN We have stated before that our language is CBN (call-by-name) while Ahmed’s
is CBV (call-by-value). To understand the meaning of this, we must compare our operational
semantics to that of Ahmed. We see that Ahmed’s definitions have two important differences.
First, v E is considered an evaluation context, which means that when e 7→ e′, then (λx :τ. e′′) e
reduces to (λx : τ. e′′) e′. Second, this reducing of the argument only stops when it is fully
evaluated, to a value v. Then the reduction (λx :τ. e′′) v 7→ e′′[v/x] is performed. This constitutes
a great difference with our language, where the argument e′ in e e′ is substituted in the function
as soon as e is a lambda abstraction. (When that is not the case, the two languages agree: always
reduce the left-hand side of an application first.)

Does this make any practical difference, though? The answer is yes. Let us return to the
fixpoint combinator Y defined in Section 2.4.2. (Let us also reuse the abbrevation T .) Recall
how in our language, Y F does not necessarily reduce to F (T (in T)). Under CBV semantics,
though, this does always happen, as long as F is a lambda abstraction:

Y F 7→ ((λx :µα.α→ τ . f ((out x) x)) (in λx :µα.α→ τ . f ((out x) x)))[F/f]
7→ ((λx :µα.α→ τ . F ((out x) x)) (in λx :µα.α→ τ . F ((out x) x)))
= T (in T)
7→ F ((out in λx :µα.α→ τ . F ((out x) x)) (in λx :µα.α→ τ . F ((out x) x)))
= F ((out in T) (in T))
7→ F (T (in T)).

Implicit vs. explicit typing Another difference is that we use explicit typing while Ahmed
uses implicit typing. In other words, Ahmed writes down term-level lambda abstractions without

23

mentioning the argument’s expected type, type-level abstractions without mentioning the bound
type variable, and term applications to a type without mentioning which type. We list some
examples and provide information on the types they are assigned under Ahmed’s type system:

1. λx. x can have type τ → τ , for any type τ . Note that this is the case even though there
is no type-level lambda abstraction. Consequently, the type is not ∀α.(α → α), which is
different from τ → τ for every τ .

2. Λ. λx. x can have type ∀α.α→ α, but also ∀α.τ → τ for any type τ . In our language, the
difference would be clear because of the type annotation in the λx binder.

3. Λ.Λ. λx. λy. λz. z can have many types. One class of them is ∀α.∀β.α→ β → τ → τ and
the other is ∀α.∀β.β → α→ τ → τ . Again, it is also possible that τ is α or β.

All these type ambiguities are due to the fact that the type- and term-level abstraction do not
mention their type variables and types, respectively.

A final example: (Λ. λx. x) [], where [] is Ahmed’s notation for application of a term to a
type, can have absolutely any type, precisely because [] does not specify which type to apply the
term to.

Non-determinism vs. determinism The last difference we will discuss is that Ahmed’s
operational semantics is non-deterministic. This follows from the fact that they consider not
only out E but also in E an evaluation context. (Note that Ahmed uses the names unfold
and fold for out and in, respectively.) Consequently, they also only consider in e a value if
e ∈ Val, while we always consider in e a value. What happens with these semantics, then, is
that out in e 7→ out in e′ if e 7→ e′. At the same time, though, out in e 7→ e because of the
evaluation rule 7→outin. Though this constitutes a proof of non-determinism of Ahmed’s language,
we conjecture that the non-determinism is “contained”. Indeed, the circumstances under which
we have detected the phenomenon to occur are such that the divergence immediately collapses
again:

out in e 7→ out in e′ 7→ e′,

out in e 7→ e 7→ e′.

We therefore conjecture that some confluence property holds.

Conjecture 38. Under Ahmed’s operational semantics, e 7→∗ e′1 and e 7→∗ e′2 together imply
that e′1 7→∗ e′′ and e′2 7→∗ e′′ for some e′′. This would mean that ⇓ is deterministic under Ahmed’s
operational semantics.

24

Chapter 3

Unary relation and type-safety

In Chapter 2, we saw that e ∈ Val ⇒ irred e follows from the definition of the operational
semantics. In this chapter, we will find that in general, the converse does not hold. The first
section will start with an investigation through some examples. From these examples, we will
distill a hypothesis stating that an extra requirement, namely the well-typedness of e, suffices to
let the converse go through. We will find that a direct proof of the hypothesis by induction does
not work.

The second section will state a language property stronger than the earlier hypothesis, called
type-safety.

In the third section, we turn to the method of step-indexed logical relations as presented by
Appel-McAllester and by Ahmed.[4, 3] We will use this technique to prove type-safety. This
section will contain the definition of the step-indexed logical relation, which we will name �.
(Since our relation is unary, another name would be predicate, but we stick with the standard
terminology.)

In the fourth section, we will then start the type-safety proof with the fundamental property
of �, namely that all well-typed terms e are members of �. This proof will be by induction on
the type relation and will be similar in structure to that of Ahmed. Nevertheless, the lemmas
making up the induction steps will be crucially different, taking in account all the differences
between the languages. The very end of the section will then continue the proof. From the
fundamental property, we will derive that type-safety does indeed hold.

3.1 Forming a hypothesis
The definition of Val and of the operational semantics in Chapter 2 showed us that e ∈ Val
implies irred e. We briefly posed the question whether the converse holds. A very simple counter-
example shows that it does not: the variable x is an irreducible term but is not a value. We wish
to gain more insight into the properties of counterexamples. Looking at the relevant definitions,
we find a term e to be a counterexample—i.e. to be such that irred e ∧ e /∈ Val—iff one of the
following conditions holds:

• e is some variable, say e = x.

• e is an application of a term to a term, say e = e′ e′′, such that irred e′ and e′ is not a
term-level lambda abstraction.

25

• e is an application of a term to a type, say e = e′ τ , such that irred e′ and e′ is not a
type-level lambda abstraction.

• e is an unfolding, say e = out e′, such that irred e′ and e′ is not some folding (in . . .).

These conditions lead us to the idea that irred e ∧ e /∈ Val might correlate with well-typedness
of e. The first condition, e = x, implies that there is no τ such that ·; · ` e : τ . The other
conditions do not prove the ill-typedness of e, but do seem to suggest it. For example, how can
we construct a well-typed term e = e′ e′′ when e′ must be irreducible but cannot be exactly the
sort of value that we would expect on the left-hand side of an application, namely a term-level
lambda abstraction?

We come to the following conjecture:

Conjecture 39. irred e∧e /∈ Val implies that e is ill-typed, i.e. there is no τ such that ·; · ` e : τ .

Failed proof attempt. We prove the contrapositive of the conjecture by induction. Define S :=
{〈∆,Γ, e, τ〉 | ¬ irred e ∨ e ∈ Val}. If we prove that S is closed under the rules by which ` is
defined, then we know that ∆;Γ ` e : τ implies ¬ irred e ∨ e ∈ Val, which proves the conjecture
a fortiori. However, this fails at the first rule, :var. Suppose that ∆ ` Γ and x is a variable
in the domain of Γ. Then we must prove that 〈∆,Γ, x,Γ x〉 ∈ S. This is not the case, since
irred x ∧ x /∈ Val.

In this failed proof attempt, we tried to prove something stronger than what we actually
needed. The ∆,Γ, τ were ignored in the definition of S, which led to a proof obligation for terms
with free variables, something the type relation ` was built for but S was not. In the remaining
sections of this chapter, we will try another proof by induction, where S is replaced by a more
carefully constructed relation.

We end this section by answering the question whether the well-typedness property interacts
with irred e and e ∈ Val in other ways than we have conjectured so far. We look at a brute-force
overview of all eight possible combinations of the three properties in Tab. 3.1. The observation e ∈
Val ⇒ irred e from Chapter 2 rules out all terms e satisfying combination 5 or 6. The conjecture
is equivalent to the negation of combination 4. We now ask ourselves which of combinations 1, 2,
3, 7, 8 are possible, i.e. have terms satisfying them. It turns out that all of them are possible. We
define id := Λα.λx :α. x and see that ·; · ` id : ∀α.α→ α. The following terms then constitute
examples of all five remaining combinations:

1 id β

2 id (∀β.β)
3 out x
7 in x
8 id

Thus, in order to fully understand the relationship between the three properties, the only thing
that remains to be done is proving (or disproving) the conjecture, stating the impossibility of
combination 4.

3.2 Setting the precise goal
In this section and the next, we try to prove the conjecture from the previous section:

Conjecture 39. irred e∧e /∈ Val implies that e is ill-typed, i.e. there is no τ such that ·; · ` e : τ .

26

V 67→ `
1 · · ·
2 · · X
3 · X ·
4 · X X
5 X · ·
6 X · X
7 X X ·
8 X X X

Table 3.1: The eight possible combinations of the three properties. V stands for e ∈ Val. 67→
stands for irred e. ` stands for ∃τ : ·; · ` e : τ . We use a checkmark X for satisfied properties
and a dot · for unsatisfied properties. The numbers are there for ease of referring to individual
rows from within the text.

We first realise that this is propositionally equivalent to the statement (·; · ` e : τ)∧(irred e) ⇒
(e ∈ Val). In fact, we will prove a stronger property of the language, type-safety:1

Definition 40 (Safety of a term). We say that safe e holds iff ∀e′ : e ⇓ e′ ⇒ e′ ∈ Val.

Definition 41 (Type-safety). Our language is type-safe iff every well-typed term is safe, i.e.

∀e ∈ Term,∀τ ∈ Type : ·; · ` e : τ ⇒ safe e.

Indeed, it is clear that if our language is type-safe, then our conjecture holds.
The structure of these sections will be as follows. First, we will define a four-place relation

�, relating ∆, Γ, e, τ . This will be a step-indexed logical relation in the style of Ahmed.[3]
This is a slightly complex matter and we will follow Ahmed’s construction of the relation and its
constituting concepts rather closely. However, we will make important changes to accommodate
for the differences between the languages described in Section 2.4.4.

Then, we will perform the first part of the proof of type-safety. We prove `⊆�, i.e. of the
fact that ∆;Γ ` e : τ ⇒ ∆;Γ � e : τ , by induction on the type rules. This is know as the
fundamental property of �. All induction steps will be proved as separate lemmas, which we will
call compatibility lemmas, and most of them will require some auxiliary lemmas.

The second part of the type-safety proof is to show that ·; · � e : τ implies that safe e. This
concludes the proof, as together with the first part, it makes that ·; · ` e : τ ⇒ safe e, which is
type-safety.

We now get to work and define the necessary concepts for �.

3.3 Definitions
In the naive proof by induction in Section 3.1, we found that e having free variables prevented
the proof of the conjecture from going through. We now define a unary step-indexed logical
relation in the style of Ahmed that takes care of this using substitutions.[3] Free (type) variables
in the term will be closed off.

In order to define these substitutions, we first need to define semantic type relations:
1 Actually, when one proves that (·; · ` e : τ) ∧ (e 7→∗ e′) implies ·; · ` e′ : τ , then type-safety turns out to be

equivalent to our earlier notion.

27

Definition 42 (Semantic type relation). We define Rel(-) to be the following function taking a
type τ such that τ ∈ CType with codomain P(N → P(CVal)):

Rel(τ) := {χ- ∈ (N → P(CVal)) | ∀k ∈ N : ∀v ∈ χk : (·; · ` v : τ) ∧ (∀j < k : v ∈ χj)}.

In words, we say that Rel(τ) for a closed type τ contains exactly those χ- which have only
values of type τ and which are downward-closed w.r.t. the index. (We will not always write the
superscript hole in χ-.)

We also say that Rel :=
⋃

τ∈Type Rel(τ).

Notation 43 (Index filtering). Suppose X is a function and Y is a set such that X ∈ (N →
P(Y)), and n ∈ N. Then Xn is notation for the application of X to n, i.e. X n. Consequently,
Xn ⊆ Y .

A semantic type relation χ- ∈ Rel(τ) is to be viewed as a set of well-typed values, parametrised
in an index k, such that the set can only decrease with increasing index. Some examples of
semantic type relations are: the one that is empty for every index, χk = ∅; one that is otherwise
constant for every index, χk = {v1, . . . , vn}; one that starts of with infinitely many different values
v1, v2, . . . of type τ for k = 0 and loses one value at every next index, χk = {vk+1, vk+2, . . .}.

The substitutions we mentioned earlier come in two kinds, one for type variables and one for
variables, i.e. term-level variables. The former, we can already define. It will be used to replace
type variables with closed types and an accompanying semantic interpretation.

Definition 44 (Type relation substitution). Given a type environment ∆ ∈ TEnv. We define
the set DJ∆K of type relation substitutions to be the set of δ ∈ (∆ → (Type × Rel)) for which
δ α = 〈τ, χ〉 implies τ ∈ CType and χ ∈ Rel(τ).

When ∆ = · then δ ∈ DJ∆K is the empty function, which we will write · or ∅.
We let δsyn α and δsem α denote the left- and right-hand side component of δ α, respectively.
We define δ τ to be the simultaneous syntactic type substitution of δsyn α for every type

variable α in ∆ that occurs freely in τ .
Regarding terms, we let δ e denote the result of simultaneous substitution of δ α for every

type variable α occurring freely in e.
When α /∈ ∆, we define δ[α 7→ 〈τ, χ〉] to be a type relation substitution in DJ∆, αK that maps

all α′ ∈ ∆ to δ α′ and α to 〈τ, χ〉. If α ∈ ∆, then δ[α 7→ . . .] is undefined.

Note that there is a difference between our definition of DJ∆K and the definition given by
Ahmed in the unary model of their version of λ∀µ.[3, Appendix C] In Ahmed, δ ∈ DJ∆K only
returns a semantic type relation, while under our definition, it returns a tuple of both a semantic
type relation χ and a syntactic type τ , which constrained by χ ∈ Rel(τ). The exact reason for
this will become clear in a moment.

Lemma 45. Given the following: ∆; α /∈ ∆; τ ′ ∈ Type; χ ∈ Rel(τ); δ such that δ′ ∈ DJ∆, αK,
where δ′ := δ[α 7→ 〈τ ′, χ〉] (and thus δ ∈ DJ∆K).

Then (δ τ)[τ ′/α] = δ′ τ for all types τ ∈ Type and (δ e)[τ ′/α] = (δ′ e) for all terms e ∈ Term.

Proof. Almost immediate. The key insight is that δsyn only outputs closed types τ such that
τ ∈ CType, i.e. ftv τ = ∅. Thus it does not matter whether all substitutions of (closed) types for
type variables happen at the same time, as is the case in both equations’ right-hand side, or that
the substitution of τ ′ for α happens after the others. Formal proofs would be done by induction
on (the shape of) τ ∈ Type and by induction on (the shape of) e ∈ Term.

Lemma 46. Given the following: ∆; α, τ, τ ′ such that ∆, α ` τ and ∆ ` τ ′; δ ∈ DJ∆K;
χ ∈ Rel(δ τ ′).

Let δ′ := δ[α 7→ 〈δ τ ′, χ〉]. Then δ′ τ = δ (τ [τ ′/α]).

28

Proof. By induction on τ .

• τ = α. Then δ′ τ = δ′ α = δ τ ′, while also δ (τ [τ ′/α]) = δ τ ′.

• τ = β 6= α with β ∈ ∆. Then δ′ τ = δ′ β = δ β, while also δ (τ [τ ′/α]) = δ β.

• τ = τ1 → τ2. Follows easily by induction: the application of δ′ and δ and the substitution
move through the structure of →.

• τ = ∀β.σ. We see that δ′ τ = ∀β.δ′ σ, while δ (τ [τ ′/α]) = ∀β.δ (σ[τ ′/α]). (We use
the Barendregt convention to prevent collision between β and other type variables.) By
induction, those are equal.

• τ = µβ.σ. This case is completely analogous to the previous one, with ∀ replaced by µ.

Before we can define the other kind of substitution, we must first introduce the second key
component of our step-indexed relation. We define two kinds of step-indexed, mutually recursive
term sets, one for values and one for all terms. Both kinds are sets of terms (well-typed values
in case of the former kind), parametrised in a step-index k. The basic intuition behind them
is that e ∈ Ek

∆JτKδ means that e will “display behaviour as if it were of type τ” for at least k
steps, however it is evaluated. ∆, δ are used for correct interpretation of types in connection with
polymorphism. For a more detailed intuitive explanation, we refer to [3, 16].

Definition 47 (Step-indexed, mutually recursive term sets). We define two functions, V and E,
at once using mutual recursion.

We let DTD denote the set of tuples 〈∆, τ, δ〉 such that ∆ ` τ and δ ∈ DJ∆K. Both V and
E take a natural number k ∈ N and a tuple 〈∆, τ, δ〉 ∈ DTD. The notation of V applied to its
arguments is Vk

∆JτKδ and similarly for E. The codomains are such that Vk
∆JτKδ ⊆ CVal and

Ek
∆JτKδ ⊆ CTerm.

We define the functions by recursion on the index k.

Vk
∆JαKδ := (δsem α)k, (3.1)

Vk
∆Jτ1 → τ2Kδ := T (δ τ1 → δ τ2) ∩ {(λx :δ τ1. e) ∈ CVal | ∀j < k : ∀e′ ∈ Ej

∆Jτ1Kδ : (3.2)
e[e′/x] ∈ Ej

∆Jτ2Kδ},
Vk
∆J∀α.τKδ := T (∀α.δ τ) ∩ {(Λα.e) ∈ CVal | ∀j < k : ∀τ ′ ∈ CType : ∀χ ∈ Rel(τ ′) :

e[τ ′/α] ∈ Ej
∆,αJτKδ[α 7→ 〈τ ′, χ〉]},

Vk
∆Jµα.τKδ := T (µα.δ τ) ∩ {(in e) ∈ CVal | ∀j < k : e ∈ Ej

∆Jτ [µα.τ/α]Kδ},

Ek
∆JτKδ := {e ∈ CTerm | ∀j ≤ k : ∀e′ : e ⇓j e′ ⇒ e′ ∈ Vk−j

∆ JτKδ},

where T (τ) := {e ∈ Term | ·; · ` e : τ}. To understand Eq. (3.1) we remember that δsem α ∈
Rel(δ α) ⊆ (N → P(CVal)). The superscript k thus represents application to k, and (δsem α)k ⊆
CVal.

Notation 48. Given ∆ ∈ TEnv, τ ∈ Type, δ ∈ DJ∆K such that ∆ ` τ , i.e. 〈∆, τ, δ〉 ∈ DTD.
We write V -

∆JτKδ to denote the function that maps a natural number k onto Vk
∆JτKδ, thus

V -
∆JτKδ ∈ (N → P(CVal)).

29

Remark 49. Now we are in the position to clarify the statement about step indexing made in
the introduction. We claimed that it was necessary to perform step indexing in order to be able
to properly define the relation. We can now indeed see from the µ case in the definition of V,
that if we did not have step indexing but had defined V and E by recursion on the type τ , we
would have ended up with non-welldefined functions.

Instead, we based our definitions around a step index, on which recursion is performed. Note
that we are using mutual recursion in the definition of V and E and that it is not immediately
clear that such a definition is valid. Therefore, we prove in Appendix (A) that the mutually
recursive term sets V and E defined in Definition 47 are well-defined.

The first difference we note between our definition of these sets and the one by Ahmed is that
in the case of τ1 → τ2, V requires that e′ be elements of E instead of V. This is crucial given
the fact that we are using call-by-name semantics instead of call-by-value. Some of the proofs in
Section 3.4 would fail to go through had we not made this change.

Another difference is that the recursive definition of V in the case of µα.τ uses syntactic
rather than semantic substitution. In the later lemmas used to prove the fundamental property
in Section 3.4, it turns out not to make a large difference, though.

Finally, the difference between the definitions of type relation substitutions in DJ∆K which we
noted earlier also becomes clear now. A relevant difference between our language and Ahmed’s
that surfaces here is that of explicit vs. implicit typing. As was discussed in Section 2.4.4,
Ahmed’s type-level abstractions mention no type variable. In Ahmed’s definition of Vk

∆J∀α.τKδ,
then, we see that Λ. e is dismantled into e, which requires no further substitution of syntactic
types. This differs from our definition, where Λα.e is dismantled into e[τ/α], and thus we must
dispose of some syntactic type τ . Our type relation substitution δ keeps such syntactic types τ
associated with semantic type relations χ.

We are now ready to define the second kind of substitution, the one for variables. After that
and some extra notation, everything is in place to define the step-indexed relation �.

Definition 50 (Semantic term substitutions). We define the function G, which takes a natural
number k, a type environment ∆, an environment Γ such that ∆ ` Γ, and a type relation
substitution δ ∈ DJ∆K. The notation is Gk

∆JΓKδ and the codomain is such that Gk
∆JΓKδ ∈

P(domΓ → CTerm).

Gk
∆JΓKδ := {γ ∈ (domΓ → CTerm) | ∀x ∈ domΓ : γ x ∈ Ek

∆JΓ xKδ}.

When Γ = · then γ ∈ DJΓK is the empty function, which we will write · or ∅.

A comment similar to what we said about the τ1 → τ2 case in the definition of V can be made
here. Our definition of G differs in that γ x is required to be an element of E instead of V. This
again is necessary in order to let the proofs go through, because of call-by-name semantics.

Notation 51 (Substititution shorthand). We will write δγ to denote the composition of δ with
γ, i.e. δ ◦ γ.

Notation 52 (Simultaneous substitution). When γ ∈ (Var ⇀ Term), we define γ e to be the
simultaneous syntactic substitution of γ x for every variable x ∈ dom γ that occurs freely in e.

Notation 53 (Substitution expansion). When γ ∈ (Var ⇀ Term), x /∈ dom γ, and e ∈ Term,
we let γ[x 7→ e] denote the function that maps any x′ ∈ dom γ onto γ x′ and x onto e. If
x ∈ dom γ, then γ[x 7→ e] is undefined.

30

Definition 54 (Unary relation). We define a (unary) relation � on terms. More specifically,
it relates a type environment ∆, an environment Γ, a term e, and a type τ . The notation for
〈∆,Γ, e, τ〉 ∈� is ∆;Γ � e : τ .

∆;Γ � e : τ :⇔ ∆ ` Γ ∧ ∀k ≥ 0 : ∀δ ∈ DJ∆K : ∀γ ∈ Gk
∆JΓKδ : δγ e ∈ Ek

∆JτKδ.

3.4 Proof of the fundamental property
In this section, we prove the fundamental property `⊆�. We do this by induction on the type
relation ` and every induction step gets its own subsection. Most of these induction steps or com-
patibility lemmas use extra auxiliary lemmas. Those auxiliary lemmas unique to a compatibility
lemma are grouped with it in its subsection. The other ones are presented here.

In general, the structure is quite similar to that of Ahmed.[3] However, once again, there
are important differences. In particular, the auxiliary lemmas take into account the differences
discussed in Section 3.3. For instance, since our definition of V in the µ case involves syntactic
rather than semantic substitution, the proof of the compatibility lemma for the type rule :muin
is greatly simplified. Other adjustments had to be made in order to accommodate for our CBN
semantics and explicit types.

Lemma 55 (There is always a type relation substitution and semantic term substitution).
Suppose ∆;Γ � e : τ and k ≥ 0. Then there exist δ ∈ DJ∆K and γ ∈ Gk

∆JΓKδ.

Proof. For every α ∈ ∆, let δsyn α be ∀β.β → β and let δsem α be the function that maps every
k ≥ 0 onto {Λβ.λx :β. x}. Clearly, δ ∈ DJ∆K.

We define the behaviour of γ on a variable x by parts: if Γ x is a type variable, say Γ x =
α ∈ ∆, then we define γ x := Λβ.λx :β. x, which clearly yields γ x ∈ Vk

∆JΓ xKδ ⊆ Ek
∆JΓ xKδ. In

all other cases, we define γ x := (out in out in . . . out in e), where the nesting of out-in pairs
goes exactly k + 1 deep and e is any closed term. This implies that γ x never evaluates to an
irreducible term in j ≤ k steps, vacuously yielding γ x ∈ Ek

∆JτKδ. This holds even though γ x is
not necessarily of type τ , or any type for that matter. Generalisation on x implies γ ∈ Gk

∆JΓKδ,
which finishes the proof.

Lemma 56 (Free (type) variables in the unary relation). Suppose that ∆;Γ � e : τ . Then
fv e ⊆ domΓ and ftv e ⊆ ∆.

Proof. By contradiction. Fix an arbitrary k ≥ 0 and let δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ—by Lemma 55

we know these always exist. The assumption then tells us that δγ e ∈ Ek
∆JτKδ.

x ∈ fv e \ domΓ would imply that x ∈ fv(γ e) and thus x ∈ fv(δγ e), contradicting the
statement δγ e ∈ Ek

∆JτKδ ⊆ CTerm derived from instantiation of the assumption.
Similarly, α ∈ ftv e\∆ would imply that α ∈ ftv(δγ e), contradicting the same statement.

Lemma 57 (Downward closedness). V, E ,G are downward closed. This has the following mean-
ing.

• If v ∈ Vk
∆JτKδ and j < k, then v ∈ Vj

∆JτKδ.

• If e ∈ Ek
∆JτKδ and j < k, then e ∈ Ej

∆JτKδ.

• If γ ∈ Gk
∆JΓKδ and j < k, then γ ∈ Gj

∆JΓKδ.

31

Proof. Below, we will prove downward closedness of V by induction on ∆ ` τ .
Downward closedness of E can be derived from that of V. Fix e ∈ Ek

∆JτKδ and j < k. To
prove e ∈ Ej

∆JτKδ, fix i ≤ j and e′ such that e ⇓i e′. Since i ≤ j, also i < k so e′ ∈ Vk−i
∆ JτKδ.

Downward closedness of V then allows us to finish the proof by concluding e′ ∈ Vj−i
∆ JτKδ, since

j − i < k − i.
Downward closedness of G is easily derived pointwise from that of E .
Now for the proof of the downward closedness of V. We prove this by induction on ∆ ` τ .

The case where τ is a type variable is dealt with easily, since V -
∆JαKδ is constant and thus

independent of the index. The other three cases—namely where τ is an arrow type, a universal
type quantification, and a recursive type—are similar: we can simply makes use of the transitivity
of the strict order < on the naturals and the fact that v ∈ Vk

∆JτKδ.

Lemma 58 (Interaction between E and 7→). Suppose e1 ∈ Ek
∆JτKδ and e1 7→j e2 with j < k.

Then e2 ∈ Ek−j
∆ JτKδ.

Proof. Fix a number i ≤ k − j and a term e3 such that e2 ⇓i e3. We must prove that e3 ∈
Vk−j−i
∆ JτKδ, which follows immediately from e1 7→j+i e3 and the assumption on e1. The proof is

finished by the fact that e2 ∈ CTerm, which follows from e1 7→j e2 and Lemma 31.

3.4.1 Variable
Lemma 59 (Compatibility lemma). Suppose ∆ ` Γ and x ∈ domΓ. Then ∆;Γ � x : Γ x.

Proof. Suppose ∆ ` Γ. We must prove ∆;Γ � x : Γ x. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. What

is left to prove is δ (γ x) ∈ Ek
∆JΓ xKδ. We note that ftv(γ x) = ∅ and thus δ (γ x) = γ x. The

definition of γ then gives us that γ x ∈ Ek
∆JΓ xKδ.

3.4.2 Term application
Lemma 60. Given the following: k ∈ N; ∆; δ ∈ DJ∆K; e1, e2, e3 such that irred e3 and
e1 e2 ⇓k e3; τ2, τ3 such that e1 ∈ Ek

∆Jτ2 → τ3Kδ. Then there exists a natural number j < k and a
term b such that e1 7→j λx :δ τ2. b.

Proof. We prove by induction on k.
First, the base case k = 0. Suppose ∆, δ, e1, e2, e3, τ2, τ3 are as described. Since k = 0 and

e1 e2 7→k e3, we get that e1 e2 = e3, which is irreducible per assumption. Inspection of the rules
for the operational semantics shows us that irred(e1 e2) implies that irred e1 and that e1 is not
a lambda abstraction. By the assumption on e1 and by its irreducibility, e1 ∈ V0

∆Jτ2 → τ3Kδ.
Therefore e1 is in fact a lambda abstraction, which contradicts our earlier finding. Consequently,
the base case is vacuously true.

Now, suppose the property holds for k. Fix ∆, δ, e1, e2, e3, τ2, τ3 such that all the prerequisites
mentioned in the lemma are fulfilled (though for k + 1 instead of k). Our proof goal is

∃j < k + 1, b ∈ Term : e1 7→j λx :δ τ2. b. (3.3)

We split the assumed evaluation e1 e2 7→k+1 e3 into two parts, say

e1 e2 7→1 e4 7→k e3,

and perform exhaustive case distinction on the evaluation rule used for e1 e2 7→1 e4:

32

• It is an application of 7→app. This means that e1 is a lambda abstraction, say λx : τ ′. b′.
What remains to prove is that e1 specifies the desired input type, i.e. τ ′ = δ τ2. By
assumption on e1 and the fact that irred e1, we see that e1 ∈ Vk+1

∆ Jτ2 → τ3Kδ, which
indeed proves that τ ′ = δ τ2.

• It is an application of 7→ectxt. This means that there is some e5 such that e1 7→1 e5 and
that e4 = e5 e2. To recapitulate:

e1 e2 7→1 e5 e2 = e4 7→k e3.

We want to apply the induction hypothesis on e5 and e2. For this, we need that e5 ∈
Ek
∆Jτ2 → τ3Kδ. This follows from Lemma 58 and the fact that e1 ∈ Ek+1

∆ Jτ2 → τ3Kδ and
e1 7→1 e5.
We can now apply the induction hypothesis to k,∆,Γ, e5, e2, e3, τ2, τ3. Therefore there exist
i < k and b such that e5 7→i λx :δ τ2. b. Seeing as i+1 < k+1 and e1 7→1 e5 7→i λx :δ τ2. b,
this proves Eq. (3.3).

Lemma 61 (Compatibility lemma). Suppose ∆;Γ � e1 : τ2 → τ3 and ∆;Γ � e2 : τ2. Then
∆;Γ � e1 e2 : τ3.

Proof. Suppose ∆;Γ � e1 : τ2 → τ3 and ∆;Γ � e2 : τ2. We must prove ∆;Γ � e1 e2 : τ3.
Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk

∆JΓKδ. What is left to prove is δγ (e1 e2) ∈ Ek
∆Jτ3Kδ. Note

that δγ (e1 e2) = (δγ e1) (δγ e2). Fix a term e3 and a number of steps j ≤ k such that
(δγ e1) (δγ e2) ⇓j e3. We need to prove that e3 ∈ Vk−j

∆ Jτ3Kδ. Using the induction hypothesis, we
instantiate Lemma 60 with j,∆, δ, (δγ e1), (δγ e2), e3, τ2, τ3, which results in there being a term
e′1 and a number of steps i < j such that δγ e1 7→i λx :δ τ2. e

′
1. In total, we get

((δγ e1)︸ ︷︷ ︸
(1)

(δγ e2)) 7→i ((λx :δ τ2. e
′
1)︸ ︷︷ ︸

(2)

(δγ e2)︸ ︷︷ ︸
(3)

) 7→1 e′1[δγ e2/x]︸ ︷︷ ︸
(4)

7→j−i−1 e3︸︷︷︸
(5)

,

where a︸︷︷︸
(b)

represents a claim about a made in item (b) of the following list.

(1) (δγ e1) ∈ Ek
∆Jτ2 → τ3Kδ. By assumption on e1 and δγ.

(2) (λx :δ τ2. e
′
1) ∈ Vk−i

∆ Jτ2 → τ3Kδ. By definition of E and by (1).

(3) (δγ e2) ∈ Ek−i−1
∆ Jτ2Kδ. By assumption on e2 and δγ. We could have chosen any index, but

we choose the greatest one that is still strictly smaller than k− i, so that the next step can
go through.

(4) e′1[δγ e2/x] ∈ Ek−i−1
∆ Jτ3Kδ. By the application of (2) to (3).

(5) e3 ∈ Vk−j
∆ Jτ3Kδ. By (4) and the fact that k − i− 1− (j − i− 1) = k − j.

33

3.4.3 Term abstraction
Lemma 62. Suppose γ ∈ (Var ⇀ Term) with x /∈ dom γ. Suppose ∀x′ ∈ dom γ : x /∈ fv(γ x′).
Then (γ e)[e′/x] = γ[x 7→ e′] e.

Proof. We prove this by induction on the shape of e. The cases e = e1 e2, e = e1 τ, e = Λα.e1, e =
in e1, e = out e1 are analogous to each other. The simultaneous substitution γ and the single
substitution [e′/x] from the left-hand side of the equation move through the relevant level of
structure, as does the γ[x 7→ e′] from the right-hand side, so that the induction hypothesis can
be easily applied. We now deal with the remaining two cases, which we split up further:

• e = x. Then (γ e)[e′/x] = (γ x)[e′/x] = x[e′/x] = e′ = γ[x 7→ e′] x = γ[x 7→ e′] e, where
the second equality holds since x /∈ dom γ.

• e = x′, with x′ 6= x. Then (γ e)[e′/x] = (γ x′)[e′/x] = γ x′ = γ[x 7→ e′] x′ = γ[x 7→ e′] e,
where the second equality holds since x /∈ fv(γ x′).

• e = λx′ :τ. e′′. Note that the Barendregt convention has us choose x′ such that x′ 6= x and
x′ /∈ dom γ. Then (γ e)[e′/x] = (λx′ : τ. γ e′′)[e′/x] = λx′ : τ. (γ e′′)[e′/x] = λx′ : τ. (γ[x 7→
e′] e′′) = γ[x 7→ e′] (λx′ : τ. e′′) = γ[x 7→ e′] e, where the third equation is an application
of the induction hypothesis. (Remember that we can do this because we are performing
induction on e, not on γ.)

Lemma 63 (Compatibility lemma). Suppose ∆;Γ, (x : τx) � e : τe. Then ∆;Γ � λx :τx. e : τx →
τe.

Proof. Suppose ∆;Γ, (x : τx) � e : τe. We must prove that ∆;Γ � λx : τx. e : τx → τe. Fix
k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk

∆JΓKδ. Since x /∈ domΓ,2 we see that δγ λx : τx. e = λx : δ τx. δγ e,
which is already irreducible. Thus it suffices to prove that λx : δ τx. δγ e ∈ Vk

∆Jτx → τeKδ.
Fix j < k and ex ∈ Ej

∆JτxKδ. We must prove that (δ (γ e))[ex/x] ∈ Ej
∆JτeKδ. First, we note

that (δ (γ e))[ex/x] = δ ((γ e)[ex/x]), since ftv ex = ∅. Lemma 62 tells us we can content
ourselves with proving δ (γ[x 7→ ex] e) ∈ Ej

∆JτeKδ. For brevity, we will say Γ′ := Γ, (x : τx) and
γ′ := γ[x 7→ ex].

We will now show that γ′ ∈ Gj
∆JΓ′Kδ. Looking at the definition of G, we see that we must

show that ∀x′ ∈ domΓ′ : δ (γ′ x′) ∈ Ej
∆JΓ′ x′Kδ. By definition of γ, this is true for all x′ ∈ domΓ.

The only other case, where x′ = x, is satisfied by the fact that δ (γ′ x) = δ ex = ex ∈ Ej
∆JτxKδ,

by definition of γ′ and because ftv ex = ∅.
We can now invoke the induction hypothesis—i.e. instantiate ∆;Γ, (x : τx) � e : τe—with

j, δ, γ′ and conclude that indeed δ (γ′ e), which is equal to (δ (γ e))[ex/x], is a member of
Ej
∆JτeKδ.

3.4.4 Type application
Lemma 64 (Values in the recursive value set are well-typed). Given k ≥ 0 and 〈∆, τ, δ〉 ∈ DTD.
Then for all v ∈ Vk

∆JτKδ, we have ·; · ` v : δ τ .

Proof. We prove by exhaustive case distinction on τ .
The first case is τ = α ∈ ∆. We know that Vk

∆JαKδ = (δsem α)k, where δsem α ∈ Rel(δ τ).
This implies that ·; · ` v : δ τ for all v ∈ (δsem α)k.

2 This follows implicitly from our mentioning of Γ, (x : . . .), which is only defined if x /∈ domΓ.

34

The other cases are proved by looking at the definition of V and realising that δ τ1 → δ τ2 =
δ (τ1 → τ2), that ∀α.δ τ ′ = δ (∀α.τ ′), and similarly for µ. The ∀ case follows from the assumption
that ∆ ` ∀α.τ ′, which implies ∆, α ` τ ′. This in turn implies α /∈ ∆ (by Definition 18) and
therefore α /∈ dom δ. Similar reasoning applies to µ.

Lemma 57 and Lemma 64 together give us the following property of V.

Corollary 65 (Recursive value sets are semantic type relations). Given 〈∆, τ, δ〉 ∈ DTD. Then
V -
∆JτKδ ∈ Rel(δ τ).

Lemma 66 (Type substitution in term sets). Given te following: k ≥ 0; ∆; α /∈ ∆; δ ∈ DJ∆K;
τ, τ ′ such that ∆, α ` τ and ∆ ` τ ′. Let ∆′ := (∆, α) and δ′ := δ[α 7→ 〈δ τ ′,V -

∆Jτ ′Kδ〉]. Then
Vk
∆′JτKδ′ = Vk

∆Jτ [τ ′/α]Kδ. The same equality then clearly also holds when we replace V with E.

Proof. We prove by induction on k, within which we generalise on ∆, α, δ, τ, τ ′ and perform case
distinction on τ .

Suppose k = 0. Fix ∆, α, δ, τ, τ ′ as mentioned in the lemma. We will use the abbreviations
LHS := Vk

∆′JτKδ′ and RHS := Vk
∆Jτ [τ ′/α]Kδ. We recall that ∆, α ` τ and distinguish the following

cases.
Suppose τ = α. Then LHS = Vk

∆′JαKδ′ = (δ′sem α)k = Vk
∆Jτ ′Kδ. Since τ = α, τ [τ ′/α] = τ ′

and thus LHS = RHS.
Suppose τ = β, with ∆ 3 β 6= α. Then LHS = Vk

∆′JβKδ′ = (δ′sem β)k = (δsem β)k, which is
equal to RHS since τ [τ ′/α] = β.

There are three more cases, namely τ = τ1 → τ2, τ = ∀β.σ, and τ = µβ.σ. In all of these
cases, we realise that the right-hand set in intersection mentioned in the definition of V is the
same in LHS and RHS. (It is “vacuously equal” since @j < k = 0.) It thus suffices to prove that
in all three cases, δ′ τ = τ [δ τ ′/α], which is true by Lemma 46.

Now for the induction step. We assume that the property holds for k and prove it holds for
k + 1. We will use the abbreviations LHS := Vk+1

∆′ JτKδ′ and RHS := Vk+1
∆ Jτ [τ ′/α]Kδ. Again, we

recall ∆, α ` τ and distinguish five cases. The first two cases—namely τ = α and τ = β 6= α—can
be proved similarly to how they were for k = 0. The other three cases go as follows:

• τ = τ1 → τ2. Looking at the definition of V, we see that

LHS = T (δ′ (τ1 → τ2)) ∩ {λx :δ′ τ1. e | ∀j < k + 1, e′ ∈ Ej
∆′Jτ1Kδ′ : e[e′/x] ∈ Ej

∆′Jτ2Kδ′}
RHS = T (δ ((τ1 → τ2)[τ

′/α])) ∩ {λx :δ (τ1[τ ′/α]). e | ∀j < k + 1, e′ ∈ Ej
∆Jτ1[τ ′/α]Kδ :

e[e′/x] ∈ Ej
∆Jτ2[τ ′/α]Kδ}.

We see that Ej
∆′Jτ1Kδ′ = Ej

∆Jτ1[τ ′/α]Kδ and Ej
∆′Jτ2Kδ′ = Ej

∆Jτ2[τ ′/α]Kδ for all j < k + 1 by
induction. All other apparent differences between LHS and RHS are resolved by Lemma 46.

• τ = ∀β.σ. Then Barendregt has us assume that β /∈ (∆, α). We see that

LHS = T (∀β.δ′ σ) ∩ {(Λβ.e) ∈ CVal | ∀j < k : ∀ρ ∈ CType : ∀χ ∈ Rel(ρ) :
e[ρ/β] ∈ Ej

∆′,βJσKδ′[β 7→ 〈ρ, χ〉]}
RHS = T (∀β.δ (σ[τ ′/α])) ∩ {(Λβ.e) ∈ CVal | ∀j < k : ∀ρ ∈ CType : ∀χ ∈ Rel(ρ) :

e[ρ/β] ∈ Ej
∆,βJσ[τ ′/α]Kδ[β 7→ 〈ρ, χ〉]}.

Again, the typing issues are resolved by Lemma 46: ∀β.(δ′ σ) = ∀β.δ (σ[τ ′/α]).

35

Also, we apply the induction hypothesis to show that

Ej
∆′,βJσKδ′[β 7→ 〈ρ, χ〉] = Ej

∆,βJσ[τ ′/α]Kδ[β 7→ 〈ρ, χ〉].

For this to go through, it is essential that we realise that the generalisation over type
environments and type relation substitutions happens within the induction. The reader
must not make the mistake to think that the role of the type variable mentioned in the
lemma is fulfilled by β. The notation is misleading: to reflect that the relevant type
variable is still α, perhaps writing ∆′, β as (∆, β), α would have been better, were it not
so lengthy. A similar thing holds for δ′[β 7→ 〈ρ, χ〉], which, we must not forget, is equal to
δ[β 7→ 〈ρ, χ〉][α 7→ 〈δ τ ′,V -

∆Jτ ′Kδ〉] ∈ DJ(∆, β), αK.

• τ = µβ.σ. Again, β /∈ (∆, α) by the Barendregt convention. Now,

LHS = T (µβ.δ′ σ) ∩ {(in e) ∈ CVal | ∀j < k : e ∈ Ej
∆′Jσ[µβ.σ/β]Kδ′}

RHS = T (µβ.δ (σ[τ ′/α])) ∩ {(in e) ∈ CVal | ∀j < k : e ∈ Ej
∆Jσ[τ ′/α][µβ.σ[τ ′/α]/β]Kδ}.

Once again, the typing difference is resolved by Lemma 46: µβ.δ′ σ = µβ.δ (σ[τ ′/α]).
To prove Ej

∆′Jσ[µβ.σ/β]Kδ′ is equal to Ej
∆Jσ[τ ′/α][µβ.σ[τ ′/α]/β]Kδ, we first realise that

σ[τ ′/α][µβ.σ[τ ′/α]/β] = σ[µβ.σ/β][τ ′/α], and then apply the induction hypothesis. This
is the first time we apply the induction hypothesis to another type than the given one, i.e.
in this case, not to σ. It does not matter, however, since we perform induction not on the
type but on the index.

Lemma 67. Given the following: k ∈ N; ∆; δ ∈ DJ∆K; e1, e2, alpha, τ, τ
′ such that e1 ∈

Ek
∆J∀α.τKδ and e1 τ

′ ⇓k e2. Then there exists a natural number j < k and a term b such that
e1 7→j Λα.b.

Proof. Similar to that of Lemma 60. We prove by induction on k.
Suppose k = 0. Then e1 τ

′ is irreducible, and therefore irred e1 with e1 not being a type
abstraction. At the same time, the assumption on e1 and e1 ⇓0 e1 gives us e1 ∈ V0

∆J∀α.τKδ,
meaning that e1 is a type abstraction. Contradiction.

Now suppose the property holds for k. Fix ∆, δ, τ, τ ′, α, e1, e2 such that all the prerequisites
mentioned in the lemma are fulfilled (though for k + 1 instead of k). Our proof goal is

∃j < k + 1, b ∈ Term : e1 7→j Λα.b. (3.4)

We split up the assumed evaluation e1 τ
′ 7→k+1 e2 into two parts, say

e1 τ
′ 7→1 e3 7→k e2,

and perform exhaustive case distinction on the evaluation rule used for e1 τ ′ 7→1 e3.

• It is an application of 7→tapp. This means that e1 is already a type abstraction. Therefore
irred e1 and thus e1 ∈ Vk+1

∆ J∀α.τKδ. This proves Eq. (3.4).

• It is an application of 7→ectxt. This means that there is some e4 such that e1 7→1 e4 and
e3 = e4 τ

′. To recapitulate:

e1 τ
′ 7→1 e4 τ

′ = e3 7→k e2.

We apply the induction hypothesis on e4. Note that the requirement, e4 ∈ Ek
∆J∀α.τKδ,

follows from Lemma 58 and the fact that e1 ∈ Ek+1
∆ J∀α.τKδ. Therefore there exist i < k

and b such that e1 7→1 e4 7→i Λα.b. Seeing as i+ 1 < k + 1, this proves Eq. (3.4).

36

Lemma 68 (Compatibility lemma). Suppose ∆;Γ � e : ∀α.τ and ∆ ` τ ′. Then ∆;Γ � e τ ′ :
τ [τ ′/α].

Proof. Suppose ∆;Γ � e : ∀α.τ and ∆ ` τ ′. We must prove ∆;Γ � e τ ′ : τ [τ ′/α]. Fix
k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk

∆JΓKδ. Fix j ≤ k, e′ ∈ Term such that δγ (e τ ′) ⇓j e′. (Note that
δγ (e τ ′) = (δγ e) (δ τ ′).) We must prove that e′ ∈ Vk−j

∆ Jτ [τ ′/α]Kδ. We instantiate Lemma 67
with j,∆, δ, τ, α, (δγ e), e′, δ τ ′. (Note that we apply the induction hypothesis to get that δγ e ∈
Ek
∆J∀α.τKδ.) This gives us the existence of a number i < j and a term b such that δγ e 7→i Λα.b.

In total, we get
(δγ e)︸ ︷︷ ︸
(1)

δ τ ′ 7→i (Λα.b)︸ ︷︷ ︸
(2)

δ τ ′ 7→1 b[δ τ ′/α]︸ ︷︷ ︸
(3)

7→j−i−1 e′︸︷︷︸
(4)

,

where a︸︷︷︸
(b)

represents a claim about a made in item (b) of the following list.

(1) δγ e ∈ Ek
∆J∀α.τKδ. By the assumption on e and γ.

(2) Λα.b ∈ Vk−i
∆ J∀α.τKδ. By (1).

(3) b[δ τ ′/α] ∈ Ek−i−1
∆,α JτKδ[α 7→ 〈δ τ ′, χ〉], where χ := V -

∆Jτ ′Kδ. We know by (2) and the
definition of V that the statement holds for all χ ∈ Rel(δ τ ′) and all indices strictly
smaller than k − i. That our choice of χ is element of Rel(δ τ ′), is a direct consequence of
Corollary (65).

(4) e′ ∈ Vk−j
∆,α JτKδ[α 7→ 〈δ τ ′,V -

∆Jτ ′Kδ〉]. This follows from (3), the fact that irred e′, and the
fact that k − i− 1− (j − i− 1) = k − j.

We then finish the proof by realising that Vk−j
∆,α JτKδ[α 7→ 〈δ τ ′,V -

∆Jτ ′Kδ〉] = Vk−j
∆ Jτ [τ ′/α]Kδ, be-

cause of Lemma 66.

3.4.5 Type abstraction
Lemma 69 (Redundant type variables make no difference). Given the following: k ≥ 0;
〈∆, τ, δ〉 ∈ DTD; α /∈ ∆. Let ∆′ := (∆, α) and δ′ := δ[α 7→ 〈σ, χ〉] for some σ ∈ Type, χ ∈
Rel(σ). (Clearly, δ′ ∈ DJ∆′K.) Then Vk

∆JτKδ = Vk
∆′JτKδ′.

Under the same conditions, Ek
∆JτKδ = Ek

∆′JτKδ′ holds. If, for any given Γ, we replace the
condition 〈∆, τ, δ〉 ∈ DTD with (δ ∈ ∆ ∧∆ ` Γ), then Gk

∆JΓKδ = Gk
∆′JΓKδ′ holds.

Proof. We first realise, by expanding the definition of E , that if the lemma holds for V, it holds
for E . We also see that the lemma for G holds as long as it holds for E : we can apply the equality
for E pointwise to all x ∈ domΓ. Therefore, only the lemma for V remains to prove. We do this
by induction on k, within which we perform exhaustive case distinction on ∆ ` τ .

The base case k = 0 is easy. If τ = β, then β 6= α and thus δ β = δ′ β proves the equality.
In all other cases, looking at the definition of V as the intersection of two sets, we see that it
suffices to prove two equalities.

First, the left-hand side sets T (δ τ) and T (δ τ ′) must be equal. This is clearly the case since
δ′ = δ[α 7→ . . .], while α /∈ ftv τ . (The latter holds by Lemma 21, because ∆ ` τ with α /∈ ∆.)

Second, the right-hand side sets governing “term shape” must be equal. They are, since in all
cases the restrictions mentioned in the set builder notation are vacuously satisfied. (Remember
that k = 0.)

37

The induction step is proved in much the same way. The case of τ = β 6= α is identical. In
all other cases, the typing sets T (δ τ) and T (δ′ τ) are again equal. The term shape sets are also
equal, though this time not by vacuous satisfaction but by induction on the index.

Lemma 70 (Compatibility lemma). Suppose ∆, α; Γ � e : τ and ∆ ` Γ. Then ∆;Γ � Λα.e :
∀α.τ .

Proof. Suppose ∆, α; Γ � e : τ and ∆ ` Γ. We must prove that ∆;Γ � Λα.e : ∀α.τ . Fix
k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk

∆JΓKδ. Since δγ Λα.e = Λα.δγ e is already irreducible,3 we must prove
that Λα.δγ e ∈ Vk

∆J∀α.τKδ. Fix a number j < k, a type τ ′ ∈ CType, and a semantic relation
χ ∈ Rel(τ ′). If we let ∆′ := (∆, α) and δ′ := δ[α 7→ 〈τ ′, χ〉], what remains to be proved can be
written as (δγ e)[τ ′/α] ∈ Ej

∆′JτKδ′.
Note that δ′ ∈ DJ∆′K and γ ∈ Gk

∆′JΓKδ′, because of Lemma 69. Therefore, by instantiation of
the induction hypothesis with δ′ and γ, δ′ (γ e) ∈ Ej

∆′JτKδ′. The equality δ′ (γ e) = (δγ e)[τ ′/α],
derived from Lemma 45, finishes the proof.

3.4.6 Type unfolding
Lemma 71. Given the following: k ∈ N; ∆; δ ∈ DJ∆K; e1, e2, α, τ such that e1 ∈ Ek

∆Jµα.τKδ
and (out e1) ⇓k e2. Then there exists a natural number j < k and a term b such that e1 7→j in b.

Proof. Similar to Lemma 60 and Lemma 67. We prove by induction on k.
Suppose k = 0. Then irred(out e1) and thus also irred e1 (by contraposition of 7→ectxt).

By assumption, then, e1 ∈ V0−0
∆ Jµα.τKδ. This means e1 is equal to in e for some term e. This

contradicts the earlier finding that out e1 = out in e is irreducible (by 7→outin).
Suppose the property holds for k. Fix ∆, δ, τ, α, e1, e2 such that all the prerequisites mentioned

in the lemma are fulfilled (though for k + 1 instead of k). Our proof goal is

∃j < k, b ∈ Term : e1 7→j in b.

We split up the assumed evaluation out e1 7→k+1 e2 into two parts, say

out e1 7→1 e3 7→k e2,

and perform exhaustive case distinction on the evaluation rule used for out e1 7→1 e3.

• It is an application of 7→outin. Then e1 = in e3. Thus, e1 7→0 in e3, with 0 < k+1, which
ends the proof.

• It is an application of 7→ectxt. Then there is some e4 such that e1 7→1 e4 and e3 = out e4.
When we then apply the induction hypothesis to out e4 7→k e2—note that e4 ∈ Ek

∆Jµα.τKδ
by Lemma 58—we get the existence of j < k and b such that e4 7→j in b. We then see that
e1 7→j+1 in b.

Lemma 72 (Compatibility lemma). Suppose ∆;Γ � e : µα.τ . Then ∆;Γ � out e : τ [µα.τ/α].

Proof. Suppose ∆;Γ � e : µα.τ . We must prove that ∆;Γ � out e : τ [µα.τ/α]. Fix k ≥ 0, δ ∈
DJ∆K, γ ∈ Gk

∆JΓKδ. Then fix j ≤ k, e′ ∈ Term such that δγ (out e) ⇓j e′. We must prove that
e′ ∈ Vk−j

∆ Jτ [µα.τ/α]Kδ.
3 Note that the δ moves into the Λ construction since α /∈ dom δ.

38

Note that δγ (out e) = out (δγ e). We apply the induction hypothesis and get that δγ e ∈
Ek
∆Jµα.τKδ. We can then instantiate Lemma 71 with j, ∆, δ, τ , α, (δγ e), e′. This gives us the

existence of a number i < j and a term e′′ such that δγ e 7→i in e′′. In total, we get

out (δγ e)︸ ︷︷ ︸
(1)

7→i out (in e′′)︸ ︷︷ ︸
(2)

7→1 e′′︸︷︷︸
(3)

7→j−i−1 e′︸︷︷︸
(4)

,

where a︸︷︷︸
(b)

represents a claim about a made in item (b) of the following list.

(1) δγ e ∈ Ek
∆Jµα.τKδ. By the induction hypothesis.

(2) in e′′ ∈ Vk−i
∆ Jµα.τKδ. By (1) and the fact that δγ e 7→i in e′′.

(3) e′′ ∈ Ek−i−1
∆ Jτ [µα.τ/α]Kδ. By (2). This follows from the definition of V for µ-types. It

holds for all indices strictly smaller than k − i, including k − i− 1.

(4) e′ ∈ Vk−j
∆ Jτ [µα.τ/α]Kδ. This follows directly from (3) and the fact that e′ is assumed to

be irreducible. (Note that k − j = (k − i− 1)− (j − i− 1).)

3.4.7 Type folding
Lemma 73 (Compatibility lemma). Suppose ∆;Γ � e : τ [µα.τ/α]. Then ∆;Γ � in e : µα.τ .

Proof. Suppose ∆;Γ � e : τ [µα.τ/α]. We must prove that ∆;Γ � in e : µα.τ . Fix k ≥
0, δ ∈ DJ∆K, γ ∈ Gk

∆JΓKδ. Since δγ (in e) = in δγ e is already irreducible, we must prove that
(in δγ e) ∈ Vk

∆Jµα.τKδ. In order to do that, we must prove that (δγ e) ∈ Ej
∆Jτ [µα. τ/α]Kδ for all

j < k. We get this by instantiation of the assumption with δ, γ, together with Lemma 57.

3.5 Conclusion
From all the compatibility lemmas in the previous sections, that function as induction steps, we
conclude that indeed the induction goes through. This constitutes the first part of the proof that
our language is type-safe.

Proposition 74 (Syntactic typing implies semantic typing). Given ∆,Γ, e, τ . Suppose that
∆;Γ ` e : τ . Then ∆;Γ � e : τ .

Proof. We prove this by induction on ∆;Γ ` e : τ . In other words, we prove that � is closed
under the type rules on which ` is defined inductively. All necessary induction steps have been
proved. See Lemmas 59, 61, 63, 68, 70, 72, 73.

We now prove the second, shorter part of the type-safety proof:

Proposition 75 (Semantic typability implies safety). Given e, τ . Suppose ·; · � e : τ . Then
safe e.

Proof. This follows from unwinding and applying the definitions. Fix a term e′ and a number
of steps k ≥ 0 such that e ⇓k e′. We must prove that e′ ∈ Val. We instantiate the assumption
with k, ∅ ∈ DJ·K, and ∅ ∈ Gk

∆J·K∅. We get that ∅ (∅ e) = e ∈ Ek
∆JτK∅. This we instantiate with

e ⇓k e′. We get e′ ∈ V0
∆JτK∅. By definition of (the codomain of) V, this means e′ ∈ Val.

39

We conclude that the language is type-safe:

Theorem 76 (Type-safety). The language λ∀µ is type-safe.

Proof. Suppose that ·; · ` e : τ . Then, by Prop. 74, we get ·; · � e : τ . Prop. 75 then tells us that
safe e, which finishes the proof.

40

Chapter 4

Binary relation and contextual
equivalence

In this chapter, we build up to and achieve the main result of this thesis. We start by making
precise the contextual equivalence relation between terms. Loosely speaking, two terms e, e′ are
contextually equivalent (notation: e ≈ctx e′) iff they “behave the same way in all situations”. The
concept of “situation” will be captured by contexts, which are essentially terms with exactly one
hole (like evaluation contexts). We then define a binary step-indexed logical relation � (notation:
e � e′) based on Ahmed’s relation ≈.[3] This step will be very similar to the definition of � in
Chapter 3.

Once all these definitions are in place, we start proving the intended theorem: � ⊆≈ctx, or
e � e′ ⇒ e ≈ctx e′. We will refer to this property as the soundness of �, and to � as a sound
proof technique for contextual equivalence. In order to prove that two terms are contextually
equivalent, we then need only prove that they are related by �. We will see in Section 4.5 that
at least in some cases, the latter is indeed easier than the former. This makes proving ≈ctx via
� a useful proof technique. Note that it is not our goal to achieve completeness, i.e. the converse
≈ctx⊆ �.

Section three performs the first part of the proof by showing that a fundamental property
`⊆ � holds for �: all well-typed terms are related to themselves by �. We will prove this by
induction on `, using one separate compatibility lemma per induction step. Though we will not
use this result in the proof of the main theorem, we will reuse its compatibility lemmas in the
second step.

This second step is displayed in section four. There, we prove a property called context
monotonicity, which says that filling in two terms related by � into the same context results in
two terms that are again related by �. The final step is then to combine this into a direct proof
that terms related by � are contextually equivalent.

Before we do this all, even before we properly define contextual equivalence, we take the time
to look at some examples. This will give us a feeling for which terms are contextually equivalent
and which are not. Note that we will not prove any contextual equivalences in the example
section. For one, the loose definitions used will not allow for rigorous proof. For another, if it
were so easy, we might not be so interested in finding other sound proof techniques.

41

4.1 Examples
Suppose, in this section only, that we add an extra type B to the language, namely that of
booleans. The intended meaning of B is that we can express the concepts true and false within
the language.

We add three disjuncts to the grammar for Term:

e ::= . . . | if e then e else e | true | false

the latter two of which are also added to the grammar for Val. Concerning the operational
semantics, we add ifE then e else e to the grammar of evaluation contexts and add the following
two rules to 7→:

if true then e2 else e3 7→ e2 if false then e2 else e3 7→ e3.

This makes the ifthenelse construct strict in the first argument and lazy in the other two:
the first must be fully evaluated before the construct is eliminated, while the latter are kept
untouched. We also add the typing rule

∆;Γ ` e1 : B ∆;Γ ` e2 : τ ∆;Γ ` e3 : τ

∆;Γ ` if e1 then e2 else e3 : τ
.

We now define contexts similarly to evaluation contexts. They should be thought of as terms
with exactly one hole to be filled in with a term. More formally, we define the set Ctx to be
generated by the same grammar as Term, except that the non-terminal is named C instead of e,
an extra disjunct (-) is added, and in every disjunct exactly one of the occurring non-terminals
e is replaced by C:

C ::= (-) | C e | e C | λx :τ. C | C τ | Λα.C | in C | out C
| ifC then e else e | if e thenC else e | if e then e elseC

The notion of filling in a context is defined similarly to evaluation contexts.
We are now ready to say what it means for terms to be contextually equivalent.

Definition 77 (In this section only). Two terms e, e′ are contextually equivalent iff for every
“suitable” context C and every value v of type B, we have that C[e] ⇓ v iff C[e′] ⇓ v.

Defining “suitable” would lead us too far right now, but a suitable C can be considered one
such that C[e] and C[e′] are of type B. This notion of contextual equivalence attempts to capture
that whatever situation e and e′ are used in, the result will be the same and an observer will see
no difference.

Why the booleans At this point, the reader might wonder why we introduced the booleans
and what is so special about them that only they seem to matter in the definition of contextual
equivalence. In this paragraph, we will show with imprecise arguments what would happen if
we defined contextual equivalence such that the mentioned value v can be of any, universally
quantified-over type τ .

42

Definition 78 (Alternative definition for this paragraph only). Two terms e, e′ are contextually
equivalent iff for every type τ , every “suitable” context C, and every value v of type τ , we have
that C[e] ⇓ v iff C[e′] ⇓ v. (This time “suitable” means, approximately, that C[e], C[e′] are of
type τ .)

Consider the terms

l := id = Λα.λx :α. x,

l′ := Λα.λx :α. out in x.

The reader should be convinced that we want these terms to be considered contextually equi-
valent. Though they might not be syntactically equal, we see that l τ e and l′ τ e reduce to the
same term e.

We now show through a counterexample, though, that under the new, hypothetical definition
of this paragraph, with a universally quantified-over type τ instead of just booleans, l, l′ are not
contextually equivalent. We propose the type ∀α.(α→ α) and the trivial context C := (-). Note
that C is “suitable” since C[l], C[l′] are of type ∀α.(α → α). Now the value to which C[l] = l
evaluates is simply l itself and, similarly, C[l′] = l′ evaluates to l′. However, these values l, l′
are not the same, as the definition of contextual equivalence demands. Therefore, l, l′ are not
contextually equivalent under this hypothetical definition.

This might lead one to change the hypothetical definition once again, namely such that
the values to which C[l], C[l′] evaluate need not be equal but merely equivalent in some sense.
However, this would be circular, as equivalence is exactly the property we are trying to capture.
The problem in the counterexample was that it took our human interpretation to see that l and
l′ should be equivalent because they reduced to the same thing after applying them to a type
τ and a term e. Other pairs of terms we consider equivalent might need different numbers of
arguments before their reduction paths coincide.

This is the reason we introduced B. It acts as a “ground type”, in the sense that we need
no extra arguments to determine if two values of type B behave the same; we can distinguish
between different values of type B syntactically. Of course, beside the intended true and false,
other terms like ΩB are of type B. However, note that those are not values.

Examples Rejecting the alternative Definition 78 in favor of Definition 77, we discuss a few
examples. First of all, we make it clear that for two terms to be of the same type is not sufficient
to be contextually equivalent. Consider, for example:

first := Λα.λx :α. λy :α. x,

second := Λα.λx :α. λy :α. y.

They are both of type ∀α.α→ α→ α, but clearly have different behaviour. We can show this
by providing a counterexample against the property of contextual equivalence as defined in
Definition 77. Let C be (-) B true false. Then C[first] = first B true false ⇓ true and
C[second] = second B true false ⇓ false. We see that true 6= false.

Second, we recall the example pair l, l′ used to expose the problems with Definition 78:

l := id = Λα.λx :α. x,

l′ := Λα.λx :α. out in x.

This time, since we are using Definition 77, the context C := (-) is not considered suitable,
since filling in l or l′ does not result in a term of type B. In fact, we will give a loose argument

43

(λx :τid. (x B) (x B true)) l (λx :τid. (x B) (x B true)) l′

(l B) (l B true) (l′ B) (l′ B true)

(λx :B. x) (l B true) (λx :B. out in x) (l′ B true)

l B true out in (l′ B true)

l′ B true

(λx :B. x) true (λx :B. out in x) true
true out in true

true

Figure 4.1: A comparison of the reduction paths of C[l] and C[l′], for the example
context C := (λx : τid. (x B) (x B true)) (-). Note how C is “suitable”, since inserting
a term e of type τid into C will result in a term C[e] of type B. In the diagram, the
reduction path of C[l] is displayed on the left-hand side, opposite that of C[l′]. Every
displayed term reduces—in one step—to the term immediately below it. The lateral
connections represent that the relevant terms are related by the relation R defined in
the text.

why l and l′ are contextually equivalent. (If the reader is already convinced, they can skip this
argument.)

We consider any suitable C such that C[l′] ⇓ v for some v ∈ {true, false}. We recognise that
though C has only one hole (-) into which l′ was filled, l′ might get duplicated during reduction.
For example, if C contains ((λx : ∀α.α→ α. x (∀α.α→ α) x) (-)) then C[l′] might reduce to a
term containing (l′ (∀α.α→ α) l′). If we define an ad-hoc relation R such that terms e, e′ are
R-related iff e′ is equal to e except that some terms might be surrounded by an out-in pair, then
clearly R(C[l], C[l′]). (See Fig. 4.1 for an illustration using an example context.) Looking at the
reduction paths of C[l] and C[l′], we see that R resembles a simulation. If two points e, e′ in the
reduction paths are R-related and e 7→ e1, then e′ reduces to something that is R-related to e1
in a number of steps that depends on how many superfluous out-in pairs have to be removed
from e′. (In Fig. 4.1, this number of out-in pairs to be removed is always 0 or 1.) Through
this reasoning, we expect the end v of the reduction path of C[l′] to be R-related to the end of
the reduction path of C[l]. By definition of R, this means that C[l] ⇓ v, since v cannot contain
out-in pairs. A more rigorous proof of l ≈ctx l′ will be given near the end of the chapter, using
�.

Finally, we see that it matters whether terms terminate or not. For example, the basic free
theorem1 saying that all terms of type τid := ∀α.α→ α are equivalent to the identity function
id, does not hold in our language. Take, for example, the basic divergent term Ω of type τid.
We know it to be of the correct type and also that its reduction does not terminate. Then,
the context C := (-) B true exposes the difference between Ω and id. C[id] ⇓ true, while
C[Ω] = Ω B true 7→ Ω B true gets stuck in an endless loop.

4.2 Definitions
In this section, we make precise the notions of context and contextual equivalence, which we
introduced in Section 4.1. Technically, contextual equivalence ≈ctx will just be a symmetric

1Note that this theorem does not actually appear in Wadler’s paper on free theorems.[18]

44

variant of contextual approximation ≤ctx, the notion that we will work with most. We will also
give a more precise definition of which contexts are suitable in which situations. We will do so
through an inductively defined relation `c for contexts similar to the type relation for terms.

After we have done that, we will define a binary step-indexed logical relation in a way very
similar to how we defined � in Chapter 3. Again, � will simply be a symmetric variant of ., the
actual logical relation we will define. The next sections will put these definitions to use.

4.2.1 Contexts and contextual equivalence
We define contexts, their wellformedness relation, and contextual equivalence in the style of
Ahmed.[3]

Definition 79 (Context). The set Ctx of contexts is defined inductively using the following
grammar:

C ::= (-) | C e | e C | λx :τ. C | C τ | Λα.C | in C | out C

The substitution C[e] of a term e for the hole (-) in a context C is similar to the analogue for
evaluation contexts (Definition 25).

Definition 80 (Context wellformedness relation). We define a new relation `c, resembling the
typing relation on terms, but for contexts. The rules used for the inductive definition are displayed
in Fig. 4.2.

Intuitively, the meaning of a wellformedness statement ∆c; Γc `c C : (∆; Γ . τ) τ c is the
following: Given a term e that can be typed τ under environment Γ and type environment ∆. If
we insert e into C, then the filled in context C[e] can be typed τ c under the environment Γc and
type environment ∆c. The attentive reader will note that it is not clear that the wellformedness
relation `c as presented in Definition 80 actually satisfies this property. The connection between
the wellformedness `c of C on the one hand, and the welltypedness ` of the terms e and C[e] on
the other hand, is not immediate. We note, though, that we never claim, prove, or in fact need
this property. Thinking of the relation this way, however, might help the reader to make sense
of an otherwise rather abstract relation definition.

Definition 81 (Contextual approximation and equivalence). We define a binary term rela-
tion ≤ctx), contextual approximation. More specifically, it relates a type environment ∆, an
environment Γ, two terms el, er, and a type τ . The notation for 〈∆,Γ, el, er, τ〉 ∈≤ctx is
∆;Γ � el ≤ctx er : τ and we say it holds iff the termination of el filled into any wellformed
context implies the termination of er filled into the same context. Formally:

(∆; Γ � el ≤ctx er : τ) :⇔ ∀C ∈ Ctx, τ c ∈ Type :

(·; · `c C : (∆; Γ . τ) τ c) ⇒ (C[el] ⇓⇒ C[er] ⇓).

We then define a symmetrisation ≈ctx over the same set as mutual contextual approximation.
Formally:

(∆; Γ � el ≈ctx er : τ) :⇔(∆; Γ � el ≤ctx er : τ) ∧ (∆; Γ � er ≤ctx el : τ).

When we say el, er are contextually equivalent or el ≈ctx er without further specification, we
often mean ·; · � el ≈ctx er : τ where el, er are of type τ .

The reader might wonder why we choose precisely this definition of contextual approximation
and equivalence. It differs from the loose Definition 77 we gave in the examples in Section 4.1 in

45

∆ ⊆ ∆c Γ ⊆ Γc ∆c ` Γc

:cid
∆c; Γc `c (-) : (∆; Γ . τ) τ

∆c; Γc, (x : τx) `c C : (∆; Γ, (x : τx) . τ) τ c
:cabs

∆c; Γc `c λx :τx. C : (∆; Γ, (x : τx) . τ) τx → τ c

∆c; Γc `c C : (∆; Γ . τ) τ2 → τ3 ∆c; Γc ` e2 : τ2
:cappright

∆c; Γc `c C e2 : (∆; Γ . τ) τ3

∆c; Γc `c C : (∆; Γ . τ) τ2 ∆c; Γc ` e1 : τ2 → τ3
:cappleft

∆c; Γc `c e1 C : (∆; Γ . τ) τ3

∆c; Γc `c C : (∆; Γ . τ) ∀α.τ c ∆c ` σ
:ctapp

∆c; Γc `c C σ : (∆; Γ . τ) τ c[σ/α]

∆c, α; Γc `c C : (∆, α; Γ . τ) τ c
:ctabs

∆c; Γc `c Λα.C : (∆, α; Γ . τ) ∀α.τ c

∆c; Γc `c C : (∆; Γ . τ) τ c[µα.τ c/α]
:cmuin

∆c; Γc `c in C : (∆; Γ . τ) µα.τ c

∆c; Γc `c C : (∆; Γ . τ) µα.τ c
:cmuout

∆c; Γc `c out C : (∆; Γ . τ) τ c[µα.τ c/α]

Figure 4.2: The context wellformedness relation `c, as defined by Ahmed. Note that
three relations—four for pedants—with similar or just plain equal symbols are used.
First, of course, the context wellformedness relation `c. Second, the type relation `
on terms, in :cappright and :cappleft. Third, the type wellformedness relation ` on types,
in :cid and :ctapp. (Fourth, in :cid, actually the type wellformedness relation lifted over
environments is used instead of the relation itself.)

46

two important ways. First, quantification over all types is performed, while we argued against
it in the examples section. Second, the criterium by which filled-in contexts are judged is not to
which value they evaluate, but if they terminate at all.

So far, in defining contextual equality, we have explored two dimensions along which to
design our definition, with two possibilities each. The first dimension is that of universal type
quantification (used by Definition 78 and the actual definition of ≈ctx, Definition 81) versus
using a ground type (used by Definition 77). Along the second dimension we have requiring the
equality of the values to which C[el], C[er] evaluate on the one hand (used by both definitions
from the examples section), and requiring that their mere terminations are equivalent on the
other hand: C[el] ⇓⇔ C[er] ⇓ (used by the actual definition of ≈ctx).

Recall our attempt Definition 78 at a definition of contextual equivalence quantifying univer-
sally over all types and not just B. Requiring that the values to which C[el] and C[er] evaluate
be equal, then, turned out to be too strict, i.e. it left out term pairs el, er which we did want to
consider contextually equal. Thus, the combination of universal type quantification and value
equality yields a wrong notion of contextual equality.

Since we chose to keep our language λ∀µ lean, ground types like B were left out. Along the
first dimension, then, defining contextual equivalence using a ground type is not an option and
we must use universal type quantification. We also know from Definition 78 that combining this
with the requirement of value equality does not work. In Appendix (B) we show that the only
remaining combination, universal type quantification and mere termination equivalence, can be
believed to yield a sufficient notion of contextual equivalence. This is exactly the combination
used in the actual definition of ≈ctx, Definition 81.

4.2.2 Binary step-indexed logical relation
We define a binary step-indexed logical relation .. The definition will be similar to that of �,
see Definition 54. All concepts, like semantic type relations (Definition 42) and the mutually
recursive term sets (Definition 47), will have to be adapted to our binary setting. We reuse the
relevant symbols, like δ,V, E , in the new definitions and expect the reader to understand that in
this chapter, they refer to the binary versions of the concepts. A similar thing goes for lemmas
and propositions, although some rephrasings are so minor that we leave them to the reader. We
have attempted a reasonable tradeoff here, referring to the statement from the unary context if
its translation is obvious, and properly proving it otherwise.

Definition 82 (Semantic type relation). We define Rel(-, -) to be the following function taking
two types τ l, τ r such that τ l, taur ∈ CType, with codomain P(N → P(CVal2)).

Rel(τ l, τ r) :={χ- ∈ (N → P(CVal2)) | ∀k ∈ N : ∀〈vl, vr〉 ∈ χk :

(·; · ` vl : τ l) ∧ (·; · ` vr : τ r) ∧ (∀j < k : 〈vl, vr〉 ∈ χj)}.

We also say that Rel :=
⋃

τ l,τr∈Type Rel(τ l, τ r).

As Ahmed hinted at, the fact that we pose typing requirements for both types in the tuples
has led us to define a notion of semantic type relations paramerised in not one but two types.[3]

Definition 83 (Type relation substitution). Given a type environment ∆ ∈ TEnv. We define
the set DJ∆K of type relation substitutions to be the set of δ ∈ (∆ → (Type × Type × Rel)) for
which δ α = 〈τ l, τ r, χ〉 implies τ l, τ r ∈ CType, and χ ∈ Rel(τ l, τ r).

When ∆ = · then δ ∈ DJ∆K is the empty function, which we will write · or ∅.
If δ α = 〈τ l, τ r, χ〉, we define δl α := τ l, δr α := τ r, and δsem α := χ.

47

We define δl τ l to be the simultaneous syntactic type substitution of δl α for every type variable
α in ∆ that occurs freely in τ l, and similarly if we replace l with r.

When α /∈ ∆, we define δ[α 7→ 〈τ l, τ r, χ〉] to be a type relation substitution in DJ∆, αK that
maps all α′ ∈ ∆ to δ α′ and α to 〈τ l, τ r, χ〉.

Regarding terms, we let δl e denote the result of simultaneous substitution of δl α for every
type variable α occurring freely in e, and similarly if we replace l with r.

Analogues for Lemma 45 and Lemma 46 hold, where in both lemmas, the equality assertion
for δ is replaced by two assertions for δl and δr separately.

Definition 84 (Step-indexed, mutually recursive term sets). We define two functions, V and E,
at once using mutual recursion.

We let DTD denote the set of tuples 〈∆, τ, δ〉 such that ∆ ` τ and δ ∈ DJ∆K. Both V and
E take a natural number k ∈ N and a tuple 〈∆, τ, δ〉 ∈ DTD. The notation of V applied to its
arguments is Vk

∆JτKδ and similarly for E. The codomains are such that Vk
∆JτKδ ⊆ CVal2 and

Ek
∆JτKδ ⊆ CTerm2.

We define the functions by recursion on the index k.

Vk
∆JαKδ := (δsem α)k, (4.1)

Vk
∆Jτ1 → τ2Kδ := T δ(τ1 → τ2) ∩ {〈λxl :δl τ1. el, λxr :δr τ1. er〉 ∈ CVal2 | (4.2)

∀j < k : ∀〈e′l, e′r〉 ∈ Ej
∆Jτ1Kδ : 〈el[e′l/xl], er[e′r/xr]〉 ∈ Ej

∆Jτ2Kδ},
Vk
∆J∀α.τKδ := T δ(∀α.τ) ∩ {〈Λα.el,Λα.er〉 ∈ CVal2 | (4.3)

∀j < k : ∀τ ′l, τ ′r ∈ CType : ∀χ ∈ Rel(τ ′l, τ ′r) :
〈el[τ ′l/α], er[τ ′r/α]〉 ∈ Ej

∆,αJτKδ[α 7→ 〈τ ′l, τ ′r, χ〉]},

Vk
∆Jµα.τKδ := T δ(µα.τ) ∩ {〈in el, in er〉 ∈ CVal2 | ∀j < k : 〈el, er〉 ∈ Ej

∆Jτ [µα.τ/α]Kδ},
Ek
∆JτKδ := {〈el, er〉 ∈ CTerm2 | ∀j ≤ k : ∀e′l : el ⇓j e′l ⇒ (4.4)

∃e′r : er ⇓ e′r ∧ 〈e′l, e′r〉 ∈ Vk−j
∆ JτKδ},

where T δ(τ) := {〈el, er〉 ∈ Term2 | (·; · ` el : δl τ)∧ (·; · ` er : δr τ)}. To understand Eq. (4.1) we
remember that δsem α ∈ Rel((δl α), (δr α)) ⊆ (N → P(CVal2)). By Notation 43, the superscript
k thus represents application to k, and (δsem α)k ⊆ CVal2.

This concept generalised fairly obviously from its unary variant Definition 47. Note that
many comments we gave on that definition, regarding the adaptations of Ahmed’s definitions to
our language, hold true here as well.

One non-obvious generalisation from unary to binary is the asymmetrical definition of E . We
might be tempted to require that er ⇓j e′r instead of el ⇓ e′r, or to find other ways of keeping the
definition more symmetrical. However, this would lead to too strong a constraint on terms, since
then terms should terminate in an equal number of steps in order to be related. For example,
the terms l, l′ from Section 4.1 would not be related under such a definition. (Consider, e.g.
〈l τ v, l′ τ v〉, which would not be an element of Ek

· JτK· for sufficiently high index k.) As Ahmed
notes, many “nice”, symmetrical-seeming definitions lead to such strict constraints.[3]

Well-definedness of V, E can be proved similarly to how we did in Chapter 3 for their unary
counterparts. We will not repeat the proof, neither here nor in the appendix.

Definition 85 (Semantic term substitutions). We define the function G, which takes a natural
number k, a type environment ∆, an environment Γ such that ∆ ` Γ, and a type relation

48

substitution δ ∈ DJ∆K. The notation is Gk
∆JΓKδ and the codomain is such that Gk

∆JΓKδ ∈
P(domΓ → CTerm).

Gk
∆JΓKδ := {γ ∈ (domΓ → CTerm2) | ∀x ∈ domΓ : γ x ∈ Ek

∆JΓ xKδ}.

When Γ = · then γ ∈ DJΓK is the empty function, which we will write · or ∅.
Similarly to how we defined δl, we say that γl, γr are the two projections of γ: if γ x = 〈el, er〉,

then γl x = el and γr x = er. Also, γ e is the simultaneous substitution of γ x for every free x
in e.

Notation 86 (Substitution distribution over tuples). We write δγ for δ ◦ γ. We also write δγl
for δl ◦ γl, and similarly for δγr.

Whenever a type relation substitution δ or a semantic term substitution γ is applied to a
2-tuple 〈tl, tr〉 of elements to which it could be applied (e.g. terms or types), the application is
distributed over the tuple, i.e. δ 〈tl, tr〉 := 〈δl tl, δr tr〉 and similarly for γ.

Notation 51 through Notation 53 are to be translated to binary versions as well. This means
that γ 〈el, er〉 := 〈γl el, γr er〉 and that γ[x 7→ 〈el, er〉] is defined as 〈γl[x 7→ el], γr[x 7→ er]〉.
Note how the latter is written as a tuple of functions but should be interpreted as one function
returning tuples. It is precisely this kind of pedantry we will not concern ourselves with too
much.

Definition 87 (Binary relation). We define a (binary) relation . on terms. More specifically,
it relates a type environment ∆, an environment Γ, two terms el, er, and a type τ . The notation
for 〈∆,Γ, el, er, τ〉 ∈ . is ∆;Γ � el . er : τ .

∆;Γ � el . er : τ :⇔ ∆ ` Γ∧
∀k ≥ 0 : ∀δ ∈ DJ∆K : ∀γ ∈ Gk

∆JΓKδ : δγ 〈el, er〉 ∈ Ek
∆JτKδ.

Remember that in our notation, δγ 〈el, er〉 = 〈δl (γl e), δr (γr e)〉.

As we mentioned before, from the binary logical relation we derive another relation. This is
merely the symmetrisation of the logical relation.

Definition 88 (Equivalence relation). We define a (binary) relation � on terms. More specific-
ally, it relates a type environment ∆, an environment Γ, two term el, er, and a type τ . The
notation for 〈∆,Γ, el, er, τ〉 ∈ � is ∆;Γ � el � er : τ , and it holds iff

(∆; Γ � el . er : τ) ∧ (∆; Γ � er . el : τ).

We find that translations of the three lemmas at the end of Section 3.3 hold as well.

Lemma 89 (There is always a type relation substitution and semantic term substitution).
Suppose ∆;Γ � el . er : τ and k ≥ 0. Then there exist δ ∈ DJ∆K and γ ∈ Gk

∆JΓKδ.

Proof. Analogous to Lemma 55.

Lemma 90 (Free (type) variables in the binary relation). Suppose that ∆;Γ � el . er : τ . Then
fv e ⊆ domΓ and ftv e ⊆ ∆.

Proof. Analogous to Lemma 56.

Lemma 91 (Downward closedness). V, E ,G are downward closed. This has the following mean-
ing.

49

• If 〈vl, vr〉 ∈ Vk
∆JτKδ and j < k, then 〈vl, vr〉 ∈ Vj

∆JτKδ.

• If 〈el, er〉 ∈ Ek
∆JτKδ and j < k, then 〈el, er〉 ∈ Ej

∆JτKδ.

• If γ ∈ Gk
∆JΓKδ and j < k, then γ ∈ Gj

∆JΓKδ.

Proof. The proof for V is similar to Lemma 57. The proof for G can again be done pointwise,
based on the downward closedness of E .

We now show how downward closedness of E can be derived from that of V. Fix 〈el, er〉 ∈
Ek
∆JτKδ and j < k. To prove 〈el, er〉 ∈ Ej

∆JτKδ, fix i ≤ j and e′l such that

el ⇓i e′l. (4.5)

We must prove the existence of some e′r with er ⇓ e′r such that 〈e′l, e′r〉 ∈ Vj−i
∆ JτKδ. By the

assumption j < k, we have i ≤ k. Combined with Eq. (4.5), we get the existence of some e′r with
e′ ⇓ e′r, such that 〈e′l, e′r〉 ∈ Vk−i

∆ JτKδ. We finish the proof by invoking downward closedness of
V to obtain 〈e′l, e′r〉 ∈ Vj−i

∆ JτKδ.

We take the time to briefly discuss a few relational properties of the binary relation . we just
defined, namely reflexivity, anti-symmetry, and transitivity. (When regarding . and � as truly
binary relations, we keep ∆,Γ, τ fixed.) The first property, reflexivity, will turn out to hold for
our relation. This is the subject of Section 4.3. Anti-symmetry will turn out not to hold, as will
become clear in the discussion in Section 4.5.

The property of transitivity is a bit more tricky. Note that one of the improvements of
Ahmed’s binary relation—on which ours is based—relative to Appel-McAllester’s PER model,
was that its transitivity could be proved.[3, 4] Our relations . and thus also � suffer from a
problem similar to that of Appel-McAllester’s model: though we have not found a counterexample
against their transitivity, the obvious proof does not go through. We do not show this as the
problem is very similar to that of Appel-McAllester. The problem is explained in detail in [3].

Thus, where Ahmed obtained a preorder ≤ along with its derived equivalence relation ≈ :=≤
∩ ≥, our corresponding . and � cannot be proved to be a preorder and an equivalence relation,
respectively, because of their lack of provable transitivity. Do note, however, that we neither claim
nor need transitivity in order to reach the goal of this thesis. The fact that contextual equivalence
is clearly transitive makes transitivity a necessary condition for completeness. However, we only
concern ourselves with soundness of � w.r.t. ≈ctx. Even if there is a triple e1, e2, e3 such that
e1 � e2 � e3 but not e1 � e3, then still this would imply e1 ≈ctx e2 ≈ctx e3 and thus e1 ≈ctx e3.

4.2.3 Statement of the theorem
Now that we have all definitions in place, we are ready to state—but not yet prove—the central
theorem of this thesis:

Theorem 92 (Terms related in binary relation are contextually equivalent). Suppose ∆;Γ �
el � er : τ . Then ∆;Γ � el ≈ctx er : τ .

4.3 Fundamental property of the logical relation
In this section, we prove that if a term is well-typed, it is related to itself by .. From the
definition, it is immediately clear this also implies it is related to itself by �. Formally, we prove
the following proposition:

50

Proposition 93 (Reflexive arrows for well-typed terms). Suppose that ∆;Γ ` e : τ . Then
∆;Γ � e . e : τ .

We prove this by induction on ∆;Γ ` e : τ . In other words, we prove that . is closed
under the type rules on which ` is defined inductively.2 The following subsections all contain
a compatibility lemma that allows us to prove exactly one of the induction steps. We follow
the structure of Section 3.4 closely and make similar necessary adaptations to Ahmed’s work as
before. However, we will not actually use the result Prop. 93 proved in this section. The only
use of the compatibility lemmas is to be reused as parts of induction steps in the proof of context
monotonicity in the next section. That proof requires the lemmas to be formulated slightly
broader than what is necessary for Prop. 93. In order to preserve space and avoid repetition,
this section features the “enhanced” compatibility lemmas straight away.

4.3.1 Variable
Lemma 94 (Compatibility lemma). Suppose ∆ ` Γ and x ∈ domΓ. Then ∆;Γ � x . x : Γ x

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. We must prove that δ (γ x), which is equal to

〈δl (γl x), δr (γr x)〉, is an element of Ek
∆JΓ xKδ. It is clear from the definition of γ that

γ x ∈ CTerm2 and therefore δ (γ x) = γ x ∈ Ek
∆JΓ xKδ.

4.3.2 Term application
Lemma 95 (Interaction between E and 7→). Suppose 〈el, er〉 ∈ Ek

∆JτKδ and el 7→j e′l with j ≤ k.
Then 〈e′l, er〉 ∈ Ek−j

∆ JτKδ.

Proof. Suppose e′l evaluates to some e′′l with irred e′′l in i ≤ k − j steps. Then el 7→j+i e′′l,
thus by assumption there is a term e′r with irred e′r to which er evaluates, with 〈e′′l, e′r〉 ∈
Ek−(j+i)
∆ JτKδ. We realise that k − (j + i) = k − j − i.

Lemma 96. Suppose 〈el1, er1〉 ∈ Ek
∆Jτ2 → τ3Kδ and el1 e

l
2 ⇓k el3. Then there exist terms bl, br

and a natural number j < k such that el1 7→j λx : δ τ2. b
l and er1 7→∗ λx′ : δ τ2. b

r, with
〈λx :δ τ2. bl, λx′ :δ τ2. br〉 ∈ Vk−j

∆ Jτ2 → τ3Kδ.

Proof. The proof follows the same pattern as Lemma 60: we perform induction on k. In the
base case irred(el1 el2) implies irred el1 with el1 not being a term abstraction. Together with
the assumption this means 〈el1, . . .〉 ∈ V0

∆Jτ2 → τ3Kδ, which contradicts el1 not being a term
abstraction.

In the induction step, we assume the statement holds for k. We also assume 〈el1, er1〉 ∈
Ek+1
∆ Jτ2 → τ3Kδ and el1 el2 ⇓k+1 el3. If el1 is not already a term abstraction—which would end the

proof—we can split this evaluation into, say

el1 e
l
2 7→1 e′l1 e

l
2 7→k el3.

Lemma 95 gives us that 〈e′l1, er1〉 ∈ Ek
∆Jτ2 → τ3Kδ. We instantiate the induction hypothesis with

this and realise that el1 evaluates in j + 1 < k + 1 steps to the term abstraction to which e′l1
evaluates in j < k steps. The proof goal er1 7→∗ λx′ : δ τ2. b

r is also met. The final proof goal,
〈λx :δ τ2. bl, λx′ :δ τ2. br〉 ∈ Vk−j

∆ Jτ2 → τ3Kδ, is met by induction and the fact that k+1−(j+1) =
k − j.

2 A small remark here is that ` and . have different arities and are thus defined over different sets. When we
say that . is closed under the rules of `, we actually mean that the reflexive part {〈∆,Γ, e, e, τ〉 |∆;Γ � e . e : τ}
of . is closed under these rules.

51

Lemma 97 (Compatibility lemma). Suppose ∆;Γ � el1 . e
r
1 : τ2 → τ3 and ∆;Γ � el2 . e

r
2 : τ2.

Then ∆;Γ � el1 e
l
2 . e

r
1 e

r
2 : τ3.

Proof. The proof follows the pattern of Prop. 74. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. We

must prove that δγ 〈(el1 el2), (er1 er2)〉 ∈ Ek
∆Jτ3Kδ. Fix a term el3 and a number of steps j ≤ k

such that (δγl el1) (δγl el2) ⇓j el3. We instantiate Lemma 96 with this, and find that δγl el1
evaluates to λx : δl τ2. b

l in some i < j steps, δγr er1 to λx′ : δr τ2. b
r in an unspecified number

of steps, and 〈δγl el1, δγr er1〉 ∈ Vk−i
∆ Jτ2 → τ3Kδ. We must prove the existence of some er3 with

(δγ er1) (δγ e
r
2) ⇓ er3 such that 〈el3, er3〉 ∈ Vk−j

∆ Jτ3Kδ.
We visualise the evaluation as follows:

(
︷ ︸︸ ︷
(δγl el1) (δγl el2)) 7→i (

︷ ︸︸ ︷
(λx :δ τ2. b

l)
︷ ︸︸ ︷
(δγl el2)) 7→1

︷ ︸︸ ︷
bl[δγl el2/x] 7→j−i−1

︷︸︸︷
el3

((δγr er1)︸ ︷︷ ︸
(1)

(δγr er2)) 7→∗ ((λx′ :δ τ2. b
r)︸ ︷︷ ︸

(2)

(δγr er2)︸ ︷︷ ︸
(3)

) 7→1 br[δγr er2/x]︸ ︷︷ ︸
(4)

7→∗ er3︸︷︷︸
(5)

,

where

︷︸︸︷
a
b︸︷︷︸
(c)

signifies a claim about 〈a, b〉 made in item (c) of the following list, and every claim

builds upon the previous ones.

(1) This tuple is element of Ek
∆Jτ2 → τ3Kδ, by instantiation of the first assumption.

(2) This tuple is element of Vk−i
∆ Jτ2 → τ3Kδ, the result of Lemma 96.

(3) This tuple is element of Ek
∆Jτ2Kδ, by instantiation of the second assumption. We make use

of downward closedness (Lemma 91) to replace k by k− i− 1, in order for the next step to
go through.

(4) This tuple is element of Ek−i−1
∆ Jτ3Kδ, by instantiation of (2) with (3).

(5) This tuple is element of Ek−j
∆ Jτ3Kδ. We assumed that (δγl el1) (δγ

l el2) ⇓j el3, which, given
our previous information and determinism, means that bl[δγl el2/x] 7→j−i−1 el3. Therefore,
the existence of er3 with br[δγr er2/x] ⇓ er3 and 〈el3, er3〉 ∈ Vk−i−1−(j−i−1)

∆ Jτ3Kδ is guaranteed,
by (4). We finish the proof by realising that k − i− 1− (j − i− 1) = k − j.

4.3.3 Term abstraction
Lemma 98 (Compatibility lemma). Suppose ∆;Γ, (x : τx) � el . er : τ . We must prove that
∆;Γ � λx :τx. el . λx :τx. er : τx → τ .

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. Since both terms are already irreducible, We must

prove that δγ 〈λx : τx. el, λx : τx. er〉 ∈ Vk
∆Jτx → τKδ. Fix j < k and 〈e′l, e′r〉 ∈ Ej

∆JτxKδ. Now we
must prove that 〈(δγl el)[e′l/x], (δγr er)[e′r/x]〉 ∈ Ej

∆JτKδ.
We realise that δl e′l = e′l and instantiate Lemma 62 for δl, γl, el, and find that (δγl el)[e′l/x] =

δl (γ′l el), where we define γ′l := γl[x 7→ e′l]. We do a similar thing for r, resulting in
γ′ := γ[x 7→ 〈e′l, e′r〉]. We thus need only prove that 〈δl (γ′l el), δr (γ′r er)〉 ∈ Ej

∆JτKδ. This
proof goal can be met by instantiating the assumption with j, δ, and γ′ ∈ Gk

∆JΓKδ ⊆ Gj
∆JΓKδ.

52

4.3.4 Type application
We expand upon Lemma 66:

Lemma 99 (Type substitution in term sets). Given te following: k ≥ 0; ∆; α /∈ ∆; δ ∈ DJ∆K;
τ, τ ′ such that ∆, α ` τ and ∆ ` τ ′. Let ∆′ := (∆, α) and δ′ := δ[α 7→ 〈δl τ ′, δr τ ′,V -

∆Jτ ′Kδ〉].
Then Vk

∆′JτKδ′ = Vk
∆Jτ [τ ′/α]Kδ. The same equality then clearly also holds when we replace V

with E.

Proof. Analogous to Lemma 66.

Lemma 100 (Values in the recursive value set are well-typed). Given k ≥ 0 and 〈∆, τ, δ〉 ∈
DTD. Then for all 〈vl, vr〉 ∈ Vk

∆JτKδ, we have ·; · ` vl : δl τ and ·; · ` vr : δr τ .

Proof. Just like Lemma 64, we can prove be exhaustive case distinction, where the proof goal
follows immediately from the relevant definition of V.

Lemma 91 and Lemma 100 together give us the following property of V.

Corollary 101 (Recursive value sets are semantic type relations). Given 〈∆, τ, δ〉 ∈ DTD. Then
V -
∆JτKδ ∈ Rel(δl τ, δr τ).

Lemma 102. Suppose 〈el, er〉 ∈ Ek
∆J∀α.τKδ and el τ ′ ⇓k e′l. Then there exist terms bl, br and a

natural number j < k such that el 7→j Λα.bl and er 7→∗ Λα.br, with 〈Λα.bl,Λα.br〉 ∈ Vk−j
∆ J∀α.τKδ.

Proof. Analogous to Lemma 67, adapting the proof to the binary relation the way we changed
Lemma 60 to Lemma 96.

Lemma 103 (Compatibility lemma). Suppose ∆;Γ � el . er : ∀α.τ and ∆ ` τ ′. Then ∆;Γ �
el τ ′ . er τ ′ : τ [τ ′/α].

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. Also fix j ≤ k and e′l such that δγl (el τ ′) ⇓j e′l.

(Note that δγl (el τ ′) = (δγl el) (δl τ ′.) We instantiate Lemma 102 with this and find that
δγl el evaluates to Λα.bl in some i < j steps, δγr er evaluates to Λα.br in an unspecified number
of steps, and 〈δγl el, δγr er〉 ∈ Vk−i

∆ J∀α.τKδ. We must prove the existence of some e′r with
(δγr er) (δr τ ′) ⇓ e′r such that 〈e′l, e′r〉 ∈ Vk−j

∆ Jτ [τ ′/α]Kδ. We visualise the evaluation as follows:

(
︷ ︸︸ ︷
(δγl el) (δl τ ′)) 7→i (

︷ ︸︸ ︷
(Λα.bl)

︷ ︸︸ ︷
(δl τ ′)) 7→1

︷ ︸︸ ︷
bl[δl τ ′/α] 7→j−i−1

︷︸︸︷
e′l

((δγr er)︸ ︷︷ ︸
(1)

(δr τ ′)) 7→∗ ((Λα.br)︸ ︷︷ ︸
(2)

(δr τ ′)︸ ︷︷ ︸
(3)

) 7→1 br[δr τ ′/α]︸ ︷︷ ︸
(4)

7→∗ e′r︸︷︷︸
(5)

,

where

︷︸︸︷
a
b︸︷︷︸
(c)

signifies a claim about 〈a, b〉 made in item (c) of the following list, and every claim

builds upon the previous ones.

(1) This tuple is element of Ek
∆J∀α.τKδ, by instantiation of the assumption.

(2) This tuple is element of Vk−i
∆ J∀α.τKδ, by the result of Lemma 102.

(3) Both types are closed, i.e. δl τ ′, δr τ ′ ∈ CType.

53

(4) This tuple is element of Ek−i−1
∆ JτKδ[α 7→ 〈δl τ ′, δr τ ′, χ〉], where χ := V -

∆Jτ ′Kδ. This holds
for every index strictly smaller than k− i, including k− i− 1, and all χ ∈ Rel(δl τ ′, δr τ ′).
That our choice of χ is an element of Rel(δl τ ′, δr τ ′), is a direct consequence of Corol-
lary (101).

(5) This tuple is an element of Vk−j
∆ JτKδ[α 7→ 〈δl τ ′, δr τ ′,V -

∆Jτ ′Kδ〉]. We made the assumption
that (δγl el) (δl τ ′) ⇓j e′l, which, given our previous reasoning and determinism of the
operational semantics, means that bl[δl τ ′/α] 7→j−i−1 e′l. Therefore, the existence of a
term e′r with br[δr τ ′/α] ⇓ e′r and 〈e′l, e′r〉 ∈ Vk−j

∆ JτKδ[α 7→ 〈δl τ ′, δr τ ′, χ〉] is guaranteed,
by (4).

We finish the proof by using Lemma 99.

4.3.5 Type abstraction
Lemma 104 (Redundant type variables make no difference). Given the following: k ≥ 0;
〈∆, τ, δ〉 ∈ DTD; α /∈ ∆. Let ∆′ := (∆, α) and δ′ := δ[α 7→ 〈σl, σr, χ〉] for some σl, σr ∈
CType, χ ∈ Rel(σl, σr). (Clearly, δ′ ∈ DJ∆′K.) Then Vk

∆JτKδ = Vk
∆′JτKδ′.

Under the same conditions, Ek
∆JτKδ = Ek

∆′JτKδ′ holds. If, for any given Γ, we replace the
condition 〈∆, τ, δ〉 ∈ DTD with (δ ∈ ∆ ∧∆ ` Γ), then Gk

∆JΓKδ = Gk
∆′JΓKδ′ holds.

Proof. We first realise, by expanding the definition of E , that if the lemma holds for V, it holds
for E . We also see that the lemma for G holds as long as it holds for E : we can apply the equality
for E pointwise to all x ∈ domΓ. The lemma for V is proved analogously to Lemma 69.

Lemma 105 (Compatibility lemma). Suppose (∆, α); Γ � el .er : τ . Then ∆;Γ � Λα.el .Λα.er :
∀α.τ .

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. Since both terms are already irreducible, we must

prove that δγ 〈Λα.el,Λα.er〉 ∈ Vk
∆J∀α.τKδ. Fix j < k, two closed types τ l, τ r ∈ CType, and a

χ ∈ Rel(τ l, τ r). We write ∆′ := (∆, α) and δ′ := δ[α 7→ 〈τ l, τ r, χ〉]. We see that (δγl el)[τ l/α] =
δ′l (γl el) and similarly for R, by Lemma 45.

It now suffices to prove that 〈δ′l (γl el), δ′r (γr er)〉 ∈ Ej
∆′JτKδ′. Since δ′ ∈ DJ∆′K and

γ ∈ Gk
∆′JΓKδ′ by Lemma 104, we can instantiate the induction hypothesis to achieve this proof

goal.

4.3.6 Type unfolding
Lemma 106. Suppose 〈el, er〉 ∈ Ek

∆Jµα.τKδ and out el ⇓k e′l. Then there exist terms bl, br and
a natural number j < k such that el 7→j in bl and er 7→∗ in br, with 〈in bl, in br〉 ∈ Vk−j

∆ Jµα.τKδ.

Proof. Analogous to Lemma 71, adapting the proof to the binary relation the way we changed
Lemma 60 to Lemma 96.

Lemma 107 (Compatibility lemma). Suppose ∆;Γ � el.er : µα.τ . Then ∆;Γ � out el.out er :
τ [µα.τ/α].

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. Also fix j ≤ k and e′l with out el ⇓j e′l. We

instantiate Lemma 106 with this and find that δγl el evaluates to some in bl in some i < j
steps, δγr er evaluates to some in br in some unspecified number of steps, and 〈δγl el, δγr er〉 ∈

54

Vk−i
∆ Jτ [µα.τ/α]Kδ. We must prove the existence of some e′r with out er ⇓j e′r such that

〈e′l, e′r〉 ∈ Vk−j
∆ Jτ [µα.τ/α]Kδ. We visualise the evaluation as follows:

out
︷ ︸︸ ︷
δγl el 7→i out

︷ ︸︸ ︷
(in δγl el) 7→1

︷ ︸︸ ︷
δγl el 7→j−i−1

︷︸︸︷
e′l

out δγr er︸ ︷︷ ︸
(1)

7→∗ out (in δγr er)︸ ︷︷ ︸
(2)

7→1 δγr er︸ ︷︷ ︸
(3)

7→∗ e′r︸︷︷︸
(4)

,

where

︷︸︸︷
a
b︸︷︷︸
(c)

signifies a claim about 〈a, b〉 made in item (c) of the following list, and every claim

builds upon the previous ones.

(1) This tuple is element of Ek
∆Jµα.τKδ, by instantiation of the assumption.

(2) This tuple is element of Vk−i
∆ Jµα.τKδ, by the result of Lemma 106.

(3) This tuple is element of Ek−i−1
∆ Jτ [µα.τ/α]Kδ, by definition of V. Note that it holds for all

indices strictly smaller than k − i, including k − i− 1.

(4) This tuple is element of Ek−j
∆ Jτ [µα.τ/α]Kδ. We assumed that out δγl el ⇓j e′l, which,

given our previous reasoning and determinism of the operational semantics, means that
δγl el 7→j−i−1 e′l. Therefore, the existence of a term e′r with δγr er ⇓ e′r and 〈e′l, e′r〉 ∈
Vk−j
∆ Jτ [µα.τ/α]Kδ is guaranteed, by (4).

4.3.7 Type folding
Lemma 108 (Compatibility lemma). Suppose ∆;Γ � el . er : τ [µα.τ/α]. Then ∆;Γ � in el .
in er : µα.τ .

Proof. Fix k ≥ 0, δ ∈ DJ∆K, γ ∈ Gk
∆JΓKδ. Since both terms are already irreducible, we must

prove that δγ 〈in el, in er〉 ∈ Vk
∆Jµα.τKδ. Therefore, we fix j < k. The proof goal is now reduced

to δγ 〈el, er〉 ∈ Ej
∆Jτ [µα.τ/α]Kδ, which is true by instantiation of the assumption with δ, γ, and

by downward closedness of E (Lemma 91).

4.3.8 Conclusion
We can now prove the proposition that was presented at the beginning of this section.

Proposition 93 (Reflexive arrows for well-typed terms). Suppose that ∆;Γ ` e : τ . Then
∆;Γ � e . e : τ .

Proof. We prove by induction on ∆;Γ ` e : τ . More formally, we prove that {〈∆,Γ, e, τ〉 |
∆;Γ � e . e : τ} is closed under the same rules that were used to inductively define `, i.e.
{〈∆,Γ, e, τ〉 |∆;Γ ` e : τ}. Lemmas 94, 97, 98, 103, 105, 107, 108 all prove one of the induction
steps. With the exception of Lemma 94, they all prove a more general statement than we need
right now. To achieve what we want, we can instantiate those statements with two equal terms
e instead of a separate el, er.

55

4.4 Context monotonicity and contextual equivalence
In this section, we perform the second step of the proof. We define what it means for a context
to be monotonic. We say that C is monotonic iff for every two terms el . er, we have that
C[el] . C[er]. First we will prove that all wellformed contexts are monotonic. Then, we will use
this fact to give a direct proof that el . er implies el ≤ctx er. The main theorem then follows
through double application of that implication, once for el . er and once for er . el.

This constitutes a deviation from Ahmed’s argumentation structure. They do not have a
concept of context monotonicity and instead find another way to lift their binary relation from the
term to the context level. The ends of the argumentations are similar again, though. Ahmed’s use
of their binary relation for contexts is used in a way similar to how we use context monotonicity
in the concluding proof.

Definition 109 (Context monotonicity). We also introduce a relation ↗ capturing the notion
of context monotonicity. The notation is ∆c; Γc � C ↗ : (∆; Γ . τ) τ c, which holds iff “filling
in larger terms into C leads to larger terms”. Formally,

∆c; Γc � C ↗ : (∆; Γ . τ) τ c :⇔
∀el, er : (∆; Γ � el . er : τ) ⇒ (∆c; Γc � C[el] . C[er] : τ c).

Proposition 110 (Wellformed contexts are monotonic). Suppose ∆c; Γc `c C : (∆; Γ . τ) τ c.
Then ∆c; Γc � C ↗ : (∆; Γ . τ) τ c.

Proof. By induction. More specifically, we prove that ↗ is closed under the rules by which `c is
inductively defined.

• :cid. Suppose ∆ ⊆ ∆c, Γ ⊆ Γc, and ∆c ` Γc. We must prove ∆c; Γc � (-) ↗ : (∆; Γ.τ) τ .
Fix el, er and suppose that ∆;Γ � el . er : τ . We must prove that ∆c; Γc � el . er : τ . We
therefore fix k ≥ 0, δc ∈ DJ∆cK, γc ∈ Gk

∆cJΓcKδc and write δγc for δc ◦ γc.
Now we make use of the set inclusion assumptions: we define δ to be the restriction of δc
to ∆ and γ to be the restriction of γc to domΓ. We immediately see that δ ∈ DJ∆K.
From the definitions of γc and γ we can clearly see that γ ∈ Gk

∆cJΓKδc. We now use
Lemma 104 “in reverse” to prove that γ ∈ Gk

∆JΓKδ. Our assumption ∆;Γ � el . er : τ
tells us that ∆ ` Γ. By repeated application of Lemma 104—once for every variable
α ∈ ∆c \∆—we conclude that Gk

∆cJΓKδc = Gk
∆JΓKδ.

The assumption ∆;Γ � el . er : τ then tells us that δγ 〈el, er〉 ∈ Ek
∆JτKδ. We show

this last statement is equivalent to our proof goal—δγc 〈el, er〉 ∈ Ek
∆cJτKδc—by showing

that the statements’ left-hand sides are equal as well as their right-hand sides. First,
δγ 〈el, er〉 = δγc 〈el, er〉 because neither of the terms contain free (type) variables outside
of ∆ or domΓ (Lemma 90). Second, Ek

∆JτKδ = Ek
∆cJτKδc by another chain of invocations

of Lemma 104.

The proofs for the other rules differ from the previous one but are very similar to each other.
Roughly, we get to assume that C is monotonic and need to prove some C ′ is monotonic as well.
We assume el . er and instantiate the assumption with it to get C[el] .C[er]. We then apply one
of the lemmas used to prove reflexivity of ., i.e. Lemma 97 through Lemma 107. (Remember
than we purposefully defined these lemmas too broadly back then so that we could recycle them
here.) We respectively show one case that follows this pattern perfectly and one which deviates
from it slightly:

56

• :cappright. Suppose ∆c; Γc � C ↗ : (∆; Γ.τ) τ2 → τ3 and ∆c; Γc ` e2 : τ2 We must prove
∆c; Γc � C e2 ↗ : (∆; Γ . τ) τ3.
Assume ∆;Γ � el .er : τ . We apply the first premise to this and find ∆c; Γc � C[el].C[er] :
τ2 → τ3. We invoke Prop. 93 on the second premise: ∆c; Γc � e2 . e2 : τ2. We can now
apply Lemma 97 and arrive at ∆c; Γc � C[el] e2 . C[er] e2 : τ3.

• :ctabs. Suppose ∆c, α; Γc � C ↗ : (∆c, α; Γ . τ) τ c. We must prove ∆c; Γc � Λα.C ↗ :
(∆, α; Γ . τ) ∀α.τ c.
Assume ∆, α; Γ � el . er : τ . We apply the first premise to this and find ∆c, α; Γc � C[el] .
C[er] : τ c. We can now apply Lemma 105 and arrive at ∆c; Γc � Λα.C[el].Λα.C[er] : ∀α.τ c.

Theorem 111 (Small terms are contextual approximation of large terms). Suppose ∆;Γ �
el . er : τ . Then ∆;Γ � el ≤ctx er : τ . Another phrasing is . ⊆≤ctx.

Proof. Suppose that ·; · `c C : (∆; Γ . τ) τ c and that C[el] ⇓, say C[el] ⇓k e′l. We must prove
that C[er] ⇓.

We apply Prop. 110 to the assumption on C and find ·; · � C ↗ : (∆; Γ . τ) τ c. We
instantiate this with the premise in the lemma and get ·; · � C[el] . C[er] : τ c. We realise that
δ := ∅ ∈ DJ·K and γ := ∅ ∈ Gk

· J·Kδ. This means that δγ 〈C[el], C[er]〉 = 〈C[el], C[er]〉 ∈ Ek
· Jτ cKδ.

We can instantiate this with the statement C[el] ⇓k e′l. Therefore, there exists some value e′r
with C[er] ⇓ e′r, which finishes the proof.

Looking at the definitions of � and ≈ctx, this clearly implies that the main theorem holds:

Theorem 92 (Terms related in binary relation are contextually equivalent). Suppose ∆;Γ �
el � er : τ . Then ∆;Γ � el ≈ctx er : τ .

4.5 Discussion
4.5.1 Examples revisited
In this section, we revisit the introductory examples from Section 4.1. Unlike when we first
introduced them, this time we will be able to formally discuss whether the given pairs are
contextually equivalent. The first and third example pairs will turn out not to satisfy contextual
equivalence.3 We will prove this by providing a type and a wellformed context, in such a way
that whether or not the context terminates differs depending on which of the two terms is filled
in. This constitutes a counterexample. The terms l, l′ from the second pair are contextually
equivalent. We will prove this not through a direct proof via the definition of course, but by
proving l � l′. This is an example use of Theorem 92.

First example: type equality is not enough

Recall the example:

first := Λα.λx :α. λy :α. x,

second := Λα.λx :α. λy :α. y,

3 Recall that when left unspecified, the (type) environments are assumed to be empty and the type is assumed
to be the that of the terms. In symbols, el ≈ctx er is shorthand for ·; · � el ≈ctx er : τ where el, er are of type τ .

57

· ⊆ · · ⊆ · · ` ·
·; · `c (-) : (·; · . τ) τ · ` τid

·; · `c (-) τid : (·; · . τ) τid → τid → τid ·; · ` id : τid

·; · `c (-) τid id : (·; · . τ) τid → τid ·; · ` Ω : τid

·; · `c (-) τid id Ω : (·; · . τ) τid

Figure 4.3: Derivation of the fact that the context C = (-) τid Ωτid is wellformed.
Informally, the meaning is that when we insert a term e that can be typed τ with an
empty environment and type environment, then the whole term e τid Ωτid can be typed
τid, also with an empty environment and type environment.

and note that both terms are of type τ := ∀α.α→ α→ α. As we have said before, it is imme-
diately intuitively clear that these terms are not contextually equal. first reduces to the first
(term) argument given to it, and second to the second. It suffices to construct a context such
that (-) is applied to two arguments, only one of which terminates:

id := Λα.λx :α. x,

τid := ∀α.α→ α,

C := (-) τid id Ω,

where Ω represents the basic divergent term of type τid. We see that C is wellformed: ·; · `c

C : (·; · . τ) τid. (The derivation is shown in Fig. 4.3.) We also see that C[first] ⇓ id and
C[second] 7→∗ Ω 6⇓. Therefore, by definition, ·; · � first ≈ctx second : τid does not hold.

Second example

We recall the example:

l := id = Λα.λx :α. x,

l′ := Λα.λx :α. out in x,

and note that both terms are of type τid := ∀α.α→ α. In the Section 4.1, we argued that these
terms are contextually equivalent. We now prove that that is indeed the case, through use of
our binary relation �. We prove both directions separately.

Note how we are about to prove that l . l′ and l′ .l, with l 6= l′. This will be a counterexample
against the anti-symmetry of ..

Claim 112. ·; · � l . l′ : τid holds.

Proof. Fix k ≥ 0, δ ∈ DJ·K, γ ∈ Gk
· J·Kδ. We see that δ = · and γ = ·. We must thus prove that

〈l, l′〉 ∈ Ek
· JτidK·, which, since both terms are values, amounts to proving 〈l, l′〉 ∈ Vk

· JτidK·.
Fix an index k1 < k, types τ, τ ′ ∈ CType, and a semantic type relation χ ∈ Rel(τ, τ ′). We

must prove that 〈λx : τ. x, λx : τ ′. out in x〉 ∈ Ek1
α Jα→ αK[α 7→ 〈τ, τ ′, χ〉]. Again, both terms are

values so this amounts to proving that the tuple is in Vk1
α Jα→ αK[α 7→ 〈τ, τ ′, χ〉].

Fix an index k2 < k1 and terms e, e′ such that

〈e, e′〉 ∈ Ek2
α JαK[α 7→ 〈τ, τ ′, χ〉]. (4.6)

58

We must prove that 〈x[e/x], (out in x)[e′/x]〉 = 〈e, out in e′〉 ∈ Ek2
α JαK[α 7→ 〈τ, τ ′, χ〉].

Fix an index k3 ≤ k2 and a term ef such that e ⇓k3 ef . We must prove that there exists a
term e′f such that out in e′ ⇓ e′f and 〈ef , e′f 〉 ∈ Vk2−k3

α JαK[α 7→ 〈τ, τ ′, χ〉].
From Eq. (4.6) combined with e ⇓k3 ef and k3 ≤ k2, we get that there exists a term e′f such

that e′ ⇓ e′f and 〈ef , e′f 〉 ∈ Vk2−k3
α JαK[α 7→ 〈τ, τ ′, χ〉]. We see that out in e′ 7→ e′ ⇓ e′f , which

finishes the proof.

Claim 113. ·; · � l′ . l : τid holds.

Proof. The proof is identical up to the switching of sides of the arguments, until the point where
the proof obligation is 〈out in e′, e〉 ∈ Ek2

α JαK[α 7→ 〈τ ′, τ, χ〉]. From there, the proof diverges
because of the asymmetry in the definition of E .

Fix an index k3 ≤ k2 and a term e′f such that out in e′ ⇓k3 e′f . We must prove that there
exists a term ef such that e ⇓ ef and 〈e′f , ef 〉 ∈ Vk2−k3

α JαK[α 7→ 〈τ, τ ′, χ〉].
We note that out in e′ 7→ e′ and out in e′ ⇓k3 e′f together imply e′ ⇓k3−1 e′f , by Lemma 29.

We combine this with the symmetric analogue of Eq. (4.6) to get the existence of a term ef
such that e ⇓ ef and 〈e′f , ef 〉 ∈ Vk2−k3+1

α JαK[α 7→ 〈τ ′, τ, χ〉]. The downward closedness of V
(Lemma 91) then finishes the proof.

Third example: termination matters

In the third example, we gave a minimalist demonstration of the fact that our definition of
contextual equivalence depends on whether the given terms themselves terminate or not. The
counterexample we gave involved booleans. As discussed in Section 4.2.1, we use a different
definition of contextual equivalence (Definition 81) than we did in Section 4.1, from where this
example originates. However, a necessary condition for this to be a didactically good example is
that it remains valid under our new, final definition.

We therefore seek a new context C and type τ c such that ·; · `c C : (·; · . τid) τ c. We
then refute C[id] ⇓⇔ C[Ω] ⇓ by showing that C[id] ⇓ and C[Ω] 6⇓. We realise that we need not
construct our context such that its “outer type” τ c is some specific one (like B). Therefore, the
most trivial context C := (-)—note that·; · `c C : (·; · . τid) τid—will do. The termination
equivalenc is then clearly refuted: C[id] = id is irreducible and C[Ω] = Ω does not terminate.

We observe that this “proof” generalises: for any two terms el, er where one terminates and
the other does not, a counterexample against el ≈ctx er can be made by choosing C := (-).

4.5.2 Free theorems
We investigate the relation between λ∀µ and free theorems. By this, we mean the kind of theorem
as discussed by Wadler.[18] Generally, a free theorem is a (non-trivial) statement that can be
derived from a type, such that all terms in the language of that type satisfy the theorem. For
the purposes of this thesis, free theorems will thus be claims about the behaviour of terms and
their relatedness under �. In this section, we take a close look at two such free theorems to see if
they hold in our language. We do note that these theorems, arguably the simplest possible ones,
do not appear in Wadler’s publication. They are, however, discussed in e.g. [12, 16].

Identity type We state the following free theorem (which, as we will see, does not hold in our
language), where τid is the identity type ∀α.(α→ α) and id is the term Λα.λx :α. x of type τid:

Claim 114 (False free theorem). Suppose e is of type τid. Then ·; · � e � id : τid.

59

Informally, the statement claims that all terms of the identity type are “almost the same as”
the identity function. As was shown in Section 4.1, this claim clearly does not hold:

Counterexample. As a counterexample, we let e be the basic divergent term Ω of type τid.
First, we recall the refutation of contextual equivalence that was used in Section 4.1, and

transform it into a counterexample that can be used under our current definition of ≈ctx. If we
define a context C := (-), then C[Ω] 6⇓ while C[id] ⇓. Therefore, Ω 6≈ctx id, and by contraposition
of Theorem 92, ¬(Ω � id).

An alternative approach would be to derive a contradiction, using the definition of �, from
the assumpition Ω � id. By definition, then, 〈id,Ω〉 ∈ Ek

· JτidK· for every k ≥ 0. However, id ⇓0 id
then implies that Ω terminates in some finite number of steps as well. We know this is not the
case.

We see that the possibility of non-termination provides for counterexamples against claims
of relatedness under �, both via ≈ctx and directly. We wonder, though, if we can formulate a
similar free theorem on the identity type without using �, such that it does hold in our language.
We try again:

Claim 115 (Free theorem). Suppose that e is of type τid. Then for all closed types τ and terms
t, t′ of type τ such that t ⇓ t′, we have that if e τ t ⇓, then e τ t ⇓ t′.

We see that we have now built in an assumption of termination into our claim, while staying
as true as possible to the intuitive meaning “all terms of the identity type are almost the same
as the identity function”. Note that assuming the termination of e or e τ would not have been
enough, since the counterexamples e := Λα.Ωα→α and e := Λα.λx : α.Ωα, respectively, would
still prevent e τ t from terminating, let alone evaluating to t′. Realising that termination might
pop up at almost any point, we thus specifically assume the termination of the entire term with
all its arguments: e τ t ⇓.

It turns out that we can indeed prove this version of the free theorem. We start from the
fact that e is �-related to itself. Most of the proof consists of unwinding the definitions from
Section 4.2.2. As we will see towards the end, the interesting part lies in the choice of one
semantic type relation.

Proof of the free theorem. We know from Prop. 93 that 〈e, e〉 ∈ Ek
· J∀α.(α→ α)K·, where we take

k such that e τ t ⇓k. From this termination assumption, we get that e ⇓k1 evaluates to some
Λα.e1 in some k1 < k steps. Thus, 〈Λα.e1,Λα.e1〉 ∈ Vk−k1

· JτidK·.
If we now fix any χ ∈ Rel(τ, τ) and say that δ := [α 7→ 〈τ, τ, χ〉], then 〈e1[τ/α], e1[τ/α]〉 ∈

Ek−k1−1
α Jα→ αKδ. (According to the definition of V, any index strictly smaller than k−k1 would

have worked.) So far, we know the following about the reduction path of e τ t:

e τ t 7→k1 (Λα.e1) τ t 7→1 e1[τ/α] t ⇓k−k1−1 .

Invoking Lemma 96 with this and 〈e1[τ/α], e1[τ/α]〉 ∈ Ek−k1−1
α Jα→ αKδ, we get that e1[τ/α]

evaluates to some λx : τ. e2 in some k2 < k − k1 − 1 steps, with 〈λx : τ. e2, λx : τ. e2〉 ∈
Vk−k1−1−k2
α JαKδ. Our most up to date knowledge of the reduction path is now:

e τ t 7→k1 (Λα.e1) τ t 7→1 e1[τ/α] t 7→k2 (λx :τ. e2) t 7→1 e2[t/x] ⇓k−k1−k2−2 .

At this point, there is one obvious step we might want to perform: to apply the fact that
〈t, t〉 ∈ Ek−k1−k2−2

α JαKδ, in order to obtain 〈e2[t/x], e2[t/x]〉 ∈ Ek−k1−k2−2
α JαKδ. However, neither

the truth of the former nor the usefulness of the latter is immediately clear. Let us compute more

60

meaningful characterisations of the two statements. First, 〈t, t〉 ∈ Ek−k1−k2−2
α JαKδ is equivalent

to
(∃j ≤ k − k1 − k2 − 2 : t ⇓j) ⇒ 〈t′, t′〉 ∈ Vk−k1−k2−2

α JαKδ = χk−k1−k2−2. (4.7)

Regarding the second statement, we already know that e2[t/x] evaluates in k− k1− k2− 2 steps,
say e2[t/x] ⇓k−k1−k2−2 e′. Thus 〈e2[t/x], e2[t/x]〉 ∈ Ek−k1−k2−2

α JαKδ is simply equivalent to

〈e′, e′〉 ∈ χk−k1−k2−2. (4.8)

We see that our proof goal e τ t ⇓ t′ can now be stated as e′ = t′. In order to achieve it, it
thus suffices to instantiate χ such that Eq. (4.7) holds and that Eq. (4.8) implies e′ = t′. This is
where the true creativity lies in �-based proofs of free theorems. We must choose χ large enough
such that Eq. (4.7) holds, but not too large. It must still be so small that membership of χ
“contains enough information” to imply Eq. (4.8). We note that this balancing act resembles the
search for a good hypothesis in induction proofs.

We propose to choose χ such that for all n ≥ 0, χn = {〈t′, t′〉}. Regarding Eq. (4.7), it does
not matter that we do not know whether the antecedent holds, since we constructed χ such that
the conclusion does. We also see that Eq. (4.8) holds.

We conclude that e′ = t′ and therefore e τ t ⇓ t′.

We introduce a new relation on terms in order to reformulate this free theorem in a more
elegant way.

Definition 116 (Coterminality). We say that terms e, e′ are coterminal, notation (e, e′) ⇓, iff
the following holds: if both e and e′ terminate, then they evaluate to the same term. In symbols:
(e, e′) ⇓:⇔ ((e ⇓) ∧ (e′ ⇓) ⇒ ∃e′′ : e ⇓ e′′ ∧ e′ ⇓ e′′).

We can now rephrase our proved claim as a proposition, using the notion of coterminality.
Note that it is indeed equivalent, by the fact that (id τ t, t) ⇓ and some propositionally valid
equivalences. Note also how similar it has become to Claim (114). We quantify over some
additional arguments in order to prevent non-termination, thus replacing e by e τ t and id by
id τ t, and replace the claim of �-relatedness by coterminality:

Proposition 117 (Free theorem about identity type). Suppose that e is of type τid, that τ is a
closed type, and that t is a term of type τ . Then (e τ t, id τ t) ⇓.

Absurd type In the previous paragraph, we investigated the truth of a free theorem about the
identity type τid. Now, we will do the same for a free theorem about the absurd type τ⊥ := ∀α.α.

In a language where all terms terminate, we might expect the following to hold:

Claim 118 (False free theorem). ¬∃e : (·; · ` e : τ⊥),

i.e. there are no terms of the absurd type. In our language, this of course does not hold: by
Prop. 35, we have ·; · ` Ωτ⊥ : τ⊥. Still, so far, all terms of type τ⊥ seem to be non-terminating
in some sense. First, there is Ωτ⊥ , which does not terminate. Second, there is Λα.Ωα, which,
admittedly, does terminate, but becomes non-terminating the moment it is applied to a type.

We will draw inspiration from the previous paragraph. There, we started out with a seemingly
true free theorem, “all e of type τid have e� id”, which turned out to be false. We discovered that
an altered version of the theorem was true, where application to sufficiently many universally
quantified arguments—in that case τ and t—made non-termination a non-issue. We ended up
with “all e, τ, t subject to some constraints have (e τ t, id τ t) ⇓”.

We wish to do something similar for this free theorem. We know of no general technique
for this, but we do note that in the previous paragraph, we applied e : ∀α.(α → α) as much as

61

possible, namely to a type τ and a term t. It seems reasonable to perform maximal application
here as well. Since τ⊥ = ∀α.α we apply e to one argument, a closed type τ :

Proposition 119 (Free theorem about absurd type). Suppose that e is of type τ⊥ and τ is a
closed type. Then e τ 6⇓.

Proof. Suppose that e τ ⇓ e′ for some e′. Say that this evaluation takes k steps. We will work
towards a contradiction.

We start by applying Prop. 93 to obtain ·; · � e � e : τ⊥. Thus, 〈e, e〉 ∈ Ek
· Jτ⊥K·. Lemma 96,

applied to e τ ⇓k, then tells us that e evaluates to some Λα.e1 in some k1 < k steps, with
〈Λα.e1,Λα.e1〉 ∈ Vk−k1

· Jτ⊥K·.
Fix arbitrary χ ∈ Rel(τ, τ). Then, by definition of V, 〈e1[τ/α], e1[τ/α]〉 ∈ Ek−k1−1

α JαKδ,
where δ = [α 7→ 〈τ, τ, χ〉].

The termination assumption e τ ⇓k e′, combined with e 7→k1 Λα.e1, yields that e τ 7→k1

(Λα.e1) τ 7→1 e1[τ/α] ⇓k−k1−1 e′. Therefore, by definition of E , 〈e′, e′〉 ∈ V0
αJαKδ = χ0.

Note that our reasoning so far is true for any χ ∈ Rel(τ, τ). We therefore instantiate with the
valid choice of the constantly empty χn := ∅. This leads to the contradiction 〈e′, e′〉 ∈ χ0 = ∅.

Further generalisation So far, we have seen two free theorems. In both cases, the first,
natural-seeming proposed claim quickly turned out to be incorrect. We had to make adjustments
in order to rule out problems caused by non-termination. However, we did this in an ad-hoc
manner. Ideally, we would like a uniform way of adjusting such natural free theorems, of which
we conjecture they hold in terminating languages, to versions that hold in our language. We now
present one such strategy for obtaining uniform adjustments and briefly discuss why it fails.

We consider imposing the technique used in Prop. 117 on Prop. 119. We rephrase the latter
as a statement about �. Then, though, we replace every statement e � e′ by the coterminality
statement (e, e′) ⇓, just like we did in Prop. 117. The process of quantification over the necessary
arguments remains the same.

We begin by rephrasing the (false) free theorem ¬∃e : (·; · ` e : τ⊥) to ∀e : (·; · ` e : τ⊥) ⇒
¬(·; · � e � e : τ⊥), which is equivalent by Prop. 93. We then transform it into ∀e : (·; · `
e : τ⊥) ⇒ ¬(e, e) ⇓. The final step is to quantify over the additional argument for reasons of
non-termination: ∀e, τ : (·; · ` e : τ⊥) ∧ (τ ∈ CType) ⇒ ¬(e τ, e τ) ⇓.

However, we see that this adjusted free theorem still does not hold. By definition of cotermin-
ality, we are not asserting that e τ terminates, but rather that if it does, then e τ evaluates to
the same term as e τ does. The conclusion of the implication is therefore trivially false and thus
the universal quantification states that there are no terms of type τ⊥. We have thus produced
an incorrect theorem, since Ωτ⊥ is of type τ⊥.

62

Chapter 5

Related work

The main contribution of this thesis was, essentially, to redo some of the work done by Ahmed[3]
on call-by-value System F with contravariant iso-recursive types in a slightly different language.
The most important difference was that we used call-by-name semantics instead of call-by-value.
As we have seen, the soundness theorem, � ⊆≈ctx, holds.

However, while Ahmed went on also to prove completeness ≈ctx⊆ �, we did not. A first area
of exploration from here might be to follow the path of Ahmed further and see if completeness
also holds in our semantics. We observe a slight indication that it does not hold, or that it would
at least be difficult to prove. In Appel-McAllester, the obvious proof of transitivity does not
go through.[4] Ahmed solves this by adding asymmetrical type requirements.[3] In this thesis,
we did not copy this asymmetrical definition. Also, when trying to prove transitivity, our work
displays a problem similar to that of Appel-McAllester. This leads us to believe that transitivity
of � does not hold, although a counterexample is not known. Contextual equivalence certainly
does have transitivity and therefore it is a necessary condition for completeness of � w.r.t. ≈ctx.
It might be worthwhile to try to change the definitions to resemble the asymmetrical ones of
Ahmed.

Second, we consider the free theorems. In the discussion in Section 4.5, we concluded that
our semantics does not satisfy some basic free theorems. Both the statement that the identity
function is the only one of its type ∀α.α→ α and the statement that there are no functions
of the absurd type ∀α.α—both to be considered up to contextual equivalence—turn out not to
be true. In both cases, all problems seem to stem from the possibility of non-termination. We
managed to translate both free theorems to a version that is true in our semantics, but have
found no generally applicable way of doing so. The main problem was that we were required to
add assumptions of termination of multiple terms. The choice of terms did not clearly correlate
with the type on which the free theorem was based.

It might be worth researching in what way Wadler-style free theorems—or perhaps even
Wadler’s theorems themselves—are to be altered in order to be satisfied by our relation se-
mantics.[18] Ahmed and Skorstengaard do not perform a structural attempt of proving (altered
versions of) free theorems either.[3, 16] They do manage to achieve results by Sumii and Pierce,
which might be interesting to look at in our call-by-name language as well.[17]

An alternative route we might explore in free theorems is to integrate our results with the work
of Pitts.[12] In our language, the existence of the fixpoint operator and divergent terms is mostly
to be seen as a consequence of contravariant type recursion. Pitts, however, defines a language
without type recursion but with a fixpoint operator built in. Their theory, involving biorthogon-
ality, is purposefully built to take non-termination into account. The same two free theorems we

63

examined are considered by Pitts as well. However, the adaptations to non-termination are part
of the theory, and not the product of manual alterations as is the case in this thesis.

Finally, we consider one more tangent to our work. Plotkin and Abadi developed a logic to
reason about System F, which is essentially our language λ∀µ without the recursive types.[14]
Dreyer et al., then, combined this with Appel-McAllester’s line of work on step-indexed logical
relations.[7] They created a logic with which one can reason about the operational aspects of
the language. A key difference with the step-indexed logical relations, then, is that abstraction
is made of the actual step indices and their sometimes obstructive arithmetic. While Plotkin
and Abadi treated System F, this logic covers recursive types as well. It might be interesting
to adapt this logic from the call-by-value semantics it was built for, to call-by-name. Then, we
could investigate whether, e.g., the soundness and completeness properties of Dreyer et al.’s logic
for call-by-value semantics transfer to the call-by-name semantics of the language λ∀µ from this
thesis.

64

Appendices

65

Appendix A

Recursive term sets are
well-defined

Definition 47 makes use of mutual recursion to define V, E . Therefore, the existence and unique-
ness of functions V, E satisfying the mentioned equations is not trivial. In this appendix, we prove
that, assuming the regular axioms of set theory, there is a unique pair V,E of sets (in this case
functions) that satisfies the equations and required function signatures for V, E in Definition 47.
From a mathematically rigorous standpoint, the “definition” of V, E in Definition 47 should be
seen as a characterisation of the V,E pair defined in this appendix.

A.1 Existence
Our proof of existince of V,E is a formalisation of the following, informal argument. Looking at
the definition of V, we see that V applied to k, i.e. Vk

- J-K-, depends on Ej
- J-K-, but only for j < k.

Meanwhile, Ej
- J-K- depends on Vi

- J-K-, but only for i ≤ j. Hence, we can “inline E in V”, i.e. every
time E is mentioned in the definition of V, we can replace it with the definition of E . This shows
us that Vk

- J-K- can be expressed in terms of Vi
- J-K-, where i < k. This means V can be defined

simply through a recursion theorem based on strong induction. We can then define E in terms
of the newly defined V .

To make the above more rigorous, we make use of a classic theorem in set theory. Goldrei
calls it the recursion principle for ordinals.[9, p. 222] We will use a less general instantiation:
Theorem 120 (Recursion principle for ordinals). Suppose we have a formula φ(k, y, z) such that
for all ordinals k and all sets y, there is exactly one set z such that φ(k, y, z). Then there is
exactly one function f from N such that for all k ∈ N, φ(k, (f � k), (f k)).

Here, we make use of the fact that the naturals form an ordinal, where j < k ⇔ j ∈ k. Thus,
f � k is the restriction of f to naturals strictly smaller than k.

The outline of our existence proof will be: define a φ; prove it satisfies the requirements; let
V be the function resulting from the recursion theorem; define a function E in terms of V ; prove
that V,E satisfy the equations and function signatures for V, E in Definition 47.

In order to define φ, we first need to define the following helper function:
Definition 121. H is a function that takes a function X ∈ (N ⇀ DTD → P CVal), a natural
number k such that X is defined on all j < k, and a tuple in DTD. Its output is as follows:

H X k 〈∆, τ, δ〉 := {e ∈ CTerm | ∀j ≤ k : ∀e′ : e ⇓j e′ ⇒ e′ ∈ X (k − j) 〈∆, τ, δ〉}.

67

Definition 122 (φ). We let φ(k, y, z) be the following sentence:

φ(k, y, z) := (k /∈ N ∨ y /∈ (k → DTD → P CVal) ⇒ z = 0)

∧ (k ∈ N ∧ y ∈ (k → DTD → P CVal) ⇒ z ∈ (DTD → P CVal)
∧ (∀〈∆, τ, δ〉 ∈ DTD :

∧ (∀α ∈ TVar : (τ = α) ⇒ ψvar(z))

∧ (∀τ1, τ2 ∈ Type : (τ = τ1 → τ2) ⇒ ψ→(z))

∧ (∀τ ′ ∈ Type, α ∈ TVar : (τ = ∀α.τ ′) ⇒ (ψ∀))

∧ (∀τ ′ ∈ Type, α ∈ TVar : (τ = µα.τ ′) ⇒ (ψµ)))),

where we have separate abbreviations ψvar, ψ→, ψ∀, ψµ for the cases of τ :

ψvar(z) :=(z 〈∆, α, δ〉 = (δsem α)k),

ψ→(z) :=(z 〈∆, τ1 → τ2, δ〉 = T (δ τ1 → δ τ2) ∩ {λx :δ τ1. e ∈ CVal |
∀j < k : ∀e′ ∈ H y j 〈∆, τ1, δ〉 : e[e′/x] ∈ H y j 〈∆, τ2, δ〉}),

ψ∀(z) :=(z 〈∆,∀α.τ ′, δ〉 = T (∀α.δ τ ′) ∩ {Λα.e ∈ CVal |
∀j < k : ∀τ ′′ ∈ Type : ∀χ ∈ Rel(τ ′′) : e[τ ′′/α] ∈ H y j 〈∆, τ ′, δ[α 7→ 〈τ ′′, χ〉]〉}),

ψµ(z) :=(z 〈∆, µα.τ ′, δ〉 = T (µα.δ τ ′) ∩ {in e ∈ CVal |
∀j < k : e ∈ H y j 〈∆, τ ′[µα.τ ′/α], δ〉}),

Now to prove that φ satisfies the requirements.

Lemma 123. For every ordinal k and every set y, there is exactly one set z such that φ(k, y, z).

Proof. Fix an arbitrary ordinal k and set y. We must prove there is exactly one set z such that
φ(k, y, z). The definition of φ clearly lets us distinguish between two cases: out of k /∈ N and
y /∈ (k → DTD → P CVal), either at least one of them is not true, or they are both true. The
first case clearly leaves 0 as the only possible value for z. We turn to the more interesting case
where k ∈ N ∧ y ∈ (k → DTD → P CVal). The set of possible values for z is restricted to
DTD → P CVal. For every input value 〈∆, τ, δ〉 ∈ DTD we know that ∆ ` τ , and therefore
exactly one of the four cases described in φ applies. All of them uniquely specify the output of
z. We conclude that the unique suitable value of z is the function in DTD → P CVal that maps
all 〈∆, τ, δ〉 in DTD onto the unique values described by ψvar, ψ→, ψ∀, ψµ.

This now allows us to apply the recursion theorem and obtain a function. This function will
be our V and we use it to define E.

Definition 124 (V). We apply the recursion principle for ordinals (Theorem 120) to φ and
obtain the existence and uniqueness of a function, which we call V , such that φ(k, (V � k), (V k))
for all k ∈ N.

Definition 125 (E). We define the function E to be H V .

We now show that if we substitute V,E for V, E in Definition 47, the equations are satisfied.
This finishes the existence proof, since it shows that functions as “defined” in Definition 47 exist.
We will need the following two lemmas.

68

Lemma 126. For all k ∈ N, we have that (V � k) ∈ (k → DTD → P CVal). Since domV = N,
we see that V ∈ (N → DTD → P CVal).

Proof. By induction on k with a vacuously true base case. Supposing the lemma holds for k, we
see that V � (k + 1) maps every j < k to something in DTD → P CVal. We also know that
φ(k, (V � k), (V k)). Looking at the definition of φ and invoking the induction hypothesis, we
see that V k ∈ DTD → P CVal. This finishes the proof, since we now know every j < k+1 gets
mapped to something in DTD → P CVal by V and thus also by V � (k + 1).

Lemma 127. For all k ∈ N and j < k, we have that E j = H (V � k) j.

Proof. Fix k ∈ N and j < k. Recall that E j = H V j. Looking at the definition of H, we see
that the only apparent difference between H V j and H (V � k) j is in their use of V (j− i) and
(V � k) (j − i), respectively, with i ≤ j. Since these j − i are all values strictly smaller than k,
there really is no difference.

We are now ready to show that V,E indeed satisfy the equations for V, E in Definition 47.

Proposition 128 (Existence of solutions to V, E equations). When one substitutes V for V and
E for E in the five equations of Definition 47, the equations are satisfied.

Proof. We prove the first, second and fifth equations; the other two are similar. The first
equation requires for every k ∈ N and 〈∆, α, δ〉 ∈ DTD that V k 〈∆, α, δ〉 := (δsem α)k. Because
of Lemma 126, φ(k, (V � k), (V k)) tells us that ψvar(V k) holds, i.e. V k 〈∆, α, δ〉 = (δsem α)k

for all k ∈ N and 〈∆, α, δ〉 ∈ DTD. This proves the first equation.
The second equation requires for all k and 〈∆, τ1 → τ2, δ〉 that

V k 〈∆, τ1 → τ2, δ〉 = T (δ τ1 → δ τ2) ∩ {(λx :δ τ1. e) ∈ CVal |
∀j < k : ∀e′ ∈ E j 〈∆, τ1, δ〉 : e[e′/x] ∈ E j 〈∆, τ2, δ〉}. (A.1)

Because of Lemma 126, φ(k, (V � k), (V k)) tells us that ψ→(V k) holds for all k and 〈∆, τ1 →
τ2, δ〉, i.e.

V k 〈∆, τ1 → τ2, δ〉 = T (δ τ1 → δ τ2) ∩ {(λx :δ τ1. e) ∈ CVal |
∀j < k : ∀e′ ∈ H (V � k) j 〈∆, τ1, δ〉 : e[e′/x] ∈ H (V � k) j 〈∆, τ2, δ〉}.

The apparent difference between E j and H (V � k) j is shown by Lemma 127 to be non-existent.
This proves the second equation.

The fifth equation requires

E k 〈∆, τ, δ〉 = {e ∈ CTerm | ∀j ≤ k : ∀e′ : e ⇓j e′ ⇒ e′ ∈ V (k − j) 〈∆, τ, δ〉} (A.2)

for all k and 〈∆, τ, δ〉. We see that Eq. (A.2) follows from E = H V and the definition of H.

A.2 Uniqueness
We now prove that V,E are in fact the only functions that satisfy the five equations of Defini-
tion 47.

Proposition 129 (Uniqueness of solution to V, E equations). Suppose that V ′, E′ are functions
of the signatures required for V, E in Definition 47. Also suppose that V ′, E′ are such that if
one substitutes them for V, E in the equations of Definition 47, the equations are satisfied. Then
V ′ = V and E′ = E.

69

Proof. Fix such V ′, E′. Since V ′ ∈ (N → DTD → P CVal) and E′ ∈ (N → DTD → P CTerm),
it suffices to prove that V ′ k 〈∆, τ, δ〉 = V k 〈∆, τ, δ〉 and E′ k 〈∆, τ, δ〉 = E k 〈∆, τ, δ〉 for
all k ∈ N and 〈∆, τ, δ〉 ∈ DTD. We will prove this by strong induction on k, within which we
perform exhaustive case distincition on ∆ ` τ in much the same way as we proved Lemma 69.

For the strong induction, suppose that k ≥ 0 and suppose that V ′ j = V j and E′ j = E j for
all j < k. We first prove V ′ k = V k, using extensionality, by generalisation on 〈∆, τ, δ〉 ∈ DTD
and by exhaustive case distinction on ∆ ` τ . The case where τ is some type variable α does
not even need induction: the first equation tells us that both V ′ k and V k map 〈∆, τ, δ〉 onto
(δsem α)k.

In all other cases, we see that the only apparent differences between the images of 〈∆, τ, δ〉
under V ′ k and V k is in their mentioning of E′ and E, respectively. However, these are only
applied to natural numbers strictly below k, thus by the induction hypothesis, those applications
are equal and therefore so are V ′ k and V k.

In this final step we prove, again by extensionality, that E′ k = E k. Looking at the fifth
equation, we see that the only apparent difference between the images of 〈∆, τ, δ〉 under E′ k and
E k is in their mentioning of V ′ and V , respectively. However, since these are only applied to
natural numbers j ≤ k, the above proof of V ′ k = V k, combined with the induction hypothesis,
tells us that E′ k 〈∆, τ, δ〉 = E k 〈∆, τ, δ〉.

70

Appendix B

Contextual equivalence

In this appendix, we argue why Definition 81 is a good definition of contextual equivalence.
First, we must realise that in this thesis, we are only interested in obtaining a sound proof
technique w.r.t. contextual equivalence, not a complete one. We proved that el � er implies
el ≈ctx er (Theorem 92). Since we are currently questioning the use of ≈ctx as we defined it in
Definition 81, we will propose a new, perhaps more acceptable definition ≈ctx

Bv , and then prove
that el ≈ctx er implies el ≈ctx

Bv er. (We will refer to ≈ctx
Bv as the “trusted definition”.) That way,

� will still be a sound proof technique for contextual equivalence understood as ≈ctx
Bv .

Looking back at Definition 77 of contextual equivalence in Section 4.1 using a ground type
B, and at the discussion in Section 4.2.1, we conclude that the best definition of contextual
equivalence is in fact Definition 77, since it allows for a syntactic distinction between terms.
However, as we have pointed out before, we do not actually dispose of the necessary ground type
B in λ∀µ.

We work around this problem in the following way. We single out τB := ∀α.α→ α→ α as the
type that will represent booleans. The intended meaning is that terms of type τB either always
reduce to their first or always reduce to their second argument and can have no mixed or other
behaviour. We can then say, per convention, that the former kind of term is true-like and the
latter is false-like. The advantage of this is that the syntactic term distinction we had in B in
Section 4.1 would be regained. Determining whether e of type τB is true-like or false-like is then
decidable, since e τid id Ωτid τ x evaluates to x and e τid Ωτid id τ x does not evaluate if e is
true-like, and it is precisely the other way around for false-like terms.

Of course there is one problem. The basic divergent term Ω of type τB never terminates and
thus is neither true-like nor false-like. We therefore must divide the terms of type τB into not
two but three equivalence classes: true-like, false-like, and omega-like. We now formally define
the three classes:
Definition 130 (Equivalence classes of τB). We define the following three classes of terms e of
type τB:

e is true-like iff it “behaves the same as its first argument”. In symbols:

∀τ ∈ CType, e1, e2 ∈ Term :(·; · ` e1 : τB) ∧ (·; · ` e2 : τB) ⇒
(e1 ⇓ e′1 ⇒ e τ e1 e2 ⇓ e′1) ∧ (e1 6⇓⇒ e τ e1 e2 6⇓).

e is false-like iff it “behaves the same as its second argument”. In symbols:

∀τ ∈ CType, e1, e2 ∈ Term :(·; · ` e1 : τB) ∧ (·; · ` e2 : τB) ⇒
(e2 ⇓ e′2 ⇒ e τ e1 e2 ⇓ e′2) ∧ (e2 6⇓⇒ e τ e1 e2 6⇓).

71

e is omega-like iff it “behaves the same as Ω”. In symbols:

∀τ ∈ CType, e1, e2 ∈ Term : (·; · ` e1 : τB) ∧ (·; · ` e2 : τB) ⇒ e τ e1 e2 6⇓ .

We say terms are τB-equivalent (notation: e ∼τB e
′) iff they are of the same class.

We conjecture the following trichotomy:

Conjecture 131 (Trichotomy of τB). Every term e of type τB belongs to exactly one of the
following classes: true-like, false-like, omega-like.

Looking at the examples e τ id Ω and e τ Ω id from earlier, we see that the classes are indeed
mutually exclusive. We do not attempt to prove that e is in at least one of the classes.

We can now define this new, “trusted” notion ≈ctx
Bv of contextual equivalence, in the spirit of

Definition 77. Contexts are wellformed w.r.t. the type τB, which is our closest approximation of
B. To account for the impossibility of syntactic distinction between values of type τB, we use the
division into the three equivalence classes:

Definition 132 (Trusted version of contextual equivalence). We define a binary term relation
≈ctx

Bv . More specifically, it relates a type environment ∆, an environment Γ, two terms el, er, and
a type τ . The notation for 〈∆,Γ, el, er, τ〉 ∈≈ctx

Bv is ∆;Γ � el ≈ctx
Bv er : τ and we say it holds iff

el and er filled into the same wellformed τB-context evaluate to τB-equivalent values. Formally:

(∆; Γ � el ≈ctx
Bv er : τ) :⇔ ∀C ∈ Ctx, vl, vr ∈ Val :

(·; · `c C : (∆; Γ . τ) τB) ∧ (C[el] ⇓ vl) ∧ (C[er] ⇓ vr) ⇒ (vl ∼τB v
r).

The central point of this appendix, then, is to show that whenever e ≈ctx e′ in the sense of
Definition 81—the one used in the thesis—then also e ≈ctx

Bv e′. Thus, the sound proof technique
using � remains sound w.r.t. this new, trusted notion of contextual equivalence: � ⊆≈ctx⊆≈ctx

Bv .

Proposition 133 (Contextual equivalence from the thesis implies the new notion). ≈ctx⊆≈ctx
Bv .

In other words, ∆;Γ � el ≈ctx er : τ implies ∆;Γ � el ≈ctx
Bv er : τ .

Proof. Suppose that ∆;Γ � el ≈ctx er : τ . Also fix an arbitrary context C such that ·; · `c C :
(∆; Γ . τ) τB and two values vl, vr such that C[el] ⇓ vl and C[er] ⇓ vr. It thus remains to
prove that vl ∼τB v

r.

• In the first case, suppose that vl is omega-like. We prove that vr is omega-like as well by
transforming C such that we can apply the assumption el ≈ctx er to it.
Define C ′ := C τid id id. Clearly, ·; · `c C ′ : (∆; Γ . τ) τid. We can thus apply
∆;Γ � el ≈ctx er : τ to C ′ and τid. It tells us that C ′[el] ⇓⇔ C ′[er] ⇓.
Now C ′[el] = C[el] τid id id reduces to vl τid id id, which does not terminate since vl is
omega-like. Therefore, C ′[er], which reduces to vr τid id id, does not terminate either. This
eliminates the possibility that vr is true-like or false-like. By the trichotomy (Prop. 131),
then, vr is omega-like.

• In the second case, we suppose that vl is true-like. This time we construct two separate
contexts C ′ and C ′′. Using C ′, we will eliminate the possibility that vr is omega-like, and
C ′′ will help us eliminate the possibility that vr is false-like.
We define C ′ := C τid id Ω, with Ω of type τid. We apply the assumption to C ′ and τid
to get C ′[el] ⇓⇔ C ′[er] ⇓. Now C ′[el] reduces to vl τid id Ω, which evaluates to id since

72

vl is true-like. Therefore, C ′[er], which reduces to vr τid id Ω, terminates as well. This
eliminates the possibility that vr is omega-like.
We move to the second context. It is defined C ′′ := C τid Ω id. We again apply the
assumption and get C ′′[el] ⇓⇔ C ′′[er] ⇓. Now C ′′[el] reduces to vl τid Ω id, which does not
terminate since vl is true-like. Therefore, C ′′[er], which reduces to vr τid Ω id, does not
terminate either. This eliminates the possibility that vr is false-like.
By the trichotomy (Prop. 131), then, vr is true-like.

The case where vl is false-like is analogous to the second case.

73

74

Bibliography

[1] Samson Abramsky and Achim Jung. “Domain Theory”. In: Handbook of Logic in Computer
Science. Ed. by S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum. Vol. 3. Clarendon
Press, 1994. Chap. 1, pp. 1–168.

[2] Amal Ahmed. “Semantics of Types for Mutable State”. PhD thesis. Princeton University,
2004. url: http://www.ccs.neu.edu/home/amal/ahmedsthesis.pdf (visited on 2020-
05-26).

[3] Amal Ahmed. “Step-Indexed Syntactic Logical Relations for Recursive and Quantified
Types”. In: Programming Languages and Systems. 15th European Symposium on Pro-
gramming, ESOP 2006. Ed. by Peter Sestoft. Note that the url leads to the technical
report. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2006, pp. 69–83. isbn: 978-
3-540-33096-7. doi: 10.1007/11693024. url: http://www.ccs.neu.edu/home/amal/
papers/lr-recquant-techrpt.pdf (visited on 2020-05-26).

[4] Andrew W. Appel and David McAllester. “An Indexed Model of Recursive Types for
Foundational Proof-Carrying Code”. In: ACM Trans. Program. Lang. Syst. 23.5 (Sept.
2001), pp. 657–683. issn: 0164-0925. doi: 10.1145/504709.504712.

[5] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Elsevier, 1984. isbn:
0-444-87508-5.

[6] Henk Barendregt, Wil Dekkers and Richard Statman. Lambda Calculus with Types. Cam-
bridge University Press, 2013. isbn: 9780521766142.

[7] Derek Dreyer, Amal Ahmed and Lars Birkedal. “Logical Step-Indexed Logical Relations”.
In: Logical Methods in Computer Science 7.2 (June 2011). doi: 10 . 2168 / LMCS - 7(2 :
16)2011. url: https://arxiv.org/abs/1103.0510v2.

[8] Herman Geuvers. “Introduction to Type Theory”. 2008. url: http://www.cs.ru.nl/
~herman/onderwijs/provingwithCA/paper-lncs.pdf (visited on 2020-07-30).

[9] Derek Goldrei. Classic Set Theory. For Guided Independent Study. New York : Chapman
& Hall, 1996. isbn: 978-0-412-60610-6.

[10] Benjamin C. Pierce, ed. Advanced Topics in Types and Programming Languages. MIT
Press, 2014. isbn: 9780262162289.

[11] Andrew M. Pitts. “Operationally-Based Theories of Program Equivalence”. In: Semantics
and Logics of Computation. Ed. by Andrew M. Pitts and Peter Dybjer. Cambridge Uni-
versity Press, 1997. Chap. 6, pp. 241–298. isbn: 978-0521580571. url: https://www.cl.
cam.ac.uk/~amp12/papers/opebtp/opebtp.pdf.

[12] Andrew M. Pitts. “Parametric Polymorphism and Operational Equivalence”. In: Mathemat-
ical Structures in Computer Science 10.3 (2000), pp. 321–359. doi: 10.1017/S0960129500003066.
url: https://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf.

75

http://www.ccs.neu.edu/home/amal/ahmedsthesis.pdf
http://dx.doi.org/10.1007/11693024
http://www.ccs.neu.edu/home/amal/papers/lr-recquant-techrpt.pdf
http://www.ccs.neu.edu/home/amal/papers/lr-recquant-techrpt.pdf
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
https://arxiv.org/abs/1103.0510v2
http://www.cs.ru.nl/~herman/onderwijs/provingwithCA/paper-lncs.pdf
http://www.cs.ru.nl/~herman/onderwijs/provingwithCA/paper-lncs.pdf
https://www.cl.cam.ac.uk/~amp12/papers/opebtp/opebtp.pdf
https://www.cl.cam.ac.uk/~amp12/papers/opebtp/opebtp.pdf
http://dx.doi.org/10.1017/S0960129500003066
https://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf

[13] Andrew M. Pitts, Glynn Winskel and Marcelo Fiore. “Lecture Notes on Denotational
Semantics”. 2018. url: https : / / www . cl . cam . ac . uk / teaching / 1819 / DenotSem /
DenotSem2018.pdf (visited on 2020-03-30).

[14] Gordon Plotkin and Martín Abadi. “A logic for parametric polymorphism”. In: Typed
Lambda Calculi and Applications. Ed. by Marc Bezem and Jan Friso Groote. Springer
Berlin Heidelberg, 1993, pp. 361–375. isbn: 978-3-540-47586-6. doi: 10.1007/BFb0037118.

[15] Dana S. Scott. “Domains for denotational semantics”. In: Automata, Languages and Pro-
gramming. Ed. by Mogens Nielsen and Erik Meineche Schmidt. Springer Berlin Heidelberg,
1982, pp. 577–610. isbn: 978-3-540-39308-5. doi: 10.1007/BFb0012801.

[16] Lau Skorstengaard. “An Introduction to Logical Relations: Proving Program Properties
Using Logical Relations”. 2017. url: https://cs.au.dk/~lask/main.pdf (visited on
2020-05-26).

[17] Eijiro Sumii and Benjamin C. Pierce. “A Bisimulation for Type Abstraction and Recur-
sion”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’05. Long Beach, California, USA: Association for Com-
puting Machinery, 2005, pp. 63–74. isbn: 158113830X. doi: 10.1145/1040305.1040311.

[18] Philip Wadler. “Theorems for Free!” In: Proceedings of the Fourth International Conference
on Functional Programming Languages and Computer Architecture. FPCA ’89. Imperial
College, London, United Kingdom: Association for Computing Machinery, 1989, pp. 347–
359. isbn: 0897913280. doi: 10.1145/99370.99404.

76

https://www.cl.cam.ac.uk/teaching/1819/DenotSem/DenotSem2018.pdf
https://www.cl.cam.ac.uk/teaching/1819/DenotSem/DenotSem2018.pdf
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/BFb0012801
https://cs.au.dk/~lask/main.pdf
http://dx.doi.org/10.1145/1040305.1040311
http://dx.doi.org/10.1145/99370.99404

	Introduction
	Motivation and situation
	Structure of this thesis
	Conventions and notation

	Language
	Syntax: types and terms
	The problem
	The solution

	The type relation
	Operational semantics
	Discussion
	Type-level recursion
	Diverging terms and term-level recursion
	Type uniqueness
	Differences with Ahmed's language

	Unary relation and type-safety
	Forming a hypothesis
	Setting the precise goal
	Definitions
	Proof of the fundamental property
	Variable
	Term application
	Term abstraction
	Type application
	Type abstraction
	Type unfolding
	Type folding

	Conclusion

	Binary relation and contextual equivalence
	Examples
	Definitions
	Contexts and contextual equivalence
	Binary step-indexed logical relation
	Statement of the theorem

	Fundamental property of the logical relation
	Variable
	Term application
	Term abstraction
	Type application
	Type abstraction
	Type unfolding
	Type folding
	Conclusion

	Context monotonicity and contextual equivalence
	Discussion
	Examples revisited
	Free theorems

	Related work
	Appendices
	Recursive term sets are well-defined
	Existence
	Uniqueness

	Contextual equivalence

