
Randomising Realisability?

Merlin Carl1, Lorenzo Galeotti2, and Robert Passmann3,4

1 Europa-Universität Flensburg, 24943 Flensburg, Germany
2 Amsterdam University College, Postbus 94160, 1090 GD Amsterdam, The

Netherlands
3 Institute for Logic, Language and Computation, Faculty of Science, University of

Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands
4 St John’s College, University of Cambridge, Cambridge CB2 1TP, England

Abstract. We consider a randomised version of Kleene’s realisability
interpretation of intuitionistic arithmetic in which computability is re-
placed with randomised computability with positive probability. In par-
ticular, we show that (i) the set of randomly realisable statements is
closed under intuitionistic first-order logic, but (ii) different from the
set of realisable statements, that (iii) ”realisability with probability 1”
is the same as realisability and (iv) that the axioms of bounded Heyt-
ing’s arithmetic are randomly realisable, but some instances of the full
induction scheme fail to be randomly realisable.

1 Introduction

Have you met skeptical Steve? Being even more skeptical than most mathemati-
cians, he only believes what he actually sees. To convince him that there is an
x such that A, you have to give him an example, together with evidence that
A holds for that example. To convince him that A→ B, you have to show him
a method for turning evidence of A into evidence of B, and so on. Given that
Steve is “a man provided with paper, pencil, and rubber, and subject to strict
discipline” [9], we can read “method” as “Turing program”, which leads us to
Kleene’s realisability interpretation of intuitionistic logic [4].

Steve has a younger brother, pragmatical Per. Like Steve, Per is equipped
with paper and pencil; however, he also has a coin on his desk, which he is allowed
to throw from time to time while performing computations. By his pragmatical
nature, he does not require being successful at obtaining evidence for a given
proposition A every time he gives it a try; he is quite happy when it works with
probability (1 − 1

10100 ) or so, which makes it highly unlikely to ever fail in his
lifetime.

Per wonders whether his pragmatism is more powerful than Steve’s method.
After all, he knows about Sacks’s theorem [1, Corollary 8.12.2] that every func-
tion f : ω → ω that is computable using coin throws with positive probability is
recursive. Can he find evidence for some claims where Steve fails? He also notices

? The authors would like to thank Rosalie Iemhoff and Jaap van Oosten for discussions
about the material included in this paper.



2 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

that turning such “probabilistic evidence” for A into “probabilistic evidence” for
B is a job considerably different (and potentially harder) than turning evidence
for A into evidence for B. Could it be that there are propositions whose truth
Steve can see, but Per cannot? Although Per is skeptical, e.g., of the law of
the excluded middle just like Steve, he is quite fond of the deduction rules of
intuitionistic logic; thus, he wonders whether the set of statements for which he
can obtain his “highly probably evidence” is closed under these.

Steve is unhappy with his brother’s sloppiness. After all, even probability
(1 − 1

10100 ) leaves a small, albeit nonzero, chance of getting things wrong. He
might consider changing his mind if that chance was brought down to 0 by
strengthening Steve’s definition, demanding that the “probabilistic evidence”
works with probability 1. However, he is only willing to give up absolute security
if that leads to evidence for more statements. Thus, he asks whether “probability
1 evidence” is the same as “evidence”.

These and other questions will be considered in this paper. To begin with, we
will model Per’s attitude formally, which gives us the concepts of µ-realisability
and almost sure realisability. We will then show the following: There are state-
ments that are µ-realisable, but not realisable (Theorem 14). The set of µ-
realisable statements are closed under deduction in intuitionistic predicate cal-
culus (Theorem 18); in a certain sense to be specified below, the law or excluded
middle fails for µ-realisability (Lemma 16). The axioms of Heyting arithmetic
except for the induction schema are µ-realised (Theorem 19); and there are in-
stances of the induction schema that are not µ-realised (Theorem 20). Almost
sure realisability is the same as realisability (Theorem 25).

2 Preliminaries

Realisability is one of the most common semantic tools for the study of con-
structive theories and was introduced by Kleene in his seminal 1945 paper [4].
In this work, Kleene connected intuitionistic arithmetic—nowadays called Heyt-
ing arithmetic—and recursive functions. The essential idea is that a statement
is true if and only if there is a recursive function witnessing its truth. For more
details on realisability, see also Troelstra’s 344 [8], and van Oosten’s paper [7]
for an excellent historical survey of realisability. In particular, see [8, Definition
3.2.2] for a definition of realisability in terms of recursive functions. In what
follows, we denote this classical relation of realisability by ‘
’.

As mentioned in the introduction, we want to give pragmatic Per the ability
to throw coins while he tries to prove the truth of a statement. We will imple-
ment this coin throwing by allowing Per to access an infinite binary sequence.
Therefore, we will make use of the Lebesgue measure on Cantor space 2ω. For
a full definition, see Kanamori’s section on ‘Measure and Category’ [2, Chapter
0]. We denote the Lebesgue measure by µ. Recall that a set A is Lebesgue mea-
surable if and only if there is a Borel set B such that the symmetric difference
of A and B is null. Given an element u of Cantor space we will denote by Nu�n

the basic clopen set {v ∈ 2ω ; u � n ⊂ v} where as usual u � n is the prefix of u



Randomising Realisability 3

of length n, and u � n ⊂ v if u � n is a prefix of v. We recall that given a binary
sequence of length n, we have that Ns is measurable and µ(Ns) = 1

2n .
We fix a computable enumeration (pn)n∈N of programs. Moreover, given a

program p that uses an oracle and an element u ∈ 2ω we will denote by pu the
program p where the oracle tape contains u at the beginning of the computation.
Moreover, given n ∈ N we will denote by p(n) the program that for every oracle
u ∈ 2ω returns pu(n).

A sentence in the language of arithmetic is said to be ∆0 if it does not contain
unbounded quantifiers. We will say that a sentence is a pretty Σ1 if it is ∆0 or of
the form Q0Q1 . . . Qnψ where ψ is ∆0 and Qi is either an existential quantifier
or a bounded universal quantifier for every 0 ≤ i ≤ n. Similarly, we will say that
a sentence is a universal Π1 if it is ∆0 or of the form Q0Q1 . . . Qnψ where ψ is
∆0 and Qi is a universal quantifier for every 0 ≤ i ≤ n

Throughout this paper, we fix codings for formulas and programs. In order
to simplify notation, we will use ϕ to refer to both the formula and its code, and
similar for programs p. We end this section with some lemmas on realisability
of pretty Σ1 and universal Π1 formulas.

Lemma 1. There is a program p that for every pretty Σ1 sentence ϕ does the
following: If ϕ is true then p(ϕ) halts and outputs a realiser of ϕ and otherwise,
it diverges.

Proof. First we define the program for ∆0 formulas by recursion.

(1) If ϕ is atomic, p first checks if ϕ is true. If so then p returns any natural
number, otherwise, it loops.

(2) ϕ ≡ ψ0 ∧ ψ1: the program p checks whether ψ0 and ψ1 are true. If both
computations are successful then p returns the code of a program q which returns
p(ψ0) on input 0 and p(ψ1) on input 1.

(3) ϕ ≡ ψ0∨ψ1 the program p starts checking if at least one between ψ0 and
ψ1 is true. If one of the two computations is successful then p returns the code
of a program q which returns p(ψi) on input 1 and i on input 0 where i is the
smallest i such that ψi is true. Otherwise the program loops.

(4) ϕ ≡ ψ0 → ψ1 then p first checks whether ψ is true if not p returns 0
otherwise returns a program that for every input returns p(ψ1).

(5) ϕ ≡ ∃x < nψ then the program p checks if there is m < n such that ψ(m)
is true. If so then p returns the code of a program q which returns p(ψ(m)) on
input 0 and m on input 1 where m is the smallest natural number such that
ψ(m) is true. Otherwise the program loops.

(6) ϕ ≡ ∀x < nψ then p checks in parallel the truth of all the instances of
ψ(m) for m < n. If all of them are true then p returns the code of a program q
which for all m ∈ N returns p(ψ(m)). Otherwise the program loops.



4 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Now we extend the definition of p to pretty Σ1 sentences. Assume that ϕ is
of the form Q1 . . . Qnψ where ψ is ∆0 and Qi is either an existential quantifier
or a bounded universal quantifier for every 0 ≤ i ≤ n. We define p by recursion
on n. Since the base case and the inductive step are essentially the same we will
only show the latter.

Let n = m + 1 and ϕ ≡ Q0Q1 . . . Qnψ where ψ is ∆0. We assume that f is
already defined for Q1 . . . Qnψ and need to show that we can extend it to ϕ. We
have two cases

(1) Q0 is a bounded quantifier. Then we repeat what we did in part (5) and
(6) of this proof.

(2) Q0 is an unbounded existential quantifier. Then the program p starts an
unbounded search to find an i such that ψ(i) is true. If it finds it then p returns
the code of a program q which returns p(ψ(i)) on input 0 and i on input 1 where
i is the smallest natural number such that ψ(i) is true.

Lemma 2. There is a program p that for every universal Π1 sentence ϕ does
the following: If ϕ is true then p(ϕ) halts and outputs a realiser of ϕ (we do not
specify a behaviour otherwise).

Proof. Define p as in the proof of Lemma 1 for ∆0 formulas. Then for formulas
of the type ∀xψ let p(ψ) be the code of the program that for all n runs p(ψ(n)).

Lemma 3. A pretty Σ1 sentence in the language of arithmetic is realised if and
only if it is true. The same result holds for universal Π1 sentences.

Proof. The right-to-left direction follows from Lemma 1. The other direction is
a straightforward induction on the complexity of ϕ. The proof for universal Π1

sentences is also an easy induction.

Corollary 4. There is a program p that for every pretty Σ1 sentence ϕ does the
following: If ϕ is true then p(ϕ) halts and outputs a realiser of ϕ and otherwise,
it diverges.

3 Random Realisability

In this section we will introduce the notion of µ-realisability and prove the basic
properties of this relation. As we mentioned before, we will modify classical
realisability in order to use realisers that can access an element of Cantor space.
Then we will say that a sentence is randomly realised if for non-null set of oracles
in Cantor space the program does realise the sentence. Formally we define µ-
realisability as follows:

Definition 5 (µ-Realisability). We define two relations 
O and 
µ by mutual
recursion. Let u ∈ 2ω, p be a program that uses an oracle, and ϕ be a sentence
in the language of arithmetic. We define:



Randomising Realisability 5

1. (p, u), 6
O ⊥,
2. (p, u) 
O n = m iff n = m,
3. (p, u) 
O ϕ ∧ ψ iff (pu(0), u) 
O ϕ and (pu(1), u) 
O ψ,
4. (p, u) 
O ϕ ∨ ψ iff we have pu(0) = 0 and (pu(1), u) 
O ϕ or pu(0) = 1 and

(pu(1), u) 
O ψ,
5. (p, u) 
O ϕ→ ψ iff for all s such that s 
µ ϕ, we have that pu(s) 
µ ψ,
6. (p, u) 
O ∃xϕ iff (pu(0), u) 
O ϕ(pu(1)) ,
7. (p, u) 
O ∀xϕ iff for all n ∈ ω we have (pu(n), u) 
O ϕ(n),

For every program p that uses an oracle and every sentence ϕ in the language
of arithmetic, we will denote by Cp,ϕ the set: {u ∈ 2ω ; (p, u) 
O ϕ}. Let ϕ be a
sentence in the language of arithmetic, r be a positive real number, and p be a
natural number. We define p 
µ ϕ ≥ r as follows: p 
µ ϕ ≥ r iff µ(Cp,ϕ) ≥ r.

In this case we will say that p randomly realises (or µ-realises) ϕ with proba-
bility at least r. We will say that ϕ is randomly realisable (or µ-realisable) with
probability at least r if and only if there is p such that p 
µ ϕ ≥ r. Moreover,
we write p 
µ ϕ and say that p randomly realises (or µ-realises) ϕ if and only
if p 
µ ϕ ≥ r for some r > 0. Finally, we will say that ϕ is randomly realisable
(or µ-realisable) if sup{µ(Cp,ϕ) ; p 
µ ϕ} = 1.

Why is it not possible to give a simpler definition of 
µ? A natural at-
tempt would be the following: p 
µ ϕ ≥ r ⇔ µ({u ; (p, u) 
Or ϕ}) ≥ r where

Or denotes oracle-realisability, obtained by replacing computability with com-
putability relative to a fixed oracle in Kleene realisability. Unfortunately, it turns
out that this relation is not closed under modus ponens and the ∀-GEN rule of
predicate logic. Another natural approach is the one of § 6. We start our study
of µ-realisability by showing that the set of µ-realised sentences of arithmetic is
consistent.

Lemma 6. Let ϕ a sentence in the language of arithmetic. Then ϕ is µ-realised
iff ¬ϕ is not µ-realised.

Proof. Assume that both p 
µ ϕ and q 
µ ¬ϕ. Then for all u ∈ Cq,¬ϕ we have
that qu(p) would be a realiser of ⊥. But this is a contradiction.

The following lemma has a crucial role in the theory of µ-realisability.

Lemma 7 (Push Up Lemma). Let ϕ be a sentence in the language of first
order arithmetic and 0 < r ≤ r′ < 1 be positive real numbers. Then ϕ is randomly
realisable with probability at least r if and only if ϕ is randomly realisable with
probability at least r′.

Proof. The right-to-left direction is trivial. For the left-to-right direction, let ϕ be
randomly realisable with probability at least r. We will show that ϕ is randomly
with probability at least r′. Let p be a program such that µ(Cp,ϕ) ≥ r > 0. By
the Lebesgue Density Theorem [3, Exercise 17.9] there are u ∈ 2ω and n ∈ ω
such that

µ(Cp,ϕ∩Nu�n)
µ(Nu�n)

> r′. Now, let p′ be the program that given an oracle

runs p with oracle (u � n) ◦ u. Note that µ(Cp′,ϕ) =
µ(Cp,ϕ∩Nu�n)

µ(Nu�n)
> r′. Finally,



6 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

it follows trivially by the definition that p′ randomly realisable with probability
at least r′ as desired.

By the Push Up Lemma, we can simplify our definition of µ-realisability.

Corollary 8. A sentence ϕ in the language of arithmetic is µ-realisable if and
only if there are 0 < r ∈ R and p such that that µ-realises ϕ with probability at
least r.

We conclude this section by proving some basic interactions between µ-
realisability and the logical operators.

Lemma 9. For all programs p and sentences ϕ the set Cp,ϕ is Borel. In partic-
ular Cp,ϕ is measurable.

Proof. The proof is an induction on the complexity of ϕ. All the cases except
implication follow directly from the closure properties of the pointclass of Borel
sets, see, e.g., [5, Theorem 1C.2]. Let us just prove the implication case. Let
ϕ ≡ ψ0 → ψ1 and p be a program. For every program s let As be 2ω if s 6
µ ψ0

and Cp(s),ψ1
, otherwise. Then Cp,ϕ =

⋂
s∈NAs. By inductive hypothesis we have

that As is Borel for every s so Cp,ϕ is a countable intersection of Borel sets,
which is Borel.

Corollary 10. Let ψ0 and ψ1 be sentences and let ϕ be a formula. Then for
every p the following hold:

1. p 
µ ψ0 ∧ψ1 if and only if there are s and q such that s 
µ ψ0 and q 
µ ψ1.
2. p 
µ ψ0 ∨ ψ1 if and only if there is q such that q 
µ ψ0 or q 
µ ψ1.
3. If p 
µ ψ0 → ψ1 then p(s) 
µ ψ1 for all s such that s 
µ ψ0.
4. If p 
µ ∃xϕ then there there is n ∈ N such that p(0) 
µ ϕ(n).
5. If p 
µ ∀xϕ then for all n ∈ N we have p(n) 
µ ϕ(n).

Proof. Note that an case-by-case proof shows that for every n ∈ N, u ∈ 2ω, and
formula ϕ we have that:

(p(n), u) 
O ϕ iff (pu(n), u) 
O ϕ.

(1) First assume that p 
µ ψ0 ∧ ψ1 ≥ r. Then we have that µ(Cp,ψ0∧ψ1
) ≥ r

and for all u ∈ Cp,ψ0∧ψ1
we have that (p, u) 
O ψ0 ∧ ψ1. But then for all

u ∈ Cp,ψ0∧ψ1 we have that (pu(0), u) 
O ψ0 and (pu(0), u) 
O ψ1. So for every
u ∈ Cp,ψ0∧ψ1 we have that (p(0), u) 
O ψ0 and (p(1), u) 
O ψ1 but then p(0) 
µ
ψ0 ≥ r and p(1) 
µ ψ1 ≥ r. Let s = p(0) and q be p(1).

Now assume that q 
µ ψ0 and s 
µ ψ1. Therefore for all u ∈ Cq,ψ0
and

v ∈ Cs,ψ1
we have that (q, u) 
O ψ0 and (s, u) 
O ψ1. By Lemma 7 we can

assume that s and q are such that µ(Cq,ψ0 ∩ Cs,ψ1) > r. But then if we let p
be the program that returns q on input 0 and s on input 1, we have that for all
u ∈ Cq,ψ0

∩ Cs,ψ1
we have that (p(0), u) 
O ψ0 and (p(1), u) 
O ψ1. Therefore

p 
µ ψ0 ∧ ψ1 as desired.



Randomising Realisability 7

(2) First assume that p 
µ ψ0 ∨ ψ1. Then we have that µ(Cp,ψ0∨ψ1) > 0
and for all u ∈ Cp,ψ0∨ψ1

we have that (p, u) 
O ψ0 ∨ ψ1. But then for all
u ∈ Cp,ψ0∨ψ1

we have that (pu(1), u) 
O ψ0 or (pu(1), u) 
O ψ1. Moreover,
note that by Lemma 9 we have that both Cp(1),ψ0

and Cp(1),ψ1
are measurable

sets and since Cp,ψ0∨ψ1
⊆ Cp(1),ψ0

∪ Cp(1),ψ1
at least one of them is not null.

Without loss of generality assume that µ(Cp(1),ψ0
) > 0. So, (p(1), u) 
O ψ0 for

all u ∈ Cp(1),ψ0
. Let q be the program that for every oracle returns pu(1) on

input 1 and 0 on input 0. Then trivially q 
µ ψ0 as desired.
Now assume that q 
µ ψ0, the same proof works in the case in which q 
µ ψ0.

Therefore for all u ∈ Cq,ψ0
we have that (q, u) 
O ψ0. Then if we let p be the

program that returns q on input 1 and 0 on input 0, we have that for all u ∈ Cq,ψ0

(p(1), u) 
O ψ0. Therefore p 
µ ψ0 ∨ ψ1 as desired.
(3) Assume that p 
µ ψ0 → ψ1. Then we have that µ(Cp,ψ0→ψ1

) > 0 and for
all u ∈ Cp,ψ0→ψ1

we have that (p, u) 
O ψ0 → ψ1. But then for all u ∈ Cp,ψ0→ψ1

and for every s such that s 
µ ψ0 we have pu(s) 
µ ψ1. But for all s such
that s 
µ ψ0 we have that (pu(s), u) 
O ψ1 and therefore (p(s), u) 
O ψ1. So,
p(s) 
µ ψ1 for all s such that s 
µ ψ0 as desired.

(4) Assume that p 
µ ∃xψ. Then we have that µ(Cp,∃xψ) > 0 and for all u ∈
Cp,ψ0∨ψ1 we have that (p, u) 
O ∃xψ. But then for all u ∈ Cp,∃xψ we have that
(pu(0), u) 
O ψ(pu(1)). Moreover, note that by Lemma 9 we have that for every
n ∈ N the set Cp(0),ψ(n) is measurable and since Cp,∃xψ ⊆

⋃
n∈N Cp(0),ψ(n) there

is n ∈ N such that µ(Cp(0),ψ(n)) > 0. So, (p(0), u) 
O ψ(n) for all u ∈ Cp(0),ψ(n)
and therefore p(0) 
µ ψ(n) as desired.

(4) Assume that p 
µ ∀xψ. Then we have that µ(Cp,∀xψ) > 0 and for all
u ∈ Cp,∀xψ we have that (p, u) 
O ∀xψ. But then for all u ∈ Cp,∃xψ and every
n ∈ N we have that (pu(n), u) 
O ψ(n). So, (p(n), u) 
O ψ(n) and p(n) 
µ ψ(n)
for all n ∈ N.

Corollary 11. Let ψ0 and ψ1 be sentences and let ϕ be a formula. Then for
every p the following hold:

1. 1 p 
µ ψ0 ∧ ψ1 ≥ 1 if and only if p(0) 
µ ψ0 ≥ 1 and p(1) 
µ ψ1 ≥ 1.
2. If p(1) 
µ ψ0 ≥ 1 or p(1) 
µ ψ1 ≥ 1 then p 
µ ψ0 ∨ ψ1 ≥ 1.
3. If p(s) 
µ ψ1 ≥ 1 for all s such that s 
µ ψ0 then p 
µ ψ0 → ψ1 ≥ 1.
4. If there there is n ∈ N such that p(n) 
µ ϕ(n) ≥ 1 then p 
µ ∃xϕ ≥ 1.
5. If all n ∈ N we have p(n) 
µ ϕ(n) ≥ 1 then p 
µ ∀xϕ ≥ 1.

Proof. The proof is an easy modification of the proof of Corollary 10.

4 Classical Realisability and Random Realisability

In this section, we will study the relationship between classical and random
realisability. In particular we will show that the two notion do not coincide.

We start by proving that classical realisability and µ-realisability agree on
pretty Σ1 sentences and that therefore µ-realisability for pretty Σ1 sentences
coincides with truth.



8 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Theorem 12. Let ϕ be a pretty Σ1 sentence in the language of arithmetic.
Then, there are two computable functions Pµ and P−1µ such that for every p,
(i) p 
 ϕ implies Pµ(p, ϕ) 
µ ϕ ≥ 1, and (ii) p 
µ ϕ implies P−1µ (p, ϕ) 
 ϕ.
Therefore a pretty Σ1 formula is true if and only if it is µ-realised. The same
result holds for universal Π1 sentences.

Proof. We define Pµ and P−1µ by recursion on ϕ and will prove that they have
the desired properties. We first define Pµ and P−1µ on ∆0 formulas.

(1) ϕ is atomic: in this case realisability and µ-realisability have the same
realisers. So we can just let Pµ and P−1µ be the identity on atomic formulas.

(2) If ϕ ≡ ψ0 ∧ ψ1 where ψ0 and ψ1 are ∆0.
First assume that p 
µ ψ0 ∧ ψ1. Then, µ(Cp,ϕ) > 0 and for every u ∈ Cp,ϕ

we have (pu(0), u) 
O ψ0 and (pu(1), u) 
O ψ1. Let p(i) be the program that
for every oracle u just returns pu(i) for i ∈ {0, 1}. Then for i ∈ {0, 1} we have
p(i) 
µ ψi. Let P−1µ (p, ϕ) be the program that given input i computes g(p(i), ψi).
By inductive hypothesis we have that P−1µ (p(i), ψi) 
 ψi for every i ∈ {0, 1} and
therefore P−1µ (p, ϕ) realises ϕ as desired.

On the other hand let p 
 ψ0 ∧ ψ1. Then p(i) 
 ψi for every i ∈ {0, 1}. Let
Pµ(p, ϕ) be the program that ignores the oracle and for every i ∈ {0, 1} returns
Pµ(p(i), ψi). By inductive hypothesis we have that Pµ(p(i), ψi) 
µ ψi ≥ 1. Note
that µ(CPµ(p(0),ψ0),ψ0

∩CPµ(p(1),ψ1),ψ1
) = 1 and that for all u ∈ CPµ(p(0),ψ0),ψ0

∩
CPµ(p(1),ψ1),ψ1

we have that (Pµ(p(0), ψ0), u) 
O ψ0 and (Pµ(p(1), ψ1), u) 
O ψ1.
But then, since Pµ(p, ϕ)u(i) = Pµ(p(i), ψi) for every oracle u and every i ∈ {0, 1},
we have that Pµ(p, ϕ) 
µ ψ0 ∧ ψ1 ≥ 1.

(3) If ϕ ≡ ψ0 ∨ ψ1 where ψ0 and ψ1 are ∆0.
First assume that p 
µ ψ0 ∨ ψ1. Then, µ(Cp,ϕ) > 0 and for every u ∈ Cp,ϕ

we have that (pu(1), u) 
O ψpu(0). Let p(1) be the program that for every oracle
u returns pu(1). Then there is i ∈ {0, 1} such that p(1) 
µ ψi by the proof of
Corollary 10. Let P−1µ (p, ϕ) be the program that for does the following: starts by
running in parallel two instances of the program of Corollary 4, one with input
ψ0 and one with input ψ1. By inductive hypothesis note that at least one of the
two instances will halt. Let i ∈ {0, 1} be such that the ψi instance halted first.
Then, if the input is 0, the program halts with output P−1µ (p(0), ψi), and if the
input is 1 the program returns i.

Now let p 
 ψ0∨ψ1 where ψ0 and ψ1 are ∆0. Then p(1) 
 ψp(0). Let Pµ(p, ϕ)
be the program that if the input is 0 halts with output Pµ(p(1), ψp(0)), and if
the input is 1 the program returns p(0).

By inductive hypothesis we have that Pµ(p(1), ψp(0)) 
µ ψp(0) ≥ 1. But then,
by the proof of Corollary 11 since for every u, Pµ(p, ϕ)u(1) = Pµ(p(1), ψp(0)),
and Pµ(p, ϕ)(0) = p(0), we have Pµ(p, ϕ) 
µ ψ0 ∨ ψ1 ≥ 1 as desired.

(4) If ϕ ≡ ψ0 → ψ1 where ψ0 and ψ1 are ∆0. First assume that p 
µ ψ0 → ψ1.
Let P−1µ (p, ϕ) be the program that does the following: for every input returns



Randomising Realisability 9

the code of the instance of the program in Corollary 4 with input ψ1. Note that,
if ψ0 is realisable, then by inductive hypothesis is µ-realisable, by assumptions
ψ1 is µ-realisable and by inductive hypothesis ψ1 is realisable. In this case for
every s we have that P−1µ (p, ϕ)(s) 
 ψ1 and therefore P−1µ (p, ϕ) is a realiser of
ψ1. On the other hand, if ψ1 is not realisable, then any natural number realises
ϕ, so P−1µ (p, ϕ) is again a realiser of ϕ.

Now let p 
 ψ0 → ψ1 where ψ0 and ψ1 are ∆0. Then for every realiser s
of ψ0 we have that p(s) 
 ψ1. Let Pµ(p, ϕ) be the code of the program that
for every input s and every oracle returns Pµ(p(P−1µ (s, ψ0)), ψ1). By inductive
hypothesis if s is a µ-realiser of ψ0, so P−1µ (s, ψ0) is a realiser of s. By assumption
p(P−1µ (s, ψ0)) is a realiser of ψ1, and again by inductive hypothesis we have
that Pµ(p(P−1µ (s, ψ0), ψ1) 
µ ψ1 ≥ 1. But then by Corollary 11 we have that
Pµ(p, ϕ) 
µ ϕ ≥ 1 as desired.

(5) we omit the bounded quantifier cases because they are analogous to the
conjunction and disjunction cases.

Now we extend the definition to pretty Σ1 formulas.

(6) If ϕ ≡ ∃xψ where ψ is pretty Σ1. First assume that p 
µ ∃xψ. Then,
by Corollary 10 there must be n ∈ N such that p(0) 
µ ψ(n) therefore, by
inductive hypothesis, ψ(n) is realised. Let P−1µ (p, ϕ) be the program that does
the following: run in parallel all the instances of the program of Corollary 4 with
input ψ(n) with n ∈ N. By inductive hypothesis note that one of these instances
must halt. Let i ∈ N be the least such that the ψ(i) instance halts. Then, if
the input is 0, the program returns P−1µ (p(0), ψ(i)) and if it is 1, the program
returns i.

Note that, by inductive hypothesis, the program halts and returns a realiser
of ϕ, as desired.

Now assume that p 
 ∃xψ. Then p(0) 
 ψ(p(1)). Let f(p, ϕ) be the program
that returns Pµ(p(0), ψ(p(1))) if the input is 0 and p(1) if the input is 1. By
inductive hypothesis Pµ(p(0), ψ(p(1))) 
µ ψ(p(1)) ≥ 1. But then by Corollary 11
since for all u we have Pµ(p, ϕ)u(0) = f(p(0), ψ(p(1))) and Pµ(p, ϕ)u(0) = p(1),
we have that Pµ(p, ϕ) 
µ ∃xψ ≥ 1 as desired.

(7) If ϕ ≡ ∀x < nψ, where ψ is pretty Σ1. First assume that p 
µ ∀x < nψ.
Then, by Corollary 10, for every natural number m < n and for every program
s we have that p(m) 
µ ψ(m) and by inductive hypothesis ψ(m) is realised.
Let P−1µ (p, ϕ) be the program that for every m returns a program that for every
input if m < n returns P−1µ (p(m), ψ(m)) and returns 0 otherwise. For all m < n,
by inductive hypothesis we have that P−1µ (p(m), ψ(m)) 
 ψ(m) and therefore
P−1µ (p, ϕ) is a realiser of ϕ as desired.

Now assume that p 
 ∀x < nψ. Then for all m < n and s we have that
p(m)(s) 
 ψ(m). Let Pµ(p, ϕ) be the program that ignores the oracle and
for every m returns a program that given q as input, if m < n then returns
Pµ(p(m)(q), ψ1) otherwise returns 0. Now note that for every m < n and for



10 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

every program q we have that Pµ(p(m)(q), ψ1) 
µ ψ(m) ≥ 1. But then for every
m < n, every q, and every u ∈ 2ω we have that (Pµ(p, ϕ)u(m))u(q) 
µ ψ ≥ 1,
and therefore by Corollary 11 we have Pµ(p, ϕ) 
µ ϕ ≥ 1 as desired.

Finally we extend the ∆0 case to universal Π1 formulas.

(8) If ϕ ≡ ∀xψ where ψ is universal Π1. First assume that p 
µ ∀xψ. Let
P−1µ (p, ϕ) be the program that for all n runs Pµ(P−1µ (p(n), ψ(n))). By Corollary
10 and the inductive hypothesis P−1µ (p(n), ψ(n)) is a realiser of ψ(n). Therefore
P−1µ (p, ϕ) is a realiser of ∀xψ as desired.

Now assume that p 
 ∀xψ. Let Pµ(p, ϕ) be the program that for every n and
for every oracle returns Pµ(p(n), ψ(n)). Once more by inductive hypothesis for
all n and all µ(CPµ(p(n),ψ(n)),ψ(n)) = 1 but then µ(

⋂
n∈N CPµ(p(n),ψ(n)),ψ(n)) = 1

and Pµ(p, ϕ) 
µ ϕ ≥ 1 as desired.
The second part of the statement follows from Lemma 3.

Corollary 13. Let ϕ be any false pretty Σ1 sentence in the language of arith-
metic. Then (p, u) 
O ϕ→ ⊥ and p 
µ ϕ→ ⊥ ≥ 1 for every p and u. The same
holds for universal Π1 formulas.

Proof. By Theorem 12 every µ-realisable pretty Σ1 (universal Π1) sentence ϕ is
true. Therefore ϕ cannot be µ-realised and every program is going to µ-realise
ϕ → ⊥, which means that for all p and for all u we have p 
µ ϕ → ⊥ and
(p, u) 
O ϕ→ ⊥ as desired.

We are now ready to prove the main result of this section, namely that
µ-realisability and classical realisability do no coincide. This result is surprising
given that by Sacks’s theorem [1, Corollary 8.12.2] functions that are computable
with a non-null set of oracles are computable by a classical Turing machine.

Theorem 14. There is a sentence ϕ in the language of arithmetic that is ran-
domly realisable but not realisable.

Proof. Let ϕ be the sentence “For all k there is n such that for all ` the execution
of pk(k) does not stop in at most ` steps or pk(k) 6= n” and let ψ(k) be the
sentence “There is n such that for all ` the execution of pk(k) does not stop in
at most ` steps or pk(k) 6= n”.

A classical realiser for ϕ would be a program that computes a total function
that, for every code k of a program, returns a natural number which is not
the output of pk(k). By diagonalization, such a program cannot exists: If pk
was such a program, then it would follow that for every n ∈ ω we have that
pk(k) = n⇔ pk(k) 6= n.

Now we want to show that ϕ is randomly realisable.
Fix any realiser s. Let p be the program that given an oracle u ∈ 2ω, a natural

number k, and i ∈ {0, 1} does the following5: Let pu(k)(i) = u�(k + 1) if i = 1

5 Here, we do not distinguish between the finite sequence u�(k + 1) and the natural
number coding it.



Randomising Realisability 11

and pu(k)(i) = p′ if i = 0 where p′ is the program that ignores the oracle and
does the following:

On input `, p′ checks whether pk(k) stops in ` steps. If not, then p′(`) is the
code of a program that returns 0 on input 0 and s on. input 1. Otherwise p′(`)
is the code of a program that returns 1 on input 0 and on input 1 looks for an
µ-realiser of the ∆0 formula expressing the fact that “pk(k) 6= u�(k + 1)” by
running the algorithms in Lemma 3 and Theorem 12.

Now, for every k ∈ ω and u ∈ 2ω we have two cases:
pk(k) does not halt: then we have that pu(k)(1) = u�(k+1) and pu(k)(0) = p′.

Since pk(k) does not halt, we have p′(`)(0) = 1 and p′(`)(1) = s for every `.
Moreover, by Corollary 13 (s, u) 
O “pk(k) does not halt in ` steps” and there-
fore (pu(k), u) 
O ψ(k).

pk(k) halts: then we have that pu(k)(1) = u�(k+ 1) and pu(k)(0) = p′. Let `
be such that pk(k) halts in at most ` steps. Then, p′(`)(0) = 0. Moreover, note
that if the output of pk(k) is not the same as the first k bits of the oracle then
(p′(`)u(1), u) 
O u�(k + 1) 6= pk(k).

We only need to show that µ(Cp,ϕ) > 0. To see this, it is enough to note that
the set of u such that pk(k) 6= u�(k + 1) has measure ≥ 1 − 1

2(k+1) . Therefore,

µ(Cp,ϕ) =
∏
k∈N(1− 1

2(k+1) ) > 0 as desired.

Corollary 15. There is a sentence in the language of arithmetic which is real-
isable but not randomly realisable.

Proof (Corollary 15). It is enough to consider the sentence ϕ → ⊥ where ϕ is
the sentence in the proof of Theorem 14. The sentence is trivially realised since
ϕ is not realised. Moreover, the sentence is not µ-realised since ϕ is µ-realised
and ⊥ is not µ-realised.

5 Soundness & Arithmetic

In this section, we study the logic and arithmetic of µ-realisability. We first
observe that, in a certain sense, the Law of Excluded Middle is not µ-realisable.

Lemma 16. There is ϕ such that ∀x(ϕ(x) ∨ ¬ϕ(x)) is not µ-realisable.

Proof. Let ϕ(x) be the formula expressing the fact that the program px(x) halts.
Assume that ∀x(ϕ(x) ∨ ¬ϕ(x)) is randomly realised. Then, there is a program
p such that p 
µ ∀x(ϕ(x) ∨ ¬ϕ(x)). Therefore, p computes the halting problem
for a set of oracles of measure > 0. But this directly contradicts Sacks’ theorem
[1, Corollary 8.12.2].

We now show that µ-realisability is preserved by the inference rules of first-
order intuitionistic proof calculus.

First, we need to fix what it means for ϕ to be µ-realizable when x occurs
freely in ϕ: This is defined to mean the same as the µ-realisability of ∀xϕ.



12 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Definition 17 (Intuitionistic Calculus). Inference rules are:

MP : from ϕ and ϕ→ ψ infer ψ

∀ −GEN : from ψ → ϕ infer ψ → (∀x ϕ), if x is not free in ψ.

∃ −GEN : from ϕ→ ψ infer (∃x ϕ)→ ψ, if x is not free in ψ.

The axioms are

THEN− 1 :ϕ→ (χ→ ϕ)

THEN− 2 :(ϕ→ (χ→ ψ))→ ((ϕ→ χ)→ (ϕ→ ψ))

AND− 1 :ϕ ∧ χ→ ϕ

AND− 2 :ϕ ∧ χ→ χ

AND− 3 :ϕ→ (χ→ (ϕ ∧ χ))

OR− 1 :ϕ→ ϕ ∨ χ
OR− 2 :χ→ ϕ ∨ χ
OR− 3 :(ϕ→ ψ)→ ((χ→ ψ)→ ((ϕ ∨ χ)→ ψ))

FALSE :⊥ → ϕ

PRED− 1 :(∀x ϕ(x))→ ϕ(t), if the term t is free for substitution

for the variable x in ϕ

PRED− 2 :ϕ(t)→ (∃x ϕ(x)), with the same restriction as for PRED− 1.

Proof (Theorem 18). We show that (i) all instantiations of the axioms of in-
tuitionistic first-order calculus are µ-realisable and (ii) the set of µ-realizable
statements is closed under modus ponens, ∀-GEN and ∃-GEN.

We start with (i).
THEN-1: A µ-realiser for an instance of ϕ → (χ → ϕ) needs to turn any

given µ-realiser r for ϕ into one for χ → ϕ. The µ-realiser for χ → ϕ works by
simply returning r for any input.

THEN-2: Here, we are given a µ-realiser r for ϕ→ (χ→ ψ) and our goal is
to turn any µ-realiser p for (ϕ→ χ) into a µ-realiser q for ϕ→ ψ. Given r and
p, q works as follows: Given a µ-realiser s for ϕ, first use r to compute from s
a µ-realiser t for χ → ψ with positive probability; moreover, use p to compute
from s a µ-realiser for u χ with positive probability. Then apply t to u.

AND-1 works by projecting the µ-realiser for ϕ ∧ χ to the first component,
AND-2 by projecting to the second component.

AND-3: We need to turn any µ-realiser p for ϕ into a µ-realiser q for χ →
(ϕ∧χ)) with positive probability. Let p be given. Also, let a µ-realiser r for χ be
given. Now, q works as follows: For a given oracle x, let x = x0 ⊕ x1, where, for
real numbers a and b, a⊕ b denotes the join of a and b, i.e., 2i ∈ a⊕ b iff i ∈ a
and 2i + 1 ∈ a ⊕ b iff i ∈ b. Now (qx(0), x) runs (px0(0), x0) while (qx(1)(0), x)
runs (rx1 , x1).

OR-1 works by, given a µ-realiser r for ϕ, sending 0 to 0 and 1 to r, OR-2
by sending 0 to 1 and 1 to r.



Randomising Realisability 13

OR-3: We need to turn any µ-realiser p for ϕ→ ψ into one for ((χ→ ψ)→
((ϕ ∨ χ) → ψ)) with positive probability. Let q be a µ-realiser for χ → ψ, and
let r be a µ-realiser for ϕ ∨ χ. Now, the sets S0, S1 of oracles relative to which
r realizes ϕ or χ, respectively, are measurable, and as their union has positive
measure, at least one of the sets S0 and S1 has positive measure. Thus, for a
positive measure set S of oracles u, ru(0) will terminate with output i ∈ {0, 1}
such that Si has positive measure, so that (ru(1), u) will be an O-realiser of χ
(if i = 0) or ψ (if i = 1), respectively. Let us denote by r(1) the program that,
on oracle u, runs the program with index ru(1) in the oracle u. With positive
probability, r(1) will be an O-realiser of ϕ (if i = 0) or ψ (if i = 1). Now we
proceeds as follows: Given u, first compute ru(0). If this is 0, apply p to r(1).
If it is 1, apply q to r(1). With positive probability, it then happens that p is
applied to a µ-realiser of ϕ or that q is applied to a µ-realiser of χ. In both
cases, we obtain a µ-realiser of ψ. Thus, we obtain a µ-realiser of ψ with positive
probability, as desired.

FALSE is µ-realized by any program, as ⊥ does not have µ-realisers.

PRED-1: Here, t will just be a natural number. Let r be a µ-realiser for
∀xϕ(x). Let an oracle u be given, and suppose that r works for u (i.e., (r, u) 
O
∀xϕ(x)), which happens for all u from a set of positive measure. For each such
u, (ru(t), u) will be an O-realiser for ϕ(t) by definition. Thus, the program r(t)
that, for given u, runs the program with index ru(t) in the oracle u is a µ-realiser
for ϕ(t).

PRED-2: Let r be a µ-realiser for ϕ(t). Then a µ-realiser p for ∃xϕ(x) works
by letting pu(1) output t and letting pu(0) output r for every u.

Now for (ii).

(1) (MP) If ϕ and ϕ→ ψ are µ-realizable, then so is ψ.

Suppose that p µ-realizes ϕ and that q ϕ-realizes ϕ→ ψ. Pick a real number
x such that (q, x) realizes ϕ → ψ and run qx(p). By definition, the output is a
µ-realiser for ψ.

(2) ∀-GEN

Let p be a µ-realiser for ψ → ϕ, and let q µ-realize ψ → (∀xϕ), where x
does not occur freely in ψ but (possibly) in ϕ. If x does not occur freely in ψ,
the claim is trivial since then ∀xϕ is µ-realizable if and only if ϕ is. We are
given n ∈ ω, our goal is to compute a realiser for ϕ(n). Pick some oracle y such
that (p, y) realizes ψ → ϕ. Note that this means that (p, y) computes a realiser
for ψ → ϕ(n) from any given n ∈ ω. Now run this realiser in the input n; by
definition, the output will be a µ-realiser for ϕ(n), as desired.

(3) ∃-GEN

Let p be a µ-realiser for ϕ → ψ and let q be a µ-realiser for (∃xϕ) → ψ,
where x is not free in ψ. Pick oracles y and z such that (q, y) realizes (∃xϕ)→ ψ
and (p, z) realizes ϕ → ψ. Thus, (qy(0), y) realizes ϕ(n), where n is the output
of qy(1). Recall that p is a µ-realiser for ∀x(ϕ→ ψ). Thus, pz(n) is the index of
a program r that turns µ-realisers for ϕ(n) into µ-realisers for ψ. Consequently,
running pz(n) on the input q(1) yields a µ-realiser for ψ.



14 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Theorem 18 (Soundness). The set of µ-realizable statements is closed under
the rules of intuitionistic first-order calculus.

It is a classical result that the axioms of Heyting Aritmetic are realisable,
see [6, Theorem 1]. We show that only a fragment of HA is µ-realisability. Let
HA− denote the axioms of Peano arithmetic without the induction schema. As
usual, Heyting arithmetic HA is the theory obtained from adding the induction
schema to HA−. We say that a set of formulas Γ is µ-realised if ϕ is µ-realised
for all ϕ ∈ Γ .

Since all the axioms except for the induction schema are universal Π1 state-
ments, it follows by Theorem 12 that the axioms of HA− are all µ-realised.

Theorem 19. The set HA− is µ-realised.

Contrary to the classical case the induction schema fails for µ-realisability.

Theorem 20. The induction schema is not µ-realised.

Proof. Let ϕ(x) be the formula expressing the fact that “Every program with
code i < x halts or does not halt”. By the proof of Lemma 16, ϕ is not µ-
realisable.

On the other hand, a µ-realiser p(n) for ϕ(n) is given by a program that
does the following: for every i < n, p returns a program that if the ith element
of the oracle is 1 returns 1 on input 0 and any number on input 1. While if the
ith element of the oracle is 0 the program returns 0 on input 0 and on input 1
starts building a realiser of “the program i halts” using the algorithm in Lemma
4; if it finds one, it runs the algorithm in Theorem 12 to compute the desired
µ-realiser.

It is not hard to see that the algorithm works with probability 1
2n . Thus, to

realize the implication ϕ(n) → ϕ(n + 1), we can ignore the µ-realiser for ϕ(n)
and just output p(n). So the premise of the instance of the induction schema is
µ-realised, while the conclusion is not.

Note that the proof of Theorem 20 heavily relies on the fact that the definition
of µ-realisability does not require any relationship between the measures of the
set of oracles realising the antecedent of an implication and the set of oracles
realising the consequent. We think that a modification of this definition could
lead to a notion of probabilistic realisability that realises the induction schema.

Even though the axiom schema of induction is not µ-realisable, one can prove
that all ∆0-instances of the schema are realisable. Indeed, by Theorem 12 and
the fact that if ϕ is a ∆0 formula then ∀xϕ(x, ȳ) is a universal Π1 formula, we
have the following:

Corollary 21. The set HA− together with the induction schema restricted to
∆0 formulas is µ-realisable.



Randomising Realisability 15

6 Big Realisability

In this section, we will consider other natural definitions of realisability arising
from notions of big sets of oracles on the real numbers. More specifically, we
will consider “almost sure realisability,” “comeagre realisability,” “interval-free
realisability,” and “positive measure realisability.” It will turn out, however,
that the first three are equivalent to standard realisability, while the final one
coincides with truth. We begin with the following general definition.

Definition 22. Let F be a family of subsets of Cantor space 2ω. We then define
F-realisability recursively as follows:

1. p 
F ⊥ never,
2. p 
F n = m if and only if n = m,
3. p 
F ψ0 ∧ ψ1 if and only if p(i) 
F ψi for i < 2,
4. p 
F ψ0 ∨ ψ1 if and only if there is some O ∈ F and some i < 2 such that

for every u ∈ O, we have pu(0) = i and pu(1) 
F ψi,
5. p 
F ϕ → ψ if and only if there is a set O ∈ F , such that for every u ∈ O

and s 
F ϕ, we have pu(s) 
F ψ,
6. p 
F ∃xϕ if and only if there is some O ∈ F , such that there is some n for

all u ∈ O such that pu(0) = n and pu(1) 
 ϕ(n),
7. p 
F ∀xϕ if and only if there is a set O ∈ F , such that for every u ∈ O and

n ∈ N we have pu(n) 
F ϕ(n).

From this definition, we derive the following notions of realisability: Let Fif

be the family of co-interval-free subsets of the Cantor space, i.e. X ∈ Fcif if and
only if X ∈ 2ω and there is no open interval I such that I ⊆ 2ω \X, and 
cif

denotes Fcif -realisability. Let C be the family of comeagre subsets of the Cantor
space, then let 
C denote C-realisability. Let F=1 be the family of subsets of the
Cantor space that are of measure 1, and let 
=1 denote F=1-realisability. Let
F>0 be the family of subsets of the Cantor space of positive measure, and 
>0

denotes F>0-realisability. As before, we will write 
F ϕ if and only if there is
some realiser p such that p 
F ϕ.

In what follows we will make use of the bounded exhaustive search with p(n),
i.e. the following procedure. Given a program p (and possibly some input n), do
the following successively for all k ∈ ω. Enumerate all 0-1-strings of length k.
For each of these strings s, do the following: Run ps(n) for k many steps. If the
computation does not halt within that time (which implies in particular that at
most the first k many bits of the oracle were requested), continue with the next
s (if there is one, otherwise with (k + 1)). If the computation halts with output
x within that time, then the search terminates with output x.

The crucial property of this procedure, which is also contained in the proof
idea of Sacks’ theorem [1, Corollary 8.12.2], is the following:

Lemma 23. Let G ⊆ ω, n ∈ ω and let p be a program. Suppose that there is a
set S ⊆ 2ω such that 2ω \ S is interval-free and pu(n) terminates for all u ∈ S
with output k ∈ G. Then the bounded exhaustive search with p(n) will terminate
with output k ∈ G.



16 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

Proof. Note that for every n and u ∈ S we have that pu(n) terminates with
output in G. So there is a finite initial segment s of u such that ps(n) terminates
with output pu(n). So, the bounded exhaustive search will halt.

Now, note that if the search halts on the string s with output k ∈ ω, but
k /∈ G, then px(n) ↓ k for all u ∈ Ns. But then, Ns ⊆ 2ω \ S which contradicts
the fact that 2ω \ S is interval free.

Lemma 24. Let X ⊆ 2ω be a subset of Cantor space. If µ(X) = 0 or X is
meagre, then X is interval-free.

Proof. The first statement follows trivially from the fact that every non-empty
open interval has positive measure. For the second statement, recall that meagre
sets have empty interiour by the Baire Category Theorem (cf. [2, Theorem 0.11])
and therefore contain no intervals.

Theorem 25. Let F be a family of subsets of Cantor space such that every X ∈
F is co-interval-free. There are programs PF and P−1F such that the following
holds for all statements ϕ: (i) if p 
 ϕ, then PF (p, ϕ) 
F ϕ, (ii) if p 
F ϕ, then
P−1F (p, ϕ) 
 ϕ. Consequently, ϕ is realisable if and only if it is F-realisable, and

, 
cif , 
C, and 
=1 coincide.

Proof. We show both statements by simultaneous induction on the complexity
of ϕ and simultaneously define PF and P−1F by recursion on ϕ.

(1) ϕ is t0 = t1 or t0 6= t1. In this case, F-realisers and realisers are the same,
so the statement is trivial: PF and P−1F just return the first component.

(2) ϕ is ψ0 ∧ ψ1.
Let r = (r0, r1) be a realiser for ϕ such that ri realises ψi for i < 2. By

induction hypothesis, PF (ri, ψi) will return an F-realiser for ψi. Hence, PF (r, ϕ)
is the program that outputs PF (ri, ψi) on input i. We obtain P−1F in exactly the
same way.

(3) ϕ is ψ0 ∨ ψ1.
Let r be a realiser for ϕ, i.e. r(0) returns some i < 2 and r(1) 
 ψi. By

induction hypothesis, we have that PF (r(1), ψi) 
F ψi. Hence, PF (r, ϕ) is the
program that returns i on input 0 and PF (r(1), ψi) on input 1.

Conversely, let r be an F-realiser for ϕ. Then there are some i < 2 and
O ∈ F such that for all u ∈ O, ru(0) = i and ru(1) 
F ψi. Hence, let P−1F (r, ϕ)
be the program that executes a bounded exhaustive search with ru(0), which
terminates by Lemma 23 in some i < 2, and then returns i on input 0, and
P−1F (r, ψi) on input 1. Then P−1F (r) 
 ϕ.

(4) ϕ is ψ0 → ψ1.
Let r 
 ϕ. Then r is a program that, given a realiser r0 
 ψ0, returns a

realiser r1 
 ψ1. Let r′0 
F ψ0. By induction hypothesis, P−1F (r′0, ψ0) 
 ψ0.
Hence, r(P−1F (r′0, ψ0)) 
 ψ1 and PF (r(P−1F (r′0, ψ0)), ψ1) 
F ψ1. Therefore, let



Randomising Realisability 17

PF (r, ϕ) be the program that takes a realiser r′0 
 ψ0 as input and returns
PF (r(P−1F (r′0, ψ0)), ψ1).

The proof for the other direction is symmetric by exchanging the roles of PF
and P−1F .

(5) ϕ is ∃xψ(x).
Let r 
 ∃xψ(x). Then r(0) = n and r(1) 
 ψ(n). By induction hypothesis, it

follows that PF (r(1), ψ) 
F ψ(n). So let PF (r, ϕ) be the program that output n
on input 0, and PF (r(1), ψ) on input 1. Then, PF (r, ϕ) 
F ϕ.

Conversely, let r 
F ∃xψ(x). Then there is some O ∈ F and n ∈ ω such that
ru(0) = n and pu(1) 
F ψ(n). By induction hypothesis, P−1F (pu(1), ψ) 
 ψ(n).
Define P−1F (r, ϕ) to be the following program: First, start a bounded exhaustive
search with r(0). By Lemma 23 this search must terminate with output n. Return
n on input 0, and return P−1F (ru(1), ψ) on input 1. Then P−1F (r, ϕ) 
 ∃xψ(x).

(6) ϕ is ∀xψ(x).
Let r 
 ∀xψ(x). Then r(n) 
 ψ(n) for every n ∈ ω. Let PF (r, ϕ) be the

program that, given n ∈ ω, returns PF (r(n), ψ). With the induction hypothesis,
it follows that PF (r, ϕ) 
F ϕ.

Conversely, let r 
F ∃xψ(x). Then there is some O ∈ F such that for every
u ∈ O and n ∈ N we have that ru(n) 
 ψ(n). Define P−1F (r, ϕ) to be the
following program: Start a bounded exhaustive search with r(n). By Lemma 23,
this search will terminate with r′ 
F ψ(n). Then return P−1F (r′, ψ), which, by
induction hypothesis, is a realiser of ψ(n). Hence, P−1F (r, ϕ) 
 ψ.

Theorem 26. Let ϕ be a formula. Then 
>0 ϕ if and only if ϕ is true.

Proof. The proof is an induction on the complexity of ϕ.

(1) If ϕ is atomic the statement follows by the definitions.

(2) Assume that ϕ ≡ ψ0 ∧ ψ1.

If ϕ is true then by inductive hypothesis there are p and q such that p F>0-
realises ψ0 and q F>0-realises q. Let s be a sequence which starts with a code of
p followed by a marker and by a code for q followed by a second marker. Then let
t be the program that on input 0 returns the content of the oracle up to the first
marker and on input 1 returns the content of the oracle between the first and
the second marker. Note that for all u ∈ Ns, r

u(0) 
>0 ψ0 and ru(1) 
>0 ψ1.
So, r 
>0 ϕ as desired.

On the other hand if ϕ is F>0-realised then by definition both ψ0 and ψ1 are
F>0-realised and the statement follows by the inductive hypothesis.

(3) Assume that ϕ ≡ ψ0 ∨ ψ1.

If ϕ is true then by inductive hypothesis there is p such that pu(1) 
>0 ψpu(0)
for every u in some positive measure set O. Let s be a sequence which starts



18 Merlin Carl, Lorenzo Galeotti, and Robert Passmann

with pu(0) followed by a code for pu(1) followed by a marker. Then let q be the
program that on input 0 returns the content of the first bit of the oracle and
on input 1 returns the content of the oracle from the second bit to the marker.
Note that for all u ∈ Ns, q

u(1) 
>0 ψqu(0). So, q 
>0 ϕ as desired.

On the other hand if ϕ is F>0-realised then by definition at least one between
ψ0 and ψ1 is F>0-realised and the statement follows by the inductive hypothesis.

(4) Assume that ϕ ≡ ψ0 → ψ1.

Assume that ϕ is true. Then either ψ1 is true or ψ0 is false. If ψ0 is false then
by inductive hypothesis is not F>0-realised and therefore any natural number
will F>0-realise ϕ. If ψ1 is true, then by inductive hypothesis is F>0-realised by
some program p. Let s be the sequence that starts with a code of p followed by a
marker. Let q the program that for every n and every oracle returns the content
of the oracle up to the first occurrence of the marker. Then for all u ∈ Ns and
for every n we have that qu(n) 
>0 ψ1. So, q 
>0 ϕ as desired.

On the other hand if ϕ is F>0-realised by some program p. If ψ0 is true then
it is F>0-realised by some program q. Then there is a non-null set O such that
for all u ∈ O we have that pu(q) 
>0 ψ1. But then by inductive hypothesis ψ1

must be true.

(5) Assume that ϕ ≡ ∃xψ.

Assume that ϕ is true. Then for some n ∈ N we have that ψ(n) is true.
By inductive hypothesis there is p which F>0-realises ψ(n). Let s be a sequence
starting with a code for n followed by a marker and then by the code of p followed
by a marker. Let q be the program that on input 0 returns the content of the
oracle up to the first marker, and on input 1 returns the content of the oracle
between the first and second marker. Then for all u ∈ Ns and for every n we
have that qu(1) 
>0 ψ(qu(0)). So, q 
>0 ϕ as desired.

On the other hand if ϕ is F>0-realised by some program p. Then there is a
non-null set O such that for all u ∈ O we have that pu(1) 
>0 ψ(pu(0)). But
then by inductive hypothesis ψ1 must be true.

(6) Assume that ϕ ≡ ∀xψ.

Assume that ϕ is true. Then for all n ∈ N we have that ψ(n) is true. Without
loss of generality we can assume that the main operator of ψ is not a universal
quantifier, the proof can be easily modified otherwise. Let q be the program that
ignores the oracle and depending on the main connective of ψ does the following:

– if ψ is atomic q is just the constant function 1;

– if ψ is ψ0 ∧ ψ1 then q(n) is the program r from the proof of case (2);

– if ψ is ψ0 ∨ ψ1 then q(n) is the program q from the proof of case (3);

– if ψ is ψ0 → ψ1 then q(n) is the program q from the proof of case (4);

– if ψ is ∃xψ0 then q(n) is the program q from the proof of case (5);



Randomising Realisability 19

By inductive hypothesis and by (2), (3), (4), and (5) of this proof we have that
for all u ∈ 2ω and for every n we have that qu(n) 
>0 ψ(n). So, q 
>0 ϕ as
desired.

On the other hand if ϕ is F>0-realised by some program p. Then there is a
non-null set O such that for all u ∈ O we have that pu(n) 
>0 ψ(n). But then
by inductive hypothesis ϕ must be true.

References

1. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability, Springer New York (2010)

2. Kanamori, A.: The Higher Infinite: Large Cardinals in Set Theory from Their Be-
ginnings. Springer Monographs in Mathematics, Springer (2008)

3. Kechris, A.: Classical Descriptive Set Theory, Graduate Texts in Mathematics,
vol. 156. Springer (2012)

4. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symbolic
Logic 10, 109–124 (1945)

5. Moschovakis, Y.: Descriptive Set Theory, Studies in Logic and the Foundations of
Mathematics, vol. 100. Elsevier (1987)

6. Nelson, D.: Recursive functions and intuitionistic number theory. Transactions of
the American Mathematical Society 61(2), 307–368 (1947)

7. van Oosten, J.: Realizability: A historical essay. Math. Struct. Comput. Sci. 12(3),
239–263 (2002)

8. Troelstra, A.S. (ed.): Metamathematical investigation of intuitionistic arithmetic
and analysis. Lecture Notes in Mathematics, Vol. 344, Springer-Verlag, Berlin-New
York (1973)

9. Turing, A.M.: ’intelligent machinery’, national physical laboratory report. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence 5. Edinburgh University Press
(1969). (1948)


