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Abstract

We define two-player perfect information games characterizing classi-
cal and intuitionistic first-order validity. In short we enrich the language of
first-order logic with two force markers denoting assertion and challenge.
A two-player game is then a tree of states representing each players asser-
tions and challenges and whose turn it is to move. A winning strategy for
a player is a subtree of a game fulfilling some conditions. In particular we
examine one of the players (the proponents) winning strategies for which
we define several operations such as parallel, contraction, application, and
composition. Using these operations we then establish a correspondence
of strategies with derivations in the sequent calculus, giving us sound-
ness and completeness for classical and intuitionistic logic. Additionally
a close correspondence between composition and the cut-rule provides us
with a method for cut-elimination. The constructive treatment of strate-
gies gives them a computational interpretation which is of general interest
for denotational semantics. The techniques developed may also be of use
for many similar game-semantics.
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1 Introduction

1.1 Motivation

The use of game semantics to characterize logical validity has two primary mo-
tivations, one is foundational and the other is computational. The foundational
motivation is that game semantics gives an alternative explanation of logical
validity not in terms of derivations or satisfiability but in terms of winnability
of two-person perfect information games. This idea goes back to the dialogue
games of Lorenzen and the Erlangen school [Lorenzen, 1958] which were created
to model a dialogue or argument between a prover and doubter. The rules of the
games would then fix the rules governing the logical connectives giving them a
justification or meaning explanation. However, while the rules of these dialogue
games are simple and intuitive, the actual games that result from the rules are
quite complex infinite objects making it hard to establish a formal correspon-
dence between a logic and a particular set of rules. Thus, it took Lorenzen and
his followers quite some time before finding a set of rules that characterized
intuitionistic logic and while the similarity between dialogue games and proof
systems was noted early on, the first correct soundness and completeness proof
of the dialogue games were produced by [Felscher, 1985].

The computational motivation of game semantics stems from the natural
view of a two-player game as an interaction between a program and its en-
vironment. Thus game semantics gives an alternative denotational semantics
of programming languages that relies on the notion of strategy rather than
terms or proofs. The dialogue games have not been used in this sense and have
historically been treated rather informally. There has been no notion of oper-
ations on strategies. In particular there has been no notion of a composition
of strategies, which is all important from a computational perspective. It has
been pointed our that the “technical record of the school seems rather bleak”
[Girard, 1999]. Historically the first to define composition of strategies formally
was [Joyal, 1977] following the combinatorial game theory of [Conway, 1976].
Recent game semantics in this vein have gone in different logical directions (e.g
Linear logic [Blass, 1992, Abramsky et al., 1997], Scott’s type language PCF
[Hyland and Ong, 2000] and dependent type-theory [Yamada, 2016]). While
these modern semantics are computational by design they have lost their in-
tuitive nature. In particular there are no specific semantics for classical and
intuitionistic logics.

Our goals here are to give a formalism that connects the philosophical foun-
dations of the dialogue games of Lorenzen with the computational game theory
of Conway. The purpose of this work is thus threefold:

1. To define a simple and intuitive game semantics for both classical and
intuitionistic first-order logic where both games and strategies are combi-
natorial objects.

2. To develop a formal theory of these games and strategies and define op-
erations on them. In particular we define composition of strategies.



3. To establish a formal correspondence between winning strategies for the
games and derivations in sequent calculus. This will allow us to look at
structural properties of the proof systems through the lens of games. In
particular cut-elimination theorems will follow directly from the existence
of composition of strategies.

1.2 Overview of the Thesis

The remainder of this thesis is divided into five sections:

Section 2. Preliminaries. This section defines preliminary notions that will
be used throughout the thesis. The first part of the section defines a first order
language, sequent calculi for classical and intuitionistic logic, and presents some
general facts and notions about trees. The content in the first part are all
standard. The second part of the section defines general games and strategies.
The notions in this section are non-standard and specific to this thesis.

Section 3. Classical Games. This section firstly defines games for classi-
cal logic, followed by definitions of basic games and operations on strategies.
Finally using the defined operations a correspondence is established between
proponent winning strategies for basic games and derivations in the sequent
calculus, proving soundness and completeness and also cut-elimination. A non-
standard proof system which is a refinement of the standard proof-calculi and
corresponds closely to the winning strategies is also introduced.

Section 4. Intuitionistic Games. What the previous sections does for clas-
sical logic, this section does for intuitionistic logic. It is to be noted that the
constructions for intuitionistic strategies are similar to the ones in the classical
case. Interesting differences arise in particular in the definition of the parallel-
strategy.

Section 5. Comparison to Other Works. This section compares the games
defined in this thesis with games in the tradition of Lorenzen and compares the
operations defined here with similar operations in combinatorial game theory
and linear logic. The section has two purposes: To explain to a reader familiar
with the above systems the connection with the present work. Secondly, to
give a reader unfamiliar with the above notions a reference point for further
investigation.

Section 6. Conclusion and Further Work. The thesis ends with a summary
of the results and a short discussion of several possible directions in which this
type of game semantics may be extended.



2 Preliminaries

2.1 The language of first-order logic

In order to define proof systems and games for first-order logic we first specify
a language to work with. The language £ will be a simple first-order language
not containing any function symbols.

Definition 2.1 (The language L of first-order logic). We define the language
L of first-order logic by fixing a set of constants and a set of relation symbols,
each with an arity n € N, and a countable infinite set of variables.

e We define the terms t of L by the following grammar:
tu=xc,
where x is an arbitrary variable and ¢ an arbitrary constant.

e We define an atomic formula A of L to be of the form A = R(t1,...,tp)
or A= 1, where tq,...,t, are terms and R is a n-ary relation symbol.

o We define the formulas ¢ of £ by the following grammar:
pu=LlAle—=vleneleVe|Vep|3re,
where A is an atomic formula and z is an arbitrary variable.

Definition 2.2 (Free Variables). Given a set or multiset I" of formulas in £ we
define its set of free variables F'V(I") inductively as follows:

FV(y) = {y}
FV(L)=FV(c)=10
FV(R(t1,...,tn)) = FV(t;) U FV(t,)
FV(@*@ZJ):FV(@)UFV( ) where * € {—, A, V}
FV(xyp) = FV(p) \ {y} where x € {V,3}
V{er, - en}) = FV(p1) U U FV(pn)
Where y is a variable, R an n-ary relation symbol and ¢, ...,¢, are terms. We
usually write ¢(x1,...,2,) to indicate that x1,...,x, are free variables in (.

Definition 2.3 (Substitution). We write ¢[t/z] for the formula obtained by
substituting any free occurrence of the variable x with the term ¢ in ¢. We



define T'[t/z] by induction on the expressions of L as follows:

yle/a) = {y T

t else
clt/z] =c¢
Lit/z] =1L
P(t1, ... tn)[t/z] = P(t1[t/x],. .. t,[t/x])
(px)[t/x] = p[t/x] * P[t/x] where * € {—,A,V}
(xyp)[t/z] = {*ygo[t/a:] ifz#y where * € {V,3}
xyp else

{1 ondlt/a) = {enlt/z],... onlt/2]}

Given that we want to avoid substitutions that change the meaning of a
formula, for example Jz(x # y)[x/y] = Jz(x # x), we also introduce the notion
of a term ¢ being free for x in a formula.

Definition 2.4. A term t is free for x in ¢ if
e ( is atomic.
e p=ax and tis free for z in o and S, where x € {—, A, V}.

o ¢ =xyy and if z is free in ¢, then y is not free in ¢ and ¢ is free for x in
1, where x € {V,3}.

Given a set or multiset of formulas I we say that ¢ is free for x in I, if ¢ is free
for z in ¢ for any p € T.

2.2 Sequent Calculus

We define Gentzen-style sequential calculi for first-order classical and intu-
itionistic logics. Gentzen [Gentzen, 1935] originally introduced the LK and
LJ proof systems for classical and intuitionistic logic. We will define systems
G3C and G3I that are just as the standard G3c¢ and G3i systems developed
by Kleene, Troelstra and others, except that weakening and contraction are
made explicit rules. The G3c and G3i¢ systems have the property that the
structural rules of weakening, contraction, and cut, are admissible. For proofs
of any of the facts in this section we refer to [Negri and von Plato, 2001] and
[Troelstra and Schwichtenberg, 2000].

Definition 2.5 (A sequent). If I" and A are finite multisets of formulas, then
I' = A is a sequent.

We let T', o = A, 1) denote the sequent I' U {p} = A U {¢}, where I' U {p}
denotes the multiset that is just like I' except with an additional occurrence of
©. The intended interpretation of the sequent I' = A is that AT implies \/ A.

We say that a sequent is derivable if it can be derived using a set of rules.



Definition 2.6. We write I' ., A if I' = A is derivable in G3C. We write
I'k; ¢ if I' = @ is derivable in G31. We define G3C' and G3I as follows:

Table 1: The Sequent Calculus G3C

Weakening

Contraction

Ax

Weakening

Contraction

FAsA 4ol
Mo = A A
T,anB=A ' F

Na= A rs=A
Navg=A
'= A« Ip=A
Na—g=A
I, Vap(z), o(t) = A
IVazp(z) = A

Lp=A x g€ FV(T'UA)

I, 3zp(z) = A L

= A
o= A

L

—L

Vi

Wi,

N AN

M= A Cr

FA_ﬁFalsum
= A« I'=Ap
I'=AaAp

' Aaop

I'=s Aavp
Ta=Ap
F=>Aa—p
'=Ap x € FV(TUA)

AR

VR

—R

I'= A Vap(x) R

I'= A, 3zp(z), ()
I'= A, Jze(x) R
= A
=AY

I'= A9
I'= Ay

Wr

Cr

Table 2: The Sequent Calculus G3I

rasa el

Fa, =9
Fang =1
a=1y F,Béd)v
avpg=1y
Na—pg=a I‘,5:>w_>L
INa— =19
I Vap(z), p(t) =
I, Vzp(x) =
Lip=1vy xg FV(LU{y})

AL

L

A3

T, 3zp(x) = ¢
T=v
L=
I'o,op=
L=

143

Cr

=)

m Falsum

I'=a =g
I'=sanp

AR

I'=5
'=savp

I'= «a R
F'=avp

Na=p
I'=sa—p
v g FVIOU(w))
I = Vap(x) "
I'= p(t)
I'= Jzp(z)

—R

'=9p

R



2.2.1 Properties of G3C and G3I

Admissible rules. A rule is admissible if its conclusion holds whenever its
premisses holds.

Theorem 2.1. The following rules are admissible in G3C.

'=p, A o, IV = A/

[T = A A (Cut)

Theorem 2.2. The following rules are admissible in G31

=y o, I =

Cut
T, = ¢ (Cut)
Invertible rules. A rule
X .. X,
Y
is invertible if Xq,..., X, is derivable whenever Y is derivable.

Theorem 2.3. All the rules of G3C except weakening are invertible.

Theorem 2.4. The rules of Ap,AR,Vr,—r,3r Vg, and contraction are invert-
ible in G3I.

Substitution.

Theorem 2.5 (Substitution lemma).
o If I' . A and t is free for z in ' U A, then I'[t/x] k. Aft/x].
o If I'; v and ¢ is free for x in I'U {p}, then I'[t/x] ¢ [t/x].

2.3 Trees

The study of games is strongly linked to the study of trees since a game can be
seen as a tree of positions or states. Thus, in this section we define some basic
notions and properties of trees. The notion of tree that is used here is a basic
notion of descriptive set theory. For proofs of any of the facts in this section we
refer to [Srivastava, 1998].

Definition 2.7. Given a set X, a sequence (z1, 2,23, ...) is a possible infinite
tuple of objects from X.

We will use roman letters s,t,u,... to denote sequences and a,b,c,... to
denote objects in the sequences.

Definition 2.8. Given two sequences s = (21,...,2,) and t = (y1,...) we
denote their concatenation

st = (21, s TnyY1,---)



We will most often write sa, instead of s(a). We let |s| denote the length of
as sequence. We say that s is a prefix of u if u = st for some sequence ¢.

Definition 2.9. A t¢ree T on a set X is a prefix closed, (i.e., if st € T then
s € T) collection of finite sequences of elements of X. A subtree S C T is a
subset of T" which is also a tree. We let T denote the class of all trees. We use
the following terminology when discussing trees:

e A sequence s € T is a leaf if there is no a € X such that sa € T

o A tree T is finitely splitting if {sa | sa € T,a € X} is finite for every
seT.

e A branch of a tree T is a sequence s such that for all prefixes t of s, t € T.
e A tree T is well-founded if it has no infinite branch.

Theorem 2.6 (Kénig’s lemma). Let T be a finitely splitting infinite tree on
X, then T has an infinite branch.

2.3.1 Induction on Trees

The methods of transfinite induction can be extended to induction on well-
founded trees introducing a rank-function on trees that assigns an ordinal num-
ber to every well-founded tree.

Definition 2.10. The rank of a well-founded tree T is defined inductively as
follows, where v € T is a leaf and s € T is a non-leaf:

rank(u) =0
rank(s) = sup{rank(t)+ 1|t Cs,t € T}
rank(T) = sup{rank(s) +1|s €T}

Thus we define an order on well-founded trees as follows:
T <r T <= rank(T) < rank(T")

The order is well-founded since the ordinals are well-founded. We extend this
to ordering to finite multisets of well-founded trees as follows.

Definition 2.11.

{alw"?a?ﬂﬂlw'wﬂm} < {a17-~'7an7an+l}
where (1, ..., Bm <7 Qni1, for nym € N and m # 0.

Theorem 2.7. The relation < is well-founded.

10



Proof. Suppose there is a infinite descending chain of finite multisets of trees:
M > My > My > Mg > ...,
from this chain we construct a tree S as follows:

So={(z) |z € M}U{()}
Sn+1 =S, U{saf |sa €S, and 8 € M,4+1 and 8 <r a}

S=1J Sn

neN
We have:
e The tree S is finitely branching, since M; is finite for all i € N.

e The tree S is infinite since at least one element is added for each M; by
definition.

Thus by Kénig’s lemma there is an infinite branch
o> 0y > Qg >7 (3 >7 ...
of well founded trees, but this is impossible since <r is well-founded. O

The relation is straightforwardly extended to finite ordered sequences of
trees.

2.4 Games

Here we define the general concept of a game. While there are similar concep-
tions in the literature, this specific conception is original to this thesis. A game
is defined given a set of states. A state a tuple (G, o) consisting of a position G
and a player o. Intuitively we interpret the state (G, o) to say that the game is
at position G and it’s player o’s turn to move. We let the set of states be

States = Pos x Players.

We use capital letters
G,H,J,...,

to represent positions. We use o and e to represent players where it’s always
the case that o # e. In this thesis we will only consider two-player games, so
we fix a set of players.

Definition 2.12 (Players).
Players = {0, »}.

We call the player o the opponent and the player » the proponent. While
we have fixed the set of players most of the definitions in this section work for
arbitrary sets of players. Before we define the games we define a ruleset, which
gives the rules of the games.

11



Definition 2.13 (Rulesets). A ruleset is a tuple (States, Act, M, Term), where
e States = Pos x Players is a set of states.
e Act is a set of actions.

e M C States x Act x States is a transition relation representing the legal
moves which we require be functional in the following sense: If (S,a,T) €
M and (S,a,U) € M, then T =U.

Term C Pos x Players is a set of terminal states partitioned into terminal
states Term, for each player o € Players.

We write

ST
for a move (S,a,T) € M. If S = (G ;o) we say that it’s a o-player move. Since
M is functional, given a state (G ;0) and a move (G;0) = (H ;o) we define

a(G;0) = (H ;o)
aG = H.

Intuitively a game is a tree, where the vertices represents states of the game
and the edges represents moves. A game ends when a terminal state is reached.

Definition 2.14 (Games). Given a ruleset (States, Act, M, Term) and an ini-
tial state S, a game G is a tree of states such that:

e SeG.
e If sST€G, T ¢ Termand T % U for some a € Act, then sTU € G.
Thus given a ruleset, any state S will determine a game. We therefore often
call a state S a game.
2.5 Strategies

Intuitively a strategy is a method for a player of choosing a move in a game
given their available information of the game. Following [Hyland, 1997] there
are three major options when deciding what information the players are allowed
to take into account when deciding their next move:

e A strategy may only take into account the last move.
e A strategy may take into account the whole history of the game.
e A strategy may take into account the current position.

The last option is usually called a positional or memoryless strategy. These are
the types of strategies that will be considered in this thesis. There are now two
isomorphic ways of looking at a strategy for a game G and a player o:

12



1. A strategy is a subtree
o CG,

fulfilling some conditions.
2. A strategy is a function that takes any state (H ;o) and returns an action:
o:(H;o)— a€ Act.
We will call the definitions of strategies corresponding to these views extensional

and intensional respectively. The extensional strategies will be game specific
while the intensional will not. We thus define

Definition 2.15 (Extensional Strategies). An extensional strategy for a game
G with initial state .S, and a player o is the smallest subtree ¢ C G such that:

e (Initial state). S € o.

e (Closure under opposing player moves). If s(G;e) € 0 and s(G; )T € G,
then s(G;e)T € o.

o (Determinism for player moves). If s(G;0) € ¢ and s(G;0)T € G, then
there is exactly one state T” such that s(G;0)T" € o.

o (Memorylessness) If s(G;0)T € o and t(G;0)U € g, then T =U.
We let Stro(S) denote the set of all o-player strategies on the game S.

2.5.1 Winning Strategies

The above definitions have been general in the sense that the set Players could
have been arbitrary. When we now define the winning strategies we specifically
consider the set of players Players = {0, »}. To win the proponent must reach
a terminal stat T' € Term,, the opponent wins if she can prevent the proponent
from reaching such a state or reaching a terminal state T € Term,,.

Definition 2.16 (Winning Strategies). We define winning strategies for both
players.

1. A strategy o € Str,(S) is winning for the proponent if:

e There is no infinite branch of ¢ and for all leafs S € ¢ we have that
S € Term,.

2. A strategy o € Stro(S) is winning for the opponent if:
e There is an infinite branch of ¢ or a leaf S € ¢ such that S ¢ Term.

We let Str¥(S) be the set of winning strategies of player o on the game
S. Following [Joyal, 1997] we define the intensional winning strategies for the
proponent for a game using transfinite induction. Let

Move(S) = {a | a € Act 3T € States : S % T and S & Term}.

Then the set of proponent winning strategies Str(S) is defined as follows:

13



Definition 2.17 (Intensional Winning Strategies).

(G;o0) € Termyp
= Str¥(G ;o)
(G;») & Term (a,0) € Move(G;») x Str¥(a(G;»))
* (a,0) € Str(G;»)
(G;0) & Term f:(a:Move(G;o0)) = Str¥(a(G ;o))
feStry(G;o)

We call e the empty strategy. Thus for any game S any strategy o € Str¥(S)
is a well-founded tree. This allows us to use induction on proponent winning
strategies.

We will sometimes switch between the extensional and intensional views on
strategies, thus most often we will write

(a,0") € Strx(G;»),

and
Az.o(x) € Strp(G;0),

but also s € ¢ for o € Stry(G ;o).

2.5.2 Determinacy

We call a game determined if either of the player has a winning strategy. Given
our definition of a winning strategy it follows immediately that all games are
determined.

Theorem 2.8 (Determinacy). For any state S we have:

Str(S) £ 0V Stro(S) # 0

14



3 Classical Games

We define games for classical validity along the lines of Lorenzen’s dialogue
games [Lorenzen, 1958]: A game is seen as modeling a formal debate or dialogue
between the proponent who seeks to prove and the opponent who seeks to spoil
the proponents attempts at proving. The two basic actions in a game are to
assert a formula and to challenge an assertion. We thus write:

e ! p, meaning “player o asserts ¢”.
e 7,p, meaning “player o is challenged why ¢”.

Intuitively the proponent wins if a state is reached where either an agreement
is reached with the opponent, or if the opponent asserts falsum. The dialogue
proceeds in alternating turns.

Example 3.1. From P,P — Q,Q — R we derive R informally:

The game begins by the opponent asserting the premisses and the proponent
taking up the challenge to defend the conclusion.

L 1P, 1oP = Q,'0Q — R, 7R

The proponent has the first move and begins by attacking the assertion !, P —
Q). To attack an assertion the attacker must assert the antecedent, the de-
fender is then challenged for the succedent. The proponent may assert atomic
propositions the opponent already agreed to without being challenged:

2. Proponent: You asserted !, P, so I assert !, P and challenge 7,Q.
3. Opponent : Ok, then to defend 7,Q I assert !,Q.
The proponent may then attack !,Q — R, asserting !,(Q and challenging 7, R.
4. Proponent: You asserted !,Q), so I assert !,Q and challenge 7, R.
5. Opponent : Ok, then to defend 7, R I assert !, R.

Finally then the proponent has a defence for asserting !, R, and thus can meet
the original challenge 7, R and win the game.

6. Proponent: You asserted !, R so I defend ?,R by asserting !, R.

Definition 3.1 (Game Language). Adding the two force markers 7 and ! to
the first-order language L gives us the game language:

£évme — f1.0| ¢ € L,0 € Playerst U{?.¢ | ¢ € L,0 € Players}

We divide all assertions into positive and negative.

15



Definition 3.2 (Positive and Negative Assertions).

Negative assertion Positive assertion

lop A lop Vp

!090 - 1/1 -

L Vap(z) loTzp(x)
oA InA

For positive assertions the duty of the asserter is positive: To provide an
example. Consequently a positive assertion may be unconditionally challenged,
the asserter may then choose how to defend it. Conversely, the duty of the
asserter of a negative assertion is to defend against counterexamples, thus an
attacker may choose how to attack a negative assertion, the defender must then
unconditionally defend it.

3.1 Classical Positions

A position in a classical game is then a finite multi-set of £54™¢ formulas rep-
resenting each players assertions and challenges at a point in a dialogue.

Definition 3.3 (Set of Positions).
Pos = {G C £E9™¢ | G is finite}

We define some simple operations on positions which will be used throughout
the thesis when discussing positions.

Definition 3.4 (Operations on Positions).

e Given a position G we define the dual position

Gd
Where,
{o1,on} ={of,. .. 0t}
( ?OSO)d ="7ep
( IO‘P)d =lep

We immediately get that (G¢)? = G. Intuitively, in the dual position
players switch assertions and challenges with each other.

e Following Joyal we also define an implication:
G—oH:=G,H
We list some useful identities.
G,(H,J)=(G,H),J
G,H=H,G
Gh=G=0,G
G—o(H-—oJ)=(G,H)—oJ
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3.2 Classical Rules

Definition 3.5 (Classical Ruleset). The classical games are defined given the
classical ruleset (States, Act, M, Term), where

e States = Pos x {o,»}.

e The set of actions Act is defined using the following grammar:

a = D(p) | Di(p) | Di(p) | At(p) | Ai(p) | Ale).

Where ¢ € {0,1}, ¢ is an arbitrary term and ¢ is an arbitrary formula in

L.

e The transition relations M C States x Act x States is defined given the
following table:

(G %opio) lopismegative | (G lgio) lgispositive
(G lopse) (G, Teppse)
() CoR ) ppangy () EERTA by
0 Gt aepe) () ) Diseta))
) et A i b

Side-condition:

— Moves marked with (x) are such that when the proponent is the active
player the active formula is repeated and not cancelled, that is to say,
the proponent may re-attack and re-defend these formulas.

Note that the proponent cannot attack the opponents atomic assertions.

e The set of terminal states Term = Term, UTerms is inductively defined
as follows, where G is an arbitrary position.

G, 7,A;») € Termyp, where 1, A € G.
G, 15A;0) € Termy, where 1, A & G.
G, leLl;0) € Terms.

= (
= (
= (
— (0;0) € Terme.

The rules can be given the following motivation or meaning explanation:

(a) To attack a conjunction is to challenge one of the conjuncts.
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) To defend a disjunction is to assert one of the disjuncts.
) To attack an universal statement is to challenge an instance of it.
(d) To defend an existential statement is to assert an instance of it.
)

To attack an implication is to assert the antecedent and challenge the con-
sequent.

(f) Atomic formulas may be defended or attacked, however:

1. If the opponent challenges a proposition A which she has already asserted
the opponent loses. This is known in the literature as an ipse dizisti or
“you said so yourself”’-condition: In a dialogue you shouldn’t be able to
question propositions you already agreed to.

2. If the proponent asserts a proposition A which the opponent has not
asserted the proponent loses. The idea is that the proponent cannot
defend an atomic proposition unless the opponent already has agreed to
it.

3. Any player asserting falsum loses. This is taken to be the primitive
meaning of falsum.

4. The last winning condition is a purely formal condition, meant to enforce
who wins in the empty position.

This gives us a motivation for the “particular” parts of the rules, but what about
the “structural” part of the rules that says that the proponent may re-attack
and re-defend formulas while the opponent may not? There are two possible
ways of defending the fairness of the structural part of the rules.

The first possible defense is pre-theoretical and rests on the view that the
games seek to model a debate or dialogue between the proponent and the op-
ponent. In such a dialogue it would be seen as unfair if the doubter could win
by simply repeating previous assertions or challenges.

The second possible defense would be to actually allow the opponent to re-
attack and re-defend formulas resulting in some new class of games and then
showing that these games are equivalent to the games defined in this thesis with
regards to winnability for the proponent.

We will not delve deeper into defenses of the structural parts of the rules in
this thesis, however we will return to this last idea in the conclusion.

Example 3.2. Let G =, P, o P — Q, |oQ — R, we exhibit a winning strategy
o€ Stry(G, 1pR; ) :

(G, 75R;»)
(G7 !Ppa ?OQa ?PR7O)
o= (G, 1.P,15Q, 7R »)

(G, !’PPv !OQv !PQa ?ORv ?PR;O)
(G7 !PPa !OQ7 !PQ7 !OR7 7PR77’)
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Thus, the strategies are similar to upside down sequent calculus derivations with
the major exceptions:

e The strategies do not split into different branches when an implication is
attacked as in the rule:

= p A y=A
NLep—v=A

—L

e Since the proponent loses if he asserts an atomic proposition that hasn’t
already been asserted by the opponent some instances of the sequent cal-
culus rules are not “valid”, for example:

I'= A A F,;[;:»A_)
INA—-¢y=A

3.3 Basic Positions

While this gives us a definition of the classical games on arbitrary states, we are
in particular interested in games of the form (!,T', 7,A;»), where

Notation 3.3.

20{@1s- - 0n} = {7001, -, Ton}
{1,y on} = {lo@1,- -, lown}

Since we will show that proponent winning strategies in these games corre-
spond to sequent calculus derivations:

Stre(1oT, 2,A572) #0 <= Tk, A,

We call a position of the above form a basic classical position. The intended
interpretation of the basic positions are: The opponent asserts all formulas in
I' and the proponent takes on the duty to meet a challenge in A. We thus
introduce some definitions and notations to reason about basic positions.

Definition 3.6 (Basic Classical Position). A basic classical position is a position
of the form (!,T', ?,A), for some finite multisets of formulas T" and A.

In the rest of this section we write “basic positions” instead of “basic classical
positions”. We call a position pre-basic if any move the opponent makes on the
position results in a basic game.

Definition 3.7 (Pre-basic Position). A position G is pre-basic if Move(G ; o) #
(0 and for any a € Move(G;o0): aG is basic.

We say that a state (G; o) is basic (pre-basic) if G is basic (pre-basic). We
use greek capital letters
3.0, ...

to represent single formula positions. We note some important properties of
basic and pre-basic positions:
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e The opponent has no legal moves in a basic position.

e The opponent has one legal move in pre-basic positions.

e All positions are of the form G — H where G and H are basic.

e All pre-basic positions are of the form ® — G, where ® and G are basic.

e Given a basic game (G;») and a proponent move (G ;») = (aG';0) such
that a # A(p — ), we have that aG = ® — H for some pre-basic
® —o H.

e Given a basic game (G ;») and a proponent move (G;») = (aG'; o) such
that a = A(p — 1), we have that aG = &, d’ —o G for some basic ® and
.

Thus, if the proponent never uses the action A(p — 1) all reachable states
(H ;») in a basic game (G ;») are basic and all reachable states (H ; o) are pre-
basic. Unfortunately the action A(¢ — 1) complicates the situation by making
some reachable states neither basic nor pre-basic. This is problematic since
suppose we want to define a function

fStrd(Gy») x Str¥(H ;») — Str¥ (G, H ; »)

by saying that f(c,7) is the strategy given by alternating between moves in o
and 7 starting with a move from o. If there is no action A(p — 1) in either o
nor 7 this works perfectly well, a play on (G, H ;») may look as follows:

(G,H;») % (aG, H;0) LN (baG, H ;») % (baG, cH ;o) 4, (baG,dcH ;») % - -

However suppose the action a = A(¢ — 1), then the position baG is not basic
and in-fact contains one extra legal move for the opponent, thus the play may
proceed as follows:

(G, H:7») % (oG, H;o) % (baG, H ;») < (baG, cH ; 0) % (dbaG, cH ; ),

where the strategy o is not defined for the state (dbaG;»), and thus f is no
longer well-defined. We will circumvent this problem by defining functions

o [:Str¥(G, 109, lpp;0) = Str¥(G, 761 0),
o 1 :Stri(G, o0, lpp;0) = Str¥(G, lre; o),

effectively splitting any game where A(p — 1) has been played into several
subgames. The proponent may then play these games in parallel creating a
strategy which we can contract back into a strategy for the original game using
the functions

o ||:Str¥(G;o) x Str¥(H ;o) = Str¥(G, H ; 0).
o Con: Str¥(G,G;») = Str¥(G; »).

Showing that these functions exists will be the major task in the following
sections.
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3.3.1 No Stalemate

Given our definition of a winning strategy, the opponent may in principle win a
game (G ;»), where G is basic by reaching a state (H ;o) for which there is no
further move. The game has reached a so called stalemate. For us to be able
to define the left and right strategies, we do not want this to be the case, so we
begin by showing.

Theorem 3.4 (No Stalemate). If G is basic and (H, o) is a reachable non-
terminal state in a classical game (G ;»), then there exists a move

(H;0) = (aH ;»),

for some action a € Actions.

a

Proof. Consider the move (J;») = (H ;o) on the position preceding H, by
cases

e The action a is an attack, then the opponent has a defense move in (H, o).
e The action a is a defense of a formula ¢, by cases

— The assertion resulting from the defense is non-atomic, then there is
an attack move for the opponent in (H ;o).

— The assertion resulting from the defense !, L, but this is impossible
since then !, 1 € H and thus (H, o) is terminal.

— The assertion resulting from the defense is !, P, then since (H, o) is
non-terminal !, P € H and thus also !, P € J thus (J;») is terminal.
But this is impossible since then (H ;o) is not a reachable state. [

Corollary 3.4.1. If ¢ € Str-(G; o) is a non-winning strategy where G is pre-
basic, then there is a branch b of ¢ that is either infinite or ends in a terminal
state (H ;o) or a stalemate state (H ;»).

Proof. By definition is ¢ is non-winning then there is a branch b of o that is
either infinite or ends in a terminal state (H ;o) or a stalemate state (H ;») or
in a stalemate state (H ;o). To exclude this last possibility it suffices to note
that since (G;o) is pre-basic it’s not a stalemate state, and for all reachable
states (H ; o) the opponent have a legal move by the above theorem. O

3.4 Operations on Strategies
3.4.1 Weakening

Since the opponent has no legal moves in a basic position adding a basic position
to an already winning position changes nothing with regards to winnability for
the proponent, this is called weakening.

Lemma 3.5 (Weakening). Let G be any position and H be a basic position,
then there is a function
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1. Wk: Str(G;») — Str¥(G, H ;»)
2. Wk : Str2(G;0) = Str¥(G, H ; 0)

where
if H; T
1. Wh(o) = {e if (G,H ;») € Termsp
o else.
2. Wk(o) =o0.

3.4.2 The Copy-cat Strategy

The most important strategy in combinatorial games is the so called copy-cat
or identity strategy where a player simply repeats the opposing players moves.
We show that for the classical games and any given position G the proponent
has a winning copy-cat strategy in the game (G — G ; o) where the proponent
just repeats the opponents actions.

Theorem 3.6 (The Copy-cat strategy). If G is any position there is a function
Id € Stry (G — G;o0),

where

Ida— {(a,]d) if (a(G — G);») & Term
e else.

For arbitrary a € Move(G — G ; 0).

Proof. If G = (), then by definition e € Str¥(0 — 0;0). If G # 0, then
eventually a state (H, !o,L;») or (H, oA, 75A;») is reached, both of which
are winning for the opponent. U

Using the copy-cat strategy we can define a modus ponens strategy as follows:

Theorem 3.7 (Modus Ponens). If G is a basic position then there is a strategy
Mp E StT;f(G7 'O@ — wa !(9807 77>¢»@)
Proof. We construct it as follows:

Id € Strii(lsp, 20v, lop, 11 ;0)
Wk(ld) € Str;f( oo = 9, o, 70t Loy, ?Pw§o)
(Alp = ), Wk(Id)) € Stry(loe = ¥, low, Tpt;7)
WE(A(p = ¢), Wk(Id)) € Stri(G, low = ¥, lop, 7293 7) O
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3.4.3 Left and Right Strategies

Using No Stalemate we are now able to show that we can decompose a game
(G, 761, lop; o) into two components using the left and right strategies.

Lemma 3.8. Let G be a basic position, then there are functions
1. 1:Stri¥(G, 2ot, lpp;0) = StrE (G, 7o ;0)
2. 1 Stri¥(G, 1ot lpp;0) = StrE (G, lpe; o)

such that for all o € Str¥ (G, 701, !p¢;0), it holds that I(¢) <7 ¢ and r(o) <p
ag.

Proof. Assume o € Str¥(G, 7o, lpp;0). Let X = |JStr(G, 701 ;0), then
let I(c) = 0 N X be the restriction of the strategy o to the game (G, 709 ;o0).
Then we have that I(o) is a strategy I(o) € Strp(G, 701 ;0), since it’s just a
restriction of ¢ to the plays where the opponent never attacks !,¢. Also it’s a
winning strategy:

l(o) € Str (G, 701 ; 0).

Since assume that [(¢) is not winning, then since (G, 7?0 ;o) is pre-basic by
a corollary of No Stalemate if [(¢) is not winning there is an branch b of (o)
that is infinite or ends in a terminal state (H ;o) or a stalemate state (H ;»).
Now since I(¢) C o this branch is also in o, thus ¢ would not be a winning
strategy which is a contradiction. Also, since I(0) C o we have that I(c) <r 0.
Similarly, taking r(c) = o N Str-(G, !»¢;0), we get a

r(o) € Stry(G, lrp;0),

such that r(o) <r o. O

3.4.4 Move-order Invariance

Suppose the proponent has a winning strategy (a,o) € Str¥(G;») where the
first action is a. If there is another action b € Move(G;») distinct from a we
can ask if there is another winning strategy (b,0’) € Str¥(G;») starting with
the action b instead. If there’s always such a strategy for a given action b we
say that b is move-order invariant. We will show that the actions A(p) where
 is positive, and D(p) where ¢ is negative are all move-order invariant.

Theorem 3.9. Let (G, !¢ ;») be a non terminal state and ¢ positive and
negative composite formulas, then there is a function:

1. Permy, : Stri(G, lop;») = Stri(G, ?op; o)
2. Permy : Stri¥(G, 7p1;7) = Strid(G, 1p1;0)
Proof.
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1. Suppose (a,0) € Str¥(G, lop;»). We construct a strategy
Permy((a,0)) € Stri(G, ?op; o).
If a = A(p), let Permy((a,0)) = 0. Otherwise we define
Permy((a,0))(x) € Stri(x(G, ?op;0))
for arbitrary @ € Move(G, 7,p;0). By cases:

e Let the move be b on the G component of the game, then we construct
a strategy in Str¥(bG, ?o¢;») as follows:

(a,0) € StrE(G, lop;»)
o € Stry(aG, lop; o)
o(b) € Stry (baG, 'ogp P) in particular
Permy(a(b)) € Stry (baG, 7op;0) by induction
(a, Permy(o(b))) € Stryy (bG, 7o 7>)

e Let the move be ¢ on the 7oy component of the game, then we
construct a strategy in Str¥ (G, c?o¢;») as follows:

o(b) € Stry(baG, lop;»)  where b is arbitrary
Permy(o(b)) € Stri¥(baG, ?o¢;0) by induction
Permy(a(b))(c) € Stril(baG,c?op ;) in particular
Ax.Permy(o(x))(c) € Stry(aG,c?op;0)
(a, A\xz.Permy(o(z)))(c)) € Stri(G,c?op;»)

2. Suppose (a,0) € Str¥(G, 751 ;»). We construct a strategy
Permy((a,0)) € Stri(G, s ;0).
If a = D(¢p), let Permy((a,0)) = o. Otherwise we define
Permy((a,0))(z) € Stry(z(G, 1p¢;0))
for arbitrary « € Move(G, 151 ;0). By cases:

e Let the move be b on the G component of the game, then we construct
a strategy in Str¥(bG, 151 ;») as follows:

(a,0) € Str¥(G, 77,1/) )
o € Stry(aG, ;0)
o(b) € Stry(baG, 77;¢ ) in particular
Permy(o(b)) € Stry (baG, 1515 0) by induction
(a, Permy(a(b))) € Stre(bG, lp¢ ;)
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e Let the move be ¢ on the 7oy component of the game, then we
construct a strategy in Str¥(G,c!»9;») as follows:

o(b) € Stry(baG, 7p1;») where b is arbitrary
Permy(a(b)) € Stry (baG, pw o) by induction
Permy(a(b))(c) € Str (baG,clpt);») in particular
Ax.Permy(o(z))(c) € Stry(aG, clptp; o)
(a, A\x.Permy(o(z))(c)) € StrE(G,clpy;»)
0

3.4.5 Contraction

Given a strategy o € Str¥(G, H, H ; ») where G and H are basic we would like
to define a contraction Con(o) € Str¥(G,H ;»). Intuitively there should be
such a strategy since the opponent should not gain anything from asserting a
formula twice, and the proponent should not gain anything by being challenged
twice about the same formula.

Theorem 3.10 (Contraction). Let G be a basic position, then there is a func-
tion:

Con : Str¥(G,H,H ;») — Str)(G,H ; »)
Proof. We show this by showing there are functions
1. Con : Str¥ (G, lop, low;r) = StrE(G, lop;»)
2. Con : Stri¥(G, 1pp, 1pp;7) = StrE(G, Tpp;»)
1. Suppose o € Str¥(G, lop, lop;»), by cases:

e If o = A is an atom it is never attacked, thus let Con(c) = o.

e If ¢ is positive, we construct a strategy Con(o) € Str¥(G, o) as

follows:
o € Strii(G, lop, lop;»)
Permy (o) € Str (G, 70, lop; o)
Permy(0)(b) € Stri(G,b70p, lop;P)
Permy(Permy(0)(b)) € Stry(G,b700, 2op;0)
Permy,(Perm,(c)(b))(b) € Str(G,b70,b7-¢;7)
Con(Perm,y(Permy(0)(B)(b)) € Str(G,bTop; »)
Azx.Con(Permy(Permy(o)(x))(x)) € Stri (G, Top; o)
(A(p), Az.Con(Permy,(Permy(o)(x))(z))) € Stri (G, log;»)

Where b is an arbitrary defense of 7.

e If © is negative the proponent may re-attack ¢, thus let Con(o) = o.
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2. Suppose o € Str¥(G, 7»¢, 1pp;»), by cases:

o If o = A is an atom it is never defended, thus let Con(o) = o.

o If ¢ is negative, we construct a strategy Con(c) € Str¥(G, ?»¢) as

follows:

o € Strii(G, Trp, Tpp;P)

Permy (o) € StrX (G, l»p, Tpp;0)

Permy(o)(b) € Str¥(G,blrp, Tpp;»)

Permy(Permy(0)(b)) € Stry(G,blsp, lrp;o)

Permy(Permy(0)(b))(b) € Strif(G,blprp,blpp;»)
Con(Permy(Permy(c)(b))(b)) € Stry (G, b'pcp P)
Az.Con(Permy,(Perm,(c)(x))(x)) € Str¥(G, ;o)

) (&

)
(D(p), Az.Con(Permy(Permy(o)(x))(x))) € Stri (G, 7»¢; 7:)

Where b is an arbitrary attack on !,¢.

)
)

e o is positive, but then the proponent may re-defend ¢, thus let
Con(o) =o. O

3.4.6 The Parallel Strategy

Given two strategies o € Str¥(G ;o) and 7 € Str¥(H ; o) we seek to define the
parallel strategy o || 7 € Stri¥(G, H ; o). Intuitively this is the strategy where
the proponent responds to any opponent move in the G or H component by a
corresponding move from either o or 7. This strategy is winning since eventually
the proponent will reach a terminal state in either component, thus winning the
composite game.

Theorem 3.11 (Parallel Strategy). There is a function

|2 Str(G0) x Str(H ; 0) — Str(G, H ; o)

Proof. Consider an arbitrary action a € Move(G, H ; o), without loss of gener-
ality let it be on the H component of the game, we define
(o || 7)(a) € Stry(G,aH ; ),
by induction on 7(a) € Str¥(aH ;»). Take as inductive hypothesis that the
parallel strategy o || 7" is defined for 7/ < 7. By cases:
e The strategy is 7(a) = e, thus (aH ;») is a terminal state, then also
(G,aH ;7) is terminal so let (o || 7)(a) =e.
e The strategy is 7(a) = (b,7') and 7/ € Str¥(baH ;0), we construct a
strategy (o || 7)(a) € Str¥(G,aH ;») as follows:
o € Stri¥(G; o) 7' € Str¥(baH ; 0)
ol 7 e Str¥(G,baH ;0)
(b, (o || 7)) € Str¥(G,aH ;») O
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3.4.7 Application and Composition

The standard technique to define a combination of strategies o € Str¥¥ (G, H ;»)
and 7 € Str¥(H — J ;o) in combinatorial game theory is by considering a so
called swivel chair strategy [Siegel, 2013]: To show the proponent also has a
winning strategy Ap(o, 1) € Str¥(G, J;»), we set up this game and right below
it a copy of the game H, H?, we can imagine a play on the two component
games proceeding as

G, J P aG, J o baG , J P

H ., H " H, HY " H ,H?
or

G,J P G7J o G7 J P .

H, H¢ aH , H¢ aH ,aH? ’

We then construct the strategy Ap(o, ) € Str¥ (G, J ; ») by forgetting the moves
on the H components. However, this construction will not work straightfor-
wardly for our games since we’ll run into problems where responses may not
always occur in the same component of the larger game, since we allow for
backtracking for the opponent. We therefore proceed by defining two functions
by induction to create a strategy similar to the swivel-chair strategy.

Theorem 3.12 (Application and Composition). Let G, J, I be basic games and
®, U be basic single formula games, then there are functions:

1. Ap: Str¥(G, U ;») x Str¥(V — J;0) — Str¥(G, J;»)
2. (=;=) St (D — I, U;0) x Str¥(V —o J;0) = Str¥(® — I,J;0)
Proof.

1. Let (o,7) € Str¥(G,¥;») x Str¥(¥V — J;o0). By induction on o €
Str¥ (G, U ; »), with subinduction on the formula ¥, by cases:

e The strategy is 0 = e, thus (G, ¥ ;) is a terminal state, by cases

— The state (G ;») is terminal, then also (G, J;») is terminal, so

let
Ap(o,T) =e.

— The state (G, ¥;») = (G, 754, oA;») where ¥ =1,A. Since
(154, J;o0)is non-terminal also !, A € J, but then also (G', 7,4, J ;»)
is terminal so let

Ap(o,7) =e.

— The state (G, ¥ ; 7>) = (G'1oA, 7, A;») where U =7,A, then
T E Str¥(?6A,J;0). Thus 7(D(A)) € Str¥(loA,J;»), thus
Wk(r(D (A) ) € Str (G’ 16A, J;»), so let

Ap(o,7) = Wk(r(D(A))).
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e The strategy is o = (a,0’) and the first move is on the G-component
of the game, we get two cases:

(a) The position aG,¥ = & — ¥, H for some basic games ¢ and H,
ie a# A(p1 — p2), thus
o' € Stri(® — H,¥;0)
we construct a strategy Ap(o,7) € Str¥(G, J;») as follows:
o' € Str¥(® — H,V;0) T € Str¥(¥ — J;o0)
o'sT € Str¥(® — H,J;0)
(a,(0’;7)) € Str(G, J ;»)

(b) The position aG, ¥ = &1, Py — G, ¥ for some basic games Py
and @y, i.e a = A(p1 — p2), thus

o' € Stri¥ (P, Py — G,V ;0)
we construct a strategy Ap(o,7) € Str¥(G,J;») by first con-
structing two strategies:
o' € Str¥ (P, — G,V ;0)
l(o") € Str¥(®1 — G, ¥ 0) T EStrE(¥ — J;o0)
l(o");T € Str¥ (P, — G, J;0)

and
o' € Str¥ (P, Py — G,V ;0)
r(o’) € Str¥(®y — G,V ;0) TEStr¥(¥ — J;o0)
r(o');T € Str¥ (P — G, J;0)

Then playing them in parallel and contracting:

l(o");T € Stri¥(®1 — G, J ;0) r(o’);T € Str¥(Ps — G, J;0)
(U(0");7) || (r(o’);7) € Stry (@1, By — G, J, G, T ;0)
(a,(1(0");7) || (r(0”); 7)) € Stry (G, G, J, T ;)
Con((a, (I(o");7) || (r(0”);7))) € Stri (G, J 5 »)

e The strategy is o = (a,0’) and the first move is on the ¥-component
of the game, we get three cases:

(a) The position G,a¥ = & — G, i.e a = D(yp) for negative ¢ or
a = A(yp) for positive ¢. Thus,
o' € Stri¥(® — G;o).
We construct a strategy in Str¥(G, J ;») as follows:
T € Str¥(¥ —o J;o)
o' € Str¥(® — G ;o) 7(a) € Str¥(®,J;»)
Ap(7(a),0") € Stry/(G, J;7)
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(b) The position G,a¥ = & — G, ¥, i.e a = D(p) for positive ¢ or
a = A(yp) for negative ¢ # p1 — @o. Thus,

o' € Strif(® — G,¥;0)
We construct a strategy in Str¥ (G, J ;») as follows:

o' € Str¥(® — G,V ;0) T € Str(¥ — J;o0) T € Str¥(¥ —o J;o0)

(¢';7) € Str¥(® — G, J ;0) 7(a) € Str¥(®,J;»)

Ap(7(a), (0';7)) € Str¥(G, J,G; »)
Con((Ap(7(a), (0';7))) € StrE(G, J ;)

(¢) The position G,a¥ = &1, Py — G, ¥ for some basic games P
and Py, i.e a = A(p; — ¢2). This is the same as a previous case
so let

Ap(o,7) = Con((a, (I(c"); 7) || (r(0"); 7))

2. Let (o,7) € Str¥(® — I,¥;0) x Str¥(¥ — J;o0). By induction on
o€ Str¥(® — I,¥;0). For arbitrary a € Move(® — I,T;0) we note
that a(® — I, U) = (a®, I, ¥) is a basic position and there is a strategy:

o(a) € Stry(a®,1,7;»),
we construct a strategy o;7 € Stri¥(® — I,.J ;0) as follows:
o(a) € Str¥(a®,I,¥;») T € Str¥(¥ —o J;o0)
Ap(o(a),T) € Str¥(a®,I,J;»)
Xa.Ap(o(a),7) € Str¥(® — I,J;0) O

3.4.8 Cut Elimination
Recall that the following cut rule is admissible in G3C':

I'=p A o, M= A
I,V = AA

Similarly, for the strategies we have the following function:

Theorem 3.13. Let G and H and J be basic games, then there is a cut function:
Cuty, : Str(G, H, lop;») x Stri(G, J, 1pp;») = Stri(G,H, J ;»)
Proof. By cases:

e The assertion !,¢ is positive, then we construct a strategy in Str¥ (G, H, J ; »)
as follows:

o€ Str¥ (G, H, lop;»)
Permy (o) € Str¥(G,H, 7op;0) T e Str¥(G,J, 1pp;P)
Ap(Permy (o), 1) € Str¥(G,G,H, J ; »)
Con(Ap(Permy(0), 1)) € Str(G,H, J ;»)
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e The assertion !,¢ is negative, then we construct a strategy in Str¥ (G, H, J ;»)
as follows:

o€ Str¥(G,H, lop;»)
Az.o € Str¥(G,H, Top;0) T € Str¥ (G, J, 1pp;P)
Ap(Ax.o,7) € Str*(G,G,H, J ;»)
Con(Ap(Az.o,7)) € Str¥(G,H, J ;») O

3.5 Correspondence of Strategies and Proofs

We will now prove soundness and completeness for proponent winning strategies
of basic games with regards to G3C, that is we will show

FkFe A = StrE(loT, 1A, 9).

In fact we will actually show something stronger since we can derive functions
f and g from the proof, such that:

fiDer(T'k. A) = Stri (1o, 75A ;%)
g: StrE(1oT, 1A p) = Der(T . A).

Where Der(T' . A) are the set of derivations of the sequent I' = A. Thus from
a derivation we have a method for constructing a strategy, and from a strategy
we have a method for constructing a derivation.

3.5.1 Soundness
Theorem 3.14 (Soundness).
If Strd (1o, 75A57) # 0, then ' F. A.

Proof. As inductive hypothesis we take the following:

L If Stre (1D, 75A57) # 0, then T F. A

2. If Str¥ (1oL, 200, 7pA0) #0, then T, . A

3. IEStre (1oL, Lrp, 7pA50) # 0, then T H. A,

1. By induction on o € Str¥ (1o, 7,A;»).

e The strategy is o = e, that is the state (IoI', 75A; #) is terminal, by
cases:
— A€l and A€ A, then I' . A.
— L el then Tk, A.

e The strategy is o = (a,0’), the opening action a is a defense of ¢,
thus A = A/, ¢. By cases:
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— The formula ¢ is negative, then o’ € Str¥ (1.1, lrp, 7,A";0),
then by induction I" -, A, .
— The formula ¢ is positive, then by cases:
x The formula is ¢ = a V 8, without loss of generality

o' € Str (1o, lha, 75A50),

thus by induction I' . A, a by weakening I' . A, o, 3, thus
'k, A, Vv B, thus by contraction I' . A.

% The formula is ¢ = Jza(z), without loss of generality
o' € Stri¥ (1oL, lralt), 75A50),

thus by induction I' . A, a(t), thus T k. A, Jza(x), thus by
contraction I' . A.

x The formula is ¢ = A, but this is impossible since then
already !, A €!,T", thus the state (oI, 75A;») would be
terminal.

e The strategy is 0 = (a,0’), the opening action a is an attack of ¢,
thus T' =TV, . By cases:

— The formula ¢ is positive, then o’ € Str¥ (1,17, 200, 7575 0),
thus by induction I, ¢ F. A.
— The formula ¢ is negative, then by cases:
* The formula is ¢ = A, then o(a) € Str¥ (1T, 1pA, 1,A;7),
thus by IHT' ., A, A.
* The formula is ¢ = a A 8, without loss of generality

o' € Str(1.l, Toa, 75A;0),

thus by induction we have that I',a . A, by weakening
I'a,B F. A, thus also I',a A 8 F. A, thus by contraction
'k, A.

% The formulais ¢ = o — B, then o’ € Str¥ (1T, 708, lpa, 1A 0),
thus:
l(o") € Str (1oL, 2683, 75A;0)
r(a’) € Str¥ (1o, lra, 75A50)

Thus by induction I'; 8 F. A and " . «a, A, thus I, —
B Fe A, thus by contraction I' -, A.

* The formula is ¢ = Vaxa(z), without loss of generality
o' € Str¥(1oT, 2oal(t), 7pA 5 0),
then by induction T',«(t) k. A, then I',Vza(x) F. A, thus
by contraction I" . A.
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2. By induction on o € Str¥(1,T, 7o, 7pA;0), let a be the opponents
opening action.

o The formula ¢ is negative, then o(a) € Str¥ (1T, lop, 7pA; ), thus
by induction I', o . A.

e The formula ¢ is positive, by cases:

— The formula is ¢ = Jza(z), then
o(Di(p)) € StrE (1oL, loal(t), 7oA 2),

for any term ¢, thus in particular by induction I', a(x) . A for
some x € FV(T'UA), thus T, Jza(x) k. A.

— The formula is ¢ = aV 3, then the proponent has winning strate-
gies

o(Do(p)) € StrE (1oL, loa, TpA;»)
o(Di(p)) € Stri(lol', 0B, 7p A5 w)
Thus by induction I'ya . A and I', B -, A, thus ', a VvV 5 . A.

3. By induction on o € Str¥(!oT, lrp, 7pA;0), let a be the opponents
opening action.

e The formula ¢ is positive, then o(a) € Str¥ (1T, 7pp, 7pA; #), thus
by induction I' -, A, .

e The formula ¢ is negative, then by cases:

— The formula is ¢ = a A 3, thus

g(Ao(p)) € StrE(loT, Tpa, 75A ;5 »)
o(A1(p)) € Stri(1oT, 7558, 1A ;)

Thus by induction I' -, A, and I' . A, 3, thus '+, A, a A 5.
— The formula is ¢ = o — 3, then

U(A(QD)) e StT;f( !OF7 !Oa7 ?7’67 ?PA ’ 7))7

thus by induction I', a . 8, A, thus I' -, o — 3, A.
— The formula is ¢ = Vza(z), then

o(A(p)) € Stri (1T, Tpalt), 7505 p),

for any term ¢, then in particular by induction I' . A, a(z) for
some x ¢ FV(I' UA), then I' . A, Vaa(x). O
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3.5.2 Completeness
Theorem 3.15 (Completeness). Let G =!I, 7,A, then
IfT k. A, then Stryg(G;») # 0.
Proof. By induction on the height of the derivation of the sequent I' = A.
e (Basecase) I' = A is an instance of an axiom, we have two cases:
— We have A €T and A € A, then (G;») is a terminal state, so
Str(G;») # 0.
— We have L €T, then (G;») is a terminal state, so
Strit (G ») # 0.

e The last rule used in the derivation is A thus G = H, 7,9 A 9, then by
induction we have:

o € St (H, Tnp:»)
T € Str¥(H, 1p1¢;»).

Let

p(Ao(p NY)) =0
p(Ai(p AY)) =T

we construct a strategy in Str¥*(G;») as follows:

p EStry(H, lrp N 0)
(D(¢ AV), p) € Stre(Gs»)

e The last rule used in the derivation is Ap, thus G = H, !5 A 1, then by
induction and weakening we have:

o€ Stre(H, lop, lot;»)
Wk(o) € Stre(G, lop, lot;»)

We construct a strategy in Str¥ (G ;») as follows:

Id € Str¥(G, 7o, 7pp;0)
Wk(o) € Str(G, log, lots7)  (a,1d) € Stri (G, Tpp;7) Id € Stry(G, "o, Tet;0)

Cut,(Wk(o),(a,Id)) € Str¥ (G, lotp;») (b, Id) € Str¥(G, ?xv;»)
Cuty((b,Id), Cut,(Wk(o), (a,Id))) € Str¥(G;»)

Where a = Ap(p V) and b= A1(p V).
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e The last rule used in the derivation is Vg, thus G = H, 759 V 9, then by
induction and weakening we have:
o€ Stri¥(H, 150, 1p);P)
Wk(o) € Str¥(G, 10, 1p¢;P)

We construct a strategy in Str¥ (G ;») as follows:

Id € Str¥(G, o, lpp;0)
Wk(o) € Str¥(G, Tpp, 1p¢;P) (a,Id) € Str¥(G, lop;») Id € Str¥(G, o, 1p9;0)

Cut,(Wk(o),(a,Id)) € Str(G, 71 ;) (b, Id) € Str(G, ot ;»)
Cuty(Cut,(Wk(o), (a,Id)), (b,Id)) € Stri¥(G;»)

Where a = Do(¢ V) and b= D1(¢ V ).

e The last rule used in the derivation is Vp, thus G = H, !5 V 1, then by
induction there are strategies:

o€ Strp(H, lop;»)
T € Stri(H, lot);»).

Let

We construct a strategy in Str¥ (G ;») as follows:

pe St?”g(fL ?o@vw;o)
(D(p V1), p) € Stre(G») .

e The last rule used in the derivation is =g, thus G = H, 7,90 — 1, then
by induction there is a strategy

o€ Stry(H, lop, 1p9;7).
We construct a strategy in Str¥ (G ;») as follows:

o€ Stri¥(H, low, 159 7)
Ax.o € Str¥(H, lpp — 1)
(D(e = ), A\x.0) € Str¥(G;») .

e The last rule used in the derivation is —, thus G = H, !, — 9, then
by induction there are strategies

o€ Stry (G, Tpp;»)
T € Stri(G, lot;»).
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We construct a strategy in Str¥ (G ;») as follows:
o€ Str¥ (G, 7pp;») Mp € Str2(G, lop, Tp);P)
Cuty,(Mp,o) € StrE(G, 75 ;) T € Stri)(G, o ;»)

Cuty (1, Cut,(Mp,0)) € Str¥(G;»)

e The last rule used in the derivation is Jg, thus G = H, ?,3zp(x), then
by induction there is a strategy

o€ Stry(G, Tpp(t);»).
We construct a strategy in Str¥ (G ;») as follows:

Id € Stry(G, l»p(t), lop(t) ;o)
o € Stri¥(G, Tpp(t);») (a,Id) € Str¥ (G, low(t);»)
Cuty((a,Id), o) € StrE(G;»)

Where a = D¢(3zp(x), the case for Vi, is similar.

e The last rule used in the derivation is Vg, thus G = H, ?,Vzyp(x), by
theorem 2.5, we have that I k. ¢(t), A for any term ¢, thus by induction
for any term ¢ there is a strategy:

o € Str(H, Tp0(t) ;7).
Let p(A(Vxp(x))) = 0r. We construct a strategy in Stri? (G ; ») as follows:

Az.p(x) € Str¥(H, |xVap(x) ;o)
(D(Vep(x)), (Az.p(x))) € Stry/(G; »)

The case for 3, is similar. O

3.5.3 Adequacy for the System G3C*

The soundness and completeness proofs identify winning strategies with proofs
in G3C'. In fact we can do a little better than that since if we inspect the rules
of the game we see that in a winning strategy:

e The assertion !, A — 9 is never attacked, unless the opponent has already
stated !, A.

e The left side of challenge 7, A V v is never defended unless the opponent
has already stated !, A.

e The right side of challenge 7,1 V A is never defended unless the opponent
has already stated !, A.

e The challenge ?,3zA(x) is never defended unless the opponent has already
stated !, A(t) for some term ¢.
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Thus, we can actually define a proof system G3C™, to which the winning strate-
gies corresponds more closely.

Definition 3.8. Let G3C™ be just as G3C' except that we replace the rule —,
with two rules, one atomic and one non-atomic:

A,y = A oay = A ry=A (p non-atomic S

MNAA—-Y=A Ney—yv=A

We could also similarly replace Vg and dr, however this is not as interesting
of a change as the above. If I' = A is derivable in G3C* we write I' F} A. In
particular the rule — 4; is interesting since it shrinks the search space for proofs
by putting a restriction on how derivations may be produced.

Theorem 3.16.
A = TH. A

Proof. For the left to right direction we note that all rules of G3C™* are admissible

in G3C, in particular the rule — 4; corresponds to:

A= A A A Y = A
INAA—>¢Y=A

For right to left, if I' . A, then by completeness Str¥ (oI, 7,A;7) # 0 it is
then immediate that I' - A. O
3.5.4 Cut Elimination for G3C and G3C*

Given that we have the cut strategy we have the following:

o€ StrE(lol, 104, lop;») T € StrE(117, 1,0, Top;»)
Cuty(o,7) € Str¥ (1oL, 7:A, oIV, 7,A"; p)

We immediately get that the cut rule

I'=p o, V=1

LT =y
is admissible in G3C' and G3C*. Furthermore, if we allow G3C or G3C* deriva-
tions containing applications of the cut-rule, we can add the following case to
the completeness proof:

(Cut)

e The last rule in the derivation of I' . A was cut with cut-formula ¢. By
induction we have strategies:

o€ Str(1oT, low, 7500 ;)
T € St?’;;u( !OI‘l, ?pQD, ?pAl ;77).

Where I' =Ty, I'; and A = Ay, A;. Thus, we have a strategy
Cuty(o,7) € Striy (1oL, 7545 7).
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Using the soundness part of the proof this strategy can then be transferred back
to a G3C or G3C* derivation not containing cut. Thus effectively eliminating
the cut from the proof.
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4 Intuitionistic Games

To turn the games intuitionistic we introduce three changes:
e No backtracking on disjunction or the existential quantifier.
e Last question answered first.

e All challenges must be met for the proponent to win. (Unless the opponent
asserts falsum).

To enforce that the last challenge is answered first we extend the game language
by indexing all challenges by a natural number.

Definition 4.1 (Game Language).
L£e9me — {1 0| p € L, o€ Players} U{ My | ¢ € L,0 € Players,n € N}
The sole purpose of the number is the demarcate in which order the chal-

lenges where introduces.

4.1 Intuitionistic Positions

A position in a intuitionistic game is then a finite multi-set of £&%™¢.

Definition 4.2 (Set of Positions).
Pos = {G C £E9™¢ | G is finite}

Consequently we define the operations on intuitionistic positions similarly to
the classical case.

4.2 Intuitionistic Rules

Definition 4.3 (Intuitionistic Ruleset). The intuitionistic games are defined
given the intuitionistic ruleset (States, Act, M,Term), where

e States = Pos x {o,»}.

e The set of actions Act is defined using the following grammar:

a = D() | Di(p) | Di(p) | Arlp) | Ai(#) | Alp)-

Where ¢ € {0,1}, t is an arbitrary term and ¢ is an arbitrary formula in

L.

e The transition relations M C States x Act x States is defined given the
following table:
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(G, Mp;o0) lo¢p is negative D (G, leg;0) le(p is positive

(G, lop;e) (v (G, 77 e) (%)
(%) (Géc';ﬁ().:@i)’ ) Ai(po A e1) (G,(;Qg?:; S0.1>’ °) Di(o V ¢1)
(G, leVaip(z) ;0) (G, 703zp(x) 5 0)
O G gty ey ) (G lop(t);e) e
(G; !o<p — w ; o) (G, !OAv ?77;"4 5 7’)
O G e ATV B e g P

Side-conditions:

— Moves marked with (x) are such that when the proponent is the active
player the active formula is repeated and not cancelled.

_ o
o

is the latest challenge to player o, that is n >4 for all 7%y € G.

e The set of terminal states Term = Term, UTerm, is inductively defined
as follows, where G is an arbitrary position.
— (G;») € Termyp, where
*x Challenges(G;») # 0.
* All challenges 77 € G are atomic.
* For all 72 € G thereisa lop € G.
— (G, 154;0) € Termy, where 1, A & G.
— (G, leL;0) € Terms.
— (0;0) € Terms,.

4.3 Basic Positions

As with the classical games we are in interested in games of a particular form,
in this case (!,I', 729 ;»), since proponent winning strategies in these games
correspond to derivations in the sequent calculus:

Stre(1ol, Map;p) A0 < Tk 1.
We call positions such as the above basic intuitionistic states.

Definition 4.4. A basic intuitionistic position is a position of the form (!,I", ?2¢),
for some finite multisets of formulas I' and a formula v and a number n € N.

In this section we will use “basic position” to refer to a “basic intuitionistic
position”. We define the positions G% and G — H as in the classical case. A
pre-basic position is then defined in the same way as in the classical case. The
following properties now holds for basic and pre-basic positions:
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e The opponent has no legal moves in a basic position.
e The opponent has one legal move in pre-basic positions.
e The pre-basic positions have two forms:

— My —o G, where G is basic.

— lop — T

That is & —o G is no longer necessary a pre-basic position if G is basic and
® is pre-basic, consider for example (lp¢ V1, ?%a; 0) with the successor
state (7o Vi, a;p).

e Given a basic game G and a proponent move (G';0) % (aG ;») such that
a # A(p — 1), we have that aG = ® — H for some pre-basic & — H.

e Given a basic game G and a proponent move (G';0) % (aG ;») such that
a = A(p — 1), we have that aG = ®, P’ —o G for some basic ¢ and P.

Thus, in contrast to the classical positions: Even if & and G are basic ® — G
is not necessarily pre-basic. We must therefore take better care in considering
pre-basic positions.

4.3.1 No Stalemate

Given our definition of a winning strategy, the opponent may win a game (G ; »),
where G is basic by reaching a state (H ;o) for which there is no further move.
As in the classical case we do not want this to be able to happen, so we begin
by showing the no stalemate lemma as in the classical case. This is somewhat
harder in the intuitionistic case because in a game the proponent may defend an
atomic formula P, leading to a state (G, !» P ; o) where it’s not obvious that the
opponent has an additional move. This was prevented in the classical case, since
the preceding state (G, "2 P;») was already terminal. Now in a intuitionistic
game this is no longer the case if there is some remaining challenge ?7'¢ € G.
Now we claim that in fact:

Challenges(G ; o) = Challenges(G; »),

where Challenges(G, o) is the number of o-player challenges in G. Thus the
opponent must have a defensive move in (G ;o). Thus we begin by proving the
following lemma:

Lemma 4.1. If (G,0) is a non-terminal state in a basic game (!oT', 7% ; »)
reachable in k steps, then

If k is even, then Challenges(G; o) + 1 = Challenges(G ; »)
If k£ is odd, then Challenges(G ;o) = Challenges(G; »).

Proof. By induction on k € N.
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e (Basecase) k = 0. For the initial state (7o, 729 ; ») we have immediately

Challenges(G; 0) + 1 = 1 = Challenges(G ; »)

e (Inductive case) k > 0 is even. Suppose the preceding state is (H, o), by
induction Challenges(H ;o) = Challenges(H ;»), we show that
Challenges(G; 0) + 1 = Challenges(G ; »),

by cases consider the move (H ;o) % (G';»):

— a is a attack move, thus
1. Challenges(H ;») + 1 = Challenges(G ; »).
2. Challenges(H ;o) = Challenges(G; o).

thus
Challenges(G ;o) + 1 = Challenges(H ;0) + 1 by (2)
= Challenges(H ;») +1 by (induction)
= Challenges(G; ») by (1).

— If a is a defense move, thus
1. Challenges(H ;») = Challenges(G;»).
2. Challenges(H ;o) = Challenges(G; o) + 1.

thus
Challenges(G ; 0) + 1 = Challenges(H ;o) by (1)
= Challenges(H ;») by (induction)
= Challenges(G;») by (2).

e (Inductive case) k > 0 is odd. Suppose the preceding state is (H,»), by
induction Challenges(H ;o) + 1 = Challenges(H ;»), we show that
Challenges(G ; o) = Challenges(G; »),
by cases consider the move (H ;») % (G;o):

— If a is an attack move then,
1. Challenges(H ;o) + 1 = Challenges(G; o).
2. Challenges(H ;) = Challenges(G;»).

thus
Challenges(G ; 0) = Challenges(H ;0) + 1 by (1)
= Challenges(H ; ») by (induction)
= Challenges(G; ») by (2).
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— If a is a defense move then,
1. Challenges(H ;») = Challenges(G;») + 1.
2. Challenges(H ;o) = Challenges(G; o).

thus
Challenges(G ; o) = Challenges(H ;o) by (1)
= Challenges(H ;») —1 by (induction)
= Challenges(G; ») by (2).

O

Theorem 4.2 (No Stalemate). If (H, o) is a reachable non-terminal state in a
basic game (G ;»), then there exists a move

(H;o0) = (aH ;)
for some action a € Act.

Proof. Consider the move (J;») < (H ;o) on the state preceding (H, o), by
cases

e The action a is an attack, then the opponent has a defense move in (H, o).
e The action a is a defense of a formula ¢, by cases
— The assertion resulting from the defense is non-atomic, then there is

an attack move for the opponent in (H, o).

— The assertion resulting from the defense is !, L, but this is impossible
since (H ; 0) is non-terminal.

— The assertion resulting from the defense is !, P, now since (J;») is
non-terminal we have Challenges(J ;») > 1, thus we also have that
Challenges(H ; ») = Challenges(H ;o) > 1, thus the opponent has
a defense move in (H, o). O

Corollary 4.2.1. If 0 € Str-(G; 0) is a non-winning strategy where G is pre-
basic, then there is a branch b of o that is either infinite or ends in a terminal
state (H ;o) or a stalemate state (H ;).

Proof. The proof is the same as in the classical case. O

4.4 Operations on Strategies

Since the opponent has no legal moves in a position !,I" adding such a position
to an already winning position changes nothing with regards to winnability for
the proponent.

Lemma 4.3 (Weakening). Let G be any position and I' C £ a finite multiset,
then there is a function
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1. Wk: Str(G;») = Str2(G, 1oI'; »)
2. Wk : Str#(G;o) — Str(G, 1oI'; 0)

where
I Wh(o :{elf ;p) € Termp
o else.
2. Wk(o) =

4.4.1 The Copy-cat Strategy

For any given position G the proponent has a winning strategy called the copy-
cat or identity strategy in the game (G — G ;o) where the proponent repeats
the opponents actions. To define this strategy we must again make a slight
adjustment to the classical definition.

Definition 4.5 (The Copy-cat Strategy). If G is any position there is a function
Id € Stry(G — G;o0),
Proof. For any position G and finite I' C £, we show there is a function:
Id € Stre (1.1, G,G%;0).
Consider arbitrary a € Move(!oI',G,G%;0). We define
Id(a) € Str¥(a(G,G%, 1oT) ;)
by induction on Str¥(a(G,G%, 1,T);»).
e The state a(G, G¢, |,I';0) is terminal, then let Id(a) = e
e The action a # A(A) for some atomic proposition A, in which case:
aa(G,G% 1T ;0) = (H,H, 1,1 ; 0),

for some position H and I'V C L.
Thus we construct Id(a) € Str¥(a(G,G%, 1oT';0)) as follows:

Id € Str¥(aa(G,G?, 15T'; 0))
(a,1d) € Str¥(a(G,G?, 1,T;0)).
e The action a = A(A) for some atomic proposition A, thus
a(G,G% 1oT;0) = (H,HY, 7.4, 1,A, 1T »).
Thus we construct Id(a) € Str¥(a(G,G%, 1,T';0)) as follows:

Id € Str¥(H,H?, 1,T;0)
(D(A), Id) € Str¥(a(G,G?, 1,T;0)).
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O
Using the copy-cat strategy we can define a modus ponens strategy as follows:

Theorem 4.4 (Modus Ponens). If I' C £ is a finite multiset then there is a
strategy

Mp € Stre (1ol low — 1, low, 2o ;7).

Proof. We construct it as follows:

Id € Stry

Wk(Id) € Str?

(A(e — ), Wk(Id)) € Stry
Wk(A(p — ), Wk(Id)) € Stry

o, 709, lop, ?PQ/J?O)

lop = ¥, 1, 201, lop, 715 0)

o = ¥, low, 7p9;57)

1ol lop = 1, low, 7510 P) O

PRy

4.4.2 Left and Right Strategies

Using No Stalemate we are now able to show that we can decompose a game
(G, 724, 1pp, 7 0) into two components using the left and right strategies.

Lemma 4.5. Let (G, 7’a) be a basic position, then there are functions
1.0 Stri2(G, 12, e, MMas0) = StrE(G, 2y, T0as o)
2. StrE(G, M, e, Maso) = SrE(G, 1pe; o)

such that for all o € Str¥ (G, 701, 1p¢;0), it holds that I(c) <7 ¢ and r(o) <p
o.

Proof.

1. Assume we have a winning strategy o € Str¥(G, 72, lpp, 70a; 0). Let
X = UStr¥(G, 124, 7a;0) be all possible sequents of moves in the
game (G, 729, "a; 0), then let I(0) = 0 N X be the restriction of the
strategy o to the game (G, 7%, ?a;o0). Then we have that [(o) is a
strategy l(o) € Strp(G, 7%, 7 0), since it’s just a restriction of o
to the plays where the opponent never attacks !,¢. Also it’s a winning
strategy:

l(o) € Stri(G, 2y, Tas o).

Since assume that (o) is not winning, then since (G, 72, 7'« ; 0) is pre-
basic by a corollary of No Stalemate if {(o) is not winning there is an
branch b of [(¢) that is infinite or ends in a terminal state (H ;o) or a
stalemate state (H ;»). Now since [(¢) C o this branch is also in o, thus
o would not be a winning strategy which is a contradiction. Also, since
l(c) C o we have that I(c) < 0.
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2. Assume we have a winning strategy o € Str¥ (G, 3¢, lrp, 7a; 0). Let
X = Str2(G, lpe, M a; o) be all possible sequents of moves in the game
(G, lpp, 7T 0), then let [(0) = 0 N X be the restriction of the strategy
o to the game (G, lpp, 7' ;0). Then we have that I(o) is a strategy
l(o) € Strp(G, 15, M a; o), since it’s just a restriction of o to the plays
where the opponent never defends 771. Now we also get that

l(o) € Strp(G, 1pp;0).

Since Stry(G, lpp;0) = Strp(G, 1p@, Ta;o0), since the proponent can
never defend ?7'«. Since suppose the proponent reached a state (H, 'a; »)
where ?7'« could be defended, then by definition Challenges(H ;») = 0,
but then since (G, l»p, ?'a; o) is pre-basic, we would have by lemma 4.1
that Challenges(H ;o) < Challenges(H ;») = 0 which is impossible.
Thus ?7'« is never defended, and (o) € Strx(G, lp¢;0). By the same
reasoning as in the previous case we then get that

r(o) € Str(G, lpp;0),

and (o) < 0. O

4.4.3 Move-order Invariance

We will show that the actions A(p) where ¢ is positive are all move-order
invariant.

Theorem 4.6. Let (G, !, ;») be a non terminal state and ¢ positive, then
there is a function:

Permy : Stril(G, lop;») = Stri (G, 7o9;0)
Proof. Suppose (a,0) € Str¥(G, lop;»). We construct a strategy
Permy((a,0)) € Stri(G, Top; o).
If a = A(p), let Permy((a,0)) = o. Otherwise we define
Permy((a,0))(z) € Stri(z(G, Top;0))
for arbitrary x € Move(G, 7o¢;o0). By cases:

e Let the move be b on the G component of the game, then we construct a
strategy in Str¥ (bG, 7 ;») as follows:

(a,0) € Str (G, lop;»)
o € Str(aG, lop; o)
o(b) € Stry(baG, lop;») in particular
Permy(a(b)) € Str¥(baG, 759 ;0) by induction
(a, Permy(o(b))) € Stryl(bG, 75¢;»)
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e Let the move be c on the ?"op component of the game, then we construct
a strategy in Str¥(G,c?%¢;») as follows:

o(b) € Stry (baG, 'oga »)  where b is arbitrary
Permy(o(b)) € Stry(baG, 75¢;0) by induction
Permy,(a(b))(c) € Stre(baG, c7og0 ) in particular
Ax.Permy(o(x))(c) € Striy(aG,c?5p;0)
(4, Permy(o(2))(e) € Str2(G, 7o' »)
O

4.4.4 Contraction
We show contraction in the intuitionistic case only for opponent assertions.

Theorem 4.7 (Contraction). Let G be a basic position, then there is a con-
traction:

1. Con : Str¥ (G, lop, low;») = StrE(G, lop;»)
Proof. By induction on .
1. By cases:

o If o = A is an atom it is never attacked, thus let Con(o) = o.

o If ¢ is positive, we construct a strategy Con(o) € Str¥(G, lop) as

follows:
o € Stry (G, lop, low;»)
Permy (o) € Strif(G, ?op, lop; o)
Permy(o)(b) € Str¥(G,b?5¢, low;P)
Permy,(Permy(c)(b)) € Stri(G,b75p, 15p;0)
Permy(Permy(0)(b))(b) € Strii(G,b 759, b 7595 »)
Con(Permy,(Permy(o)(b))(b)) € Stry(G,b75¢ ;)
Ax.Con(Permy,(Permy(o)(x))(x)) € Str(G, 75¢;0)
(A(p), Az.Con(Permy,(Permy(o)(x))(z))) € Stri (G, lop;»)

Where b is an arbitrary defense of 7% ¢

4.4.5 The Parallel Strategy

For the intuitionistic games we would like to define the parallel strategy along the
lines of the classical games, however for intuitionistic games a parallel strategy
does not always exist for arbitrary games so instead we define it for arbitrary
pre-basic games.
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Theorem 4.8 (Intuitionistic Parallel Strategy). Let Gy,...,G, be pre-basic
games, then there is a function:
1o |I: Str¥(Gr;0) x -+« X Str¥ (G, ; 0) = Str¥(Gy,...,Gn;0)

Proof. By induction on n € N with subinduction on oy, ...,0, € Str¥ (G ;o) X
- x Str¥(Gy ;0). Suppose for induction that the parallel strategy exists for
strategies 7, ..., T, where m < n. Consider an arbitrary move

a € Move(Gy,...,Gy;0),

without loss of generality let it be on the G; component of the game. Thus we
have o; € Str¥(G;, o) and gj(a) € Str¥(aGj,»). Let I ={1,...,n}\ {j}. We
define
I (o1, ...,00)(a) € StrE((| ) Gi). aGy 5 7),
iel
by induction on o;(a) € Str¥(aG; ;»). By cases:
e The strategy o;(a) = e, that is (aG; ; ») is a terminal state, by cases:
= If lo L € aGj also Stri((U,c; Gi),aGj ; ») is a terminal state, so let
| (01,...,00)(a) =e.

- If 1bA € aG; and 72 A € aGj, then defending 77 A, the proponent
can reach a state (D(A)aGj ;o) that has no further moves for pro-

ponent or opponent and which is not terminal. Let o¢,...,0, —0;
be just as o4, ...,0, without o;, then by induction we have that
| (o1,...,0n —0j) € Str;“(UGi;o)
il

thus by weakening
Wk(|| (01,...,0n —0y)) € Strfj((U Gi),D(A)aG; ;o)
i€l
thus
(D(A), Wk(]| (01, ..,00 — 0;))) € Stri(| G, aGy ;7).
i€l
e The strategy is o(a) = (b,0’). Suppose for induction the parallel strategy

is defined for 71,...,7 < 01,...,0,. Consider the action b by cases:

— The action b # A(p — 1), thus baG, is a pre-basic position, thus by
induction since (o1, ...,0, —0j,0") < (01,...,05):
| (o1,...,00n —0j,0") € Strg((U G;),baG; ;o)
i€l
0

(0,1l (01, 00 = 05,0")) € Stri((|J Gi), aGy ;7).
iel
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— The action b = A(p — ), then baG; =!rp, 70, oI, 7%a, where
aG; =!oI', 7%a. Thus, there are strategies
l(o") € StrE (1T, ), Ma;0) and r(o’) € StrE (1.1, lrp; o)

Then by induction since (o1, ...,0, —0j,l(c"),7(0")) K (01,...,00):

| (o1, ....on—0j,1(c"),r(0")) € Stre((| Gi), 1oL, 789, 7ha, oL, Log o)
el
SO
(b, ]| (01, on—05,1(0"),7(0"))) € StriE((|J Gi), oL, oL, s »)
iel

then by contraction

Con(b, || (61,...,0n —0j,l(c"),r(c"))) € Str;f’((U G,),aGj;»). O
il

4.4.6 Application and Composition

Application and composition of strategies are defined as in the classical case,
except that we now require the states (¥ — J) and (® — I, ¥;0) to be pre-
basic.

Theorem 4.9 (Application and Composition). Let (G, ¥) be a basic position
and let (I — J) and (& — I,¥;0) be pre-basic positions, then there are
functions:

1. Ap: Str¥(G, U ;») x Str¥(V — J;0) — Str¥(G, J;»)
2. (=) SrE(D — I,U;0) x Str¥(V — J;0) = Str¥(® — I,J;0)
Proof.
1. Let (o,7) € Str¥(G,¥;») x Str¥(¥ — .J;o0), by induction on o €
Str¥ (G, U ; »), with subinduction on the formula :
e The strategy o = e, the state (G, ¥ ;») is terminal, by cases
— The state (G ;») is terminal, by cases
x If G=G', oL, then (G, J;») is terminal.
x If G =G, 1A, 72 A, then J =1,T for some I' C L, since
¥ =1,¢. Then (G, J ;) is terminal.
In both cases let
Ap(o,7) =e.

— The state (G,U;») = (G, 7 A, 1,A) where ¥ =!,A. Since
(154, J;0)isnon-terminal also !, A € J, but then also (G, 14, J ;»)
is terminal so let

Ap(o,7) =e.
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— The state (G,VU;») = (G, oA, M A) where ¥ =77A, then
T € StriY(12A,J;0). Thus 7(D(A)) € Str¥(loA,J;»), thus
Wk(T(D(A))) € Str¥(G', oA, J;»), so let

Ap(o,7) = 7(D(A))

e The strategy is 0 = (a,c’) and the first move is on the G-component
of the game, we get two cases:

(a) The position aG,¥ = & — H, U for some basic ® and H, , i.e
a # A(p1 — p2), thus

o' € Stri¥(® — H,V;0),
we construct a strategy Ap(o,7) € Str¥(G, J;») as follows:

o' € Str¥(® — H,¥;0) T € Str¥(¥ — J;o0)
o'sT € Str¥(® — H,J;0)
(a,0';7) € Str(G, J ;»)

(b) The position aG, ¥ =781, lpp2, G, ¥, , i.e a = A(p1 = ¢2),
thus
O'/ S St?ﬁg( ?gtwla !PQDQa Ga v ; O),

we construct a strategy Ap(o,7) € Str¥(G, J;») by cases:
— The position G, ¥ = G, o9, let
= GifG=G, M
G else.

Then there are two strategies:
l(o") € Str¥(G, o1,V 5 0)
r(o’) € Str¥ (K, \ppa, ¥ 0),
thus we construct two strategies

l(o") € Str¥ (101, G, 5 0) T € Str¥(¥ —o J;o0)
lo);T e Stre (01, G, J 5 0) ,

and
r(o’) € Stri¥(, lppa, K, ¥ ;0) TEStr¥ (¥ — J;0)
r(o);m € Str¥(lppe, K, J;0)

Playing them in parallel yields:

(Aa");1) || (r(o);7) € StrE( e, lppe, G, K, J,J;0)
(a,(l(a");7) || (r(0’);7)) € Sry(G, K, J, J ;)

Con(a, (I(a");7) || (r(0’); 7)) € Stry(G, J;»)
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— The position G,V = G, 724, then there are two strategies:
l(o") € StrE(?0¢p1,G, ¥ ;0)
r(o') € Str¥(lpp2, G;o0),

we construct a strategy in Str¥ (G, J ; ») by first construction
a strategy:
l(o") € Str¥ (o1, G, ¥ 5 0) T € Str¥(¥ —o J;0)
l(o");T e Str (701, G, J;0)

Playing in parallel yields:

(r(e);7) || (t(e");
(a, (r(0’); 7)
Con(a, (r(c")

T) € Str¥ (101, lpwa, G, G, J, J ;0)
| (l(o");7)) € Str(G, J, J ;»)
;7) | (lo"); 7)) € Str (G, J 5 »)

e The strategy is o = (a,0’) and the first move is on the ¥-component
of the game, we get three cases:

(a) The position G,a¥ = ® — G, i.e a = D(¢) for negative ¢ or
a = A(yp) for positive . Thus,
o' € Stri¥(® — G; o),
we construct a strategy Ap(o,7)Str¥ (G, J;») as follows:
T € Str¥(¥ —o J;0)
o' € Str¥® — G;0) T(a) € Str¥(®,J;0)
Ap(d’,7(a)) € Str¥(G, J;»)

(b) The position G,a¥ = & — G, ¥, i.e a = D(p) for positive ¢ or
a = A(p) for negative ¢ # 1 — po. Thus,

o' € Stri¥(® — G,V ;0),
we construct a strategy Ap(o,7) € Str¥(G, J;») as follows:

o' € Str¥(® — G,V ;0) T € Str¥(¥ —o J;0) T € Stri¥(¥ —o J;0)
o'sT € Str#(® — G, J;0) T(a) € Str¥(®,J;0)
Ap((o';7),7(a)) € StrE(G, J, J ;»)
Con(Ap((d';7),7(a)) € Str(G, J;»))
(¢) The position G,a¥ = &, Py — G, ¥ for some basic games P
and ®s, i.e a = A(p1 — p2). This is the same as a previous case
so let

Ap(o,7) € Str¥ (G, J;»).
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2. Let (0,7) € Str¥(® — I,¥;0) x Str¥(¥V — J;o0), by induction on
o€ Str¥(® — I,¥;0). For arbitrary a € Move(® — I, T ;0) we note
that a(® — I, ¥) = (a®, I, ¥) is a basic position and there is a strategy:

o(a) € Stry(a®,1,7;»),
we construct a strategy o || 7 € Str¥(® — I, J;0) as follows:

o(a) € Str¥(a®,I,¥;») T € Str¥(¥ — J;o)
Ap(o(a),T) € Str(a®,I,J;»)
Az Ap(o(z),7) € Str¥(® — 1,7 ;0) O

4.4.7 Cut Elimination
Recall that the following cut rule is admissible in G3I:

= o, IV =9
II'=qv

Similarly, for the strategies we have the following function:

Theorem 4.10. Let G =!,I", J =!,I"V and H be basic, then there is a function:
Cuty, : Str(G, H, lop;») x Stri(G, J, Te;») = Strii(G,H, J ;»)
Proof. By cases:

e The assertion !,¢ is positive, then we construct a strategy in Str¥ (G, H, J ; »)
as follows:
o€ Str¥(G,H, lop;»)
Perm, (o) € Str¥(G,H, 7%¢;0) T € Str¥(G,J, Mo, »)
Ap(Permy(o),7) € Stri¥(G,G, H, J ;)
Con(Ap(Permy(0), 1)) € Str¥(G,H, J ;»)

e The assertion !,¢ is negative, then we construct a strategy in Str¥¥ (G, H, J ; »)
as follows:
o€ Str¥(G,H, lop;»)
Aa.o € Str¥(G, H, %p;0) T € Str¥(G,J, e »)
Ap(ha.o, 1) € Str¥(G,G,H, J ;»)
Con(Ap(ha.o,7) €)Str¥(G, H, J ;») O

4.5 Correspondence of Strategies and Proofs

We will now prove soundness and completeness of strategies with regards to
(31, that is we will show for arbitrary n € N

' ¢ <— Str?,f(!ol“, ?gw;P).
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In fact as in the classical case we can derive functions f and g from the proofs
such that

f:Der(T k) — Str (1oL, 7245 »)

P

g:StrE(1oT, 75 ;») — Der(I' = ),

where Der (T F; ¢) are the set of derivations of the sequent ' = ).

4.5.1 Soundness

Theorem 4.11 (Soundness). For arbitrary n € N
If Stri¥ (1oL, 724 ;») # 0, then ' b 4
Proof. As inductive hypothesis we take the following;:
1. If Strv(1oL, 24 ;2) # 0, then 'k

P
2. If Str (1oL, 20, 745 0) # 0, then T, p ;¢
3. I Str (1oL, lpp;0) #0, then T'F; ¢
1. By induction on o € Str¥ (1oL, 729 ;»).
o The strategy is 0 = e, that is the state (1,I", 724 ;») is terminal, by
cases:
— A€l and ¢ = A, then I' I, 9.
— L €T, then Tk .

e The strategy is o = (a,0’), the opening action a is a defense of .
By cases:

— The formula ¢ is negative, then o’ € Str¥ (1T, 159 ; 0), then by
induction T" F; 4.

— The formula ) is positive, then by cases:
* The formula is ¥ = a V 3, without loss of generality

o' € Str (1T, lra;0),

thus by induction I' ; «, thus ' ; a V 5.
% The formula is ¢ = Jza(zx), without loss of generality

o' € Str¥ (1T, Lha(t); o),

thus by induction I' F; «(t), thus I’ b; Jza(z).

* The formula is ¢ = A, but this is impossible since then
already !oA €!,T, thus the state (oI, 72 ;») would be
terminal.

e The strategy is o = (a,0’), the opening action a is an attack on ¢,
thus T' = T”, . By cases:
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— The formula ¢ is positive, then o’ € Str¥(l.I", Top, 7215 0),
thus by induction T, ¢ F; 1).
— The formula ¢ is negative, then by cases:
* The formula is ¢ = a A 8, without loss of generality

o' e Stry (1oL, Toa, 1) 0),

thus by induction we have that Iy« F; 1, by weakening
I'a,B F; 1, thus also I';a A B F; 1, thus by contraction
Lk .
* The formulais p = o — 8, then o’ € Str¥(1,I, 768, lra, 729 0),
thus:
l(o") € StrE (1T, 268, b ;o)
r(o’) € Str¥ (1oL, lpa;0)
Thus by induction I', 8 ; ¢ and ' F; «, thus ', — B 5 4,
thus by contraction I' F; .
* The formula is ¢ = Vaza(z), without loss of generality

o' € Stre (1T, 20al(t), 14 0),

then by induction T', a(t) F; 9, then T', Vaa(z) F; ¢, thus by
contraction I" ; 1.

2. By induction on o € Str¥(1.T, 7o, M1 ;0), let a be the opponents
opening action.

o The formula ¢ is positive, then o(a) € Str¥ (1T, lop, 721 ;»), thus
by induction I', ¢ F; 1.
e The formula ¢ is negative, by cases:

— The formula is ¢ = Jza(x), then
o(Di(p)) € StrE (1oL, loal(t), 72 ;»),

for any term ¢, thus in particular by induction T', a(z) F; ¢ for
some z ¢ FV(I'U{a}), thus T, Jza(x) F; 9.
— The formula is ¢ = aV 3, then the proponent has winning strate-
gies
o(Do(p)) € StrE (1o, loa, 7215 2)
o(Di(p)) € Stry (1ol 1o, T3t )
Thus by induction I';a F; ¢ and T', B F; ¢, thus I', a vV B +; 9.

3. By induction on o € Str¥(l,I, lr¢;0), let a be the opponents opening
action.
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e The formula ¢ is positive, then o(a) € Str¥ (1T, ?%¢;»), thus by
induction I' F; ¢.

e The formula ¢ is negative, then by cases:

— The formula is ¢ = A, then o(a) € Str¥ (1T, 7 A;»), thus by
induction I' ; A.
— The formula is ¢ = a A 3, thus

o(Ao(p)) € StrE (1o, T2 »)
a(Ai(p)) € Stry/ (1ol 7555 7)

Thus by induction I' +; a and T'F; 8, thus I' H; a A 5.
— The formula is ¢ = a — 3, then

U(A(QD)) e Str;f( !(’)F7 !Oa7 ?726 a P)7

thus by induction I', a F; 8, thus I' H; a — .
— The formula is ¢ = Vza(z), then

a(Ai(p)) € Stry(lol, 7a(t) ; ),

for any term ¢, then in particular by induction I'" F; «a(z) for
some x € FV(T' U {a}), then T' F; Vza(z). O

4.5.2 Completeness
Theorem 4.12 (Completeness). Let G =!,T", " a, then
If T+, o, then Stry(G;») # 0
Proof. By induction on the height of the derivation of the sequent I = .

o (Basecase) I' = ¢ is an instance of an axiom, we have two cases:

— We have A € " and a = A, then (G ;») is a terminal state, so
Strit (G ») # 0.

— We have L €T, then (G ;) is a terminal state, so
St (G p) £0.

e The last rule used in the derivation is Ag thus G = H, 72¢ A, then by
induction we have:

o€ Strii(H, Me;r)
T € Stri(H, 7 ;»).
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Let

p(Aop A1) =
p(Ar(p AY)) =
We construct a strategy in Str¥ (G ;») as follows:
p € Strv(H, lpo N 0)

(D(p A1), p) € Stry(Gs») .

e The last rule used in the derivation is Az, thus G = H, !, A 9, then by
induction and weakening we have:

o € Stre(H, lop, lot;»)
Wk(o) € Str2(G, low, lot;»)

We construct a strategy in Str¥ (G ;») as follows:

Id € Striy(lop N, 15w, Thp;0)
Wk(o) € Str¥ (G, lop, lotp;») (a,Id) € Str¥(low A, T ;») Id € Str¥(lop AN, T3, T 0)

Cut,(Wk(o),(a,Id)) € Str¥(G, lotp;») (b, Id) € Str¥(lop A, 7% 7,)
Cuty((b, Id), Cut,(Wk(o), (a,Id))) € Strit(G;»)

Where a = Ag(p V) and b= A1(¢ V ).

o The last rule used in the derivation is Vg, thus G = H, 7%¢ V 1, then by
induction we have:

Stris (H, ;) # 0 or Stri(H, 7ap;») # 0,

without loss of generality we construct a strategy in Str¥ (G ; ») as follows:

Id € Str¥(lpp, low; o)
o€ Str(H, Mp;») (a,Id) € Stre(Mo Vi, lop;»)
Cuty, (o, (a,Id)) € Stri(G;»)

Where a = Do(p V 9).

e The last rule used in the derivation is Vp,, thus G = H, !, V 1, then by
induction there are strategies:

o€ Stry(H, lop;»)
T € Strf(H, ot ;»).

Let

p(Dolp V1)) =
p(Di(p V1)) =
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We construct a strategy in Str¥ (G ;») as follows:

p € Strif(H, 7oV ;o)
(D(p V), p) € Stry(G;»)

e The last rule used in the derivation is — g, thus G = H, 7%¢ — 1, then
by induction:
Str(H, lop, 72 ;7) # 0.
We construct a strategy in Str¥ (G ;») as follows:
(S Str;i’(H, !(9()07 ?g’l/),P)
Ax.o € Str¥(H, lpp — 1)
(D(e = ), Ax.0) € Str¥(G;») .

e The last rule used in the derivation is —, thus G = H, |, — 1, let
H = J, 7%, then by induction and weakening we have
Stry (J, 1) # 0
Strg(Ga 'Ow ; P) 7£ Qa
we construct a strategy in Str¥*(G;») as follows:
o€ Str¥(J, Me;») Mp € Stri(J, lop, 12 ;»)
Cut, (o, Mp) € Stri(J, 724 ;») T € Str(G, ot ;»)

Cuty(Cuty,(o, Mp), ) € Stri(G;»)
o The last rule used in the derivation is g, thus G = H, 772 3zp(z), then
by induction, for some term ¢:
Stry/(H, 75p(t) ;) # 0
we construct a strategy in Str¥(G;») as follows:
1d € 5t (Lg(t), log(t) ;o)
o€ Stri/(H, %5p(t);7)  (a,1d) € Stry(753xp(x), lop(t) ; )
Cuty (o, (a,1d)) € Stri¥(G;»)

Where a = D¢(3zp(z), the case for Vi, is similar.

e The last rule used in the derivation is Vg, thus G = H, ?2Vzp(x), by
theorem 2.5, we have that I' ; ¢(t), ¢ for any term ¢, thus by induction
for any term ¢ there is a strategy:

o € Strid(H, To(t) ;»).
Let p(A¢(Vzp(x))) = or. We construct a strategy in Str¥ (G ; ») as follows:

Ax.p(z) € Str¥(H, |pVap(z) ;o)
(D(Vap(x)), (Az.p(x))) € Stry (G ; »)

The case for dj, is similar. O
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4.5.3 Adequacy for the System G3I*

Just as in the classical case we can also identify winning strategies with proofs
in a system G3I* by making the following observations:

e The assertion !, A — 1) is never attacked, unless the opponent has already
stated !, A.

e The left side of challenge 7% A V v is never defended unless the opponent
has already stated !, A.

o The right side of challenge 771 V A is never defended unless the opponent
has already stated !, A.

e The challenge 73z A(z) is never defended unless the opponent has already
stated !5 A(t) for some term t.

Definition 4.6. Let G3I* be just as G3I except that we replace the rule —p,
with two rules, one atomic and one non-atomic:

A= p 4 Lo == I,y =8 ¢ non-atomic

t —L
rAA—y=p Lo—=v=24

If I' = % is derivable in G3I* we write I' -7 1. As in the classical case the
rule — 4; is interesting since it shrinks the search space for proofs since it puts
a restriction on how some derivations may be produced.

Theorem 4.13.
Py <= I'H 9

Proof. For the left to right direction we note that all rules of G3I* are admissible
in G31, in particular the rule — 4; corresponds to:
A=A LAY = «
INAJA— Y=«

For right to left, if I I; 4, then by completeness Str¥ (1oL, 724 ;») # 0 it is
then immediate that I' = 9. O
4.5.4 Cut Elimination for G3I and G3I*

Given that we have the cut strategy we have the following:

o€ Str (1oL, M, lop;») T € StrE (1,17, My ;p)
Cuty(o,7) € StrE(1oT, 7, 1,175 7)

We immediately get that the cut rule

= o, I =

(Cut) I.I = ¢

o7



is admissible in G3I and G3I*. Furthermore, if we allow G3I or G3I* deriva-
tions containing applications of the cut-rule, we can add the following case to
the completeness proof:

e The last rule in the derivation of I' ; 1 was cut with cut-formula ¢. By
induction we have strategies:

[ St'f';;)( !OFOa !(9907 ?g,‘/}77’)
T e Stri(1oT'y, 70e;»).

Where I' = 'y, I';. Thus, we have a strategy

Cuty(o,7) € Striy (1oL, 755 »).

Using the soundness part of the proof this strategy can then be transferred back
to a G3I or G3I* derivation not containing cut. Thus effectively eliminating
the cut from the proof.

98



5 Comparison to Other Works

The games presented in this thesis are strongly related to the dialogue games
of [Lorenzen and Lorenz., 1978] which can be characterized by particular rules
defining admissible attacks and defenses on particular formulas and structural
rules defining the general play of the game. The standard particular rules for
dialogue games where first defined in [Lorenz, 1961] and are laid out in the
following table:

Claim Attack Defense
7 ®
NP
7 (
oV ? ’
(
o= ® (0
e ®
Vap(z) ™n p(n)
Jzp(z) ? p(n)

Thus, basically the same as the rules defined in this thesis. Following [Krabbe, 1985]
and [Felscher, 1985] the structural rules for dialogue games may be divided into
four types D, Di, F and Fi. The Di-dialogues have the same structural condi-
tions for moves as in our intuitionistic games with the exceptions that:

e In our games there exist winning states for the opponent while in the
Di-dialogues no such states exists.

e In our games negative formulas may only be defended once and positive
formulas may only be attacked once by either player while in the Di-
dialogues the proponent may attack and defend formulas indefinitely.

e In our games the proponent wins only if he can meet all atomic challenges
while in the Di-dialogues the proponent wins if he meets any challenge.
(This is similar to the winning conditions for classical games).

The D and FE-dialogues are the same as the Di and FEi-dialogues except that
they are played according to the normal play convention: If a player has no
moves the opposing player wins. As far as I am aware all soundness and com-
pleteness proofs of the D and Di-dialogues are done by first reducing the winning
strategies to strategies in E-dialogues, which are just as the D-dialogues with
the additional rule:

e (E) The opponent can only respond to the proponents immediately pre-
ceding move.
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Then a correspondence is established between proponent winning strategies in
E-dialogues and derivations in some suitable proof system. This is done in
[Krabbe, 1985] and [Felscher, 1985] for intuitionistic logic. For classical logic
the games considered are typically of the E-type from the beginning. there are
proofs for such dialogues in [Fermiiller, 2003], [Sgrensen and Urzyczyn, 2007],
and a short proof in [Alama et al., 2011] which relies on techniques from the
previous paper.

The reductions of D to E-dialogues considered in the literature are compli-
cated and often rather informal steming from the fact that games and strategies
are not treated combinatorially in any of the above works. Consequently, there
are no notions of copy-cat strategies, parallel strategies, composition of strate-
gies, and so on. Using the tools considered in this thesis it seems possible
to establish the correspondence of D and E by using the notions of left and
right-strategies, the parallel-strategy and contraction.

Historically the first to treat strategies as combinatorial objects was Joyal
[Joyal, 1977] following the combinatorial game theory of [Conway, 1976]. There
are two precursors to the operation of union of games and dual of games as
considered in this thesis: the disjunctive sum and negative of the combina-
torial games of Conway [Conway, 1976, Berlekamp et al., 1982], and the par-
allel sum and dual of linear logic games, [Abramsky et al., 1997, Blass, 1992,
Hyland and Ong, 2000]. While the duality operations are virtually the same in
the above works the sum operations are somewhat different. We give a non-
formal description of these operations.

e The moves in the disjunctive sum G+ H are the moves in each component
games put together.

e The moves in the parallel sum G @ H are the moves in each component
game put together; however, when the proponent moves in either of the
two component games, the opponent must respond in the same component.

The operation of union of games considered in this thesis closely resembles
the disjunctive sum in that the games are played concurrently rather than in
parallel. This difference disappears if we consider games on formulas which do
not contain implications, since then the opponent has no way of backtracking.
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6 Conclusion and Further Work

In summary we have defined game semantics for both classical and intuitionistic
first-order logic with explicit strategies. The main results has been to establish
a correspondence of proponent winning strategies with derivations in the cal-
culi G3C" and G3I. Furthermore, the correspondence has allowed us to prove
adequacy for the restricted calcli G3C* and G3I* and in addition also to prove
cut-elimination for all the above proof systems.

To arrive at these results properties of the games and winning strategies have
been examined. In particular, we have explicitly defined several operations on
strategies that may be of further interest for similar game semantics. In partic-
ular the operations of application and composition have been defined giving the
strategies a computational interpretation.

6.1 Further Research

We conclude with a discussion of possible variations and extensions of the game
semantics defined.

Defining games following the normal play convention. As we saw
in section 5 this is the standard winning condition for several game semantics.
Changing the rules in this way would likely simplify the operations on games
while still enabling us to define games for both classical and intuitionistic logic.

Defining games for different logical systems. The most obvious can-
didates being different intermediary logics, linear logic, and type theory. For
type theory in particular games can be constructed where the objective of the
proponent is to provide terms corresponding to types. Thus, the winning move
for the proponent would be assigning an already existing term of a type to the
same type:

(G, 7pe: A;»p) lvd: A€ G
(G, lpe=d: A;0)

If we consider a language with implication as its single connective it suffices to
have the rules:

(G, 7.e:@;0) (G, lef 10— 1p30)
(G, lbe:p;e) (G, oy 0, Te(fy) 1 1pse)

The resulting games then give a formal basis for defining functions by pattern-
matching.

Defining games allowing for an infinite number of attacks and de-
fenses for both players. This would make the games more “fair” since both
players have the same “strength”. Also, intuitively in a type-theoretic or linear
logic game we would want a strategy o € Str¥(N — N;o0) to correspond to an
arbitrary function f: N — N, however if ¢ is required to be well-founded o can
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at most correspond to an arbitrary computable function. To define such infi-
nite games a criteria is needed to distinguish proponent and opponent winning
infinite plays.

Examine opponent winning strategies. This could possibly reduce
proving negative claims about the proof systems, such as underivability to prov-
ing positive claims about the existence of a opponent winning strategy. In fact
any claim that there exists a function f : Str¥(G) — Str¥(H) can be trans-
lated by contraposition to the claim that there exist a function g : Str¥(H) —
Str¥(G). Furthermore, examining the opponent winning strategies could help
to design so called refutation systems since the following relation holds between
opponent strategies and refutations

Stre (16T, 7,A) <= T A.

To examine the opponent winning strategies closer the following questions would
need to be answered: How do we define opponent strategies? How do we show
that an opponent winning strategy is winning? Are there any interesting oper-
ations at all for the opponent winning strategies?
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