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Abstract

Two results of the following general form are proved: a functor from a
category of algebras to the category of posets is essentially injective on
objects above a certain size. The first result is for Boolean algebras and
the functor taking each Boolean algebra to its poset of finite subalgebras.
This strengthens and provides a novel proof for a result by Sachs, Filippov
and Grätzer, Koh & Makkai. The second result is for finite MV-algebras
and the functor taking each such algebra to its poset of partitions of unity.

The second result uses the dual equivalence of finite MV-algebras with
finite multisets, as well as the correspondence between partition posets of
finite multisets and setoid quotients. Thus the equivalence is constructed
via the powerset functor for multisets, and setoid quotients are introduced.
The equivalence is a special case of a more general duality proved by Cignoli,
Dubuc and Mundici.

The primary interest of this work lies in algebras describing quantum
observables, hence both results are viewed as statements about effect alge-
bras. Since MV-algebras contain ‘unsharp’ (i.e. self-orthogonal) elements,
the second result shows that sharpness is not a necessary condition for essen-
tial injectivity of the partitions of unity functor. Physically, this means that
there are systems with unsharp effects (namely, those represented by finite
MV-algebras) which can be faithfully reconstructed from all the possible
measurements.
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Chapter 1

Introduction and motivation

The guiding principle of this work is that “shape determines structure”.
More precisely, in many scenarios, a given structure has a class of substruc-
tures such that the poset of these substructures is sufficient to uniquely
determine the full structure. Thus the mere ‘shape’ of how the substruc-
tures fit together (poset) dictates what the entire structure should be. The
class of substructures is often ‘nicer’ than the full structure we started with;
the substructures may either be computationally more manageable (as in
the case of finite subalgebras of a Boolean algebra), or there could even
be a difference in the epistemic status, as is the case for algebras arising
from quantum observables, whose subalgebras and partitions represent the
classically accessible information. While for the reconstruction itself it is
irrelevant whether the substructures are nice or not, as both are just an
element of a poset, the difference lies in accessibility. Thus, as an arbitrary
Boolean algebra can be approximated by finite ones, likewise, an inaccessible
part of reality can be approximated by accessible ones.

The area of order theory and computer science that is inter alia concerned
with informational approximations of the above kind is known as domain
theory. See Abramsky and Jung [1] for an introduction to the subject, and
Section 4 of Heunen [32] for a brief description in the context of this work.

The main classes of structures we focus on are Boolean algebras, MV-
algebras and effect algebras; the former two being special cases of the last
one. Effect algebras are partial algebras which originate from theoretical
physics: the idea is that not all observables are simultaneously measurable,
so that the effect algebra operation is only defined for those elements which
are ‘orthogonal’.

Operational quantum mechanics takes the set of experimental outcomes,
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i.e. the physical events which may actually occur, as its primitive. Such
events are called effects. Since effects represent possible measurement out-
comes, we must be able to assign a probability to each effect. For this
reason the general effects are sometimes called unsharp, to contrast them
with sharp effects whose probability of occurring is either 0 or 1.

Connection to probabilities dictates that in the Hilbert space formula-
tion of quantum mechanics, the set of effects is given by positive1 operators
A such that 0 ≤ A ≤ 1, where 0 and 1 are the zero and identity operators,
and the partial order is the pointwise order of the operators. For the details
on this, see e.g. Introduction of Busch, Grabowski and Lahti [11]. If H is a
Hilbert space, then the set of effects E(H) is closed under the orthocomple-
ment A′ = 1 − A, but it is not closed under addition of operators: we may
add two operators A and B if and only if A+B ≤ 1. This gives rise to the
motivating (and eponymic) example of an effect algebra.

Motivated by a similar result for orthoalgebras due to Harding, Heunen,
Lindenhovius and Navara [31] (Theorem 1.1), one might be tempted to think
that there is a suitable class of ‘classical’ subalgebras of an effect algebra
which determine it. We begin our discussion by showing that this is not the
case, after which we motivate why it could be physically plausible to expect
such a result for partitions of unity rather than subalgebras.

1.1 Mathematical motivation: Encoding structure
in posets

Logically, this section should come after Sections 2.1 and 2.2, where effect
algebras, orthoalgebras and MV-algebras are defined. However, the theorem
and the two examples presented here are precisely the mathematical driving
force for the rest of this research, so that they should be presented at the
very beginning. The presentation is therefore made as light on the technical
details as possible.

A subalgebra of an effect algebra is Boolean if it is a Boolean algebra
whose structure is compatible with the effect algebra structure; namely, two
elements are disjoint (their meet is 0) in the Boolean algebra if and only if
they are orthogonal in the effect algebra, and in this case their (Boolean)
join is equal to their (effect) sum. Let us denote the poset of Boolean
subalgebras of an effect algebra E by BSub(E). One of the main results of
Harding, Heunen, Lindenhovius and Navara [31] is the following:

1Positive semidefinite, to be precise.
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Theorem 1.1. If A is a proper orthoalgebra, then BSub(A) has enough
directions and Dir(BSub(A)) is an orthoalgebra isomorphic to A.

Here the condition of being proper says that A does not have maximal
Boolean subalgebras which have at most four elements, and Dir denotes
the set of what Harding et al. call directions. An important consequence
of this is that an orthoalgebra A is determined by its poset of Boolean
subalgebras. The result is in fact stronger than that: it provides a direct
way to reconstruct A from BSub(A), namely by taking the set of directions
of the latter with the appropriate orthoalgebra structure.

As Harding et al. point out, this result can be seen as classical measure-
ment contexts (Boolean subalgebras) containing enough information about
a quantum system with ‘sharp’ effects (since an important class of examples
of orthoalgebras is given by the set of projections on a Hilbert space).

The rest of this section is devoted to showing that no such reconstruc-
tion result can hold for all effect algebras, even when we relax the Boolean
condition and consider all subalgebras. Given an effect algebra, Example 1.2
constructs a non-isomorphic effect algebra without altering the Boolean sub-
algebra poset, thus showing that no result of the form of Theorem 1.1 holds
for the class of all effect algebras. Example 1.3 strengthens this observa-
tion: we give a countable collection of non-isomorphic effect algebras which
all have the same subalgebra poset (up to an isomorphism), not just of
Boolean subalgebras but of all subalgebras. A reader unfamiliar with effect
algebras (or unwilling to dwell on the technical details) is encouraged to
skip the rest of this section and return back to the examples after reading
Sections 2.1 and 2.2.

The examples make use of two important classes of effect algebras:
Boolean algebras and finite chains with n ≥ 2 elements denoted by Ln.
In the former, two elements are orthogonal if they are disjoint (their meet is
0), in which case the effect algebra sum is given by the join. The latter may
be seen as finite subalgebras of the unit interval, and two elements a, b ∈ Ln
are orthogonal if a + b ≤ 1, in which case their effect algebra sum is just
a+ b. The orthosupplement of a is given by a′ = 1− a. See Examples 2.7,
2.18 and 2.19 for details.

Example 1.2. We begin by noting that the only Boolean subalgebra of
L3 = {0, 12 , 1} is the two-element algebra {0, 1}.

Now let E be an arbitrary effect algebra. Consider the coproduct effect
algebra E t L3, which may be constructed by taking the disjoint union of
the underlying sets and identifying 1’s as well as the 0’s. The orthogonality
relation is then given by x ⊥ y iff x and y are contained in one of the
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summands and are orthogonal in it. When the coproduct is constructed in
this way, we claim that B ⊆ EtL3 is a Boolean subalgebra iff B ⊆ E and B
is a Boolean subalgebra of E. The ‘if’ direction is clear, as any subalgebra of
E is a subalgebra of E t L3. The ‘only if’ direction is also straightforward:
for if a Boolean subalgebra B ⊆ E t L3 contains 1

2 , then 1
2 ⊥

1
2 implies

1
2 = 1

2 ∧
1
2 = 0, which is a contradiction.

Thus we have observed that BSub(E t L3) = BSub(E) for any effect
algebra E. So in particular, we may take E to be a Boolean algebra with
more than four elements, so that the condition of E t L3 being proper is
satisfied. Then there is no procedure that uniquely recovers E t L3 from
BSub(E t L3), as the same procedure would also recover E, which is not
isomorphic to E t L3.

The following example is inspired by Example 2.4 in Riečanová [49],
which was translated from D-posets to effect algebras by Dvurečenskij [22,
Example 2.3].

Example 1.3. Let p ≥ 3 be a prime number. Define an effect algebra Ep
as follows. Let {a, a′} t Lp+1 be the underlying set. For q, r ∈ Lp+1, define
q ⊥ r iff q and r are orthogonal in Lp+1, and then q ⊕ r is the sum in Lp+1.
Then, let

a ⊥ a, a ⊥ 1

p
, a ⊥ a′ and

a⊕ a =
p− 1

p
, a⊕ 1

p
= a′, a⊕ a′ = 1.

It is straightforward to verify that this indeed defines an effect algebra.
Below we depict the Hasse diagram of Ep.

0

a 1
p

a′
p−1
p

1

Observe that the only subalgebras of Ep are {0, 1}, Lp+1 and Ep, as Lp+1 has
no non-trivial subalgebras (since p is prime), and any subalgebra containing
{a, a′} must also contain (a⊕a)′ = 1

p , whence it must be Ep. Thus the poset
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of subalgebras of Ep is the three element chain, independently of p. Thus we
have a countable collection of effect algebras (one for each prime) with the
same subalgebra poset. To add insult to injury, this is also the subalgebra
poset of the chain L5.

Note that Example 1.3 shows that the reconstruction is not possible al-
ready for MV-algebras: the chains Lp all have isomorphic subalgebra posets.

1.2 Physical motivation: Bohr’s doctrine of clas-
sical concepts

Ever since the Kochen-Specker theorem [40], it has been clear that Boolean
algebras do not provide adequate semantics for the logic of quantum observ-
ables: the heart of the proof is that there is a partial Boolean algebra of
propositions describing a quantum system which is not embeddable into a
(total) Boolean algebra. This has spawned a search for the ‘correct’ (partial)
algebraic structure that would capture the observational and propositional
nature of a quantum system. A promising such class of structures is that of
effect algebras, having their origins in the operational approach to quantum
mechanics.

On the other hand, there has been a significant amount of research to rec-
oncile the fundamental non-commeasurability of quantum observables with
the fact that the means by which we obtain information from a system are
always classical. In more detail, any single measurement in an experimental
setup can only access a subsystem of the full quantum system that consists of
simultaneously measurable quantities. An individual measurement is there-
fore ‘classical’ in this sense. A classic example is the momentum-position
pair, of which only one can be measured with arbitrary precision. This gives
rise to the question: are such ‘classical snapshots’ sufficient to know the full
quantum system? Similar considerations led Bohr to formulate his principle
which came to be known as the doctrine of classical concepts: roughly, all
and only physically relevant information about a quantum system is acces-
sible via classical measurements. See Chapter I of Scheibe [52] for a detailed
discussion of Bohr’s views (specifically Sections I.2(e) and I.2(g) for the
classical concepts); and Camilleri and Schlosshauer [13] for a more recent
perspective.

The research paradigm that undertook the effort of making Bohr’s doc-
trine precise is known as topos quantum theory [21], [33]. The approach
taken by Heunen, Landsman and Spitters [33] starts from the formulation

5



of quantum mechanics in terms of C∗-algebras, although the precise alge-
braic details are not important for our purposes. Suffice it to say that the
hom-set Hilb(H,H) of continuous linear operators on a Hilbert space H has
the structure of a C∗-algebra, and in fact by the Gelfand-Naimark theorem
[27], any C∗-algebra embeds into one of this form.

The algebraic counterpart of non-commeasurability is non-commutativity,
and conversely, commutativity can be regarded as classicality. Indeed, the
C∗-algebra of a Hilbert space is in general non-commutative, while its com-
mutative subalgebras can be regarded as the classically commeasurable sets
of observables, or as ‘classical contexts’ which may be held fixed while the
observables in that context are measured. The idea of Heunen et al. is to
consider the poset of commutative subalgebras C(A) of a C∗-algebra A. The
question is then twofold:

(1) Does the poset C(A) contain enough information about A so that it
could be thought to fully capture all the physically relevant informa-
tion?

(2) Is there a way to reason about A classically using C(A)?

The former question is answered in the positive in e.g. Hamhalter [30, The-
orem 3.4], so long as one accepts that the physically relevant information is
the Jordan structure of A. See also Döring and Harding [20] for a similar
result for von Neumann algebras, the PhD thesis of Lindenhovius [45] for
an extensive discussion of the structure of C(A), as well as the list at the
very beginning of the introduction of Heunen and Lindenhovius [34] for a
collection of properties of A that can be recovered from C(A).

The latter question is answered by Heunen et al. by showing that the
‘tautological’ presheaf in the presheaf topos [C(A),Set] defined by C 7→ C
on objects and (C ⊆ D) 7→ (C ↪→ D) on morphisms has the structure of a
commutative C∗-algebra internally in the presheaf topos. The combination
of these two facts allows one to reason about a quantum system as if it
were classical. Heunen et al. call this process Bohrification. See the 2017
expository article of Heunen [32] for an overview of how different parts of
this research program fit together.

It is the first of the above questions that serves as the high-level mo-
tivation for this work. While Harding et al. [31] were able to reconstruct
an algebra representing a quantum system with sharp effects (projections)
only, general systems also contain unsharp effects. Thus it is meaningful to
ask the same question for effect algebras. As we have seen in the previous
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section, for effect algebras it is not even clear what this ‘poset of classi-
cal substructures’ should be, as even the poset of all subalgebras fails to
determine some effect algebras, to say nothing of a subclass of subalgebras.

We suggest that instead of subalgebras, we should consider the poset
of partitions of unity ordered by refinement (Definition 6.2). Physically
this is motivated by their close link with positive operator valued measures
(POVMs). Thus the main result of this work (Theorem 6.24) is a recon-
struction result in a very special case. In the light of the examples in the
previous section, the reconstruction result is somewhat surprising. Based on
the examples one might think that some additional condition on effect alge-
bras or MV-algebras are needed to make them physical. And indeed there
are effect algebras and MV-algebras which have nothing to do with phys-
ical systems. Thus the reconstruction result (especially if Conjecture 7.1
turns out to hold) suggests that the notion of a (generalised) measurement
may play a role in the theory of effect algebras and MV-algebras beyond its
physical significance.

1.3 How to read this thesis

The remaining chapters are structured as follows.

Chapter 2 defines effect algebras, orthoalgebras and MV-algebras, as
well as finite multisets and setoids. The reader already familiar with effect
algebras/orthoalgebras or MV-algebras may skip Section 2.1 or Section 2.2,
respectively, and refer back if necessary. Similarly, the reader familiar with
multisets may skip Section 2.3, with the possible exception of construction
of the multisets-to-setoids functor (right after Definition 2.24).

The entirety of Chapter 3 is dedicated to proving that the categories of
finite multisets and finite MV-algebras are dually equivalent via the powerset
functor (Theorem 3.8). This is a special case of a more general duality proved
by Cignoli, Dubuc and Mundici [19]. If a reader is familiar with this duality,
or is willing to take Theorem 3.8 on trust, then this chapter may be skipped.

Chapter 4 gives and unifies two ways of viewing effect algebras as presheaves.
This is based on the work by Staton and Uijlen [55]. We use this to give an
isomorphism criterion for effect algebras (Corollary 4.10).

Chapter 5 uses the isomorphism criterion for effect algebras from Chap-
ter 4 to show that a Boolean algebra with more than four elements is
uniquely determined by the poset of its finite subalgebras (Theorem 5.24).
This is a strengthening of a known result with a new proof.

In Chapter 6, we first define partitions of unity, partition poset of a
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finite multiset and the setoid quotient of finite setoids. We then show that
the partition posets of finite multisets coincide with the setoid quotients
(Lemma 6.13). Finally, we use the duality of finite multisets with finite
MV-algebras (Chapter 3) to show that any finite MV-algebra with more
than four elements is uniquely determined by its poset of partitions of unity.

In the concluding Chapter 7, we suggest a conjecture that any effect
algebra is determined by its poset of partitions of unity (Conjecture 7.1).
We point out that the reconstruction results of Chapters 5 and 6 are both
special cases of this very general conjecture.

Appendix A defines functors that are essentially injective/isomorphic on
objects, as these notions are not entirely standard. Appendix B contains a
short note on how to extend the setoid quotient (Definition 6.10) to a functor.
Appendix C introduces finite product theories and establishes a Yoneda-like
isomorphism criterion in this general context (Proposition C.29). This gives
an alternative way to prove the reconstruction result for Boolean algebras
(Theorem 5.24) without resorting to effect algebras.

1.4 Contributions

Two main results of this work are essential injectivity of the finite subalgebra
functor on Boolean algebras with more than four elements (Theorem 5.24)
and essential injectivity of the partitions of unity functor on finite MV-
algebras with more than four elements (Theorem 6.24). The former is a
strengthening of a result proved by Sachs [51], Filippov [24] and Grätzer,
Koh and Makkai [29], while the latter, to the knowledge of the author,
is completely new. The proof of the former result differs from the proof
strategy of any of the quoted authors, and, the author believes, is more
conceptual than the previous proofs.

As a technical tool for showing essential injectivity of the partitions
of unity functor, setoid quotients are introduced (Definition 6.10) and are
shown to coincide with the partition posets of finite multisets (Lemma 6.13).

The dual equivalence of finite multisets with finite MV-algebras (Theo-
rem 3.8) is shown by constructing the powerset functor, which, albeit natu-
rally isomorphic to (a restriction of) the construction of [19], is different in
spirit.
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Chapter 2

Structures at hand

This chapter introduces the structures that are the object of study of the
remaining chapters. Section 2.1 focusses on two closely related partial al-
gebraic structures: effect algebras and orthoalgebras. Section 2.2 defines
MV-algebras and shows that these form a subcategory of effect algebras.
Both sections outline the relation of these structures to Boolean algebras
and posets. The topic of Section 2.3 are the combinatorial structures used
as a tool in Chapter 6: finite multisets and finite setoids.

We summarise the relations between all the structures we will encounter
in the diagram of Figure 2.1. The rest of the thesis can be seen as defining
the objects of this diagram as well as proving results about them. The
reader is encouraged to return to the diagram whenever a new structure is
introduced, or a theorem is proved, to see how it fits the general picture.

There is a slight dishonesty in the caption of Figure 2.1: the setoid
quotient SQuot is not a functor, as it is only defined on objects and there
is no natural way to define it on morphisms. The possibilities of extending
SQuot to a functor are the object of discussion of Appendix B.
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EAlg
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Part

$$

PartM

��

FinSub
22

FinBSub

//

FinSetoidop
Xop

--

SQuot

��

Figure 2.1: A road map of categories and functors.

Notation Means Where defined

FinSet category of finite sets -
FinMul category of finite multisets Definition 2.21

FinSetoid category of finite setoids Definition 2.24
BAlg category of Boolean algebras -

FinBA category of finite Boolean algebras -
MVAlg category of MV-algebras Section 2.2
FinMV category of finite MV-algebras -
EAlg category of effect algebras Section 2.1
OAlg category of orthoalgebras Section 2.1
Pos category of posets -
P powerset functor Section 3.2
X multisets-to-setoids functor Section 2.3

FinSub finite subalgebra poset Theorem 5.24
FinBSub finite Boolean subalgebra poset Section 6.1

Part partitions of unity functor Section 6.1
PartM multiset partitions functor Definition 6.7
SQuot setoid quotient Definition 6.10
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In Figure 2.1, P : FinSetop → FinBA stands for the usual powerset
functor exhibiting the dual equivalence of finite sets and finite Boolean al-
gebras. It can be seen as (naturally isomorphic to) the domain-codomain
restriction of the powerset functor for multisets P : FinMulop → FinMV,
so that there is no confusion to denote them by the same symbol. We write
↪→ for the subcategory inclusion up to an equivalence, while ∼ stands for
an equivalence of categories. The notation used in Figure 2.1 is explained
in the table below it, where we also refer to the relevant part of the current
text where the object in question is discussed.

2.1 Effect algebras and orthoalgebras

Effect algebras (and equivalent structures) were introduced by three dif-
ferent schools starting from the late 1980s in an attempt to capture the
(partial) algebraic structure of the Hilbert space effects E(H). Interestingly,
as Bennett and Foulis [5] point out, Boole in his An investigation of the
laws of thought, considers +, the operation that is to become the join of a
Boolean algebra, a partial operation that only applies to disjoint elements
[7, Class II, p. 23]. Bennett and Foulis proceed to give a characterisation
of Boolean algebras where the ‘join’ is indeed restricted to the orthogonal
elements [5, Theorem 1.1]; this is in effect our observation in Example 2.7
that each Boolean algebra can be seen as an effect algebra.

In 1989, Giuntini and Greuling [28] summarised the properties of Hilbert
space effects in the notion of a weak orthoalgebra. In 1994, Chovanec and
Kôpka [41] introduced D-posets as posets with a partial difference operation.
Later, both of these structures were shown equivalent to effect algebras as
introduced by Bennett and Foulis [5] in 1994. For much more details on
effect algebras and related structures, we refer the reader to Dvurečenskij
and Pulmannová [23].

One aspect of effect algebras making them interesting is that they gen-
eralise both structures that are typically associated as providing semantics
for a (quantum) logic, and structures that are closely associated with the
study of probabilities. Examples of the former include Boolean algebras, or-
thomodular posets, orthomodular lattices, orthoalgebras and MV-algebras.
Examples of the latter are the unit interval, σ-algebras, Hilbert space effects
and effects in a C∗-algebra. For the discussion of some logical aspects of
effect algebras, see e.g. Foulis and Pulmannová [26], Rad, Sharafi and Smets
[48] and Chajda, Halaš and Länger [14]. For connections to categorical logic,
see Jacobs [36]. The probabilistic aspects are developed in e.g. Westerbaan,
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Westerbaan and van de Wetering [56] and Staton and Uijlen [55].

A special case of an effect algebra is an orthoalgebra, where every non-
zero element is sharp, that is, not orthogonal to itself (cf. axiom (O4)). As
mentioned in the introduction, sharp elements correspond to effects whose
probability of occurring is either 0 or 1.

Definition 2.1 (Effect algebra). An effect algebra is a partial algebra

(E, 0, 1,′ ,⊥,⊕)

with a set E, constants 0 and 1 in E, a total unary operation ′ : E → E, a
binary relation ⊥ ⊆ E×E, and a partial binary operation ⊕ : ⊥ → E, such
that axioms (E1)-(E4) hold for all a, b, c ∈ E:

(E1) if a ⊥ b, then b ⊥ a and a⊕ b = b⊕ a,

(E2) if a ⊥ b and (a⊕ b) ⊥ c, then b ⊥ c and a ⊥ (b⊕ c) as well as

(a⊕ b)⊕ c = a⊕ (b⊕ c),

(E3) a ⊥ a′ and a⊕ a′ = 1, and if a ⊥ b such that a⊕ b = 1, then b = a′,

(E4) if a ⊥ 1, then a = 0.

The unary operation ′ is called orthosupplementation and we refer to a′ as
the orthosupplement of a. The domain of definition ⊥ of ⊕ is called the
orthogonality relation on E, and we say that a, b ∈ E are orthogonal if and
only if a ⊥ b. The operation ⊕ is referred to as the orthogonal sum or simply
the sum.

Axioms (E1) and (E2) are referred to as (partial) commutativity and
(partial) associativity. We refer to the second part of (E3) as uniqueness (of
orthosupplements).

We will sometimes simply write a ⊕ b and leave the fact that a ⊥ b
implicit.

Definition 2.2. Let E and F be effect algebras. A function f : E → F is
a morphism of effect algebras if f(1) = 1 and for all a, b ∈ E

a ⊥ b implies f(a) ⊥ f(b) and f(a⊕ b) = f(a)⊕ f(b).
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Note that an effect algebra morphism f : E → F preserves orthosupple-
ments: since a ⊥ a′, we have f(a) ⊥ f(a′) and

1 = f(a⊕ a′) = f(a)⊕ f(a′),

whence by uniqueness of orthosupplements f(a′) = f(a)′.
We denote the category of effect algebras by EAlg.

Definition 2.3 (Orthoalgebra). We obtain a definition of an orthoalgebra
from the definition of an effect algebra 2.1 by replacing (E4) with

(O4) if a ⊥ a, then a = 0.

It is easy to see that every orthoalgebra is an effect algebra. Indeed, we
only need to check the axiom (E4): if a ⊥ 1, then by (E3) a ⊥ (a⊕ a′) and
by (E2) a ⊥ a, whence (O4) gives a = 0.

A morphism of orthoalgebras is then just a morphism of effect algebras.
We write OAlg for the resulting category.

In the following proposition, we record some immediate consequences of
the axioms for an effect algebra.

Proposition 2.4. Let E be an effect algebra. The following hold for all
a, b, c ∈ E:

(i) a′′ = a,

(ii) 0′ = 1,

(iii) a ⊥ 0, and a⊕ 0 = a,

(iv) a⊕ b = 0 implies a = b = 0,

(v) a⊕ b = a⊕ c implies b = c.

Statement (iv) is referred to as positivity, and statement (v) as the can-
cellation property.

Proof. (i) By (E3) and (E1), a′ ⊕ a = 1, so that by the uniqueness part
of (E3) a = a′′.

(ii) By (E3), 1 ⊥ 1′, so that by (E4) 1′ = 0, whence 0′ = 1 by (i).

(iii) By (E3) and (ii), a⊕ a′ = 1 = 0′, so that 0 ⊥ (a⊕ a′), whence by (E2)
a ⊥ 0 and

(a⊕ 0)⊕ a′ = 0⊕ (a⊕ a′) = 0 + 0′ = 1.

Uniqueness part of (E3) then gives a⊕ 0 = a′′ = a.
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(iv) Observe that the uniqueness part of (E3) yields that

(a⊕ b)′ ⊕ a = b′,

so that a ⊕ b = 0 implies (using (ii)) that a ⊥ 1, whence a = 0. By
(iii) this gives b′ = 1, so that b = 0.

(v) As before, observe that

(a⊕ b)′ ⊕ a = b′ and (a⊕ c)′ ⊕ a = c′,

so that a⊕ b = a⊕ c gives b′ = c′, whence b = c.

Given an effect algebra E, define a relation ≤ on E by a ≤ b iff there is
a c ∈ E such that a ⊥ c and a⊕ c = b.

Proposition 2.5. For every effect algebra, (E,≤) is a bounded poset with
the least and greatest elements 0 and 1.

Proof. Reflexivity follows from the fact that a ⊕ 0 = a ((iii) of Proposi-
tion 2.4).

For transitivity, suppose a ≤ b and b ≤ d, so that there are c and e with
a⊕ c = b and b⊕ e = d. By associativity, this gives

d = (a⊕ c)⊕ e = a⊕ (c⊕ e),

showing a ≤ d.
For antisymmetry, suppose a ≤ b and b ≤ a witnessed by a⊕ c = b and

b⊕ d = a. Using associativity and (iii) of Proposition 2.4, this gives

a⊕ 0 = a = (a⊕ c)⊕ d = a⊕ (c⊕ d),

so that by the cancellation property ((v) of Proposition 2.4) we get c⊕d = 0.
Now (iv) of Proposition 2.4 gives that c = d = 0, so that a = b.

Since 0 ⊕ a = a for all a, we have 0 ≤ a for all a, showing that 0 is the
bottom element. Since a⊕ a′ = 1 for all a, we have a ≤ 1 for all a, showing
that 1 is the top element.

Thus we may use all the standard terminology about partial orders with
relation to effect algebras. In particular, observe that an effect algebra map
is order-preserving, as it preserves orthogonality. This partial order interacts
with the effect algebra operations as follows.
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Proposition 2.6. The following properties hold for any elements a and b
of an effect algebra

(i) a ≤ b iff b′ ≤ a′,

(ii) a ⊥ b iff a ≤ b′.

Proof. (i) If a ≤ b, let c be such that a ⊕ c = b. Then b′ = (a ⊕ c)′, so
that a′ = c ⊕ (a ⊕ c)′ = c ⊕ b′, showing b′ ≤ a′. The converse follows
by the fact that ′ is involutive ((i) or Proposition 2.4).

(ii) If a ⊥ b, then b′ = a⊕ (a⊕ b)′, so that a ≤ b′. If a ≤ b′, let c be such
that a⊕ c = b′. Since b′ ⊥ b, axiom (E2) yields a ⊥ b.

Example 2.7. Every Boolean algebra can be seen as an orthoalgebra (and
hence an effect algebra). Indeed, if B is a Boolean algebra, define a ⊥ b iff
a ∧ b = 0, in which case a ⊕ b := a ∨ b. The orthosupplement is just the
Boolean complement, the constants 0 and 1 are the same as in B.

The axioms (E1)-(E3) and (O4) then follow easily from the properties
of the Boolean operations. The partial order of an effect algebra obtained
from a Boolean algebra coincides with the usual order. Namely, a ∧ b = a
iff a ∨ b = b iff these is a c ∈ B with a ∧ c = 0 and a ∨ c = b (for the ‘only
if’ direction, take c = b ∧ a′). Thus there is no ambiguity to write a ≤ b for
elements of a Boolean algebra.

In fact, the category of Boolean algebras BAlg is a full subcategory
of EAlg (and hence of OAlg) when Boolean algebras are viewed as ef-
fect algebras in the above way. Indeed, if f : B → C is a morphism of
Boolean algebras, then it is a morphism of effect algebras since it preserves
the Boolean operations, thus orthogonality and the effect algebra operations.
Conversely, if f : B → C is a morphism of effect algebras, then f(1) = 1
and f(a′) = f(a)′. Since f preserves the order, for all a, b ∈ B we have

f(a) ∨ f(b) ≤ f(a ∨ b).

We wish to show the reverse inequality. Observe that

a ∨ b = a ∨ (b ∧ a′) and a ⊥ (b ∧ a′),

so that f(a) ⊥ f(b∧a′) and f(a∨ b) = f(a)∨f(b∧a′). Using once more the
fact that f is order-preserving, we have f(b ∧ a′) ≤ f(b), whence we obtain

f(a ∨ b) = f(a) ∨ f(b ∧ a′) ≤ f(a) ∨ f(b),
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showing that f preserves ∨. By a de Morgan law it follows that f preserves
∧, and is thus a morphism of Boolean algebras.

Example 2.8. As an example of an orthoalgebra which is not a Boolean
algebra, consider the ‘glueing’ of two four-element Boolean algebras A =
{0, 1, a, a′} and B = {0, 1, b, b′} such that the constants 0 and 1 coincide and
x ⊥ y iff x, y ∈ X for either X = A or X = B such that and x ⊥ y in X, in
which case the sum is defined as the sum in X. This is in fact the coproduct
of A and B in EAlg, which in the effect algebra literature is known as the
horizontal sum. The Hasse diagram of the resulting orthoalgebra is depicted
below.

0

a b′ba′

1

Examples of effect algebras that are not orthoalgebras are discussed in
the next section.

2.2 MV-algebras

MV-algebras were introduced by Chang [16] as algebraic models of  Lukasie-
vicz many-valued logics (MV stands for ‘many-valued’). Subsequently, Chang
[15] showed that the ℵ0-valued  Lukasievicz logic is complete with respect to
the class of all MV-algebras. In fact Chang’s result is stronger than this: a
formula is provable iff it is valid in all MV-algebras iff it is valid in linearly
ordered MV-algebras (cf. Proposition 2.15) iff it is valid in the unit interval
(see Example 2.18).

We refer the reader to Cignoli, d’Ottaviano and Mundici [17] for more
details and for a systematic introduction to MV-algebras. See also Mundici’s
tutorial [47] containing a nice game-theoretic motivation.

Definition 2.9. An MV-algebra is an algebra (M, 0, 1,′ ,+) with constants 0
and 1, a unary operation ′ : M →M and a binary operation + : M×M →M
such that the following axioms hold:

(MV1) a+ (b+ c) = (a+ b) + c, (associativity)

(MV2) a+ b = b+ a, (commutativity)
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(MV3) a+ 0 = a,

(MV4) a+ 1 = 1,

(MV5) a′′ = a,

(MV6) 0′ = 1,

(MV7) a+ a′ = 1,

(MV8) (a′ + b)′ + b = (a+ b′)′ + a.

We will refer to the operation + as the sum.

If a is an element of an MV-algebra and n ∈ N, we use the abbreviation
n · a or na for the n-fold sum of a with itself (with the convention that
0 · n = 0).

Since MV-algebras are models of an algebraic theory (e.g. in the sense
of Definition C.10), the MV-algebra morphisms are just the usual maps of
algebras, namely the signature-preserving functions. We denote the category
of MV-algebras by MVAlg.

Given an MV-algebra M , we define two more binary operations

∧,∨ : M ×M →M

a ∧ b :=
((
a+ b′

)′
+ b′

)′
a ∨ b :=

(
a′ + b

)′
+ b.

Note that commutativity of + together with (MV8) yield that both ∧ and
∨ are commutative. We define relations ≤ and ⊥ on M by a ≤ b iff a = a∧b
and a ⊥ b iff a ≤ b′. Define an operation ⊕ : ⊥ →M simply by a⊕b := a+b.
We then have the following.

Lemma 2.10. In any MV-algebra, a ⊥ b iff a′+ b′ = 1. Equivalently, a ≤ b
iff a′ + b = 1.

Proof. We prove the first statement. If a ⊥ b, then a = a∧b′ = ((a+ b)′ + b)′,
so that

a′ + b′ = (a+ b)′ + b+ b′ = (a+ b)′ + 1 = 1.

If a′ + b′ = 1, then

a ∧ b′ =
(
(a+ b)′ + b

)′
=
((
a′ + b′

)′
+ a′

)′
=
(
0 + a′

)′
= a,

so that a ⊥ b.
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In particular, Lemma 2.10 implies that ⊥ is a symmetric relation. The
following properties of how the sum interacts with ≤ are now immediate.

Proposition 2.11. For any elements a, b and c of an MV-algebra, we have

(i) a ≤ a+ b,

(ii) if a ≤ b, then a+ c ≤ b+ c.

Proof. (i) We compute: (a+ b)∧ a =
(
(a+ b+ a′)′ + a′

)′
= (0 + a′)′ = a.

(ii) Suppose a ≤ b, so that a′ + b = 1. Then

(a+ c)′ + (b+ c) =
(
a′ + c′

)′
+ a′ + b =

(
a′ + c′

)′
+ 1 = 1,

so that a+ c ≤ b+ c.

Lemma 2.12. Let a be an element in an MV-algebra. Then b = a′ if and
only if

• a+ b = 1 and

• a′ + b′ = 1.

Proof. The ‘only if’ direction is immediate. If the two equalities hold, then
(MV8) gives

b = (a+ b)′ + b =
(
a′ + b′

)′
+ a′ = a′.

Proposition 2.13. For any MV-algebra M , the tuple (M, 0, 1,′ ,⊥,⊕) is an
effect algebra. Moreover, the partial order of this effect algebra is precisely
the relation ≤.

Proof. We first show that the axioms (E1)-(E4) are satisfied.

(E1) If a ⊥ b, then b ⊥ a by symmetry of ⊥ and a ⊕ b = b ⊕ a by commu-
tativity of +.

(E2) Suppose a ⊥ b and (a+ b) ⊥ c, so that by Lemma 2.10 a′+ b′ = 1 and
(a+ b)′ + c′ = 1. Then

b′ + c′ =
(
a′ + b′

)′
+ b′ + c′ = (a+ b)′ + a+ c′ = 1 + a = 1,
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showing b ⊥ c, and

a′ + (b+ c)′ =
(
a′ + b′

)′
+ a′ + (b+ c)′

= (a+ b)′ + b+ (b+ c)′

= (a+ b)′ + c′ +
(
b′ + c′

)′
= 1 +

(
b′ + c′

)′
= 1,

showing a ⊥ (b⊕ c). Then (a⊕ b)⊕ c = a⊕ (b⊕ c) is just associativity
of +.

(E3) Since 1 = a+a′ = a′′+a′, we have a ⊥ a′ by Lemma 2.10. Uniqueness
is simply Lemma 2.12.

(E4) If a ⊥ 1, then by Lemma 2.10, a′ + 0 = a′ = 1, whence a = 0.

Now let a, b ∈M . Suppose there is a c ∈M such that a+ c = b (and a ⊥ c).
Then

b ∧ a =
((
a+ c+ a′

)′
+ a′

)′
= a,

showing a ≤ b. Conversely, if a ≤ b so that by Lemma 2.10 a′ + b = 1, then
let c := (b′ + a)′. We have

a′ + c′ = a′ + b′ + a = 1 and a+ c = a+
(
b′ + a

)′
= b+

(
b+ a′

)′
= b,

and the former is equivalent to a ⊥ c once more by Lemma 2.10. Thus ≤ is
precisely the partial order of the effect algebra.

We therefore call elements a and b of an MV-algebra orthogonal when
they are orthogonal in the corresponding effect algebra, that is, if a ⊥ b iff
a ≤ b′ iff a′ + b′ = 1.

The following Corollary is now immediate from (iv) and (v) of Proposi-
tion 2.4.

Corollary 2.14. The following hold for all elements a, b, c of an MV-algebra:

(i) if a ≤ b′ and a+ b = 0, then a = b = 0,

(ii) if b, c ≤ a′ and a+ b = a+ c, then b = c.

Proposition 2.15. For any MV-algebra M , the tuple (M, 0, 1,≤,∧,∨) is a
bounded lattice.

19



Proof. The fact that (M, 0, 1,≤) is a bounded poset follows from Proposi-
tions 2.13 and 2.5.

Now by Lemma 2.10,

c ≤ a ∧ b iff c′ +
((
a+ b′

)′
+ b′

)′
= 1,

and similarly c ≤ a, b iff c′ + a = c′ + b = 1. Thus suppose c ≤ a ∧ b. Then

c′ + a = a+ c′ +

(
c′ +

((
a+ b′

)′
+ b′

)′)′
= a+

(
a+ b′

)′
+ b′ +

(
c+

(
a+ b′

)′
+ b′

)′
= b+

(
a′ + b

)′
+ b′ +

(
c+

(
a+ b′

)′
+ b′

)′
= 1,

and similarly c′ + b = 1, showing c ≤ a, b. Conversely, suppose c ≤ a, b.
Then

c′ +
((
a+ b′

)′
+ b′

)′
= c′ +

(
c′ + b

)′
+
((
a+ b′

)′
+ b′

)′
= b′ +

(
c+ b′

)′
+
((
a+ b′

)′
+ b′

)′
=
(
c+ b′

)′
+ a+ b′ +

(
a+ b′ + b

)′
=
(
c′ + b

)′
+ a+ c′

= 1,

showing c ≤ a ∧ b. Thus we have shown that c ≤ a, b iff c ≤ a ∧ b, so that ∧
satisfies the universal property of the meet.

For ∨, observe that we have a ∨ b = (a′ ∧ b′)′, so that a ∨ b ≤ c iff
c′ ≤ a′ ∧ b′ iff c′ ≤ a′, b′ iff a, b ≤ c.

Remark 2.16. In fact, any lattice obtained from an MV-algebra in the
above way is distributive. For a proof, see e.g. Dvurečenskij and Pulman-
nová [23, Proposition 2.2.4].

Thus any MV-algebra can be seen as an effect algebra whose partial
order is a distributive lattice. Since the meet and join are defined in terms
of the MV-algebra operations, it follows that any MV-algebra morphism is
also a lattice morphism. Since orthogonality is defined in terms of the order
and ⊕ is the restriction of +, every MV-algebra morphism is also an effect
algebra morphism. This exhibits MVAlg as a subcategory of EAlg.
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Example 2.17. Every Boolean algebra is an MV-algebra by taking ′ to be
the Boolean complement and + to be the join. It is then immediate that
the axioms (MV1)-(MV7) are satisfied, while (MV8) becomes

(a ∧ b′) ∨ b = (a′ ∧ b) ∨ a,

so that by distributivity (and by the fact that ′ is the complement) both
sides reduce to a ∨ b. Since preservation of joins, complements and 1 is
sufficient for a map to be a Boolean algebra morphism, the category BAlg
is a full subcategory of MVAlg.

Example 2.18. An important example of an MV-algebra is the real unit
interval [0, 1] with ‘truncated addition’ a⊕ b := min(a+ b, 1) (we write ⊕ for
the MV-algebra operation to distinguish it from addition of real numbers)
and a′ := 1− a. Again, it is easy to see that the axioms (MV1)-(MV7) hold
and (MV8) follows by case analysis.

The unit interval gives an example of an effect algebra which is not an
orthoalgebra: we have a ⊥ b iff a ≤ 1− b iff a + b ≤ 1, so that for example
1
3 ⊥

1
3 while 1

3 6= 0.

Example 2.19. Another important class of examples of MV-algebras are
the subalgebras of [0, 1] generated by 1

n−1 for each natural number n ≥ 2.
For each natural number n ≥ 2, we denote such a subalgebra by Ln. Note
that Ln has n elements, and its underlying set is given by

Ln =

{
m

n− 1
: m ∈ N and m ≤ n− 1

}
.

Thus Ln is just a chain of n elements. It turns out that these are precisely
the finite subalgebras of [0, 1], see Section 3.5 of Cignoli, d’Ottaviano and
Mundici [17]. Moreover, we have Ln ⊆ Lm if and only if n−1 divides m−1.

Remark 2.20. Note that while BAlg is a full subcategory of both MVAlg
and EAlg, the MV-algebras MVAlg are not a full subcategory of EAlg.
Consider, for instance, a map f from the four-element Boolean algebra
{0, 1, a, a′} to MV-algebra L3 defined below:

a a′

1

0

1

1
2

0

.
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This is a morphism of effect algebras as 1
2 ⊥

1
2 and 1

2 ⊕
1
2 = 1, but not a

morphism of MV-algebras, as we have a = a ∨ a but

f(a) =
1

2
6= f(a)⊕ f(a) = 1.

2.3 Finite multisets and setoids

What matters about a set is how many elements it has. More formally, the
only structural (i.e. isomorphism invariant) property of a set is its cardinal-
ity. The idea of a multiset comes from adding one more invariant to this
picture: what matters about a multiset is how many elements it has and the
type of each element. Thus a good picture of a multiset is simply a set of
sets; we discuss this by showing that multisets may equivalently be viewed
as setoids (Proposition 2.25), which in turn correspond to partitions of sets.

While we are mostly interested in the order-theoretic properties of multi-
sets and setoids, they most frequently appear in combinatorics and computer
science. For multisets in combinatorics and computer science, see e.g. Hick-
man [35], Chapter 5 in Knuth [39], Section 1.2 in Stanley [54] and Section I.2
in Flajolet and Sedgewick [25]. For setoids in type theory, see e.g. Barthe,
Capretta and Pons [3] and Kinoshita and Power [38].

Our definition of the category of multisets largely follows the finite case
of Cignoli, Dubuc and Mundici [19].

Definition 2.21 (Finite multisets). The category of finite multisets FinMul
has as its objects pairs (A, η), where A is a finite set and

η : A→ N \ {0}

is a function.
A morphism from (A, η) to (B,µ) is given by a pair of functions (f, φ)

f : A→ B

φ : A→ N \ {0}

such that (µf) · φ = η, where multiplication is defined pointwise.
The identity morphism on (A, η) is just (idA, 1), where 1 : A→ N \ {0}

is the constant function with value 1. Given morphisms

(A, η)
(f,φ)−−−→ (B,µ)

(g,ψ)−−−→ (C, ν),

their composition is defined by

(g, ψ) ◦ (f, φ) := (gf, (ψf) · φ).
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Given a multiset (A, η), we refer to A as the types of the multiset. For
each type a ∈ A, we refer to η(a) as the multiplicity of the type a, and call
η the multiplicity function. The cardinality of (A, η) is given by

∑
a∈A η(a).

We will often represent a multiset by{
an1
1 , . . . , a

nk
k

}
,

where each ai is a type and ni the multiplicity of that type. Sometimes,
when the cardinality is small, we will simply repeat the types to represent
multiplicity, so that {a, a, b, b, b} is the same multiset as

{
a2, b3

}
. We will

also use the isomorphism invariant representation: a finite list of positive
integers:

(n1, . . . , nk),

whose length k corresponds to the number of types and each ni is the multi-
plicity of ith type. We adopt the convention that the list is non-decreasing.
With this convention, such lists are in bijection with isomorphism classes
of finite multisets. Thus the above multiset {a, a, b, b, b} is given (up to
isomorphism) by the list (2, 3).

With this terminology and notation, a morphism of finite multisets is a
function on types such that the multiplicity of each type in the domain is
divisible by the multiplicity of its image. For example, there is a morphism
of multisets {

a3, b5, c6
}
→
{
d, e, f3, g7

}
sending a, c 7→ f and b 7→ d, but no morphisms from

{
a3
}

to
{
a2
}

.

Remark 2.22. There is no good (or intrinsic) reason to define morphisms of
multisets the way we have defined them. In fact any multiset of cardinality
n corresponds uniquely (up to isomorphism) to an equivalence relation on
a finite set with n elements, and this captures the essence of the multiset:
the only thing that matters is the number of types and the multiplicity of
each type. Thus it would be perhaps more natural to define multisets as
setoids (see Definition 2.24 and Proposition 2.25). The reason for choosing
the more restricted version of morphisms is that the category FinMul is
dually equivalent to the category of finite MV-algebras (see Theorem 3.8).

Definition 2.23 (Submultisets). Let (A, η) be a finite multiset. A submul-
tiset is a function σ : A→ N such that σ ≤ η in the pointwise order.

If it is clear that we are talking about multisets, we will simply say subset
rather than submultiset. Note that, unlike in the definition of a multiset,
we allow subsets to contain types with zero multiplicity. This is mostly a

23



choice we made out of convenience, so that all subsets have the same domain.
Equivalently, we could have defined a submultiset as a multiset whose set
part is a subset of A and whose multiplicity function is below η. Given a
subset σ of (A, η), we write supp(σ) for its support, that is,

supp(σ) := {a ∈ A : σ(a) 6= 0}.

We will denote the set of all subsets of (A, η) by P(A, η) and call it the
powerset of (A, η). The powerset is partially ordered by the pointwise order
of the subsets. Observe that if (A, η) is a set (that is, η is constantly 1),
then P(A, η) is (isomorphic to) the poset of subsets of A in the usual sense.
We can define complements, unions and intersection of submultisets in much
the same way as for sets. While for a set this results in a Boolean algebra,
for a multiset we obtain an MV-algebra. This is done in detail in Lemmas
3.6 and 3.7.

We now move on to discuss setoids and how multisets can be viewed as
setoids.

Definition 2.24 (Finite setoids). The category of finite setoids FinSetoid
has as its objects finite sets equipped with an equivalence relation (S,∼),
and as its morphisms functions that preserve the equivalence relation.

There is a functor X : FinMul→ FinSetoid given by

(A,µ) 7→ (XA,∼),

on objects, where

XA :=
∐
a∈A

η(a)∐
i=1

{(i, a)}

and the equivalence relation is defined by (i, a) ∼ (j, b) iff a = b. There is
no canonical choice on how to define X on morphisms; we choose to map

(A, η)
(f,φ)−−−→ (B,µ) to

Xf : (XA,∼)→ (XB,∼)

(i, a) 7→ (i mod µ(f(a)), f(a)).

Proposition 2.25. The functor X : FinMul→ FinSetoid is faithful and
essentially isomorphic on objects.

Proof. For faithfulness, suppose

(f, φ), (g, ψ) : (A, η)→ (B,µ)
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are morphisms of multisets such that Xf = Xg. It follows that for each
a ∈ A, we have f(a) = g(a), so that f = g. Hence µf · φ = η = µf · ψ, and
since µ > 0 we get φ = ψ.

Now define a function Y : Ob(FinSetoid)→ Ob(FinMul) by

(S,∼) 7→ (S/∼ , η) ,

where η([a]) := |[a]| for each equivalence class in S/∼ . It is straightforward
to see that (A, η) ' Y X(A, η) and (S,∼) ' XY (S,∼) for all finite multisets
(A, η) and finite setoids (S,∼).
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Chapter 3

Finite multisets and finite
MV-algebras

The aim of this chapter is to establish a connection between finite multisets
and finite MV-algebras. Namely, we show that every powerset of a finite
multiset is an MV-algebra (Lemma 3.6), and that the powerset construction
extends to a contravariant functor. We then show that this powerset functor
is an equivalence, thus establishing a dual equivalence of the categories of
finite multisets and finite MV-algebras (Theorem 3.8). This extends the
well-known fact that the usual powerset functor gives a dual equivalence of
categories of finite sets and finite Boolean algebras.

The duality of this chapter is a special case of the duality between locally
finite MV-algebras and certain completion of multisets proved by Cignoli,
Dubuc and Mundici [19]. This extends the usual Stone duality. For the
detailed discussion of the finite case of the above duality, see Section 3 of
[18]. We remark that the powerset functor that we construct in this chapter
is not exactly the restriction of the functor exhibiting the duality in [18],
albeit it is naturally isomorphic to it.

3.1 Atoms in MV-algebras

This section collects results about atoms and sums of atoms in an MV-
algebra that will be needed to prove the duality of the next section.

Given an MV-algebra M , we denote its set of atoms by At(M). First,
observe that a is an atom if and only if a′ is a coatom, as we have b ≤ a iff
a′ ≤ b′.

Lemma 3.1. If a and b are distinct atoms of an MV-algebra, then a′+b = a′.
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Proof. Since both a′ and b′ are coatoms, by (i) of Proposition 2.11 we have
that either a′+b = a′ or a′+b = 1, and either b′+a = b′ or b′+a = 1. Observe
that we cannot have both a′ + b = 1 and b′ + a = 1, as then Lemma 2.12
would imply a = b. Thus if a′ + b = 1, then we must have b′ + a = b′, in
which case we compute:

b = b+
(
a′ + b

)′
= a+

(
b′ + a

)′
= a+ b,

which is a contradiction, since a and b are distinct atoms. Thus we must
indeed have a′ + b = a′ (and b′ + a = b′).

Proposition 3.2. If a and b are distinct atoms of an MV-algebra, then for
all n,m ∈ N we have

(n · a)′ +m · b = (n · a)′.

Proof. If m = 0, then this is a triviality, and if n = 0, then this reduces to
(MV4). Hence we may assume that m,n ≥ 1. We now claim that

b+ (n · a)′ = (n · a)′. (3.3)

Since the (n·a)′ is always below b+(n·a)′, it suffices to show the left-to-right
inequality. For clarity, let us write α := n · a. Observe that by Lemma 3.1,
we have that b′ + α = b′, and we wish to show

b+ α′ ≤ α′.

We thus compute:

α′ ∧
(
b+ α′

)
=

((
α′ +

(
b+ α′

)′)′
+
(
b+ α′

)′)′
=

((
b′ +

(
b′ + α

)′)′
+
(
b+ α′

)′)′
=
((
b′ + b

)′
+
(
b+ α′

)′)′
=
((
b+ α′

)′)′
= b+ α′,

whence the desired inequality (and hence equality) follows. To conclude, we
just observe that

(n · a)′ +m · b = (n · a)′

follows by repeatedly applying equation (3.3).
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We say that a finite multiset A = (A, η) is a multiset of atoms of an MV-
algebra if the set of types A is a subset of atoms. Given a multiset of atoms
A = (A, η), define its sum as

∑
A :=

∑
a∈A η(a) · a. This is well-defined by

associativity and commutativity of the MV-algebra sum.

Corollary 3.4. Let a be an atom of an MV-algebra, and let A be a multiset
of atoms such that a is not a type of A. Then n · a and

∑
A are orthogonal

for any n ∈ N.

Proof. The terms in the sum
∑
A are of the form m · b for some m ∈ N and

an atom b not equal to a, so that Proposition 3.2 yields

(n · a)′ +
∑
A = (n · a)′,

whence
∑
A ≤ (n · a)′.

Corollary 3.5. Let (a1, . . . , ak) be a finite sequence of distinct atoms in an
MV-algebra, and let (n1, . . . , nk) be a sequence of integers. Then

k∑
i=1

ni · ai =
k∨
i=1

ni · ai.

Proof. We argue by induction on k. If k = 1, there is nothing to show. Now
suppose the statement is true for some k, and consider sequences as above
of length k + 1. Then, writing c for

∨k
i=1 ni · ai =

∑k
i=1 ni · ai we get

k+1∨
i=1

ni · ai = (nk+1 · ak+1) ∨ c

=
(
(nk+1 · ak+1)

′ + c
)′

+ c

= nk+1 · ak+1 + c

=
k+1∑
i=1

ni · ai,

where the third equality uses Corollary3.4 as well as the induction hypoth-
esis. We conclude that the statement holds for all k.

3.2 Duality of FinMV and FinMul

Recall from Section 2.3 that we denote the powerset of a multiset (A, η) by
P(A, η). We begin the task of showing the titular duality by noticing that
each powerset is indeed an MV-algebra.
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Lemma 3.6. For every multiset (A, η), the powerset P(A, η) has the struc-
ture of an MV-algebra. Namely, we define the constant 0 as 0 : A→ N (the
constant function with value 0), the constant 1 as η, and for subsets σ and
τ we define σ′ and σ + τ by

σ′(a) := η(a)− σ(a)

(σ + τ)(a) := σ(a)⊕ τ(a) := min (σ(a) + τ(a), η(a))

for each a ∈ A.

Note that we denote by ⊕ the truncated addition of natural numbers,
and by + both addition of submultisets and of natural numbers.

Proof. In this proof only, we use square brackets in addition to the usual
parentheses for legibility.

The axioms (MV2)-(MV7) are immediate from the definitions. For
(MV1), let σ, τ and ν be subsets and let a ∈ A. We need to show that

σ(a)⊕ [τ(a)⊕ ν(a)] = [σ(a)⊕ τ(a)]⊕ ν(a).

First, if τ(a) + ν(a) ≥ η(a), then the left-hand side is equal to η(a), and

[σ(a)⊕ τ(a)]⊕ ν(a) ≥ τ(a)⊕ ν(a) = η(a),

so that right-hand side is also equal to η(a). Thus suppose τ(a)+ν(a) ≤ η(a),
so that τ(a) ⊕ ν(a) = τ(a) + ν(a). If σ(a) + τ(a) + ν(a) ≥ η(a), then the
left-hand side is again equal to η(a), and so is the right-hand side, as either
already σ(a) + τ(a) ≥ η(a) or the right-hand side reduces to the same case
as the left-hand side. If σ(a) + τ(a) + ν(a) ≤ η(a), then in particular
τ(a) + ν(a) ≤ η(a) and σ(a) + τ(a) ≤ η(a) and the statement reduces to
associativity of addition of positive integers.

For (MV8), let σ and τ be subsets and let a ∈ A. Without loss of
generality, suppose that σ(a) ≤ τ(a). We need to show that

[η(a)− [η(a)− σ(a)]⊕ τ(a)]⊕ τ(a) = [η(a)− [η(a)− τ(a)]⊕ σ(a)]⊕ σ(a).

Since σ(a) ≤ τ(a), we have that

η(a)− σ(a) + τ(a) ≥ η(a),

η(a)− τ(a) + σ(a) ≤ η(a).

Thus the left-hand side reduces to

[η(a)− η(a)]⊕ τ(a) = τ(a),
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and the right-hand side to

[τ(a)− σ(a)]⊕ σ(a) = τ(a),

hence we conclude.

The assignment of powerset to each multiset extends to a functor

P : FinMulop → FinMV

as follows. Let (f, φ) : (A, η) → (B,µ) be a morphism of finite multisets.
We then define a map (we omit φ from the map for clarity)

Pf : P(B,µ)→ P(A, η)

σ 7→ σf · φ,

where multiplication is defined pointwise. First observe that the map is
well-defined:

σf · φ ≤ µf · φ = η,

where the inequality holds since σ is a subset of (B,µ) and the equality since
(f, φ) is a morphism in FinMul. Thus Pf(σ) is indeed a subset of (A, η).
We now need to check that Pf is a morphism of MV-algebras. It is clear
that Pf sends zero to zero and µ to η. To see that Pf preserves + we need
to show that for all σ, τ ∈ P(B,µ) we have

(σ + τ)f · φ = σf · φ+ τf · φ,

which means for all a ∈ A

(σ(f(a))⊕ τ(f(a))) · φ(a) = (σ(f(a)) · φ(a))⊕ (τ(f(a)) · φ(a)).

But this is immediate, for if σ(f(a)) + τ(f(a)) ≤ µ(f(a)), then

σ(f(a)) · φ(a) + τ(f(a)) · φ(a) ≤ η(a),

so that the equality holds by distributivity of multiplication. Similarly,
if σ(f(a)) + τ(f(a)) ≥ µ(f(a)), then the left-hand side is equal to η(a),
and since σ(f(a)) · φ(a) + τ(f(a)) · φ(a) ≥ η(a) so is the right-hand side.
Preservation of ′ is even simpler; we simply compute

Pf(σ′) = Pf(µ− σ)

= (µ− σ)f · φ
= µf · φ− σf · φ
= η − σf · φ
= (σf · φ)′

= (Pf(σ))′ ,
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where subtraction is defined pointwise, and it is well-defined at each step
since subsets are below the multiplicity functions.

Lemma 3.7. The joins and meets in the powerset MV-algebra P(A, η) are
given by

(σ ∧ τ)(a) = min (σ(a), τ(a)) ,

(σ ∨ τ)(a) = max (σ(a), τ(a)) .

Proof. First, observe that the MV-algebra order of P(A, η) coincides with
the pointwise order. Indeed, by Lemma 2.10, σ is below τ in the MV-algebra
order iff σ′ + τ = η iff (η − σ) + τ = η iff for all a ∈ A we have

min (η(a)− σ(a) + τ(a), η(a)) = η(a)

iff η(a) − σ(a) + τ(a) ≥ η(a) for all a ∈ A iff σ(a) ≤ τ(a) for all a ∈ A iff
σ ≤ τ .

It is then easy to see that the pointwise minimum of σ and τ verifies the
universal property of the meet in the pointwise order: ν ≤ σ, τ iff ν(a) ≤
min(σ(a), τ(a)) for all a ∈ A. Similarly for the join.

Theorem 3.8. The powerset functor P : FinMulop → FinMV is an equiv-
alence of categories.

Proof. Let us fix finite multisets (A, η) and (B,µ).

Faithful: Suppose (f, φ), (g, ψ) : (A, η)→ (B,µ) are morphisms such that
Pf = Pg. Explicitly, this means that for all σ ∈ P(B,µ) we have

σf · φ = σg · ψ.

For each a ∈ A, let χf(a) : B → N denote the characteristic function of
f(a), that is, χf(a)(b) = 1 iff b = f(a) and is zero otherwise. Then χf(a) is
a subset of (B,µ), so that

χf(a)f · φ = χf(a)g · ψ.

Evaluating both sides at a yields

φ(a) = χf(a)(g(a)) · ψ(a).

Since φ(a) 6= 0, we must have χf(a)(g(a)) 6= 0, whence χf(a)(g(a)) = 1, so
that f(a) = g(a) and φ(a) = ψ(a). Thus we conclude that (f, φ) = (g, ψ),
as required.
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Full: Let F : P(B,µ)→ P(A, η) be a morphism of MV-algebras. For each
b ∈ B, let χb : B → N be the characteristic function of b. Observe that we
may decompose µ as ∑

b∈B
µ(b) · χb = µ,

where the notation µ(b) · χb stands for the µ(b)-fold sum of χb with itself.
Since F is an MV-algebra morphism, we get that∑

b∈B
µ(b) · Fχb = η. (3.9)

Hence given a ∈ A, since η(a) 6= 0, the above equality implies that there is
a b ∈ B such that Fχb(a) 6= 0. Such b is moreover unique: suppose that we
have c ∈ B such that also Fχc(a) 6= 0. From the fact that F preserves joins
we have

Fχb ∧ Fχc = F (χb ∧ χc),

and from Lemma 3.7 we have that the left-hand side is non-zero (that is, not
the zero function), as min (Fχb(a), Fχc(a)) 6= 0. Thus, since F preserves
the zero function, χb∧χc 6= 0, which again by Lemma 3.7 implies that b = c.

We therefore define

f : A→ B

a 7→ b s.t. Fχb(a) 6= 0,

which is well-defined by existence and uniqueness of such b. We moreover
define

φ : A→ N \ {0}
a 7→ Fχf(a)(a).

Now given a ∈ A, we have

µ(f(a)) · φ(a) = µ(f(a)) · Fχf(a)(a) = η(a)

by equation (3.9) and by choice of f(a). Thus (f, φ) : (A, η) → (B,µ) is
a morphism of multisets. Observe that on the characteristic functions Pf
acts as

Pf(χb)(a) = χb(f(a)) · φ(a) = Fχb(a),
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so that Pf(χb) = Fχb for all b ∈ B. To conclude, we compute for σ ∈
P(B,µ):

Pf(σ) = Pf

(∑
b∈B

σ(b) · χb

)
=
∑
b∈B

σ(b) · Pf(χb)

=
∑
b∈B

σ(b) · Fχb

= F

(∑
b∈B

σ(b) · χb

)
= Fσ.

Essentially surjective on objects: Let M be a finite MV-algebra. Ob-
serve that, since M is finite, for each atom a ∈ At(M), there is the least
n ∈ N \ {0} such that n · a = (n+ 1) · a. Thus let µ : At(M) → N \ {0} be
the map sending each atom to such n. We can thus define a map

ι : P(At(M), µ)→M

σ 7→
∑

a∈At(M)

σ(a) · a.

We claim that ι is an isomorphism of MV-algebras. We first show that it is
a bijection. Thus let m ∈M , and let

Am := {a ∈ At(M) : a ≤ m}

the set of atoms that lie below m. Since M is finite, Am is non-empty. For
each a ∈ Am, either there is the greatest n such that n ·a ≤ m, or µ(a) ≤ m.
In the former case we define σ(a) := n and in the latter σ(a) := µ(a). This
defines a subset σ : At(M)→ N once we let σ(a) := 0 if a /∈ Am. Now

ι(σ) =
∑
a∈Am

σ(a) · a ≤ m,

where the inequality follows by Corollary 3.5, noting that m is an upper
bound for Am. Thus there is a c ∈M such that∑

a∈Am

σ(a) · a+ c = m.
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But now all the atoms that are below c are also below m, and thus appear
in the sum on the left-hand side. Since the coefficients σ(a) were so chosen
that either (σ(a) + 1) · a � m or

(σ(a) + 1) · a = (µ(a) + 1) · a = µ(a) · a = σ(a) · a,

we conclude that c is absorbed into the sum on the left-hand side, whence

m =
∑
a∈Am

σ(a) · a = ι(σ).

Thus ι is surjective.

For injectivity, suppose σ, τ ∈ P(At(M), µ) are such that ι(σ) = ι(τ).
Explicitly, this means ∑

a∈At(M)

σ(a) · a =
∑

a∈At(M)

τ(a) · a.

Let b ∈ At(M) be some atom, and rewrite the above equality as

σ(b) · b+
∑

a∈At(M)\{b}

σ(a) · a = τ(b) · b+
∑

a∈At(M)\{b}

τ(a) · a.

Now let us add
∑

a∈At(M)\{b} µ(a) ·a on both sides. By the choice of µ, each
coefficient σ(a) and τ(a) is absorbed into µ(a), hence we obtain:

σ(b) · b+
∑

a∈At(M)\{b}

µ(a) · a = τ(b) · b+
∑

a∈At(M)\{b}

µ(a) · a.

By Corollary 3.4, both σ(b) ·b and τ(b) ·b are orthogonal to the sum, whence
by the cancellation property ((ii) of Corollary 2.14) we get

σ(b) · b = τ(b) · b.

Since σ, τ ≤ µ, we conclude that σ(b) = τ(b). This yields that σ = τ ,
showing injectivity.

It remains to show that ι is an MV-algebra morphism. It is clear that
ι(0) = 0. Next, we have

ι(µ) =
∑

a∈At(M)

µ(a) · a ≥ m
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for any m ∈ M by surjectivity of ι, so we conclude that ι(µ) = 1. Now let
σ, τ ∈ P(At(M), µ). We compute

ι(σ + τ) =
∑

a∈At(M)

(σ(a)⊕ τ(a)) · a

=
∑

a∈At(M)

(σ(a) + τ(a)) · a

=
∑

a∈At(M)

σ(a) · a+
∑

a∈At(M)

τ(a) · a

= ι(σ) + ι(τ),

where the second equality follows by considering two cases for each a ∈
At(M): 1) σ(a) + τ(a) ≤ µ(a) when σ(a) ⊕ τ(a) = σ(a) + τ(a), and 2)
σ(a)+τ(a) ≥ µ(a), when σ(a)⊕τ(a) = µ(a) but also (σ(a)+τ(a))·a = µ(a)·a
by the choice of µ(a). Thus ι preserves +.

Finally, let σ ∈ P(At(M), µ), and let τ ∈ P(At(M), µ) be the unique
subset such that ι(τ) = ι(σ)′ (using the fact that ι is a bijection), so that
we have ι(τ + σ) = ι(µ). Thus, by injectivity, we have τ + σ = µ, so that
for each a ∈ At(M) we get τ(a) + σ(a) ≥ µ(a). Next,

τ(a) · a ≤
∑

b∈At(M)

τ(b) · b = ι(τ) = ι(σ)′ =

 ∑
b∈At(M)

σ(b) · b

′ ≤ (σ(a) · a)′,

for each a ∈ At(M), showing orthogonality of τ(a) · a and σ(a) · a. On the
other hand, we have

σ(a) · a+ (σ(a) · a)′ =
∑

b∈At(M)

µ(b) · b,

so that (µ(a) − σ(a)) · a ≤ (σ(a) · a)′, showing orthogonality of σ′(a) · a =
(µ(a)− σ(a)) · a and σ(a) · a. We then write

τ(a) · a+ σ(a) · a = µ(a) · a = σ′(a) · a+ σ(a) · a,

which the cancellation property ((ii) of Corollary 2.14) yields τ(a) · a =
σ′(a) · a. Since both τ ≤ µ and σ′ ≤ µ, we conclude that τ(a) = σ′(a) for
all a ∈ At(M), whence τ = σ′. Thus for any subset σ we have ι(σ′) = ι(σ)′,
showing that ι preserves ′.

Thus we have shown that ι is an MV-algebra morphism and a bijection.
Since MV-algebras are models of an algebraic presentation in the sense of
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Definition C.10, the forgetful functor reflects isomorphisms (this is an easy
consequence of Proposition C.3, for a proof see e.g. Proposition 3.3.3 in
Borceux [9]). Thus we conclude that ι is an isomorphism of MV-algebras.
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Chapter 4

Categorical embeddings of
effect algebras

In this short chapter, we consider two ways to view effect algebras as pre-
sheaves. The first one is a very general categorical construction known as
the nerve functor. The second one, the test functor, is more specific to
effect algebras (or more generally to pointed partial commutative monoids),
and was defined by Staton and Uijlen [55] in their work on nonlocality and
contextuality.

We show that the nerve functor and the test functor are naturally iso-
morphic. As a corollary to this and a result of Staton and Uijlen showing
that the test functor is full and faithful, we obtain the fact that the category
of finite Boolean algebras is dense in the category of effect algebras. This
demonstrates that effect algebras are a very natural extension of Boolean
algebras, and is furthermore used to obtain the main result of Chapter 5.

4.1 Dense subcategories

The nerve functor has its origins in topological categories and classifying
spaces [53]. We, however, consider the purely categorical version and outline
its connection to dense subcategories. We warn the reader that our usage of
the term ‘nerve’ is not entirely standard, as the subcategory in the definition
of the nerve is typically required to be the category of simplices or some other
category of ‘shapes’. The terminology and constructions introduced in this
section vaguely follow those of Adámek and Rosický [2], especially Section
1.B.
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Definition 4.1 (Canonical colimit). Let A be a small, full subcategory of
a category C. For an object C ∈ C, the canonical diagram of C with respect
to A is the forgetful functor

D : A/C −→ C,

where A/C denotes the comma category which is the full subcategory of the
coslice category C/C on those elements whose object part lies in A.

We say that C is a canonical colimit of A-objects provided that the
canonical diagram has a colimit with colimit object C and coprojections

D
(
A

f−→ C
)

f−→ C,

where f : A→ C ranges through the objects of A/C.

Definition 4.2 (Dense subcategory). A small, full subcategory A of a cat-
egory C is dense if every object of C is a canonical colimit of A-objects.

Definition 4.3 (Nerve functor). Let A be a small, full subcategory of a
category C. The nerve functor

NA : C → [Aop,Set]

is defined by restriction of the Yoneda embedding y : C → [Cop,Set] as

C 7→ yC |Aop

on objects, and as (
C

f−→ C ′
)
7→ yf |Aop ,

where yf |Aop is the restriction of yf to yC |Aop → y′C |Aop . This is well-defined
since A is a full subcategory.

We record the following simple observation connecting dense subcate-
gories to nerve functors.

Proposition 4.4. Let A be a small, full subcategory of a category C. Then
A is dense if and only if the nerve functor NA is full and faithful.

Proof. Let C and D be objects of C. The maps C → D are in bijection with
the natural transformations yC |Aop → yD|Aop via the assignment f 7→ f ◦ −
if and only if the cocone over the canonical diagram of C with vertex C and
legs

D
(
A

g−→ C
)

g−→ C
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is the initial object in the category of cocones over the canonical diagram of
C. But the latter condition says precisely that C is the canonical colimit of
A-objects.

Corollary 4.5 (Yoneda lemma for dense subcategories). Let A be a small,
full and dense subcategory of a category C. Then for any objects B,C ∈ C
we have B ' C if and only if

C(A,B) ' C(A,C)

naturally in A ∈ A.

Proof. This is saying that B ' C iff NA(B) ' NA(C), which follows since
NA is full and faithful by Proposition 4.4, and since full and faithful functors
are essentially injective on objects (Proposition A.2).

4.2 Tests and denseness

Here we largely repeat the definitions of Staton and Uijlen [55] in order to
be able to state Theorem 4.7.

The following definition should be compared to that of a partition of
unity (Definition 6.2). To be completely precise, the definition below should
be inductive. However, given the similarity to the definition of a partition of
unity, we omit this; and we trust that the reader can follow the presentation
without this technical precision, filling in the details if necessary.

Definition 4.6 (n-test). Let E be an effect algebra and let n ∈ N. An
n-test is a list of elements of E of length n

(e1, . . . , en)

such that their sum
⊕n

i=1 ei exists and is equal to 1.

Let us denote the collection of n-tests of E by T (E)(n). This defines a
functor from finite sets (which we identify with N) to Set

T (E) : N→ Set

n 7→ T (E)(n)(
n

f−→ m
)
7→ (T (E)(n)→ T (E)(m))

(e1, . . . , en) 7→

 ⊕
i∈f−1(j)

ei


j=1,...,m
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for each effect algebra E. This, in turn, extends to the test functor

T : EAlg→ [N,Set]

E 7→ T (E)

(α : E → F ) 7→ T (α),

where T (α) : T (E)→ T (F ) is the natural transformation with components

T (α)n : T (E)(n)→ T (F )(n)

(e1, . . . , en) 7→ (α(e1), . . . , α(en)).

Staton and Uijlen showed the following.

Theorem 4.7 (Corollary 10 in [55]). The test functor T : EAlg→ [N,Set]
is full and faithful.

Since the powerset functor P : Nop → FinBA is an equivalence of cate-
gories, we have an equivalence of categories

− ◦ Pop : [FinBAop,Set]→ [N,Set].

The following isomorphism is already implicit in Staton’s and Uijlen’s
work; here we state it explicitly and give a detailed proof.

Proposition 4.8. The test functor T : EAlg → [N,Set] is naturally iso-
morphic to the nerve functor composed with the above equivalence:

NFinBA(−) ◦ Pop : EAlg→ [N,Set].

Proof. We wish to define a natural transformation

µ : NFinBA(−) ◦ Pop → T.

Each component
µE : NFinBA(E) ◦ Pop → T (E)

is itself a natural transformation, whose components we define by

(µE)n : EAlg(Pn,E)→ T (E)(n)

f 7→ (f({i}))i∈n .

This is clearly an isomorphism: the inverse is given by mapping an n-test
(e1, . . . , en) to the effect algebra morphism uniquely determined by mapping
each atom {i} to ei. It remains to show naturality of µE and µ.
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For a function g : n→ m, we need to show that the diagram

EAlg(Pn,E) T (E)(n)
(µE)n //

EAlg(Pm,E)

−◦g−1

��
T (E)(m)

(µE)m //

T (E)(g)

��

commutes. Here g−1 stands for the preimage. Via the down-right path, a
morphism of effect algebras f : Pn→ E is mapped to them-test

(
fg−1(i)

)
i∈m,

and via right-down to
(⊕

k∈g−1(i) f({k})
)
i∈m

. Using the fact that f is a

morphism of effect algebras, we have for each i ∈ m

⊕
k∈g−1(i)

f({k}) = f

 ⋃
k∈g−1(i)

{k}

 = fg−1(i),

showing commutativity.
For an effect algebra morphism h : E → F , we need to show that the

following diagram of natural transformations commutes:

NFinBA(E) ◦ Pop T (E)
µE //

NFinBA(F ) ◦ Pop

h◦−

��
T (F )

µF //

Th

��

where h ◦ − is the natural transformation whose every component is h ◦ −.
The proof of commutativity is a matter of computation using the fact that
natural transformations are composed pointwise.

Corollary 4.9. The category FinBA is a dense subcategory of EAlg.

Proof. By Proposition 4.8 and Theorem 4.7, the nerve NFinBA : EAlg →
[FinBA,Set] is full and faithful, so that this follows by Proposition 4.4.

Corollary 4.10. For any effect algebras E and F , we have E ' F if and
only if

EAlg(B,E) ' EAlg(B,F )

naturally in finite Boolean algebras B.

Proof. Just apply Corollary 4.5 to the situation of Corollary 4.9.
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Chapter 5

Subalgebras of Boolean
algebras

The aim of this chapter is to prove that any Boolean algebra with more
than two elements is determined by the poset of its finite subalgebras (The-
orem 5.24). This is a strengthening of an analogous result using all subal-
gebras, which was first proved by Sachs [51, Theorem 4] in 1961, then more
systematically via colimits by Grätzer, Koh and Makkai [29, Corollary 2]
in 1972. It also follows from more general considerations of Filippov [24,
p. 54] from 1965, and from a stronger result for orthoalgebras by Harding et
al. (Theorem 1.1 in the introduction) from 2019. What allows us to obtain
the proof using only the finite subalgebras is Corollary 4.10, or alternatively,
Proposition C.37.

Throughout this chapter, let B be a Boolean algebra and FinSub(B) the
poset of its finite subalgebras ordered by inclusion. We will denote the least
and the greatest elements of B by 0 and 1, the complement of a ∈ B by a′,
join and meet in B by ∨ and ∧.

5.1 Subalgebra lattice and order isomorphisms

A non-empty intersection of finite subalgebras of a Boolean algebra B is
again a finite subalgebra, so that FinSub(B) has non-empty meets given by
intersections. The join of a finite collection of finite subalgebras is given
by the least subalgebra containing each subalgebra in the collection. Since
finitely generated Boolean algebras are finite, the join is itself a finite subal-
gebra. This makes FinSub(B) a lattice, and in fact a sublattice of the lattice
of all subalgebras of B. We will denote the meet and the join in FinSub(B)
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by ∩ and ∨. We view FinSub(B) as living in the category of posets Pos.
The isomorphisms in Pos will be referred to as order isomorphisms.

Proposition 5.1. Let ι : P → Q be an order isomorphism. Then for any
element s ∈ P , the restriction

ι|↓s :↓ s→ ι(↓ s)

is also an order isomorphism.

Proof. We also have the restriction

ι−1|↓ι(s) :↓ ι(s)→ ι−1(↓ ι(s)).

In fact it suffices to show that (1) ↓ ι(s) = ι(↓ s) and (2) ι−1(↓ ι(s)) =↓ s,
as then we have an order-preserving map with an order-preserving inverse.

For (1), we have a ∈↓ ι(s) iff a ≤ ι(s) iff ι−1(a) ≤ s iff ι−1(a) ∈↓ s iff
a ∈ ι(↓ s).

For (2), we compute b ∈ ι−1(↓ ι(s)) iff ι(b) ∈↓ ι(s) iff ι(b) ≤ ι(s) iff b ≤ s
iff b ∈↓ s.

Proposition 5.2. An order isomorphism between two lattices is always a
lattice isomorphism.

Proof. Let ι : L → M be an order isomorphism between lattices L and M .
Then m ≤ ι(x ∧ y) iff ι−1(m) ≤ x ∧ y iff ι−1(m) ≤ x and ι−1(m) ≤ y iff
m ≤ ι(x) and m ≤ ι(y) iff m ≤ ι(x) ∧ ι(y), whence ι(x ∧ y) = ι(x) ∧ ι(y).
The argument for the join is dual.

The least element of FinSub(B) is the two-element Boolean subalgebra
{0, 1}. The atoms of FinSub(B) are the four-element subalgebras {0, 1, a, a′},
where a /∈ {0, 1}. Following Harding et al. [31], we make the following con-
ventions.

Definition 5.3 (Basic element). We say that an element of a poset with a
least element is basic if it is either an atom or the least element.

For a poset P with a least element, we denote the subposet of P consist-
ing of basic elements by Bas(P ). A straightforward calculation shows that
an order isomorphism sends basic elements to basic elements.

Definition 5.4 (Basic elements of FinSub(B)). Let B be a Boolean algebra,
and let a ∈ B. We denote the corresponding basic element of FinSub(B) by

xa := {0, 1, a, a′}.
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Note that indeed an element of FinSub(B) is basic if and only if it is of
the form xa for some a ∈ B.

The main objective of this section is to show that any order isomorphism
between FinSub(B) and FinSub(C) induces an order isomorphism between
the sets of basic elements of the Boolean algebras B and C, as long as B
and C have more than four elements. To this end, we wish to find an order-
theoretic characterisation of those basic elements xa ∈ FinSub(B) where
either a or a′ is basic in B.

Definition 5.5 (Ideal subalgebra). Let B be a Boolean algebra, and let
I ⊆ B be an ideal. Denote I ′ := {a′ : a ∈ I}. It is immediate that I ∪ I ′ is
a subalgebra of B. A subalgebra of this form is called an ideal subalgebra of
B.

When we write I ∪ I ′ ∈ FinSub(B), we mean that I is a finite ideal, and
in such case we refer to I ∪ I ′ as a finite ideal subalgebra.

Lemma 5.6. Let I ∪ I ′ ∈ FinSub(B) be an ideal subalgebra, and let Y ∈
FinSub(B) be an arbitrary finite subalgebra. Then their join is given by(

I ∪ I ′
)
∨ Y =

{
a′ ∧ (b ∨ y) : a, b ∈ I, y ∈ Y

}
.

Proof. The right-to-left inclusion is clear, as the join is a subalgebra. For
the left-to-right inclusion, note that I ∪ I ′ and Y are both contained in the
set on the right-hand side (RHS for short). Thus it suffices to show that the
RHS is a subalgebra.

Let z = a′ ∧ (b ∨ y) for some a, b ∈ I and y ∈ Y . Then

z′ = a ∨ (b′ ∧ y′) = (a ∨ b′) ∧ (a ∨ y′) = (a′ ∧ b)′ ∧ (a ∨ y′).

Since I is an ideal, a′ ∧ b ∈ I, and since Y is a subalgebra, y′ ∈ Y . Hence z′

is of the required form and is in the RHS.
Now let z = a′ ∧ (b ∨ y) and w = α′ ∧ (β ∨ γ) be in the RHS, that is,

a, b, α, β ∈ I and y, γ ∈ Y . Then

z ∧ w = (a′ ∧ α′) ∧ (b ∨ y) ∧ (β ∨ γ)

= (a ∨ α)′ ∧ ((b ∧ (β ∨ γ)) ∨ (y ∧ β) ∨ (y ∧ γ)).

Now a ∨ α, b ∧ (β ∨ γ), y ∧ β and (b ∧ (β ∨ γ)) ∨ (y ∧ β) are all in I, as I is
an ideal, while y ∧ γ ∈ Y , as Y is a subalgebra. Thus z ∧ w is in the RHS.

Thus the RHS is closed under complement and meet, from which by de
Morgan laws it follows that it is closed under join; whence it is a subalgebra,
as required.
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Definition 5.7 ((Dual) modular element). An element x of a lattice L is

• modular if for all z, y ∈ L with x ≤ z we have

(x ∨ y) ∧ z = x ∨ (y ∧ z),

• dual modular if it is modular and for all w, y ∈ L with w ≤ y we have

(w ∨ x) ∧ y = w ∨ (x ∧ y).

The following is Lemma 2 in Sachs [51], where it is proved for any ideal
subalgebra in the lattice of all subalgebras.

Lemma 5.8. Any finite ideal subalgebra of a Boolean algebra B is a modular
element of FinSub(B).

Proof. Let I ∪ I ′ be an ideal subalgebra, and let Z, Y ∈ FinSub(B) be such
that I ∪ I ′ ⊆ Z. We need to show that((

I ∪ I ′
)
∨ Y

)
∩ Z =

(
I ∪ I ′

)
∨ (Y ∩ Z),

that is, by Lemma 5.6, we need to show that{
a′ ∧ (b ∨ y) : a, b ∈ I, y ∈ Y

}
∩ Z =

{
a′ ∧ (b ∨ w) : a, b ∈ I, w ∈ Y ∩ Z

}
.

The right-to-left inclusion is immediate, as I∪I ′ ⊆ Z and Z is a subalgebra.
For the left-to-right inclusion, suppose that a, b ∈ I and y ∈ Y are such that
a′ ∧ (b ∨ y) ∈ Z. Then b′ ∈ I ′ ⊆ Z, so that

b′ ∧ (a′ ∧ (b ∨ y)) = a′ ∧ b′ ∧ y = (a ∨ b)′ ∧ y ∈ Z.

Next, a ∨ b ∈ I, as I is an ideal, consequently (a ∨ b) ∧ y ∈ I ⊆ Z. Writing
z := a ∨ b, we have that both z ∧ y ∈ Z and z′ ∧ y ∈ Z, so that

y = (z ∧ y) ∨ (z′ ∧ y) ∈ Z,

whence y ∈ Y ∩ Z and a′ ∧ (b ∨ y) is in the set on the right-hand side.

The following proposition is included out of general curiosity and for the
sake of completeness. As it will play no role in the remaining results, it may
be skipped by a hasty reader.

Proposition 5.9. Any finite ideal subalgebra of a Boolean algebra B is dual
modular in FinSub(B).
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Proof. Let I∪I ′ be a finite ideal subalgebra. Then it is modular by Lemma 5.8.
Now let W,Y ∈ FinSub(B) be such that W ⊆ Y . We need to show that(

W ∨
(
I ∪ I ′

))
∩ Y = W ∨

((
I ∪ I ′

)
∩ Y

)
,

that is, by Lemma 5.6, we need to show that{
a′ ∧ (b ∨ w) : a, b ∈ I, w ∈W

}
∩ Y = W ∨

((
I ∪ I ′

)
∩ Y

)
.

For the right-to-left inclusion, it suffices to show that W and (I ∪ I ′)∩Y are
contained in the subalgebra on the left-hand side, which is immediate. For
the left-to-right inclusion, suppose that a, b ∈ I and w ∈ W are such that
a′ ∧ (b∨w) ∈ Y . Since w ∈W ⊆ Y and Y is a subalgebra, we have w′ ∈ Y .
Thus we get

w′ ∧ (a′ ∧ (b ∨ w)) = a′ ∧ b ∧ w′ ∈ Y,
w′ ∨ (a′ ∧ (b ∨ w)) = a′ ∨ w′ ∈ Y.

Moreover, since b ∈ I and I is an ideal, we obtain a′ ∧ b ∧ w′ ∈ I, whence
a′ ∧ b ∧ w′ ∈ (I ∪ I ′) ∩ Y . Similarly, a′ ∨ w′ ∈ (I ∪ I ′) ∩ Y . We now rewrite
the expression we started with as

a′ ∧ (b ∨ w) = a′ ∧ ((b ∧ w′) ∨ w)

= (a′ ∧ b ∧ w′) ∨ (a′ ∧ w)

= (a′ ∧ b ∧ w′) ∨ ((a′ ∨ w′) ∧ w),

which is a Boolean combination of elements in (I ∪ I ′) ∩ Y and W , so that
it is contained in W ∨ ((I ∪ I ′) ∩ Y ), as required.

The following is Theorem 1 from Sachs [51], with the modification that
there it is presented for dual modular elements (cf. Corollary 5.14) in the
lattice of all subalgebras.

Theorem 5.10. A finite subalgebra X of a Boolean algebra B is modular
in FinSub(B) if an only if it is an ideal subalgebra.

Proof. The ‘if’ direction is Lemma 5.8. For the ‘only if’ direction, let X ∈
FinSub(B) be modular. Define a subset of B by

I := {p ∈ B :↓ p ⊆ X} .

First observe that I is an ideal: it is non-empty as 0 ∈ I, downwards closed
as p ∈ I and y ∈ B with y ≤ p imply ↓ y ⊆↓ p ⊆ X, so that y ∈ I. For
upwards directedness, let p, y ∈ I. Then a ∈↓ (p ∨ y) iff a ≤ p ∨ y iff

a = a ∧ (p ∨ y) = (a ∧ p) ∨ (a ∧ y).
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By assumption a ∧ p ∈↓ p ⊆ X and a ∧ y ∈↓ y ⊆ X, whence a ∈ X as X is
a subalgebra. Thus ↓ (p ∨ y) ⊆ X, so that p ∨ y ∈ I, as required.

Note that I ⊆ X, and since X is a subalgebra, I ∪ I ′ ⊆ X. We now wish
to show that the reverse containment holds. Hence let a ∈ X, and suppose
towards a contradiction that a /∈ I ∪ I ′. Since a /∈ I, we have ↓ a * X, and
since a /∈ I ′, we get a′ /∈ I so that ↓ a′ * X. We may thus choose some
y ≤ a and z ≤ a′ such that y, z /∈ X.

Using the notation of Definition 5.4, we claim that

X ∨ xy ⊆ X ∨ xy∨z (5.11)

In fact it is sufficient to see that y ∈ X ∨ xy∨z, which follows by noting that

y = a ∧ y = a ∧ (y ∨ z),

using that y ≤ a and a ∧ z = 0. Similarly, we have

z = a′ ∧ (y ∨ z) ∈ X ∨ xy∨z.

On the other hand, we claim that

X ∨ xy ⊆ {b ∈ B : b ∧ a′ ∈ X} (5.12)

Clearly X is contained in the set on the right-hand side. Since y∧a′ = 0 ∈ X
and y′ ∧ a′ = a′ ∈ X, so is xy. Thus it suffices to show that the set on
the right-hand side is a subalgebra. Hence suppose b ∧ a′ ∈ X. Then
b′ ∨ a ∈ X, so that b′ ∧ a′ = (b′ ∨ a) ∧ a′ ∈ X. Next, if b ∧ a′, c ∧ a′ ∈ X,
then immediately (b ∧ c) ∧ a′ ∈ X. Thus it is indeed a subalgebra, proving
the claimed inclusion (5.12).

Since z = a′ ∧ (y ∨ z) /∈ X, we conclude that y ∨ z /∈ X ∨xy using (5.12).
Thus we have that

xy∨z ∩ (X ∨ xy) = {0, 1}. (5.13)

Finally, we apply the assumption that X is modular to X ⊆ X ∨ xy and
xy∨z:

(X ∨ xy∨z) ∩ (X ∨ xy) = X ∨ (xy∨z ∩ (X ∨ xy)),

whence X ∨xy = X, where we used equations (5.11) and (5.13). But this is
the sought-after contradiction, as this implies y ∈ X.

Thus we conclude that X ⊆ I ∪ I ′, yielding X = I ∪ I ′, which exhibits
X as an ideal subalgebra.

Corollary 5.14. In the lattice of finite subalgebras of a Boolean algebra,
modular and dual modular elements coincide.
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Proof. Immediate consequence of Theorem 5.10 and Proposition 5.9.

Corollary 5.15. Let B be a Boolean algebra. A basic element xa ∈ FinSub(B)
is modular iff either a or a′ is basic in B.

Proof. First suppose (without loss of generality) that a ∈ B is basic. Then
xa =↓ a∪ ↑a′ is an ideal subalgebra and hence modular by Theorem 5.10.

Conversely, if xa is modular, then, by Theorem 5.10, {0, 1, a, a′} = I ∪ I ′
for some ideal I ⊆ B. Thus either a ∈ I or a′ ∈ I. The former yields that
either a = 1, so that a′ is basic, or a 6= 1, in which case a is basic. Similarly
for the latter.

Note that we have now achieved one of our goals and characterised those
elements of FinSub(B) which are equal to xa for some basic a ∈ B in purely
order-theoretic therms. Namely, these are precisely those elements which
are both basic and modular.

The following result excludes the possibility of recovering Boolean alge-
bras that are too ‘small’ from their posets of subalgebras.

Proposition 5.16. A Boolean algebra B has an element a such that both a
and a′ are basic if and only if B has at most four elements.

Proof. The ‘if’ direction follows by inspecting the Boolean algebras with 1,
2 and 4 elements. For the ‘only if’ direction, let a ∈ B be such that both a
and a′ are basic, and let x ∈ B. Let us write x as

x = (x ∧ a) ∨ (x ∧ a′).

Since a and a′ are basic, we have x ∧ a ∈ {0, a} and x ∧ a′ ∈ {0, a′},
whence x ∈ {0, 1, a, a′}. We therefore conclude that B ⊆ {0, 1, a, a′}, as
required.

We are now ready to state and prove the main result of this section.

Theorem 5.17. Let B and C be Boolean algebras with more than four
elements. Then any order isomorphism between FinSub(B) and FinSub(C)
induces an order isomorphism between Bas(B) and Bas(C).

Proof. Let ι : FinSub(B) → FinSub(C) be an order isomorphism. For
any b ∈ Bas(B), the element xb ∈ FinSub(B) is basic and modular by
Corollary 5.15. Since an order isomorphism is also a lattice isomorphism
(Proposition 5.2), ι preserves both basic and modular elements, so that
ι(xb) is basic and modular. Thus there is a unique pair c, c′ in C such that
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ι(xb) = xc. Once more by Corollary 5.15 one of c and c′ is basic in C. By
Proposition 5.16, exactly one of them is basic. Let us denote the one that
is basic by ῑ(b). Thus we have defined a mapping

ῑ : Bas(B)→ Bas(C)

b 7→ c ∈ Bas(C) s.t. xc = ι(xb).

We have that ῑ(0) = 0, and since the atoms are incomparable with each
other, the map is order-preserving. Starting with ι−1, we get the map in the
other direction:

ι−1 : Bas(C)→ Bas(B)

c 7→ b ∈ Bas(B) s.t. xb = ι−1(xc)

(such b is guaranteed to exist and is unique). We then have

ῑ
(
ι−1(c)

)
= ῑ(b) = d ∈ Bas(C)

with xd = ι(xb) = xc, where we used that ι is an isomorphism. Thus d = c

and ῑ
(
ι−1(c)

)
= c. The other composition follows similarly. Thus ῑ is

indeed an order isomorphism.

Note that the restriction on the size of the Boolean algebras is necessary
here, as for algebras with at most four elements the subalgebra xa may
contain more than one basic element, so that the induced mapping is not
uniquely defined.

Corollary 5.18. Let B and C be finite Boolean algebras with more than
four elements. Then an order isomorphism ι : FinSub(B) → FinSub(C)
induces a Boolean algebra isomorphism

γ : B → C

b 7→
∨
{ῑ(a) : a ∈ Bas(B) and a ≤ b} ,

where ῑ : Bas(B)→ Bas(C) is the induced isomorphism of Theorem 5.17.

Proof. This is straightforward from the facts that ῑ restricts to an isomor-
phism of atoms and that any finite Boolean algebra is isomorphic to the
powerset of its atoms.

Lemma 5.19. Let B and C be finite Boolean algebras. Suppose that α, β :
FinSub(B)→ FinSub(C) are lattice morphisms which agree on the subalge-
bras xb where b is basic in B. Then α = β.
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Proof. Since for every subalgebra X ∈ FinSub(B) we have X =
∨
a∈X xa

and everything is finite, it is sufficient to show that α and β agree on the
subalgebras xa for each a ∈ B.

Given a ∈ B, let us denote by Ba the set of all basic elements below a:

Ba := {b ∈ Bas(B) : b ≤ a}.

We first show that for each a ∈ B,∨
b∈Ba

xb =
{∨

S : S ⊆ Ba
}
∪
{∧

T ′ : T ⊆ Ba
}
, (5.20)

where T ′ := {t′ : t ∈ T}. The right-to-left inclusion is clear. For the left-to-
right inclusion, observe that each xb for b ∈ Ba is contained in the set on the
right-hand side (RHS for short). Thus it suffices to show that the RHS is a
subalgebra. It is manifestly closed under complements. Now suppose x and
y are in the RHS. If x =

∨
S for some S ⊆ Ba, then x ∧ y =

∨
s∈S(s ∧ y) is

also in the RHS, as each s ∧ y is either 0 or s, since each s is basic. Thus it
remains to consider the case when both x and y are meets of complements
of elements in Ba, but then certainly so is x ∧ y. Thus the RHS is indeed a
subalgebra, and we obtain the left-to-right inclusion.

To conclude, we claim that for each a ∈ B,

xa =

 ∨
b∈Ba

xb

 ∩
 ∨
d∈Ba′

xd

 .

Showing this is indeed sufficient, as α and β are assumed to preserve finite
meets and joins. First, since a =

∨
b∈Ba b and a′ =

∨
d∈Ba′

d, the subalgebra
xa is contained in the right-hand side. Now suppose y is contained in the
subalgebra on the right-hand side. Using equation (5.20), there are four
options:

(1) y =
∨
S =

∨
T ,

(2) y =
∨
S =

∧
T ′,

(3) y =
∧
S′ =

∨
T ,

(4) y =
∧
S′ =

∧
T ′,

for some S ⊆ Ba and T ⊆ Ba′ . In the first case, y ≤ a and y ≤ a′, whence
y = 0. In the second case, y ≤ a and a ≤ y, so that y = a. In the third case,
a′ ≤ y and y ≤ a′, so y = a′. In the fourth case, a′ ≤ y and a ≤ y, so that
y = 1. Thus we conclude that y ∈ {0, a, a′, 1} = xa, as required.
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Theorem 5.21. Let B and C be Boolean algebras with more than four
elements, and suppose that ι : FinSub(B) → FinSub(C) is an order iso-
morphism. Let X,Y ∈ FinSub(B) be finite subalgebras with more than four
elements such that X ⊆ Y . Denote by γX : X → ιX the Boolean alge-
bra isomorphism induced by ι|FinSub(X) : FinSub(X) → FinSub(ιX) as in
Corollary 5.18, and similarly for γY : Y → ιY . Then

γX = γY |X .

Proof. First note that FinSub(X) = ↓ X, where the down-set is taken in
FinSub(B), so that ι|FinSub(X) : FinSub(X) → FinSub(ιX) is indeed an
order isomorphism by Proposition 5.1, whence it follows that the statement
of the proposition makes sense.

By definition of γY , we have that γY [xb] = ι(xb), where γY [−] denotes
the image, for any basic element b ∈ Y . By Lemma 5.19, we have γY [−] =
ι|FinSub(Y ), and similarly, γX [−] = ι|FinSub(X). Thus we obtain

γX [−] =
(
ι|FinSub(Y )

)
|FinSub(X) = (γY [−]) |FinSub(X).

We will next show that γY maps basic elements of X to basic elements
of ιX. Thus suppose that a ∈ Bas(X). The above equality tells us that
γY (a) ∈ ιX. Now let z ∈ ιX be such that z ≤ γY (a), so that γ−1Y (z) ≤ a.
Again by the above equality, γ−1Y (z) ∈ X. Since a is basic, either γ−1Y (z) = 0
or γ−1Y (z) = a, whence either z = 0 or z = γY (a), showing that γY (a) is
indeed basic.

Now given a ∈ Bas(X), we have that

γY [xa] = {0, 1, γY (a), γY (a)′} = {0, 1, γX(a), γX(a)′} = γX [xa].

Since X has more than four elements, a′ is not basic by Proposition 5.16,
consequently γX(a)′ is not basic. Since γY is an isomorphism and γY (a) is
basic, we conclude that γY (a) = γX(a).

Since γY agrees with γX on the basic elements of X, we conclude that
γY agrees with γX on all of X, which is what we had to show.

Corollary 5.22. Let B and C be Boolean algebras with more than four
elements. Then any order isomorphism ι : FinSub(B)→ FinSub(C) induces
a Boolean algebra isomorphism

γX : X → ιX
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on each finite subalgebra X of B. This family is moreover natural in X in
the sense that whenever X and Y are finite subalgebras such that X ⊆ Y ,
the diagram below commutes

X ιX
γX //

Y

� _

��
ιY

γY //

� _

��

where the vertical arrows are the inclusions.

Proof. If X has more than four elements, this is just Theorem 5.21. To
define the isomorphism on a four-element subalgebra X, simply take any
finite subalgebra Y properly containing X (which exists by assumption)
and define γX := γY |X . By Theorem 5.21, this is independent of the choice
of Y . Similarly for the two-element subalgebra, although in that case there
is of course a unique isomorphism.

5.2 Boolean algebras are determined by their sub-
algebra poset

In the previous section we saw that an order isomorphism between two finite
subalgebra posets induces a family of maps between the finite subalgebras
that looks something like a natural transformation (Corollary 5.22). The
task of the following lemma is to make this ‘something like’ precise.

Lemma 5.23. Let B and C be Boolean algebras with more than four el-
ements. Then any order isomorphism between FinSub(B) and FinSub(C)
induces a natural isomorphism

α : BAlg(−, B)→ BAlg(−, C),

where the hom-functors are restricted to the finite Boolean algebras.

Proof. Let ι : FinSub(B) → FinSub(C) be an order isomorphism. Given
an F ∈ FinBA and a Boolean algebra morphism s : F → B, let us write
s̃ : F → im s for the Boolean algebra morphism agreeing with s whose
codomain is restricted to the image of s. Let us also write γs := γim s, where
γim s : im s → ι(im s) is the isomorphism from Corollary 5.22 induced by
ι|im s. Finally, we write js : ι(im s) ↪→ C for the inclusion. Note that js is a
Boolean algebra morphism since ι(im s) is a subalgebra.
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For each finite Boolean algebra F , we define a map

αF : BAlg(F,B)→ BAlg(F,C)

s 7→ js ◦ γs ◦ s̃.

To see that this is natural, let g : G → F be a Boolean algebra morphism.
We need to show that αF (s)g = αG(sg), for each s : F → B. This amounts
to

js ◦ γs ◦ s̃ ◦ g = jsg ◦ γsg ◦ s̃g.

First note that s̃g = s̃g. Next, im (sg) ⊆ im s, so that γsg and γs agree
on the image of sg, and ι(im (sg)) ⊆ ι(im s), so that jsg and js agree on
ι(im (sg)). The desired equality follows.

It remains to see that each αF is an isomorphism. For injectivity, let
s, t : F → B be morphisms such that αF (s) = αF (t), so that we have

js ◦ γs ◦ s̃ = jt ◦ γt ◦ t̃.

Since γs ◦ s̃ is surjective and both js and jt are inclusions, we get that for
any a ∈ ι(im s) there is a k ∈ F such that

a = (γs ◦ s̃)(k) = (γt ◦ t̃)(k) ∈ ι(im t),

so that ι(im s) ⊆ ι(im t). Reversing the argument we obtain the other
inclusion, so that ι(im s) = ι(im t), whence js = jt and im s = im t. The
latter implies that γs = γt, so that we have shown

js ◦ γs ◦ s̃ = js ◦ γs ◦ t̃.

By injectivity of js and γs, we get s̃ = t̃, whence s = t, as required.
For surjectivity, let u : F → C be a morphism. As before, denote by

ũ : F → im u the restriction of u to its image. Write

β := γι−1(im u) : ι−1(im u)→ im u

and e : ι−1(im u) ↪→ B for the inclusion. Now let r := eβ−1ũ. We thus have
im r = ι−1(im u), so that γr = β. For an a ∈ F we compute

αF (r)(a) = (jr ◦ γr)(r(a)) = γr(γ
−1
r (u(a))) = u(a),

whence αF (r) = u, showing surjectivity.

The discussion of this chapter is summarised in the following.
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Theorem 5.24. Let B and C be Boolean algebras with more than four
elements. Then B ' C if and only if FinSub(B) ' FinSub(C). In other
words, the functor

FinSub : BAlg→ Pos

D 7→ FinSub(D)

(D
f−→ H) 7→ f [−],

where f [−] denotes the image, is essentially injective on Boolean algebras
with more than four elements.

Proof. The ‘only if’ direction is immediate, as functors preserve isomor-
phisms. The ‘if’ direction is Lemma 5.23 together with Corollary 4.10, using
the fact that BAlg is a full subcategory of EAlg (see the discussion after
Example 2.7).

It is possible to prove Theorem 5.24 using Proposition C.37 instead of
Corollary 4.10. In such case one notes that a version of Lemma 5.23 with
the hom-functors are restricted to the free and finitely generated Boolean
algebras may be proved by just replacing every occurrence of ‘finite’ with
‘free and finitely generated’. Thus it is not necessary to pass via effect
algebras.
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Chapter 6

Partition posets

The culmination of this chapter, and the main contribution of the thesis, is
the reconstruction theorem for finite MV-algebras from the poset of parti-
tions of unity (Theorem 6.24). It turns out it is easier to work with multisets,
and even easier with setoids. To this end, we define partitions of unity of an
arbitrary effect algebra and partitions of finite multisets in Section 6.1. We
also discuss the usual partition lattice of a finite set as a special case of a
poset of multiset partitions. In Section 6.2, we introduce setoid quotients as
quotient posets of finite partition lattices, and show that these are exactly
the partition posets of finite multisets. We then prove some preliminary
lemmas about setoid quotients. Section 6.3 proves the main result using the
constructions and lemmas of the two preceding sections.

There is a close connection between partitions of unity and measure-
ments in operational quantum mechanics. The most general notion of a
measurement in quantum mechanics is given by a positive operator valued
measure (POVM for short) [11], [50]. In addition to theoretical generality,
POVMs are very close to experimental setups; see examples in the Intro-
duction of Busch, Grabowski and Lahti [11, p. I.1.2] as well as Brandt [10]
for another example. In the finite case, POVMs are collections of positive
operators which sum up to the identity. For a Hilbert space effect algebra,
each partition of unity gives rise to a unique image of a discrete POVM, and
conversely, each image of a discrete POVM uniquely determines a partition
of unity (see Remark 6.3). Generalising this, Jenča [37] gives a necessary and
sufficient condition under which a subset of an effect algebra is contained in
the image of a Boolean algebra.
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6.1 Partitions of unity

We begin by making the idea of a multiset whose types come from an effect
algebra precise.

Let E be an effect algebra. We say that A = (A, η) is a multiset of
elements of E if A is a finite multiset such that A ⊆ E. If A = (A, η)
and B = (B,µ) are multisets of elements of E, we define their union as the
multiset of elements A ∪ B := (A ∪ B, ν), where ν : A ∪ B → N \ {0} is
defined by

a 7→


η(a) if a ∈ A \B,
µ(a) if a ∈ B \A,
η(a) + µ(a) if a ∈ A ∩B.

Note that this definition does not coincide with the union (join) of submul-
tisets of some ambient multiset.

Definition 6.1 (Summable multiset). Let E be an effect algebra. We define
the collection of summable multisets of elements SE as well as the sum
function ⊕

: SE → E

by recursion as follows:

• ∅ ∈ SE and
⊕
∅ := 0,

• if A ∈ SE , then for every a ∈ E, we have {a} ∪ A ∈ SE iff a ⊥
⊕
A,

in which case we define⊕
({a} ∪ A) := a⊕

⊕
A.

Note that every singleton set is summable, and its sum is equal to the
unique element of the set. A simple induction shows that summability is
well-defined, that is, independent of the order in which a summable multiset
is obtained in the above recursion. Thus for a summable multiset of elements
A = (A, η) we have ⊕

A =
⊕
a∈A

η(a) · a.

Definition 6.2 (Partition of unity). Let E be an effect algebra. A multiset
of elements P is a partition of unity if it is summable, 0 is not a type of P
and

⊕
P = 1.
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Remark 6.3. Every effect algebra morphism f : B → E whose domain is a
finite Boolean algebra B gives rise to a partition of unity B := (f(At(B)), α),
where α : f(At(B))→ N \ {0} is given by

α(e) :=
∣∣f−1(e) ∩At(B)

∣∣ .
In fact, morphisms from finite Boolean algebras to effect algebras coming

from a Hilbert space correspond to discrete POVMs. Indeed, a POVM can
be defined as a countable join preserving effect algebra morphism

Σ→ E(H)

from a σ-algebra Σ to a Hilbert space effect algebra E(H) [50, Definition 1].
Since the finite σ-algebras are exactly the Boolean algebras, in the finite
(i.e. discrete) case this becomes just an effect algebra morphism B → E(H).
Thus, for a Hilbert space effect algebra, there is a one-to-one correspondence
between partitions of unity and images of discrete POVMs.

Next, we define a partial order on the set of partitions of unity of E. In
what follows, X is the multisets-to-setoids functor from Section 2.3.

Let P and Q be partitions of unity. We say that P ≤ Q if there exists a
surjection f : X(P)→ X(Q) such that for each (j, a) ∈ X(Q) we have⊕

(i,b)∈f−1(j,a)

b = a.

If we want to make the choice of a surjection explicit, we write f : P ≤ Q
for P ≤ Q witnessed by a surjection f .

Proposition 6.4. The relation ≤ defines a partial order on the set of par-
titions of unity of E.

Proof. Reflexivity is clear: just take the surjection in the definition to be
the identity map. For transitivity, let f : P ≤ Q and g : Q ≤ R. Then
gf : X(P)→ X(R) is a surjection, and given (j, a) ∈ X(R) we have⊕

(i,b)∈(gf)−1(j,a)

b =
⊕

(i,b)∈f−1(g−1(j,a))

b

=
⊕

(k,c)∈g−1(j,a)

⊕
(i,b)∈f−1(k,c)

b

=
⊕

(k,c)∈g−1(j,a)

c

= a.
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For antisymmetry, let P = (P, η) and Q = (Q,µ) be partitions, and suppose
f : P ≤ Q and g : Q ≤ P. Since gf is a surjection and X(P) is finite, gf
is in fact a bijection, and similarly so is fg. Thus f and g must in fact be
injective, hence both are bijections. Now let (i, b) ∈ X(P). We have

b =
⊕

(j,a)∈g−1(i,b)

a,

whence g−1(i, b) = (j, b) for some j since g is a bijection. Thus P = Q, and

for each b ∈ P , the map g restricts to a bijection between
∐η(b)
i=1{(i, b)} and∐µ(b)

j=1{(j, b)}, whence η(b) = µ(b), showing P = Q.

We denote the poset of partitions of unity of E by Part(E), and say that
Part(E) is ordered by refinement: the relation P ≤ Q holds precisely when
the elements of Q can be decomposed into summands in order to obtain P.
This extends to the partitions of unity functor

Part : EAlg→ Pos

by sending a morphism of effect algebras f : E → F to the ‘multi-image’
function Partf : Part(E)→ Part(F ) defined by

Partf (P, η) := (fP \ {0}, ηf ) ,

where ηf : fP \ {0} → N \ {0} is defined by

ηf (a) :=
∑

b∈f−1(a)∩P

η(b).

Since effect algebra morphisms preserve the effect algebra operation and 1,
this is indeed a map of partitions of unity.

We need to check that Partf is order preserving. Thus suppose g :
(P, η) ≤ (Q,µ). Given c ∈ fQ \ {0}, let us number the elements in the
restricted preimage f−1(c) ∩Q as

f−1(c) ∩Q = {a1, . . . , ak},

so that we have
∑k

i=1 µ(ai) = µf (c). This induces a partition of the set with
µf (c) elements into k parts; precisely, define a map

φc : {1, . . . , µf (c)} → {a1, . . . , ak}
{1, . . . , µ(a1)} 7→ a1

{µ(ai) + 1, . . . , µ(ai+1)} 7→ ai+1.
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Now we may define a surjection ĝ : X(Partf (P, η)) → X(Partf (Q,µ)) by
letting for each (j, c) ∈ X(Partf (Q,µ))

ĝ−1(j, c) :=
{

(i, f(b)) : (i, b) ∈ g−1(j mod µ(φc(j)), φc(j))
}
.

By construction (and by surjectivity of g), the sets ĝ−1(j, c) are a disjoint
cover of X(Partf (P, η)), so that this indeed defines a surjection ĝ. Moreover,
we have ⊕

(i,a)∈ĝ−1(j,c)

a =
⊕

(i,b)∈g−1(j mod µ(φc(j)), φc(j))

f(b) = f(φc(j)) = c,

so that we indeed have ĝ : Partf (P, η) ≤ Partf (Q,µ).
The following proposition shows that in the case of orthoalgebras, the

poset of partitions of unity is particularly nice: namely, it is obtained by
turning the poset of finite Boolean subalgebras upside down.

Proposition 6.5. Let A be an orthoalgebra. Then Part(A) ' FinBSub(A)op.
In fact the diagram

OAlg Pos
FinBSub //

Pos

Part

""
(−)op

||

commutes up to a natural isomorphism.

Proof. Since in any orthoalgebra a ⊥ a implies a = 0, any partition of unity
is in fact a set; in what follows we therefore make no difference between a
set and its corresponding multiset or setoid. Thus for each orthoalgebra A
we may define a map

ρA : Part(A)→ FinBSub(A)op

P 7→
{⊕

S : S ⊆ P
}
.

Since P is a partition of unity, ρA(P ) contains 1 and is closed under ′. Since
P is a set (rather than a multiset), ρA(P ) is closed under ⊕. It is moreover
isomorphic to the powerset algebra of P , hence a Boolean subalgebra of A.

We claim that P ≤ Q iff ρA(Q) ⊆ ρA(P ). First suppose that f : P ≤ Q.
Then, given S ⊆ Q, we have f−1S ⊆ P and

⊕
S =

⊕
f−1S, showing

59



ρA(Q) ⊆ ρA(P ). Conversely, suppose ρA(Q) ⊆ ρA(P ). This means that
for every q ∈ Q, there is a subset f−1(q) ⊆ P such that

⊕
f−1(q) = q.

Since distinct elements in Q are orthogonal, the subsets f−1(q) are disjoint.
Moreover, since

⊕
Q = 1, every element of P appears in some set f−1(q).

Thus this defines a surjection f : P → Q witnessing P ≤ Q.

Next, given a finite Boolean subalgebra B of A, the set of atoms At(B)
is a partition of unity such that ρA(At(B)) = B. Thus we have shown
that ρA is an order isomorphism for each orthoalgebra A. It remains to
see that ρ : Part → FinBSub(−)op with components so defined is a natural
transformation. Thus let f : A → B be an orthoalgebra morphism. We
need to show that the diagram

Part(A) FinBSub(A)op
ρA //

Part(B)

Partf

��
FinBSub(B)op

ρB //

f [−]op

��

commutes. That is, we need to show that for all partitions of unity P ∈
Part(A) we have

f
{⊕

S : S ⊆ P
}

=
{⊕

T : T ⊆ fP \ {0}
}
.

But this is immediate, as f is an orthoalgebra morphism and hence preserves
⊕, and since any subset of P is summable. Thus we are done.

Before defining partitions of a finite multiset, we briefly discuss the poset
of partitions of a finite set. This is a well-known structure in combinatorics,
and is usually known as the finite partition lattice. This lattice is important
both as a special case of the partition poset of a finite multiset, and as the
starting point of constructing a setoid quotient, which is defined in the next
section as a certain quotient of a finite partition lattice.

Definition 6.6 (Partition of a set). Let X be a finite set. A partition P of
X is a collection of subsets of X (i.e. P ⊆ PX) such that

• ∅ /∈ P ,

• if A,B ∈ P , then A ∩B = ∅,

•
⋃
P = X.
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Given a finite set X, and partitions P and Q, we define P ≤ Q iff

∀A ∈ P ∃B ∈ Q with A ⊆ B.

It is clear that ≤ is a partial order on the set of partitions, whose least
element is the partition containing all the singleton sets of PX, and the
greatest element is {{X}}.

Since the sets in a partition are disjoint, the set B ∈ Q as above with
the property that A ⊆ B is unique. Since the sets in a partition cover X,
we also have that if P ≤ Q, then every set in Q is the union of a unique
collection of sets from P . This observation shows that we have P ≤ Q if
and only if there is a surjection f : P → Q such that for all B ∈ Q we have⋃

A∈f−1(B)

A = B.

We will write f : P ≤ Q to indicate that P ≤ Q witnessed by a surjection
f : P → Q (compare this to the definition of the partial order of partitions
of unity immediately after Definition 6.2).

We now wish to extend the notion of a partition poset to finite multisets.
For this, we use the duality between finite multisets and finite MV-algebras
and the partitions of unity functor.

Definition 6.7 (Multiset partition functor). Define the multiset partition
functor

PartM : FinMulop → Pos

as PartM := Part ◦ P, where P is the powerset functor and Part is the
restriction of the partitions of unity functor to finite MV-algebras.

Given a multiset A, we refer to PartM(A) as the partition poset of A,
and to the elements of PartM(A) as partitions of A. See Example 6.14 for an
example of a multiset partition poset. We remark that defining partitions
in this way results in the most ‘liberal’ definition of a multiset partition.
Namely, such a partition is a ‘multiset of multisets’, that is, repetition is
allowed within a multiset in a partition as well as within the partition itself,
so that the partition can contain multiple copies of the same multiset. For
a discussion of different choices for a partition of a multiset as well as their
asymptotic properties, see Bender [4].

Remark 6.8. Definitions 6.6 and 6.7 are consistent: if we view a finite set
as a multiset, then its powermultiset is isomorphic to its powerset, so that
the partitions of unity poset of the powerset algebra is isomorphic to the
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poset of partitions in the sense of Definition 6.6. Thus when talking about
partitions of a finite set X, we will write PartM(X) for its partition poset
and will treat the elements of PartM(X) as in Definition 6.6.

Proposition 6.9. For any finite set X, the poset of partitions PartM(X)
is a lattice, which is dually isomorphic to FinSub(PX).

Proof. Since every Boolean algebra is an orthoalgebra, the isomorphism is
a special case of Proposition 6.5. Then the fact that the subalgebra poset is
a lattice yields that so is the partition poset.

6.2 Setoid quotients

Setoid quotients and their order-theoretic properties are the main ingredient
in the proof of the reconstruction theorem of the next section. We begin by
lifting the equivalence relation of a setoid to the finite partition lattice.

Let (X,∼) be a finite setoid. We extend the equivalence relation ∼ to
the powerset of X: let S, T ⊆ X be subsets, we say S ∼ T iff there is a
bijection f : S → T such that for all s ∈ S we have s ∼ f(s). Similarly, for
partitions P,Q ∈ PartM(X), we let P ∼ Q iff there is a bijection g : P → Q
such that for all S ∈ P we have S ∼ g(S).

Note that we slightly abuse the notation by writing ∼ for all the three
equivalence relations; there should, however, be no ambiguity whether we
mean a relation on elements, sets or sets of sets. We refer to the equivalence
relation so obtained as a setoid equivalence on PartM(X). If we want to
make the choice of bijection explicit, we will write g : P ∼ Q for P ∼ Q
witnessed by g. Further, we adopt the convention that if g : P ∼ Q, then
for each S ∈ P , the bijection witnessing S ∼ g(S) is denoted by gS .

Definition 6.10 (Setoid quotient). Let (X,∼) be a finite setoid. Its setoid
quotient is the quotient poset PartM(X)

/
∼ . That is, the elements of the

poset are the equivalence classes of partitions [P ] under the setoid equiva-
lence, and [P ] ≤ [Q] iff P ′ ≤ Q′ for some partitions P ′ and Q′ with P ′ ∼ P
and Q′ ∼ Q.

We discuss the possibilities of extending the setoid quotient to a functor
in Appendix B.

Proposition 6.11. Let PartM(X)
/
∼ be the setoid quotient of some finite

setoid (X,∼). Then for any partitions P and Q, the following are equivalent

(1) [P ] ≤ [Q],
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(2) there is a partition Q′ such that Q′ ∼ Q and P ≤ Q′,

(3) there is a partition P ′ such that P ′ ∼ P and P ′ ≤ Q.

Proof. Clearly, both (2) and (3) imply (1). Thus suppose (1), so that there
are P̂ and Q̂ with f : P̂ ∼ P and g : Q̂ ∼ Q such that h : P̂ ≤ Q̂. We define

Q′ :=
{
∪f
[
h−1S

]
: S ∈ Q̂

}
.

Now S ∼ ∪f
[
h−1S

]
for each S ∈ Q̂. Moreover, this defines a bijection

Q̂ → Q′, so that Q′ ∼ Q̂ ∼ Q. By construction, P ≤ Q′, showing (2).
Similarly, we define

P ′ :=
{
gh(T )[T ] : T ∈ P̂

}
,

which satisfies the properties of (3).

Remark 6.12. There is a perhaps more natural way to construct the setoid
quotient. For this, given a finite set X, observe that PartM(X) is isomorphic
to a sublattice of the subgroup lattice of the automorphism group Aut(X)
via

Γ : PartM(X)→ SubG(X)

P 7→ ΓP := {g ∈ Aut(X) : ∀S ∈ P, g[S] = S} ,

where SubG(X) denotes the lattice of subgroups of Aut(X) ordered by in-
clusion. It is straightforward to check that each ΓP is a subgroup, and that
for all partitions P and Q, we have P ≤ Q iff ΓP ≤ ΓQ (Birkhoff [6, p. 97]
gives this as an Exercise 8a). Now given a finite setoid (X,∼), the collec-
tion of ∼-equivalence classes E defines a partition of X. The corresponding
subgroup ΓE acts on Γ(PartM(X)) by conjugation; in other words, viewing
ΓE as a category with one object •, we have a functor

E : ΓE → Pos

• 7→ Γ(PartM(X))

g 7→
(
ΓP 7→ gΓP g

−1) .
The setoid quotient PartM(X)

/
∼ is then nothing but the colimit of E .

The following lemma establishes the connection between setoid quotients
and multiset partition posets. Since the technicalities of the proof get a little
messy, it may be useful to have a look at Example 6.14 while reading the
proof.
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Lemma 6.13. The partition poset of any finite multiset is isomorphic to a
finite setoid quotient: namely, for every finite multiset A we have

PartM(A) ' SQuot(X(A)).

In other words, the diagram

FinMulop FinSetoidop
Xop

//

Pos

PartM

""
SQuot

||

commutes on objects up to an isomorphism.

Note that strictly speaking we have not defined SQuot : FinSetoidop →
Pos, however, it is defined on every object of FinSetoidop, since every finite
setoid has a setoid quotient.

Proof. Let A = (A, η) be a multiset with cardinality n, and let (X,∼) =
X(A, η) be the corresponding setoid. We wish to define an order isomor-
phism

C : PartM(X)
/
∼ ∼−−→ PartM(A).

Given an equivalence class [P ] ∈ PartM(X)
/
∼ , each set S ∈ P corresponds

to a submultiset σS : A→ N by letting

σS(a) := |{i : (i, a) ∈ S}| .

We thus define a partition C([P ]) = (CP , ρP ) of A by

CP := {σ ∈ PA : {S ∈ P : σS = σ} 6= ∅}

ρP : CP → N \ {0}
σ 7→ |{S ∈ P : σS = σ}| .

This is well-defined: if P ∼ Q, then for each submultiset σ, the sets S ∈ P
such that σS = σ are in bijection with sets T ∈ Q such that σT = σ, whence
C([P ]) = C([Q]).

Now suppose [P ] ≤ [Q], that is, there are partitions P ′ and Q′ with
P ′ ∼ P and Q′ ∼ Q such that f : P ′ ≤ Q′. We claim that C([P ]) ≤ C([Q]).
By the fact that C is well-defined, it is equivalent to show that C([P ′]) ≤
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C([Q′]). Observe that there is a bijection from P ′ to X(C([P ′])) given by
mapping S ∈ P ′ to (i, σS) (the choice of C([P ′])(σ) guarantees that there are
as many indices i as there are sets S which map to the same submultiset).
Thus we obtain a surjection

X(C([P ′])) ' P ′ f−→ Q′ ' X(C([Q′])).

Given (j, τ) ∈ X(C([Q′])), we have that (i, σ) is in the preimage of this
surjection if and only if S corresponding to (i, σ) is in the preimage of T
corresponding to (j, τ). Since the union of all such (disjoint) S is T , we
conclude that the sum of all such σ is τ . Thus we indeed have C([P ]) ≤
C([Q]), showing that C is order preserving.

Conversely, suppose P and Q are partitions of X such that f : C([P ]) ≤
C([Q]). Let us fix some bijections g : P → X(C([P ])) and h : Q →
X(C([Q])) which map S to (i, σS). Now define

Q′ := {∪g−1f−1h(T ) : T ∈ Q}.

Observe that for T ∈ Q:

π2h(T ) =
∑

(i,σ)∈f−1h(T )

σ =
∑

S∈g−1f−1h(T )

π2g(S),

where π2 stands for projection on the second component. Thus, for each
a ∈ A, there is a one-to-one correspondence between elements of T whose
second component is a and such elements in ∪g−1f−1h(T ), in other words,
T ∼ ∪g−1f−1h(T ). We therefore have Q′ ∼ Q. Moreover, given S ∈ P we
have h−1fg(S) ∈ Q and

S ⊆ ∪g−1f−1hh−1fg(S)

since f is a surjection. Thus P ≤ Q′, whence [P ] ≤ [Q].
Since C both preserves and reflects the order, it is injective. It remains

to show surjectivity. Given a partition (D, δ) of A, let us enumerate the
subsets in D as σ1, . . . , σk such that each subset appears with multiplicity
dictated by δ. For each a ∈ A, let

Sa := {σi : a ∈ supp(σi)}.

Let us enumerate the sets in Sa as σa1 , . . . , σ
a
za (this enumeration need not

have anything to do with the enumeration of D), so that we have

za∑
i=1

σai (a) = η(a)
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for all a ∈ A. This induces a partition of the set with η(a) elements into za
parts; precisely, define a function

φa : {1, . . . , η(a)} → Sa

1, . . . , σa1(a) 7→ σa1

σai (a) + 1, . . . , σai+1(a) 7→ σai+1.

We may, of course, view the codomain of φa as all of {σ1, . . . , σk}. We use
this to define a subset D′j of X for every j = 1, . . . , k:

D′j :=
⋃
a∈A

⋃
i∈φ−1

a (σj)

{(i, a)}.

Finally, we obtain a partition of X by taking

D′ :=
{{
D′j
}

: j = 1, . . . , k
}
.

Thus D′ contains ‘the same’ subsets as D, except that we replace the occur-
rence of each type a with (i, a), taking care to use each index 1, . . . , η(a)
exactly once. It is thus an easy consequence of this construction that
C([D′]) = (D, δ), showing surjectivity.

Since the functorX is essentially isomorphic on objects (Proposition 2.25),
the above lemma in fact shows that not only is every multiset partition poset
isomorphic to a setoid quotient, but also conversely, each setoid quotient
comes from a multiset partition poset (up to an isomorphism). Thus setoid
quotients and multiset partition posets really are the same thing.

Example 6.14. Consider the finite multiset {a, a, a, b}, so that the corre-
sponding setoid is {(1, a); (2, a); (3, a); (1, b)}. In the figure below, we depict
on the right the multiset partition poset (we omit the set brackets between
subsets), that is, the poset of partitions of unity of the powerset. On the
left, we depict the finite partition lattice of the four element set of the setoid.
The dashed boxes indicate the equivalence classes under the setoid equiv-
alence. Note that the quotient poset under this equivalence gives a poset
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isomorphic to the one on the right, as dictated by Lemma 6.13.

{a, a, a, b}

{aa, a, b} {ab, a, a}

{aab, a}{aaa, b} {aa, ab}

{aaab}

We now move on to discussing the order-theoretic properties of setoid
quotients. To this end, it will be useful to view them as graded posets.

Definition 6.15 (Graded poset). A poset P is graded if there is a function
ρ : P → N (called the rank function) such that

• ρ is strictly order-preserving: if x, y ∈ P with x < y, then ρ(x) < ρ(y),
and

• if x, y ∈ P are such that y covers x, then ρ(y) = ρ(x) + 1.

The value of the rank function ρ(x) ∈ N at an element x ∈ P is referred
to as the rank of x. In a graded poset, there are no infinite descending chains,
as this would contradict the fact that N has the least element. If (P, ρ) is a
graded poset and P has the least element 0, we adopt the convention that
ρ(0) = 0. With this convention, we have the following uniqueness result.

Proposition 6.16. Let P be a poset with the least element 0. If both ρ :
P → N and φ : P → N are rank functions such that ρ(0) = φ(0) = 0, then
ρ = φ.

Proof. Let a ∈ P . Since there are no infinitely descending chains, there is a
finite chain

a = an > an−1 > · · · > a0 = 0

such that ai covers ai−1 for each i ≥ 1. Since the rank function exists, any
such chain has the same length. By definition of the rank function, we must
have ρ(a) = n = φ(a).
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Thus for a graded poset with the least element we may speak of the rank
of an element without explicitly mentioning the rank function.

Observe that for any finite set X with n elements, the finite partition
lattice PartM(X) is a graded poset, and that the rank of a partition P is
just n − |P |. A partition P covers Q if and only if P is obtained from
Q by taking the union of exactly two sets. Since in the setoid quotient
SQuot(X,∼) partitions are identified only if they have the same cardinality,
partitions in any given equivalence class have the same cardinality. It follows
that SQuot(X,∼) is a graded poset with the rank of an equivalence class
[P ] given by n− |P |.

Given a finite set X and a pair of distinct elements x, y ∈ X, let us
denote by

axy := {{x, y}} ∪ {{z} : z ∈ X \ {x, y}}
the partition containing the two element set {x, y} and no other non-singleton
sets. Observe that these are exactly the atoms of PartM(X) (upon iden-
tifying axy with ayx). Since any setoid quotient only identifies elements of
the same rank, it follows that the atoms of SQuot(X,∼) are the equivalence
classes of the form

[axy].

Lemma 6.17. Let (X,∼) be a finite setoid with more than two elements.
There is only one ∼-equivalence class (namely, X) if and only if the setoid
quotient SQuot(X,∼) has the second least element.

Proof. The setoid quotient has the second least element if and only if it has
exactly one atom. In other words, for all elements x, y, z, w ∈ X such that
x 6= y and z 6= w we have

axy ∼ azw.
Then the ‘only if’ direction is clear: if all element are in the same equivalence
class, then any two two-element sets are equivalent, hence all atoms are
equivalent.

Thus suppose SQuot(X,∼) has exactly one atom. Let x, y, z ∈ X such
that x, y and z are all distinct (such a triple exists since X has at least three
elements). Then we have axy ∼ axz ∼ ayz, whence {x, y} ∼ {x, z} ∼ {y, z},
wherefrom it follows that x ∼ y ∼ z. Repeating this for the triple w, t, x,
where w, t ∈ X are any distinct elements with w, t 6= x, we conclude that
all of X lies in a single equivalence class.

Corollary 6.18. Let A = (A, η) be a finite multiset with cardinality larger
than two. Then |A| = 1 if and only if the partition poset PartM(A) has the
second least element.
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Proof. This is immediate by Lemmas 6.17 and 6.13: PartM(A) has the
second least element iff SQuot(X(A)) has one iff X(A) has exactly one
equivalence class iff A has exactly one type.

Lemma 6.19. Let (X,∼) be a finite setoid and let E be some ∼-equivalence
class. Let us denote the partition of X containing E and no other non-
singleton sets (or only the singleton sets if E is a singleton) by

PE := {E} ∪ {{x} : x ∈ X \ E}.

Then
↓ [PE ] ' SQuot(E,∼|E),

where the downset on the left-hand side is taken in SQuot(X,∼) and ∼|E is
the restriction of ∼ to E, in other words, the total equivalence relation on
E.

Proof. Observe that the equivalence class [PE ] contains exactly one element:
namely, PE . Thus by Proposition 6.11, [Q] ≤ [PE ] if and only if Q ≤ PE .
But this occurs precisely when

Q = QE ∪ {{x} : x ∈ X \ E},

where QE is a partition of E. Thus we may define an order isomorphism

↓ [PE ]→ SQuot(E,∼|E)

[Q] 7→ [QE ].

This is well-defined, as any g : R ∼ Q restricts to RE ∼ QE . Moreover,
[R] ≤ [Q] iff there is R′ with R′ ∼ R and R′ ≤ Q iff RE ∼ QE iff [RE ] ≤ [QE ].
Since surjectivity is immediate, this is indeed an order isomorphism.

6.3 Finite MV-algebras from partitions

We are finally ready to prove the advertised reconstruction result for finite
MV-algebras. In fact we prove it for finite multisets, from which the desired
result immediately follows.

Theorem 6.20. Let A and B be finite multisets with cardinality greater
than two. Then A ' B if and only if PartM(A) ' PartM(B). In other
words, the functor

PartM : FinMulop → Pos

is essentially injective on multisets with cardinality greater than two.
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Proof. LetA = (A, η) and B = (B,µ) be finite multisets such that PartM(A)
' PartM(B). By Lemma 6.13, SQuot(X(A)) ' SQuot(X(B)). Observe that
the height of PartM(X(B)) is equal to the cardinality of X(B) and hence to
the cardinality of B. Since the setoid quotient only identifies elements of the
same rank, it follows that the height of SQuot(X(B)) is the cardinality of B.
Thus, as an order isomorphism preserves the height of a poset, we conclude
that A and B have the same cardinality. Let us denote this cardinality by
c.

Next, let us count the number of atoms in SQuot(X(B)). Recall that
the atoms are of the form

[axy] = [{{x, y}} ∪ {{z} : z ∈ X \ {x, y}}].

Writing m := |B|, we claim that the number of equivalence classes of this
form is (

m

2

)
+ |{b ∈ B : µ(b) ≥ 2}| .

Indeed, the first term in the above expression accounts for those equivalence
classes where x � y, while the second term for those which have x ∼ y. Let
us denote the cardinality of those types in B whose multiplicity is exactly 1
by

β := |{b ∈ B : µ(b) = 1}| .
Then, evaluating the binomial coefficient above, we obtain that the number
of atoms in SQuot(X(B)) is

1

2
m(m− 1) +m− β =

1

2
m(m+ 1)− β.

Similarly, writing n := |A| and

α := |{a ∈ A : η(a) = 1}| ,

the number of atoms in SQuot(X(A)) is

1

2
n(n+ 1)− α.

Since an order isomorphism preserves atoms, we obtain an equality

n(n+ 1) + 2β = m(m+ 1) + 2α.

Without loss of generality, let us assume that m ≥ n, say m = n + k for
some k ∈ N. Upon substituting this into the above equality, we obtain

2β = k2 + k + 2nk + 2α. (6.21)
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Since β ≤ m = n+ k, we get

2n+ 2k ≥ k2 + k + 2nk + 2α. (6.22)

Observe that if k > 1, then k2 + k > 2k and 2nk > 2n (as n 6= 0). But
this means that the right-hand side of the inequality (6.22) is strictly above
2n + 2k, contradicting the same inequality. Thus in fact we must have
either k = 1 or k = 0. Suppose for a contradiction that k = 1, so that (6.22)
becomes

2n+ 2 ≥ 2 + 2n+ 2α,

which yields α = 0. Then equation (6.21) gives β = n + 1 = m. Thus
every type of B has multiplicity 1, so that c = m. On the other hand,
every type of A has multiplicity at least 2, so that c ≥ 2n. But we have
c = m = n + 1, which in combination with the previous inequality gives
1 ≥ n, whence c ≤ 2, which contradicts the assumption that c > 2. Thus we
must have k = 0, which yields n = m and α = β.

Thus we have shown that A and B have the same number of types, and
the same number of types whose multiplicity is exactly one.

Let us write the multisets in the isomorphism invariant notation as

A = (n1, . . . , nk) B = (m1, . . . ,mk),

where k is the common number of types. Recall that we make the convention
that n1 ≤ · · · ≤ nk, and similarly for B. Now suppose nk ≥ 4, and let a ∈ A
be the type such that η(a) = nk. Let us denote by [a] the equivalence class
of X(A) induced by a, and the corresponding partition as in Lemma 6.19
by

Pa := {[a]} ∪ {{x} : x ∈ [a]c} .

By the same lemma,

↓ [Pa] ' SQuot([a],∼),

where ∼ is the total equivalence relation on [a]. Note that the rank of
Pa is nk − 1 ≥ 3, so this is also the rank of [Pa]. Since SQuot(X(A)) '
SQuot(X(B)), there is an element of rank nk − 1 in SQuot(X(B)) such that
its downset is isomorphic to SQuot([a],∼). Let us denote this element by
[Pa]

′.

We now claim that for any partition P in [Pa]
′, all the elements in non-

singleton sets of P are equivalent. We will first argue that there is at least one
set in P with cardinality at least three. Thus suppose for a contradiction that
all sets in P are either singletons or two-element sets. Let {x, y}; {z, w} ∈ P
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be two-element sets. By Lemma 6.17, SQuot([a],∼) has the second least
element, hence so does ↓ [Pa]

′. But this yields that {x, y} ∼ {z, w}. Thus
any two-element sets in P are equivalent, which implies that ↓ [Pa]

′ has
exactly one coatom. Thus also SQuot([a],∼) has exactly one coatom, which
is a contradiction, since by assumption |[a]| ≥ 4, so that the coatoms

{{a}, {a}c} and {{a, a}, {a, a}c}

are distinct. Thus there is at least one set S ∈ P with cardinality at least 3.
An argument very similar to the proof of Lemma 6.17 shows that all elements
in S are equivalent. Moreover, taking a two-element subset {x, y} ⊆ S and
any two-element subset {z, w} of any other non-singleton set of P yields
{x, y} ∼ {z, w}, whence x ∼ y ∼ z ∼ w. Thus we have indeed shown that
all the elements in non-singleton sets of P are equivalent.

Note that the cardinality of the elements in non-singleton sets of P is
bounded below by nk. Indeed, there is a chain (up to setoid equivalence)

P0 < P1 < · · · < Pnk−1 = P

where P0 is the bottom element, such that each Pi+1 covers Pi, so that
Pi+1 is obtained from Pi by taking the union of two sets. Since this is
done nk − 1 times, the least number of elements that is used is nk (it is
exactly nk when P has a unique non-singleton set). It follows that B has
a type whose multiplicity is at least nk. But it cannot have a type with
a higher multiplicity, for reversing this argument would imply that A has
a type with multiplicity strictly larger than nk. Thus B has a type with
multiplicity exactly nk.

Repeating the above argument for the type d ∈ A with η(d) = nk−1
(assuming nk−1 ≥ 4), we get that B has a type with multiplicity at least
nk−1. As before, let us denote by [Pd]

′ the image of [Pd] under the order
isomorphism. Since a and d are distinct types with multiplicity greater than
two, [Pa] and [Pd] are incomparable. Suppose towards a contradiction that
there is a partition in [Pd]

′ with an element whose multiplicity is strictly
greater than nk−1. Then there is a type e ∈ A with multiplicity strictly
greater than nk−1 and [Pd] ≤ [Pe]. But the only type of A whose multiplicity
is (possibly) greater than nk−1 is a, which then contradicts the fact that
[Pa] and [Pd] are incomparable. Thus we conclude that B has a type whose
multiplicity is exactly nk−1. Progressing in this way, we eventually obtain
that A and B have the same number of types of any multiplicity strictly
greater than 3.

Now suppose A has s2 types with multiplicity 2 and s3 types with mul-
tiplicity 3. Similarly, let t2 and t3 be the number of types with multiplicity
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2 and 3 in B. The argument thus far shows that A and B have the same
cardinality, the same number of types, and the same number of types of
any other multiplicity than 2 or 3. Thus the combined number of types
of multiplicity 2 and 3 must be the same, as well as the cardinality of the
submultiset containing all and only the types with multiplicity 2 or 3. In
equations, we must have:

s2 + s3 = t2 + t3

2s2 + 3s3 = 2t2 + 3t3.

Solving the above system of equations we obtain s2 = t2 and s3 = t3. We
therefore finally conclude that A ' B.

Remark 6.23. In light of Remark 6.12, Theorem 6.20 says that if E : ΓE →
Pos and E ′ : ΓE′ → Pos are two group actions obtained from setoids (X,∼)
and (X ′,∼′) such that their colimits are isomorphic, then in fact ΓE ' ΓE′ ,
or equivalently, (X,∼) ' (X ′,∼′).

Theorem 6.24. The functor

Part : FinMV→ Pos

is essentially injective on algebras with more than four elements.

Proof. This is immediate from Theorem 6.20 using that P is an equivalence
of categories (Theorem 3.8).
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Chapter 7

Epilogue

We have seen that Boolean algebras with more than four elements are deter-
mined by the poset of their finite subalgebras, and that finite MV-algebras
with more than four elements are determined by the poset of their partitions
of unity. By Proposition 6.5, the poset of finite subalgebras of any Boolean
algebra is dually isomorphic to the poset its partitions of unity. Using this,
we may translate the first result to obtain that a Boolean algebra (with more
than four elements) is determined by the poset of its partitions of unity. This
provides some evidence for the claim that partitions of unity are the right
kind of structure to consider if we wish to obtain an analogous result for
arbitrary effect algebras.

Question (1) posed in the introduction (reformulated for effect algebras)
has thus been answered in a special case, which nonetheless involves unsharp
effects: these are elements of an effect algebra which are self-orthogonal. Re-
formulated in terms of physics, these correspond to effects with probability
strictly between 0 and 1. This motivates us to extend the analysis of par-
tition posets to larger classes of effect algebras, as a finite MV-algebra is
always contained in the range of a single POVM after all.

7.1 Future work

Inspired by the special cases considered here, we formulate the following
conjecture.

Conjecture 7.1. Let E and F be effect algebras such that Part(E) and
Part(F ) do not have minimal elements of cardinality less than 2. Then
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E ' F if and only if Part(E) ' Part(F ). In other words, the functor

Part : EAlg→ Pos

is essentially injective on effect algebras which do not have minimal parti-
tions of unity of cardinality less than 2.

Proof strategy: Again, it is the ‘if’ direction that is non-trivial. Thus
suppose ι : Part(E) → Part(F ) is an order isomorphism. We wish to use
Corollary 4.10. As was observed in Remark 6.3, for a finite Boolean algebra
B, any effect algebra morphism f : B → E gives rise to a partition of unity
B := (f(At(B)), α).

Thus we obtain a partition of unity ι(B) of F which has the same cardi-
nality as B. We now wish to define an effect algebra morphism B → F by
mapping At(B) to the types of ι(B) assigning to each type as many atoms
as is its multiplicity. However, it is unclear whether there is a canonical
choice of such a morphism. To obtain this proof, we would need to identify
an order-theoretic invariant corresponding to some ‘nice’ types of partitions
(as modular elements of FinSub(B) correspond to ideal subalgebras of B in
Section 5.1). The proof of Theorem 6.20 (in particular Lemma 6.19) suggests
that this potential invariant might have something to do with partitions with
only one type and a large enough cardinality. y

The results presented here and the above proof strategy, specifically
Corollary 4.10, give some reasons to suspect that the proposed conjecture
might be true. In light of Remark 6.3, however, the physical consequence
of this would be rather strong. Namely, it would imply that not even all,
but just the discrete measurements alone would suffice to determine any
physical system. Yet this is not entirely implausible, as we are allowed to
refine the discrete measurements arbitrarily many times, thus approximating
the continuous operator valued measures. A connection between refinements
of measurements and coarse-graining is discussed in Section 2.3 of Busch and
Quadt [12].

The next natural step would be to see whether any parts of the proof
strategy of Theorem 6.24 extend to the infinite case. Since any MV-algebra
is lattice-ordered (Proposition 2.15), it may be useful to look at related
results for lattices. For instance, Filippov proved the following.

Theorem 7.2 (Theorem 5.4 in [24]). Let L and L′ be complemented lat-
tices where the complements are unique. Then any isomorphism between the
lattices of sublattices of L and L′ is induced either by an isomorphism or a
dual isomorphism between L and L′.
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This, of course, does not immediately apply to MV-algebras: while the
orthosupplements are unique, they are not, in general, complements.

Possible other mathematical developments are listed below.

• One prospect for future research is to give a reconstruction procedure
for a (finite) MV-algebraM from Part(M) similar to that of Harding et
al. [31]. Currently the theorem just states that if Part(N) ' Part(N),
then N ' M , while the result of Harding et al. is stronger than this:
given a proper orthoalgebra A and a poset P isomorphic to BSub(A),
then the set of directions Dir(P ) has the structure of an orthoalge-
bra which is isomorphic to A. A reconstruction of this kind should
certainly be possible at least for the finite MV-algebras.

• Yet another mathematically interesting question, the answer to which
is not even known for Boolean algebras, is what are those morphisms
of Boolean algebras such that the functor FinSub is full and faithful
when restricted to the wide subcategory of these morphisms. This
is strictly stronger than the result proved here, as a full and faithful
functor is always essentially injective on objects. Of course, the same
question also makes sense for the partitions of unity functor.

• A completely different turn to the theory discussed here could be given
by bringing in topology and Stone duality in particular. Namely, the
dual version of Theorem 5.24 should be: if the Stone spaces X and
X ′ with more than four clopen sets have isomorphic posets of finite
images, then X and X ′ are homeomorphic. Making precise sense of
what the ‘posets of finite images’ are could be an interesting (possibly
easy) project. Perhaps expressing this result in topological terms could
also shed some light on the previous question.
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Appendix A

Essentially injective and
essentially isomorphic
functors

This brief section defines essentially injective/isomorphic functors, and is
included to serve as a reference to a precise definition.

While essentially surjective functors abound in standard texts on cate-
gory theory, the related notions of essentially injective and isomorphic func-
tors are quite rare. The author suspects that the reason for this might be the
fact that in pure category theory full and faithful functors are more natural
and easier to work with (cf. Proposition A.2).

Definition A.1. Let F : C → D be a functor, and let C be an isomorphism-
closed subclass of objects of C. We say that F is

• essentially surjective on objects if for every object D ∈ Ob(D), there
is an object C ∈ Ob(C) such that F (C) ' D,

• essentially injective on C-objects if for any objects C,B ∈ C, having
F (C) ' F (B) implies C ' B,

• essentially isomorphic on objects if there is a function g : Ob(D) →
Ob(C) such that for all objects C ∈ C and D ∈ D we have C ' gF (C)
and D ' Fg(D).

It is clear that a functor is essentially isomorphic on objects if and only
if it is essentially surjective and essentially injective on all objects in C (as-
suming that we have the axiom of choice for classes).
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The following proposition gives an important class of examples of es-
sentially injective functors. The proof is a straightforward exercise in basic
category theory.

Proposition A.2. A full and faithful functor is essentially injective on all
objects.

The converse is, of course, not true, even for essentially isomorphic func-
tors, as isomorphism on objects does not give us any handle on the mor-
phisms.
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Appendix B

Local isomorphisms of
setoids

Here we briefly discuss the possibility of extending the setoid quotient (Def-
inition 6.10) to a functor.

Recall that we defined a morphism of setoids (Definition 2.24) to be
an equivalence relation preserving function. Since the setoid quotient is a
quotient poset of the finite partition lattice, a natural candidate for a functor
from setoids to posets would be the (contravariant) preimage functor, which
takes a partition to the set of non-empty preimages of the elements in the
partition. This is indeed how we will define SQuot on morphisms. The
problem is that, without a restriction on morphisms, the induced mapping
is not well-defined. To see this, consider the setoid {x1, x2, y} with x1 ∼ x2.
Define an endomorphism by

x1, x2 7→ y,

y 7→ x1.

Then we have equivalent partitions

{x1y, x2} ∼ {x2y, x1}

under the setoid equivalence, while their preimages

{x1x2y} � {x1x2, y}

are not equivalent.
One option would be to restrict the setoid morphisms to those contained

in the essential image of the multisets-to-setoids functor X. This would,
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however, result in essentially the same functor as PartM. Instead of this, we
consider a more restricted, yet more intrinsic to setoids, class of maps.

Definition B.1 (Local isomorphism). A morphism of setoids f : (S,∼
)→ (T,∼′) is a local isomorphism if for every equivalence class [a] we have
f([a]) = [f(a)], and the restriction

f |[a] : [a]→ [f(a)]

is a bijection.

We denote the category of finite setoids and local isomorphisms by
LocSetoid.

Remark B.2. The definition of local isomorphism corresponds to that of
a local homeomorphism in topology. If for a setoid (S,∼) we take the ∼-
equivalence classes as the basis, this defines a topology on X. Then the local
isomorphisms between two setoids are precisely the local homeomorphisms
in this topology. It is a well-known fact in sheaf theory that local homeo-
morphisms into some fixed space are equivalent to sheaves over that space
(e.g. Mac Lane and Moerdijk [46, Corollary II.6.3]).

SQuot : LocSetoidop → Pos

(X,∼) 7→ PartM(X)
/
∼(

(X,∼)
f−→ (Y,∼′)

)
7→
(

PartM(Y )
/
∼′ → PartM(X)

/
∼
)

[P ] 7→
[
{f−1S : S ∈ P and f−1S 6= ∅}

]
.

Let us denote the image of the setoid map f under the functor by SQuotf .
Clearly, SQuotf ([P ]) is a partition. We need to check that SQuotf is well-
defined. Thus suppose g : P ′ ∼ P . Let us denote

f−1P := {f−1S : S ∈ P and f−1S 6= ∅},

and similarly for P ′. We wish to show that f−1P ′ ∼ f−1P ′.
Note that if T ∈ f−1P ′, then there is an x ∈ X such that f(x) ∈ T ,

so that gT (f(x)) ∈ g(T ). Since f(x) ∼ gT (f(x)) and [f(x)] = f([x]), there
exists a y ∈ [x] such that f(y) = gT (f(x)), so that f(y) is in g(T ). Hence
f−1g(T ) 6= ∅ so that f−1g(T ) ∈ f−1P .
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Further, if T, T ′ ∈ f−1P ′ are such that f−1T = f−1T ′, then ff−1T =
ff−1T ′ ⊆ T, T ′, whence T = T ′, since distinct sets in P ′ are disjoint. Thus
we may define

g′ : f−1P ′ → f−1P

f−1T 7→ f−1g(T ).

This is a bijection: if f−1g(T ) = f−1g(T ′), then T = T ′ as g is a bi-
jection, and given f−1S ∈ f−1P we have seen that f−1g−1(S) ∈ f−1P ′.
Moreover, we have f−1T ∼ f−1g(T ), since for each equivalence class [x]
in PartM(X)

/
∼ , we have [x] ∩ f−1T ' [x] ∩ f−1g(T ), using the fact that

f restricts to an isomorphism [x] → [f(x)]. Thus f−1P ′ ∼ f−1P ′, as we
wanted to show.
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Appendix C

Finite product theories

Here we introduce a categorical approach to universal algebra by defining
finite limit theories and by studying some of their properties. Our main
aim is to characterise the representable models of any given finite product
theory; these will turn out to correspond precisely to the models given by the
‘free algebra functor’ on finite sets, i.e. to free and finitely generated models.
We mostly focus on the constructions and results needed in Chapter 5. As
a result, the treatment here is far from complete, and the reader interested
in learning the categorical approach to universal algebra in full detail is
referred to Borceux [9, Ch. 3], which is also the main reference here.

Finite product theories are also known as algebraic theories, reflecting
the fact that the models are algebras, and as Lawvere theories after William
Lawvere, who introduced them in [43] in 1963 (see also Lawvere [42]).

C.1 Finite product theories and their models

Definition C.1 (Finite product theory). A finite product theory T is a
locally small category with a countable set of objects{

T 0, T 1, . . . , Tn, . . .
}
,

where Tn is the n-th power of the fixed object T .
We say that T is generated by T and that T is a generator of T .

Definition C.2 (Models). Let T be a finite product theory. Denote by
ModT the full subcategory of the functor category [T ,Set] consisting of
finite product preserving functors. The objects of ModT are referred to as
models of T and morphisms (natural transformations) as homomorphisms
of T -models.
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Proposition C.3. Let T be an algebraic theory, and let α : F → G be a
morphism in ModT . Then the diagram

F (Tn) G(Tn)
αTn //

F (T )n

'

��
G(T )n

(αT )n //

'

��

commutes for any n ∈ N , where the vertical maps are canonical isomor-
phisms induced by the fact that F and G preserve products.

Proof. Composing both maps with the i:th projection G(T )n → G(T ), we
obtain αT ◦ Fπi and Gπi ◦ αTn , where πi : Tn → T is the i:th projection,
which are equal by naturality of α.

Proposition C.3 says that a morphism of models of a finite product theory
is uniquely determined by its T -component.

Since representable functors yT
n

:= (Tn,−) preserve limits, in particular
they preserve finite products. Thus representables are always models of any
finite product theory.

Definition C.4 (Representable model). We call a model of a finite product
theory representable if it is (isomorphic to) a representable functor.

Representable models play quite a special role in the category of models
of a finite product theory and are in fact our main motivation for taking
the categorical perspective on universal algebra. The simple, yet crucial,
observation is the following.

Proposition C.5. Let T be an algebraic theory, let G ∈ ModT , and let n
be a finite set with n elements. Then there is a natural isomorphism

ModT
(
yT

n
, G
)
' Set(n,G(T )),

where yT
n

denotes the representable functor with representing object Tn.

Proof. Simply observe

ModT
(
yT

n
, G
)
' G(Tn) ' G(T )n ' Set(n,G(T )),

where we used the Yoneda lemma, that G preserves finite products and that
Set is cartesian closed.
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Note that the above proposition states that there is an adjunction be-
tween ModT and finite sets. The left adjoint of this gives the free model on
finitely many generators. In Corollary C.22, we will extend this adjunction
to Set.

C.2 Relation to set-based universal algebra

We now make precise the relation of finite product theories to theories of
algebras as considered in universal algebra.

Definition C.6 (Language). A language of an algebraic theory is a set L
which is a disjoint union of a countable set Var, whose elements are called
variables, and for each n ∈ N, of a set On whose elements are called function
symbols of arity n.

Definition C.7 (Terms). Let L be a language of an algebraic theory. The
set of L-terms is inductively generated by:

• each variable is a term;

• if f ∈ On and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

Definition C.8 (Model in a language). Let L be a language of an algebraic
theory. By an L-model we mean a tuple (M, {| - |n}n∈N), where M is a set
and each

| - |n : On → Set(Mn,M)

is a function, where Set(Mn,M) denotes the collection of maps Mn →M .
Since each function symbol has a unique arity, we will often denote | - |n
simply by | - | and an L-model by (M, | - |).

A homomorphism of L-models (M, | - |M ) and (N, | - |N ) is a function
η : M → N such that for any f ∈ On and any elements x1, . . . , xn in M

η(|f |M (x1, . . . , xn)) = |f |N (η(x1), . . . , η(xn)).

Note that L-models and their homomorphisms form a category L-Mod.
Each such category comes equipped with an evident forgetful functor U :
L-Mod→ Set sending (M, | - |) to M .

The following is the notion of an algebraic theory in the sense of set-
based model theory or universal algebra. We use the word ‘presentation’
following Borceux [9, p. 3.2] to avoid confusion with finite product theories.
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Definition C.9 (Algebraic presentation). Let L be a language of an alge-
braic theory. An axiom in L is an expression of the form t = s, where s and
t are L-terms. An algebraic presentation is given by a pair (L, A), where L
is a language of an algebraic theory, and A is a collection of axioms in L.

Now given an L-model (M, |-|), any function ν : Var→M (interpretation
of the variables) may be inductively extended to an interpretation -ν of the
terms:

• for x ∈ Var let xν := ν(x);

• if f ∈ On and the terms t1, . . . , tn already have interpretations tν1 , . . . , t
ν
n,

we set

f(t1, . . . , tn)ν := |f |(tν1 , . . . , tνn).

A model of an algebraic presentation is then just a model that realizes the
axioms in the following sense.

Definition C.10 (Model of a presentation). Let T = (L, A) be an alge-
braic presentation. A model of T is an L-model (M, | - |) such that for any
interpretation ν : Var → M and for any axiom s = t in A, we have that
sν = tν when the interpretation is inductively extended to all L-terms.

Given an algebraic presentation T = (L, A), we denote the full subcat-
egory of L-models whose objects are T -models by ModpT . In what follows
we shall refer to objects in ModpT just by the set M , and the collection of
functions | - |M is omitted but understood.

Definition C.11 (Free models). Let T be an algebraic presentation and
let X be a set. We say that a model M ∈ ModpT is a free model on X if
there is a function ηX : X → UM such that for any other model N ∈ ModpT
and any function f : X → UN , there is a unique homomorphism of models
f̂ : M → N such that the diagram

UM UN
Uf̂ //

X

OO

ηX

::

f

commutes.
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Using the universal property in the above definition, it is easy to see
that if a free model on X exists, then it is unique up to an isomorphism.
In fact existence of free models for every set X is equivalent to the forgetful
functor U : ModpT → Set having a left adjoint and η being the unit (see
e.g. Theorem 2.3.6 in Leinster [44]). We will in fact show in the context
of finite product theories that the forgetful functor does have a left adjoint
(Corollary C.22) and hence there is a free model on every set.

Definition C.12 (Finitely generated models). Let T be an algebraic pre-
sentation. A model M ∈ ModpT is finitely generated if it is a quotient of
some free model on a finite set.

Here ‘quotient’ may be taken to mean either an epi or a regular epi, as
these turn out to coincide in ModpT [9, Corollary 3.5.3].

Proposition C.13 (Proposition 3.2.9 in Borceux [9]). Let T be an alge-
braic presentation, and let F be the full subcategory of ModpT containing
those models which are both free and finitely generated. Then Fop has finite
products and its skeleton T ′ is a finite product theory. Moreover, there is an
equivalence of categories

ModpT ' ModT ′ .

Given a finite product theory T generated by T , we obtain a language L
of an algebraic theory as follows. Fix some countable set Var, and for each
n ∈ N we simply let On := T (Tn, T ). To extend this to an algebraic pre-
sentation, we define the following family of functions. Let us denote the set
of all L-terms whose variables are amongst x1, . . . , xm by Term(x1, . . . , xm).
Given t ∈ Term(x1, . . . , xm), define a function

φt : Term(x1, . . . , xm)→ Om

by induction as follows:

• φt(xi) = πi, where πi : Tm → T is the i:th projection, or φt(x1) = idT
if m = 1;

• if f ∈ On and s1, . . . , sn are in Term(x1, . . . , xm) such that φt(sj) has
been defined for each j = 1, . . . , n, we let

φt(f(s1, . . . , sn)) = f ◦ (φt(s1), . . . , φt(sn)).

We then define a set of axioms A by stipulating that for each tuple of
variables x1, . . . , xm and for each t ∈ Term(x1, . . . , xm), the axiom

t = φt(t)(x1, . . . , xm)
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is in A. Thus we obtain an algebraic presentation T ′ := (L, A).

Proposition C.14 (Proposition 3.3.4 in Borceux [9]). Let a finite product
theory T generated by T be given. Define a corresponding algebraic presen-
tation T ′ as above. Then there is an equivalence of categories

ModT ' ModpT ′ .

Moreover, the forgetful functor U : ModpT ′ → Set corresponds to the functor
ModT → Set of evaluation at T .

The key observation in the proof of the above proposition is that the
axioms in A are so chosen that models in ModpT ′ extend to a product pre-
serving functor. In detail, given M ∈ ModpT ′ , define F : T → Set by
F (Tn) := Mn on objects, Ff := |f | on morphisms f : Tm → T and as
the product map on morphisms Tm → Tn. Now F preserves the identi-
ties, as πi(x1, . . . , xm) = xi is an axiom so that |πi|(x1, . . . , xm) = xi for all
x1, . . . , xm ∈M whence their product is the identity. By definition of F on
the product maps, it suffices to see that it preserves the composition of the
maps that are of the form

Tn
f−→ Tm

g−→ T,

to see that F preserves composition of all maps. We thus have to show that

|g| ◦ (|π1f |, . . . , |πmf |) = |gf |.

To this end, let x̄ be an arbitrary n-tuple of distinct variables, so that we
have a term

t := g((π1f)(x̄), . . . , (πmf)(x̄)).

Now φt(t) = gf , that is,

g((π1f)(x̄), . . . , (πmf)(x̄)) = (gf)(x̄)

is an axiom, whence the desired equality follows.

To summarise, Propositions C.13 and C.14 show that finite product the-
ories and presentations of algebraic theories carry the same information in
the sense that from one we can produce the other in such a way that their
categories of models are equivalent. From now on we solely focus on the
finite product theories.

87



C.3 Limits and colimits in the categories of models

Let us fix some arbitrary finite product theory T generated by T .

If a functor F : C → D has a left adjoint, then it is straightforward to
show that it preserves limits. The converse, however, requires the assump-
tion that C is complete as well as some size restrictions. This well-known
result in category theory is known as the General adjoint functor theorem
(or GAFT). We state the version of Leinster [44, Theorem 6.3.10]; Borceux
gives a different (but equivalent) condition [8, Theorem 3.3.3].

Theorem C.15 (General adjoint functor theorem). Let F : C → D be a
functor. If F has a left adjoint, then it preserves limits. Moreover, in case
C is complete and locally small, and for each D ∈ D the comma category
(D ⇒ F ) has a weakly initial set, F preserves limits if and only if it has a
left adjoint.

Definition C.16 (Replete subcategory). A subcategory D of a category C
is replete if D is closed under isomorphisms. Precisely, if D ∈ D and C ∈ C
are isomorphic, then also C ∈ D.

Note that ModT is a replete subcategory of [T ,Set].

Definition C.17 (Reflective subcategory). A replete subcategory D of a
category C is reflective if the inclusion functor i : D → C has a left adjoint.
In such case the left adjoint is called the reflection of i.

A reflective subcategory inherits (co)completeness, as indicated by the
following proposition.

Proposition C.18 (Propositions 3.5.3 and 3.5.4 [8]). Let C be a (finitely)
(co)complete category. Then any reflective subcategory of C is (finitely)
(co)complete.

Proposition C.19. The category ModT is complete, and the limits are com-
puted pointwise. Moreover, the forgetful functor U : ModT → Set preserves
limits.

Proof. Let D : I → ModT be a diagram and let i : ModT → [T ,Set] be
the inclusion functor. Then the diagram D̂ := i ◦ D has a limit lim

←I
D̂ in

[T ,Set], as functor categories are complete. Moreover, lim
←I

D̂ is computed

pointwise. We now wish to show that lim
←I

D̂ ∈ ModT , in other words, that
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lim
←I

D̂ preserves finite products. Thus let G : J→ T be a diagram, where J

is a finite discrete category, such that lim
←J

G exists. We wish to show that

lim
←I

D̂
(

lim
←J

G
)

= lim
←J

(
lim
←I

D̂ ◦G
)
.

Thus we compute

lim
←I

D̂
(

lim
←J

G
)

= lim
←I

(
D(-)

(
lim
←J

G
))

= lim
←I

(
lim
←J

D(-)(G(-))
)

= lim
←J

(
lim
←I

D(-)(G(-))
)

= lim
←J

(
lim
←I

D̂ ◦G
)
,

where in the first and last equalities we used that limits in [T ,Set] are com-
puted pointwise, in the second equality that D(i) preserves finite products
for each i ∈ I, and in the third equality that limits commute with limits.

Next we want to show that lim
←I

D̂ verifies the universal property of the

limit of D. Given a functor F : T → Set, let us denote the constant diagram
on F by ∆F : I→ [T ,Set]. Observe:

ModT

(
F, lim
←I

D̂
)

= [T ,Set]
(
F, lim
←I

D̂
)

= [I, [T ,Set]](∆F , D̂)

= [I,ModT ] (∆F , D),

where the first and the last equalities hold since ModT is a full subcategory
of [T ,Set] and the middle equality is the definition of a limit. Thus we
conclude that lim

←I
D exists and is equal to lim

←I
D̂. Since lim

←I
D̂ is computed

pointwise, so is lim
←I

D.

Since limits are computed pointwise and the forgetful functor is given by
evaluation at T , it is immediate that it preserves limits.

Theorem C.20. ModT is a reflective subcategory of [T ,Set].

Proof. We wish to apply the General adjoint functor theorem C.15 to the
inclusion functor i : ModT → [T ,Set].

By Proposition C.19, ModT is complete. The same proposition shows
that i preserves limits. Moreover, Proposition C.3 shows that ModT is
locally small, as any natural transformation in ModT is determined by its
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T -component, and all possible such components form a set. Thus in order to
conclude using GAFT, it remains to show that for each functor P : T → Set,
the comma category (P ⇒ ModT ) has a weakly initial set, which we now
do.

First observe that the comma category (P ⇒ ModT ) is just the full sub-
category of the coslice category P/[T ,Set] on those objects whose functor
part lies in ModT . Given any such P , we define a collection of objects in
this comma category as follows:

P :={
(H,φ) : H(T ) ⊆

∐
n∈N
T (Tn, T )× P(T )n and ∀n ∈ N, H(Tn) = H(T )n

}
.

We first argue that P is a set. There is a set of possible choices for H(T ),
namely, the powerset of the set in the above condition. Once H(T ) is fixed,
this defines H on the objects of T . On the morphism f : Tn → Tm, there is
a set of choices for the function Hf : H(Tn)→ H(Tm). Thus the cardinality
of possible definitions of H on morphisms is bounded by the cardinality of∐
n,m∈N(T (Tn, Tm) × Set(H(Tn), H(Tm))). Combining this with the fact

that there is a set of choices for H(T ), we conclude that there is a set of
choices for H. Now suppose H is fixed. Then there is a set of possible
choices for the natural transformation φ : P → H, whose cardinality is
simply bounded by that of

∐
n∈N Set(P (Tn), H(Tn)). Thus we conclude

that P is indeed a set.

To show that P is weakly initial, let β : P → F be an object in the
comma category. Since every finite product preserving functor is naturally
isomorphic to one that preserves the products strictly, we may without loss
of generality suppose that F (Tn) = F (T )n. Write X := βT (P (T )), and let
Y be the subset of F (T ) consisting of those elements that are obtained by
applying functions in the image of F to a tuple of elements in X. Precisely,
we let

Y :=

{y ∈ F (T ) : ∃n ∈ N(∃g : Tn → T, ∃x1, . . . , xn ∈ X(y = Fg(x1, . . . , xn)))}.

Note that Y is closed under the application of functions in the F -image. In-

deed, if f : Tn → T , and y1, . . . , yn are in Y , so that yi = Fgi

(
x
(i)
1 , . . . , x

(i)
ki

)
for each i = 1, . . . , n, then we let k :=

∑
ki and define δi : T k → T ki to be

the relevant projection (precisely πjδi = πki·j , where we slightly abuse the
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notation by not labelling the projections for distinct products). Now define
g : T k → Tn as the product map with components πig = giδi. With this
notation, we have

Ff(y1, . . . , yn) = Ff
(
Fg1

(
x
(1)
1 , . . . , x

(1)
k1

)
, . . . , Fgn

(
x
(n)
1 , . . . , x

(n)
kn

))
= (Ff ◦ (F (g1δ1), . . . , F (gnδn)))

(
x
(1)
1 , . . . , x

(n)
kn

)
= F (fg)

(
x
(1)
1 , . . . , x

(n)
kn

)
,

which is in Y .
We can thus define H ∈ ModT by H(Tn) := Y n, and on morphisms

f : Tn → T we let Hf := (Ff)|Y n , which uniquely extends to all morphisms
by requiring that H preserves finite products. In order to define a natural
transformation φ : P → H, note that

πFTi βTn = Fπi ◦ βTn = βT ◦ Pπi

since F strictly preserves products and by naturality of β. Thus each com-
ponent in the tuple lying in the image of βTn is in fact in the image of βT ,
hence in X, so that the image of βTn is contained in Xn ⊆ Y n. We thus
simply put φTn(a) := βTn(a) for each a ∈ P (Tn). Since β is natural, and
H on morphisms is the restriction of F , we get that φ is natural. We now
have a commutative diagram,

P H
φ //

F

β

��

oO

η

��

where η is the inclusion natural transformation.
As currently defined, H need not be in P. We conclude the argument

by showing that there is a functor in P that is naturally isomorphic to H.
Observe that the cardinality of Y is bounded by that of

∐
n∈N T (Tn, T )×Xn.

Since the cardinality of X is bounded by P (T ), the cardinality of Y is
bounded by that of

∐
n∈N T (Tn, T )×P(T )n. Thus we may choose a set Y ′ ⊆∐

n∈N T (Tn, T )×P(T )n such that there is an isomorphism h : Y
∼−→ Y ′. Now

define H ′ ∈ ModT by H ′(Tn) := (Y ′)n, and on morphisms f : Tn → Tm by
H ′f := hmHf ◦h−n, where h−n := (hn)−1 = (h−1)n. Now there is an evident
family of isomorphisms α : H → H ′ with components αTn := hn. It is an
immediate consequence of the definitions that α is a natural isomorphism.

91



Now H ′ ∈ P, and since β factors through H, it also does through H ′.
Thus P is indeed a weakly initial set for ModT .

Corollary C.21. ModT is cocomplete.

Proof. Since [T ,Set] is cocomplete, this follows by Proposition C.18 and
Theorem C.20.

Corollary C.22. The forgetful functor U : ModT → Set has a left adjoint.

Proof. Let G ∈ ModT and let S ∈ Set. We compute

Set(S,G(T )) ' Set

(∐
x∈S
{x}, G(T )

)
'
∏
x∈S

Set(1, G(T ))

'
∏
x∈S

ModT

(
yT

1
, G
)

' ModT

(∐
x∈S

yT
1
, G

)
,

where in the third equality we used Proposition C.5 and in the last one the
fact that ModT is cocomplete. We conclude that the functor F : Set →
ModT given by F (S) :=

∐
x∈S y

T 1
is the sought-after left adjoint.

We call the left adjoint F to the forgetful functor the free model functor.

C.4 Representable models and the Yoneda lemma

Recall that we defined free models (Definition C.11) and finitely generated
models (Definition C.12) for an algebraic presentation. In light of the fact
that any category of models of a finite product theory is equivalent to a
category of models an algebraic presentation (Proposition C.14), the defi-
nitions translate to models of finite product theories almost word to word:
we just need to replace every occurrence of ‘algebraic presentation’ with ‘fi-
nite product theory’, ModpT with ModT and view the forgetful functor U as
evaluation at T . The following proposition is an immediate consequence of
existence of the free-forgetful adjunction F a U .
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Proposition C.23. Let X be a set. Then the free model on X exists and is
given by F (X) and ηX : X → UF (X), where η is the unit of the adjunction
F a U .

Proof. As remarked after Definition C.11, existence of free models for every
set is equivalent to the forgetful functor having a left adjoint, which we
showed in Corollary C.22.

Proposition C.24. The representable model yT
n

is (isomorphic to) the free
model F (n) for every n ∈ N.

Proof. This is essentially a rephrasing of Proposition C.5; for any model G
and n ∈ N we have

ModT
(
yT

n
, G
)
' Set(n,G(T )) ' Set(n,UG) ' ModT (F (n), G),

whence yT
n ' F (n).

The following intuitively plausible fact has quite a non-trivial proof,
which uses exactness properties of ModT not covered here. The reader
is referred to sections 3.5, 3.7 and 3.8 of Borceux [9] for the details.

Proposition C.25 (Lemma 3.8.4, [9]). The free and finitely generated mod-
els of T are precisely (up to isomorphism) the free models F (n) on finite sets
n.

Corollary C.26. The representable models of T are precisely (up to iso-
morphism) the free and finitely generated ones.

Proof. Immediate from propositions C.24 and C.25.

Let us denote the full subcategory of ModT on free and finitely gen-
erated models by ffgModT . We then have the following characterisation
(cf. Proposition C.13).

Corollary C.27. Every finite product theory T is equivalent to ffgModopT .

Proof. We know that the Yoneda embedding y : T op → [T ,Set] is full and
faithful. Corollary C.26 shows that it is also essentially surjective on objects
when restricted to ffgModT .

We are now ready to formulate ‘the Yoneda lemma for algebras’. Par-
ticularly, we refer to the formulation of the Yoneda lemma stating that two
functors X,Y : C → Set, where C is a small category, are isomorphic if
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and only if the homsets C(yA, X) and C(yA, Y ) are isomorphic naturally in
A ∈ C. For this, we establish a piece of (very standard) terminology.

Let G ∈ ModT be a model of a finite product theory. We then have a
functor

ModT (−, G) : ffgModop → Set

F (n) 7→ ModT (F (n), G)

(F (m)
g−→ F (n)) 7→ − ◦ g,

Where we use the fact that the free and finitely generated models are pre-
cisely the F -image of finite sets. For models G and H, we say that the
hom-sets ModT (F (n), G) and ModT (F (n), H) are isomorphic naturally in
n if there is a natural isomorphism

α : ModT (−, G)→ ModT (−, H).

Explicitly, this means there is an N-indexed family of isomorphisms

αn : ModT (F (n), G)→ ModT (F (n), H)

in Set such that for any homomorphism of models g : F (m) → F (n) the
diagram

ModT (F (n), G) ModT (F (n), H)
αn //

ModT (F (m), G)

−◦g
��

ModT (F (m), H)
αm //

−◦g
��

(C.28)

commutes.

Proposition C.29 (Yoneda lemma for algebras). Let G and H be models
of a finite product theory T . Then G ' H if and only if

ModT (F (n), G) ' ModT (F (n), H)

naturally in n.

Proof. If we view

ModT

(
y(-), G

)
: T → Set

as the composition ModT (−, G) ◦ y, where y : T op → [T ,Set] is the Yoneda
embedding, then the Yoneda lemma says that G ' H if and only if there is
a natural isomorphism

ModT

(
y(-), G

)
∼−→ ModT

(
y(-), H

)
.
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By Proposition C.24, the above natural isomorphism exists if and only if
there is a natural isomorphism

ModT (−, G)
∼−→ ModT (−, H),

which thus concludes the proof.

Using the universal property of free algebras, we can rewrite the above
theorem as Corollary C.32. To this end, let us denote the natural bijection

Set(X,UN)
∼−→ ModT (FX,N)

by −̂. Equivalently, this is the bijection induced by the universal property
of Definition C.11.

Lemma C.30. Naturality of −̂, or equivalently, the universal property of
Definition C.11, amounts to having for all functions f : X → UN and
g : Y → UFX the identity

̂(Uf̂ ◦ g) = f̂ ĝ. (C.31)

Proof. We have that in the diagram

UFX UN
Uf̂ //

X

OO

ηX

88

f

Y //g

UFY

��

Uĝ

::

ηY U ̂(Uf̂◦g)

&&

the bottom triangle and the top left triangle commute, so that by uniqueness
in Definition C.11 also the top right triangle commutes. By faithfulness of
U , we obtain the desired identity (C.31).

Conversely, assuming there is a collection of bijections −̂ : Set(X,UN)
∼−→

ModT (FX,N) such that identity (C.31) holds, it is straightforward to show
that the universal property of Definition C.11 holds. Since we will not use
this fact we omit the details.
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Corollary C.32. Let G and H be models of a finite product theory T . Then
G ' H if and only if there is an N-indexed family of isomorphisms

αn : Set(n,GT )→ Set(n,HT )

in Set such that for any function f : m → F (n)(T ), the diagram below
commutes:

Set(n,GT ) Set(n,HT )
αn //

Set(m,HT )

−̂◦f
��

Set(m,HT )
αm //

−̂◦g
��

(C.33)

where −̂ ◦ f : Set(n,GT )→ Set(m,GT ) is given by s 7→ Uŝ ◦ f .

Proof. Given a family of isomorphisms

αn : Set(n,G)→ Set(n,H)

as in the statement of the Corollary, define a family of maps

α̂n : ModT (F (n), G)→ ModT (F (n), H)

by α̂n(ŝ) := α̂n(s). Since −̂ : Set(n,G) → ModT (F (n), D) is a bijection
for any model D, this defines the map uniquely, and the resulting map is
moreover a bijection.

Conversely, given a family of isomorphisms

α̂n : ModT (F (n), G)→ ModT (F (n), H),

natural in n, define a family of maps

αn : Set(n,G)→ Set(n,H)

by α̂n(s) := α̂n(ŝ), which again defines a unique isomorphism since −̂ is a
bijection.

Now commutativity of the squares (C.28) and (C.33) is a matter of a
diagram chase, using commutativity of the other square as well as repeatedly
applying Lemma C.30.

Thus an algebra (seen as a model of a finite product theory) is com-
pletely determined by particularly ‘nice’ subalgebras, namely by the finitely
generated ones, which patch together in a natural way. This result could
be seen as fitting the general pattern of local data determining the global
entity: starting from a set of finite elements, we generate all those elements
that are accessible ‘locally’, i.e. by applying the operations in the language.
The above corollary tells us that knowing all such local information results
in knowing the full, or ‘global’, algebra.
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C.5 Example: Boolean algebras

Let us write B for the finite product theory of Boolean algebras, G for its
generating object and ffgBA for the full subcategory of BAlg consisting of
free and finitely generated Boolean algebras. Thus we have an equivalence
of categories ModB ' BAlg, and an embedding (full and faithful functor)
BAlg ↪→ [B,Set].

Lemma C.34. The free and finitely generated Boolean algebras are precisely
the finite Boolean algebras with 22

n
elements for some natural number n.

Proof. By Proposition C.25, free and finitely generated models are precisely
of the form F (n) for some n ∈ N. We claim that the left adjoint F to the
forgetful functor on the finite sets is given by the double powerset functor
PP, and that the unit ηn : n→ PP(n) on the finite sets is given by

k 7→ Uk := {U ⊆ n : k ∈ U}.

We first observe that the atoms of PP(n) (i.e. singletons {U} for some
U ⊆ n) can be written as

{U} =
⋂
k∈U
Uk ∩

⋂
j∈Uc

Ucj .

It is clear that U ∈ Uk and U ∈ Ucj for each k ∈ U and j ∈ U c. Conversely,
suppose V ∈ Uk and V ∈ Ucj for each k ∈ U and j ∈ U c. But then k ∈ U
implies k ∈ V , so that U ⊆ V , and j ∈ U c implies j ∈ V c, so that V ⊆ U .
Thus V = U . Any element X ∈ PP(n) can therefore be written as

X =
⋃
U∈X

⋂
k∈U
Uk ∩

⋂
j∈Uc

Ucj

 , (C.35)

where each union and intersection is finite.
By uniqueness of free models, it suffices to show that PP(n) and ηn

verify the universal property of Definition C.11. Thus let B be a Boolean
algebra and let f : n→ UB be a function. Commutativity of the diagram in
Definition C.11 now amounts to f̂ sending each Uk to f(k). We claim that
this condition uniquely defines a Boolean algebra morphism f̂ : PP(n)→ B.
Precisely, we define:

• f̂(∅) := 0;

• for each k ∈ n, let f̂(Uk) := f(k) and f̂(Uck) := f(k)′;
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• if X,Y ∈ PP(n) are such that f̂(X) and f̂(Y ) are defined, then let
f̂(X ∩ Y ) := f̂(X) ∧ f̂(Y ) and f̂(X ∪ Y ) := f̂(X) ∨ f̂(Y ).

Note that the second clause is well-defined, as Uk = Uj if and only if k = j.

By equation (C.35), the three clauses define f̂ on all of PP(n). By the
third clause, f̂ preserves meets and joins, and a straightforward inductive
argument together with the de Morgan laws shows that f̂(Xc) = f̂(X)′.
Thus f̂ is indeed a Boolean algebra map, and by construction Uf̂ ◦ ηn = f .
Now any other Boolean algebra morphism which sends each Uk to f(k)
satisfies the above clauses and is thus equal to f̂ .

We have thus shown that the free and finitely generated Boolean alge-
bras are precisely the double powerset algebras PP(n) on finite sets n. We
conclude by observing that PP(n) has 22

n
elements.

We have thus proved the following:

Corollary C.36. The representable Boolean algebra (in the sense of Defi-
nition C.4) corresponding to yG

n
is the finite Boolean algebra with 22

n
ele-

ments.

This notion of representability is not to be confused with that of Stone
representation theorem, stating that every Boolean algebra can be repre-
sented as the algebra of clopens of a Stone space induced by the ultrafilters
of the Boolean algebra.

For each n ∈ N, let us write Fn for the Boolean algebra with 22
n

elements.

Proposition C.37 (Yoneda lemma for Boolean algebras). Let B and C be
Boolean algebras. Then B ' C if and only if

BAlg(Fn, B) ' BAlg(Fn, C)

naturally in n.

Proof. Just specialise T = B in Proposition C.29 and use Corollary C.36.
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lications mathématiques de l’I.H.É.S. 34 (1968), pp. 105–112. url:
http://archive.numdam.org/article/PMIHES_1968__34__105_0.

pdf.

[54] Richard P. Stanley. Enumerative combinatorics. Volume 1. 2nd ed.
Cambridge studies in advanced mathematics ; 49. Cambridge Univer-
sity Press. isbn: 1-107-23022-5.

103

http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://arxiv.org/pdf/1612.09375.pdf
https://arxiv.org/pdf/1612.09375.pdf
https://repository.ubn.ru.nl/handle/2066/158429
https://repository.ubn.ru.nl/handle/2066/158429
https://www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Mundici_tutorial.pdf
https://www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Mundici_tutorial.pdf
https://www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Mundici_tutorial.pdf
https://arxiv.org/abs/1808.01670
https://doi.org/10.4204/EPTCS.171.12
http://archive.numdam.org/article/PMIHES_1968__34__105_0.pdf
http://archive.numdam.org/article/PMIHES_1968__34__105_0.pdf


[55] Sam Staton and Sander Uijlen. “Effect Algebras, Presheaves, Non-
locality and Contextuality”. In: (2017). url: http://www.cs.ox.ac.
uk/people/samuel.staton/papers/infocomp2017.pdf.

[56] Abraham Westerbaan, Bas Westerbaan, and John van de Wetering.
“A characterisation of ordered abstract probabilities”. In: Proceedings
of LICS2020 (35th Annual ACM/IEEE Symposium on Logic in Com-
puter Science). 2019. url: https://arxiv.org/abs/1912.10040.

104

http://www.cs.ox.ac.uk/people/samuel.staton/papers/infocomp2017.pdf
http://www.cs.ox.ac.uk/people/samuel.staton/papers/infocomp2017.pdf
https://arxiv.org/abs/1912.10040

	Abstract
	Acknowledgements
	Contents
	Introduction and motivation
	Mathematical motivation: Encoding structure in posets
	Physical motivation: Bohr's doctrine of classical concepts
	How to read this thesis
	Contributions

	Structures at hand
	Effect algebras and orthoalgebras
	MV-algebras
	Finite multisets and setoids

	Finite multisets and finite MV-algebras
	Atoms in MV-algebras
	Duality of FinMV and FinMul

	Categorical embeddings of effect algebras
	Dense subcategories
	Tests and denseness

	Subalgebras of Boolean algebras
	Subalgebra lattice and order isomorphisms
	Boolean algebras are determined by their subalgebra poset

	Partition posets
	Partitions of unity
	Setoid quotients
	Finite MV-algebras from partitions

	Epilogue
	Future work

	Essentially injective and essentially isomorphic functors
	Local isomorphisms of setoids
	Finite product theories
	Finite product theories and their models
	Relation to set-based universal algebra
	Limits and colimits in the categories of models
	Representable models and the Yoneda lemma
	Example: Boolean algebras

	Bibliography

