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1 Introduction

Computers can be used for many different purposes in linguistic research. They can be used for 
data storage and search. They can be used as devices for speech analysis or synthesis. They can 
be  used  to  present  linguistic  stimuli  to  subjects  and  record  their  responses.  In  all  these 
applications, computers are used as sophisticated tools, and they are programmed according to 
purely  practical  criteria:  as  long  as  they  get  the  job  done,   the  researchers  who  use  the  
applications do not care about the internal workings of the software.

However, computing can also become the focus of linguistic research. Computers can be used to 
operationalize  linguistic  theories  by implementing  them as  computer  programs.  This  is  done 
because linguistic theories may be so complex that their predictions can no longer be derived 
using verbal reasoning or pen-and-paper analysis. Moreover, turning a linguistic theory into a 
computer  program  forces  the  researcher  to  make  her  assumptions  explicit.  By  running  the 
program, and studying its behavior under a variety of circumstances, the researcher can test the 
theory against empirical findings and often discover unexpected consequences.

In this chapter, we discuss the use of computational models in the language sciences. Although 
formalization has had a central place since the 1950s in syntax and phonetics in particular, the last  
two decades have seen an explosion of interest in mathematical and computational models in all 
linguistic  subfields:  from  typology  to  language  acquisition,  from  discourse  to  phonology, 
linguists  are  increasingly viewing  formal  modelling as  an  approach that  ensures  the  internal 
consistency of theories. However, although many proponents of modelling believe it makes their 
field more scientific and objective, it seems fair to say that the introduction of formal models has 
so-far not led to a broad consensus among language researchers. On the contrary, models have  
often  been  at  the  heart  of  longstanding  controversies  (e.g.,  those  about  formalisms  vs. 
functionalism, nativism vs. empiricism, single- vs. dual-mechanism).

One reason, we believe, that modelling has played more of a divisive than a unifying role is that 
there has been little attention  to questions about  modelling methodology: what kind of lessons 
can we expect to learn from a model? What makes a good or a bad model? How may different 
models of the same linguistic phenomenon relate to eachother? How could models of different  
phenomena fit together? Thinking about such questions leads one to systematically consider the 
role of specific models in a given subfield: Are they consistent with and complementary to each 
other? Are the assumptions that go into a particular model, if not (yet) supported by empirical 
findings, made plausible by results from other models? 

The situation is not uniform across all linguistic subfields, of course, but we observe that in fields  
where 1 or 2 of these questions have received a lot of attention, the others tend to be ignored even 
more.  For  instance,  in  syntactic  theory  there  has  been  an  enormous  amount  of  work  (of  
impressive mathematical sophistication) on comparing different syntactic frameworks and their 
ability to model native speaker intuitions about the grammaticality of carefully selected (but often 
highly contrived) sentences. However, in our view, this field has paid much too little attention to  
questions  about  whether  that  is  really  the  most  important  criterion  for  evaluating  models  of 



language and about relations with cognitive and neural models.  As we will emphasize in this  
chapter, the ability to reproduce a selected set of empirical phenomena is certainly not the only  
criterion for a good model.

Because it is impossible to cover all linguistic subfields, we will make our general points about  
methodology concrete using examples from two particular domains: the evolution of speech and 
the learnability of syntax. In both fields computational modeling has played an important role, but 
in  both  we  also  believe  progress  has  been  hampered  by  lack  of  attention  to  modeling 
methodology and the questions one immediately asks about the relation between existing models 
when taking the view on modeling that we develop in this chapter.

For sustaining the success of modelling approaches in linguistic research, it is crucial that models  
start living up to their promise: modellers must make explicit how their models fit in with other 
modelling and empirical work, and how their modelling results affect judgments of plausibility of  
existing hypotheses that exist in the field to which they wish to make a contribution. Moreover,  
they must do so based on careful consideration of other work, without overstating their results  
and misusing the prestige that comes with mathematical and computational approaches.

In  section  2  we  will  start  with  some  considerations  about  the  methodology of  modelling  in 
linguistics,  and  introduce  the  concepts  of  model  sequencing  and  model  parallelization.   In 
sections  3 and 4 we will  illustrate  these concepts  with two case studies  on modeling in  the 
evolution of speech and the learnability of syntax respectively. In section 5 we will then draw  
some  general  lessons  from these  case  studies,  and  sketch  an  agenda  for  future  research  in 
computational modelling of language. 

2 Goals of modelling and the model circuitry

From the great many distinctions one can make between different model studies, there are three 
particularly useful ones that also allow us to establish some common terminology and formulate  
our view of the field. The first is a distinction based on function, between predictive models and 
explanatory models (Gilbert  & Troitzsch,  2005).  Predictive models try to model  a system as  
accurately as possible, and to make accurate predictions about the real system’s behaviour, as in 
weather forecasts for example. Predictive models can also be used to reconstruct behaviour in the  
past,  and could for  example  be used in  reconstructing the spread of  language families  or  of 
particular  instances  of  language  change  (e.g.,  Landsbergen,  2009).  Explanatory  models,  in 
contrast, aim to increase insight in a phenomenon. Explanatory models are generally much more  
abstract and further removed from reality than predictive models. The phenomenon under study is 
not modelled in all its detail, but instead only its essentials are modelled. Crucially, what counts  
as  ‘essential’  very  much  depends  on  the  research  question,  and  simplifications  that  are 
appropriate for one question can be totally indefensible for another. Good explanatory models,  
moreover, explain the phenomenon of interest in terms of lower-level phenomena that can, at  
least in principle, be independently motivated (models that simply reproduce the phenomenon of  
interest without providing such an explanation are sometimes called phenomenological models).

The second important distinction is one based on form, between mathematical and computational 
models. The distinction is not always strict, but mathematical models tend to be the most abstract 
and  to  strip  down  phenomena  to  their  barest  essentials.  Typically  (but  not  exclusively),  
mathematical modelling papers provide both a formalization of a phenomenon (e.g., using matrix 
algebra,  logic,  differential  equations) and proofs about  properties of the formal  system.  Such 
proofs are, by definition, universally valid and allow inferences about specific cases (deduction),  



although the simplifications necessary to arrive at a proof often greatly limit the applicability.

Computational models tend to be much more concrete and complex. Phenomena are formalized 
in a programming language, and the resulting programs studied experimentally. From different 
runs with different parameter settings, the modeller tries to infer general properties of the formal  
system  (induction).  The  programs  can  be  very  complex,  allowing  for  models  with  fewer 
abstractions but often barring analytic proofs. In some cases, computational models are used to 
investigate  versions  of  a  mathematical  model  that  are  too  complicated  to  study analytically 
(including numerical models, that are defined algebraically but studied using numerical methods 
on the computer).

A third major  distinction concerns the  validation of models:  we distinguish between internal  
validation  and  external  validation.  Internal  validation  is  about  demonstrating  that  the 
phenomenon  of  interest  indeed follows from the stated assumptions,  and mathematical  proof 
provides its most powerful form. This is much harder to achieve with computer models, although 
extensive testing and systematic exploration of the parameter space of a computational model can 
lead to a great degree of confidence. External validation is about checking whether the stated and  
unstated  assumptions  are  supported  by  empirical  evidence,  or  by  the  outcome  of  other,  
independent models,  and whether the model’s predictions are confirmed in the real world. As 
computational  models  are  often  formulated  in  more  concrete  terms,  it  tends  to  be  easier  to 
achieve external validation.

In the language sciences, we are mainly concerned with the external validation of explanatory 
models, which in all cases requires an interpretative step: explanatory models have, by definition,  
abstracted away many details of the phenomenon of interest, making it a matter of judgement 
whether abstractly formulated assumptions and predictions are supported by concrete evidence.  
In many fields external  validation is  further complicated by the fact  that  there is  little  direct  
evidence about which assumptions and predictions are valid, because much the causal events are 
unobservable  because  they  happened  in  a  distant  past  (as  in  historical  and  evolutionary 
linguistics), inside the brain or distributed over millions of language users. External validation is  
thus only achievable by model sequencing: assumptions and prediction of any particular model 
are validated mainly by results from other models, and only at various points in a string of models  
do empirical results come into play.

Moreover,  because linguistics  deals  with complicated phenomenon  for  which the appropriate  
simplifications have not necessarily been established, modelling research should employ model  
parallelisation:  for  any  particular  phenomenon,  researchers  should  develop  multiple 
formalisations,  compare  results  and  relate  observed  differences  to  explicit  and  implicit  
assumptions embodied in these alternative models. 

Modellers in language research must thus work out relations between different models, whether  
they stand in sequence or in parallel to each other. This terminology is of course based on the 
metaphor of electronic circuits; we will  therefore refer to our perspective on modeling as the  
'model circuit view'.

3 Model sequencing in practice: A case study on the evolution of speech

To make the ideas about different types of models, and in particular model sequencing, concrete, 
we will now discuss in some detail the use of models in one particular subfield of linguistics: the 
evolution of speech. This field is not only one that we have been active in ourselves, but it also 



offers a particularly good example of a field where modelling can make all the difference because 
of the paucity of empirical data, but where opportunities have perhaps been missed because of  
lack of attention to modelling methodology. We will start by briefly discussing some background 
to this field, and then survey the role of models in answering the key questions of the field.

In  the  research  on  how the  speech abilities  of  humans  evolved,  the  focus  is  usually  on  the 
differences between modern humans and the hypothetical latest common ancestor (henceforth,  
LCA) of humans, chimpanzees and bonobos. Modern humans, as every linguist knows, have a  
descended  larynx,  have  voluntary  control  over  speech  (but  much  less  so  over  emotional 
utterances),  and  have  a  large  learned  repertoire  of  linguistic  utterances.  Moreover,  those 
utterances have complex internal structure that is used productively, and there are regularities in 
the  repertoires  of  speech  sounds  that  humans  use  (the  phonological  universals).  The  vocal 
abilities of the LCA are inferred from the abilities that humans, chimpanzees and other apes share 
or do not share. From such comparisons, it can be derived that the LCA had a repertoire of calls  
for communicative purposes, and therefore a limited ability to modulate the vocal tract. However,  
it  most  likely had a vocal  anatomy more comparable to that of chimpanzees and vocal folds  
comparable  to  those  of  chimpanzees  and gorillas.  The  LCA did not,  it  seems,  have modern 
human’s descended larynx, it had less voluntary control over breathing (MacLarnon & Hewitt,  
1999) and probably did have supralaryngeal  air sacs. Finally,  it is generally assumed that the  
LCA, like all modern apes except humans, had only limited voluntary control over vocalizations, 
learned  its  vocalizations  only  to  a  very  limited  extent  and  lacked  internal  (combinatorial)  
structure in its calls.

The challenge for research of the evolution of speech is to give an account of how the modern 
phenotype evolved from the LCA’s phenotype:  i.e.,  how did the descended larynx,  voluntary 
control,  vocal  learning,  combinatorial  phonology and phonological  universals  evolve? A key 
issue  here  is  to  what  extent  the  evolutionary  changes  should  be  considered  adaptations  for 
language, or to what extent they evolved for other reasons. Computer models (and to some extent 
mathematical models)  have been used for a long time to investigate such issues – but  in the 
existing literature (e. g. de Boer, 2005; de Boer & Fitch, 2010) there are some striking gaps in the 
range of topics considered and some disturbing confusions about the role of various models. The 
most studied topics are the evolution of the vocal tract (Lieberman & Crelin, 1971; Boë et al., 
2002; de Boer, 2009) and the emergence of phonological universals (de Boer, 2000b; Oudeyer,  
2005;  Zuidema  &  de  Boer,  2009);  the  evolution  of  voluntary  control,  vocal  learning  and 
combinatoriality have received much less attention in the modelling literature, and the issue of 
how models of these different aspects fit together has been almost completely ignored.

Starting point for many models of how speech evolved are models of how speech perception and  
production works in human adults. Surveying the literature, we quickly find that many models  
that have been developed for the study of human speech are not necessarily directly usable in the  
study of the evolution of speech. Illustrative examples from modelling the acoustic production of 
speech are the 3-parameter model of te vocal tract (Stevens & House, 1955; Fant,  1960), the 
coupled mass-spring model of the vocal folds (Dudgeon, 1970; Ishizaka & Flanagan, 1972) and 
the  source-filter  model  of  speech production  (Fant,  1960).  These  are  simplified,  explanatory 
models of the human vocal tract, the human vocal folds and the (lack of) interaction between the  
human vocal folds and the vocal tract, respectively. 

These models are well established in phonetics, and provide valuable insights in the process of 
speech production. However, some researchers in the evolution of speech – erronously, in our 
view – reuse these models to represent properties of vocal tracts of our evolutionary ancestors or  
of other species (see the discussion about Riede et al., 2005; Lieberman, 2006). But this is based 



on  a  misunderstanding  of  the  explanatory  nature of  the  existing  models,  that  involved 
simplifications which were very helpful for understanding speech production  but are specific to  
human  adult  vocal  tracts.  It  is,  in  fact,  unlikely  that  ape-like  vocal  tracts  can  make  the 
deformations of the vocal tract that are assumed by the 3-parameter model, and it is clear that the  
acoustic effects of supralaryngeal air sacs are not captured by it. It is further unknown whether 
chimpanzee-like  vocal  folds  work  in  the  same  way  as  human  vocal  folds,  and  whether  in  
chimpanzee-like vocalizations the vocal folds can really be considered acoustically independent  
of the vocal tract. Simplifications made in building these models must thus be re-evaluated in the 
light of what is known about ape and fossil vocal anatomy. 

A second problem with existing models of the evolution of speech anatomy concerns its relation 
to models of the biological and cultural evolution of communication, i.e., with external validation 
through model sequencing. Even if we could establish a sequence of vocal tracts, leading from 
ape-like to human-like shapes in gradual steps, that in itself, although an important step, would 
not provide an evolutionary explanation. As we and others argued elsewhere (Parker & Maynard 
Smith, 1990; Zuidema & de Boer, 2003, 2009), evolutionary explanations must provide a ‘path of 
ever increasing fitness’, where every new variant provides a fitness advantage in a population 
where the previous variant is still common. In the case of vocal tract evolution, it is unclear what  
the appropriate fitness function is. Existing models tend to assume that it is a simple function of 
the size of the acoustic space allowed by a particular vocal tract configuration. But fitness due to  
speech must be a function of how well an individual communicates with others in a population, 
which in turn depends on the communication system the population uses. However, the relation 
between the repertoire of speech sounds that emerges in a population and the anatomical and 
neurocognitive features of individuals is far from trivial.

Models that study the emergence of such repertoires have focused on vowel inventories, and on a  
role for self-organization in shaping them (Glotin, 1995; Berrah & Laboissière, 1999; de Boer, 
2000a; Oudeyer, 2005), given constraints on the vowel space formalised by existing models of 
vowel  perception  and  production.  This  group  of  models  is  a  good  example  of  model  
parallelization: different models all show the emergence of similar phenomena. They are not a 
good example of model sequencing, however: although these models have yielded a beautiful 
connection between empirical data on vowel systems and biophysical constraints, it is clear that 
they only scratch the surface of the full set of phonological universals: they have, for instance, 
little to say about consonants, syllable-structure or supra-segmental speech patterns. 

Ultimately, the connection between phonology and anatomical and neurocognitive features needs 
to become clear to allow us to evaluate particular scenarios of the evolution of speech. However,  
despite the progress in modelling vocal tract evolution and vowel universals, we are still quite far  
from a  model-based  understanding  of  the  evolution  of  speech.  In  the  required  sequence  of 
explanatory models we still observe, for a variety of reasons, many gaps.

One reason is that, when addressing these more complex issues, the limits of what is at present 
possible  with  computer  models  are  reached  quickly.  It  is  then  tempting  to  use  high-level  
abstractions (such as distinctive features, constraints and rule-based phonological explanations). 
However, making use of such abstractions, which have after all been derived for description of 
modern human language, and are in general not based on direct observation of neurocognitive 
mechanisms, incurs the risk of implicitly including the phenomena to be explained in the model – 
and thus resorting to phenomenological rather than explanatory modelling. For example, from 
typological studies it is known which consonants are unusual (for example uvular plosive [q]) and 
which  are  common  (for  example  velar  plosive  [k]),  but  there  is  no  language-independent  
biophysical and neurocognitive model that reliably predicts which articulations are more difficult 



to produce than others. Thus research into more complex aspects of speech is not only hampered 
by the computational complexity of such models, but also by our lack of knowledge about the 
underlying phenomena.

Likewise, we have no models of the evolution of the vocal folds. Although there are many 
models for human vocal folds (Dudgeon, 1970; Ishizaka & Flanagan, 1972; Titze, 1973, 1974, 
2008) and some models of the interaction between the vocal folds and the vocal tract (Flanagan & 
Meinhart, 1964; Titze, 2002, 2008) as far as we are aware, no models exist of either chimpanzee 
vocal folds or of hypothetical ancestral vocal folds. This has undoubtedly to do with the lack of 
anatomical data (although some has recently been presented Demolin & Delvaux, 2006) but also 
with the fact that vocal folds (and their interaction with the vocal tract) are much more difficult to 
model than the acoustics of the vocal tract itself.

Another reason is that in spite of much parallel modelling effort, in some domains no consensus 
is reached. There is, for example strong controversy in the study of the articulatory abilities of 
Neanderthals and the role of modern human vocal anatomy (with its descended larynx). In this 
debate, Lieberman (Lieberman & Crelin, 1971) and Carré et al. (Carré et al., 1995) propose that 
vocal anatomy has evolved for speech, while Boë et al. (2002) propose that it has not evolved for 
speech, because (neural) control is more important. They reach opposite conclusions, even though 
they use very similar modelling techniques. The debate has lead to a rather heated exchange (Boë 
et al., 2007; Lieberman, 2007).

Finally, some topics seem to be simply overlooked. For instance, important innovations in the 
cognitive adaptations for using speech that occurred between the LCA and modern humans have  
not been addressed by modelling. These include the ability to productively use combinatorial 
structure of speech and the (related) ability to learn large sets of complex utterances. Such models  
would be quite complex computationally, but their results might be transferable to other aspects 
of language, most notably syntax. After all, it has been proposed that the sequential processing 
and learning that  are  necessary for  using  syntax  are  based  on  adaptations  for  the  sequential 
processing  and  learning  mechanisms  that  are  necessary  for  using  combinatorial  utterances 
(Carstairs-McCarthy, 1999).

Given these gaps in our understanding of the evolution of speech, the possibilities for external  
validation are at present limited and we should guard against over-interpreting modelling results.  
A case in point is the reception of Nowak et al. (1999), who presented an information-theoretic 
model  and a mathematical  proof of the conditions for combinatorial  coding to have a fitness 
advantage. This proof is an elegant example of internal validation. The model fits into a larger 
research program in which a number of proofs of mathematical models related to the evolution of  
language have been presented (Nowak & Krakauer,  1999;  Nowak et  al.,  2001,  2002).  These 
models have been interpreted by other researchers as having “...demonstrated the evolvability of  
the  most  striking  features  of  language...”  (Pinker,  2000).  However  this  confuses  internal 
validation (the models are internally consistent) with external validation (the models correspond 
to  reality).  The  latter  is  unfortunately  far  from  established,  given  the  many  simplifying  
assumptions in Nowak et al.’s (1999) model, as we have pointed out elsewhere (Zuidema & de 
Boer, 2009).

In conclusion, the evolution of speech offers us a good example of a field in which models have 
played an central role in making progress, but also of a field where it pays off to step back a little  
a consider the relations between all the different models proposed. Such a 'model circuitry' point 
of view quickly reveals a numbers of important gaps in the existing research and helps both to set 
an agenda for future research and to put overly optimistic assessments of the state of the art into  



perspective.

4 Model parallelisation 

There are of course infinitely many ways in which models of the same phenomenon can differ.  
However, we are not talking about small differences between models that are best captured with  
different settings of one or several parameters. Rather, 'model parallelisation' is about studying 
models that differ qualitatively in the way they approximate reality, i.e., in the simplification that 
they make.  For instance, many models of linguistic phenomena abstract away from individual  
linguistic cognition and individual differences, and treat a natural language as an independently  
existing  entity.  Other  models  might  represent  the  individual  language  user,  but  ignore  the 
population. Yet other models represent a language only in terms of aggregate variables taken over 
the whole population of speakers of that  language.  To really understand important  linguistics 
phenomena, such as for instance sound change, and isolate the real causal factors, it is crucial that  
models of each of these types are studied and compared.

Another  key  dimension  in  which  models  in  linguistics  tend  to  differ  is  in  the  linguistic 
representation  used.  In  the  brain  of  the  individual  language  user,  knowledge  of  language  is 
represented  in  a  complex  network  of  neurons,  connections,  electrical  currents  and  chemical 
gradients.  Models of language – thankfully – abstract out many of the complexities involved. 
Many models ignore the inherently continuous and stochastic aspects of the brain, and represent 
language with discrete, categorical variables and rules. Other models make other simplifications, 
though, and a true understanding of many phenomena in language again requires comparing these 
different models.

On both dimensions – level of description and linguistic representation – there is an enormous 
variation in existing models in the language sciences, and there are often fierce debates about 
what the 'correct' choices are. We argue that we need to move away from questions about the 
correct  level  or  correct  formalism:  there  is  no single  best  choice that  works for  all  research 
questions; rather, we need to compare parallel models and use simplifications that are appropriate  
for the particular issue we are studying.

In appendix A we discuss the some modeling choices when modelling language at the level of the 
individual,  the group or as an abstract,  independent entity.  Appendix B then introduces some 
typical choices for the linguistic representation. 

5 Model parallelisation in practice: a case study on the learnability of syntax

As a case study on the need for model parallelisation we will now briefly discuss several models 
relating to language learnability. This field provides a good example of a field where models have 
played a central role, but also of a field where modelling results have been widely misinterpreted.  
Careful  attention  to  model  parallelisation  could,  we  believe,  have  avoided  these  
misunderstandings.

The seminal model study in this field is by Mark Gold (1967), who proved that several classes of 
formal languages are not learnable in a technical sense. Gold defined 'learnability' as a property of 
a class of language, using the notion of 'identification in the limit'. The learning situation can be 
imagined as follows: a teacher selects a language L from a given class C of languages, and 
presents the grammatical sentences from L in an arbitrary order to a learner A. From the very 



start, the learner tries to guess which language the teacher has in mind. A class C is called 
learnable if there exists an algorithm A that is guaranteed to arrive (and stay) at the correct 
hypothesis in the limit of an infinite amount of examples. Gold went on to show that some 
popular classes of formal languages, including finite-state, context-free and context-sensitive 
languages, are not learnable in this sense. These results have been widely interpreted as providing 
support for a nativist view on language: if the type grammars we need to describe natural 
language are not learnable, the argument goes, it's reasonable to conclude that they are not 
learned but in essence innate.

Now, as is already clear from this informal description, Gold made a number of idealizations of 
the language learning situation, and it is thanks to these simplifying assumptions that his 
mathematical proofs were possible at all. One of these idealizations is that there is an infinite 
amount of data; in a sense, Gold is therefore even too lenient, given that actual language 
acquisition has to happen – and does happen – within a finite and even relative short period of 
time. A number of alternative modelling frameworks, including PAC-learning (Valiant, 1984), 
have been developed that make more realistic assumptions about the amount of data from which 
language may be learned, but these don't fundamentally change the analysis we present here and 
we will not discuss them.

In other idealizations, Gold is arguably too strict. In the original versions of his proofs, no 
reference is made to semantics, pragmatics and phonological information, even though some (and 
perhaps many) cues from each of these domains are obviously available to the language-learning 
child. Moreover, Gold's best known results are for situations where learners are presented only 
with positive evidence, but he obtained different learnability results when negative evidence is 
also available. These observations have led researchers critical of nativism to denounce Gold's 
theorem, leading to quite heated debates about whether semantics, pragmatics, phonology or 
negative evidence could help avoid the conclusion of an extensive innate language faculty.

Many of the claims in this debate about Gold's results are factually incorrect, as reviewed 
extensively by Johnson (2004). Johnson also shows that the participants in the debate curiously 
overlooked a much more essential point: that Gold's definition of learnability as “identification in 
the limit” is fundamentally unpsychological, because it is a property of predefined classes, across 
all possible learning algorithms and all possible learning environments. In contrast, in real 
language learning there are strong biological constraints on the possible learning algorithms and 
environments, and the classes of language are not predefined but rather a consequence of a 
learning cycle. Concretely, this means that Gold's proofs are perfectly consistent with a situation 
where a domain-general learning algorithm is successful at learning languages from an 
unlearnable class (Zuidema, 2003); in other words, Gold's work simply has nothing to say about 
the nativism-empiricism controversy in linguistics. 

In short, Gold's theorem has played a crucial role in the debate about learnability and about innate 
specialization for language. Although many alternative models of learnability have been 
developed and used in the debate, they typically have adopted the conceptualization of the 
problem as provided by Gold, including notions of learnability as a property of predefined classes 
across all possible learners and learning environments. Careful comparison of Gold's model with 
models developed in a different paradigm (such as the learning paradigm of Solomonoff, 1963) – 
as required by model parallelization) would have clarified the confusion about the relevance of 
Gold's theorem for cognitive science much sooner, and would have spared the field much 
unhelpful and bitter controversy.



6 Conclusions

We have presented a number of techniques that can be useful in linguistic modelling, but more  
importantly, we have tried to illustrate how we think models should fit together and how they 
should relate to empirical evidence. There are a number of lessons we would like to be drawn 
from our analysis. First of all, it seems modellers should pay more attention to how their models  
relate to other models, and how they fit the bigger linguistic picture. Although most papers on  
linguistic modelling do a good job at internal validation and at crediting other researchers’ work, 
authors do not often make explicit how their models fit  more broadly into linguistics outside the 
detailed issue they study and in what  way their  model  provides external  validation for other  
models or how other models provide it for theirs.  

Second, we note that there is no lack of models and no lack of data, but there is a rather uneven 
distribution of modelling effort over relevant questions. It is perhaps not surprising that (as in 
other fields of scientific inquiry) the majority of papers are concentrated around the easiest 
questions. Understandable as this is, we have now reached a stage where we should also attempt 
to tackle the more difficult questions, and consider carefully whether a collection of models 
together constitute a convincing explanation.

In order to make progress with computational models, a framework in which different models can 
be situated and compared with each other, and in which gaps in the modelling effort can be 
identified, would be useful. In the study of the cognitive processes underlying language, human 
behaviour presents the point of reference. A problem is that non-modelling linguists have not yet 
reached consensus about how language works in the brain. However, there is at least a wealth of 
data that can be used for external validation of computer models. Increasingly, through studies of 
the workings and the genetics of the brain, data is available about the actual way the brain 
processes language.

Such data is not always available for the modelling of the history, evolution and dynamics of  
language – they are historical processes and information is irretrievably lost. However, papers  
presenting ‘verbal’, complete scenarios may be very useful in structuring a research program.  
Jackendoff (2002) is one of the few authors who provides a rather detailed scenario of evolution  
that may provide a useful framework. However, one should be careful with papers that present  
scenarios of complex historical processes such as the evolution of language: it is all too easy to  
resort to speculation and wishful thinking.  

Another  way  to  structure  research  in  computer  modelling,  and  one  we  feel  may  be  less  
controversial is to compose a list of key challenges for language modelling that we hope will be 
addressed in the next few years. We present such lists in table 1 for modelling of language itself  
and in table 2 for language evolution. If these challenges are taken up by the field, we should 
have in a few years several models for each issue in parallel, as well as a set of models that in 
sequence really speak to the plausibility of a particular theory.  Only then are we approaching  
external  validation of  explanatory models of  language,  and is  the  modelling approach really 
proving its worth to the whole field of linguistics.

Table 1: Key open challenges in language modelling

[ This list of challenges will most likely still be modified ]
Phonetics & phonology:
1. Modelling the acquisition of speech from continuous input



2. Modelling acquisition and generalized production in one model
3. Modelling fluent intonation
Lexicon:
4. Modelling the rapid acquisition of words in a realistic setting
5. Modelling the acquisition of semantic, syntactic, pragmatic and social functions of words
6. Modelling multilingualism
Semantics & pragmatics:
7. Modelling Grice’s conversational maxims
8. Modelling contextual interpretation of sentences

Table 2 Key open challenges in language evolution modelling

Phonetics & phonology:
1. Modelling the evolution of the human vocal folds;
2. Modelling the evolution of human-like (combinatorial) phonology: consonants, syllable 

structure, pitch/formant relation, intonation contours;
Semantics & pragmatics:
3. Modelling the transition from a closed to an open, learned repertoire of signs;
4. Modelling the evolution of duality of patterning: combinatorial phonology with compositional 

semantics in a unified model;
5. Modelling the evolution of human-like (compositional) semantics: quantifiers, numerals, 

functional/contentive split, categoricity/vagueness relation, negation;
6. Modelling dialog: how can structured, repeated communicative interactions evolve (as 

opposed to isolated signals);
Morphosyntax:
7. Modelling the evolution from “flat” utterances of hierarchical phrase-structure, ;
8. Modelling the evolution of word order/rich morphology trade-off;
9. Modelling the evolution of syntactic categories over and above semantic categories;
Language change & sociolinguistics:
10.Modelling the evolution of ongoing linguistic change – why are there no ‘sinks’ in language 

change?;
Relation to non-linguistic issues:
11.Language as a green beard – connection between evolution of language and altruism;
12.Language as a mental tool – connection between language and other uniquely human 

cognitive traits (music, consciousness, reasoning).
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Appendices

Appendix A. Models & the ontological status of language
Language  is  not  just  behaviour  of  individuals,  it  is  also  a  population  phenomenon.  What  is  
acceptable  linguistic  behaviour  is  determined  by  the  community,  but  at  the  same  time  the 
community is made up of individuals. There is therefore a complex interaction between the level 
of the individual and the level of the collective in language. Systems with multiple levels often 
show complex behaviour (Eigen & Schuster, 1977). It turns out that it is surprisingly difficult to 
analyze and predict behaviour of such systems. The best way is often to simulate the complex 
systems with a computer model.

Agent-based models (e.g., Gilbert & Troitzsch, 2005) are an approach in which language users 
and their interactions are modelled directly. The idea is illustrated in the left panel of figure 1.  
Each agent models an individual with its own store of linguistic knowledge and with mechanisms 
to produce, perceive and learn linguistic utterances. It should be noted that agents can represent  
linguistic knowledge using any of the formalisms we discuss later. Agents can also be modelled 
to  have  non-linguistic  properties,  such  as  social  status,  age,  spatial  location  or  any  other 
properties that are relevant to their behaviour. 

Crucially,  an agent-based model  implements  interactions  between agents.  Repeatedly,  two or  
more  agents  are  selected  from  the  population  to  interact  linguistically.  Usually  in  such 
interactions, one agent is the speaker and another agent is the hearer, but it is also possible that  
both agents have the role of speaker and hearer during the interaction. Agents generally update  
their linguistic knowledge in reaction to an interaction. In this way, linguistic knowledge can be  
transferred from one agent to another and spread in a population. The exact nature of interactions  
and how the agents react to them depends completely on what the researcher wants to investigate 
and achieve with the model.

Many different schemes for selecting agents from the population are possible. It is possible that 
all  agents have an equal probability to participate in each interaction (this is called a random 
mixing  population)  but  it  is  also  possible  that  certain  subgroups  of  agents  have  a  higher 
probability of  interacting with each other than with other subgroups.  This can be due to the 
modelled spatial location of agents, their social status, their age or any other factor a researcher  
wishes  to  model.  A  scheme  that  is  often  used  is  that  the  population  is  divided  into  two  
subpopulations: one of teachers and one of learners. Teachers only interact with learners, and 
neither learners nor teachers interact among themselves. In addition, in such a scheme often the  
learners are the only ones that update their linguistic knowledge. This is the simplest possible 
model of transfer of language from one generation to the next.

Populations do not need to be static. Agents can enter the population (this models immigration or 
birth) or leave the population (emigration or death). In addition, agents’ behaviour can change 
over time. Again the modeller is free to create population dynamics that is as complex as they 
like. Two possible forms of population dynamics occur very frequently, though. The first is that 
the population is static, and the model focuses on interactions between agents, and how linguistic 
information spreads. Such models are said to investigate horizontal transmission. The second is 
that information is transferred from teachers to learners (as described above) while the teachers 
are periodically replaced by the learners. The learners then become the new teachers and a new 
batch of learners is added. This investigates the effect of transfer of linguistic knowledge across 



generations and is called vertical transmission.

It is also possible to model population behaviour alone, without modelling details of individual 
behaviour. One could model, for example the proportion of the population that speaks a variant of 
the language as a number and then model the way this changes over time using a dynamical 
system. A dynamical system is a system of mathematical equations that describe changes over 
time. This can be done with difference equations or with differential equations. Such equations 
can sometimes be solved analytically,  but more often than not,  they can only be investigated 
numerically, with a computer model. Such numerical simulations have been used, for example, to 
model language change (Wang & Minett, 2005). The advantage of such models is that they make 
use of existing mathematical formalisms and may therefore be easier to read and interpret than 
computer models. A disadvantage is that it is not always easy to model mathematically what can  
be  modelled  straightforwardly with  agent-based  models.  Therefore,  mathematical  models  are 
usually further simplified than computer models. In this simplification, one should be very careful 
not to oversimplify, and especially not to simplify only because it makes the equations easier to 
solve.

The  difference  between  Platonic,  individual-  and  population-level  conceptions  of  language, 
becomes particularly important when considering language change and language evolution. Many 
model of language change and evolution are agent based. In such models, there is an evolving  
population.  Each  individual  in  the  population  has  properties  that  are  determined  by  the 
individual’s virtual “chromosomes”. These chromosomes can be represented as a string of bits, a  
string of numbers or a string of arbitrary symbols. These chromosomes determine the behaviour 
of the individual,  which in  turn determines  the  individual’s  fitness.  After  the  fitness  of  each  
individual in the population is determined, pairs of members of the population are selected to  
create offspring. The offspring then forms the next generation. Individuals with higher fitness 
have  a  higher  probability  of  being  selected,  thus  ensuring  that  their  offspring  will  be  better 
represented in the next generation. 

Offspring is created by combining the chromosomes of the parents. This is called crossover. The 
first part of the offspring’s chromosome consists of the first part of one parent’s chromosome,  
while the second part consists of the corresponding part of the other parent’s chromosome. This is  
illustrated in the right panel of figure 1. Parts of the chromosome of the offspring can also be 
changed randomly. This models mutation.

Such genetic  algorithms  can  be  very powerful  methods  to  find  optimal  solutions  to  a  given 
problem. In linguistic research they have been used for example to find optimal syllable systems  
(Redford et al., 2001) or to model biological evolution of basic communication (Quinn, 2001). 
However,  their  success  depends  crucially  on  the  correct  choice  of  coding  behaviour  in  the 
chromosomes and in a correct fitness function. Genetic algorithms are very powerful optimization 
functions,  but  this  means that  they will  also exploit  any weakness in the fitness function.  In 
addition,  using a genetic  algorithm in a computer  model  does not  always  mean that  it  is  an 
appropriate model of real evolution. This all depends on the realism of the coding of behaviours 
and on the realism of the fitness function.



Figure  1:  Representation  of  agent  models  (left  panel)  and  of  the  effect  of  crossover  and  
mutation in a genetic algorithm (right panel).



Appendix B. Linguistic Representations

We identify four classes of representations of language: symbolic models, memory-based models, 
statistical  models  and  connectionist  models.  We  present  illustrations  of  the  internal 
representations in these four different types in figure 2. We should stress that the models we  
present are in a sense caricatures of real models: in practice, many models are combinations of 
the four types we distinguish. However, by focusing on the four caricatures, we can best illustrate 
the different ways of creating models.

Symbolic  models  implement  linguistic  items  as  abstract,  symbolic  entities.  In  the  example 
illustrated in the upper left panel of figure 2, not only concretely observable items (the words) are 
represented, but also abstract objects from syntactic theory, such as sentences (S), noun phrases  
(NP) and verb phrases (VP). In addition, the different objects in the representation can be linked  
to some other objects (this is symbolized by the different shapes of connectors in the illustration). 

Typically, in these high-level symbolic models, no information is represented about how often a 
certain linguistic object occurs, nor is there a way of representing degrees of acceptability of 
different  linguistic  utterances.   A linguistic utterance is  either  possible  or not.  This  makes it  
relatively easy to analyze and understand the working of these models. Also, these models are 
usually usable for both production and perception (processing) of language. However, they may 
have difficulties learning: given that they have a hard time dealing with variation, they tend not to  
be very robust to noise (speech errors, linguistic variation).

Memory-based models, illustrated in the upper right corner of figure 2 do not generally represent 
higher level abstractions than that which is observable. Also, they are fundamentally learning 
systems that can deal with complex and noisy input. The most extreme memory-based system 
stores all information it observes. By defining a distance function on the items that are stored, the 
system can retrieve items that are close to a previously unobserved item. This is illustrated in the 
figure: items that are more closely related to “dog”, such as “the dog” and “shaggy” are printed  
closer to “dog”.  In the figure only information about the form of the utterances is represented,  
but in a complete memory-based system, information about meaning, pronunciation and other 
aspects of the utterance will be stored as well. This allows for generalizations about previously 
unobserved utterances:  forms  are expected to have meanings that  are close to closely related 
forms, and meanings are expected to have corresponding forms that are close to closely related 
meanings.

Memory-based models can be highly successful in modelling human behaviour that involves lots 
of  rote  learning,  such  as  acquisition  of  large  lexicons,  of  irregular  stress  assignment  and of  
irregular  verbs.  They are  robust  to  errors  in  the  input,  and  to  predictable  variation,  such  as  
dialectal variation. With a good distance function they can even generalize relatively well. It is  
often relatively easy to get an idea of what a memory-based model has learned. However, they 
have a hard time dealing with the combinatorial nature of human language, without some pre-
programmed notion of what  the basic elements  that  are being combined are.  For example,  it 
would be difficult for a purely memory based system to figure out how to apply the different  
morphemes –s in “the cats bite the dog” versus “the cat bites the dog”. In order to do this, some 
notion of words, word classes and morphemes is required.

A third class of models are statistical models. These do not store everything they observe, but 
store statistical information about how often linguistic items are observed. In the lower left panel 



of figure 2, this is illustrated with the example of a representation of how likely words in our  
example are to follow each other. To prevent the illustration from becoming too cluttered only a 
few probabilities are given in the figure. The word “the” can be followed by “stray” with 5% 
probability, and by the word “cat” with 45% probability, illustrating that “the cat” is more often 
observed than “the stray cat”. If there is no arrow between two words, then these words will never 
follow each other.  Thus in our example, “The shaggy dog” is allowed, whereas “The shaggy cat”  
is not. Statistical models can be trained easily: our example could be trained by counting the co-
occurrence of words in large corpora of text. The model can then be used to calculate whether a 
given  utterance  fits  the  model  (“is  grammatical”)  or  not.  It  can  also  be  used  to  generate 
utterances.

Many aspects of human language can be modelled to a reasonable extent by such non-hierarchical 
statistical  models  (known as  Markov models).  They can  even  deal  to  some  extent  with  the 
combinatorial structure of human language. However, they have a hard time dealing with the 
long-distance dependencies that exist in human languages. Our simple model, for example, can  
successfully model simple intransitive sentences, such as “the cat eats”, and intransitive sentences 
such as  “ the shaggy dog eats the stray cat”. However, it also allows impossible sentences with  
two verbs, such as “the cat eats the dog eats the cat”. This happens because when the model  
produces the second noun phrase, it has “forgotten” about the first noun phrase. This problem can 
be alleviated, but not solved, by using the last two, three, four or more words to predict the next 
word. Unfortunately, dependencies in human language can exist over arbitrarily long distances, 
so the model would need to be augmented with some representation of phrase structure (the result 
would be a probabilistic grammar, an approach that combines the strengths of the symbolic and 
statistical models we discussed).

Another  problem  which  already  occurs  for  simple  word-to-word  transitions,  but  which  is 
exacerbated by using longer stretches of words for prediction, is that many transitions will be 
extremely infrequent. Thus many perfectly allowable linguistic utterances will not be observed 
and therefore  deemed  not  allowable,  unless  countermeasures  are  taken.  However,  doing  this 
properly entails building in some knowledge about how language works beforehand.

The final class of models that we discuss are connectionist models. These are also called neural  
networks, and are inspired by the way the brain is organized. They consist of nodes (modelling 
neurons)  and  connections  (modelling  axons).  The  nodes  each  have  a  level  of  activation. 
Connections go from one node to another node and have a weight associated with them. The 
activation of a node is a function of the sum over the products of the weight of each incoming  
connection multiplied by the activation of the node from which it originates. Input to the system 
consists of setting the right activations of the input nodes, and output of the system can be read 
from the activation of the output nodes. Nodes that are neither input nodes nor output nodes are  
called hidden nodes. It should be noted that there can be loops in the neural network: this is 
illustrated in the lower right panel of figure 2 by the connection from the output node labelled 
“dog” to the hidden node before it. Connections going “back” in a neural network are called  
recurrent connections. 
The model presented in figure 2 illustrates a possible implementation of a model that predicts the 
next word in a sentence when having observed previous words in the sentence. The presence of 
recurrent connections in the network makes it possible for the network to remember a longer 
history than just the previous word. Each input node represents a word, and is activated when this 
word occurs. Each output node also represents a word, and its level of activation represents the 
confidence with which the network predicts that this word will be the next word. The model is 
inspired by Elman’s (Elman, 1990) simple recurrent network.



Most connectionist  models  learn.  This  happens through adaptation of the connection weights 
based on the input (and possibly the output) that is presented to the network. In the example, the 
network would be presented with an input word and an output word and its weights would be  
adapted such that the node representing the output word has higher activation. 

Connectionist  models  are  robust  to  noise  and  variation  in  the  input.  In  addition,  because 
knowledge is represented in a distributed way – it is distributed over the different connection 
weights and activations – the network is robust to loss of nodes and connections in a way very 
similar  to  the  way real  brains  are  robust  to  damage.  This  can  be  an  advantage  when  using 
computer models to study models of brain damage and aphasia. The distributed representations  
are a disadvantage, however, when one wants to understand what exactly a connectionist model  
has learned and how it solves problems. It can be hard or impossible to reduce the distributed 
representation to a more abstract representation that provides insight about the problem. Another  
potential  problem with  connectionist  models  is  that,  even  though  their  architecture  may  be 
inspired by the way the brain works, the way they actually work may be quite unrelated to the 
way  the  brain  works.  In  the  model  shown  in  figure  2,  for  example,  complete  words  are 
represented by single nodes. It is unlikely that this is the case in the human brain.
Different approaches to modelling therefore have different advantages and disadvantages. We 
would therefore argue that there is no single best way to build models of human linguistic 
behaviour. One should choose the modelling approach (or the combination of modelling 
approaches) that best suits the research question at hand.

Figure 2: Four types of model for individual linguistic cognition, illustrated in the domain of 
syntax. An abstract symbolic model (upper left), a memory based model (upper right), a 
statistical model (lower left) and a connectionist model (lower right). For explanations see 
Appendix B.
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