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1 The Set Theory View and the Second Order View

Second order logic was originally considered as an innocuous variant of first order logic in
the works of Hilbert. Later study reveals that the analogy with first order logic does not
do full justice to second order logic. Quine famously referred to second order logic as “set
theory in disguise”. Second order logic truly transcends first order logic in terms of strength,
and is more appropriate to be compared to (first order) set theory. In second order logic,
a large part of set theory becomes essentially logical truth. There is the debate between
the “set theory view” and the “second order view” in the foundation of mathematics . The
set theory view holds that mathematics is best formalized using first order set theory. The
second order view holds that mathematics is best formalized in second order logic.

Two important issues in this debate are completeness and categoricity. It is usually
conceived that one merit of the set theory view is that first order logic has a complete
proof calculus, while second order logic has not. One merit of the second order view is that
second order theories of classical structures (e.g. N, R) are categorical, while first order
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theories allow for non-standard models. More precisely, for a classical structure A, there
is a second order sentence θA that characterizes A uniquely:

A |= θA. (1)

∀B∀C(B |= θA ∧ C |= θA)→ B ∼= C. (2)

However, a closer inspection shows that the matter is more subtle than a simple trade-
off between completeness and categoricity. First of all, the claim that the second order
view is inferior to the set theory view because it lacks completeness is unwarranted. It is
true that full second order logic does not have a complete proof calculus, but for many
reasons it is more reasonable to use normal second order logic instead of full second order
logic in a foundational quest [5]. Normal second order logic is the extension of the usual
logical axioms with the Comprehension Axiom:

CA ∃X∀~x(X~x↔ φ(~x)) for any second order formula φ not containing X free.

CA asserts that all definable subsets of the model are in the model. The natural semantics
of normal second order logic has as its class of models all normal models, namely Henkin
models satisfying all instances of CA [3]. Note that every full model (i.e. model of full
second order logic) is normal. Therefore normal second order logic adds to full second
order logic the Comprehension Axiom, at the same time its semantics deals with a broader
class of models. Importantly, normal second order logic is complete with respect to this
extended class of models.

But completeness comes at a price: it leaves the door open for nonstandard models.
For example one can, by the usual technique of adding an infinite element, construct a non-
standard model of second order arithmetic P 2. Now the obvious opposition disappears:
both the set theory view and the second order logic view have a complete underlying logic,
and they characterize classical structures to the same level of categoricity [5].

The aim of this paper is to synthesize completeness and categoricity in the second order
view. We work within the framework of normal second order logic. We want to restore the
idea that second order logic should provide unique characterizations of classical structures.
We want something like (1) and (2) to be still true.

Our first innovation is the notion of internal categoricity. Internal categoricity is a
generalization of the notion of categoricity, proposed by Jouko Väänänen. We say that a
theory T is internally categorical if all models of T within a common normal model are
witnessed isomorphic by the model. We will make this definition more intelligible through
examples in what follows. For a detailed account of internal categoricity and the motivation
behind it, see [5]. In this paper we prove that second order theories of arithmetic and set
theory are internally categorical, although they are not categorical in the classical sense.
This fact suggests that nonstandard models and categoricity can exist in harmony. This
restores (2).
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On the other hand there is the question of consistency. If we take second order logic
as a foundation, then the status of (1) is not so clear at first glance. What exactly does
it mean that A |= θA? It is tempting to say the meaning of A |= θA is given by Tarski’s
truth definition. However, Tarski’s truth definition presupposes that we can read off the
truth value of A |= θA in the metatheory—in this case set theory. It would undermine the
second order view if the meaning of such basic notions relies on set theory.

Therefore the second task of this paper is to prove the existence of classical structures
based on more logical grounds. Suppose T is the second order theory of some classical
structure. If we can prove under certain assumptions Γ that there exists a model of T , and
that T is internally categorical, then we have, at least to some extent, restored (1) and (2):

CA+ Γ ` ∃N(N |= T ). (3)

CA ` ∀M∀N(M |= T ∧N |= T )→M ∼= N. (4)

In this paper we work out two prime examples of this scheme: arithmetic and set
theory. We prove (3) and (4) for P 2 and ZFC2 respectively. In section 2 we prove internal
categoricity of P 2. In section 3 we prove under the assumption that the underlying domain
is infinite that there is a model of P 2. In section 4 we prove internal categoricity of ZFC2.
In section 5, the most extensive part of this paper, we prove under certain large domain
assumptions that there exists a model of ZFC2.

2 Internal Categoricity of Arithmetic

The axiom system P 2 is the second order version of Peano Arithmetic [2]. For the purpose
of this paper, we consider the relativized version of P 2. Let L = (N,S, 0) be the language
of arithmetic. Intuitively N denotes the underlying domain. The axioms of P 2 consist of:

P0 ∀x(x ∈ N → Sx ∈ N).

P1 ∀x ∈ N¬Sx = 0.

P2 ∀x ∈ N∀y ∈ N(Sx = Sy → x = y).

P3 ∀X ⊂ N((X0 ∧ ∀x ∈ N(Xx→ XSx))→ X = N).

Note that strictly speaking “x ∈ N” and “X ⊂ N” are not part of our language: we
use them as abbreviations for Nx and ∀x(Xx → Nx). We will use these notations freely
whenever ambiguity does not arise.

It is well-known that P 2 characterizes N up to isomorphism in full second order logic.
When it comes to normal second order logic, this is no longer the case. A counterexample
can be provided by an application of the completeness theorem. Expand the language with
a new constant symbol c, and let Σ be the theory P 2 ∪ {c > Sn0 : n ∈ N}. Clearly Σ is
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finitely satisfiable. Since normal second order logic has a complete proof system, it satisfies
the compactness property. Hence Σ has a model (M,G), which is a non-standard model of
P 2. Note that (M,G) is a normal model, but necessarily not a full one: in particular the
standard part is not in G, for otherwise it would contradict the induction clause P3.

Now we investigate the notion of internal categoricity. Let L = (N,S, 0, N ′, S′, 0′) be
two copies of the language of arithmetic. An essential feature of P 2 is that it replaces the
induction schema in P by a second order quantification over subsets. This enables P 2 to be
a finitely axiomatizable theory. Consequently (N,S, 0) |= P 2 can be written as a sentence
in the formal language, denote it by P 2(N,S, 0). Similarly P 2(N ′, S′, 0′) has the intuitive
meaning that (N ′, S′, 0′) |= P 2. That R is an isomorphism from (N ′, S′, 0′) to (N ′, S′, 0′)
can also be written as a second order sentence ISO(R,N, S, 0, N ′, S′, 0′), we spare ourselves
with the details here. We say that P 2 is internally categorical if whenever a normal model
contains two copies of P 2, i.e. (M,G) |= P 2(N,S, 0)∧P 2(N ′, S′, 0′), this model “sees” that
these two copies are isomorphic, i.e. (M,G) |= ∃R ISO(R,N, S, 0, N ′, S′, 0′). We prove
that P 2 is internal categorical under this definition.

Theorem 1. Let L = {N,S, 0, N ′, S′, 0′} be two copies of the language of arithmetic.
Consider the Comprehension Axiom in the language L. Then

CA ` (P 2(N,S, 0) ∧ P 2(N ′, S′, 0′))→ ∃R ISO(R,N, S, 0, N ′, S′, 0′).

Proof. Suppose (M,G) |= CA, and that:

1. (M,G) |= P 2(N,S, 0),

2. (M,G) |= P 2(N ′, S′, 0′).

3. N,S,N ′, S′ ∈ G.

We want to show that there is an R ∈ G such that R : (N,S, 0) ∼= (N ′, S′, 0′). Let
R = ∩{P ∈ G : P00′∧∀x ∈ N∀y ∈ N ′(Pxy → PSxSy)}. Note that R is in fact a definable
subset of M . For any c, d ∈M ,

Rcd↔ ∀P ((P00′ ∧ ∀x ∈ N∀y ∈ N ′(Pxy → PSxSy))→ Pcd).

By the Comprehension Axiom, R ∈ G.
It is easy to verify that R00′, and that ∀x ∈ N∀y ∈ N ′(Rxy → RSxSy). From these

we prove that R is an isomorphism from (N,S, 0) to (N ′, S′, 0′).
(i) Totality. By the definition of R, 0 ∈ dom(R) and ∀x ∈ N(x ∈ dom(R) → Sx ∈

dom(R)). Hence by P3, dom(R) = N .
(ii) Functionality. Let X = {x ∈ N : ∃!y Rxy}. We prove X = N by induction. For

the base case, suppose R00′ and R0a for a 6= 0′. Now we define R′ = R−{a, b}. Note that
R′ also satisfies R′00′ ∧ ∀x ∈ N∀y ∈ N ′(R′xy → R′SxSy), contradicting the minimality of
R. The induction case is similar in nature.

4



(iii) Surjectivity. Dual to totality.
(iv) Injectivity. Dual to functionality.
(v) Homomorphism. It follows directly from the definition of R.

For an investigation of the reverse-mathematics status of second-order categoricity of
arithmetic, see [4].

3 Consistency of Arithmetic

Our next goal is the consistency of P 2. CA alone cannot prove that there is a model of
arithmetic: in particular, all finite models are models of CA, but they cannot be models of
P 2. Therefore we make the additional assumption that the underlying domain is infinite.
More precisely, we assume that the model contains a non-surjective injective mapping F .

Theorem 2. Let (M,G) be a normal model. Suppose (M,G) |= ∃F∃z(∀x∀y(Fx = Fy →
x = y) ∧ z /∈ ran(F )). Then

(M,G) |= ∃N∃S∃a P 2(N,S, a).

Proof. Pick F ∈ G, a ∈M such that F is injective and a is not in the range of F . We take
the closure of a under F . Let

N = ∩{X ⊂M : Xa ∧ ∀x(Xx→ XFx)}.

By the same reasoning as in the previous proof, N is definable, and the Comprehension
Axiom makes sure that N ∈ G. We claim that (N,F, a) |= P 2.

(i) F is injective on N . This is clear.
(ii) a /∈ ran(F ). This is also clear.
(iii) The induction clause. Suppose X ⊂ N , a ∈ X and X is closed under F . If X is a

proper subset of N , it would contradict the minimality of N . Therefore X = N .

4 Internal Categoricity of Set Theory

In the same fashion as P 2, we have the second order counterpart of the ZFC axioms of
set theory. Consider the second order language of set theory consisting of a single non-
logical symbol ∈. ZFC2 has the same axioms for Extensionality, Union, Pairing, Power
Set, Infinity, Regularity and Choice as ZFC. As for Separation and Replacement, ZFC2

replaces the axiom schemata with second order quantifications. Separation now reads:

Sep ∀X∀x∃y(∀z(z ∈ y ↔ (z ∈ x ∧Xz))).
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And similarly for Replacement. Note that ZFC2 is a finite set of axioms.
It is not reasonable to require internal categoricity of ZFC2 straightaway. Zermelo

proved that the natural models of ZFC2 are exactly the Vκ’s for κ an inaccessible cardinal
[6]. For two different inaccessibles κ and λ, Vκ and Vλ are not isomorphic. However, if we
assume that two models of ZFC2 are “of the same height”, i.e. there is an isomorphism
between ordinals in Vκ and ordinals in Vλ, we can prove that they are internally isomorphic.

Theorem 3. Let L = (V,E, V ′, E′) be two copies of the language of set theory. Let (M,G)
be a normal model. Suppose

1. (M,G) |= ZFC2(V,E),

2. (M,G) |= ZFC2(V ′, E′),

3. V, V ′, E,E′ ∈ G,

4. (M,G) |= ∃π ISO(π,Ord,Ord′). Ord and Ord′ denote ordinals in (V,E) and (V ′, E′)
respectively.

Then
(M,G) |= ∃R ISO(R, V,E, V ′, E′).

Proof. Pick an isomorphism π ∈ G : Ord ∼= Ord′. We define an isomorphism between V
and V ′ by a back-and-forth clause. Let

R = ∩{P ∈ G : π ⊂ P,∀x ∈ V ∀y ∈ V ′((∀zEx∃uE′yPzu ∧ ∀uE′y∃zExPzu)→ Pxy)}.

We may think of R as the minimal extension of π respecting E and E′. By construction
R is in G. Moreover R satisfies:

(a) π ⊂ R

(b) ∀x ∈ V ∀y ∈ V ′((∀zEx∃uE′yRzu ∧ ∀uE′y∃zExRzu)↔ Rxy).

The forward direction in (b) follows from the definition of R. The converse follows from
the minimality of R. The property (b) gives us a general criterion to decide whether Rxy.
Now we proceed to prove that R is an isomorphism in three steps.

(i) The relation R, when defined, is an isomorphism onto its image.
First we prove that R is functional. Let x ∈ V be an E-minimal element such that there

are y, y′ ∈ V ′ with y 6= y′, Rxy and Rxy′. By Extensionality, without lost of generality
there is u ∈ V ′ such that uE′y, ¬uE′y′. Since we have Rxy, by property (b) above there is
zEx such that Rzu. Similarly, there is u′E′y′ such that Rzu′. Since ¬uE′y, u 6= u′. Now
we have Rzu and Rzu′ for zEx, contradicting the minimality of x.

By exchanging the role of V and V ′ in the above argument we can prove that R is
injective. That R respects the relations E and E′ is clear. Hence R is an isomorphism onto
its image when it is defined.
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(ii) For each α ∈ Ord, R : Vα → V ′π(α) is an isomorphism.

For the base case R : ∅→ ∅′ this is trivially true.
For the successor case, suppose R : Vα → V ′π(α) is an isomorphism, we aim to show that

so is R : Vα+1 → V ′π(α+1). Thanks to (i) it suffices to prove that R is defined on Vα+1, and

that R � Vα+1 is onto V ′π(α+1). Pick an arbitrary y ∈ P(Vα), i.e. Ext(y) ⊂ Vα. By induction

hypothesis R(Ext(y)) ⊂ Vπ(α). Let zEP(V ′π(α)) be such that Ext(z) = R(Ext(y)). It is

straightforward to check by property (b) that Ryz. Since y is arbitrary, R is defined on
Vα+1. Symmetrically we can prove that R � Vα+1 is onto V ′π(α+1).

The limit case is straightforward.
(iii) The relation R : V → V ′ is an isomorphism.
Step (ii) implies that R : V → V ′ is an embedding. Since π is an isomorphism between

the ordinals in V and in V ′, the dual argument using π−1 shows that R−1 is also an
embedding. Therefore R is an isomorphism from V to V ′.

5 Consistency of Set Theory

In this section we seek to establish the consistency of ZFC2 on certain large domain
assumptions. The key ingredient is a power set operation which generates the set theoretic
structure by iteration. Let (M,G) be a normal model. To cope with the relevant set
theoretical terminology, in this section we refer to elements x of M as “sets” and subsets
X of M as “classes”. When x is an element of M and E a binary relation, we denote by
Ext(x) = {y ∈M : yEx} the extension of x.

Let µ(X) be the formula saying that X is of smaller cardinality than the universe, or
in brief “X is small” :

µ(X) =def ¬∃F (“F is injective” ∧ ∀x XFx).

Let η(X,Y,E) be the formula saying that Y behaves like the power set of X, with E
taken to be the intended membership relation:

η(X,Y,E) =def ∀x∀y(xEy → Xx ∧ Y y)

∧∀x, y ∈ Y ((∀z ∈ X zEx↔ zEy)→ x = y)

∧∀Z ⊂ X∃y ∈ Y ∀z(Zz ↔ zEy).

Then the following sentence says that every small class has a power set:

∀X(µ(X)→ ∃Y,E (µ(Y ) ∧ η(X,Y,E))). (5)

We can also express that the cardinality of the universe is inaccessible, namely the
union of a family of small sets indexed by a small set is always small.

∀X∀R(µ(X) ∧ ∀x ∈ Xµ(R(x,−))→ µ(R(X)). (6)
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Here R(x,−) denotes the image of x under R, R(X) denotes the image of the class X
under R. Note that R(X) = ∪x∈XR(x,−).

As mentioned before, the natural models of ZFC2 are the Vκ’s for κ an inaccessible
cardinal. For such κ we have that |Vκ| = κ. (5) implies that the cardinality of the universe is
a strong limit cardinal, (6) implies that the cardinality of the universe is a regular cardinal.
Quite naturally, our first guess is that (5) and (6) together imply that there is a model of
ZFC2:

(5) + (6) ` ∃M,E ZFC2(M,E).

Tempting as it is, a moment’s reflection shows that this plan does not work. It is not
enough to postulate that there is a power set for each small set, but we also need these
power sets to be compatible with each other, in order to glue them together and generate
the set theoretic structure. For example, suppose X ⊂ Y , ideally we should have that
P(X) ⊂ P(Y ), yet this is not entailed by (5) and (6). In order to remedy this defect,
we will make a compatibility assumption on the power set operation. The price we pay
is that the resulting postulate amounts to assuming the existence of a third order object.
However, the moral we draw from Gödel’s Incompleteness Theorems is that there are always
constraints in proving consistency. We have to content ourselves with this situation at the
moment.

5.1 The Postulates

Suppose (M,G) is a normal model. We make the following assumptions:

(a) There is a function (P,E) defined on small subsets of M , such that for each small
class X it associates another small class P (X) and a relation EX

X 7−→ P (X), EX

such that

i η(X,P (X), EX), η is as defined in the previous section;

ii ∀X∀Y (X ⊂ Y → P (X) ⊂ P (Y ));

iii ∀X∀Y (X ⊂ Y → ∀y ∈ P (X){u ∈ X : uEXy} = {u ∈ Y : uEY y}).

(b) The cardinality of the universe is regular, i.e. ∀X∀R(µ(X) ∧ ∀x ∈ Xµ(R(x,−)) →
µ(R(X)).

(c) Each EX is well-founded.

(d) There is a transitive class X such that it is infinite, and it is small relative to the
universe.
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We also assume the Axiom of Choice in the metatheory. In other words we always
assume the existence of Skolem functions.

AC ∀R(∀x∃yRxy → ∃F∀xRxFx).

A few words on postulate (a). The requirements (i) and (ii) are quite natural. As
for (iii), it expresses a strong compatibility condition. The EX ’s provide us with “local
fragments” of the intended membership relation, and our goal is to patch them into a
global membership relation. For any X small and y ∈ P (X), define the extension of y in
X to be ExtX(y) = {u ∈ X : uEXy}. Requirement (iii) says that whenever Y is a supset
of X and y is a member of P (X) (and hence by (ii) a member of P(Y)), ExtY (y) is equal
to ExtX(x). Upon reflection this is indeed what it is like in the real set theoretic universe.
For any set x there corresponds a power set P(x), and this P(x) will not change as we
regard x as the subset of varying supsets.

Postulate (d) is thus formulated so that the model we construct contains an infinite
object. Without this assumption, the structure we end up with might very well be some-
thing like Vω, satisfying every axiom of ZFC2 except the Axiom of Infinity. Transitivity
here is rather a technical assumption in order to guarantee that the addition of an infinite
object does not spoil other constructions. We will see its use in the proofs below. At the
moment it is not clear how transitivity can be expressed in our language. In order not to
distract the reader from the storyline, we postpone the treatment of this point to the next
section.

The reader might have sensed where we are going. We construct a model of ZFC2 in
much the same way we did for P 2. Pick a witness C for postulate (d). Define V to be the
closure of C under the power set operation P .

V = ∩{N ∈ G : C ⊂ N, ∀X ⊂ N(µ(X)→ P (X) ⊂ N)}.

Define the binary relation E to be the union of the local relations.

E = ∪X⊂V,µ(X)EX .

The Comprehension Axiom implies that V,E ∈ G.
Before concluding this section we make an important remark. The Comprehension

Axiom depends on the language we use. In order for our postulates to achieve its power
in full, we have to allow P and E to appear in instances of CA. They become part of our
language.

5.2 The Axioms of ZFC2

Now we set out to prove that (V,E) |= ZFC2. In this section we mean by a formula its
relativization to V unless otherwise specified.

First several lemmata. By the definition of E as the union of the EX ’s, we have that
Ext(y) = ∪XExtX(y). The following lemma shows that it suffices to consider one such X.
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Lemma 1. For any y and any X such that y ∈ P (X), Ext(y) = ExtX(y). Equivalently,
for any u, uEy if and only if uEXy.

Proof. By definition uEXy implies uEy. Now we prove the other direction. Suppose uEy,
then uE′Xy for some X ′. Suppose also that u is not in X. Consider the set X ∪ X ′. By
postulate (b) on regularity, the union of two small sets is small, hence P is defined on
X ∪ X ′. By postulate (a-iii) we have ExtX(y) = ExtX∪X′(y) = ExtX′(y). But this is a
contradiction, since u ∈ ExtX′(y) yet u /∈ ExtX(y).

Lemma 2 (Comprehension). (V,E) |= ∀X(µ(X)→ ∃y Ext(y) = X).

Proof. Take y ∈ P (X) such that ExtX(y) = X, this can be done because of (a-i). By
Lemma 1, X = ExtX(y) = Ext(y).

Henceforth we refer to this lemma as the comprehension lemma (not to be confused
with the Comprehension Axiom). Together with CA, this lemma tells us that for any class
X, if it is definable and is small, then there is a set x with extension X. This will be our
key apparatus in proving existential claims in the ZFC2 axioms.

Lemma 3 (Every set is small). (V,E) |= ∀xµ(Ext(x)).

Proof. We distinguish between two cases. First suppose x /∈ C. Recall C is a fixed
witness for postulate (d). Suppose Ext(x) is not small. Then x /∈ P (X) for all small X,
for otherwise Ext(x) = ExtX(x) ⊂ X and hence is small. Now we consider the model
V ′ = V − {x}. V ′ is also closed under P , since x is not in any P (X). Moreover V ′ still
contains C for x /∈ C. This contradicts the construction of V as the minimal such class.
On the other hand if x ∈ C, by the transitivity of C we have that Ext(x) ⊂ C, and hence
Ext(x) is small.

Now we can start verifying the axioms of set theory. Let’s begin with some simpler
ones.

Theorem 4 (Extensionality). (V,E) |= ∀x∀y(∀z(zEx↔ zEy)→ x = y).

Proof. Suppose Ext(x) = Ext(y) = Z. By Lemma 1, Ext(x) = ExtX(x) for some small
X, and Ext(y) = ExtY (y) for some small Y. Consider the set X ∪ Y . We have that
ExtX∪Y (x) = ExtX(x) = Ext(x) = Ext(y) = ExtY (y) = ExtX∪Y (y). We know that
Extensionality holds locally by (a-i), hence x = y.

Theorem 5 (Power Set). (V,E) |= ∀x∃y∀z(zEy ↔ z ⊂ x).

There is a bit of abuse of notation here. Previously by the symbol ⊂ we refer to the
subset relation in the metatheory, while here it refers to the subset relation derived from
E. For the sake of readability, we stick to the usual notation instead of inventing another
symbol.

10



Proof. The power set axiom amounts to ∃y(∀z(zEy ↔ Xz)), where X is defined by
∀z(Xz ↔ ∀w(wEz → wEx)). For any z ∈ X, Ext(z) ⊂ Ext(x), therefore z ∈ P (Ext(x)).
Since z is arbitrary, we have that X ⊂ P (Ext(x)), and hence X is small. By the compre-
hension lemma there is a y such that Ext(y) = X.

The Axioms of Paring, Separation and Replacement follow from the comprehension
lemma. In each case, it is rather straightforward to verify that the set we desire is small.

Theorem 6 (Paring). (V,E) |= ∀x∀y∃z∀w(wEz ↔ w = x ∨ w = y).

Theorem 7 (Seperation). (V,E) |= ∀X∀x∃y(∀z(zEy ↔ (zEx ∧Xz))).

Theorem 8 (Replacement). If a class F is a function, then for every set x, F (x) is a set.

Proof. Suppose x is a set and F a functional class. Let Y = {y ∈ V : ∃zEx Fz = y}. By
the Axiom of Choice there is a functional class G that associates to each y ∈ Y one of its
pre-images, i.e. F (Gy) = y. By functionality of F , G is an injective mapping from Y into
Ext(x). Since Ext(x) is small, Y is also small, therefore there is a set y with extension Y
by the comprehension lemma. This is the set we want.

The Axiom of Union requires the postulate on regularity.

Theorem 9 (Union). (V,E) |= ∀x∃y∀z(zEx↔ ∃wEx zEw).

Proof. By the regularity postulate (b) the class ∪wExExt(w) is small, and hence it is a set
by the comprehension lemma.

The proof of the Axiom of Regularity is based on postulate (c).

Theorem 10 (Regularity). (V,E) |= “Every set has an E-minimal element”.

Proof. Take an arbitrary element x, suppose Ext(x) does not have a minimal element.
Then there is an infinite descending chain ...xnExn−1..x2Ex1Ex0 in Ext(x). Denote Z =
{x0, x1, ..., xn, ...}. Now for each xn in Z (n > 0) there is a small set Yxn such that
xnEYxnxn−1. Take Y = ∪z∈ZYz. Z is a subset of Ext(x) and hence is small, therefore by
regularity Y is also small. Moreover Exn ⊂ EY for all xn ∈ Z. Then the xn’s has become
an infinite descending chain in the relation EY , contradicting postulate (c). Note we have
tacitly used the Axiom of Choice in the metatheory.

Proving the Axiom of Infinite requires more work. But before that, we have to fulfil our
promise and show that transitivity is indeed expressible in our language. Let the following
sentence say a class X is transitive:

φ(X) =def ∀x(Xx→ ∀y(∃Y yEY x→ Xy)).
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φ(X) is equivalent to a universal formula:

∀x∀y∀Y (Xx ∧ yEY x→ Xy).

Consider the witness C for postulate (d). Postulate (d) asserts that (M,G) sees C as
transitive:

(M,G) |= φ(C).

Since φ(X) is equivalent to a universal formula, it is preserved to the submodel V of
M . Therefore V also sees C as transitive:

(V,E) |= φ(C). (7)

Now we can tackle the Axiom of Infinity. As mentioned before, postulate (b) makes
sure that ω is still considered as a “small” stage in the construction, so that the model we
get does not stop at Vω but ends somewhere beyond.

Theorem 11 (Infinity). (V,E) |= “There exists an infinite set”.

Proof. Since C is infinite, there is an injective class function F from C to its proper subset.
Define a class X as follows:

∀x (Xx↔ ∃y∃z(x = (y, z) ∧ Fy = z)).

Here (y, x) denotes the ordered pair of y and z. X has cardinality less or equal to C × C,
and hence is small by regularity. Let f be the set comprehended by X, and c the set
comprehended by C. Then f is an injective function (not in the metatheory but in the
intended set theory of (V,E)) from c to its proper subset, therefore c is an infinite set in
V .

Finally, the Axiom of Choice. But haven’t we already assumed the Axiom of Choice?
We have assumed AC in the metatheory. Now what we will prove is the internalized
AC in the model (V,E). This is similar in spirit to what we just did with the Axiom of
Infinity: we assume the existence of an infinite object in the metatheory, the proof consists
of internalizing the infinite object into (V,E).

Theorem 12 (Choice). (V,E) |= “For any set x, if the empty set is not a member of x,
then there is a choice function on x”.

Proof. Suppose ∅ /∈ x. Then for each y ∈ Ext(x), there is z ∈ Ext(y). By AC in
the metatheory, there is a class function F such that for all y ∈ Ext(x), Fy ∈ Ext(y),
i.e. FyEy. Similar to the proof of the Axiom of Infinity, let f be the set comprehended by
F . This f is a choice function on x.
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Here are all the axioms. In retrospect, what we have done is very similar in spirit to
what Burgess does in [1]. In that paper Burgess proves ZFC2 under the following two
assumptions:

(a) There are just as many individuals as small classes.

(b) There are indescribably many individuals.

Assumption (a) is essentially what we have achieved with Lemma 2 and Lemma 3: to each
small class there corresponds a set (i.e. an individual), and the extension of each set is
a small class. The connection between (b) and our approach remains a topic for further
investigation.
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[6] Ernst Zermelo. Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die
Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16:29–47, 1930.

13


