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ABSTRACT
We develop a formal model of opinion polls in elections and
study how they influence the voting behaviour of the par-
ticipating agents, and thereby election outcomes. This ap-
proach is particularly relevant to the study of collective deci-
sion making by means of voting in multiagent systems, where
it is reasonable to assume that we can precisely model the
amount of information available to agents and where agents
can be expected to follow relatively simple rules when ad-
justing their behaviour in response to polls. We analyse two
settings, one where a single agent strategises in view of a
single poll, and one where multiple agents repeatedly up-
date their voting intentions in view of a sequence of polls.
In the single-poll setting we vary the amount of informa-
tion a poll provides and examine, for different voting rules,
when an agent starts and stops having an incentive to ma-
nipulate the election. In the repeated-poll setting, using
both analytical and experimental methods, we study how
the properties of different voting rules are affected under
different sets of assumptions on how agents will respond to
poll information. Together, our results clarify under which
circumstances sharing information via opinion polls can im-
prove the quality of election outcomes and under which cir-
cumstances it may have negative effects, due to the increased
opportunities for manipulation it provides.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Theory, Economics
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1. INTRODUCTION
Voting theory has recently come to play an important role
in the study of multiagent systems [2, 12]. One of the most
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intriguing questions in voting is how agents strategise when
casting their vote, in view of both their personal preferences
and their beliefs about the strategies followed by others. In
political elections, voters will often form their beliefs about
the strategies of others on the basis of opinion polls. In this
paper, we start from the same idea and propose a simple
formal model for representing relevant information in a poll
and the ways in which agents may respond to that informa-
tion when deciding on what strategy to follow.

Most political elections are based on the plurality rule, un-
der which a candidate obtains a point for every voter rank-
ing her first, and the candidate with the largest number of
points gets elected. In the context of this rule, the most
natural type of information to publish in an opinion poll
is the expected number of points for each candidate. De-
spite its widespread use, the plurality rule has been severely
criticised for being overly simplistic and not allowing voters
to adequately express their preferences. In multiagent sys-
tems, we have the opportunity to instead work with the full
range of voting rules that have been proposed and studied
in social choice theory [11]. This widening of the scope as
far as the voting rule is concerned suggests to also consider
a generalisation of the concept of opinion poll. To clarify
this point, consider, for instance, the Copeland rule, under
which you vote by submitting a strict linear order over the
candidates and the score of a candidate is computed as the
difference between the number of opponents she will beat in
a one-to-one majority contest and the number of opponents
she will lose to in such a contest (the candidate with the
maximal Copeland score wins). In a poll, we could publish
the (expected) Copeland score of each candidate or we could
record how many copies of each possible ballot (linear order)
were received. Alternatively, we could publish the majority
graph (the directed graph on the set of candidates in which
we include an edge from x to y if a majority of voters prefer
x over y) or the weighted majority graph (in which each edge
is annotated with the strength of the relevant majority).

To formally capture these ideas, we shall define a poll in-
formation function as a function mapping the ballots re-
ceived from the voters in an opinion poll to an appropriate
structure (e.g., a majority graph or a list of scores). The
output of this function is then communicated to the vot-
ers, thereby providing them with partial information on the
voting intentions declared by the others.

We shall analyse two scenarios. In the first, we study the
incentives of a voter, who is provided with the output of a
poll information function, to vote truthfully in a subsequent
election. Intuitively, if a poll provides a lot of information,



then this will increase the opportunities of our voter to ben-
efit from voting untruthfully, while a poll carrying very little
information might be expected to reduce such opportunities
and thereby induce truthful voting. Our results clarify, for
several voting rules and several types of opinion polls, to
what extent this basic intuition is in fact correct.

In the second scenario, voters participate in a sequence of
polls, and in each round one of the voters can update her
ballot in view of the poll information received. We consider
several types of policies that a voter might use to perform
this update: a strategist will choose a ballot such that no
other ballot provides a strictly better outcome for some and
at least as good an outcome for all possible ways of the
other voters voting that would be consistent with the poll
information received; a pragmatist will support her favourite
candidate from a small set of, say, two front-runners; and a
truth-teller will always vote truthfully. For different vot-
ing rules and for different combinations of these policies,
we analyse whether such a system will converge to a stable
state, i.e., whether it will terminate. We then observe that
the “rule” we obtain when this kind of game is played for
a specific voting rule and a specific set of response policies
may be considered a voting rule in its own right, and we
study how the properties of the original voting rule relate
to the properties of this induced rule. An example for such
a property is the frequency of electing a Condorcet winner,
i.e., a candidate that would beat any other candidate in a
one-to-one majority contest.

Similar phenomena have been studied before. Brams and
Fishburn [1] give several examples that show, for both the
plurality rule and another system known as approval voting,
that executing a series of polls before the actual election can
have both positive and negative effects in view of electing a
Condorcet winner. Chopra et al. [4] give further examples,
showing that a sequence of polls may or may not terminate.
Meir et al. [7] identify conditions, in case the plurality rule is
used, under which termination can be guaranteed. Finally,
the work of Conitzer et al. [5] on the problem of strategic ma-
nipulation under partial information is closely related to the
first scenario we study: an opinion poll is one way to model
the partial information available to a manipulator. For com-
parison, most research on opinion polls in political science,
such as the work of Irwin and Van Holsteyn [6], typically fo-
cuses on other concerns, e.g., the question of how polls affect
the expectations of voters regarding election outcomes.

We proceed as follows. In Section 2 we review basic con-
cepts from voting theory and define our model. Our results
on strategic manipulation under limited information as pro-
vided by an opinion poll are presented in Section 3, and
our results on voter response to iterated poll information
are summarised in Section 4. Section 5 concludes. In the
interest of space, we omit the proofs of some of our results.
These proofs, as well as additional results, may be found in
the Master’s thesis of the first author [10].

2. THE MODEL
In this section we introduce our model. We first recall rel-
evant concepts from voting theory [11], and then define the
central notion of poll information function.

2.1 Voting Theory
Let N be a finite set of n voters (or agents), and let X be
a finite set of m alternatives (or candidates). Each voter i

is endowed with a preference order �i on X . To vote, each
voter i submits a ballot bi (which may or may not be identical
to �i, i.e., she may or may not vote truthfully). We adopt
the standard assumption that both preferences and ballots
are strict linear orders on X . Let L(X ) be the set of all such
orders. A profile b = (b1, . . . , bn) ∈ L(X )N is a vector of bal-
lots, one for each voter. A voting rule F : L(X )N → 2X \{∅}
is a function mapping ballot profiles to nonempty sets of al-
ternatives, the election winners. Most natural voting rules
may produce ties, and thus a set of winners rather than a
single winner. We can obtain a resolute voting rule, i.e.,
a rule that always returns a single winner, by pairing our
voting rule of choice with a tie-breaking rule. We restrict
attention to tie-breaking rules under which ties are broken
according to some fixed but arbitrary order over the alter-
natives. W.l.o.g., we shall assume that this fixed order is
the lexicographic order a � b � c � · · · , i.e., we shall work
with the lexicographic tie-breaking rule.

The following are examples for common voting rules [11]:

• Positional scoring rules: A PSR is defined by a scoring
vector (s1, . . . , sm) with s1 > . . . > sm and s1 > sm.
An alternative receives sj points for each voter who
ranks it at the jth position. The alternative(s) with
the most points win(s) the election. Important PSRs
are plurality with scoring vector (1, 0, . . . , 0), antiplu-
rality (or veto) with scoring vector (1, . . . , 1, 0), and
Borda with scoring vector (m−1,m−2, . . . , 0).
• Copeland: An alternative’s score is the number of pair-

wise majority contests it wins minus the number it
loses. The alternative(s) with the highest score win(s).
A pairwise majority contest between alternatives x and
y is won by x if a majority of voters ranks x above y.
• Maximin (also known as Simpson): An alternative’s

score is the lowest number of voters preferring it in any
pairwise contest. The alternative(s) with the highest
score win(s).
• Bucklin: An alternative’s score is the smallest k such

that a majority of voters rank the alternative in their
top k. The alternative(s) with the lowest score win(s).
• Single transferable vote: An STV election proceeds in

rounds. In each round the alternative(s) ranked first
by the fewest voters get(s) eliminated. This process is
repeated until only one alternative remains (or until all
remaining alternatives are ranked first equally often).

Voting rules can be categorised by their formal properties,
often referred to as axioms [11]. A voting rule is anonymous
if it treats all voters symmetrically. A resolute voting rule is
surjective if for every alternative there exists a profile under
which that alternative wins. A constant voting rule is a rule
that always elects the same unique winner. If there is a voter
such that her top-ranked alternative is always the unique
winner, then the voting rule is dictatorial. Otherwise it is
nondictatorial. A voting rule is unanimous if it elects (only)
alternative x whenever x is ranked first by all voters. A
voting rule satisfies the Pareto condition if it does not return
an alternative y that is ranked below some other alternative
x by all voters. Note that any Pareto efficient rule is also
unanimous (but not vice versa).

Finally, a voting rule is Condorcet-consistent if it elects
(only) the Condorcet winner whenever it exists, and it is
strongly Condorcet-consistent if it elects (only) the full set
of weak Condorcet winners whenever that set is nonempty.



A weak Condorcet winner is an alternative that does not lose
any pairwise majority contest, although it may tie some. A
Condorcet winner wins any pairwise majority contest. Note
that (weak) Condorcet winners only exist for some profiles.
If a Condorcet winner does exist, then it must be unique,
while there can be several weak Condorcet winners.

2.2 Polls and Poll Information Functions
In our model of an opinion poll, each voter is asked for her
ballot.1 We call the resulting ballot profile a poll profile.
Often we would not want to communicate the whole poll
profile to the electorate, e.g., to respect the privacy of voters
or because it would be computationally too expensive to do
so. Let I be the set of all possible pieces of poll information
that we might want to communicate to the electorate in
view of a given poll profile. A poll information function
(PIF) is a function π : L(X )N → I mapping poll profiles to
elements of I. Here are some natural choices for I and the
corresponding PIF π:

• Profile: The profile-PIF simply returns the full input
profile: π(b) = b.
• Ballot: The ballot-PIF returns a vector recording how

often each ballot occurs in the input profile.
• (Weighted) Majority Graph: The (W)MG-PIF returns

the (weighted) majority graph of the input profile. A
majority graph is a directed graph in which each node
represents an alternative. There is an edge (x, y) from
x to y if x wins their pairwise majority contest. In
a weighted majority graph, each edge (x, y) is labelled
with the difference in number between voters ranking
x above y and voters ranking y above x.
• Score: Given a voting rule F , the corresponding score-

PIF returns for each alternative its score under the
input profile according to F . F should assign points
to each alternative for this PIF to be well-defined.
• Rank: Given a voting rule F , the corresponding rank-

PIF returns the rank of each alternative under the in-
put profile according to F . F should rank all alterna-
tives for this PIF to be well-defined.
• Winner: Given a voting rule F , the corresponding

winner-PIF returns the winning alternative(s) under
the input profile according to F : π(b) = F (b).
• Zero: The zero-PIF does not provide any information,

i.e., it simply returns a constant value: π(b) = 0.

Upon receiving the signal π(b), and assuming she knows how
π is defined, what can voter i infer about the poll profile b?
Of course, she knows her own ballot bi with certainty. So,
what can she infer about the remainder of the profile, b−i?
We call the set of (partial) profiles that voter i must consider
possible in view of the information she holds after receiving
π(b) her information set. It is defined as follows:

Wπ(b)
i := {c−i ∈ L(X )N\{i} | π(bi, c−i) = π(b)}

We may think of π(b) as the actual world and ofWπ(b)
i as the

set of possible worlds that are consistent with i’s knowledge
in world π(b). Indeed, W satisfies the basic properties we
would expect from a knowledge operator:

1In most real-world opinion polls, pollsters do not ask all
voters for their opinion. We can simulate this in our abstract
model by simply dropping information on some of the voters
before communicating the poll to the electorate.

• (REF) b−i ∈ W
π(ai,b−i)

i

• (SYM) if b−i ∈ W
π(ai,c−i)

i , then c−i ∈ W
π(ai,b−i)

i

• (TRA) if b−i ∈ W
π(ai,c−i)

i and c−i ∈ W
π(ai,d−i)

i , then

b−i ∈ W
π(ai,d−i)

i

Axiom (REF) simply states that the actual poll profile is
always part of every voter’s information set. Axioms (SYM)
and (TRA) together express that whenever a voter consid-
ers some ballot profile possible, then that profile would also
induce her current information set. For a discussion of the
knowledge-theoretic properties of polls in view of strategic
voting we refer to the work of Chopra et al. [4].

We define the degree of“informativeness”of a PIF in terms
of the information sets it induces:

Definition 1. A PIF π is said to be at least as infor-

mative as another PIF σ, if Wπ(b)
i ⊆ Wσ(b)

i for all poll
profiles b ∈ L(X )N and all voters i ∈ N .

We note that Conitzer et al. [5] work with a similar notion
of information set, except that they do not require an in-
formation set to be induced by poll information, but rather
permit any set of conceivable profiles to form the informa-
tion set of a given voter. Moreover, they do not include a
voter’s own ballot in her information set. There are also
interesting connections to the work of Chevaleyre et al. [3]
on the compilation complexity of voting rules: their compi-
lation functions are the same types of functions as our PIFs.

3. RESPONSE TO A SINGLE POLL
In this section we analyse the case where, on the basis of an
opinion poll, a single voter chooses to vote strategically.

3.1 Manipulation wrt. Poll Information
Suppose we run an opinion poll and communicate the result
to voter i using PIF π (and suppose i did vote truthfully in
the poll) and we then run the actual election. Will i have an
incentive to manipulate and vote untruthfully, assuming she
believes that the other voters will not change their ballot?
We assume she does, if there is a scenario consistent with
the poll information she received that will result in a better
election outcome for her and there is no scenario where she
will do worse than when voting truthfully.

Definition 2. Let π be a PIF. Given a resolute voting
rule F , a voter i, and a profile b with bi = �i, we say
that i has an incentive to π-manipulate using ballot c?i , if

F (c?i , c−i) �i F (�i, c−i) for some profile c−i ∈ Wπ(b)
i and

F (c?i , c−i) �i F (�i, c−i) for all other profiles c−i ∈ Wπ(b)
i .

In above definition, �i is the reflexive closure of �i and
both relations are extended from elements of X to singleton
sets over X in the natural manner. F (�i, c−i) denotes the
winning singleton under voting rule F when everyone votes
as in profile c, while voter i votes according to �i, etc.

A voting rule is susceptible to π-manipulation if there is
a voter who has an incentive to π-manipulate (for some b
and some c?i ). If a resolute voting rule is not susceptible to
π-manipulation, then it is immune to π-manipulation.

Lemma 1. If a PIF π is at least as informative as another
PIF σ, then any resolute voting rule that is susceptible to σ-
manipulation is also susceptible to π-manipulation.



Proof. See Reijngoud [10].

As an immediate corollary to Lemma 1, we obtain that, if
π is at least as informative as σ, then any resolute voting
rule that is immune to π-manipulation is also immune to
σ-manipulation. In the sequel, we shall prove several sus-
ceptibility and immunity results for specific PIFs. Lemma 1
shows how such results can be transferred to other PIFs.

3.2 Susceptibility Results
When π is the profile-PIF, returning the full poll profile, then
our notion π-manipulation reduces to the standard notion of
manipulability used in voting theory. The seminal Gibbard-
Satterthwaite Theorem [11] states that any resolute voting
rule for three or more alternatives that is surjective and
nondictatorial will be susceptible to manipulation. We shall
now prove a simple generalisation of this theorem, relating
the notion of π-manipulability applied and the informational
requirements of the voting rule used.

Not every voting rule requires all information a ballot pro-
file supplies to compute the winners. For the plurality rule,
for example, it suffices to give for each alternative the num-
ber of ballots in which it is ranked first. For a given PIF
π : L(X )N → I, we say that a voting rule F is computable
from π-images if there exists a functionH : I → 2X \{∅} such
that F = H ◦π. We furthermore say that F is strongly com-
putable from π-images if it is computable from π-images and
π(b) = π(bi, c−i) entails F (ci, b−i) = F (c) for any two pro-
files b and c, i.e., upon learning π(b) a voter i can compute
the winners for any way of voting herself (rather than just
for bi). For example, the Copeland rule is computable but
not strongly computable from MG-information (i.e., from
images under the MG-PIF), while it is strongly computable
from WMG-information. Furthermore, any anonymous vot-
ing rule is strongly computable from ballot-information.

Theorem 1. Let π be a PIF. When m > 3, any resolute
voting rule that is surjective, nondictatorial, and strongly
computable from π-images is susceptible to π-manipulation.

Proof. Let π be a PIF with range I and let F be a
resolute voting rule meeting above conditions. From the
Gibbard-Satterthwaite Theorem it follows that F is suscep-
tible to profile-manipulation, i.e., there exist a profile b, a
voter i, and a ballot c?i such that F (c?i , b−i) �i F (�i, b−i).
Since F cannot differentiate between profiles that produce
the same I-structure, we get F (�i, c−i) = F (�i, b−i) for
any c−i with π(�i, c−i) = π(�i, b−i). As F is strongly com-
putable from π-images, this entails F (c?i , c−i) = F (c?i , b−i)
for any c−i with π(�i, c−i) = π(�i, b−i). Hence, F is sus-
ceptible to π-manipulation.

The conditions of Theorem 1 are not necessary for suscep-
tibility. There are resolute voting rules that are surjective,
nondictatorial, and susceptible to π-manipulation, yet not
computable from π-images, as our next result shows.

Theorem 2. When m > 3 and n is even, any strongly
Condorcet-consistent voting rule, paired with the lexico-
graphic tie-breaking rule, is susceptible to MG-manipulation.

Proof. Let X , N and F satisfy above conditions and
let π be the MG-PIF. We construct a profile with three
weak Condorcet winners such that voter i’s second favourite
alternative wins if she votes truthfully, and her first favourite
wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Let �i = b � a � c �
X\{a, b, c}, where alternatives X\{a, b, c} are ranked in any
order. And let c?i = b � c � a � X\{a, b, c}. Let b−i be a
profile in which n−2

2
voters submit b � a � c � X\{a, b, c},

and n−2
2

+ 1 voters submit c � a � b � X\{a, b, c}. Then
F (�i, b−i) = a (as ties are broken in favour of a) and
F (c?i , b−i) = b. It is not difficult to check that there is no

profile c−i ∈ W
π(�i,b−i)

i such that F (c?i , c−i) ≺i F (�i, c−i).
It follows that F is susceptible to MG-manipulation.

Examples for voting rules that are strongly Condorcet-
consistent include the maximin-rule, but not, for instance,
the (Condorcet-consistent) Copeland rule.

Our final example for a π-susceptibility result concerns
PSRs. Observe that a PSR is unanimous if and only if s1 >
s2 holds for the scoring vector defining it.

Theorem 3. When m > 3 and n > 4, any unanimous
positional scoring rule, paired with the lexicographic tie-
breaking rule, is susceptible to winner-manipulation.

Proof. Let X , N and F satisfy above conditions and let
π be the winner-PIF wrt. F . We construct a profile where
voter i’s third favourite alternative wins if she votes truth-
fully and her second favourite wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Let �i = c � a �
b � X\{a, b, c}, where alternatives X\{a, b, c} are ranked
in any order. And let c?i = a � c � b � X\{a, b, c}. If
n is odd, let b−i be a profile in which n−3

2
voters submit

a � b � X\{a, b}, n−3
2

voters submit b � a � X\{a, b}, and
the remaining two voters submit c � b � a � X\{a, b, c} and
b � a � c � X\{a, b, c}. If n is even, let b−i be a profile in
which n−2

2
voters submit a � b � X\{a, b}, and n−2

2
voters

submit b � a � X\{a, b}, and the remaining voter submits
b � c � a � X\{a, b, c}. Since F is unanimous, i.e., s1 > s2,
we get F (�i, b−i) = b and F (c?i , b−i) = a. It is not difficult

to check that there is no profile c−i ∈ W
π(�i,b−i))

i such that
F (c?i , c−i) ≺i F (�i, c−i). It follows that F is susceptible to
winner-manipulation.

3.3 Immunity Results
We now turn our attention to voting rules that are immune
to certain types of manipulation. First, it is not difficult
to verify that any dictatorial as well as any constant voting
rule will be immune to profile-manipulation (and thus, by
Lemma 1, also to any other form of manipulation). At the
other extreme, as we shall see next, we can obtain immunity
results for two large classes of voting rules with respect to
the weakest form of immunity considered here, namely zero-
manipulation. The next theorem is inspired by (and corrects
a minor mistake in) a result due to Conitzer et al. [5].

Theorem 4. When n > 3, any strongly Condorcet-
consistent voting rule, paired with the lexicographic tie-
breaking rule, is immune to zero-manipulation.

Proof. Let N and F satisfy above conditions and let π
be the zero-PIF. Fix any voter i, any poll profile b with
bi = �i, and any untruthful ballot c?i . Since c?i 6= �i, there
is a pair of alternatives such that x �i y and y �c?i x.
Claim: there exists a profile c−i such that F (c?i , c−i) ≺i
F (�i, c−i). If n is odd, let c−i be a profile in which n−1

2

voters submit x � y � X\{x, y}, and n−1
2

voters submit
y � x � X\{x, y}, where alternatives X\{x, y} are ranked



in any order. If n is even, let c−i be a profile in which n−2
2

voters submit x � y � X\{x, y}, and n−2
2

voters submit
y � x � X\{x, y}, and the remaining voter submits y �
x � X\{x, y} in case x lexicographically precedes y and
x � y � X\{x, y} otherwise. Then F (�i, c−i) = x and
F (c?i , c−i) = y. Hence, for any untruthful ballot c?i there is a
situation where i will do strictly better by voting truthfully.
It follows that F is immune to zero-manipulation.

Conitzer et al. [5] state a slightly stronger variant of
Theorem 4: any resolute voting rule that is (not neces-
sarily strongly) Condorcet-consistent is immune to zero-
manipulation. This is true for an odd number of voters,
as may be seen by revisiting the first part of our proof. For
an even number of voters, however, Condorcet consistency
is not sufficient, as demonstrated by the following example.

Example 1. Consider a scenario with 4 voters and 3 al-
ternatives (a, b, c). Suppose that voting rule F elects the
Condorcet winner if one exists, and otherwise the bottom
choice of voter 1. Let �1 = a � b � c, and consider bal-
lot c?1 = a � c � b. Now there is a profile c−1 such that
voter 1 benefits from voting untruthfully, namely when the
others vote a � b � c, b � a � c, and b � a � c. Then
F (�1, c−1) = c and F (c?1, c−1) = b. It is not difficult to
check that there is no profile c−1 such that F (c?1, c−1) ≺1

F (�1, c−1). It follows that F is a resolute voting rule that is
Condorcet-consistent and susceptible to zero-manipulation.

We stress that Theorem 4 also cannot be simplified to stating
that any voting rule that always elects some weak Condorcet
winner whenever one exists is immune to zero-manipulation.

The following theorem strengthens another result by
Conitzer et al. [5], who use a bound of n > 6m− 12.

Theorem 5. When n > 2m − 2, any positional scoring
rule, paired with the lexicographic tie-breaking rule, is im-
mune to zero-manipulation.

Proof. Let N , X and F satisfy above conditions and let
π be the zero-PIF. Fix any voter i and any poll profile b
with bi = �i. And fix any untruthful ballot c?i such that
F (c?i , c−i) 6= F (�i, c−i) for some profile c−i. Then there
exists a pair of alternatives such that x �i y and y �c?i x,
and x’s score differs from y’s in �i and c?i . Claim: there
exists a profile c−i such that F (c?i , c−i) ≺i F (�i, c−i). If n
is odd, let c−i be a profile in which n−1

2
voters submit x �

y � X\{x, y}, and n−1
2

voters submit y � x � X\{x, y},
where every alternative z ∈ X\{x, y} is ranked last by at
least one voter. If n is even, let c−i be a profile in which
n−2
2

voters submit x � y � X\{x, y}, and n−2
2

voters submit
y � x � X\{x, y}, where every alternative z ∈ X\{x, y} is
ranked last by at least two voters, and the remaining voter
submits the ranking that is like �i but with x and y swapped
in case x lexicographically precedes y and c?i with x and y
swapped otherwise. Then F (�i, c−i) = x and F (c?i , c−i) =
y. Hence, F is immune to zero-manipulation. Observe that
the bound of n > 2m − 2 follows from our requirements
on the number of voters ranking each z ∈ X\{x, y} last.
(The case with 4 voters and 3 alternatives must be checked
separately.)

Together, Theorem 4 and Theorem 5 cover a broad range of
voting rules. In particular, as is well known [11], the classes
of Condorcet-consistent rules and PSRs do not overlap.

So far, all our immunity results involved either trivial vot-
ing rules (dictatorships and constant rules) or the trivial in-
formation set (for zero-manipulation). While we should not
expect many positive results between these two extremes,
they are not impossible to obtain either:

Theorem 6. When n > 2m − 2, the antiplurality rule,
paired with the lexicographic tie-breaking rule, is immune to
winner-manipulation.

Proof. Let N and F satisfy above conditions and let
π be the winner-PIF wrt. F . W.l.o.g., we may assume that
voters only submit an alternative they wish to veto. Fix any
voter i, any profile b with bi is voter i’s true least favourite
alternative, and any ballot c?i 6= bi. Claim: voter i never
has an incentive to π-manipulate. Suppose m > 3 and
F (b) = w. If w = bi, then i cannot change the outcome.
If w = c?i , let c−i be a profile in which n−1 voters veto
some x ∈ X\{bi, w}, and all alternatives x ∈ X\{bi, w} are
vetoed by at least one voter. If w ∈ X\{bi, c?i }, let c−i be a
profile in which n−2 voters veto some x ∈ X\{bi, w}, and all
alternatives x ∈ X\{bi, w} are vetoed by at least two voters,
and the remaining voter vetoes w in case w lexicographically
precedes bi and some alternative x ∈ X\{bi, w} otherwise.
Then F (bi, c−i) = w and F (c?i , c−i) = bi. Hence, F is im-
mune to winner-manipulation. (The case with 2 alternatives
must be checked separately.)

Theorem 7. When n > 10, the plurality rule, paired
with the lexicographic tie-breaking rule, is immune to MG-
manipulation.

Proof. See Reijngoud [10]. The main insight is that for
n > 10 the majority graph does not give enough information
for a voter to infer the identity of the plurality winner.

4. REPEATED RESPONSE TO POLLS
In this section we study the case where voters repeatedly
react to opinion polls. We assume that all voters will vote
truthfully in an initial poll. Then, given the poll informa-
tion communicated to the voters (using a PIF), one voter
is given the opportunity to update her ballot. This process
is repeated until no further voter wishes to update her bal-
lot (or until a given maximum number of rounds has been
reached). We then apply the voting rule to this final profile
to determine the election winner.

An important parameter in this kind of voting game is
given by the response polices that voters use to update their
ballots. We shall first formulate several such policies, and
then formally introduce the voting games considered here.
As we shall see, any such game (the definition of which in-
cludes a voting rule F ) induces a new voting rule F t (where
t is the number of rounds played), and we will analyse the
properties of F t in view of those of F .

4.1 Response Policies
In each round, a voter i who has the opportunity to update
her ballot must decide what to do based on her true prefer-
ence order �i, her previously submitted ballot bi, and her
current information set Wi. A response policy determines

for each voter i a function δi : L(X )×L(X )× 2L(X )N\{i} →
L(X ), mapping (�i, bi,Wi) to a new ballot b′i. We shall
work with the following policies:



• Truth-teller: A truth-teller always votes truthfully, i.e.,
δi(�i, bi,Wi) = �i.
• Strategist: A strategist computes her best responses to

a poll and uses (any) one of them. Only if her current
ballot is amongst the best responses, she will always
use it. If we restrict attention to the plurality rule
and assume that polls give score-information, then this
policy is similar to the policy used by Meir et al. [7].
• Pragmatist: A pragmatist cannot or does not want to

compute her best response to a poll, e.g., because this
takes too much effort. A k-pragmatist always moves
her favourite amongst the k currently highest ranked
alternatives to the first position in her ballot, without
changing the relative ranking of the others. This policy
is also described by Brams and Fishburn [1].

We assume any given voter will use the same policy through-
out. Voters also have to decide how to vote in the first round.
As mentioned above, we assume that they all choose to vote
truthfully then. This is not unreasonable, given the immu-
nity results to zero-manipulation in Section 3.3.

Note that in the framework defined here, voters only take
into account information from the latest poll round. How-
ever, the framework could be extended to include previous
rounds by adding the information sets induced by those
rounds to the input arguments of δi.

4.2 Induced Voting Rules
Let us now formally define the notion of voting game.

Definition 3. A voting game is a tuple G = 〈F, π, δ〉,
where F is a resolute voting rule, π is a PIF, and δ =
(δ1, . . . , δn) is a vector of response policies.

A voting game proceeds in rounds. Initially, all voters vote
truthfully. In each subsequent round, exactly one voter
changes her ballot. This voter is selected from the set of
voters who wish to change. Whether or not a voter i wishes
to do so depends on her response policy δi. At the end of
each round, π(b) is computed for the new poll profile b and
the result is communicated to all voters. For a voting game
to be uniquely defined, we need to fix the order in which
voters may change their ballot. Any such order is allowed
(none of our results will depend on the order chosen).

A voting game G induces a new voting rule F t when the
number of rounds to be played is t.

Definition 4. Let G = 〈F, π, δ〉 be a voting game, and
let t ∈ N be the number of rounds to be played. Then a voting
rule F t is induced by G by stipulating for any profile b:

F t(b) :=

{
x ∈ X

∣∣∣ x is an election winner after t rounds
when b is the truthful, initial profile

}
A game terminates in round t if no voter wishes to change
her ballot according to her response policy at the end of t.
If G always terminates after at most t rounds, then we write
F ? instead of F t. Clearly, if all voters are truth-tellers, then
any voting game terminates after 0 rounds. Moreover, if F
is immune to π-manipulation and all voters are strategists,
then G terminates after 0 rounds as well.

Meir et al. [7] show that for any voting game G with F be-
ing the plurality rule and π the score-PIF wrt. the plurality
rule, if p voters are strategists and n−p voters are truth-
tellers, then G terminates after at most m · p rounds. To be

precise, these authors show this for a specific kind of strate-
gist response policy, namely one in which a voter, whenever
her current ballot is not amongst the best responses, changes
her ballot to the best response in which the next alternative
to win is the one she ranks first. We obtain a similar result
for an electorate composed of truth-tellers and pragmatists
(as opposed to strategists). In fact, under these assumptions
the result can be generalised to arbitrary PSRs:

Lemma 2. Let G = 〈F, π, δ〉 be any voting game such that
F is a PSR, paired with the lexicographic tie-breaking rule, π
is the rank-PIF wrt. F , and δ is a vector of p k-pragmatists
and n−p truth-tellers. Then G terminates after 6 p rounds.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b. Let Ht

k(b) be the set of k highest ranked alter-
natives in b according to F t. Claim: Ht

k(b) = Ht+1
k (b) for

any number of rounds t ∈ N. Suppose that voter i changes
her ballot at round t. Since i is a k-pragmatist, and F is
a PSR, we have that no alternative x ∈ Ht

k(b) loses points
and no alternative y ∈ X\Ht

k(b) wins any. Hence, each voter
will update her ballot at most once and G terminates after
at most p rounds.

A similar argument can be used to prove that if F is the
Copeland rule and all voters are k-pragmatists, then G ter-
minates after at most n rounds. This also holds in case
F is the maximin rule or the Bucklin rule. On the other
hand, games defined in terms of other voting rules or other
response policies need not always terminate:

Example 2. Consider a scenario with 2 voters and 3 al-
ternatives (a, b, c). Let F be the Copeland rule, paired with
the lexicographic tie-breaking rule. Let π be the MG-PIF.
Suppose all voters are strategists. Consider the ballot profile
b = (a � b � c, c � b � a). Then F 0(b) = a, F 1(b) = b,
F 2(b) = a, F 3(b) = c, F 4(b) = a, . . . (voters 2 and 1 alter-
nate moving alternative b up and down in their ballots).

4.3 Properties of Induced Voting Rules
For a given voting rule F , and under certain assumptions on
the PIF used and the response policies of voters, what will be
the properties of F t (and F ?, when it is well-defined)? This
is the question we shall investigate next. Specifically, we are
interested in properties that transfer from F to F t and F ?.
Let us begin with a simple observation: If F is dictatorial,
then any induced rule (for any PIF and any response policy
defined here) will be dictatorial as well. More interestingly,
we also obtain a transfer result for unanimity:

Theorem 8. Let G = 〈F, π, δ〉 be any voting game such
that F is unanimous, π is a PIF, and δ is a vector of prag-
matists, strategists and truth-tellers. Then F t is unanimous
for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b such that there is an alternative w that is
ranked first by all voters. Claim: F t(b) = w for any number
of rounds t ∈ N. Proof by induction. Since F is unanimous,
we have that F 0(b) = w. Now, suppose that F t(b) = w,
and that voter i wishes to change her ballot and may do so
next. As no truth-teller or pragmatist who already has her
favourite alternative winning will ever change her ballot, we
only need to consider the case where i is a strategist. Since
strategists always switch to a ballot that is at least as good



as their previous ballot for all profiles in their information
set (and strictly better for some), we have that F t+1(b) = w.
This proves that F t is unanimous for any t ∈ N.

However, the Pareto condition, which is slightly stronger
than unanimity, does not always transfer:

Example 3. Consider a scenario with 2 voters and 3 al-
ternatives (a, b, c). Let F be a voting rule that returns all
alternatives that are not Pareto dominated, paired with the
lexicographic tie-breaking rule. Let π be the winner-PIF wrt.
F . Suppose all voters are strategists and let t > 1. Con-
sider the ballot profile b = (b � c � a, c � a � b). Then
F t(b) = a (because the second voter will rank a on top, given
that she has no chance to make c win, which is disadvantaged
by the tie-breaking rule), even though alternative a is Pareto
dominated by alternative c in profile b.

We also cannot guarantee the transfer of the Pareto condi-
tion for voting games in which all voters are pragmatists.
Other properties that do not always transfer are surjectiv-
ity, anonymity, and Condorcet consistency. For all of these
properties there are counterexamples in which all voters are
strategists and polls give ballot-information. We omit these
examples due to space constraints. On the other hand, un-
der certain conditions, Condorcet consistency does transfer:

Theorem 9. Let G = 〈F, π, δ〉 be any voting game such
that F is Condorcet-consistent, π is the rank-PIF wrt. F ,
and δ is a vector of truth-tellers and pragmatists. Then F t

is Condorcet-consistent for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b with a Condorcet winner w. Claim: F t(b) = w
for any number of rounds t ∈ N. Proof by induction. Since
F is Condorcet-consistent, we have that F 0(b) = w. Now,
suppose that F t(b) = w, and that voter i wishes to change
her ballot and may do so next. Since i is a k-pragmatist
for some k ∈ N, and w is among the k currently highest
ranked alternatives, we have that w cannot lose support in
any pairwise contest with respect to its original pairwise
scores. It follows that F t+1(b) = w. This proves that F t is
Condorcet-consistent for any t ∈ N.

4.4 Condorcet Efficiency: Simulations
It is widely acknowledged that Condorcet consistency is a
highly desirable property, but many important voting rules
do not satisfy it [11]. The Condorcet efficiency of a voting
rule is its tendency to elect the Condorcet winner. Theo-
rem 9 identifies conditions under which Condorcet consis-
tency transfers from F to F t, but it does not say anything
about the transfer of Condorcet efficiency. Brams and Fish-
burn [1] give several examples that show that polls can have
a positive and a negative effect on the Condorcet efficiency
of a voting rule. To study how positive or negative this effect
is we shall make use of simulations.

We generated election data with n ranging from 10 to 100
in steps of 5 while keeping m fixed at 5, and m ranging from
3 to 15 in steps of 1 while keeping n fixed at 50 (using a sim-
ple program implemented in Java 1.6.0). For each of these
combinations we generated 10,000 (truthful) ballot profiles
with a Condorcet winner using the impartial culture (IC)
assumption, which states that any permutation of alterna-
tives is equally likely to occur as a voter’s preference order.
The limitations of the IC assumption are well known [9]; in

Plurality Borda Copeland STV Bucklin

C
on

do
rc

et
 E

ffi
ci

en
cy

 (%
)

0
20

40
60

80
10

0

No Polls
Polls, 2-Pragmatists
Polls, 3-Pragmatists

Figure 1: Average probability of electing the Con-
dorcet winner for 50 voters and 5 alternatives over
10,000 trials. Poll effect on Condorcet efficiency is
significant (p < 0.05) for plurality, STV and Bucklin.

particular, we should not expect the preferences in a real-
world electorate to be distributed uniformly. Nevertheless,
the IC assumption is still the de facto standard used in social
choice theory; results based on it provide an important base
line and allow for direct comparison with a large number of
findings documented in the literature.

Our first experiment was set up to test the effect of polls
on the Condorcet efficiency of plurality, Borda, Copeland,
STV, and Bucklin when polls provide (at least) rank-
information, and all voters are 2-pragmatists or all voters
are 3-pragmatists. That is, voters want to have as much
electoral influence as they can without having to think too
hard about a new ballot, unlike strategists. Note that we
included the Copeland rule for comparison, but we already
know that the rule itself is Condorcet-consistent, and thus
its induced voting rule will be as well (cf. Theorem 9). We
fixed the order in which voters may change their ballot to be
the ascending order: voters were offered a chance to update
their ballot according to their index in N , beginning with
the successor of the voter who was the last to change. All
induced voting rules were run until termination.

Figure 1 shows the results for 50 voters and 5 alterna-
tives; the other voter-alternative combinations showed a
similar pattern, except for plurality, to which we will come
back later. We used R to analyse our data [8], and McNe-
mar’s test to determine whether the poll effect was signif-
icant. The results for no-polls vs. polls for 2-pragmatists
were p = 0, p = 0.13, p < 0.001, and p = 0 for plurality,
Borda, STV, and Bucklin respectively. For no-polls vs. polls
for 3-pragmatists they were p < 0.001, p = 0.13, p < 0.001,
and p < 0.001 for the same rules. Thus, polls had a signifi-
cant positive effect on the Condorcet efficiency of plurality,
STV and Bucklin, and no significant effect for Borda.

Intuitively, one can think of the pragmatist response pol-
icy as offering a Condorcet winner another chance to win if it
ended up among the k highest ranked alternatives in the first
round. For plurality and Bucklin we can state this intuition
as a general rule: if all voters are 2-pragmatists and the Con-
dorcet winner is among the two highest ranked alternatives
in the first round, then it will always win under induced vot-
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Figure 2: Average probability of electing the Con-
dorcet winner for 50 voters and 5 alternatives over
10,000 trials. Poll effect on Condorcet efficiency is
significant (p < 0.05) if polls give score-information.

ing rule F ?. This follows from Lemma 2 and properties of F .
However, if all voters are 3-pragmatists, then this no longer
holds. Generally, an alternative in a runoff between 2 alter-
natives has a greater chance of winning to start with than an
alternative in a runoff between 3. We would therefore expect
the 2-pragmatist response policy to have a greater positive
effect on the Condorcet efficiency than the 3-pragmatist re-
sponse policy. Indeed, our data reflect this expectation. On
the other hand, as m increases, it becomes less likely that the
Condorcet winner ends up amongst the two highest ranked
alternatives in the first round. This would explain that for
large numbers of alternatives (m > 12), the 3-pragmatist re-
sponse policy had a greater positive effect on the Condorcet
efficiency of plurality than the 2-pragmatist response policy.

Our results also show that polls had a greater effect on
plurality and Bucklin than on STV and Borda. This might
be due to the substantially lower Condorcet efficiency of
these rules, leaving more room for improvement.

So, polls improve the Condorcet efficiency of the widely
used plurality rule if all voters are pragmatists. What about
strategists? In our second experiment we tested the effect
of polls on the Condorcet efficiency of plurality under the
assumption that polls give rank- or score-information and
that all voters are strategists. As under rank-information
the induced rule did not always terminate, we ran t = 10, 000
poll rounds, after which 38% of all elections did terminate.
The results of the second experiment are shown in Figure 2.
Again, we only show the results for elections with 50 voters
and 5 alternatives. McNemar’s test on paired results gave
p = 0.27 for no-polls vs. rank-polls and p < 0.001 for no-
polls vs. score-polls. Thus, polls had a significant positive
effect on the Condorcet efficiency of plurality when voters
received score-information. On the other hand, when polls
only gave rank-information, we observed no significant effect
on Condorcet efficiency. The latter effect, however, turned
significantly positive for large m/n ratios, and significantly
negative for small m/n ratios.

How can we explain this pattern? Providing a strategist
with less information has two opposing effects: (1) she is
more likely to update her ballot, because even if she actually

cannot make a different alternative win, she may think she
can; and (2) she is less likely to update her ballot, because
she is risk-averse. Which effect is stronger is difficult to
predict, but our simulation results suggest that this depends
at least in part on the number of voters and alternatives.

5. CONCLUSION
We have developed a framework to study the effects of polls
on voting behaviour and election outcomes. We found that
when voters do not have any information about the voting
intentions of others, then for many voting rules they never
have an incentive to vote untruthfully. However, they start
having these incentives as soon as they know who is currently
winning, according to the poll. This does not necessarily
mean that polls have a negative effect on the election out-
come. Some favourable properties of voting rules do persist,
and may even be strengthened, when a rule is complemented
with a series of polls to which the voters can respond.

For properties that do not persist in general, further work
on simulations, similar to our study of Condorcet efficiency,
will be required. Beyond this, it would be interesting to in-
vestigate whether combinations of properties of voting rules
induce particular properties of elections with polls. Finally,
it would be worthwhile to consider additional types of poli-
cies according to which voters respond to poll information
and to investigate their influence on election outcomes.
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