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Abstract

We articulate a relational understanding of modality, and show it at
work in a survey of pre-order models, set-lifting, and modal languages.!

1 Modality as a relational pattern

People often demand to know from me “what a possible world is”. How can
they understand modal logic, if T do not tell them this basic simple thing first?
When I hear such questions, alarm bells go off in my mind.

What and how questions. As a student, I was raised in the spirit of Evert
Beth, an erudite philosopher and creative logician. His magnum opus is “Foun-
dations of Mathematical Logic” (Beth, 1959), and a chapter that impressed me
is that on ‘Aristotle’s Theory of Science’ with its focus on “What Is” questions.
For Beth, this agenda became obsolete with the rise of modern science, where
the deep insights came from asking “How” questions about how Nature func-
tions. Beth felt that, despite the efforts of Russell and his generation in bringing
together science and philosophy, Aristotle’s essentialist mindset still held sway
widely. However this may be, ever since my student days, I have felt attracted
to a philosophical “How” approach, as in David Lewis’ famous saying that to
know what a meaning is, one must know what a meaning does (Lewis, 1970).

n the 1960s, Saul Kripke opened the doors to modern modal logic, and I was one of a
generation of students entering this wonderland of philosophical ideas pursued with mathe-
matical clarity. Over the years, many further influences have shaped the field, coming also
from linguistics and computer science, and I am a representative of the resulting ‘Amsterdam
style’ in modal logic, cf. (Blackburn, de Rijke & Venema, 2001), (van Benthem, Blackburn &
Wolter, eds., 2006). But whatever agenda one lives by, one constant in the field is our shared
indebtedness to Saul. It is a pleasure to make this small offering in his honor.



Abstraction. To me, possible worlds semantics is a Carnapian conceptual
framework, and worlds are objects in abstract modal structures. When you use
them to represent things, they can be just anything you like: points in time,
situations, deals of cards, people. Abstraction is a cognitive talent and a driver
in intellectual history. Being able to ‘let go’ of pre-set interpretations is an
intellectual talent that fosters understanding at the level where it thrives best.?

An interactive relational perspective. Still, one can say more about worlds,
even at an abstract level. Consider the relational models M = (W, R, V') intro-
duced by Kanger and Kripke. Critics see the accessibility relations R between
worlds as an ad-hoc device for modeling some logics that would lack complete-
ness theorems otherwise. My own view is the opposite: the relational structure
is the heart of the matter. A possible world may have some internal structure of
local facts, but its truly modal behavior is its pattern of interaction with other
worlds. To paraphrase Zellig Harris’ famous dictum about word meanings, “to
understand a world, look at the company it keeps”. This reflects the message of
modern logic promoted by Russell and his generation. Objects are not just mon-
ads determined by their properties; equally important are the binary and other
relations encoding their relationships to other objects: hence the change from
the traditional Aristotelean logic of properties to a Fregean logic of predicates.?
I would go even further, and say that the modal content of a model is its
relational pattern: modality lives ‘in the air’, not inside the worlds — it is team
play. These modal patterns arise in many settings, leading to such different
families as modal logics of information and knowledge, time and action, space,
metaphysics, and more as the scope of modal logic keeps growing.

Invariant patterns and modal languages. But the relational perspective,
once taken, is pervasive. In particular, a modal model is just one representa-
tive of the relational ‘pattern’ that I mentioned. The real structural pattern is
the equivalence class of that model under the appropriate structural invariance
relation. There are many fundamental invariance relations in mathematics and
science, and logic follows suit, with relations such as isomorphism, homomor-
phism, or for basic modal logic: bisimulation (Blackburn, de Rijke & Venema,
2001).* This takes us to a next aggregation level: possible worlds models do
not live alone, but in a modal universe of models, and the identity of a model
is also determined by its relations to those other models.

20ne can of course legitimately criticize an abstract semantics for fit to some concrete
application. Such ‘criticisms of fit’ are in fact one engine of progress in the field.

3Saying that worlds are determined by how they relate to other worlds may sound circular.
But think of Category Theory, where categories describe objects and morphisms, not through
internal structure, but in a pattern of external interactions. Since Kripke’s pre-order models for
intuitionistic logic and modal S4 are categories, this analogy is perfectly felicitous, and modal
logic is mathematically sound. However, I admit there may be legitimate metaphysical worries.
If an object is determined by its interactions with other objects, changing its context will
automatically change the object: this weathervane behavior may be considered problematic.

4The definition of bisimulation (Blackburn, de Rijke & Venema, 2001) reflects what we
said above about worlds: matched worlds only need to agree on a few thin atomic properties;
the modal structure is in the back-and-forth conditions on available relational steps.



In this setting, modal languages enter, poorer or richer, offering perspicuous
ways of expressing invariant relational structure of models. There is an extensive
literature on pattern invariance and definability in matching modal languages
(Goranko & Otto, 2006). Thus, there is an equally important syntactic side
to modal logic, which consists in the study of different languages for describing
different relational patterns up to different levels of expressive power, depending
on how structurally discerning we make the invariance relation.

These modal languages offer a generic perspective going beyond peculiarities
of specific models whose complete structure may be infinitely complex. We can
describe given models up to some level of syntactic complexity, using normal
forms, modal Scott sentences, or even the drastic information reduction of the
modal method of filtration (van Benthem & Bezhanishvili, 2020). I will not
emphasize this important generic function in what follows, but fine-structure
and genericity is what all languages, logical or natural, are for.> Also, modal
syntax offers characteristic patterns of reasoning, and modal syntactic patterns,
too, are a major strength of the framework that I will ignore here.

Modal logics. Finally, different modal languages induce different logical sys-
tems of valid inference forms, often axiomatizable in modal proof systems.® Of
course, our relational perspective also applies to these languages and logics.
Much about their identity is revealed through translations into their neighbors:
other languages and logics, and this, too, will be a theme in what follows.

I apologize for my obsessive relational context-oriented stance at many levels,
but to me, awareness of modal structure is really turtles all the way down.”
Even so, I admit that the relational view can be challenged. There are also
forces inside modal logic that locate the essence in a monad-style view of worlds.
Appendix II contains further thoughts on the role of modal languages, and on
design of modal languages for all the three relational levels mentioned here.

Content of this paper. The preceding themes become more concrete with
some history of ideas. I will discuss partial possibilities, set-lifting and language
design, since these topics relate to recent challenges to modal logic coming from
situation theory, truthmaker semantics, or hyper-intensionality generally. As we
shall see, these challenges have an interesting past, and their implementation
involves doing more, rather than less, modal logic, requiring richer relational
patterns than the sparse models of the founding generation. The presentation
to follow is a light historical survey with commentary, and it can hopefully be
appreciated even if one does not share, or rejects, my patternist stance.

50One may wonder what makes a language modal, as opposed to any language for relational
structures, say first- or second-order. Common answers are decidable validity or perspicuous
variable-free notation for proof theory, but the border-line between modal and just any logical
languages remains a bit elusive. In fact, switching perspectives is often helpful, with the
‘standard translation’ from modal into first-order languages as a prime example.

6The above expressive diversity is not the usual deductive diversity of different ‘modal
logics’ over the same language, say: K, S4, or S5. Deductive diversity is best understood as
reflecting different restrictions one can make on the relational patterns one is interested in.

"If you see Coalgebra (Jacobs, 2016) as the fresh young face of modal logic, then turtles
all the way down, not bottom-up construction, is the non-wellfounded essence of modality.



2 Intuitionistic logic and modal S4

Let us start with the classic paper “Semantic Considerations on Intuitionistic
Logic I’ (Kripke, 1963). Our further themes will unfold from there.

Basic language and semantics. Kripke models for the language of intuition-
istic propositional logic are triples M = (W, <, V') where (W, <) is a reflexive
transitive pre-order, and the valuation V' assigns sets of points in W that are
upward closed: if s € V(p) and s < ¢, then t € V(p). One can also restrict
attention to partial orders, but this is not essential to what follows. The truth
definition explains when a formula ¢ is true at a point s in a model M (written
M, s = @), with the following central recursive clauses:

M,sEpAy iff M,sEpand M;s E ¢

M,;sEpvy iff M;sEpor M,s =19

M, s = - iff fornot>s, Mtk

M,sEp— iff forallt > s, if M;s = ¢, then M, s =

With this understanding of the logical operators, all formulas denote upward-
closed sets of points. This semantics fits intuitionistic propositional logic: a
formula is universally valid iff it is provable in Heyting’s standard proof system.

Geometry of information and inquiry. While the completeness theorem
shows ‘fit’ of validity and provability,® a broader virtue in this analysis is the
conceptual framework as a style of thinking. We can now analyze modal axioms
or proof principles in terms of an easily visualized ‘geometry of information’, or,
viewing models as possible histories of investigation, the ‘geometry of inquiry’.”

The package. Many decisions went into making intuitionistic logic the sys-
tem of reasoning here. There was a choice of language (the vocabulary of propo-
sitional logic), type of models, constraints put on the ordering (reflexivity and
transitivity), special properties demanded of propositions (upward-closure), and
specific truth conditions for the logical operations linking language and models.
Like in many modal semantics, this is a finely tuned conceptual machinery with
lots of interlocking moving parts that could easily have been set differently. For
instance, classical logic emerges by changing the clause for disjunction from im-
mediate to ‘cofinal choice’, and requiring denotations X of formulas to satisfy
upward-closure plus regularity: “if Vt > s3u >t:u € X, then s € X.10

8Tighter connections between semantic structures and proofs themselves are the ‘full com-
pleteness’ results in more category-theoretic frameworks (Abramsky & Jagadeesan, 1994).

9For a concrete example, consider the Disjunction Principle for intuitionistic logic: if ¢V
is provable, then so is ¢ or 1. A semantic proof for this takes pointed countermodels for ¢
and v, forms their disjoint union, and puts the distinguished points under a new root: in the
resulting model, the disjunction is refuted. In fact, the semantic content of the Disjunction
Principle is precisely the model glueing property of joint rooting, but a detailed correspondence
perspective on modal derivation rules would be a subject for a more technical paper.

10Tn topological terms, this is a restriction to the Boolean algebra of regular open sets. One
can also think of a Sure Thing Principle: “if you see that ¢ is inevitable, accept it right now”.



Structures. Though a very simple mathematical structure, around 1960, pre-
orders were the right choice at the time. In fact, they are special cases of the
topological semantics for intuitionistic and modal logics which had been known
since the 1930s,'! but specialization was progress. Preorders are also close in
spirit to Beth tree models for intuitionistic logic (Beth, 1956), but their simplic-
ity won the day.'? In fact, far beyond intuitionistic logic, Kripke’s models offer
a setting where many logics can be defined and compared, as we shall see.

Two states in the same land: the modal logic S4. Intuitionistic logic
famously shares the land of pre-orders with classical propositional modal logic,
where the induced logic is S4. With the latter, the style of thinking is different.
The classical understanding of the Boolean operations is retained, but the new
order structure < is described by matching universal and existential modali-
ties, making S4 an ‘explicit’ classical counterpart to the ‘implicit’ non-classical
intuitionistic logic on the same models (van Benthem, 2019).

Comparisons between the two neighbors can run in various ways. In terms
of structural invariance relations, the language of modal S4 has a natural and
well-known fit with the ubiquitous notion of bisimulation, whereas an invariance
analysis of intuitionistic logic requires more care, involving entangled directed
simulation relations (Paterson, 1997), (Olkhovikov, 2013).

Translations. Surely the most famous connection between the two great pre-
order logics is one of syntactic translation. Godel 1933 translated intuitionis-
tic propositional logic faithfully into modal S4, and Kripke’s truth definition
presented above is a semantic transposition of this recursive translation. The
translation might be seen as a case of embedding a poorer system into a richer
one, since modal S4 does not just govern reasoning about upward-persistent
formulas Oy, but also about non-persistent formulas Gp. Yet a surprise was
in store. Answering a question of Dana Scott, Fernandez 2006 gave a converse
translation, embedding S4-validity faithfully into intuitionistic validity — with
an important correction in Goré & Thomson 2019. If one truly knows a logic
through its neighbors, as we have suggested, all this shows how relations can
be delicate — especially, given the lack of a systematic theory of translatability
(and not to forget: non-translatability) between logical languages and systems.
We know much less than we would like about this modal meta-realm.!?

Conclusion. Pre-orders with an intuitive reading as information states or his-
tories of inquiry offer a rich playground for modeling and comparing existing
logics. This marriage is a happy one: in modal logic since the 1960s, intuition-
istic and classical logics have often been studied in tandem, to mutual benefit.
In the following sections, we will expand this co-existence to more logics.

1 Preorders match special ‘Alexandroff topologies’ (van Benthem & Bezhanishvili, 2007).

120f course, these issues are never settled once and for all. Dummett and van Dalen have
argued that Beth models are superior for some foundational purposes, and an attractive
mathematical perspective taking them on board is found in Bezhanishvili & Holliday 2019.

13Two recent dissertations discussing the landscape of translations between modal logics are
French 2011, Kocurek 2018. General model-theoretic perspectives on relative interpretability
can be found in van Benthem & Pearce 1984, Barrett & Halvorsen, 2016.



One can also view this section as adding fine-structure to classical models.
Points in an intuitionistic model are stages toward a complete classical valuation,
persistence holds for assertions that are definitely true, while modal S4 adds
assertions about possibilities that may be present for a while and then drop
out.' The inclusion order embodies this fine-structure of partial approximation,
and what its presence leads to is more, rather than less modal logic.

3 Languages and logics on information models

Semantics or language design. Once on the level playing field of pre-orders,
further aspects of information and inquiry can be studied. This represents a shift
in direction from what is suggested by the term ‘possible worlds semantics’. A
semantics is usually given for some existing language, which sets the standards
for what proposed models are meant to achieve. In this sense, we have discussed
semantics for an intuitionistic language and its associated reasoning practice,
or for a language with modal expressions of, say, knowledge or necessity. But
one can also take proposed structures as primary, and ask what sort of language
would best bring out important features of reasoning in this setting. Both direc-
tions occur in modal logic, with new language design perhaps more prominent
in logics of time and action. We will continue in the latter mode, but in our
story, the two directions are not mutually exclusive or opposed.

Note: Henceforth, we will drop the term ‘world’ and use the neutral ‘point’.

A richer modal information logic. Our first offering is a system proposed
in van Benthem 1996. One natural structure in pre-orders are suprema (lowest
upper bounds) and infima (greatest lower bounds) of states. On partial orders,
suprema and infima will be unique, but one need not assume this in general.
Here, a supremum of points s and ¢ can be seen as modeling a ‘merge’ of two
information states, or alternatively, as a meeting point where two lines of inquiry
come together. This suggests adding two binary modalities (sup)y and (inf)p
to the basic modal language, with the following interpretation:

M, s |= (sup)p iff there exist two points ¢, u such that
(a) s is a supremum of ¢, u, (b) M,t = ¢ and (¢) M, u |= 9.

and likewise for (inf)pt. In this language, we can define the standard modali-
ties in both directions. For instance, (<)¢ is equivalent to (inf)p T.

The new binary modalities satisfy counterparts of familiar modal principles,
including distribution over disjunctions, giving the system a natural feel.

As for further principles, we did not assume that suprema and infima always
exist in our models. Doing so will create a semi-lattice or lattice structure that

14This is like in formal learning theory (Kelly, 1996), where we only know the complete
truth in a completed history, while knowledge and belief play on the way. Note that this
form of knowledge is procedural: it refers to a current process of inquiry, and thus differs from
more standard static conceptions in epistemic logic of knowledge as a range of options. Van
Benthem 2009 discusses Kripke’s models extensively from both epistemic perspectives.



validates new principles beyond the minimal logic. However, these can still be
analyzed by modal frame correspondence techniques, as many principles in this
setting have so-called ‘Sahlqvist syntax’ (Blackburn, de Rijke & Venema, 2001).
An example of an additional principle is Associativity

(sup) ((sup)p ) @ — {sup ) (supy))

This enforces existence of enough suprema in the model to reorder arbitrary
combinations of the form sup(sup(s,t),u) to sup(s, sup(t,u)). While this seems
a harmless requirement that helps computation, such existential assumptions
can increase the complexity of validity: some basic modal logics of associative
binary modalities are undecidable (Kurucz, Németi, Sain & Simon, 1995).
Perhaps surprisingly, not much is known about this simple modal informa-
tion logic mildly extending the familiar S4. For instance, no complete axioma-
tization has been found yet. In Appendix 1, we give an axiomatization using an
extra device: nominals that name specific points. This will show at least how
one can work in practice with a modal language like the one presented here.!®
Another and perhaps even more striking open problem about our simple
extension of S4 is the following: Is basic modal information logic decidable?

Categorial logics. Viewing points in our models as information pieces also
suggests further modalities, such as the following implication, stating that com-
bining with any evidence for the antecedent yields evidence for the consequent:

M,s | p =1 iff for each point u with M, u |= ¢ and each
point ¢ that is a supremum of s and w, it holds that M, ¢ = .

This implication satisfies the basic principles of categorial and relevant impli-
cation (Bimbé & Dunn, 2008) (Kurtonina & Moortgat, 2009). It can also
be seen as introducing a binary modality for the ternary supremum relation
z = sup(z,y) from the perspective of the point x rather than z, as with (sup),
leading to a more elegant overall modal logic design (Venema, 1992).

Updates and matching information conditionals. Here is another per-
spective on the pre-order semantics of Section 2. We follow the line of thinking in
van Benthem 1989 who proposed generalizing from Brouwer’s ‘idealized math-
ematician’ to ordinary cognitive agents. Moving upward along the ordering
<, such agents arrive at more information about the actual world, or moving
downward, they backtrack and give up things they thought they knew.

These informational movements correspond to natural epistemic actions.
Updates with new information ¢ take us from a current point to points higher
up in the < order where ¢ is true, perhaps, according to a common intuition
about updating, to closest points where ¢ is true. Conversely, what may be
called downdates take us to closest points lower in the order where ¢ is false.

15In that same appendix, we will also briefly discuss modal axiomatizations of the above-
mentioned semi-lattices and lattices, as an instance of ‘lifting’ equational theories of algebraic
structures to modal logics— in the spirit of Section 5 below.



The dynamic perspective of information update in pre-order models at once
suggests the introduction of a matching new modality to the usual vocabulary:

M, s |= [+ iff for each point ¢ > s that is closest to s
among the points satisfying ¢ in the model, M, ¢ = 4.

Downdate modalities are defined in a completely analogous manner referring to
closest points T' below s in the information ordering <.

The resulting logic is a simple abstract theory of information update and
retraction, comparable in scope with belief revision theory (Géardenfors & Rott,
1995), or dynamic-epistemic logic (Baltag & Renne, 2016). The update modal-
ities also connect with conditional logic, being a Lewis-style variant of intu-
itionistic implication. With this natural modal system, we are again in largely
uncharted territory, except for some forays in van Benthem 2018. The complete
conditional update logic of pre-orders remains to be determined.

Structures and invariances. Our examples raise the question what struc-
tures are most natural. Should we specialize from pre-orders to lattices, where
suprema and infima always exist, or to distributive lattices? Computer science
has a long tradition in relevant abstract models of information. In particular,
Scott’s Domain Theory (Abramsky & Jung, 1994) offers a rich account of in-
formation structures as DCPOs: partial orders where all suprema of directed
subsets exist, over which abstract computation can take place.'®

In conjunction with this, there is also the issue of which structural invari-
ance relations match the extended languages introduced just now. For a modal
information theory over lattices, a bisimulation analogue of ‘Scott continuity’
might be the answer. For our conditional logic of updates and downdates, some
adaptation of known bisimulations for conditional logic may be appropriate.

Digression: partial logic. This may be a good point to mention a further
striking feature of some logical theories of information: a distinction between
positive and negative information, and matching this, a simultaneous and mu-
tually recursive use of ‘support’ and ‘rejection’ of formulas at pointed models
in modal semantics. Examples of this approach are the ‘data semantics’ of
Veltman, 1984 or the ‘polarity-based’ situation semantics of Barwise & Perry
1983, and of course, there is also the long three- (or higher-)valued tradition in
intuitionistic and modal logic (Wansing, 1993).

There is something appealing to the positive/negative distinction, even in
the restricted setting of mathematical inquiry. The modal-style negation —¢ in
an intuitionistic model tells us that the current space of inquiry will never lead
to support for ¢: as in some indirect cultures, negation is signaled by silence.
But one can also have a concrete counter-example to ¢ available right now,
representing a stronger form of negation as ‘certified exclusion’.

161 will not say much about Domain Theory in this paper, but it is rather surprising to me
how little impact this fundamental and elegant theory of information and computing developed
in the 1970s has had in philosophical logic or even in modal logic.



With a partial approach, logical operators split into variants, and so do no-
tions of consequence, in ways that are well-known from the literature (Blamey,
2002). Such a framework also allows us to separate positive support from neg-
ative support in new ways. An example is the truthmaker semantics of Fine
2014 and later publications. It uses complete distributive lattices as semantic
structures, and then interprets a propositional language with clauses like the
following. An information state s supports a disjunction ¢ V 1) as saying that s
is the infimum of states ¢ supporting ¢ and u supporting . This is the attrac-
tive idea of a disjunction as a ‘mixture’ that has a distinguished history. Next,
an information state s rejects ¢ V # if it rejects both ¢ and v: i.e., the classical
view of refuting both disjuncts, without adding rejection of mixtures.

Translations. Despite the diversity of richer partial logics over preorders
or lattices, many connections remain under translation. For instance, faith-
ful translations from many-valued partial logics into classical true/false logics
have long been folklore. Van Benthem 2018 presents a translation from Fine’s
truthmaker semantics into the above modal information logic with a double re-
cursion trick that goes back to Gilmore in the 1950s. Many further translations
no doubt exists, although it would also be of interest to show negative results for
a change, such as the non-translatability of the above two extended modal logics
of information, the one for suprema/infima and that for update conditionals.

Conclusion. Preorder models and lattices support richer languages than those
of intuitionistic logic or modal S4, and provide a vehicle for modal analyses of
information combination or update. While this opens up an area of investiga-
tion, it is surprising how easy it is to define new simple modal systems for which
open problems arise at once. The unknown starts right at our doorstep.

4 Possibility semantics

Motivations for partializing. One way of viewing the preceding sections
is that of modalizing the structure of an approximation or growth relation <.
Let us now enrich the perspective, and start from a classical modal logic whose
accessibility relation can stand for anything from epistemic uncertainty to time
steps or process actions. How can we partialize this sort of semantics?

Systems to this effect were proposed around 1980. The motivations in Hum-
berstone 1981 for a partialized modal semantics were philosophical, such as
approximating over-committed possible worlds in the classical sense by par-
tial situations, or basing knowledge and belief on partial ‘possibilities’. The
motivations in van Benthem 1981 for partializing the semantics for the lan-
guage of first-order logic were mathematical, namely, removing the inelegant
non-canonicity in the usual Henkin-type completeness argument which needs
an arbitrary choice of a maximally consistent extension, and also removing the
appeals to non-constructive principles like the Axiom of Choice in standard
model theory. These possibility semantics did not catch on widely in the ensu-
ing decades, though rediscoveries have occurred, cf. Rumfitt 2015.



Possibility semantics for modal logic. Consider the language of proposi-
tional modal logic, with a universal modality O and an existential modality <.
Modal models are now tuples M = (W, R, <, V') where < is a preorder and R is
a binary relation subject to the following two constraints, for all points s, ¢, u:

(a) if s <tRw, then Jv: sRv < u,

(b) if s Rt, then Ju > sVo > uJw >t : v Rw.

Here the ‘compatibility relation’ x C'y holds if 3z : 2 <z Az <y.

We also stipulate that the sets V(p) assigned by the valuation to proposition
letters are upward-closed and regular w.r.t. < (cf. Section 2 for this notion).

Now the key truth conditions run as follows:

M,sEpAy iff M,sEypand M,s =1

M,sl= Ve iff forallt > s, thereis a u >t with M,u |= ¢ or M,u = 9
M, s E - iff fornot>s, MtlEg

M, s = Op iff for all ¢t with sRt, M;t = ¢

The above two perhaps somewhat technical-looking conditions on possibil-
ity models belong to a family of possible connections between the accessibility
relation R and the partial extension relation < in the literature. They are there
to ensure that the following assertion becomes true. The denotations of any
formula of the language are upward-closed and regular.'”

The minimal modal logic K is the complete theory of possibility semantics
in this sense. First, each standard modal model is a possibility model if we take
the identity relation for <, and in that special case, standard modal semantics
coincides with possibility semantics. Thus, non-theorems of K are refultable on
possibility models. But also, given any pointed possibility model for a modal for-
mula ¢, we can turn this model into a classical modal model for ¢ by restricting
to the submodel of points that ‘decide’ all subformulas of ¢.'®

Concerns and considerations. Now all this invites discussion. The pre-
sented semantics looks somewhat engineered, so have we just managed to re-
place something simple (standard modal semantics) by something more complex
(possibility semantics) for no better reason than ideological purity? One math-
ematical benefit of this semantic move is that the current more complex set-up
allows for completeness proofs that are much more constructive than the usual
ones, involving no appeals to set-theoretic equivalents of the Axiom of Choice
like Zorn’s Lemma. A philosophical benefit is that one can now model functional
intuitions of modal notions that would not work in standard semantics, such as
an agent’s belief referring to just one possibility instead of a set of worlds.

17The intuitionistic modal logic of Bozié¢ & Dosen 1984 uses only the first condition.
18For details, cf. the Filtration Lemma for possibility models in Holliday 2021. T thank Wes
Holliday for removing some epicycles in my thinking about this completeness issue.

10



Another point to note is that the ‘packaging’ in this setting (more complex
than in Kripke’s semantics for intuitionistic logic) can be modified by shifting
functions between the truth conditions, assumptions on denotations of formulas
and structural constraints on the underlying possibility frames. In particular,
no particular modal logic of possibility is favored by the possibilities setting,
since there is a variety of natural meanings for the logical operations.'®

Modern themes in possibility logic. A comprehensive development of the
paradigm has been given by Holliday and his co-workers, cf. the wide-ranging
recent survey Holliday 2021. This includes both philosophical themes, establish-
ing connections to epistemology and philosophy of language, and mathematical
ones, such as choice-free representation theorems in algebraic logic (Bezhan-
ishvili & Holliday, 2020), or prospects for a choice-free model theory.?® A gen-
eral theme that returns here is translation. Extending the spirit of Gddel’s
translation of intuitionistic logic into modal S4, van Benthem, Bezhanishvili &
Holliday 2017 shows how many modal possibility logics can be translated faith-
fully into bimodal logics over possibility frames, thus providing a richer modal
language where many different logics of possibility and accessibility coexist.

Set-based models. One theme in possibility semantics points ahead at Sec-
tion 5 below, namely the existence of special models whose points are sets. A
good method for developing intuitions about possibility models is through the
following construction. One takes a standard relational model M = (W, R, V)
and considers the powerset of W with the inclusion relation and the natural
lifting of the accessibility relation R to sets:

XRY iff Vs € XViwithRst: te€Y

Setting an appropriate valuation for proposition letters as sets of sets yields a
model poss(M) that satisfies the above conditions for a possibility model.?!

Now a simple but important Possibilization Lemma due to Holliday states
that for all propositional modal formulas ¢,

poss(M), X |E ¢ iff M, s | ¢ for alls € X.

Thus, these models have what might be called a ‘supervaluation’ flavor. In par-
ticular, for each formula ¢, there is a unique weakest possibility (largest set) that
supports ¢. General possibility models can then be seen as an abstraction out
of these structures, where one must decide which properties of set-possibilities
make sense in general, and which are just special technical features of sets.

Reversing this abstraction process, there is an issue of representing abstract
possibility frames as concrete set models. This is not a simple topic, and the
best available results are only partial, cf. Harrison-Trainor 2017.

19For instance, intuitionistic disjunction is immediate choice, classical disjunction is eventual
choice, and the earlier-mentioned ‘mixture’ interpretation of disjunction makes sense too.

20This line continues the filter-based approach to ultraproducts and model-theoretic defin-
ability results based on these that was initiated in van Benthem 1981.

21Many semantics of this sort impose valuations of special forms guaranteeing closure of
denotations for atomic propositions under subsets, or unions, or yet other properties.
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Temporal dynamics. Possibility models may contain information states about
more than one object: states can be incompatible in many ways. A concrete
form of modal possibility semantics occurs with dynamical systems where the re-
lation R is a transition function F' that takes states of the system to other states.
This leads to new issues. For instance, from an informational viewpoint, con-
tinuous functions are important, as these approximate function values through
appropriate approximations of their arguments. In the setting of pre-orders,
this just means that the function has to be monotonic for inclusion:

if <y, then F(z) < F(y).

This can be viewed as an abstract notion of computability, an obvious dynamic
addition to the logical study of static information structures.

Just as an illustration, the following axiom for continuity occurs widely in
the modal literature on topological systems (Kremer & MInts, 2007):

(F)[<le — [<I(F)e

This commutation principle is not valid in the above general modal possibility
logic, but it singles out an important application area.??

Conclusion The informational view of modal models combines naturally with
accessibility relations that can stand for a wide range of notions, including dy-
namical systems and computation using information structure for some purpose.
It is somewhat surprising that modal-style analysis of these natural dynamic
companions to widely studied static notions has taken so long.

5 Set lifting

We noted in the preceding section that one concrete way of creating partial
possibilities models is by set lifting standard semantics. Set lifting keeps emerg-
ing with a certain frequency in the logical literature as a means of providing
richer partialized semantic structures, but it does not seem to have a well-known
established tradition. In this section, we survey a few manifestations.

Temporal interval logic. Around 1980, a number of authors proposed chang-
ing the usual Prior-style semantics of temporal logics in terms of durationless
points to temporal interval structures where logical languages could be inter-
preted directly at sets of points. Kamp 1979 presented a discourse semantics for
temporal expressions in natural language where discourse creates event struc-
tures, where events have intervals as their running times. Van Benthem 1979
proposed both abstract and set-lifted interval semantics for temporal logic as
representing ontologically better motivated primitives, more in the tradition of
mereology. Interestingly, as an independent discovery around the same time,
intervals were also proposed in the Al literature on ‘common sense physics’

22 A similar modal perspective applies to Domain Theory, but there, two notions of conti-
nuity occur, our monotonicity version and ‘Scott continuity’ (Abramsky & Jung, 1994).
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(Hayes, 1979), (Allen, 1983), as providing a model for databases for maintain-
ing temporal information that would admit of simpler computation than models
closer to standard mathematical point structures.

Here is a sample of an interval tense logic, cf. Cresswell 1977, Halpern &
Shoham 1986 for further samples. An interval model M = (T, <,I, V) consists
of an ordered set (T, <) with a family I of subsets of T, and a valuation V'
for proposition letters. There may be further constraints, say, making intervals
conver sets X satisfying Vs, t € X :Vu:s < u <t = u € X. The following
truth definition lifts the usual semantics of temporal logic to intervals as indices
of evaluation, while adding a modality the new relation of inclusion. We only
display the major clauses, which reflect intuitions about temporal statements in
natural language when the primitive components of time have duration:

MXEeAyYy if MXEpand M, X =19
M, X E —p iff fornoY CX, MY Eo
M, X EpVey iff thereexist Y, X with X =Y UZ

such that MY = ¢ and M, Z = ¢
M,s = Fo iff for someY >> X, M,Y = ¢

withY >> X forVee X;yeY iz <y
M, X E [} iff foralY CX, MY Eo

Typically, standard logical notions split now. For instance, the new dis-
junction is the merge disjunction of modal information logic, but the language
can also define the cofinal choice disjunction of possibility semantics (reading
Y C X as a counterpart of the earlier z < y). But there are also differences
with possibility semantics, since the temporal setting brings its own features,
such as the special set lifting X << 'Y to total precedence of intervals.

Another difference are new constraints on intervals that have no counterpart
at all for durationless temporal points, or for possibilities as usually conceived.
One intriguing candidate is ‘Homogeneity’ (van Benthem, 1983): all intervals
are isomorphic, a view of time where the large reflects in the small.

Also differently from earlier logics, the denotations of propositions are not
required to have the special properties of upward-closure or regularity. Upward
closure is downward closure in the interval subset order, and this only holds
for special temporal assertions such as “being alive”. Instead, interval logic
offers a general theory which includes reasoning about propositions with many
different kinds of temporal behavior coming, e.g., from well-known linguistic
classifications of verb classes into states, activities, or accomplishments.

Other set liftings. Set lifting is also common in other areas, especially com-
puter science, witness the theory of power domains (Plotkin, 1976), concurrent
dynamic logic (Peleg, 1985), or event structures (Winskel, 1989). Brink 1992
is an excellent survey of both mathematical theory and a range of applications
from computation to verisimilitude in the philosophy of science.
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In a more logical setting, a modern example of set lifting is the logic of de-
pendence of Vaananen 2007 where the language of first-order logic is interpreted
on sets of assignments. This lifts the propositional connectives in the same way
as we saw for temporal interval logic, while also retaining earlier persistence
constraints. But crucially, the new richer structure is also exploited in other
ways, adding new forms of quantification as well as dependence atoms making
the functional dependence structure in sets of assignments explicit.

A recent instance of set lifting is the ‘bilateral semantics’ of Aloni 2019 for
classical modal logic which redraws the boundaries of semantics and pragmatics
in order to deal with delicate linguistic phenomena such as free choice permis-
sions. Unlike possibility semantics, this semantics uses support and rejection
clauses on sets of classical worlds, lifting the accessibility relation in new ways.
Beyond persistence, another constraint on propositions in this semantics is that
the sets supporting (or rejecting) a formula are closed under unions.?3

Thus, motivations for set lifting, old and new, are diverse: what is common
to many cases is the richer pattern of interpretation for basic logical operations.

Theory of complex algebras. There exists an unfortunately little-known
mathematical theory of set lifting. Given any algebra A, define the complex
algebra C(A) as the power set of the set of objects in A, lifting the operations
f as follows, where we just display the case of a binary operation for simplicity:

XCO()Y ={afy|zeXyey)

An early issue investigated at this level of generality is which equations valid
for the original algebras remain valid as they stand for their lifted versions. A
theorem in Gautam 1957 that this is rare, being the case only if the terms in the
equations have only single occurrences of variables. Further theory of complex
algebras from a general modal perspective can be found in Goldblatt 1989. As
for more recent developments, Hodkinson, Mikulds & Venema 2001 is a modern
source using game techniques to axiomatize varieties of complex algebras in a
perspicuous manner when the original algebras have a computably enumerable
theory. Incidentally, the theory of complex algebras covers both full power set
algebras and subalgebras generated by suitably closed subfamilies of sets.

To understand what complex algebras do, and how they relate to the topics
discussed earlier, it helps to think of a concrete example: complex Boolean
algebras. Moving to a power set, or a suitable subfamily thereof, we find lifted
operations that one might call the inner Booleans of the complex algebra:

X+Y={s+ylreX,yeY}
XY ={zylzeX,yeY}
X ={-z|zeX}

230ne of Aloni’s systems does not just set lift, but combines interpretation on worlds and on
sets of worlds. This joint way of proceeding seems closer to the two-sorted approach in terms
of ‘objects’ and ‘types’ in Barwise & Seligman 1995, and it might also suggest a generalization
of modal neighborhood semantics (Pacuit, 2017) to combined point- and set-languages.
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Note that inner Boolean disjunction is precisely the set-lifted disjunction
of temporal interval logics or dependence logics. In addition to inner Booleans,
there are also outer Booleans, as one can also interpret disjunction or negation in
the usual way via their corresponding set-theoretic operations. This duplication
of available meanings for logical operations extends to the basic constants. For
instance, the zero of Boolean algebra splits into an inner Boolean {(} and an
outer Boolean () standing for the empty family of sets.?*

Viewed more abstractly, the binary modality (inf) of Section 3 is a general-
ized counterpart to inner Boolean disjunction, and it also illustrates concretely
how one can think of power algebras as supporting modal operators.

An intriguing feature of complex algebra that might extend to its modern
manifestations are natural, yet hard open problems. For instance, no purely
modal axiomatization is known for complex Boolean Algebra, though Goranko
& Vakarelov 1999 give one by adding nominals from hybrid logic that name
specific objects of the original algebra. Also open is the complex algebra version
of a problem posed earlier in Section 3: Is complex Boolean Algebra decidable?
This has been unresolved for several decades now, and it might pose a real
challenge to existing modal methods for establishing decidability.

Set lifting and abstract semantics While set lifting is an elegant way of
creating richer partialized versions of given algebras, one can also move on to
more abstract versions. For instance, in temporal interval logic, an alternative
approach treats intervals as primitive objects (‘chunks of time’) with two rela-
tions: one for temporal precedence, and one reflecting the extended nature of
intervals: inclusion as in the above, overlap (Wiener, 1914) (Rdper, 1980), or
vet others. This leads to issues of representation of abstract interval or event
models by concrete set structures that go back to Russell’s views on the inter-
face of science and common sense (Russell, 1926). Van Benthem 1983 has an
extensive representation theory connecting the two views of time both ways.?®
Likewise, in possibility semantics, we noted the issue of set construction versus
abstract structures that adopt some, but not necessarily all properties that hold
for set-theoretic reasons. It is likely that similar abstract structures will emerge
for the more recent manifestations of set lifting we have mentioned.

Conclusion Set-lifting is a general way of creating richer models for classical
systems that keeps returning in semantics. The connection between set lifting,
which imports specific structure of power sets, and more general abstract struc-
tures is intriguing, and there is room for a general representation theory behind
its many manifestations. This may well call for a new phase of mathematization
in modal logic going beyond the first wave of the 1970s.

24This splitting of constants is common in hyperintensional semantics, cf. Leitgeb 2019.

25 An interesting analysis of Russell’s views of ‘public time’ as a limiting point structure
arising out of growing interval-based ‘private times’ is given in Thomason 1989 using an inverse
limit construction that might make sense for all the partial semantics we have considered.

15



6 Conclusion

The introduction to this paper stated my commitment to relational structure
as the locus of modality. How one views the semantics is of course just one
aspect of modal logic, and there are further mantras of the Amsterdam School,
concerning modal languages and complexity, that I have refrained from reciting.
I also stressed abstract realms as a good place to work, facilitating pleasant and
unforced walks from one logical system to another, borrowing ideas across.

The case history presented here of partialized relational structures may have
shown that modal language and logic design is alive and well, and that, when
all is said and done, current hyperintensional semantics may not be a threat
to, but rather a part of modal logic. Another point was the coming together
of influences from fields as different as philosophy, mathematics, and computer
science when one takes a broader view of the development of modal ideas.

At the start of this paper, I objected to questions like “What are possible
worlds?” as being intellectually misguided. Nevertheless, despite having used
the word “modal” many times in this text, I admit there is a reasonable question
of “What makes topics modal?” Even so, I have not offered an answer, let alone
a definition. Overall, I feel that broad history of ideas is more revealing of a
field than a priori definition and boundary setting.?® And there is not even one
such history. If you wish, modal logic is a Sea of Stories (Rushdie, 1990).

Which brings me to a final question from my students which I find totally to
the point. “Your lecture was nice, but: does it always have to be modal logic?”
To that question, I do have a definite answer: “Not necessarily”.

Acknowledgments I thank Wes Holliday for thoughtful comments and firm
corrections.
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A Axiomatizing modal information logic

While axiomatic proof systems for the sparse languages of K or S4 are well-
known, working with the richer languages introduced in this paper may be
much less familiar. This appendix sketches a Henkin-style heuristics for finding
an axiomatization of the modal information logic of Section 3. The method
uses two mild additional devices: nominals that name individual points, and an
ezistential modality Eo saying that ¢ is true in at least one point in the current
model. We only treat the case of the key modality (inf)¢ 1), which we will write
for convenience in infix notation as ¢ + 1. The axiomatization wil be found in
the course of a step-by-step heuristic canonical model-style analysis.

(a) Assume the axioms and proof rules of the minimal modal logic for a
binary ¢ + 1 (Blackburn, de Rijke & Venema, 2001) and all modalities defined
in what follows. Also, take all standard proof principles for nominals and the
existential modality. We will add further axioms and rules as needed.

(b) Define a unary modality (1)¢ as ¢ + T. To make its matching abstract
order < in a canonical Henkin model reflexive, add an axiom ¢ — ¢ 4+ T, and
to make it transitive, add (¢ +T)+ T — ¢+ T.27

(¢) In the canonical model of all maximally consistent sets, we want to (c1)
name worlds, (¢2) introduce witnesses for the two arguments of the abstract
existential binary modality ¢ + v, and (c3) make the abstract ternary relation
Rz, xy for (inf) in a standard model completeness proof coincide with the real
infimum relation inf(x,y) = z with respect to the binary order < in canonical
models induced by the modality (1) in the usual way.

(c1) To name worlds, we use the standard hybrid proof rule
If F p — ¢, where the nominal p does not occur in ¢, then F ¢
(¢2) To have witnesses for the components, we take the hybrid proof rule

IfE (E(kAp)ANE(mAY)A(E+m)) = «, where the nominals k, m
do not occur in ¢, then F ¢ + 9 — «

(c3) will be dealt with presently.
(d) Define ¥ < A on maximally consistent sets if & € A implies (1) € 3.

(e) We show that, for any three max-cons sets, if k+m € ¥,k € A,m €T,
then Y is an inf of A and I' in the just-defined ordering <. By our construction
of the canonical model, we can assume that ¥ is named by some nominal n.

(el) First, assume that ¥ < A. Consider any o € A: we then have the
formula E(kA «) present in any max.cons set. At this point, add the following
valid schema as an axiom (in case this is not already derivable):

(k+m)ANEkNa) »a+T

27This is a form of associativity, though not as strong as full associativity for ¢ + .
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The consequent, which equals (1)«, is then in ¥. The same analysis works for
> < T, now also adding an obvious axiom for symmetry of infima:

I S VA

(e2) Next let ¥ be a lower bound of A (named by the nominal k) and T
(named by m) in the order <. We must show that ¥’ < ¥. By the definition of
<, we have (1)k, (t)m € ¥’. Now

(NEAMmAE(m A (k+m))) = (Hn

is valid in our models, so we put it as one more axiom. Therefore, (T)n € X’
Using this, it is easy to see that, for any formula «, if & € ¥, then (1)a € .

This concludes the list of principles that will make the logic complete. 28

As a test in using the above hybrid calculus, the reader may want to derive
the simple validity n — (n 4 n) using the above principles.

As for stronger proof systems, using nominals, a simple extra axiom makes
< a partial order. One can also impose, say, full associativity for 4+, or add
Aloni’s condition ¢ + ¢ — ¢ as a special kind of pre-orders. The analysis also
extends to possibility logic with modalities O, with their own accessibility
relation R by supplying axioms that match natural constraints on R, < such as
MOy > Cpforz<yRz=zRzand OG(T)p - Cpfort Ry <z= xRz

The question remains if there is a purely modal complete proof system with-
out hybrid gadgets. This raises some interesting issues of complex algebra as
in Section 5. One can axiomatize the pure modal logic of set-lifted algebraic
structures satisfying simple equations as in Gautam 1957, but the problem is
whether the interesting richer structures in information models are of this kind.

B Modal and metamodal languages

Modal languages and focus on single worlds. Modal languages are usu-
ally ‘local’, describing the structure of a model from the vantage point of one
current world. This may be one source of the idea that possible worlds encode
all the information we need about relational models. The local design allows
for a simple analysis of completeness with canonical models where points are
maximally consistent sets of formulas, while a straightforward choice of accessi-
bility relation makes sure that the different local descriptions match up correctly.
Canonical models may be another source of the idea that all modal structure is
present in the worlds themselves: unlike in professional soccer, here, a collection
of overpaid self-centered stars makes a good team. To see whether these features
of locality really threaten relationalism, let us give a few more details.

Modal formulas ¢ describe properties of points in models up to worlds reach-
able at a distance matching the modal depth of ¢. To describe models in full

28This analysis leaves out some easy details for dealing with the existential modality.
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depth, we need an infinitary modal language with infinite conjunctions and dis-
junctions of sets of formulas. For each pointed model M, s there is an infinitary
modal formula (a ‘modal Scott sentence’) which holds in exactly those models
N, ¢ that have a bisimulation with M, s. The construction of modal Scott sen-
tences describes, inductively through the ordinals, using a suitable <, O pattern,
which types of points are reachable at preceding ordinal description levels.??

In a sense, then, reading off the modal properties of a single point tells us
the structure of a whole model, insofar as reachable from that point. But these
descriptions would not be true without the relational pattern, so this seems no
more surprising than that pools surrounded by trees reflect those trees.

Coda. Even so, the canonical model construction for modal logic remains in-
triguing. Nothing similar works for the standard semantics of first-order logic.
The integers have just one type (maximally consistent theory) with one free
variable (all integers are connected by order automorphisms), and the integers
are not easily retrieved by a uniform construction on this single type.

A related way in which the modal language is special shows in the method
of filtration for proving decidability. Given a finite set of formulas and a rela-
tional model, we can extract the types of worlds with respect to just that finite
set, and turn them into a model respecting the truth values of the selected
formulas. While filtration can be defined for first-order logic (van Benthem
& Bezhanishvili, 2020), it seldom yields models for the relevant formulas, and
it is even undecidable when this happy coincidence occurs. Having said this,
the greater canonicity of modal-style completeness proofs for first-order logic in
possibility semantics (Section 4) shows there is more to be understood here.

Modal logics for meta-purposes. The two higher levels of relationalism
mentioned in the Introduction, too, fall within the realm of modal logic.

First, it was suggested that abstract patterns are best understood by looking
at models in their various relations to other models. In fact, there is a large
variety of logics with modalities interpreted in the following pattern:

M, s |= [o]p iff N, s = ¢ for all models N (perhaps from some

relevant family of models) standing in some relation R® to M

Relevant relations R® include those of being a submodel, homomorphic image,
bisimulation image, filtration, and the like. Barwise & van Benthem 1999 pro-
posed this setting for a study of ‘entailment along a relation’ between models as
a generalized form of consequence involving transfer between models. There are
broad families of such logics, including dynamic-epistemic logics, where shifts
between models correspond to information updates (Baltag & Renne, 2016),
logics for graph changes occurring in computation or games, and logics that
formalize part of the model theory of modal logic (van Benthem & Bezhan-
ishvili, 2020). Such languages for model change can be studied with standard
techniques from modal logic, adapted to the new setting.

29For finite models, Scott sentences can even be defined in propositional dynamic logic.
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A second suggestion in the Introduction was that translations between lan-
guages and logics provide another relational structure that can itself be prof-
itably modalized. Such modalizations have indeed happened in the specialized
setting of arithmetical proof systems, witness the ‘interpretability logic’ sur-
veyed in Japaridze & de Jongh 1998, many of whose principles also make sense
for general translations and relative interpretations between arbitrary theories.
Still more generally, one can also introduce modalities inside one language and
proof system that refer to principles statable and provable in another language
via some translation mechanism. This sort of natural combination of different
systems is central to the ‘combining logics’ framework of Gabbay 1999.
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