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Abstract. Monotonicity-based inference is a fundamental notion in the
logical semantics of natural language, and also in logic in general. Start-
ing in generalized quantifier theory, we distinguish three senses of the
notion, study their relations, and use these to connect monotonicity to
logics of model change. At the end we return to natural language and
consider monotonicity inference in linguistic settings with vocabulary for
various forms of change. While we mostly raise issues in this paper, we
do make a number of new observations backing up our distinctions.
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1 Varieties of monotonicity for generalized quantifiers

Basic patterns. Monotonicity is a property that is used extensively in linguis-
tics and logic. Many valid reasoning patterns involve monotonicity, in particular
with sentences containing generalized quantifiers. Here are four possible cases
with a binary generalized quantifier () and two predicate arguments A and B:

IMON  Q(A, B) and A C C, then Q(C, B)
IMON Q(A4, B) and C C A, then Q(C, B)
MON?T  Q(A, B) and B C C, then Q(A,C)
MON,  Q(A,B) and C C B, then Q(A,C)

For instance, the universal quantifier “all” is downward monotonic in its left ar-
gument and upward in its right argument, thus exemplifying the type |MONY. If
we want to stress possible dependence of the quantifier on a total domain of dis-
course D, the binary notation Q(A, B) will be extended to a ternary Qp (A4, B).3

Three senses. While the preceding definitions seem clear, intuitive explana-
tions of monotonicity inference in natural language sometimes appeal to slightly,
but subtly different notions. This note identifies three possible interpretations,
and then goes on to discuss these in a variety of logical settings, raising new
issues in the process. We will focus on upward monotonicity in what follows,
though our analysis also applies to downward monotonicity.

3 An extensive overview of monotonicity inference with generalized quantifiers can be
found in (Peters and Westerstahl, 2006).
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To introduce what we have in mind, consider the following three examples:
(1a) Some boys dance. (1b) Some people dance.

The upward monotonic step from (1la) to (1b) may be called Predicate Replace-
ment in the same domain of objects. The more specific (stronger) predicate
“boys” (A) is replaced by the more general (weaker) predicate “people” (C).

Next, consider a case that feels intuitively different, where the same predicate
changes its extension. For a long time, whales were thought of as fish, but then
it was found they are mammals, and the range of “mammal” was extended.

(2a) Some mammals (excluding whales) live over a hundred years.
(2b) Some mammals (including whales) live over a hundred years.

Here, a predicate acquires more members in the same domain. Call this view of
monotonicity Fxtension Increase. At this stage, however, we have a distinction
without a difference. Predicate Replacement and Extension Increase are the same
for quantifiers viewed as set relations. But as we will see later, the distinction
starts making sense when we have both syntax and semantics.

But there is yet a stronger form of monotonicity, where the domain itself can
be enlarged. Suppose that we are first talking about Asians, and next about all
people in the World. The following monotonicity inference is valid:

(3a) Some musicians are Chinese (in Asia).
(3b) Some musicians are Chinese (in the whole World).

Let us call this form of monotonicity Domain Enlargement. The predicate “musi-
cian” does not change its extension in the old Asian domain, but we now consider
its full extension in the new World domain. Of course, since “some” satisfies both
Extension Increase and Domain Enlargement, we can even combine the two. The
resulting Enlargement Monotonicity is illustrated in the following diagram:

While the distinction between keeping the domain fixed or extending it for
monotonicity seems intuitive, it, too, collapses — when we accept an assumption
called Ezxtension that is commonly made for generalized quantifiers:

EXT if A, BC D C D', then Qp(A,B) iff Qp (A, B)

Fact 1 With EXT, upward monotonic Predicate Replacement (I) and Enlarge-
ment Monotonicity (II) are equivalent conditions on quantifiers.

4 There is also an intuitive temporal aspect to the whales example, where extensions
change with the passage of time. Such more intensional aspects of monotonicity
inference will be considered briefly at the end of this paper.
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Proof. We only consider upward monotonicity in the left argument. From (1) to
(I). Predicate replacement is clearly a special case of Enlargement Monotonicity
when the domain does not change. From (I) to (II). Let Qp(A,B) and A C C,
and C,D C D'. By EXT, we have Qp/ (4, B), and then by (I), Qp/(C,B). O

Shrinking domains with downward monotonic inference gives a similar result.
However, EXT is crucial to all of this.

Doing without EXT. With quantifiers whose meaning involves the domain
D in an essential way, monotonicity becomes a much richer notion, where Con-
servativity is no longer a prominent constraint. We will only illustrate this here,
since these quantifiers seem much less studied. Consider the quantifier “many A
are B” in one plausible sense of relative proportion:

[AnB|_ |B]
AT D]

where D is the whole domain.? It is illustrated in the following diagram, where
the numbers of objects in the different zones have been marked by x, m, k, n:

D

According to the above definition, we have

k > k+n
m-+k m-+n+k+x’

or equivalently, kx > mn

Now our earlier distinction between keeping the domain fixed, or extending
it makes sense. Also, the notion of monotonicity acquires new options.

Clearly, MONT in its standard sense can fail when we enlarge B with objects
in D outside of A that increase the frequency of B in D, but not in A. However,
the new setting allows for more subtle forms of monotonicity.

Here is a natural candidate, keeping the A’s fixed. If we enlarge B inside
of A only, we regain MONT. To illustrate why, just add one object of A to B,
raising k to k 4+ 1 while lowering m to m — 1. Then we have

iRt = (s T k) > minikre

Next, consider domain extension. Clearly just increasing B can make “many
A are B” false. But we can also enlarge just AN B, putting a new B-object s in
the new A. This time, “many A are B” remains true since it implies

5 In particular, with this definition, it is never true that D-relatively many A are D.
We will not discuss other variants of relative “many” here.
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ktl o ktlin 6
m+k+1 m+k+1+n+x

Merging logic and counting. There is no general theory of types of mono-
tonicity in this extended setting for quantificational reasoning. Note that mono-
tonicity as discussed here fits naturally with qualitative perspectives on numeri-
cal formulas with addition, multiplication and other elementary operations, giv-
ing us global information about how functions grow as argument values change.”
Thus, the right format for this broader setting may be a system of ‘counting logic’
mixing set-theoretic and arithmetical components. This would fit with the intu-
itive idea that quantifiers are at heart about counting, so that actual reasoning
with quantifiers may well be a mix of just this kind.®

Monotonicity calculus. In practice, upward and downward monotonic infer-
ences are equally important. Syntactically, these are triggered by positive and
negative ocurrences, respectively, of the predicate replaced in the inference. And
since quantifiers can occur embedded in further linguistic constructions, a cal-
culus is needed for computing positive and negative occurrences of predicates
inside complex expressions. For instance, in “every pot has a 1id”, “pot” is neg-
ative, supporting a downward inference, while the embedded “lid” is positive,
supporting an upward inference. Taken together, it follows, e.g., that “every iron
pot has a cover”. A precise Monotonicity Calculus keeping track of positive and
negative syntactic occurrences can be stated in terms of a categorial grammar
for constructing complex expressions, cf. (van Benthem, 1991). While details of
this system are not relevant to us here, its existence suggests looking at logical
systems that contain quantifiers to take our analysis a step further.

2 Monotonicity in first-order logic

Two senses revisited. In first-order logic, a pilot system for a mathematical
theory of generalized quantifiers, truth values of formulas depend on domains of
models. In other words, EXT no longer holds when first-order syntax for quan-
tifiers is taken into account. Two notions of monotonicity may be distinguished,
where again we focus on the upward case to simplify the exposition:

(Mon-inf)  From ¢(P) and Vz(P(z) — Q(z)), it follows that ¢(Q/P),
where ¢(Q/P) is the result of replacing each occurrence of P in ¢ by Q.

5 This inequality is equivalent to kx4 > mn which is implied by the earlier kz > mn.
7 A realistic concrete use of monotonicity in mathematics is the convergence test for
improper integrals discussed in (Icard, Moss and Tune, 2017).

In this combined calculus, monotonicity applies to both set inclusion for denotations
and greater-than for numbers. The former is a type-lifting of the latter, and many
more complex type-theoretic lifts support monotonicity reasoning (van Benthem,
1991). However, beyond these, in natural language monotonicity can apply to many
orderings that are sui generis: conceptual, temporal, spatial, and so on. Can the style
of analysis in this paper be generalized to cover these?

8
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(Mon-sem) If M,s = ¢(P) and M =}, M’ (i.e., M and M’ are the
same model except for the interpretation of P, and I(P) C I'(P)),
then M’,s = o(P).

These correspond to the earlier Predicate Replacement and Extension Increase.

Fact 2 Inferential monotonicity is equivalent to semantic monotonicity.

Proof. From (Mon-sem) to (Mon-inf). Suppose, for any model M and assignment
s, that M, s = p(P) and M, s = Vz(P(z) — Q(x)). Now define a new model M’
which is like M except that I'(P) = [[Q]]. Clearly M =} M’, so by Mon-sem,
we have M’ s = ¢(P). By one direction of the standard Predicate Substitution
Lemma for first-order logic, it then follows that M, s = o(Q/P).

From (Mon-inf) to (Mon-sem). Suppose that M,s = ¢(P) and M =5 M.
Take a new predicate letter @ not occurring in ¢(P), and set I(Q) = I'(Q) =
[[P]]™". Then in the model M, s, the two conditions for Mon-inf are satisfied,
and therefore, p(Q/P) is true in M, s. But this implies, by the converse direction
of the Predicate Substitution Lemma, that M’, s = ¢(P). O

The second half of this proof requires the availability of fresh predicates.
We suspect that the above equivalence fails for first-order logic with a finite
vocabulary while it still holds for subsystems such as monadic FOL.

For the earlier third sense of Domain Enlargement, see Section 3 below.

Single vs. multiple occurrences. In actual inferences based on Mon-inf, it
is natural to focus on a single occurrence of the predicate P. Typically, this
upward form is licensed when this occurrence of P is syntactically positive in .
But note that the same P may also have negative occurrence in . For instance,
in PA—(PAQ), the first occurence of P is positive, supporting a MON7? inference,
but the second occurrence is negative, supporting a MON/ inference.? However,
our discussion also covers inferences with multiple replacements.
Interpolation and monotonicity calculus. Semantic monotonicity jumps
from one model to another along the relation =5. A related general notion
of transfer between models is this: ¢ entails ¥ along R if, whenever M RN and
M = ¢, then N |= 1. This notion was introduced in (Barwise and van Benthem,
1999), which also proves the following version of Lyndon’s Theorem for FOL:

Fact 3 The following statements are equivalent for first-order formulas o,):
(a) ¢ entails ¢ along Elt, (b) there exists a formula v containing only positive
syntactic occurrences of P such that ¢ |E « = 1.

The required formulas « are generated by the grammar

Px|(R)Qx(Q#P)[oNp|eVel|Irp|Vap.

Fact 3 can be seen as a completeness result for the monotonicity calculus
of first-order logic. But to make this apply to generalized quantifier theory, one

9 Many inferences are intuitively about single occurrences of parts of expressions. But
some require comparing coordinated occurrences, like in the logical rule of Contrac-
tion, where two identical premises can be contracted to just one.
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needs similar results for the logics FOL(Q) consisting of first-order logic with
added generalized quantifiers. This has been done in (Makovsky and Tulipani,
1977), using suitable extensions of the basic model-theoretic notions for FOL.1°

Semantics that fit monotonicity inference. Here is another way of phrasing
the preceding completeness issue. The monotonicity calculus is a proof system
for practical reasoning. Is there a natural semantics for which it is complete?
Interesting answers have been given, cf. the proposals considered in (Icard, Moss
and Tune, 2017). In addition, here is a straightforward modal perspective.

In modal state semantics for first-order logic, the variable assignments of
Tarski semantics are viewed as abstract states, and quantifiers dz are then in-
terpreted using arbitrary accessibility relations R, between states. The result of
this widening of standard models is a decidable modal sublogic of FOL which
blocks all valid first-order consequences except for monotonicity and aggrega-
tion of universal statements under conjunction. To block the latter, a well-known
move in modal logic is a step from binary accessibility relations between states to
neighborhood models with state-to-set neighborhood relations. A straightforward
neighborhood generalization of state models for FOL will validate essentially just
the monotonicity inferences. For further details, and connections to generalized
quantifiers, cf. (Andréka, van Benthem and Németi, 2017).

3 Logics for monotonicity-related model change

Intuitively, the third and second sense of monotonicity in Section 1 involve model
change. In recent years, families of logics have been studied that analyze the
effects of changing models, for the purposes of information update, world change,
game play, or other concrete scenarios. These logics can code our earlier reasoning
about monotonicity, while at the same time, they extend practical monotonicity
inference to new settings. In this section we discuss some connections.

Predicate extension modalities. For an illustration, take the case of upward
predicate monotonicity, and add the following modality to first-order logic'!

(=p)p for: ¢ is true in some =p-extension of the current model.

With the dual universal modality in the language, upward semantic monotonicity
can now be formulated as an object-level validity of the system:

p(P) = [=ple(P)

As another example, the fact that positive occurrence of P in ¢ implies upward
monotonicity is expressible by a set of valid implications in this language.

The new modality is very powerful, as it can express existential second-order
quantifiers. To see this, take a first-order sentence defining discrete linear orders
with a beginning but no end, (i). Next, with a unary predicate P, the formula

10 Extensions to richer type logics of relevance to natural language seem an open prob-
lem, cf. (van Benthem, 1991) on the case of the Boolean Lambda Calculus.

11 This device has not been studied yet in the literature, to the best of our knowledge,
but as we shall see momentarily, it is close to second-order logic.
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Voz-Px A ~(=5)(3zPx AVr(Pz — Jy(y < = A Py)))

says there is no non-empty subset of the domain without a minimal element,
(ii). The conjunction of (i) and (ii) defines the standard natural numbers, whose
complete predicate logic (in a rich enough vocabulary) is non-arithmetical.
The expressive power of the monotonicity modality can be much less on frag-
ments of FOL, representing more elementary settings for monotonicity reasoning.

Fact 4 Adding (=}) to monadic FOL adds no ezpressive power at all.

Proof sketch. The proof is by a syntactic normal form argument in the style of
(van Benthem, Mierzewski and Zaffora Blando, 2020). Each monadic first-order
formula is equivalent to a disjunction of the following form:

(i) global state descriptions that list which of the 2* possible true/false
combinations for k unary predicates are exemplified in the model,
conjoined with (ii) local state descriptions for a finite set of variables.

Prefixing a modality <E;> distributes over the initial disjunction, and we are left
with the modality over the described conjunctions. With this complete explicit
syntactic description available, it is easy to read off what is expressed in terms
of conditions that can be formulated entirely in monadic FOL.

Instead of an algorithm for deriving these conditions, we give an example:

(=1)(=F2(Pz A Qz) A (P A =Qz) A 3z (=Px A Qr) A —Jo (=P A -Q)
A Pz A —Qx) is equivalent with the monadic formula —3z(Px A Q) A
Jz(-~Pz A Qx) A Jz((Px A —Qx) V (=Px A =Qx)) A Pr A —Qu'?

A similar closure argument will work for monadic first-order logic with identity.

However, adding the monotonicity modality to another weak decidable frag-
ment of FOL already yields much higher complexity. The modal ‘fact change
logic’ of (Thompson, 2019) adds a modality {(+p)e to basic modal logic saying
that making p true in the current world makes ¢ true there. Under the standard
translation of modal logic into first-order logic, this becomes a fragment of the
language of FOL plus a special case of the modality (=5). Fact change logic is
still axiomatizable, but unlike the basic modal logic, it is undecidable.

Domain enlargement. The third sense of monotonicity involved Domain En-
largement. This suggests adding a modality (C)¢ to FOL saying that ¢ is true in
some extension of the current model.'® This logic encodes the usual facts such
as preservation of existential first-order formulas under model extensions. But
again, this system in general has very high complexity. For instance, it can define
that a first-order formula ¢ is satisfiable, by taking a fresh unary predicate letter
P not interpreted in the current model, and stating that ¢ can be made true
relativized to P: (C)(p)*. As before, fragments are better behaved, and of par-
ticular interest are stepwise addition (or deletion) of objects in a current model,

12 This can be simplified to ~3z(Pz A Qz) A Jz(—Pz A Qz) A Iz-Qz A Pz A -Qx.

'3 Enlargement Monotonicity is then expressed by modal combinations like (C)(=}).
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(Renardel de Lavalette, 2001), in line with intuitive reasoning about diagrams
with generalized quantifiers. We do not pursue this topic here.

Information update meets monotonicity inference. A final setting for
model change lets inference steps meet with semantic information updates, a
natural combination in practical problem solving (van Benthem, 2011). For a
concrete setting, in ‘public announcement logic’ (PAL), modalities [lp]i) express
that ¢ will be true at the current world after original model has been updated
with the information that ¢ is true. For details on the logic PAL, see (Baltag
and Renne, 2016). What upward monotonicity inferences are allowed here?

There are two places where these inferences can occur. First it is easy to see
that the ‘postcondition’ ¢ of formulas [!p]y) allows for standard monotonic infer-
ence to [lo](¢ V a), and similar weakenings are allowed for positive occurrences
of p in ¢ that are not in the scope of dynamic modalities contained in ).

But with p inside the announced ¢, things are more complicated. [l¢]y does
not imply [!(¢ V @)]i: such a monotonic replacement may give weaker informa-
tion, true in more worlds, changing the original update to a larger submodel
where earlier effects can be blocked. For instance, for atomic facts p, the formula
['p] K'p is valid in PAL: after receiving the information that p an agent will know
that p. However, the formula [!(p V ¢)]Kp with a weaker announcement is obvi-
ously not valid. In contrast, monotonicity in the postcondition does tell us that
from stronger announced content weaker facts can become known. For instance,
['(p A q)]Kq is valid: we can also learn parts of what was announced.!4

Dynamic monotonicity. But actually, a more dynamic form of monotonicity
inference may be natural in the PAL environment, triggered by a dynamic take
on inclusion viewed as a relation between informational actions. Let us say that
an announcement (not a proposition) !¢ entails an announcement !4 if

the implication [lp]a <> [l][lW]a is valid in PAL for all formulas «.

One can think of this in Gricean terms, where stating !y after !¢ would not be
appropriate, as it adds no information. Viewed as an inclusion of actions, this
sort of connection can trigger inferences. The logic PAL contains information
about what can be deduced from entailments between announcements.'® This is
just one way of thinking. There are other natural notions of dynamic entailment
— but we must leave the study of dynamic monotonicity to another occasion.

All this leads to a question. A Lyndon-style preservation theorem capturing
semantic monotonicity in PAL formulas in syntactic terms remains to be found.

14 Tt is easy to see with simple concrete examples of PAL update that downward mono-
tonicity fails as well for announced formulas: [lp]y) does not imply [!(¢ A a)]e.

15 The exact information content of an announcement !y is that ¢ was true before
the announcement (the caveat is needed since announcing an epistemic statement ¢
might change its truth value), and if ¢ subsequently adds no new information, this
means that the !¢ update does not change the model. Thus, a way of taking dynamic
entailment is as a valid implication Y¢ — v, where Y is a one-step backward-looking
temporal operator beyond the language of PAL, cf. (Sack, 2007).
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However, this is not yet a precise question. To understand what might be in-
volved here, note that moving to a larger submodel through a weaker update
does preserve some earlier postconditions 1, namely those that are existentially
definable. Thus, a Lyndon result in the dynamic PAL setting may have to simul-
taneously analyze monotonicity and preservation under model extensions. Also,
since we are in an intensional setting with formulas referring to different models,
the inclusion triggers for monotonicity inferences need some care. Just inclusion
in an initial model need not suffice for justifying replacement in postconditions
referring to updated models: we must have triggers of the right strength, or in
semantic terms: inclusion of denotations in all relevant models. 16

4 Back to natural language

Dynamic logics for model change are useful tools for formalizing the metatheory
of monotonicity and much else besides. But they can also model concrete infer-
ences in a setting of instructions for change. In this final section, we briefly list
some possible repercussions of the preceding technical topics when we return to
generalized quantifiers in natural language, the area we started with.

Linguistics expressions of change. Descriptions of changes in the world or
instructions for achieving these changes occur explicitly in natural language. For
instance, the dynamic modality of public announcement logic suggests analogies
with the verb “to learn”, which describes a change in information state. The
earlier technical observations about PAL then suggest linguistic questions about
inferences that go with learning. If we view “learn that A” as a description of
what the agent comes to know after the learning, A is a postcondition that allows
the upward monotonic conclusion “learn that AV B”. But if we take the A to be
the content of the message leading to the learning, we are rather talking about
an announcement !A where upward inference is not allowed, or at least tricky.
Many action verbs deserve attention here, such as “change”, “make”, or,
closer to our second and third senses of monotonicity: “add”, “increase”, or
“remove”. As an example, consider whether the following inference is valid:

(4a) All A are B.
(4b) Increasing the A’s is increasing the B’s.

Here we see an ambiguity that matches our discussion of various senses of upward
monotonicity in Section 1. If we increase only the extension of A in some fixed
domain, then B might stay the same. But if we add a new object that is A and

16 To make the above questions fully precise, we need to define syntactic polarity of
occurrences in PAL formulas, where occurrences inside announced formulas may lack
polarity. Also, given the intensional setting for PAL of a universe of many epistemic
models connected through updates, the earlier semantic notion of monotonicity can
be phrased in a number of ways. Finally, we need not confine ourselves to syntactic
properties of single occurrences of predicates. A proper notion of monotonic inference
for formulas [l¢]a might involve correlated simultaneous replacements of proposition
letters in both ¢ and a. We leave these detailed issues for follow-up work.
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insist on the premise, then indeed, we have also increased the number of B’s.'”
So, there are options for taking proposed inferences in a dynamic setting.'®
Also, the status of the inclusion premise needs attention. We demonstrate
this with our next example. Perhaps most centrally, while classical monotonicity
inference focuses on what is the case, the dynamic counterpart verb is “become”.
Inferences with all of these expressions seem to involve intensional phenomena.

Monotonicity inference and intensionality. Consider this inference:
(5a) Prime ministers of India are male.
Indira Gandhi became PM of India.
(5b) Indira Gandhi became male.

This is obviously incorrect. Indira Gandhi’s election falsified the generalization
expressed in the first premise. The point is that the premise is sensitive to mo-
ments in time, and can change its truth value as events happen.

We are in familiar more general territory now, monotonicity inference in
intensional contexts and modal logics. These generally require modified inclusion
statements, modalized to the right degree. Something that would work in all cases
is a modalized “strong inclusion” true in all worlds, but the inclusion may also be
more specific to the intended conclusion. If prime ministers of India were granted
legal emergency powers just before Indira Gandhi’s election, then we would be
justified in concluding that she acquired such powers, even if that inclusion was
not always the case in history. For more on monotonicity inference in the setting
of modal logic, we refer to (Aloni, 2005) and (Yan and Liu, 2020).1920

These two brief examples may have shown how technical dynamic logics of
change connect naturally with linguistic phenomena, in particular, the mono-
tonicity inferences long studied in formal semantics. Once we take this perspec-
tive, many further connections suggest themselves. Here is a last illustration.

17 (Sun and Liu, 2020) discuss such inference patterns in the ancient Chinese language.
18 With this richer linguistic vocabulary in monotonicity reasoning, the more general
orderings of Footnote 7 may also come to the fore. Thomas Icard (p.c.) gives the
nice example of “The tree is tall. The tree grows. Therefore, the tree is still tall.”
The difference between inclusions locally true in the actual world and inclusions
true also in other worlds remains somewhat hidden in common phrasings of upward
monotonicity inference as a pattern “from ¢(P) to ¢(P V @)”. The inclusion from
P to PV Q is universally valid, so usable anywhere.

There are many further intensional aspect to monotonicity inference that we can-
not address here. For instance, such inferences seem sensitive to description. In the
ancient Mohist example that “Your sister is a woman. But loving your sister is not
loving a woman”, the issue may be under which description we are viewing the loving
(‘as a relative’ vs. ‘romantically’). This distinction is widespread. Oedipus killed a
man on the road, but did not realize that the man was his father. Did he kill his
father? Under one description: yes, under another: no. For many further instances of
the role of description in intensional contexts, see (Aloni, 2001), (Holliday and Perry,
2015). Should we consider a more refined notion of monotonicity inference where in-
ference can take place at either the level of denotations, or that of descriptions?

19

20
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Monotonicity inference as topic dynamics. In line with dynamic views of
natural language use, we can also view drawing an inference itself as a dynamic
activity (van Benthem, 2011). A conclusion is often not something that just
passively ‘follows’ (from) the premises. In addition, it can also be an active
means of changing, or at least modifying the topic of discussion or investigation.
In this sense, a monotonicity inference from p to p V ¢ is not just a ‘weakening’,
or a form of non-relevant reasoning to be banned, but the introduction of a new
topic. Indeed, topic change is again a general phenomenon for which dynamic
modal logics exist, so then we have closed a circle in our considerations.

5 Conclusion

We have identified three different intuitive senses of monotonicity inference. In
standard generalized quantifier theory these largely amount to the same thing.
However, once we drop the usual GQT assumption of Extension, differences
between the various senses emerge, including new forms of monotonicity. These
came out clearly in systems that describe counting and logical inference on a par.
After all, intuitively, quantifiers seem a place where logic meets quantitative rea-
soning. Next, when embedding quantifiers in richer languages, our three senses
came apart in classical first-order logic, and yielded a number of interesting is-
sues, including interpolation and completeness for generalized semantics. Going
to less familiar settings, monotonicity also connected in interesting ways with
new (modal) logics of model change, leading to an array of new questions. Fi-
nally, we have suggested that all this technical development may be taken back
to natural language, suggesting a fresh look at the interplay of monotonicity
inference with the rich linguistic vocabulary for expressing change.
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