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1 Introduction
In this report, we summarize Peter Aczel’s papers [1, 2, 3] on the interpretation of con-
structive ZF into Martin Löf type theory. We aim to modernize some of the presentation
and unify the various constructions into a coherent whole. We begin with a historical
overview of intuitionistic logic, based on the article [7] on the same topic of the Stanford
Encyclopedia of Philosophy.

In a sense, interest in intuitionistic variants of set theory was sparked by Bishop’s “Foun-
dations of constructive analysis” [4]. �is work demonstrated how li�le modi�cation of
the de�nitions and theorems of analysis was required to be able to carry it out in a con-
structive se�ing. However, this constructive se�ing was initially not formally speci�ed in
Bishop’s work, which motivated multiple logicians to try to �ll this gap. �e �rst a�empts
at this, carried out by Bishop [5] and Goodman and Myhill [13], were closer to systems of
arithmetic than set theory. However, these systems were deemed to be unsatisfactory due
to their complexity, as expressed by Myhill [18]:

“We refuse to believe that things have to be this complicated - the argumentation
of Bishop [4] looks very smooth and seems to fall directly from a certain concept of
what sets, functions, etc. are, and we wish to discover a formalism which isolates
the principles underlying this conception in the same way that Zermelo-Fraenkel
set theory isolates the principles underlying classical (nonconstructive) mathemat-
ics. We want these principles to be such as to make the process of formalization
completely trivial, as it is in the classical case.”

∗�is report was created in the course of a Master of Logic individual project
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While Myhill [17] had already studied some properties of an intuitionistic variant of
Zermelo-Fraenkel set theory, this motivation lead Myhill to introduce [18] a novel con-
structive set theory which was tailored towards Bishop’s constructive analysis. Interest-
ingly, this set theory still featured functions and numbers as objects distinct from ordi-
nary sets. Later, Friedman [9] gave various possible set-theoretic foundations for Bishop’s
constructive analysis. Among them is a system he calls 𝐵 which is of much weaker proof-
theoretic strength than previously considered constructive set theories but can nonetheless
be shown to be strong enough to carry out all of Bishop’s constructive analysis.

Parallel to this work on set-theoretic foundations for Bishop’s “Foundations of Construc-
tive Analysis”, Martin-Löf developed a foundation of constructive mathematics on the ba-
sis of dependent type theory [15, 16]. �is foundation, in a sense which we spell out
in Section 2.2, internalized its own Brouwer-Heyting-Kolmogorov interpretation, mak-
ing its constructivity readily apparent as opposed to the various constructive set-theories
where this judgment requires more sophisticated philosophical and mathematical argu-
ments. Aczel’s initial work on CZF [1, 2, 3], the subject of this report, can be viewed as
an a�empt to bridge that gap. He presents a constructive variant of Zermelo-Fraenkel
set theory which can be interpreted into a variant of Martin-Löf’s dependent type theory,
thereby “inhereting” its uncontroversial constructivity.

�e remainder of the report is structured as follows: We begin by introducing dependent
type theory and constructive Zermelo-Fraenkel set theory in Section 2 and Section 3, re-
spectively. We then split the interpretation of CZF, and its extension, into dependent type
theory in a manner similar to Aczel’s papers[1, 2, 3]: We begin by interpreting CZF into
DTT in Section 4. In Section 5 we cover the interpretation of the regular extension axiom
and the associated construction of inductively de�ned sets. Lastly, Section 6 demonstrates
how to interpret various choice principles in DTT. In [3], Aczel gives an inner model con-
struction of CZF with ΠΣ𝑊𝐼 -PAx over an extension of CZF. We cover this construction in
Section 7.

2 Dependent Type Theory
Modern type theory is a �eld studied in both mathematics and computer science. Broadly,
type theories are used to characterize computable functions in terms of their domain and
codomain. Mathematicians usually develop type theories to serve as foundations of con-
structive mathematics whereas computer scientists study type theories in the context of
programming language design. As such, there exists a wide range of type theories, each
with di�erent intended applications and thus wildly di�erent properties.

In Section 2.1 we strive to outline the features shared by a class of type theories called
dependent type theory. In Section 2.2 we demonstrate how such dependent type theories
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give rise to foundations of mathematics. We close our exploration of type theory with
Section 2.3 by giving the axiomatic de�nitions of the type theory we employ throughout
the rest of this report.

2.1 Naive Dependent Type Theory
As type theories usually focus on computable functions, it is o�en easier to illustrate their
usefulness from the perspective of programming languages. We take this approach to give
a “highschool level” overview of dependent types in this section. �at is, we give an intu-
itive introduction to important concepts and constructs, forgoing a proper axiomatization
until Section 2.3.

Types are collections of terms. We write 𝑡 : 𝑇 to mean that the term 𝑡 is a member of the
type𝑇 . �e internal structure of a type is o�en very syntactical in nature. As an example,
the type of natural numbers N is de�ned as containing a constant 𝑍 : N and for every
𝑛 : N its successor 𝑆 𝑛 : N. �e natural numbers of type theory can thus be understood as
syntactical objects obtained by preceding the le�er 𝑍 with the le�er 𝑆 �nitely many times.

Whenever we have an expression 𝑠 (𝑥) : 𝐵 where 𝑥 is a variable of type 𝐴, we can form its
𝜆-abstraction 𝜆𝑥.𝑠 : 𝐴 → 𝐵 inhabiting the type 𝐴 → 𝐵 of functions from type 𝐴 to type
𝐵. A concrete example would be the function add2 := 𝜆𝑥 . 𝑆 𝑆 𝑥 : N → N which increases
its argument by 2. In type theory, each kind of type comes equipped with equations which
express its computational behavior. For example, for 𝜆𝑥 .𝑠 : 𝐴 → 𝐵 and 𝑎 : 𝐴 the
equation (𝜆𝑥.𝑠) 𝑎 = 𝑠 [𝑎/𝑥] states that 𝜆-abstractions are applied by replacing the argument
variable with the argument in the body of the abstraction. �is means, for example, that
add2𝑍 = 𝑆 𝑆 𝑍 .

�e common notation for a function 𝑓 : 𝐴→ 𝐵 being applied to an argument 𝑎 : 𝐴 in type
theory is 𝑓 𝑎 instead of the likely more familiar 𝑓 (𝑎). �is stems from how functions with
multiple arguments usually are formalized in type theory: If 𝑠 (𝑥,𝑦) : 𝐶 for 𝑥 : 𝐴 and
𝑦 : 𝐵 one would de�ne the corresponding function as 𝜆𝑥.𝜆𝑦.𝑠 : 𝐴 → (𝐵 → 𝐶). �at is, a
functionmapping values of type𝐴 to functions 𝐵 → 𝐶 . To apply such an 𝑓 : 𝐴→ (𝐵 → 𝐶)
to 𝑎 : 𝐴 and 𝑏 : 𝐵, one can then write 𝑓 𝑎 𝑏 : 𝐶 instead of the more clumsy 𝑓 (𝑎) (𝑏).

For any two types 𝐴, 𝐵 we can consider the product type 𝐴 × 𝐵 of pairs (𝑎, 𝑏) of 𝑎 : 𝐴
and 𝑏 : 𝐵. It comes equipped with projections 𝜋1 : 𝐴 × 𝐵 → 𝐴 and 𝜋2 : 𝐴 × 𝐵 → 𝐵 with
𝜋1(𝑎, 𝑏) = 𝑎 and 𝜋2(𝑎, 𝑏) = 𝑏. Using product types we can recover the more traditional
function notation via uncur := 𝜆𝑓 .𝜆𝑝.𝑓 (𝜋1 𝑝) (𝜋2 𝑝) : (𝐴 → 𝐵 → 𝐶) → 𝐴 × 𝐵 → 𝐶 . For
any 𝑓 : 𝐴 → 𝐵 → 𝐶 we can then compute an 𝑓 ′ := uncur 𝑓 : 𝐴 × 𝐵 → 𝐶 which can be
applied as 𝑓 ′(𝑎, 𝑏). Note that we have started using the common notational convention
that 𝐴→ 𝐵 → 𝐶 should be read as 𝐴→ (𝐵 → 𝐶).

Taking a step back, we can see that a type is characterized by two components. Firstly,
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some syntactical structure for its members, for example (𝑎, 𝑏) for pairs 𝐴 × 𝐵 and 𝜆-
abstractions for functions 𝐴 → 𝐵. Secondly, a way of “using” members of the type,
such as the 𝜋𝑖 of pairs and application of functions, together with equations character-
izing their computational behavior. �e careful reader might have noticed that we have
not yet given the second component for the typeN of natural numbers. It comes with a re-
cursor 𝑅N : 𝐴→ (𝐴→ 𝐴) → N→ 𝐴 for any type 𝐴 with the equations 𝑅N 𝑠 𝑓 𝑍 = 𝑠 and
𝑅N 𝑠 𝑓 (𝑆 𝑛) = 𝑓 (𝑅N 𝑠 𝑓 𝑛). As the name indicates, it allows us to de�ne functions recursive
on the natural numbers. For example, consider the de�nition of the addition function add
on the right-hand side below. �e �rst argument of 𝑅N corresponds to the base case of the
usual recursive de�nition given on the le�-hand side. �e second argument corresponds
to the recursive step of the usual de�nition, given as a function transforming the result of
the recursive call into the desired value.

add(0,𝑚) =𝑚

add(𝑆 𝑛,𝑚) = 𝑆 (add(𝑛,𝑚)) add := 𝜆𝑛.𝜆𝑚.𝑅N𝑚(𝜆𝑥 .𝑆 𝑥)𝑛

Note that while 𝑅N may look like primitive recursion, being able to take𝐴 to be a function
type increases its computational power. For example, the Ackerman function 𝑎 : N →
N → N can be computed per double-recursion in which the outer recursion computes
functions N→ N as shown below.

𝑎 0𝑦 = 𝑆 𝑦

𝑎 (𝑆 𝑥) 𝑍 = 𝑎 𝑥 1 𝑅N (𝜆𝑦.𝑆 𝑦) (𝜆𝑓 .𝜆𝑛.𝑅N(𝑓 1) (𝜆𝑟 .𝑓 𝑟 )𝑚) 𝑛
𝑎 (𝑆 𝑥) (𝑆 𝑦) = 𝑎 𝑛 (𝑎 (𝑆 𝑥) 𝑦)

Formally, all recursion in type theory is done via recursors such as 𝑅N. However, this way
of de�ning is not very friendly to humans as aptly demonstrated by the de�nition above.
We thus opt to give the recursive de�nitions of this report in the usual equational style
while guaranteeing that equivalent de�nitions can be given via recursors.

So far, the types we have considered are so-called simple types. To be able to form de-
pendent types, we need to add a type Ty of types. �is means that for example N : Ty
and if 𝐴, 𝐵 : Ty then 𝐴 × 𝐵,𝐴 → 𝐵 : Ty. An example of a dependent type would then be
vec : Ty→ N→ Ty which is recursively de�ned via

vec𝐴𝑍 := 𝐼 vec𝐴 (𝑆 𝑛) := 𝐴 × vec𝐴𝑛

where 1 : Ty is the type with exactly one member 𝐼 : 1. �e type vec𝐴𝑛 then describes
an 𝑛-vector of values of 𝐴, for example vecN 3 = N × (N × (N × 1)). We call vecN 3 a
dependent type as it depends on values of other types, namelyN : Ty and 3 : N. Formally,
this means that 𝐴→ 𝐵 is a dependent type as well as it depends on 𝐴, 𝐵 : Ty.
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�e introduction of dependent types leads us to generalize our notion of functions to de-
pendent functions. For 𝑠 (𝑥) : 𝐵(𝑥) with a free variable 𝑥 : 𝐴 we de�ne the 𝜆-abstraction
𝜆𝑥.𝑠 : Π𝑥 : 𝐴.𝐵(𝑥). We can apply 𝑓 : Π𝑥 : 𝐴.𝐵 to an 𝑎 : 𝐴 to obtain 𝑓 𝑎 : 𝐵 [𝑎/𝑥]. �e
computational equation is the same as for non-dependent functions. Note that functions
𝐴→ 𝐵 can be expressed as the dependent function Π𝑥 : 𝐴.𝐵 where 𝑥 does not occur in 𝐵

and are thus subsumed by dependent functions. As an example of a dependent function,
consider the function rep : Π𝑛 : N.𝐴 → vec𝐴𝑛 that, given a natural number 𝑛 and a
value 𝑎, generates a vector of length 𝑛 consisting only of 𝑎s. To de�ne rep we also need
to generalize the type of the recursor of N to work with types 𝐵(𝑥) depending on a pa-
rameter from N to 𝑅N : 𝐵 [𝑍/𝑥] → (Π𝑛 : N.𝐵 [𝑛/𝑥] → 𝐵 [𝑆 𝑛/𝑥]) → Π𝑥 : N.𝐵. Using the
generalized recursor, we de�ne rep = 𝑅N(𝜆𝑎.𝐼 ) (𝜆𝑛.𝜆𝑣 .𝜆𝑎.(𝑎, 𝑣 𝑎)) : Π𝑛 : N.𝐴 → vec𝐴𝑛

which corresponds to the recursive equations

rep𝑍 𝑎 = 𝐼 : vec𝐴𝑍 rep (𝑆 𝑛) 𝑎 = (𝑎, rep𝑛 𝑎) : vec𝐴 (𝑆 𝑛)

2.2 The Curry-Howard Correspondence
We have observed how di�erent computable functions can be de�ned in dependent type
theory. We now move on to demonstrating how a type-theoretic foundation can reason
about them.

We begin with a simple observation: When formalizing the formation and projection rules
for members of 𝐴 × 𝐵 the resulting rules look extremely similar to the introduction and
elimination rules of 𝜑 ∧𝜓 in a natural deduction system.

𝑎 : 𝐴 𝑏 : 𝐵
(𝑎, 𝑏) : 𝐴 × 𝐵

𝑝 : 𝐴 × 𝐵
𝜋1 𝑝 : 𝐴

𝜑 𝜓

𝜑 ∧𝜓
𝜑 ∧𝜓
𝜑

Indeed, this similarity extends to other types we have introduced as well: Functions𝐴→ 𝐵

correspond to implications 𝜑 → 𝜓 and the single-value type 1 corresponds to >.

𝑓 : 𝐴→ 𝐵 𝑎 : 𝐴
𝑓 𝑎 : 𝐵

[𝑥 : 𝐴]
...

𝑠 : 𝐵
𝜆𝑥.𝑠 : 𝐴→ 𝐵

𝐼 : 1

𝜑 → 𝜓 𝜑

𝜓

[𝜑]
...

𝜓

𝜑 → 𝜓

>
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�is idea can also used in the other direction: Logical connectives for which we have
not yet introduced correspondents for lead us to de�ne new types inspired by the natural
deduction rules of said connectives. For example, the correspondent of 𝜑 ∨𝜓 is the sum
type 𝐴 + 𝐵 which consists of the members of 𝐴 and 𝐵. �e eliminator of 𝐴 + 𝐵 then
corresponds to the elimination rule of 𝜑 ∨𝜓 .

𝑎 : 𝐴
𝐿 𝑎 : 𝐴 + 𝐵

𝑏 : 𝐵
𝑅 𝑏 : 𝐴 + 𝐵

𝑠𝑙 : 𝐴→ 𝐶 𝑠𝑟 : 𝐵 → 𝐶 𝑡 : 𝐴 + 𝐵
𝑅+ 𝑠𝑙 𝑠𝑟 𝑡 : 𝐶

𝜑

𝜑 ∨𝜓
𝜓

𝜑 ∨𝜓

𝜑 → 𝜃 𝜓 → 𝜃 𝜑 ∨𝜓
𝜃

Similarly, ⊥ corresponds to the empty type 0, given below. �e eliminator 𝑅0 may appear
somewhat counterintuitive as it takes a member of 0 as its only argument to produce a
member of any type. However, as 0 has no members, this is justi�ed by a similar intuition
as the ex falso rule of a natural deduction system: Any context under which it could be
used is already in a state of absurdity.

𝑡 : 0
𝑅0 𝑡 : 𝐴

⊥
𝜑

�ese correspondences together are part of what is called the Curry-Howard correspon-
dence a�er Haskell Curry and William Howard who are considered the �rst to observe
it[14], although some of the ideas can already be found in Schön�nkel’s seminal work
[22]. �ey give rise to the propositions-as-types interpretation of logic. �e idea is
that each type represents a proposition, such as 1 representing >, and each member of a
type represents a proof for the represented proposition. As an example, we can consider
the term

𝜆𝑝.𝑅+ (𝜆𝑏.(𝜋1 𝑝,𝑏)) (𝜆𝑐.(𝜋1 𝑝, 𝑐)) (𝜋2 𝑝) : 𝐴 × (𝐵 +𝐶) → (𝐴 × 𝐵) + (𝐴 ×𝐶)

as corresponding to the natural deduction proof

[𝜑 ∧ (𝜓 ∨ 𝜃 )] (1)
𝜑 [𝜓 ] (2)

𝜑 ∧𝜓
(𝜑 ∧𝜓 ) ∨ (𝜑 ∧ 𝜃 )

𝜓 → (𝜑 ∧𝜓 ) ∨ (𝜑 ∧ 𝜃 )

[𝜑 ∧ (𝜓 ∨ 𝜃 )] (1)
𝜑 [𝜃 ] (2)

𝜑 ∧ 𝜃
(𝜑 ∧𝜓 ) ∨ (𝜑 ∧ 𝜃 )

𝜃 → (𝜑 ∧ 𝜃 ) ∨ (𝜑 ∧ 𝜃 )
[𝜑 ∧ (𝜓 ∨ 𝜃 )] (1)

𝜓 ∨ 𝜃
(2)

(𝜑 ∧ 𝜃 ) ∨ (𝜑 ∧ 𝜃 )
(1)

𝜑 ∧ (𝜓 ∨ 𝜃 ) → (𝜑 ∧ 𝜃 ) ∨ (𝜑 ∧ 𝜃 )
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Indeed, the tree witnessing that the term we gave above has the type 𝐴 × (𝐵 +𝐶) → (𝐴 ×
𝐵) + (𝐴×𝐶) would be of exactly the same shape as the natural deduction derivation. More
generally, one way of looking at the propositions-as-types interpretation is as a compact
notation for proofs via typed terms.

If 𝐴, 𝐵 : Ty represent propositions, then a term of type 𝑃 : N → Ty can be treated as a
predicate on the natural numbers. For example,

isZero𝑍 := 1 : Ty isZero (𝑆 𝑛) := 0 : Ty

is the predicate which holds precisely for 𝑍 : N and no other natural number.

Introducing predicates to our propositions-as-types interpretation leads us to another ob-
servation: Π𝑥 : 𝐴.𝐵(𝑥) corresponds to ∀𝑥 .𝜑 (𝑥). In this case, the formal details of the intro-
duction rules di�er somewhat as binders and contexts are handled di�erently in dependent
type theory and �rst-order logic. However, they still clearly serve the same purpose.

Γ, 𝑥 : 𝐴 ` 𝑠 : 𝐵(𝑥)
Γ ` 𝜆𝑥.𝑠 : Π𝑥 : 𝐴.𝐵(𝑥)

𝑓 : Π𝑥 : 𝐴.𝐵(𝑥) 𝑎 : 𝐴
𝑓 𝑎 : 𝐵(𝑎)

Γ ` 𝜑 (𝑥) 𝑥 does not occur in Γ

Γ ` ∀𝑥 .𝜑 (𝑥)

∀𝑥 .𝜑
𝜑 (𝑡)

Similar to the case of 𝜑 ∨ 𝜓 we are lead to introduce a new type as a correspondent of
∃𝑥 .𝜑 (𝑥). �is is the dependent sum Σ𝑥 : 𝐴.𝐵(𝑥) whose members are pairs (𝑎, 𝑏) where
𝑎 : 𝐴 and 𝑏 : 𝐵(𝑎). Again, the elimination rules di�er on the technical details concerning
the interaction between binders and contexts.

𝑎 : 𝐴 𝑏 : 𝐵(𝑎)
(𝑎, 𝑏) : Σ𝑥 : 𝐴.𝐵(𝑥)

𝑠 : Π𝑥 : 𝐴.Π𝑏 : 𝐵(𝑥) .𝐶 𝑡 : Σ𝑥 : 𝐴.𝐵(𝑥)
𝑅Σ 𝑠 𝑡 : 𝐶

𝜑 (𝑡)
∃𝑥 .𝜑 (𝑥)

Γ, 𝜑 (𝑥) ` 𝜓 Γ ` ∃𝑥 .𝜑 (𝑥)
𝑥 does not occur in Γ,𝜓

Γ ` 𝜓
�e last logical connective one would desire from a predicate logic is equality between
terms. For some types, such as N, for which equality between terms is decidable, we can
combine the observations we have made until now to simply de�ne a recursive predicate
eqN : N→ N→ Ty describing equality on the basis of the types 0 and 1:

eqN 𝑍 𝑍 = 1 eqN(𝑆 𝑛) 𝑍 = 0 eqN (𝑆 𝑛) (𝑆𝑚) = eqN 𝑛𝑚

However, one sometimes may also want to reason about undecidable equalities, such as
those between functions N → N. �is motivates the de�nition of identity types: For
every 𝐴 : Ty and 𝑎, 𝑏 : 𝐴 we de�ne Id𝐴 (𝑎, 𝑏) which has a member if 𝑎 = 𝑏 : 𝐴.
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re� : Id𝐴 (𝑎, 𝑎)

𝑠 : 𝐴[𝑎/𝑥] 𝑡 : Id𝐴 (𝑎, 𝑏)
𝑅Id 𝑠 𝑡 : 𝐴[𝑏/𝑥]

𝑠 = 𝑠

𝜑 (𝑠) 𝑠 = 𝑡

𝜑 (𝑡)

�e rules for Id𝐴 (𝑎, 𝑏) may require a bit more elaboration. First, note that the �rst rule
could be restated equivalently as

𝑎 = 𝑏 : 𝐴
re� : Id𝐴 (𝑎, 𝑏)

because terms with 𝑎 = 𝑏 : 𝐴 are treated as indistinguishable on the meta-level. Second,
observe that the second rule is a powerful rewriting rule which, for example, allows us
to prove that Id𝐴 (𝑎, 𝑏) is an equivalence relation. To illustrate, the proof for symmetry is
given below

𝐴 : Ty, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑡 : Id𝐴 (𝑎, 𝑏) ` re� : Id𝐴 (𝑥, 𝑎) [𝑎/𝑥]
𝐴 : Ty, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑡 : Id𝐴 (𝑎, 𝑏) ` 𝑡 : Id𝐴 (𝑎, 𝑏)

𝐴 : Ty, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑡 : Id𝐴 (𝑎, 𝑏) ` 𝑅Id re� 𝑡 : Id𝐴 (𝑥, 𝑎) [𝑏/𝑥]
𝜆𝐴.𝜆𝑎.𝜆𝑏.𝜆𝑡 .𝑅Id re� 𝑡 : Π𝐴 : Ty.Π𝑎 : 𝐴.Π𝑏 : 𝐴. Id𝐴 (𝑎, 𝑏) → Id𝐴 (𝑏, 𝑎)

At this point, wemay observe that based onwhat we have laid out, we are able to state a lot
of properties but still cannot prove anything beyond tautologies of (higher-order) predicate
logic. For example, recalling our recursive de�nition of eqN : N→ N→ Ty we cannot yet
prove that eqN is re�exive (Π𝑛 : N.eqN 𝑛 𝑛). Indeed, as eqN is recursively de�ned, we could
reasonably expect to need an inductive argument to prove non-trivial facts about it. Recall
the recursor 𝑅N : 𝐴(𝑍 ) → (Π𝑛 : N.𝐴(𝑛) → 𝐴(𝑆 𝑛)) → Π𝑛 : N.𝐴(𝑛), when interpreting
𝐴(𝑥) : Ty with parameter 𝑥 : N as a predicate, this is exactly the induction scheme forN!
Indeed, in type theory, induction can be simply regarded as recursive proof construction.
�at means we can prove the re�exivity of eqN via

𝑝 𝑍 = 𝐼 : eqN 𝑍 𝑍 𝑝 (𝑆 𝑛) = 𝑝 𝑛 : eqN (𝑆 𝑛) (𝑆 𝑛)

note that while this proof looks somewhat trivial, the proof’s heavy li�ing is done by the
computational equations eqN 𝑍 𝑍 = 1 : Ty and eqN (𝑆 𝑛) (𝑆 𝑛) = eqN 𝑛 𝑛 : Ty which are
needed to derive the proof’s type.

Observe also the curios duality of the relationships between induction and recursion in
type theory and set theory: In set theory, induction is provided axiomatically, via the
axiom of in�nity or the set induction principle, and the existence of recursively de�ned
functions is justi�ed by an inductive proof. In type theory, types come equipped with
recursors that allow for the de�nition of recursive functions and induction can then be
conceived of as recursive proof construction.
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Foundations of mathematics usually consist of a collection of axioms describing basic
mathematical objects, like sets or natural numbers, and a logic used to reason about said
objects via the axioms. In this section, we have observed that for powerful enough type
theories, this distinction collapses, as typed terms do not only represent computations on
syntactic objects but may equally represent proofs about said computations. �is obser-
vation is summarized by the table below:

Logic Type theory
Propositions Types
Predicates Dependent Types
Proofs Members of Types

Induction Recursion
> 1
⊥ 0

𝜑 ∧𝜓 𝐴 × 𝐵
𝜑 ∨𝜓 𝐴 + 𝐵
𝜑 → 𝜓 𝐴→ 𝐵

∀𝑥 .𝜑 (𝑥) Π𝑥 : 𝐴.𝐵(𝑥)
∃𝑥 .𝜑 (𝑥) Σ𝑥 : 𝐴.𝐵(𝑥)
𝑠 = 𝑡 Id𝐴 (𝑎, 𝑏)

Another way of making sense of the Curry-Howard correspondence is as an instance
of the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic [23]. It,
too, yields a computational interpretation of logic, although on a slightly more general
level. �e BHK-interpretation identi�es each atomic proposition with a collection of its
proofs. Proofs of implications are computable proof-transformations, mapping proofs for
the premise to proofs of the consequence. �e other connectives are interpreted analo-
gously to the Curry-Howard correspondence as well, such as proofs of conjunctions being
pairs of proofs. Overall, this means that the internal logic of a type-theoretic foundation
as we have laid it out here is constructive as well.

We remark that the Curry-Howard correspondence should not be understood as the hand-
ful of correspondences between dependent types and predicate logic we demonstrate in
this section, but rather as their underlying pa�ern: Constructs and properties can o�en be
found in and moved between logic and type theory, o�en yielding interesting or useful re-
sults. For example, linear logic [12] inspired linear types [10] which have proven valuable
for characterizing resource management in programming languages. Conversely, Homo-
topy Type �eory has given rise to the family of univalent foundations of mathematics
[25]. Surprisingly, the correspondence is not restricted to intuitionistic logics, as type
theories corresponding to classical logic have been found [19]. O�en, problems of two
corresponding systems, such as cut-elimination in logics and term-normalization in type
theories, can be found to be in correspondence as well.
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2.3 Formalizing Dependent Type Theory
In this section, we spell out the formal details of the speci�c dependent type theory we
use in the rest of this report. It takes the form of a derivation system for two kinds of
judgments: Γ ` 𝑠 : 𝑇 (under context Γ the term 𝑠 is of type 𝑇 ) and Γ ` 𝑠 = 𝑡 : 𝑇 (under
context Γ the 𝑇 -terms 𝑠 and 𝑡 are equal). Here, contexts are lists of variable-type pairs
𝑥0 : 𝐴0, 𝑥1 : 𝐴1, ..., 𝑥𝑛 : 𝐴𝑛 where 𝑥0 : 𝐴0, ..., 𝑥𝑖−1 : 𝐴𝑖−1 ` 𝐴𝑖 : Ty for 0 ≤ 𝑖 ≤ 𝑛.

We begin by giving the rules for equality in the system. We write [𝑠/𝑥] or [𝐴/𝑥] to denote
the operation replacing all free occurrences of the variable 𝑥 with the term 𝑠 or type 𝐴,
respectively.

Γ ` 𝑠 : 𝑇
Γ ` 𝑠 = 𝑠 : 𝑇

Γ ` 𝑠 = 𝑡 : 𝑇 Γ [𝑠/𝑥] ` 𝑎[𝑠/𝑥] = 𝑏 [𝑠/𝑥] : 𝐴[𝑠/𝑥]
Γ [𝑡/𝑥] ` 𝑎[𝑡/𝑥] = 𝑏 [𝑡/𝑥] : 𝐴[𝑡/𝑥]

Γ ` 𝑠 = 𝑡 : 𝑇 Γ [𝑠/𝑥] ` 𝑎[𝑠/𝑥] : 𝐴[𝑠/𝑥]
Γ [𝑡/𝑥] ` 𝑎[𝑡/𝑥] : 𝐴[𝑡/𝑥]

Note that the symmetry and transitivity of 𝑠 = 𝑡 follows from second rule.

For an example of the rules associated with a type, consider those for dependent products
Π𝑥 : 𝐴.𝐵:

Γ ` 𝐴 : Ty Γ, 𝑥 : 𝐴 ` 𝐵 : Ty
Γ ` (Π𝑥 : 𝐴.𝐵) : Ty

Γ ` 𝐴 : Ty Γ, 𝑥 : 𝐴 ` 𝐵 : Ty
Γ ` 𝐶 : Ty Γ, 𝑥 : 𝐶 ` 𝐷 : Ty

Γ ` 𝐴 = 𝐶 : Ty Γ, 𝑥 : 𝐴 ` 𝐵 = 𝐷 : Ty
Γ ` (Π𝑥 : 𝐴.𝐵) = (Π𝑥 : 𝐶.𝐷) : Ty

Γ ` (Π𝑥 : 𝐴.𝐵) : Ty Γ, 𝑥 : 𝐴 ` 𝑡 : 𝐵
Γ ` 𝜆𝑥.𝑠 : (Π𝑥 : 𝐴.𝐵)

Γ ` (Π𝑥 : 𝐴.𝐵) : Ty Γ ` 𝑠 : (Π𝑥 : 𝐴.𝐵) Γ ` 𝑡 : 𝐴
Γ ` 𝑠 𝑡 : 𝐵 [𝑡/𝑥]

Γ, 𝑥 : 𝐴 ` 𝑠 = 𝑡 : 𝐵
Γ ` 𝜆𝑥 .𝑠 = 𝜆𝑥.𝑡 : (Π𝑥 : 𝐴.𝐵)

Γ ` 𝑠 = 𝑠 ′ : (Π𝑥 : 𝐴.𝐵) Γ ` 𝑡 = 𝑡 ′ : 𝐴
Γ ` 𝑠 𝑡 = 𝑠 ′ 𝑡 ′ : 𝐵 [𝑡/𝑥]

Γ ` 𝜆𝑥.𝑠 : (Π𝑥 : 𝐴.𝐵) Γ ` 𝑡 : 𝐴
Γ ` 𝑠 𝑡 = 𝑠 [𝑡/𝑥] : 𝐵 [𝑡/𝑥]

Γ ` 𝑠 : (Π𝑥 : 𝐴.𝐵) 𝑥 ∉ 𝐹𝑉 (𝑠)
Γ ` 𝜆𝑥.𝑠 𝑥 = 𝑠 : (Π𝑥 : 𝐴.𝐵)

�e �rst two rules state what well-formed dependent product types are and when they are
equal. �e next two rules give types for terms involving dependent products, namely ab-
straction and application. �e two rules a�er that give structural equalities for abstraction
and application. �e last two rules give the computational 𝛽-equality and 𝜂-equality rules
for dependent products.
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�e above example aptly demonstrates that explicitly spelling out all formal details in-
volves writing down a lot of derivation rules, to the point where the central ideas are
obscured. We thus take two measures to �nd a balance between formal correctness and
readability of this chapter: Firstly, we from now on omit the structural and 𝜂-equality rules
as they all follow a simple pa�ern and we never make explicit use of them in the remainder
of this report. Secondly, we omit the Γ and only indicate additions to the Γ in the recursive
cases. With these conventions, the rules for Π𝑥 : 𝐴.𝐵 are follows.

𝐴 : Ty 𝑥 : 𝐴 ` 𝐵 : Ty
(Π𝑥 : 𝐴.𝐵) : Ty

(Π𝑥 : 𝐴.𝐵) : Ty 𝑥 : 𝐴 ` 𝑡 : 𝐵
𝜆𝑥.𝑠 : (Π𝑥 : 𝐴.𝐵)

(Π𝑥 : 𝐴.𝐵) : Ty 𝑠 : (Π𝑥 : 𝐴.𝐵) 𝑡 : 𝐴
𝑠 𝑡 : 𝐵 [𝑡/𝑥]

𝜆𝑥.𝑠 : (Π𝑥 : 𝐴.𝐵) 𝑡 : 𝐴
𝑠 𝑡 = 𝑠 [𝑡/𝑥] : 𝐵 [𝑡/𝑥]

When de�ning a formal system, it is o�en useful to have as li�le redundancy in its rules
and axioms as possible as this eases the study of its meta-theory. In the same vein, we
omit redundant rules. For example, function types𝐴→ 𝐵 can be viewed as an instance of
Π𝑥 : 𝐴.𝐵 in which 𝐵 does not refer to 𝑥 : 𝐴. Indeed, if 𝐵 is constant and we write 𝐴 → 𝐵

for Π𝑥 : 𝐴.𝐵, the rules above become as below, which are precisely the rules we would
have given for 𝐴→ 𝐵. We thus omit explicit rules for 𝐴→ 𝐵 from the system.

𝐴 : Ty 𝐵 : Ty
𝐴→ 𝐵 : Ty

𝐴→ 𝐵 : Ty 𝑥 : 𝐴 ` 𝑡 : 𝐵
𝜆𝑥.𝑠 : 𝐴→ 𝐵

𝐴→ 𝐵 : Ty 𝑠 : 𝐴→ 𝐵 𝑡 : 𝐴
𝑠 𝑡 : 𝐵

𝜆𝑥.𝑠 : 𝐴→ 𝐵 𝑡 : 𝐴
𝑠 𝑡 = 𝑠 [𝑡/𝑥] : 𝐵

Next, we add the rules for dependent sums Σ𝑥 : 𝐴.𝐵 to the system.

𝐴 : Ty 𝑥 : 𝐴 ` 𝐵 : Ty
(Σ𝑥 : 𝐴.𝐵) : Ty

(Σ𝑥 : 𝐴.𝐵) : Ty 𝑎 : 𝐴 𝑎 : 𝐴 ` 𝑏 : 𝐵
(𝑎, 𝑏) : (Σ𝑥 : 𝐴.𝐵)

𝑠 : (Σ𝑥 : 𝐴.𝐵)
𝜋1 𝑠 : 𝐴

𝑠 : (Σ𝑥 : 𝐴.𝐵)
𝜋2 𝑠 : 𝐵 [(𝜋1 𝑠)/𝑥]

(Σ𝑥 : 𝐴.𝐵) : Ty 𝑎 : 𝐴 𝑎 : 𝐴 ` 𝑏 : 𝐵
𝜋1(𝑎, 𝑏) = 𝑎 : 𝐴

(Σ𝑥 : 𝐴.𝐵) : Ty 𝑎 : 𝐴 𝑎 : 𝐴 ` 𝑏 : 𝐵
𝜋2(𝑎, 𝑏) = 𝑏 : 𝐵 [𝑎/𝑥]

Again, we note that the type 𝐴 × 𝐵 can be de�ned as Σ𝑥 : 𝐴.𝐵 and we thus do not give
explicit rules for 𝐴 × 𝐵.

Furthermore, we need to add the �nite types 0 and 1, binary sums 𝐴 + 𝐵 and the natural
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numbers N.

0 : Ty
𝑡 : 0 𝐴 : Ty

𝑅0 𝑡 : 𝐴 1 : Ty 𝐼 : 1

𝑥 : 1 ` 𝐴 : Ty 𝑠 : Π𝑥 : 𝐼 .𝐴 𝑡 : 1
𝑅1 𝑠 𝑡 : 𝐴[𝑠/𝑥]

𝑅1 𝑠 𝐼 : 𝐴[𝐼/𝑥]
𝑅1 𝑠 𝐼 = 𝑠 𝐼 : 𝐴[𝐼/𝑥]

𝐴 : Ty 𝐵 : Ty
𝐴 + 𝐵 : Ty

𝐴 + 𝐵 : Ty 𝑎 : 𝐴
𝐿 𝑎 : 𝐴 + 𝐵

𝐴 + 𝐵 : Ty 𝑏 : 𝐵
𝑅 𝑏 : 𝐴 + 𝐵

𝑥 : 𝐴 + 𝐵 ` 𝐶 : Ty 𝑠𝑙 : Π𝑦 : 𝐴.𝐶 [𝐿𝑦/𝑥] 𝑠𝑟 : Π𝑦 : 𝐵.𝐶 [𝑅𝑦/𝑥] 𝑡 : 𝐴 + 𝐵
𝑅+ 𝑠𝑙 𝑠𝑟 𝑡 : 𝐶 [𝑡/𝑥]

𝑅+ 𝑠𝑙 𝑠𝑟 (𝐿 𝑎) : 𝐶 [𝐿 𝑎/𝑥]
𝑅+ 𝑠𝑙 𝑠𝑟 (𝐿 𝑎) = 𝑠𝑙 𝑎 : 𝐶 [𝐿 𝑎/𝑥]

𝑅+ 𝑠𝑙 𝑠𝑟 (𝑅 𝑏) : 𝐶 [𝑅 𝑏/𝑥]
𝑅+ 𝑠𝑙 𝑠𝑟 (𝑅 𝑏) = 𝑠𝑟 𝑏 : 𝐶 [𝑅 𝑏/𝑥] N : Ty

𝑍 : N
𝑛 : N
𝑆 𝑛 : N

𝑥 : N ` 𝐴 : Ty 𝑠 : 𝐴[𝑍/𝑥] 𝑡 : Π𝑥 : N.Π𝑦 : 𝐴. 𝐴[𝑆 𝑥/𝑥] 𝑛 : N
𝑅N 𝑠 𝑡 𝑛 : 𝐴[𝑛/𝑥]

𝑅N 𝑠 𝑡 𝑍 : 𝐴[𝑍/𝑥]
𝑅N 𝑠 𝑡 𝑍 = 𝑠 : 𝐴[𝑍/𝑥]

𝑅N 𝑠 𝑡 (𝑆 𝑛) : 𝐴[𝑆 𝑛/𝑥]
𝑅N 𝑠 𝑡 (𝑆 𝑛) = 𝑡 𝑛 (𝑅N 𝑠 𝑡 𝑛) : 𝐴[𝑆 𝑛/𝑥]

�e type B := 1 + 1 of boolean truth values is sometimes of interest. We take true := 𝐿 𝐼 ,
false := 𝑅 𝐼 and 𝑅B := 𝜆𝑥.𝜆𝑦.𝜆𝑏.𝑅+ (𝜆 .𝑥) (𝜆 .𝑦) 𝑏. Note that the notation 𝜆 .𝑠 should be
read as 𝜆𝑥 .𝑠 for some 𝑥 ∉ 𝐹𝑉 (𝑠). It simply stresses that the argument is ignored.

�e identity types Id𝐴 are the last kind of type we have introduced in the previous sections.
�ere are a few slightly di�erent but essentially equivalent ways of axiomatizing them. We
stick to the variant used by Aczel in [2].

𝐴 : Ty 𝑎 : 𝐴 𝑏 : 𝐴
Id𝐴 (𝑎, 𝑏) : Ty

Id𝐴 (𝑎, 𝑏) : Ty 𝑎 = 𝑏 : 𝐴
re� : Id𝐴 (𝑎, 𝑏)

Id𝐴 (𝑎, 𝑏) : Ty 𝑥 : 𝐴 ` 𝐵 : Ty
𝑠 : 𝐵 [𝑎/𝑥] 𝑡 : Id𝐴 (𝑎, 𝑏)

𝑅Id 𝑠 𝑡 : 𝐵 [𝑏/𝑥]
𝑅Id 𝑠 re� : 𝐵 [𝑏/𝑥]

𝑅Id 𝑠 re� = 𝑠 : 𝐵 [𝑏/𝑥]

�e system also includes two kinds of types not discussed in the previous two sections.
�e �rst one is a universe of small types 𝑈 . In dependent type theory, a universe is a
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type whose members are types as well. Careful readers may have noticed that with the
rules given above, types of the form 𝐴 → Ty which we used in Section 2.1 are not valid
anymore. �is is the case as Ty is no a member of itself. In Proposition 11, we show that
Ty : Ty would in fact lead to an inconsistency of the system. To alleviate this, we introduce
a new type𝑈 of “small types” which contains many types we use (see the rules below) and
the existence of which is consistent.

𝑈 : Ty 0 : 𝑈 1 : 𝑈 N : 𝑈
𝐴 : 𝑈 𝑥 : 𝐴 ` 𝐵 : 𝑈
(Π𝑥 : 𝐴.𝐵) : 𝑈

𝐴 : 𝑈 𝑥 : 𝐴 ` 𝐵 : 𝑈
(Σ𝑥 : 𝐴.𝐵) : 𝑈

𝐴 : 𝑈 𝐵 : 𝑈
𝐴 + 𝐵 : 𝑈

𝐴 : 𝑈 𝑎 : 𝐴 𝑏 : 𝐴
Id𝐴 (𝑎, 𝑏) : 𝑈

𝐴 : 𝑈
𝐴 : Ty

�e last rule states that Ty subsumes 𝑈 , meaning it su�ces to provide a member of 𝑈 to
provide a member of Ty. �is means that we can recover most functions of type 𝐴 → Ty
from Section 2.1 as functions of type 𝐴→ 𝑈 . For example, vectors can now be vec : 𝑈 →
N→ 𝑈 .

�e second new kind of type we add are well-founded trees, called𝑊 -types. 𝑊 -types
can be considered a generalization of recursive types, such as N. �ey also play an impor-
tant role in the construction of the “type of sets” that is the base of Aczel’s interpretation.

𝐴 : Ty 𝑥 : 𝐴 ` 𝐵 : Ty
𝑊 (𝑥 : 𝐴)𝐵 : Ty

𝐴 : 𝑈 𝑥 : 𝐴 ` 𝐵 : 𝑈
𝑊 (𝑥 : 𝐴)𝐵 : 𝑈

𝑊 (𝑥 : 𝐴)𝐵 : Ty 𝑎 : 𝐴
𝑓 : 𝐵 [𝑎/𝑥] →𝑊 (𝑥 : 𝐴)𝐵
sup(𝑎, 𝑓 ) :𝑊 (𝑥 : 𝐴)𝐵

𝑡 :𝑊 (𝑥 : 𝐴)𝐵 𝑦 :𝑊 (𝑥 : 𝐴)𝐵 ` 𝐶 : Ty
𝑠 : Π𝑎 : 𝐴.Π𝑓 : (𝐵 [𝑎/𝑥] →𝑊 (𝑥 : 𝐴)𝐵).Π𝑔 : (Π𝑏 : 𝐵 [𝑎/𝑥] .𝐶 [𝑓 𝑏/𝑦]) .𝐶 [sup(𝑎, 𝑓 )/𝑦]

𝑅𝑊 𝑠 𝑡 : 𝐶 [𝑡/𝑦]

𝑅𝑊 𝑠 sup(𝑎, 𝑓 ) : 𝐶 [sup(𝑎, 𝑓 )/𝑥]
𝑅𝑊 𝑠 sup(𝑎, 𝑓 ) = 𝑠 𝑎 𝑓 (𝜆𝑏.𝑅𝑊 𝑠 (𝑓 𝑏)) : 𝐶 [sup(𝑎, 𝑓 )/𝑥]

We de�ne Ix : 𝑊 (𝑥 : 𝐴)𝐵 → 𝐴 and 𝜉 : Π𝑤 : 𝑊 (𝑥 : 𝐴)𝐵. Ix(𝑤) → 𝑊 (𝑥 : 𝐴)𝐵 via
Ix := 𝑅𝑊 (𝜆𝑎.𝜆𝑓 .𝜆𝑔.𝑎) and 𝜉 := 𝑅𝑊 (𝜆𝑎.𝜆𝑓 .𝜆𝑔.𝑓 ) which project out the �rst and second
component of sup(𝑎, 𝑓 ) respectively.

Intuitively,𝑊 -types should be thought of as labeled trees. Each sup(𝑎, 𝑓 ) can be seen as a
node, 𝑎 being the node’s label and the image of 𝑓 being the node’s successors. For example,
given some 𝐴 : Ty, the 𝐴-labeled binary trees is 𝑇 (𝐴) := 𝑊 (𝐴 + 1) (𝑅+ (𝜆 .B) (𝜆 .0)) for
which we de�ne the constructors leaf : 𝑇 (𝐴) and node : 𝐴 → 𝑇 (𝐴) → 𝑇 (𝐴) → 𝑇 (𝐴)
given below. An inner node is labeled by 𝐿 𝑎 for an “actual label” 𝑎 : 𝐴, its successor
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function thenmapping the two-member typeB to its two successors. A leaf node is labeled
with 𝑅 𝐼 , its successor function being of type 0→ 𝑇 (𝐴), meaning it has no successors.

node := 𝜆𝑎𝜆𝑙𝜆𝑟 . sup(𝐿 𝑎, 𝑅B 𝑙 𝑟 ) leaf := sup(𝑅 𝐼, 𝜆𝑓 . 𝑅0 𝑓 )

As previously stated,𝑊 -types generalize many recursive types, such as N, as they, too,
can be made sense of as labeled trees. For example, N can be thought of as the type of
trees of breadth at most 1 and thus be de�ned via the type 𝑁 :=𝑊 (𝑥 : B) (𝑅B 0 1𝑥) with

𝑍 := sup(true, 𝜆𝑓 . 𝑅0 𝑓 ) 𝑆 := 𝜆𝑛. sup(false, 𝜆 . 𝑛)

However, we cannot actually prove that these constructions are truly unique as our system
lacks the principle of functional extensionality: We cannot prove for 𝑓 , 𝑔 : 𝐴 → 𝐵 which
have 𝑓 𝑎 = 𝑔 𝑎 for all 𝑎 : 𝐴 that 𝑓 = 𝑔 : 𝐴 → 𝐵. �us, we cannot even prove that
sup(false, 𝜆 .𝑛) = sup(false, 𝑅1 (𝜆 .𝑛)) : 𝑁 , meaning there is no unique way of obtaining
a number’s successor. �is, in turn, means that we cannot derive a term for the recursor
𝑅𝑁 : 𝐴[𝑍/𝑥] → (Π𝑛 : 𝑁 . 𝐴[𝑛/𝑥] → 𝐴[𝑆 𝑛/𝑥]) → Π𝑛 : 𝑁 .𝐴[𝑛/𝑥] of the natural numbers
for 𝑁 , as it does not provably cover all di�erent ways of obtaining a number’s successor.
�e𝑊 -type 𝑁 above is thus only a very rough approximation of N. Indeed, to be able
to de�ne N with a properly computing recursor via𝑊 -types, a very strong, fairly exotic
variant of the principle of functional extensionality is required.

In Section 4 we de�ne an extensional notion of equality 𝑎 ≡ 𝑏 for another𝑊 -type. It is
possible to give an analogous extensional equality for 𝑁 under which the 𝑍 and 𝑆 imple-
mentations we gave above would be unique up to ≡. However, all theorems concerning
natural numbers would then also need to be weakened to only hold up to ≡. �is would
not be su�cient for working with injectively represented sets, which play an important
role in Section 6.

3 Constructive Zermelo-Fraenkel Set Theory
As CZF is a subsystem of ZF, we work in the language of set theory, i.e. the language of
�rst-order logic with the binary predicates 𝑥 ∈ 𝑦 and 𝑥 = 𝑦. �e underlying deduction
system is some incarnation of intuitionistic �rst-order logic. We call formulas of the shape
∀𝑥 .𝑥 ∈ 𝑦 → 𝜑 and ∃𝑥 .𝑥 ∈ 𝑦∧𝜑 instances of restricted quanti�cation. We call a formula
restricted if all quanti�ers occurring in it are instances of restricted quanti�cation and
shorten these as ∀𝑥 ∈ 𝑦.𝜑 and ∃𝑥 ∈ 𝑦.𝜑 , respectively. Given a binary formula 𝜑 (𝑥,𝑦) we
de�ne the shorthands −→𝜑 (𝑎, 𝑏) := ∀𝑥 ∈ 𝑎.∃𝑦 ∈ 𝑏.𝜑 (𝑥,𝑦) and←→𝜑 (𝑎, 𝑏) := −→𝜑 (𝑎, 𝑏) ∧ (∀𝑦 ∈
𝑏.∃𝑥 ∈ 𝑎.𝜑 (𝑥,𝑦)). We sometimes also write −→𝜑 (𝑎,−) := ∀𝑥 ∈ 𝑎.∃𝑦.𝜑 (𝑥,𝑦). �e axiomatiza-
tion of CZF we use in this report is given below. Note that it is fairly “weak,” for example
not using an if-and-only-if characterization of Pairing and Union, which simpli�es our
proofs in Section 4 and Section 7.
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• Equality:
(a) ∀𝑥𝑦. 𝑥 = 𝑦 ↔ ∀𝑧.(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)
(b) ∀𝑥𝑦𝑧. 𝑥 = 𝑦 → 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧
Axiom (a) is usually called the axiom of extensionality. Note that (b) is required as we
treat 𝑥 = 𝑦 not as the equality of �rst-order logic but as a binary predicate.

• Pairing: ∀𝑥𝑦∃𝑧. 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧
• Union: ∀𝑥∃𝑦.∀𝑎 ∈ 𝑥 .∀𝑏 ∈ 𝑎. 𝑎 ∈ 𝑦

Note that we can obtain the usual axioms of Pairing and Union by separating on the
sets obtained via the two variants given above.

• Restricted Separation: ∀𝑥∃𝑦∀𝑧. 𝑧 ∈ 𝑥 ∧ 𝜑 (𝑧) ↔ 𝑧 ∈ 𝑦
Here we require that 𝜑 (𝑥) be a restricted formula.

• Strong collection: ∀𝑎.−→𝜑 (𝑎,−) → ∃𝑏.←→𝜑 (𝑎, 𝑏)
If𝜑 (𝑥,𝑦) is a functional relation, this is the axiom of replacement fromZF. Note that the
di�erence between strong collection and the usual axiom of collection is the additional
backwards condition in←→𝜑 (𝑎, 𝑏).

• Subset collection: ∀𝑎𝑏∃𝑐∀𝑢.−→𝜑 (𝑎, 𝑏,𝑢) → ∃𝑑 ∈ 𝑐.←→𝜑 (𝑎, 𝑑,𝑢)
Here −→𝜑 (𝑎, 𝑏,𝑢) and←→𝜑 (𝑎, 𝑑,𝑢) are the same as for binary 𝜑 except 𝜑 may refer to 𝑢.

• In�nity: ∃𝑥 .(∀𝑦. 𝑦 ∈ 𝑥 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑥 . 𝑦 = {𝑧} ∪ 𝑧))
Here ‘𝑦 = ∅’ is a shorthand for ∀𝑧 ∈ 𝑦. ⊥ and ‘𝑦 = {𝑧}∪𝑧’ for ∀𝑎. 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ 𝑧∨𝑎 = 𝑧.

• Set induction: (∀𝑦.(∀𝑥 ∈ 𝑦.𝜑 (𝑥)) → 𝜑 (𝑦)) → ∀𝑥 .𝜑 (𝑥)
Note that this is a constructively viable replacement to the axiom of foundation.

In this report, we use classes to streamline de�nitions and proofs. A class is a collection
of sets, characterized by a �rst-order formula, that is not necessarily a set. As an example,
we o�en refer to the powerset P(𝐴) of some set 𝐴, even though CZF does not guarantee
the existence of all powersets. �us, 𝐵 ⊆ P(𝐴), for example, should not be read as an
assertion of the existence of P(𝐴) but rather as stating that 𝐵 consists of subsets of 𝐴.

CZF di�ers from regular ZF in two aspects: its intuitionistic base and its predicativity. �e
remainder of this section is concerned with analyzing how CZF embodies these these two
aspects, how they in�uence the choice of axioms for CZF and which kind of set theories
one arrives at if these choices are changed. For this, we introduce a few further axioms of
set theory which are not part of the above axiomatization of CZF.

• Restricted excluded middle (REM): 𝜑 ∨ ¬𝜑 where 𝜑 is a restricted formula.
• Law of excluded middle (LEM): 𝜑 ∨ ¬𝜑 for arbitrary formulas.
• Full Separation: ∀𝑥∃𝑦∀𝑧. 𝑧 ∈ 𝑥 ∧ 𝜑 (𝑧) ↔ 𝑧 ∈ 𝑦 where we allow any 𝜑 (𝑥)
• Foundation: ∀𝑥 .(∃𝑦 ∈ 𝑥) → ∃𝑦 ∈ 𝑥 .∀𝑧 ∈ 𝑦. 𝑧 ∉ 𝑥

Informally, this states that any non-empty set has an element with no common ele-
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ments with itself.
• Exponentiation: ∀𝑥𝑦∃𝑧∀𝑓 . 𝑓 ∈ 𝑧 ↔ (∀𝑎 ∈ 𝑥 .∃𝑏 ∈ 𝑦.(𝑎, 𝑏) ∈ 𝑓 ) ∧ (∀𝑎𝑏𝑏 ′.(𝑎, 𝑏) ∈

𝑓 → (𝑎, 𝑏 ′) ∈ 𝑓 → 𝑏 = 𝑏 ′)
More informally, this states that the set of functions 𝑥 → 𝑦 between every pair of sets
𝑥 and 𝑦 exists.

• Powerset: ∀𝑥∃𝑦∀𝑧. 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥

Note that all of these proofs will formally take place in CZF− which is CZF without the
axiom of subset collection.

At �rst blush, the intuitionistic base of CZF simply describes that the underlying logic is
intuitionistic, not classical, �rst-order logic. However, it turns out that by naı̈vely adding
certain set-theoretical axioms to CZF one can make the REM provable which would make
it not intuitionistic anymore.

For example, if one were to add the axiom of foundation to CZF, one could prove the
restricted excluded middle. �is is why the axiom of set induction is used instead to guar-
antee well-foundedness of the set-theoretic universe.

Proposition 1 (CZF−) �e axiom of foundation entails 𝜑 ∨ ¬𝜑 for restricted 𝜑

Proof Consider the set 𝐴 := {𝑥 ∈ {0, 1} | 𝑥 = 1 ∨ (𝑥 = 0 ∧ 𝜑)}. As 1 ∈ 𝐴, we know by the
axiom of foundation that there is some 𝑥 ∈ 𝐴 with no common elements with 𝐴. If 𝑥 = 0
then 𝜑 holds as 0 ∈ 𝐴. If 𝑥 = 1 then this means 0 ∉ 𝐴 and thus ¬𝜑 . We may thus conclude
that 𝜑 ∨ ¬𝜑 overall. �

Curiously, knowing that 2 = P(1) is also equivalent to the REM.

Proposition 2 (CZF−) �e restricted excludedmiddle is equivalent toP({∅}) = {∅, {∅}}.

Proof �e←-direction follows from the proof of Proposition 8. For any restricted 𝜑 con-
sider 𝐼 := {𝑥 ∈ {∅} | 𝜑} which exists by bounded separation. As 𝐼 ⊆ {∅} we know
𝐼 ∈ {∅, {∅}} and thus ∅ ∈ 𝐼 ∨ ∅ ∉ 𝐼 , yielding 𝜑 ∨ ¬𝜑 because clearly ∅ ∈ 𝐼 ↔ 𝜑 . �

In Section 6.1 we show in Proposition 26 that similarly, the axiom of choice entails the
REM in CZF. Note also that under full separation, all of these proofs can be extended to
show the full LEM.

Proposition 3 (CZF−) Under full separation, REM entails LEM.

Proof We know by Proposition 2 that REM entails P(1) = 2. Under full separation, we
may obtain 𝐼 := {𝑥 ∈ {∅} | 𝜑} for arbitrary 𝜑 and then carry out the same argument as in
Proposition 2. �
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Note that in [20] it is shown that indeed CZF 0 REM.

�e second di�erence between CZF and ZF is its predicativity. �e notion of
(im)predicativity can be viewed as a response to Russel’s paradox. A de�nition is deemed
to be impredicative if it refers to a totality of objects, including the one being de�ned.
�is is captured by Russel’s vicious circle principle: “Whatever contains an apparent
variable must not be a possible value of that variable”[24]. �is motivates two axiomatic
di�erences between CZF and ZF: the restriction of separation and the substitution of the
axiom of subset collection instead of the powerset axiom. �e reason for the restriction of
separation is quite apparent: A set obtained via unrestricted separation is de�ned in terms
of all sets, including itself, making its de�nition impredicative. �e case of the powerset
axiom is more subtle. Even with restricted separation, one may use it to make de�nitions
such as 𝐴 := {𝑥 ∈ 𝐵 | ∀𝐶 ∈ P(𝐵) .𝜑 (𝑥,𝐶)} where 𝜑 (𝑥,𝐶) is a restricted formula. But then,
𝐴 is de�ned in terms of P(𝐵), a totality of objects (subsets of 𝐵), including itself. To allevi-
ate this, constructive set theories replace powerset with weaker axioms, such as Myhill’s
exponentiation axiom [18] or the subset collection axiom of CZF.

We examine the relationship of the three axioms that, given some sets, allow for the gener-
ation of “bigger sets”: Exponentiation, subset collection and the powerset axiom. For this,
it will be useful to �rst give a di�erent characterization of the axiom of subset collection.
For 𝑅 ⊆ 𝐴 × 𝐵 we write 𝑅 : 𝐴 n 𝐵 when ∀𝑎 ∈ 𝐴.∃𝑏 ∈ 𝐵.(𝑎, 𝑏) ∈ 𝑅 and further write
𝑅 : 𝐴 ⊲⊳ 𝐵 when additionally ∀𝑏 ∈ 𝐵.∃𝑎 ∈ 𝐴.(𝑎, 𝑏) ∈ 𝑅. We call𝐶 ⊆ P(𝐵) 𝐴-full if for any
𝑅 : 𝐴 n 𝐵 there is a 𝐷 ∈ 𝐶 with 𝑅 : 𝐴 ⊲⊳ 𝐷 .

Proposition 4 (CZF−) Subset collection is equivalent to ∀𝐴𝐵.∃𝐶 ⊆ P(𝐵) . 𝐶 is 𝐴-full.

Proof For the →-direction, observe that when taking 𝜑 (𝑥,𝑦,𝑢) := (𝑥,𝑦) ∈ 𝑢, subset
collection is ∀𝐴𝐵.∃𝐶.∀𝑅. 𝑅 : 𝐴 n 𝐵 → ∃𝐷 ∈ 𝐶.𝑅 : 𝐴 ⊲⊳ 𝐷 . One can then obtain a 𝐷 ′ ⊆ 𝐷

with 𝐷 ′ ⊆ P(𝐵) via restricted separation.

Now suppose 𝐶 was 𝐴-full. Now any set 𝑈 and formula 𝜑 (𝑥,𝑦,𝑈 ) for which we know
∀𝑎 ∈ 𝐴.∃𝑏 ∈ 𝐵.𝜑 (𝑥,𝑦,𝑈 ) allow us to obtain a relation 𝑅 ⊆ 𝐴 × 𝐵 by applying strong
replacement on 𝐴 with 𝜓 (𝑥, 𝑟 ) := ∃𝑦 ∈ 𝐵. 𝜑 (𝑥,𝑦,𝑈 ) ∧ 𝑟 = (𝑥,𝑦). Clearly, 𝑅 : 𝐴 n 𝐵

meaning there is a 𝐷 ∈ 𝐶 with 𝑅 : 𝐴 ⊲⊳ 𝐷 . But as ∀𝑥𝑦.(𝑥,𝑦) ∈ 𝑅 → 𝜑 (𝑥,𝑦,𝑢) that means
←→𝜑 (𝐴, 𝐷,𝑈 ) as desired. �

We can now prove that the powerset entails subset collection, which in turn entails expo-
nentiation, thus ordering these principles by their “strength”.

Corollary 5 (CZF−) Powerset entails subset collection.

Proof �is follows from the observation that P(𝐵) is 𝐴-full for any 𝐴. �

Proposition 6 (CZF−) Subset collection entails exponentiation.
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Proof Let 𝐶 ⊆ P(𝐴 × 𝐵) be 𝐴-full. We show 𝐴 → 𝐵 ⊆ 𝐶 meaning we can obtain
𝐴→ 𝐵 via restricted separation. Pick some 𝑓 : 𝐴→ 𝐵 then we can obtain via replacement
𝑓 ′ : 𝐴 → 𝐴 × 𝐵 with 𝑓 ′(𝑎) = (𝑎, 𝑓 (𝑏)). As 𝑓 is a function, 𝑓 ′ : 𝐴 n 𝐴 × 𝐵 meaning there
is some 𝐷 ∈ 𝐶 with 𝑓 ′ : 𝐴 ⊲⊳ 𝐴 × 𝐵. Now simply observe that (𝑎, 𝑏) ∈ 𝐷 i� 𝑏 = 𝑓 (𝑎) and
thus 𝐷 = 𝑓 . �

Interestingly, this hierarchy collapses under the REM. �is sort of phenomenon, in which
principles are classically equivalent but behave di�erently in an intuitionistic se�ing, can
also be observed for set-induction and foundation.

Proposition 7 (CZF−) Powerset is equivalent to exponentiation and P({∅}) being a set.

Proof �e →-direction is clear. For the other direction, let 2 be the powerset of {∅}.
Now consider 𝑃 := {{𝑎 ∈ 𝐴 | ∅ ∈ 𝑓 (𝑎)} | 𝑓 : 𝐴 → 2} which exists by replacement
and restricted separation. It is clear that 𝑃 ⊆ P(𝐴). Now for any 𝐵 ⊆ 𝐴 we de�ne
𝑓 (𝑎) = {𝑥 ∈ {∅} | 𝑎 ∈ 𝐵} via replacement and restricted separation. As 𝑓 : 𝐴 → 2 with
𝐵 = {𝑎 ∈ 𝐴 | ∅ ∈ 𝑓 (𝑎)} thus 𝐵 ∈ 𝑃 , meaning P(𝐴) ⊆ 𝑃 overall. �

Proposition 8 (CZF−) Under the restricted excludedmiddle, exponentiation entails pow-
erset.

Proof By Proposition 7 it su�ces to show that {∅} has a powerset. We can obtain 𝑃 :=
{∅, {∅}} by pairing and restricted separation. It is clear that 𝑃 ⊆ P({∅}). For P({∅}) ⊆ 𝑃 ,
pick some 𝐴 ⊆ {∅}, then ∅ ∈ 𝐴 or ∅ ∉ 𝐴 by REM which means 𝐴 = {∅} or 𝐴 = ∅ and thus
𝐴 ∈ 𝑃 in either case. �

Observe that Proposition 2 demonstrates why the proof of Proposition 7 would not work
by simply taking 2 := {∅, {∅}}. Without REM, we can only prove that 𝑓 (𝑎) = {𝑥 ∈ {∅} | 𝑎 ∈
𝐵} ⊆ {∅} and thus need to assume that 2 = P({∅}) to deduce that 𝑓 : 𝐴→ 2.

�is means the relationship between CZF and ZF can be spelled out as follows. Note
especially, that (ii) states exactly that the intuitionistic base and predicativity are the only
di�erences between CZF and ZF.

�eorem 9 �e following axiomatic systems are equivalent:

(i) CZF over full classical logic
(ii) CZF with restricted excluded middle and full seperation
(iii) ZF

Proof �e equivalence of (i) and (ii) follows from Propositions 2 and 3. It is also clear that
(iii) subsumes (i). For (i) to (iii), observer that under the LEM, full separation is obtained
via Propositions 2 and 3, the existence of powersets follows from Proposition 8 and set
induction is classically equivalent to the axiom of foundation. �
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4 Interpreting CZF
Aczel [1] gives an interpretation of CZF into the type theory from Section 2.3. It consists
of a type𝑉 : Ty of sets and binary predicates ≡ : 𝑉 → 𝑉 → 𝑈 and ∈ : 𝑉 → 𝑉 → 𝑈 which
capture the notions of = and ∈ from CZF as small types. Using the ideas from Section 2.2
we can use these to translate set-theoretic formulas 𝜑 into types |𝜑 | : Ty. We have demon-
strated in Section 2.2 that our type theory corresponds to intuitionistic predicate logic. It
thus su�ces to show that each axiom 𝜑 of CZF is satis�ed by the interpretation to show
the interpretation correct overall. By the propositions-as-types interpretation, this can be
achieved by �nding terms 𝑝 : |𝜑 | for each axiom 𝜑 .

�e type 𝑉 : Ty of sets is de�ned as a𝑊 -type via 𝑉 := 𝑊 (𝐴 : 𝑈 )𝐴. �at means each
𝑣 : 𝑉 is of the form sup(𝐴, 𝑓 ) where 𝐴 : 𝑈 and 𝑓 : 𝐴 → 𝑉 . �e idea behind this type is
that, in the presence of set-induction, each set can be thought of as a well-founded tree,
with its elements as its direct successors. Taking the tree’s branching to be on arbitrary
𝐴 : 𝑈 yields “su�cient freedom” to express all constructions of CZF. For example, that the
empty set is represented by sup(0, 𝜆𝑓 .𝑅0 𝑓 ) as the image of 𝜆𝑓 .𝑅0 𝑓 is empty. Given two sets
𝑣 := sup(𝐴, 𝑓 ) and𝑢 := sup(𝐵,𝑔) we can obtain their union as 𝑣∪𝑢 := sup(𝐴+𝐵, 𝜆𝑠.𝑅+ 𝑓 𝑔 𝑠)
as clearly anything in the image of 𝜆𝑠.𝑅+ 𝑓 𝑔 𝑠 stems from either the image of 𝑓 or the image
of 𝑔.

To improve readability, we use di�erent notation for members of 𝑉 compared to general
𝑊 -types. Instead of sup(𝐴, 𝑓 ) we adopt Aczel’s notation and write {𝑓 𝑎 | 𝑎 : 𝐴}. If 𝑓 is a
𝜆-expression, we omit the 𝜆 to be closer to the set comprehension notation of set theory.
For example, we now write ∅ as {𝑅0 𝑓 | 𝑓 : 0}. Note that 𝑓 : 0 on the right-hand side
indicates that this is a𝑉 -construction in type theory instead of a plain set construction in
CZF. To further avoid confusion, we denote all members of 𝑉 by lowercase Greek le�ers.
As this makes the element projection 𝜉 : Π𝛼 : 𝑉 . Ix(𝛼) → 𝑉 hard to distinguish from
members of 𝑉 , we denote it by 𝜋𝑉 instead.

Recall the remark about proving equalities between members of𝑊 -types in Section 2.3.
Similarly, taking 𝛼 ≡ 𝛽 := Id𝑉 (𝛼, 𝛽) will not do as we would, for example, not be able to
prove that {𝛾 | 𝑖 : 1} ≡ {𝑅1 𝛾 𝑖 | 𝑖 : 1} because our system lacks functional extensionality.
Instead we de�ne 𝛼 ≡ 𝛽 per recursion on its �rst argument as below

{𝑓 𝑎 | 𝑎 : 𝐴} ≡ {𝑔𝑏 | 𝑏 : 𝐵} := (Π𝑎 : 𝐴.Σ𝑏 : 𝐵. 𝑓 𝑎 ≡ 𝑔𝑏) × (Π𝑏 : 𝐵.Σ𝑎 : 𝐴. 𝑓 𝑎 ≡ 𝑔𝑏)

It is easy to see that with this equivalence we can prove {𝑢 | 𝑖 : 1} ≡ {𝑅1𝑢 𝑖 | 𝑖 : 1}. At this
point, we note that 𝑢 ≡ 𝑣 forms an equivalence relation. We then de�ne membership in
terms of 𝑢 ≡ 𝑣 , again to make up for the lack of functional extensionality. Recall that in
the se�ing of 𝛼 : 𝑉 , Ix(𝛼) is the “branching type” of 𝛼 and that 𝜋𝑉 𝛼 𝑎 for 𝑎 : Ix(𝛼) is the
𝑎-th child, and thus element, of 𝛼 . �e de�nition can thus be read as 𝛽 ∈ 𝛼 meaning that 𝛼
has a child which is extensionally equal to 𝛽 . Note that while we use the same symbol for

19



∈ in the set-theoretic and type-theoretic se�ing, it will always be clear from the context
which one is meant at any given instance.

𝛽 ∈ 𝛼 := Σ𝑎 : Ix(𝛼) . 𝛽 ≡ 𝜋𝑉 𝛼 𝑎

Together, these two de�nitions allow for the familiar characterization of membership and
equality.

𝛼 ≡ 𝛽 ↔ (∀𝛾 ∈ 𝛼.𝛾 ∈ 𝛽) ∧ (∀𝛾 ∈ 𝛽.𝛾 ∈ 𝛼)

Having de�ned the predicates ≡ and ∈ we can now give the translation |𝜑 | : Ty for ZF
formulas. Note that we give separate translations for restricted and unrestricted quanti�-
cations. Importantly, this means that for any restricted 𝜑 we even have |𝜑 | : 𝑈 .

|⊥| := 0 |𝑥 ∈ 𝑦 | := 𝑥 ∈ 𝑦 |𝑥 = 𝑦 | := 𝑥 ≡ 𝑦 |𝜑 ∧𝜓 | := |𝜑 | × |𝜓 |

|𝜑 ∨𝜓 | := |𝜑 | + |𝜓 | |𝜑 → 𝜓 | := |𝜑 | → |𝜓 | |∀𝑥 ∈ 𝑣 .𝜑 | := Π𝑎 : Ix(𝑥) . |𝜑 [𝜋𝑉 𝑥 𝑎/𝑥] |

|∃𝑥 ∈ 𝑣 .𝜑 | := Σ𝑎 : Ix(𝑥) . |𝜑 [𝜋𝑉 𝑥 𝑎/𝑥] | |∀𝑥 .𝜑 | := Π𝑥 : 𝑉 . |𝜑 | |∃𝑥 .𝜑 | := Σ𝑥 : 𝑉 . |𝜑 |

From now on, we o�en give proofs in type theory, which we indicate with (TT). While
these proofs are given as normal prose proofs, they should be understood as describing the
construction of a term of the appropriate type. �is is very similar to how set-theoretic
proofs are usually understood to provide enough information to give explicit �rst-order
derivations based on the axiomatization being used. However, there are a few di�erent
“levels” of proof that all fall under the umbrella of a proof in type theory in this work.

• A meta-level proof about type theory: �ese proofs explicitly reason about the
existence of terms, such as Proposition 11. Formally, they can be seen as taking place in
a constructive meta-system outside of type theory, giving a prose proof corresponding
to the desired terms, possibly making use of additional assumptions about the type
theory from Section 2.3.

• A set-theoretic proof in type theory: �ese are proofs of set-theoretic, possibly
prosaic statements 𝜑 within type theory. Formally, this is a prose proof corresponding
to a term of type |𝜑 |. A set theoretic statement can be recognized by being stated in
terms of ≡ and ∈ or referring to set-theoretic statements 𝜓 (𝑢). Examples of such are
Proposition 10 and �eorem 12.

• A type-theoretic proof in type theory: Rarely, we give proofs of type-theoretic
statements which do not refer to 𝑉 . Formally, these are prose proofs corresponding
to a term of the propositions-as-type interpretation of the statement. Examples of this
kind of proof are Proposition 35 and Proposition 36.

At this point, it is helpful to recall the three di�erent notions of equality that we have in
type theory. First of all, there is judgmental equality 𝑎 = 𝑏 : 𝐴 which is one of the two

20



kinds of judgments of the derivation system used to de�ne our type theory in Section 2.3.
In a sense, it should be considered to be outside of the type theory, as we cannot explicitly
reason about it via the propositions-as-types interpretation. �e second kind of equality is
intensional equality Id𝐴 (𝑎, 𝑏) which is the general propositions-as-types interpretation
of “proper equality” between members of a type. While we know that whenever 𝑎 = 𝑏 : 𝐴
we also have Id𝐴 (𝑎, 𝑏), it is important to note that the converse is not the case in our
system. �is means that it is “less strict” than the judgmental equality. Furthermore, when
we write 𝑎 = 𝑏 (instead of 𝑎 = 𝑏 : 𝐴) in type-theoretic statements or proofs, this should be
understood as a shorthand for Id𝐴 (𝑎, 𝑏). Lastly, we have the extensional equality 𝛼 ≡ 𝛽

for members of 𝑉 . Again, we know that Id𝑉 (𝛼, 𝛽) entails 𝛼 ≡ 𝛽 but not the converse,
meaning extensional equality is the least strict of all three notions of equality. �is is
because it does not scrutinize the representation of sets but only their elements (up to ≡).

It is useful to prove that 𝛼 ≡ 𝛽 acts as �rst-order equality for formulas |𝜑 (𝛼) |.

Proposition 10 (TT) If 𝛼 ≡ 𝛽 then 𝜑 (𝛼) entails 𝜑 (𝑣).

Proof Per induction on 𝜑 . We only cover a few illustrative cases.

𝜑 = (𝛼 = 𝑥) : �en 𝑥 ≡ 𝛼 ≡ 𝛽 entails 𝛽 ≡ 𝑥 as ≡ is an equivalence relation.

𝜑 = (𝛼 ∈ 𝑥) : �en 𝛼 ∈ 𝑥 means there is an 𝑎 : Ix(𝑥) such that 𝜋𝑉 𝑥 𝑎 ≡ 𝛼 . �en 𝜋𝑉 𝑥 𝑎 ≡ 𝛽

as well by transitivity of ≡ and thus 𝛽 ∈ 𝑥 .

𝜑 = (∃𝑥 ∈ 𝛼.𝜓 (𝛼, 𝑥)) : �en there is 𝑎 : Ix(𝛼) with 𝑥 ≡ 𝜋𝑉 𝛼 𝑎 and𝜓 (𝛼, 𝑥). As 𝛼 ≡ 𝛽 there
is some 𝑏 : Ix(𝛽) with 𝑥 ≡ 𝜋𝑉 𝛽 𝑏 meaning 𝑥 ∈ 𝛽 . Per IH, 𝛼 ≡ 𝛽 yields𝜓 (𝛽, 𝑥). �

We write 𝜏 : Π𝛼 : 𝑉 .Π𝛽 : 𝑉 .𝛼 ≡ 𝛽 → |𝜑 (𝛼) | → |𝜑 (𝛽) | for the transfer of proofs along
𝛼 ≡ 𝛽 arising from the proof below. For 𝑡 : |𝜑 (𝛼) | we simply write 𝜏 𝑡 : |𝜑 (𝛽) | if 𝛼 ≡ 𝛽 is
clear from the context.

Before we prove that this interpretation satis�es the axioms of CZF we �rst demonstrate
why extreme care was required when giving the rules for the universe 𝑈 . With the rules
as we have given them, we can only show that 𝑉 : Ty and not that 𝑉 : 𝑈 as it is not the
case that 𝑈 : 𝑈 . Indeed, if 𝑉 : 𝑈 was the case one could derive a term 𝑡 : 0 which would
mean the type theory we de�ned was inconsistent. �is result is due to Girard [11].

Proposition 11 (TT) If 𝑉 : 𝑈 then there exists a term 𝑡 : 0.

Proof If 𝑉 : 𝑈 then 𝐴 := Σ𝛽 : 𝑉 . (𝛽 ∈ 𝛽 → 0) : 𝑈 as well. Now consider 𝛼 := sup(𝐴, 𝜋1):
Clearly 𝛼 ∈ 𝛼 → 0 as 𝛼 ∈ 𝛼 means there is some 𝑎 : Ix(𝛼) such that 𝛼 ≡ 𝛽 for 𝛽 := 𝜋𝑉 𝛼 𝑎.
But then 𝛽 ∈ 𝛽 → 0 and 𝛽 ≡ 𝛼 , but by 𝛽 ≡ 𝛼 and 𝛼 ∈ 𝛼 we can conclude 𝛽 ∈ 𝛽 and thus
0. But if 𝛼 ∈ 𝛼 → 0 then clearly 𝛼 ∈ 𝛼 per construction of 𝛼 , meaning 0 can be obtained
from 𝛼 ∈ 𝛼 → 0. �
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Note that essentially the same proof shows that Ty : Ty would be lead to an inconsistency,
as this would allow us to de�ne 𝑉 ′ := 𝑊 (𝐴 : Ty)𝐴 for which the same proof strategy
would apply.

We now show that the axioms of CZF are satis�ed by the interpretation. �is is su�cient
to prove that the interpretation models CZF as we have already observed in Section 2.2
that the reasoning facilities within our type theory correspond to intuitionistic predicate
logic.

�eorem 12 (TT) All axioms of CZF hold.

Proof

• Equality: ∀𝑥𝑦. 𝑥 = 𝑦 ↔ ∀.(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) and ∀𝑥𝑦𝑧.𝑥 = 𝑦 → 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧
Both follow directly from Proposition 10.

• Pairing: ∀𝑥𝑦.∃𝑧.𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧
Take 𝑧 := {𝑅B 𝑥 𝑦 𝑏 | 𝑏 : B} then 𝜋𝑉 𝑧 true ≡ 𝑥 and 𝜋𝑉 𝑧 false ≡ 𝑦 meaning 𝑥,𝑦 ∈ 𝑧.

• Union: ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 .∀𝑧 ′ ∈ 𝑧. 𝑧 ′ ∈ 𝑦
Observe that 𝑧 ′ ∈ 𝑧 ∈ 𝑥 means there is an 𝑎 : Ix(𝑥) and a 𝑏 : Ix(𝜋𝑉 𝑥 𝑎)
such that 𝑧 ≡ 𝜋𝑉 𝑥 𝑎 and 𝑧 ′ ≡ 𝜋𝑉 (𝜋𝑉 𝑥 𝑎) 𝑏. We may thus simply take 𝑦 :=
{𝜋𝑉 (𝜋𝑉 𝑥 (𝜋1 𝑝)) (𝜋2 𝑝) | 𝑝 : Σ𝑎 : Ix(𝑥) . Ix(𝜋𝑉 𝑥 𝑎)}.

• Restricted Separation: ∀𝑥∃𝑦∀𝑧.(𝑧 ∈ 𝑥 ∧ 𝜑 (𝑧)) ↔ 𝑧 ∈ 𝑦
As 𝜑 is restricted, |𝜑 (𝑧) | : 𝑈 . �us take 𝑦 := {𝜋𝑉 𝑥 (𝜋1 𝑝) | 𝑝 : Σ𝑎 : Ix(𝑥) .|𝜑 (𝜋𝑉 𝑥 𝑎) |}.
First, suppose 𝜋𝑉 𝑥 𝑎 ≡ 𝑧 for some 𝑎 : Ix(𝑥) and 𝑡 : |𝜑 (𝑧) | then (𝑎, 𝜏 𝑡) : Σ𝑎 :
Ix(𝑥) .|𝜑 (𝜋𝑉 𝑥 𝑎) | and 𝜋𝑉 𝑦 (𝑎, 𝑡) = 𝜋𝑉 𝑥 𝑎 ≡ 𝑧 meaning 𝑧 ∈ 𝑦. Conversely, suppose
𝑧 ≡ 𝜋𝑉 𝑦 𝑡 for some 𝑡 : Σ𝑎 : Ix(𝑥).|𝜑 (𝜋𝑉 𝑥 𝑎) |, then 𝜋𝑉 𝑦 𝑡 = 𝜋𝑉 𝑥 (𝜋1 𝑡) meaning 𝑧 ∈ 𝑥
and 𝜏 (𝜋2 𝑡) : |𝜑 (𝑧) |.

• Strong collection: ∀𝑎.−→𝜑 (𝑎,−) → ∃𝑏.←→𝜑 (𝑎, 𝑏)
We may assume a term 𝑓 : |∀𝑥 ∈ 𝑎.∃𝑦. 𝜑 (𝑥,𝑦) | = Π𝑥 : Ix(𝑎) .Σ𝑦 : 𝑉 .|𝜑 (𝜋𝑉 𝑎 𝑥,𝑦) |.
�en we de�ne 𝑏 := {𝜋1 (𝑓 𝑥) | 𝑥 : Ix(𝑎)}. It is easy to see that for 𝑥 : Ix(𝑎) we have
𝜑 (𝜋𝑉 𝑎 𝑥, 𝜋𝑉 𝑏 𝑥) and thus←→𝜑 (𝑎, 𝑏).

• Subset collection: ∀𝑎𝑏∃𝑐∀𝑢.−→𝜑 (𝑎, 𝑏,𝑢) → ∃𝑑 ∈ 𝑐.←→𝜑 (𝑎, 𝑑,𝑢)
Observe that for any 𝑢 : 𝑉 such that −→𝜑 (𝑎, 𝑏,𝑢) = ∀𝑥 ∈ 𝑎∃𝑦 ∈ 𝑏. 𝜑 (𝑥,𝑦,𝑢) holds, we
may assume a term 𝑔 : Π𝑥 : Ix(𝑎) .Σ𝑦 : Ix(𝑏).𝜑 (𝜋𝑉 𝑎 𝑥, 𝜋𝑉 𝑏 𝑦,𝑢). We may also regard
𝑔 as an 𝑓 : Ix(𝑎) → Ix(𝑏) via 𝑓 := 𝜆𝑥.𝜋1 (𝑔 𝑥). �en, as 𝜑 (𝜋𝑉 𝑎 𝑥, 𝜋𝑉 𝑏 (𝑓 𝑥), 𝑢) for any
𝑥 : Ix(𝑎), we know←→𝜑 (𝑎, 𝑑𝑓 , 𝑢) where 𝑑𝑓 := {𝜋𝑉 𝑏 (𝑓 𝑥) | 𝑥 : Ix(𝑎)}. By this reasoning,
we then simply may take 𝑐 := {𝑑𝑓 | 𝑓 : Ix(𝑎) → Ix(𝑏)}.

• In�nity: ∃𝑥 .(∀𝑦. 𝑦 ∈ 𝑥 ↔ (𝑦 = ∅ ∨ ∃𝑧. 𝑦 = 𝑧 ∪ {𝑧}))
We take ∅ := {𝑅0 𝑓 | 𝑓 : 0} and {𝛼} := {𝛼 | 𝑖 : 1} and observe that these satisfy the
usual properties. Now we can de�ne −̂ : N→ 𝑉 by recursion via

0̂ := ∅ 𝑆 𝑛 := 𝑛 ∪ {𝑛}
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�enwe take 𝑥 := {𝑛 | 𝑛 : N}. First, pick some𝑦 ≡ 𝜋𝑉 𝑥 𝑛 = 𝑛: If𝑛 = 0 then 𝑥 ≡ 0̂ = ∅. If
𝑛 = 𝑆 𝑛′ then we deduce that 𝑥 ≡ 𝑆 𝑛′ = 𝑛′∪{𝑛′} with 𝑛′ ∈ 𝑥 . Conversely, if𝑦 ≡ ∅ then
clearly𝑦 ≡ 0̂ = 𝜋𝑉 𝑥 0. If some 𝑧 ≡ 𝑛 and𝑦 ≡ 𝑧∪{𝑧} then 𝑧 ≡ 𝑛∪{𝑛} = 𝑆 𝑛 = 𝜋𝑉 𝑥 (𝑆 𝑛).

• Set induction: (∀𝑦.(∀𝑥 ∈ 𝑦.𝜑 (𝑥)) → 𝜑 (𝑦)) → ∀𝑥 .𝜑 (𝑥)
Consider the typing rule for recursion on 𝑉 :

𝑡 : 𝑉 𝑦 : 𝑉 ` 𝐶 : Ty
𝑠 : Π𝐴 : 𝑈 .Π𝑓 : 𝐴→ 𝑉 .(Π𝑎 : 𝐴.𝐶 [𝑓 𝑎/𝑦]) → 𝐶 [sup(𝐴, 𝑓 )/𝑦]

𝑅𝑊 𝑠 𝑡 : 𝐶 [𝑡/𝑦]
When considering the special case of𝐶 := |𝜑 (𝑦) | for some set-theoretic formula 𝜑 , the
type of the term 𝑠 can be read as

∀𝐴 : 𝑈 .∀𝑓 : 𝐴→ 𝑉 .(∀𝑥 ∈ {𝑓 𝑎 | 𝑎 : 𝐴}.𝜑 (𝑥)) → 𝜑 ({𝑓 𝑎 | 𝑎 : 𝐴})

which is just a slightly more complicated way of stating ∀𝑦.(∀𝑥 ∈ 𝑦.𝜑 (𝑥)) → 𝜑 (𝑥),
the premise of set-induction. �us, specializing recursion on 𝑉 to a predicate |𝜑 (𝑦) |
yields set-induction on members of 𝑉 . �

5 Interpreting Inductive Definitions
An inductive de�nition describes the smallest collection of objects closed under certain
operations. For example, the collection of natural numbers is the smallest collection which
contains 0 and is closed under taking successors. In ZF a set satisfying these two conditions
is called inductive and the ZF variant of the axiom of in�nity only asserts the existence of
some inductive set 𝐼 . �e natural numbers can then be obtained as

𝜔 := {𝑛 ∈ 𝐼 | ∀𝐽 . 𝐽 inductive → 𝑛 ∈ 𝐽 }

Observe that this is an impredicative de�nition as the separating formula quanti�es
over all sets 𝐽 . As CZF only allows for restricted separation, this method of obtaining the
natural numbers can not be carried out there. Instead, the axiom of in�nity in CZF is the
stronger statement ∃𝑥 .(∀𝑦. 𝑦 ∈ 𝑥 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑥 . 𝑦 = {𝑧} ∪ 𝑧)). �is observation
extends to many other inductive de�nitions: While we obtain the inductively de�ned sets
in ZF by impredicatively intersecting over all sets satisfying the closure condition, the
restricted separation of CZF prevents us from doing the same there.

It would be wrong to conclude from this observation that inductive de�nitions are inher-
ently unconstructive. Indeed, most types of dependent type theory are de�ned via closure
conditions and are bounded from above by eliminators. �e𝑊 -types were intended specif-
ically to allow the de�nition of arbitrary inductive types. In this section, we thus aim to
transfer the power of inductive de�nitions granted to dependent type theory by𝑊 -types
to our CZF interpretation by way of the regular extension axiom.
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5.1 The Regular Extension Axiom
De�nition 13 A class 𝐴 is regular if it is

• transitive, meaning 𝑎 ∈ 𝐴 entails 𝑎 ⊆ 𝐴

• closed under relational collection, meaning if 𝑎 ∈ 𝐴 and 𝑅 ⊆ 𝑎 × 𝐴 is such that
∀𝑥 ∈ 𝑎.∃𝑦. (𝑥,𝑦) ∈ 𝑅 then there has to be a 𝑏 ∈ 𝐴 with 𝑅 : 𝑎 ⊲⊳ 𝑏.

De�nition 14 �e regular extension axiom (REA) states that ∀𝑥∃𝑦. 𝑥 ⊆ 𝑦∧𝑦 regular.

We demonstrate that CZF + REA shows that a broad range of inductively de�ned classes
are sets in Section 5.2. Rathjen [21] showed that CZF + REA has the same proof-theoretic
strength as the subsystem of second-order arithmetic with Δ1

2-comprehension and bar in-
duction.

We close this section by showing that our type-theoretic interpretation satis�es REA. For
this, we start with an important result.

Lemma 15 (CZF) Any set 𝑎 is extended by a transitive set 𝑏.

Proof We prove this claim via set induction. Suppose each 𝑥 ∈ 𝑎 was extended by some
transitive set. �en we can collect them into a set 𝑡 via strong collection. Now consider
𝑏 := 𝑎 ∪⋃

𝑡 . Clearly, 𝑎 ⊆ 𝑏. Furthermore, 𝑏 is transitive. Consider some 𝑥 ∈ 𝑏: If 𝑥 ∈ 𝑎
then there is a 𝑥 ⊆ 𝑏𝑥 ∈ 𝑡 and thus 𝑥 ⊆ 𝑏𝑥 ⊆ 𝑏. If 𝑥 ∈ 𝑦 ∈ 𝑡 then 𝑥 ⊆ 𝑦 ⊆ 𝑏 as 𝑦 is
transitive per collection of 𝑡 . �

Using this fact, we can show that the interpretation satis�es REA.

�eorem 16 (TT) Any set 𝛼 is extended by a regular set 𝛼 .

Proof By Lemma 15 it su�ces to show REA for transitive sets. �us pick some transitive
𝛼 . We take 𝐴 := Ix(𝛼) and 𝐵(𝑎) := Ix(𝜋𝑉 𝛼 𝑎) for 𝑎 : 𝐴. Now consider some 𝛽1 ∈ 𝛼

then 𝛽1 ≡ {𝑓1 𝑏 | 𝑏 : 𝐵(𝑎1)} for some 𝑎1 : 𝐴 and 𝑓1 : 𝐵(𝑎1) → 𝑉 . Furthermore consider
some 𝛽2 ∈ 𝛽1, as 𝛼 is transitive, 𝛽2 ∈ 𝛼 meaning 𝛽2 ≡ {𝑓2 𝑏 | 𝑏 : 𝐵(𝑎2)} for 𝑎2 : 𝐴 and
𝑓2 : 𝐵(𝑎2) → 𝑉 as well. �is can be continued until the empty set is reached. Indeed,
we can de�ne a function shape : Π𝛽 : 𝑉 . 𝛽 ∈ 𝛼 → 𝑊 (𝑎 : 𝐴)𝐵(𝑎) per 𝑉 -recursion
which assigns to each 𝛽 ∈ 𝛼 its thusly derived 𝛼-shape (the explicit de�nition of shape
involves technical computations involving the proof of transitivity of 𝑢 and the de�nition
of ≡ which is why we opt to not write it out for sake of space). In turn we can de�ne a
function set :𝑊 (𝑎 : 𝐴)𝐵(𝑎) → 𝑉 which recursively constructs from each 𝑣-shape a set as
follows

set(sup(𝑎, 𝑓 : 𝐵(𝑎) →𝑊 (𝑎 : 𝐴)𝐵(𝑎))) := {set(𝑓 𝑏) | 𝑏 : 𝐵(𝑎)} : 𝑉

A simple set-induction shows that for 𝛽 ∈ 𝛼 we have set(shape(𝛽)) ≡ 𝛽 . However, it
need not be the case that set(𝑡) ∈ 𝛼 for arbitrary 𝑡 : 𝑊 (𝑎 : 𝐴)𝐵(𝑎). We now show that
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𝛼 := {set(𝑡) | 𝑡 :𝑊 (𝑎 : 𝐴)𝐵(𝑎)}, i.e. the set containing the sets of all possible shapes from
𝑊 (𝑎 : 𝐴)𝐵(𝑎) is the desired regular extension of 𝛼 . For this, we need to prove three claims.

• 𝛼 ⊆ 𝛼 : For this, simply observe that 𝛼 3 𝛽 ≡ set(shape(𝛽)) ∈ 𝛼 .
• 𝛼 is transitive: We know 𝛼 3 𝛽 ≡ set(𝑡) for some 𝑡 = sup(𝑎, 𝑓 ) : 𝑊 (𝑎 : 𝐵)𝐵(𝑎) and

thus 𝛽 ≡ set(sup(𝑎, 𝑓 )) = {𝑠𝑒𝑡 (𝑓 𝑏) | 𝑏 : 𝐵(𝑎)}. �en 𝛽 3 𝛾 ≡ set(𝑓 𝑏) for some 𝑏 : 𝐵(𝑎)
meaning 𝛾 ∈ 𝛼 .

• 𝛼 is closed under relational collection: Pick set(sup(𝑎, 𝑓 )) ≡ 𝛽 ∈ 𝛼 and𝑅 : 𝛽n𝛼 . By
the propositions-as-types interpretation, the proof of 𝑅 : 𝛽 n 𝛼 gives rise to a function
𝑔 : 𝐵(𝑎) →𝑊 (𝑎′ : 𝐴)𝐵(𝑎′) such that (𝜋𝑉 𝛽 𝑏, set(𝑔𝑏)) ∈ 𝑅 for 𝑏 : 𝐵(𝑎). �us the set
𝛾 := set(sup(𝑎,𝑔)) ∈ 𝛼 is a relational collection of 𝛽 . �

5.2 Inductive Definitions in CZF
To show that CZF + REA admits inductive de�nitions, we �rst need to formalize what
inductive de�nitions are.

De�nition 17 Let Φ be a class, a class 𝑋 is Φ-closed if 𝐴 ⊆ 𝑋 implies 𝑎 ∈ 𝑋 for every
(𝑎,𝐴) ∈ Φ. We write 𝐼 (Φ) for the smallest Φ-closed class.

�e intuition behind this de�nition is that a class Φ represents the closure conditions of
an inductive de�nition. �us (𝑎,𝐴) ∈ Φ signi�es that 𝑎 is constructed from elements of 𝐴.
For example, the class Φ𝜔 below is the class representing the inductive de�nition of the
natural numbers.

Φ𝜔 := {(∅, ∅)} ∪ {(𝑎 ∪ {𝑎}, {𝑎}) | 𝑎 a set}

�e class 𝐼 (Φ) is thus inductively de�ned by Φ and the elements of 𝐼 (Φ) are said to be
inductively generated by Φ. Now, clearly, not all 𝐼 (Φ) should be sets. Consider, for
example, the class of all sets 𝑉 which can be inductively de�ned by Φ𝑉 below.

Φ𝑉 := {(𝑎, ∅) | 𝑎 a set}

�is leads us to de�ne a more restricted notion of inductive de�nitions we consider a
“reasonable” inductive de�nitions.

De�nition 18 An inductive de�nition Φ is bounded if

(a) For any set 𝐴, Φ(𝐴) := {𝑎 | (𝑎,𝐴) ∈ Φ} is a set as well.
(b) �ere is a set 𝐵 such that if (𝑎,𝐴) ∈ Φ there is a 𝑏 ∈ 𝐵 and a surjection 𝑓 : 𝑏 → 𝐴. We

call 𝐵 a bound of Φ.
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Condition (a) rules out inductive de�nitions that “grow too fast”. For example, it is easy to
see that Φ𝑉 violates (a) and thus is not bounded. Condition (b) is somewhat more technical
but turns out to be closely linked to the relational collection closedness of regular sets. In
�eorem 23, we show that under REA, every bounded inductive de�nition de�nes a set,
validating this a good notion of “valid” inductive de�nitions.

We proceed by giving a few examples of interesting bounded inductive de�nitions.

De�nition 19 For classes 𝐴 and 𝑅 ⊆ 𝐴 ×𝐴 where 𝑅𝑎 = {𝑎′ | (𝑎′, 𝑎) ∈ 𝑅} is a set for each
𝑎 ∈ 𝐴, we de�ne the well-founded part of 𝑅 Wf𝑅 inductively via the class

ΦWf := {(𝑎, 𝑅𝑎) | 𝑎 ∈ 𝐴}

If 𝐴 and 𝑅 are sets then ΦWf is bounded by {𝑅𝑎 | 𝑎 ∈ 𝐴}.

De�nition 20 For a class 𝐴, we de�ne the hereditary image 𝐻𝐴(𝐴) inductively via

Φ𝐻𝐴(𝐴) := {(im(𝑓 ), 𝑏) | 𝑎 ∈ 𝐴, 𝑓 : 𝑎 → 𝑏}

If 𝐴 is a set clearly 𝐴 is a bound of Φ𝐻𝐴(𝐴) .

Notably, 𝐻𝐴(𝜔) is the class of heredetarily �nite sets and 𝐻𝐴(𝜔 + 1) the class of herede-
tarily countable sets.

De�nition 21 For a class 𝐴 and sets 𝐵𝑎 for each 𝑎 ∈ 𝐴, we can de�ne the𝑊 -set𝑊𝑎∈𝐴𝐵𝑎
inductively via

Φ𝑊 := {((𝑎, 𝑓 ), 𝑏) | 𝑎 ∈ 𝐴, 𝑓 : 𝐵𝑎 → 𝑏}
If 𝐴 is a set then

⋃
𝑎∈𝐴 𝐵𝑎 is a bound of Φ𝑊 .

Observe that, although we call these classes𝑊 -sets, they need not be sets in CZF in the
absence of REA. However, we chose to still use this terminology to parallel the𝑊 -types
of type theory.

To prove that all bounded inductive de�nitions form sets under REA, we need to consider
the one-step extension operation Γ(𝑥).

Lemma 22 (CZF) Let Φ be bounded and write Γ(𝑥) := {𝑎 | (𝑎,𝐴) ∈ Φ, 𝐴 ⊆ 𝑥}.

(i) Γ(𝑥) is a set if 𝑥 is
(ii) �ere is a class function mapping each set 𝑎 to a set Γ𝑎 with Γ𝑎 = Γ(⋃{Γ𝑏 | 𝑏 ∈ 𝑎})
(iii) 𝐼 (Φ) = ⋃{Γ𝑎 | 𝑎 a set}

Proof (i) If 𝐵 bounds Φ we know that for each 𝑎 ∈ Γ(𝑥) there is a 𝑏 ∈ 𝐵 and some
𝑓 : 𝑏 → 𝑥 such that 𝑎 ∈ Φ(im(𝑓 )). �us Γ(𝑥) := ⋃

𝑏∈𝐵
⋃{Φ(im(𝑓 )) | 𝑓 : 𝑏 → 𝑥}. �e

{Φ(im(𝑓 )) | 𝑓 : 𝑏 → 𝑥} can be obtained via replacement on 𝑥 → 𝑏 as each Φ(im(𝑓 ))
is a set, making Γ(𝑥) a set.
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(ii) Consider the class 𝐼 (Ψ) for the inductive de�nition

Ψ := {((𝑥, Γ(
⋃

𝑦)), 𝑅) | 𝑅 : 𝑥 ⊲⊳ 𝑦}

We show that for each set 𝑎 there is a unique Γ𝑎 such that (𝑎, Γ𝑎) ∈ 𝐼 (Ψ) per set
induction and that this Γ𝑎 has the desired property. Suppose each 𝑏 ∈ 𝑎 had a unique
(𝑏, Γ𝑏) ∈ 𝐼 (Ψ) and that Γ𝑏 = Γ(⋃{Γ𝑐 | 𝑐 ∈ 𝑏}). For any (𝑎, 𝑧) ∈ 𝐼 (Ψ) we know that
𝑦 = Γ(⋃𝑦) for a 𝑦 such that

∀𝑏 ∈ 𝑎∃𝑥 ∈ 𝑦. (𝑏, 𝑥) ∈ 𝐼 (Ψ) ∧ ∀𝑥 ∈ 𝑦∃𝑏 ∈ 𝑎. (𝑏, 𝑥) ∈ 𝐼 (Ψ)

but as each (𝑏, Γ𝑏) ∈ 𝐼 (Ψ) is unique that means 𝑦 = {Γ𝑏 | 𝑏 ∈ 𝑎} and thus that Γ𝑎 is
unique and Γ𝑎 = Γ(⋃{Γ𝑏 | 𝑏 ∈ 𝑎}) as desired.

(iii)
•

⋃{Γ𝑎 | 𝑎 a set} ⊆ 𝐼 (Φ): Per set induction on 𝑎. If Γ𝑏 ⊆ 𝐼 (Φ) for 𝑏 ∈ 𝑎 then⋃{Γ𝑏 | 𝑏 ∈ 𝑎} ⊆ 𝐼 (Φ) and thus Γ𝑎 = Γ(⋃{Γ𝑏 | 𝑏 ∈ 𝑎}) ⊆ 𝐼 (Φ) as 𝐼 (Φ) is Φ-closed.
• 𝐼 (Φ) ⊆ ⋃{Γ𝑎 | 𝑎 a set} : It su�ces to show that

⋃{Γ𝑎 | 𝑎 a set} is Φ-closed. If
𝑥 ⊆ ⋃{Γ𝑎 | 𝑎 a set} then for each 𝑦 ∈ 𝑥 there is a set 𝑎 such that 𝑦 ∈ Γ𝑎 . �ese
may be collected into a set 𝑏. �en 𝑥 ⊆ ⋃{Γ𝑎 | 𝑎 ∈ 𝑏} and thus Γ(𝑥) ⊆ Γ𝑏 ⊆⋃{Γ𝑎 | 𝑎 a set}. �

�eorem 23 (CZF + REA) If Φ is bounded, 𝐼 (Φ) is a set.

Proof By REA we may assume the bound 𝐵 of Φ to be a regular set. We now claim
𝐼 :=

⋃{Γ𝑏 | 𝑏 ∈ 𝐵} = 𝐼 (Φ). By Lemma 22 (iii) we know 𝐼 ⊆ 𝐼 (Φ). For 𝐼 (Φ) ⊆ 𝐼 it again
su�ces to show that 𝐼 is Φ-closed. For 𝑥 ∈ Γ(𝐼 ) we know (𝑥, 𝑋 ) ∈ Φ for 𝑋 ⊆ 𝐼 with
surjection 𝑓 : 𝑏 → 𝑋 for some 𝑏 ∈ 𝐵. As this means that ∀𝑦 ∈ 𝑏∃𝑧 ∈ 𝐵. 𝑓 (𝑦) ∈ Γ𝑧 ,
regularity of 𝐵 yields a 𝑐 ∈ 𝐵 with ∀𝑦 ∈ 𝑏∃𝑧 ∈ 𝑐.𝑓 (𝑦) ∈ Γ𝑧 . �en 𝑥 ∈ Γ(𝑋 ) ⊆ Γ𝑐 ⊆ 𝐼 . �

Corollary 24 (CZF + REA)

(i) For any set 𝑅 ⊆ 𝐴 ×𝐴, Wf𝑅 is a set.
(ii) For any set 𝐴, 𝐻𝐴(𝐴) is a set.
(iii) For any set 𝐴 and family of sets (𝐵𝑎)𝑎∈𝐴,𝑊𝑎∈𝐴𝐵𝑎 is a set.

6 Interpreting Choice
6.1 Choice in CZF
�is section is concerned with the interpretation of choice principles and related axioms.
We begin by introducing each of these principles and exploring some of their conse-
quences.

First, recall the axiom of choice.
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De�nition 25 �e axiom of choice (AC) states that for every family of sets (𝐵𝑎)𝑎∈𝐴 for
some set 𝐴, the set

Π𝑎 ∈ 𝐴.𝐵𝑎 :=
{
𝑓 ∈ 𝐴→

⋃
𝑎∈𝐴

𝐵𝑎 | ∀𝑎 ∈ 𝐴. 𝑓 (𝑎) ∈ 𝐵𝑎

}
is non-empty if all of the 𝐵𝑎 are.

Observe that this presentation, which is somewhat closer to type theory, is equivalent to
the more common formulations of the AC. Note that the set Π𝑎 ∈ 𝐴.𝐵𝑎 can always be
obtained via restricted separation on the exponential 𝐴→ ⋃{𝐵𝑎 | 𝑎 ∈ 𝐴}.
�ere are two ways of formalizing a family (𝐵𝑎)𝑎∈𝐴 of sets. First of all, we may simply
consider a function 𝐵 with dom(𝐵) = 𝐴, each 𝐵𝑎 being 𝐵(𝑎). Alternatively, such a family
may be given by formula 𝜑 (𝑥,𝑦) with −→𝜑 (𝐴,−) which is functional on𝐴, each 𝐵𝑎 being the
unique set with𝜑 (𝑎, 𝐵𝑎). By the axiom of strong collection, wemay easily convert one rep-
resentation into the other, which is why we use the two representations interchangeably
from now on.

�e following result is usually credited to Diaconescu [8]. It can be viewed as evidence
that in set theory, the full axiom of choice is not constructively acceptable.

Proposition 26 (CZF) �e axiom of choice entails the restricted excluded middle.

Proof Pick some restricted formula 𝜑 and consider the sets𝐴 := {𝑥 ∈ 2 | (𝑥 = 0) ∨𝜑} and
𝐵 := {𝑥 ∈ 2 | (𝑥 = 1)∨𝜑}where 2 := {0, 1}. Now de�ne𝐶 := {𝐴, 𝐵} and consider the family
(𝑥)𝑥 ∈𝐶 , clearly each 𝑥 ∈ 𝐶 is non-empty and there thus is a function 𝑓 ∈ Π𝑥 ∈ 𝐶.𝑥 by the
axiom of choice. As there are only four possible variants of {𝑓 (𝐴), 𝑓 (𝐵)} per construction
of 𝐴 and 𝐵, we may make the following case-distinction:

• 𝑓 (𝐴) = 𝑓 (𝐵) : �en 𝑓 (𝐴) = 1, meaning 1 ∈ 𝐴, or 𝑓 (𝐵) = 0, meaning 0 ∈ 𝐵, and thus 𝜑
holds in either way.

• 𝑓 (𝐴) ≠ 𝑓 (𝐵) : For this to be possible, we need to have𝐴 ≠ 𝐵 as otherwise 𝑓 (𝐴) = 𝑓 (𝐵)
holds trivially. �at means 1 ∉ 𝐴 and 0 ∉ 𝐵. But then ¬𝜑 holds.

As either case yields a decision on 𝜑 , we may conclude 𝜑 ∨ ¬𝜑 overall. �

Corollary 27 CZF + Full Separation + AC is equivalent to ZFC.

�e next two principles we consider are the axiom of dependent choice and the axiom of
relativized dependent choice.

De�nition 28
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• �e axiom of dependent choice (DC) states that for any set 𝐴 and formula 𝜑 (𝑥,𝑦)
such that −→𝜑 (𝐴,𝐴) there exists, for any 𝑎 ∈ 𝐴, a sequence 𝑓 : N → 𝐴 with 𝑓 (0) = 𝑎

and for any 𝑛 ∈ N, 𝜑 (𝑓 (𝑛), 𝑓 (𝑛 + 1)).
• �e axiom of relativized dependent choice (rDC) states that for any formulas 𝜃 (𝑥)

and𝜑 (𝑥,𝑦) such that ∀𝑥 .𝜃 (𝑥) → ∃𝑦.𝜃 (𝑦)∧𝜑 (𝑥,𝑦) there exists, for any 𝜃 (𝑥), a function
𝑓 with dom(𝑓 ) = N, 𝑓 (0) = 𝑥 and for any 𝑛 ∈ N, 𝜃 (𝑓 (𝑛)) and 𝜑 (𝑓 (𝑛), 𝑓 (𝑛 + 1)).

�e axiom of dependent choice is a choice-fragment, meaning it is a consequence of the
full axiom of choice. Maybe somewhat surprisingly, the axioms of dependent choice and
relativized dependent choice are equivalent.

Proposition 29 (CZF)

(i) AC entails DC
(ii) DC and rDC are equivalent.

Proof

(i) For each 𝑎 ∈ 𝐴, we can obtain a non-empty 𝐵𝑎 ⊆ {𝑏 ∈ 𝐴 | 𝜑 (𝑎, 𝑏)} via strong collection.
AC then yields a function 𝑓 : Π𝑎 ∈ 𝐴.𝐵𝑎 . For some 𝑎 ∈ 𝐴, the sequence 𝑔 : N → 𝐴

may then be de�ned recursively via 𝑔(0) := 𝑎 and 𝑔(𝑛 + 1) := 𝑓 (𝑔(𝑛)).
(ii) To obtain DC from rDC, simply take 𝜃 (𝑥) := 𝑥 ∈ 𝐴. For the converse direction,

pick some 𝜃 (𝑥). By inductively using strong collection with 𝜑 (𝑥,𝑦) we can obtain a
function Γ such that dom(Γ) = N, Γ(0) = {𝑥}, and for all 𝑛 ∈ N we know that all
𝑦 ∈ Γ(𝑛) have 𝜃 (𝑦) and there exists a 𝑦 ′ ∈ Γ(𝑛 + 1) with 𝜑 (𝑦,𝑦 ′). �en applying DC to
𝐴 :=

⋃{Γ(𝑛) | 𝑛 ∈ N} yields the desired sequence through 𝜃 . �

For the next axiom, we require an additional notion.

De�nition 30

• A set 𝐵 is a base if the axiom of choice holds for all 𝐵-indexed families.
• �e presentation axiom (PAx) states that for every set 𝐴 there exists a base 𝐵 and a

surjection 𝑓 : 𝐵 → 𝐴. �e function 𝑓 is called a presentation of 𝐴.

Interestingly, PAx provides su�cient proving strength to deduce subset collection from
exponentiation, but not the powerset axiom.

Proposition 31 (CZF−) Exponentiation + PAx entails subset collection.

Proof Pick sets 𝑋,𝑌 , by PAx, there is a presentation 𝑓 : 𝐵 → 𝑋 . We claim that 𝐹 :=
{im(𝑔) | 𝑔 : 𝐵 → 𝑌 } ⊆ P(𝑌 ) is 𝑋 -full. Pick some 𝑅 : 𝑋 n 𝑌 , because 𝐵 is a base there thus
is a 𝑔 ∈ Π𝑏 ∈ 𝐵.{𝑦 ∈ 𝑌 | (𝑓 (𝑏), 𝑦) ∈ 𝑅} and clearly 𝑅 : 𝑋 ⊲⊳ im(𝑔). �
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�e last two axioms we consider are a strengthening of PAx and a weakening of the AC.
For this, we �rst introduce an important class of sets.

De�nition 32 A class 𝑋 is ΠΣ𝑊𝐼 -closed if it contains

• 𝜔 and each 𝑛 ∈ 𝜔
• For any 𝐴 ∈ 𝑋 and family 𝐵 : 𝐴→ 𝑋 the set Π𝑎 ∈ 𝐴.𝐵𝑎
• For any 𝐴 ∈ 𝑋 and family 𝐵 : 𝐴→ 𝑋 the set Σ𝑎 ∈ 𝐴.𝐵𝑎 := {(𝑎, 𝑏) | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵𝑎}
• For any 𝐴 ∈ 𝑋 and family 𝐵 : 𝐴→ 𝑋 the class𝑊𝑎 ∈ 𝐴.𝐵𝑎 if it is a set
• For any 𝐴 ∈ 𝑋 and 𝑎, 𝑏 ∈ 𝐴 the set Id𝐴 (𝑎, 𝑏) := {𝑧 ∈ {∅} | 𝑎 = 𝑏}

�e class of ΠΣ𝑊𝐼 -sets is the smallest ΠΣ𝑊𝐼 -closed class.

�is de�nition can be explicitly formalized as an inductive, although not bounded, class
ΦΠΣ𝑊𝐼 . �e clause for𝑊 -sets is somewhat intricate: Without REA, it need not be the case
that all𝑊𝑎 ∈ 𝐴.𝐵𝑎 are sets. In this case, ΠΣ𝑊𝐼 -closedness is only concerned with those
which can be proven to be sets. In later parts of this work, we also use analogous classes,
such as the ΠΣ𝑊 -sets, which are de�ned in the obvious way.

Based on this, we can de�ne the two remaining choice principles we consider in this report.

De�nition 33

• �e ΠΣ𝑊𝐼 -AC states that every ΠΣ𝑊𝐼 -set is a base.
• �eΠΣ𝑊𝐼 -PAx states that everyΠΣ𝑊𝐼 -set is a base and every set𝐴 has a presentation

𝑓 : 𝐵 → 𝐴 where 𝐵 is a ΠΣ𝑊𝐼 -set.

We show in �eorem 45 and Lemma 48 that our set interpretation satis�es ΠΣ𝑊𝐼 -AC
and ΠΣ𝑊𝐼 -PAx, respectively, when the type theory is extended by additional axioms. In
Section 7 we show how to build an inner model satisfying, among other axioms, ΠΣ𝑊𝐼 -
PAx.

Proposition 34 (CZF + 𝚷𝚺𝑾𝑰 -PAx) A set 𝐵 is a base i� it is in bijection with a ΠΣ𝑊𝐼 -
set.

Proof As every ΠΣ𝑊𝐼 -set is a base and any set in bijection with a base clearly is a base
itself, the backwards direction is clear. Now let 𝐵 be an arbitrary base. By ΠΣ𝑊𝐼 -PAx
there is a surjection 𝑓 : 𝐶 → 𝐵 for𝐶 as ΠΣ𝑊𝐼 -set. As 𝐵 is a base, we can obtain a injection
𝑔 : Π𝑏 ∈ 𝐵.{𝑐 ∈ 𝐶 | 𝑓 (𝑐) = 𝑏}(⊆ 𝐵 → 𝐶) with 𝑓 (𝑔(𝑏)) = 𝑏. �en 𝑔 is a bijection
𝐵 ≡ {𝑐 ∈ 𝐶 | 𝑔(𝑓 (𝑐)) = 𝑐}. Now observe that {𝑐 ∈ 𝐶 | 𝑔(𝑓 (𝑐)) = 𝑐} ≡ Σ𝑐 ∈ 𝐶.Id(𝑔(𝑓 (𝑐)), 𝑐)
which is a ΠΣ𝑊𝐼 -set as 𝐶 is, meaning 𝐵 is in bijection with a ΠΣ𝑊𝐼 -set. �

Observe that this proof already works for Σ𝐼 -PAx as neither Π-sets nor𝑊 -sets were used
in the construction of the bijective set.
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6.2 Choice in Type Theory
In Proposition 26 we showed that in set theory, the axiom of choice entails variants of
the law of excluded middle and thus is not acceptable constructively. In this section, we
examine the axiom of choice in the type theory de�ned in Section 2.3.

Maybe somewhat surprisingly, a type-theoretical variant of the axiom of choice is provable
in our type theory. Similar to its set-theoretical counterpart, it is stated in terms of a𝐴 : Ty
and an indexed family 𝑥 : 𝐴 ` 𝐵(𝑥) : Ty. We chose to state it in terms of an additional
predicate 𝑥 : 𝐴,𝑦 : 𝐵(𝑥) ` 𝑃 (𝑥,𝑦) : Ty which is o�en handy when using the axiom of
choice in later proofs.

Proposition 35 (TT) Whenever for any 𝑎 : 𝐴 there exists a 𝑏 : 𝐵(𝑎) with 𝑃 (𝑎, 𝑏) then
there is a function 𝑓 : Π𝑎 : 𝐴. 𝐵(𝑎) with 𝑃 (𝑎, 𝑓 𝑎) for all 𝑎 : 𝐴.

Proof By the propositions-as-types interpretation, ∀𝑎 : 𝐴.∃𝑏 : 𝐵. 𝑃 (𝑎, 𝑏) is a function
𝑔 : Π𝑎 : 𝐴.Σ𝑏 : 𝐵. 𝑃 (𝑎, 𝑏). �e desired function can be de�ned as 𝑓 := 𝜆𝑎.𝜋1(𝑔 𝑎). �

Observe that we have already made implicit use of the principle underlying the proof in
�eorem 12 and �eorem 16.

Similarly, the axiom of dependent choice can also be proven.

Proposition 36 (TT) Whenever for any 𝑎 : 𝐴 there is an 𝑎′ : 𝐴 such that 𝑃 (𝑎, 𝑎′) then for
any 𝑎 : 𝐴 there is a function 𝑓 : N→ 𝐴 such that 𝑓 0 = 𝑎 and 𝑃 (𝑓 𝑛, 𝑓 (𝑆 𝑛)) for any 𝑛 : N.

Proof By Proposition 35 we obtain a 𝑔 : 𝐴→ 𝐴 with 𝑃 (𝑎,𝑔(𝑎)) for all 𝑎 : 𝐴. For any �xed
𝑎 : 𝐴 we may thus de�ne the desired function via recursion as

𝑓 0 := 𝑎 𝑓 (𝑆 𝑛) := 𝑔 (𝑓 𝑛) �

We remark that the provability of the axiom of choice depends on the structure of the type
universes of the type theory under consideration. For example, the Calculus of Construc-
tions [6] cannot prove the AC as its universe structure does not allow values of predicative
types, such as N or pairs, to be projected out of its impredicative universe of propositions.

6.3 Interpreting DC
In this section, we show how to use the type-theoretic DC from Proposition 36 to prove
that our interpretation𝑉 satis�es DC as well. While the proof itself is rather simple, we use
it as an opportunity to introduce the various notions and techniques for proving choice-
interpretation which we also use in Section 6.4 to show that 𝑉 satis�es ΠΣ𝑊𝐼 -AC.

So far, we only ever reasoned about sets up to extensional equality. However, when con-
sidering functions between sets, it is o�en important to know speci�c details of their rep-
resentation within 𝑉 .
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De�nition 37 A set {𝑓 𝑎 | 𝑎 : 𝐴} is injectively represented if for any 𝑎, 𝑏 : 𝐴 we have
𝑎 = 𝑏 whenever 𝑓 𝑎 ≡ 𝑓 𝑏.

Canonical examples of injectively represented sets are the natural numbers of our inter-
pretation.

Proposition 38 (TT) �e set 𝜔 and each 𝑛 for 𝑛 : N are injectively represented.

Proof For 𝜔 = sup(N, 𝜆𝑛.𝑛), simply observe that 𝑛 ≡ 𝑚 means 𝑘 < 𝑛 i� 𝑘 < 𝑚 for 𝑘 : N
and thus that 𝑚 = 𝑛. �e injective representation for the 𝑛 is proven per induction on
𝑛 : N. If 𝑛 = 0 then 0̂ has no elements and is thus trivially injectively represented. For an
𝑛 + 1 we know that �𝑛 + 1 = 𝑛∪ {𝑛} = sup(Ix(𝑛) + 1, 𝑅+(𝜋𝑉 𝑛) (𝜆 .𝑛)) and thus is injectively
represented as 𝑛 is such per induction hypothesis and 𝑛 ∉ 𝑛. �

�e importance of injective representations is that they allow us to li� type-theoretic func-
tions to interpretations of set-theoretic functions in 𝑉 .

Lemma 39 (TT) Let 𝛼 : 𝑉 be injectively represented, then for any 𝛽 : 𝑉 and function
𝑓 : Ix(𝛽) → Ix(𝛼) there exists an 𝐹 : 𝑉 which is a set-theoretic function 𝐹 : 𝛽 → 𝛼 with
𝐹 (𝜋𝑉 𝛽 𝑎) = 𝜋𝑉 𝛼 (𝑓 𝑎) for any 𝑎 : Ix(𝛽).

Proof Observe that 〈𝛾, 𝛿〉 := {𝛾, {𝛾, 𝛿}} : 𝑉 for 𝛾, 𝛿 : 𝑉 forms set-theoretic tuples
using the interpretation of the Pairing axiom from �eorem 12. We then de�ne 𝐹 :=
{〈𝜋𝑉 𝛽 𝑎, 𝜋𝑉 𝛼 (𝑓 𝑎)〉 | 𝑎 : Ix(𝛼)}. It is easy to see that 𝐹 is a set of pairs. Now, observe
that for 〈𝑥,𝑦〉, 〈𝑥 ′, 𝑦 ′〉 ∈ 𝐹 with 𝑥 ≡ 𝑥 ′ we know by injective representation of 𝛽 that there
is a unique 𝑎 : Ix(𝛽) with 𝜋𝑉 𝛽 𝑎 ≡ 𝑥 ≡ 𝑥 ′ and thus that 𝑦 ≡ 𝜋𝑉 𝛼 (𝑓 𝑎) ≡ 𝑦 ′ by de�ni-
tion of 𝐹 , meaning 𝐹 is a functional relation. Lastly, it is clear that 𝐹 : 𝛽 → 𝛼 and that
𝐹 (𝜋𝑉 𝛽 𝑎) = 𝜋𝑉 𝛼 (𝑓 𝑎) per construction of 𝐹 . �

Observe that the injective representation of 𝛼 is crucial for the functionality of 𝐹 . In-
deed, if there were 𝑎 ≠ 𝑏 with 𝜋𝑉 𝛼 𝑎 ≡ 𝜋𝑉 𝛼 𝑏 then it could be possible that 𝐹 (𝜋𝑉 𝛼 𝑎) ≡
𝜋𝑉 𝛽 (𝑓 𝑎) . 𝜋𝑉 𝛽 (𝑓 𝑏) ≡ 𝐹 (𝜋𝑉 𝛼 𝑏), which would make 𝐹 a non-functional relation.

With this, we can prove that the interpretation satis�es DC.

�eorem 40 (TT) For any set 𝛼 : 𝑉 and any formula 𝜑 (𝑥,𝑦) such that for all 𝛽 ∈ 𝛼 there
is a 𝛾 ∈ 𝛼 such that 𝜑 (𝛽,𝛾) then for any 𝛽 ∈ 𝛼 there is a set-theoretic function 𝐹 ∈ 𝜔 → 𝛼

with 𝐹 (0̂) ≡ 𝛽 and 𝜑 (𝐹 (𝑛), 𝐹 (�𝑛 + 1)) for any 𝑛 ∈ 𝜔 .
Proof As 𝛽 ∈ 𝛼 there is some 𝑎 : Ix(𝛼) with 𝛽 ≡ 𝜋𝑉 𝛼 𝑎. �en the theorem’s premise
together with the type-theoretic DC yields a type-theoretic function 𝑓 : N → Ix(𝛼) with
𝑓 0 = 𝑎 and 𝜑 (𝜋𝑉 𝛼 (𝑓 𝑛), 𝜋𝑉 𝛼 (𝑓 (𝑆 𝑛))) for all 𝑛 : N. �en the desired set-theoretic
function 𝐹 : 𝜔 → 𝛼 can be obtained via Lemma 39 as 𝜔 is injectively represented by
Proposition 38 �
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6.4 Interpreting ΠΣ𝑊𝐼-AC
We begin by reducing the claim of this section somewhat.

Lemma 41 (CZF) �ere is a class-level function 𝑖𝐴 (𝑎, 𝑏) mapping ΠΣ𝑊 -sets 𝐴 and ele-
ments 𝑎, 𝑏 ∈ 𝐴 to a ΠΣ𝑊 -set in bijection with Id𝐴 (𝑎, 𝑏).

Proof We prove this per induction on the class of ΠΣ𝑊 -sets.

• For elements of 𝜔 we de�ne per recursion

𝑖 (0, 0) := {∅} 𝑖 (0,𝑚 + 1) := ∅ 𝑖 (𝑛 + 1, 0) := ∅ 𝑖 (𝑛 + 1,𝑚 + 1) := 𝑖 (𝑛,𝑚)

It is easy to see that for any 𝑛,𝑚 ∈ 𝜔 we have 𝑖 (𝑛,𝑚) = Id𝜔 (𝑛,𝑚). For any 𝑛 ∈ 𝜔 and
𝑚,𝑚′ ∈ 𝑛 we can take 𝑖𝑛 (𝑚,𝑚′) := 𝑖𝜔 (𝑚,𝑚′) as 𝑛 ⊂ 𝜔 .

• Let 𝐴 and each 𝐵𝑎 for 𝑎 ∈ 𝐴 be ΠΣ𝑊 -sets for which 𝑖 has already been de�ned, then
we can take 𝑖Π𝑎∈𝐴.𝐵𝑎

(𝑓 , 𝑔) := Π𝑎 ∈ 𝐴. 𝑖𝐵𝑎
(𝑓 (𝑎), 𝑔(𝑎)). �en ∃𝑥 ∈ 𝑖Π𝑎∈𝐴.𝐵𝑎

(𝑓 , 𝑔) i�
∀𝑥 ∈ 𝐴.𝑓 (𝑎) = 𝑔(𝑎) i� 𝑓 = 𝑔. Furthermore, 𝑖Π𝑎∈𝐴.𝐵𝑎

(𝑓 , 𝑔) has at most one element as
all of the 𝑖𝐵𝑎

(𝑓 (𝑎), 𝑔(𝑎)) have at most one element per induction hypothesis.
• Let𝐴 and each 𝐵𝑎 for 𝑎 ∈ 𝐴 be ΠΣ𝑊 -sets for which 𝑖 has already been de�ned, then we

can take 𝑖Σ𝑎∈𝐴.𝐵𝑎
((𝑎, 𝑏), (𝑎′, 𝑏 ′)) := Σ𝑥 ∈ 𝑖𝐴 (𝑎, 𝑎′). Π𝑥 ∈ 𝑖𝐴 (𝑎, 𝑎′) .𝑖𝐵𝑎

(𝑏,𝑏 ′). Observe
that in this de�nition, if 𝑎 ≠ 𝑎′, it may be the case that 𝑏 ′ ∉ 𝐵𝑎 and 𝑖𝐵𝑎

(𝑏, 𝑏 ′) is thus
not de�ned. However, in this case Π𝑥 ∈ 𝑖𝐴 (𝑎, 𝑎′).𝑖𝐵𝑎

(𝑏, 𝑏 ′) = ∅, making 𝑖Σ𝑎∈𝐴.𝐵𝑎
well-

de�ned overall. Again, observe that 𝑖Σ ((𝑎, 𝑏), (𝑎′, 𝑏 ′)) is inhabited i� 𝑎 = 𝑎 and 𝑏 = 𝑏 ′.
By the inductive hypothesis, it can have at most one element, similarly to the previous
case.

• Let𝐴 be a ΠΣ𝑊 -sets for which 𝑖 has already been de�ned, then we de�ne 𝑖𝑊𝑎∈𝐴.𝐵𝑎
per

induction as follows

𝑖𝑊𝑎∈𝐴.𝐵𝑎
((𝑎, 𝑓 ), (𝑎′, 𝑔)) := Σ𝑥 ∈ 𝑖𝐴 (𝑎, 𝑎′) .Π𝑥 ∈ 𝑖𝐴 (𝑎, 𝑎′) .Π𝑏 ∈ 𝐵𝑎 . 𝑖𝑊𝑎∈𝐴.𝐵𝑎

(𝑓 (𝑏), 𝑔(𝑏))

this de�nition is a combination of the ideas behind the de�nitions of 𝑖 for Π- and
Σ-sets. �us, an inductive proof combining both arguments shows that indeed
𝑖𝑊𝑎∈𝐴.𝐵𝑎

((𝑎, 𝑓 ), (𝑎′, 𝑔)) is in bijection with Id𝑊𝑎∈𝐴.𝐵𝑎
((𝑎, 𝑓 ), (𝑎′, 𝑔)). �

Corollary 42 (CZF)

(i) Every ΠΣ𝑊𝐼 -set is in bijection with a ΠΣ𝑊 -set
(ii) ΠΣ𝑊𝐼 -AC is equivalent to ΠΣ𝑊 -AC.
(iii) ΠΣ𝑊𝐼 -PAx is equivalent to ΠΣ𝑊 -PAx

Proof
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(i) If𝐴 is a ΠΣ𝑊𝐼 -set, one can obtain a ΠΣ𝑊 -set 𝐵 in bijection with it by simply replacing
each instance of Id𝐶 (𝑐, 𝑐 ′) in its construction process with 𝑖𝐶 (𝑐, 𝑐 ′).

(ii) �is follows as any set in bijection with a base is a base itself.
(iii) �e desired surjection can be obtained by composing with the bijection. �

Next, we prove that every injectively represented set is a base. �is means it su�ces to
show that all ΠΣ𝑊 -sets can be injectively represented to conclude ΠΣ𝑊 -AC.

Lemma 43 (TT) Every injectively represented set is a base.

Proof Let 𝛼 : 𝑉 be injectively representend and let 𝐹 : 𝑉 be a function with dom(𝐹 ) ≡ 𝛼

such that ∀𝛽 ∈ 𝛼.∃𝛾 ∈ 𝐹 (𝛽). By a similar argument as Proposition 35 we can obtain a
function 𝑓 : Ix(𝛼) → 𝑉 from the proof of that formula, such that for all 𝑎 : Ix(𝛼) we
have 𝑓 𝑎 ∈ 𝐹 (𝜋𝑉 𝛼 𝑎). �en, taking 𝛾 := sup(Ix(𝛼), 𝑓 ), we can li� 𝜆𝑎.𝑎 : Ix(𝛼) → Ix(𝛾)
via Lemma 39 to obtain set-theoretic function 𝐺 ∈ 𝛼 → 𝛾 which also is a choice function
𝐺 : Π𝛽 ∈ 𝛼.𝐹 (𝛽). �

Before we can prove that𝑉 satis�es ΠΣ𝑊 -AC, we need to add an additional type-theoretic
axiom. Recall from Section 2.3 that our type theory lacks functional extensionality. How-
ever, it is required to prove �eorem 45.

De�nition 44 �e axiom of𝑈 functional extensionality (UFE) posits a term of type

Π𝐴 : 𝑈 .Π𝐵 : 𝐴→ 𝑈 .Π𝑓 : (Π𝐴.𝐵).Π𝑔 : (Π𝐴.𝐵) .(Π𝑎 : 𝐴.Id𝐵𝑎
(𝑓 𝑎, 𝑔 𝑎)) → IdΠ𝐴.𝐵 (𝑓 , 𝑔)

�eorem 45 (TT + UFE) �e ΠΣ𝑊𝐼 -AC holds.

Proof By Corollary 42 it su�ces to show ΠΣ𝑊 -AC. For this, we prove that the class of
injectively representable sets is ΠΣ𝑊 -closed. As the ΠΣ𝑊 -sets are the smallest ΠΣ𝑊 -
closed class, this means the ΠΣ𝑊 -sets are injectively representable and by Lemma 43 thus
bases, proving our claim.

• We have shown that𝜔 and its elements are injectively representable in Proposition 38.
• Let 𝐴 : 𝑉 be injectively represented and 𝐵 : Ix(𝐴) → 𝑉 be a family of injectively

represented sets. �en we claim Π̂ 𝐵 := {li�𝑔 | 𝑔 : Π𝑎 : Ix(𝐴) . Ix(𝐵 𝑎)} is an injective
representation ofΠ𝐴.𝐵 where li�𝑔 := {〈𝜋𝑉 𝐴𝑎, 𝜋𝑉 (𝐵 𝑎) (𝑔 𝑎)〉 | 𝑎 : 𝐴} li�s a dependent
function between indexes of injectively represented sets into a function ofΠ𝐴.𝐵 similar
to Lemma 39. As for any 𝐺 : 𝑉 the proof 𝐺 ∈ Π𝐴.𝐵 induces a dependent function
𝑔 : Π𝑎 : Ix(𝑎) . Ix(𝐵 𝑎) by Proposition 35, Π̂ 𝐵 does indeed contain all elements of
Π𝐴.𝐵. �at all elements of Π̂ 𝐵 are in Π𝐴.𝐵 is clear. For the injective representation,
pick li�(𝑔) ≡ li�(𝑔′) ∈ Π̂ 𝐵, then it is easy to see that this means that for all 𝑎 : Ix(𝐴),
𝜋𝑉 (𝐵 𝑎) (𝑔 𝑎) ≡ 𝜋𝑉 (𝐵 𝑎) (𝑔′ 𝑎) and by the injective representation of 𝐵 𝑎 that𝑔 𝑎 = 𝑔′ 𝑎,
yielding 𝑔 = 𝑔′ by UFE.
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• Let 𝐴 : 𝑉 be injectively represented and 𝐵 : Ix(𝐴) → 𝑉 be a family of injectively
represented sets. We claim that Σ̂𝐵 := {〈𝜋𝑉 𝐴𝑎, 𝜋𝑉 (𝐵 𝑎) 𝑏〉 | (𝑎, 𝑏) : Σ𝑎 : Ix(𝐴).Ix(𝐵 𝑎)}
is an injective representation of Σ𝐴.𝐵. It is easy to see that Σ̂𝐵 ≡ Σ𝐴.𝐵. For the
injectivity of the representation, pick 〈𝑥,𝑦〉 ≡ 〈𝑥 ′, 𝑦 ′〉 ∈ Σ̂𝐵, meaning 𝑥 ≡ 𝑥 ′ and
𝑦 ≡ 𝑦 ′. By the injective representation of 𝐴, we know that there is a unique 𝑎 : Ix(𝐴)
with 𝜋𝑉 𝐴𝑎 = 𝑥 ≡ 𝑥 ′ and thus that 𝑦 ≡ 𝑦 ′ ∈ 𝐵 𝑎. By the injective representation of
𝐵 𝑎, this means that there is a unique 𝑏 : Ix(𝐵 𝑎) such that 𝜋𝑉 (𝐵 𝑎) 𝑏 = 𝑦 ≡ 𝑦 ′. �en
(𝑎, 𝑏) : Σ𝑎 : 𝐴.𝐵 𝑎 is unique such that 𝜋𝑉 (Σ̂𝐵) (𝑎, 𝑏) = 〈𝑥,𝑦〉 ≡ 〈𝑥 ′, 𝑦 ′〉.

• Let 𝐴 : 𝑉 be injectively represented and 𝐵 : Ix(𝐴) → 𝑉 be a family of
injectively represented sets. We claim that 𝑊̂ 𝐵 := {set𝑤 | 𝑤 : 𝑊𝑎 :
Ix(𝐴) .Ix(𝐵 𝑎)} is an injective representation of 𝑊𝐴.𝐵 where set(sup(𝑎, 𝑓 )) :=
〈𝜋𝑉 𝐴𝑎, {〈𝜋𝑉 (𝐵 𝑎) 𝑏, set(𝑓 𝑏)〉 | 𝑏 : Ix(𝐵 𝑎)}〉. Observe that injective representation of
the 𝐵 𝑎 is required for this to be well-de�ned. Two simple inductive arguments show
that 𝑊̂ 𝐵 ≡𝑊𝐴.𝐵. �e injectivity of the representation is proven per induction on the
members of 𝑊𝑎 : Ix(𝐴) .Ix(𝐵 𝑎): Suppose set(sup(𝑎′, 𝑓 )) ≡ set(sup(𝑏,𝑔)) ∈ 𝑊̂ 𝐵

and we already knew that set(𝑓 𝑏) for each 𝑏 : 𝐵 𝑎 was represented injec-
tively. �en we know that 𝜋𝑉 𝐴𝑎 ≡ 𝜋𝑉 𝐴𝑎′ and thus that 𝑎 = 𝑎′. �en
{〈𝜋𝑉 (𝐵 𝑎) 𝑏, set(𝑓 𝑏)〉 | 𝑏 : Ix(𝐵 𝑎)} ≡ {〈𝜋𝑉 (𝐵 𝑎) 𝑏, set(𝑔𝑏)〉 | 𝑏 : Ix(𝐵 𝑎)} means
that set(𝑓 𝑏) ≡ set(𝑔𝑏) for each 𝑏 : 𝐵 and per IH thus that 𝑓 𝑏 = 𝑔𝑏, yielding 𝑓 = 𝑔 by
UFE. �en sup(𝑎, 𝑓 ) = sup(𝑎′, 𝑔) overall. �

6.5 Interpreting ΠΣ𝑊𝐼-PAx
Aczel gives two di�erent proofs for this in [2] and [3]. In this section, we cover the proof
from [2]. �e proof requires two additional axioms.

De�nition 46 For every predicate 𝑃 : 𝑈 → Ty, the axiom of 𝑈 -closedness (UC) posits
an induction scheme

𝑃 0→ 𝑃 1→ 𝑃 N→
(Π𝐴 : 𝑈 .Π𝐵 : 𝑈 . 𝑃 𝐴→ 𝑃 𝐵 → 𝑃 (𝐴 + 𝐵)) →
(Π𝐴 : 𝑈 .Π𝑎 : 𝐴.Π𝑏 : 𝐴. 𝑃 𝐴→ Id𝐴 (𝑎, 𝑏)) →
(Π𝐴 : 𝑈 .Π𝐵 : 𝐴→ 𝑈 . 𝑃 𝐴→ (Π𝑎 : 𝐴. 𝑃 (𝐵 𝑎)) → 𝑃 (Π𝑎 : 𝐴.𝐵 𝑎)) →
(Π𝐴 : 𝑈 .Π𝐵 : 𝐴→ 𝑈 . 𝑃 𝐴→ (Π𝑎 : 𝐴. 𝑃 (𝐵 𝑎)) → 𝑃 (Σ𝑎 : 𝐴.𝐵 𝑎)) →
(Π𝐴 : 𝑈 .Π𝐵 : 𝐴→ 𝑈 . 𝑃 𝐴→ (Π𝑎 : 𝐴. 𝑃 (𝐵 𝑎)) → 𝑃 (𝑊𝑎 : 𝐴.𝐵 𝑎)) →
Π𝐴 : 𝑈 . 𝑃 𝐴

Intuitively, the axiom of𝑈 -closedness states that types formed via the rules we have given
in Section 2.3 are the only members of𝑈 . �is means𝑈 is closed o� from future extensions
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which could add additional kinds of types. Such an axiom is highly untypical in type
theory where it is common to leave the exact internal structure of a universe such as 𝑈
unspeci�ed. A motivating example for this can be found in Aczel’s own work: In [2], he
gives the proof of the interpretation ΠΣ𝐼 -PAx using UC for the �rst time. However, the
type theory he considers in that paper does not have𝑊 -types. In [3], he adds𝑊 -types to
interpret the REA, which forces him to adapt his proof toΠΣ𝑊𝐼 -PAx and, critically,modify
UC to account for𝑊 -types. �is demonstrates that UC is not very canonical and should
thus be avoided. Indeed, in [3], Aczel gives a di�erent way of obtaining a model for CZF
+ ΠΣ𝑊𝐼 -PAx which does not make use of UC. We have nonetheless opted to also give the
�rst proof in terms of UC as knowing that proof makes the somewhat more complicated
proof in Section 7 easier to understand.

�e second axiom required is the principle of uniqueness of identity proofs.

De�nition 47 �e principle of 𝑈 -restricted uniqueness of identity proofs (UUIP)
posits a term

UUIP : Π𝐴 : 𝑈 .Π𝑎 : 𝐴.Π𝑏 : 𝐵.Π𝑝 : Id𝐴 (𝑎, 𝑏).Π𝑞 : Id𝐴 (𝑎, 𝑏) . 𝑝 = 𝑞

Note that this principle is contradicts univalent extensions of the type theory, such as [25],
which crucially rely on the existence of di�erent proofs of the same identity statement.

Lemma 48 (TT + UE + UC + UUIP) For any type𝐴 : 𝑈 there exists aΠΣ𝑊𝐼 -set 𝛼 which
is injectively represented with Ix(𝛼) = 𝐴.

Proof We prove the claim per induction on 𝐴 : 𝑈 via UC.

• 𝐴 = 0, 𝐴 = 1, 𝐴 = N: For these, pick 0̂, 1̂ ≡ {̂0 | 𝑥 : 1} and 𝜔 .
• 𝐴 = 𝐵 +𝐶: Per IH, there are suitable sets 𝛽,𝛾 : 𝑉 with Ix(𝛽) = 𝐵 and Ix(𝛾) = 𝐶 . �en

take 𝛼 = {𝑅+ (𝜆𝑏. 〈̂0, 𝜋𝑉 𝛽 𝑏〉) (𝜆𝑐. 〈̂1, 𝜋𝑉 𝛾 𝑐〉) 𝑠 | 𝑠 : 𝐴+𝐵} which is injectively presented
as 𝛼 and 𝛽 are. It is a ΠΣ𝑊𝐼 -set as 𝛼 ≡ Σ̂2.𝐹 with 𝐹 := {(̂0, 𝛽), (̂1, 𝛾)}.

• 𝐴 = Id𝐵 (𝑏, 𝑏 ′): Let Ix(𝛽) = 𝐵 be the set for 𝐵 obtained via IH. Now pick the
set 𝛼 := {̂0 | 𝑥 : Id𝐴 (𝑏, 𝑏 ′)} by the injective representation of 𝛽 we obtain 𝛼 ≡
Id𝛽 (𝜋𝑉 𝛽 𝑏, 𝜋𝑉 𝛽 𝑏 ′). For the injective representation of 𝛼 , observe that by UUIP,
Id𝐵 (𝑏, 𝑏 ′) has at most one inhabitant.

• 𝐴 = Π𝐵.𝐶,𝐴 = Σ𝐵.𝐶,𝐴 = 𝑊𝐴.𝐵: Observe that the IH together with the AC yield a
family 𝐹 : 𝐴 → 𝑉 representing with Ix(𝐹 𝑎) = 𝐶 𝑎 for 𝑎 : 𝐴. �en choose Π̂ 𝐹, Σ̂ 𝐹 and
𝑊̂ 𝐹 from �eorem 45. �

Corollary 49 (TT + UE + UC + UUIP) �e ΠΣ𝑊𝐼 -PAx holds.

Proof By �eorem 45 all ΠΣ𝑊𝐼 -sets are bases. For a set 𝛽 = {𝑓 𝑎 | 𝑎 : 𝐴}, we obtain an
injectively presented ΠΣ𝑊𝐼 -set 𝛼 with Ix(𝑢) = 𝐴 via Lemma 48. �en 𝑓 : 𝐴 → 𝑉 can be
li�ed to an 𝐹 ∈ 𝛼 → 𝛽 via Lemma 39. Clearly 𝛽 ≡ im(𝐹 ). �
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Observe that the UUIP was required for the case of Id𝐵 (𝑏,𝑏 ′) to show that the represen-
tation of Id𝛽 (𝜋𝑉 𝛽 𝑏, 𝜋𝑉 𝛽 𝑏 ′) is injective. For �eorem 45 we circumvent this problem by
reducing ΠΣ𝑊𝐼 to ΠΣ𝑊 via Corollary 42, thus not being required to give a direct rep-
resentation of Id-sets via the Id-type. However, for Lemma 48, it is strictly required that
Ix(𝑣) = Id𝐵 (𝑏,𝑏 ′) meaning the use of the UUIP cannot be avoided.

7 Internalizing Aczel’s construction
In [2], Aczel proves ΠΣ𝐼 -PAx using the axiom of 𝑈 -closedness as demonstrated in Sec-
tion 6.5. When extending his type theory with𝑊 -types for [3], he recognizes the restric-
tiveness of 𝑈 -closedness and gives an alternative method of obtaining a model of CZF +
ΠΣ𝑊𝐼 -PAx: Instead of interpreting it into type theory like the previous axioms, he builds
an innermodel of CZF +DC + REA +ΠΣ𝑊𝐼 -PAx over CZF +DC + REA +ΠΣ𝑊𝐼 -AC. Aswe
illustrate in this section, this inner model should be viewed as internalizing Aczel’s type-
theoretic construction into set theory. Indeed, all constructions employed in the proofs of
this section are extremely similar to those in the type-theoretical interpretation.

De�nition 50 We say a class𝑀 satis�es a formula 𝜑 , wri�en𝑀 � 𝜑 , if 𝜑 holds when all
of its unrestricted quanti�cations are restricted to 𝑀 . We call a class 𝑀 an inner model
of CZF if it satis�es all axioms of CZF.

Note that this notion of an inner model is much weaker than that commonly employed in
the study of ZFC as it also considers every set-model of CZF an inner model.

To chose 𝑀 , we �rst need to rephrase the proof from Section 6.5: Observe that the def-
inition 𝑉 := 𝑊𝐴 : 𝑈 .𝐴 could be rephrased as 𝑉 := 𝐻 (𝑈 ) from De�nition 20, that is, as
the type of 𝑈 -images. Knowing each 𝛼 : 𝑉 to be a 𝑈 -image, the proof of Section 6.5 uses
the internal structure given to 𝑈 by 𝑈 -closedness to observe that each 𝐴 : 𝑈 can be in-
jectively represented as a ΠΣ𝑊𝐼 -set and the notion of all 𝛼 : 𝑉 being 𝑈 -images can be
internalized as all 𝛼 : 𝑉 being ΠΣ𝑊𝐼 -images. For the internal model, we thus directly
chose𝑀 = 𝐻 (ΠΣ𝑊𝐼 ) which then clearly yields𝑀 � ΠΣ𝑊𝐼 -PAx.

Proposition 51 (CZF + REA)

(i) If 𝑎, 𝑏 ∈ 𝑀 then {𝑎, 𝑏} ∈ 𝑀 and (𝑎, 𝑏) ∈ 𝑀
(ii) If 𝐵 ∈ ΠΣ𝑊𝐼 and 𝑓 : 𝐵 → 𝑀 then 𝑓 ∈ 𝑀
(iii) If 𝐴 ∈ ΠΣ𝑊𝐼 then 𝐴 ∈ 𝑀

Proof

(i) {𝑎, 𝑏} is the image of {(0, 𝑎), (1, 𝑏)} : 2 → 𝑀 meaning {𝑎, 𝑏} ∈ 𝑀 . �en clearly also
(𝑎, 𝑏) = {𝑎, {𝑎, 𝑏}} ∈ 𝑀 .
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(ii) Clearly, 𝑓 = im(𝑔) with 𝑔(𝑏) = (𝑏, 𝑓 (𝑏)) : 𝐵 → 𝑀 as (𝑏, 𝑓 (𝑏)) ∈ 𝑀 by (i).
(iii) To show that 𝐴 ∈ 𝑀 , it su�ces to show that each 𝑥 ∈ 𝑀 for each 𝑥 ∈ 𝐴 as 𝐴 then is

the image of the identity function 1 : 𝐴 → 𝑀 and thus 𝐴 ∈ 𝑀 itself. We do this per
induction on the construction rules used for 𝐴.
• 𝐴 ∈ 𝜔 : We prove 𝐴 ∈ 𝑀 per strong induction on 𝐴 ∈ 𝜔 : As 𝐴 = {𝐵 ∈ 𝜔 | 𝐵 ≤ 𝐴}

we know per IH that 𝐵 ∈ 𝑀 for each 𝐵 ∈ 𝐴. �en 𝐴 is the image of the identity
function 1(𝑥) = 𝑥 : 𝐴→ 𝑀 and thus 𝐴 ∈ 𝑀 .

• 𝐴 = 𝜔 : �e previous case shows that 𝜔 ⊆ 𝑀 .
• 𝐴 = Σ𝐵.𝐶 : We know 𝐴 ⊆ 𝑀 and each 𝐵𝑎 ⊆ 𝑀 for 𝑎 ∈ 𝐴. By (i) we thus know that
(𝑏, 𝑐) ∈ 𝑀 for any 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶𝑏 .

• 𝐴 = Π𝐵.𝐶 : We know 𝐵 ⊆ 𝑀 and each 𝐶𝑏 ⊆ 𝑀 for 𝑏 ∈ 𝐵. �en an 𝑓 : Π𝐵.𝐶 is
𝑓 : 𝐵 → 𝑀 and thus 𝑓 ∈ 𝑀 by (ii).

• 𝐴 = 𝑊𝐵.𝐶 : We know 𝐵 ⊆ 𝑀 and each 𝐶𝑏 ⊆ 𝑀 for 𝑏 ∈ 𝐵. We prove this per
induction on (𝑏, 𝑓 ): If each 𝑓 (𝑐) ∈ 𝑀 for 𝑐 ∈ 𝐶𝑏 then 𝑓 : 𝐶𝑏 →𝑊𝐵.𝐶 is 𝑓 : 𝐶𝑏 → 𝑀 ,
meaning 𝑓 ∈ 𝑀 by (ii) and (𝑏, 𝑓 ) ∈ 𝑀 by (i).

• 𝐴 = Id𝐵 (𝑏,𝑏 ′) : We have shown 0 ∈ 𝑀 in the �rst case. �

�eorem 52 (CZF + REA + 𝚷𝚺𝑾𝑰 -AC) 𝑀 � ΠΣ𝑊𝐼 -AC and𝑀 � ΠΣ𝑊𝐼 -PAx

Proof First, note that 𝑀 � 𝐴 is a ΠΣ𝑊𝐼 -set i� 𝐴 is a ΠΣ𝑊𝐼 -set: Simply observe that
ΠΣ𝑊𝐼 ⊆ 𝑀 by Proposition 51 (iii) means restricting the unrestricted quanti�cations of
“𝐴 is a ΠΣ𝑊𝐼 -set” to𝑀 does not ma�er.

For ΠΣ𝑊𝐼 -AC, it thus su�ces to observe that Proposition 51 (ii) means that any choice
function 𝑓 : Π𝐴.𝐵 with 𝐴 ∈ ΠΣ𝑊𝐼 already has 𝑓 ∈ 𝑀 .

For ΠΣ𝑊𝐼 -PAx, observe that 𝐴 ∈ 𝑀 = 𝐻 (ΠΣ𝑊𝐼 ) means there is a 𝐵 ∈ 𝑃𝑆𝑊 𝐼 and an
𝑓 : 𝐵 → 𝑀 such that 𝐴 = im(𝑓 ). Again, by Proposition 51 (ii), 𝑓 ∈ 𝑀 . �

It remains to show that 𝑀 actually is an inner model of CZF. For this, we give an 𝑀-
analogon to the translation |𝜑 | : 𝑈 for restricted sentences 𝜑 . It is needed to prove that
𝑀 � Restricted Separation.

Lemma 53 (CZF + REA + 𝚷𝚺𝑾𝑰 -AC) For any restricted sentence 𝜑 with parameters in
𝑀 there exists a ΠΣ𝑊𝐼 -set |𝜑 |𝑀 such that 𝜑 holds i� ∃𝑥 .𝑥 ∈ |𝜑 |𝑀 .

Proof We de�ne |𝜑 |𝑀 per recursion on 𝜑 .

• 𝜑 = ⊥: Simply pick |⊥|𝑀 := ∅ as ∅ has no elements.
• 𝜑 = 𝜓 ∧𝜓 ′ : We pick |𝜓 ∧𝜓 ′ |𝑀 := |𝜓 |𝑀 × |𝜓 ′ |𝑀 and observe that

𝜓 ∧𝜓 ′ i� (∃𝑥 .𝑥 ∈ |𝜓 |𝑀 ) ∧ (∃𝑥 .𝑥 ∈ |𝜓 ′ |𝑀 ) i� ∃𝑥 .𝑥 ∈ |𝜓 ∧𝜓 ′ |𝑀
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• 𝜑 = 𝜓 ∨𝜓 ′ : We pick |𝜓 ∨𝜓 ′ |𝑀 := |𝜓 |𝑀 + |𝜓 ′ |𝑀 and reason similarly to𝜓 ∧𝜓 ′.
• 𝜑 = 𝜓 → 𝜓 ′ : We pick |𝜓 → 𝜓 ′ |𝑀 := |𝜓 |𝑀 → |𝜓 ′ |𝑀 . If 𝑓 : |𝜓 |𝑀 → |𝜓 ′ |𝑀 exists and 𝜓

holds then there is some 𝑥 ∈ |𝜓 |𝑀 and then 𝑓 (𝑥) ∈ |𝜓 ′ |𝑀 means that𝜓 ′ holds as well.
Now suppose 𝜓 → 𝜓 ′ held, then clearly ∀𝑥 ∈ |𝜓 |𝑀 .∃𝑦 ∈ |𝜓 ′ |𝑀 using the IH. As |𝜓 |𝑀
is a base by ΠΣ𝑊𝐼 -AC, there thus exists a function 𝑓 : |𝜓 |𝑀 → |𝜓 ′ |𝑀 .

• 𝜑 = ∀𝑥 ∈ 𝐴.𝜓 : We know that 𝐴 = im(𝑓 ) for some 𝑓 : 𝐵 → 𝑀 and 𝐵 ∈ ΠΣ𝑊𝐼 .
Now take |∀𝑥 ∈ 𝐴.𝜓 |𝑀 := Π𝑏 ∈ 𝐵.|𝜓 [𝑓 (𝑏)/𝑥] |𝑀 . Correctness is similar to the case of
𝜓 → 𝜓 ′.

• 𝜑 = ∃𝑥 ∈ 𝐴.𝜓 : We know that 𝐴 = im(𝑓 ) for some 𝑓 : 𝐵 → 𝑀 and 𝐵 ∈ ΠΣ𝑊𝐼 . Now
take |∃𝑥 ∈ 𝐴.𝜓 |𝑀 := Σ𝑏 ∈ 𝐵.|𝜓 [𝑓 (𝑏)/𝑥] |𝑀 . Correctness is similar to the case of𝜓 ∧𝜓 ′.

• 𝜑 = (𝐴 = 𝐴′) : We de�ne and verify |𝐴 = 𝐴′ |𝑀 per set-induction on 𝐴. We know
𝐴 = im(𝑓 ) and 𝐴′ = im(𝑓 ′) for 𝑓 : 𝐵 → 𝑀, 𝑓 ′ : 𝐵′ → 𝑀 and 𝐵, 𝐵′ ∈ ΠΣ𝑊𝐼 . �en we
de�ne

|𝐴 = 𝐴′ |𝑀 := (Π𝑏 ∈ 𝐵.Σ𝑏 ′ ∈ 𝐵′. |𝑓 (𝑏) = 𝑓 ′(𝑏 ′) |𝑀 )×(Π𝑏 ′ ∈ 𝐵′.Σ𝑏 ∈ 𝐵. |𝑓 (𝑏) = 𝑓 ′(𝑏 ′) |𝑀 )

�is is well-de�ned as we may assume each |𝑓 (𝑏) = 𝑥 |𝑀 to be de�ned per IH. Combin-
ing the IH, the results for the logical connectives, and that 𝐴 = im(𝑓 ) and 𝐴′ = im(𝑓 ′)
we conclude that ∃𝑥 .𝑥 ∈ |𝐴 = 𝐴′ |𝑀 i� 𝐴 = 𝐴′ by extensionality.

• 𝜑 = (𝐴 ∈ 𝐴′) : We know that 𝐴′ = im(𝑓 ) for 𝑓 : 𝐵 → 𝑀 and 𝐵 ∈ ΠΣ𝑊𝐼 , and pick
|𝐴 ∈ 𝐴′ |𝑀 := Σ𝑏 ∈ 𝐵.|𝐴 = 𝑓 (𝑏) |𝑀 . �e correctness of that de�nition directly follows
from that of |𝐴 = 𝑓 (𝑏) |𝑀 . �

Observe that all de�nitions above are exactly the same as those for |𝜑 | : 𝑈 , simply ex-
pressed in set theory instead of type theory.

�eorem 54 (CZF + REA + 𝚷𝚺𝑾𝑰 -AC) 𝑀 is a regular, inner model of CZF

Proof For regularity, observe that 𝑀 is transitive as ever 𝑀 3 𝐴 = im(𝑓 ) for some 𝑓 :
𝐵 → 𝑀 and thus 𝐴 ⊆ 𝑀 . Now suppose there was some 𝑅 : 𝐴 n 𝐶 . By ΠΣ𝑊𝐼 -AC this
induces a function 𝑔 : 𝐵 → 𝐶 with 𝑅 : 𝐴 ⊲⊳ im(𝑔) and im(𝑔) ∈ 𝑀 .

Now we show that𝑀 satis�es all axioms of CZF.

• Equality: �is simply carries over from the ambient CZF.
• Paring: �is has been proven in Proposition 51 (i).
• Union: Pick 𝑀 ∈ 𝐴 = im(𝑓 : 𝐵 → 𝑀). �en for each 𝑏 ∈ 𝐵, 𝑓 (𝑏) ∈ 𝑀 and there

thus is a 𝐶𝑏 with 𝑓 (𝑏) = im(𝑔𝑏 : 𝐶𝑏 → 𝑀). �en
⋃
𝐴 = im(ℎ : Σ𝐵.𝐶 → 𝑀) where

ℎ((𝑏, 𝑐)) = 𝑔𝑏 (𝑐) is de�ned as 𝑔− : 𝐵 → 𝐶𝑏 → 𝑀 can be obtained because 𝐵 is a base
by the ΠΣ𝑊𝐼 -AC.

• Restricted Separation: Let𝑀 3 𝐴 = im(𝑓 : 𝐵 → 𝑀) and𝜑 (𝑥) be a restricted formula.
�en {𝑎 ∈ 𝐴 | 𝜑 (𝑎)} = im(𝑔 : Σ𝑏 ∈ 𝐵.|𝜑 (𝑓 (𝑏)) |𝑀 → 𝑀) where 𝑔(𝑏, 𝑝) = 𝑓 (𝑏).
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• Strong collection: �is follows directly from the regularity of𝑀 .
• Subset collection: Pick 𝐴, 𝐵 ∈ 𝑀 with 𝐴 = im(𝑓 : 𝐶 → 𝑀) and 𝐵 = im(𝑔 : 𝐷 → 𝑀)

and a formula 𝜑 (𝑥,𝑦, 𝑧). �en the set im(ℎ : (𝐶 → 𝐷) → 𝑀) given by ℎ(𝑟 : 𝐶 →
𝐷) := im(𝑔 ◦ 𝑟 : 𝐶 → 𝐵) has the desired property: Suppose there was some 𝑈 ∈
𝑀 such that −→𝜑 (𝐴, 𝐵,𝑈 ) then by ΠΣ𝑊𝐼 -AC this induces a function 𝑟 : 𝐶 → 𝐷 with
𝜑 (𝑓 (𝑐), 𝑔(𝑟 (𝑐)),𝑈 ). �en, clearly,←→𝜑 (𝐴,ℎ(𝑟 ),𝑈 ).

• In�nity: We have shown that 𝜔 ∈ 𝑀 in Proposition 51 (iii).
• Set induction: �is simply carries over from the ambient CZF. �

Proposition 55 (CZF + REA + DC) 𝑀 � DC

Proof Suppose𝐴 ∈ 𝑀 and pick a formula 𝜑 (𝑥,𝑦) with ∀𝑎 ∈ 𝐴.∃𝑏 ∈ 𝐴.𝜑 (𝑎, 𝑏). For a given
𝑎 ∈ 𝐴 there is a choice function 𝑓 : 𝜔 → 𝐴 by DC. It remains to show that 𝑓 ∈ 𝑀 . For
this, simply observe that 𝑓 = im(𝑔 : 𝜔 → 𝑀) with 𝑔(𝑛) := (𝑛, 𝑓 (𝑛)) where we know that
𝑓 (𝑛) ∈ 𝑀 as 𝐴 ∈ 𝑀 and by the transitivity of𝑀 . �

Proposition 56 (CZF + REA + 𝚷𝚺𝑾𝑰 -AC) 𝑀 � REA

Proof By Lemma 15 we may pick some transitive 𝐴 ∈ 𝑀 . We know im(𝑓 : 𝐵 → 𝑀) = 𝐴

and each 𝐴 3 𝑎 = (𝑓𝑎 : 𝐵𝑎 → 𝑀). By ΠΣ𝑊𝐼 -AC we can obtain from this 𝐵 : 𝐴 → 𝑀 and
𝑓 : Π𝑎 ∈ 𝐴.𝐵𝑎 → 𝑀 . Now consider 𝐶 :=𝑊𝑎 ∈ 𝐴.𝐵𝑎 and de�ne 𝐷 := im(𝑔 : 𝐶 → 𝑀) with
𝑔(𝑎, 𝑓 ) := im(𝑔 ◦ 𝑓 ). We claim that 𝐷 is the regular extension of 𝐴.

• 𝐴 ⊆ 𝐷: As 𝐴 is transitive, we may prove this per set-induction on 𝑎 ∈ 𝐴: Suppose
each 𝑏 ∈ 𝑎 was in 𝐷 . With the ΠΣ𝑊𝐼 -AC, this yields a function ℎ : 𝐵𝑎 → 𝐶 with
𝑓𝑎 (𝑏) = 𝑔(ℎ(𝑏)) for each 𝑏 ∈ 𝐵𝑎 . �us 𝑎 = im(ℎ) = 𝑔(𝑎, ℎ) and thereby 𝑎 ∈ 𝐷 .

• 𝐷 is transitive: Pick 𝑑 ∈ 𝐷 then 𝑑 = 𝑔(𝑎, ℎ) for 𝑎 ∈ 𝐴 and ℎ : 𝐵𝑎 → 𝐶 . But this means
for each 𝑑 ′ ∈ 𝑑 there is a 𝑏 ∈ 𝐵𝑎 such that 𝑑 ′ = 𝑔(ℎ(𝑏)), meaning 𝑑 ′ ∈ 𝐷 .

• 𝐷 is closed under relational collection: If 𝑑 = 𝑔(𝑎, ℎ) ∈ 𝐷 and there is an 𝑅 : 𝑑 n 𝐷
this induces, by ΠΣ𝑊𝐼 -AC, a function 𝑐 : 𝐵𝑎 → 𝐶 such that (𝑔(ℎ(𝑏)), 𝑔(𝑐 (𝑏))) ∈ 𝑅.
�en take 𝑑 ′ := 𝑔(𝑎, 𝑐) for a set 𝑑 ′ ∈ 𝐷 with 𝑅 : 𝑑 ⊲⊳ 𝑑 ′. �
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